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Abstract 

We show that given two Boolean eireuits 1 and 9 the following 
three problems are ~~-eomplete: (1) ls 1 a e-subfunetion of g, Le. ean 
one set some of the variables of 9 to 0 or 1 so that the remaining circuit 
eomputes the same function· as I? (2) Is 1 a v-subfunctionof g, Le. 
ean one change the names of the variables of 9 so that the resulting 
cireuit eomputes the same function as I? (3) Is 1 a ev-subfunction 
of g, i.e. ean one set some variables of 9 to 0 or 1 and simultanously 
change some names of the other variables of 9 so that the new circuit 
eomputes the same funetion as I? Additionally we give some bounds 
for the eomplexity of the following problem: ls 1 isomorphie to g, 
i.e. ean one change· the names of the variables bijectively so that the 
circuit resulting from 9 eomputes the same function as f? 

1 Introduction 

The questions which we are concerned with in this paper can be very roughly 
stated as follows - given two Boolean circuits, what is the complexity of 
determining if the functions computed by them satisfy a certa.in relationship. 
For instance, given two boolean circuits f and 9, how difficult is it to decide 
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if f eomputes the same function as 9? We are interested in relations that 
relate to equivalenee and whieh are natural extensions of equivalenee, for 
example the notion of subfunetions. 

The paper is organized as follows. After the preliminairies we will give in 
seetion 3 the neeessary background and definitions required to formulatete 
the questions that we are interested in. In seetion 4 we prove the main 
results in this paper. Roughly stated, the first result shows that given two 
eireuits f and 9 the problem of determining that f is a "restrietion" of 9 
is ~~-eomplete. The seeond result shows that allowing only the change of 
variables also results in · a ~~-complete problem, and the third result shows 
that to determine if f results by a restrietion and an additional change of 
the names of the variables of 9 is also ~~-eomplete. In seetion 5 we present 
some results about the eomplexity of the cireuit isomorphism problem - the 
problem of determining if f results from 9 by a one-to-one renaming of the 
variables. 

2 Preliminaries 

2.1 Circuits 

Let · C = {0,1} be the set of Boolean eonstants and let V be a eountably 
infinite set of variables. Let CIR be the set of (finite Boolean) cireuits with 
input variables from V, using the eonstants 0,1 and I\-gates, V-gates and 
-,-gates for eonjunetion, . disjunetion and negation, respectivily. Note that 
already a single variable or eonstant is a cireuit. For a given cireuit f we eall 
a variable which is used by fasan input variable a variable occuring in f. 
A total assignment T is a function from V to C. An assignment as defined 
here is an infinite objeet. This is to facilitate the formulation of the problems 
that we are interested in. Given any total assignment a cireuit evaluates 
either to ° or 1 in the usual way. Clearly, for any cireuit, only a finite part 
of a total assignment is relevant for evaluation. 

Two eireuits f and 9 are said to be equivalent, denoted f = 9, i:ff for all total 
assignments they evaluate to the same value. In other words, two cireuits are 
equivalent if they eompute the same funetion. We give two brief examples 
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to darify the definitions. 

Examples: The cireuit (Zl V -,zd is equivalent to (Z2 V -'Z2) though they 
use different variables. (Zl V Z2) is not equivalent to (Z3 V Z4), beeause a 
total assignment .,. with .,.(Zl) = 0, .,.(Z2) = 0, "'(Z3) = 1, "'(Z4) = 1) evaluates 
the first cireuit to ° and thesecond to 1. Later we will define the notion of 
eireuit isomorphism and we will see that these two cireuits are isomorphie. 

A eireuit I is dependent on a variable z if there are two total assignments 
which differ only on z sueh that I evaluates to different values on these two 
assignments . It is dear that a cireuit is independent of eaeh variable not 
oeeuring in it, but also it may be independent of a variable oeeuring in it. 

2.2 Parity 

Given 11, ... , In E: CIR we define $(ft, ... , In) as the eireuit that eomputes par­
ity of the outputs of 111 ... , In. Formally, one definesas follows: $(ft) := 11, 
$(11,/2) := ((11/\ -,/2) V (-'/1/\ 12)), $(11, ... ,!n+1) := $( $(ft, ... , In), In+1). 

Besides properties like $(0,/1, ... '/n) = $(11,···,/n), $(g,g,/1,.·.,/n) = 
$(111 ... , In) or $( -'g, /1, ... , In) = -, $ (g, /1, ... , In) we will often refer to 
the following properties of the panty-eireuits: 

(PI) $(ft, ... , In) = $(lCT(l), ... , ICT(n») for every permutation (j of {I, ... , n} 

H Vl, ••• , Vn E V are all different fromeach other we also have: 

(P2) $(vt, ... , vn ) is dependent on eaeh Vi 

(P3) $(V1, ... ,vn,1) = $(V1, ... ,·vn,f) {::=::? 1 = I. 

2.3 Computational Complexity 

We assume familiarity with the eomplexity dasses within the Polynomial­
time Hierarehy like P; NP, eo-NP, lJt and also with the notion of polynomial­
time many-one reducibility «~), equivalenee (=~) and completeness. 

We mayassume from now on that cireuits are defined in some usual way as 
strings over some fixed alphabet. 

We know that SAT = {I E CIR I I t= O} is NP-eomplete and that TAUT = 
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{I E CIR I 1 = 1} is co-NP-complete. 

For a binary relation R on circuits let ((R)) denote the corresponding set of 
coded pairs {(f,g) I I,g E CIR and (I,g) ER}. With this notation TAUT 
and ((=)) are polynomial-time many-one equivalent by the reductions 1 --+ 

(1,1) and (j,g) --+""(${f,g)). 

Let 3'v'CIR denote the set of quantified cir~uits 3z1 ... 3zm 'v'Yl ... 'v'ynf such that 
1 is a circuit, the variables Z1, .• • , Zm, Yl, ... , Yn are all different from each other 
and are exact1y the variables occuring in I. Note that 3'v'CIR is recognizable 
in polynomial time. We know from [2] that B 2 := {g E 3'v'CIR I 9 evaluates 
to true} is :E~-complete. 

3 Replacements and Relations 

3.1 Replacements 

In general, areplacement is . a function V --+ CIR, and the set of all replace­
ments is called R. For a circuit 1 E CIR and a givenreplacement pER the 
application of p to 1 - denoted by I p - represents the circuit resulting from 
1 where every variable v is replaced by p( v). Of course, for a circuit 1 and 
areplacement p the construction of I p only depends on the p-values of the 
variables occuring in I. 
Example: Let 1 be the circuit « Z V y) 1\ z), and let p be areplacement with 
p(z) = (z 1\ z) and p(y) = 1. Then I p is the circuit «z 1\ z) V 1) 1\ (z 1\ z)). 

Often we use 1 Pl •.••• ".. to denote application of Pn to f Pl •...• P .. -l • 

Note that application of areplacement respects equivalence in a double sense: 
(1) 1 = 9 ::=} Ip = gp for all 1,9 E CIR,p E Rand (2) for all f E CIR, if 
for two replacements p, u E R p(y) = u(y) for all y E V then Ip = lu. 

3.2 Special Sets of Replacements 

We already defined the set of total assignments Rt = {p E R I p(V) ~ C} 
in the preliminairies. We nowdefine some more sets of replacements: 
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• the set of e-mappings or partial assignments Re ~ {p E R I p(V) ~ 
C u V and if p( v) E V then p( v) = v} 

• the set of v-mappings R v = {p E R I p(V) ~ V} 

• the set of ev-mappings R ev = {p E R I p(V) ~ Cu V} 

• the set of renamings R r = {p E R I p(V) ~ V and pis bijeetive} 

A e-mapping - which will always eall partial assignment - allows to set some 
of the variables to eonstants, leaving the other variables unehanged. A v­
mappings allows to change the names of variables. A ev-mapping eombines 
the power of e-mappings and v-mappings by allowing for eaeh variable either 
to set it to a constant or to change its name. A renaming is a bijective 
v-mapping. Note that Rt C Re C Revand R r C R v C R ev. 

3.3 Relations on Circuits 

Given the these four sets of replacements we uniformly define eorresponding 
relations ~e, ~v, ~cv and '" on cireuits: 

• f ~e 9 ~ :3p E Re : f = gp (J is a e-subfunetion of g) 

• f ~v 9 ~ :3p E R v : f = gp. (J is a v-subfunetion of g) 

• f ~ev 9 ~ :3p E R ev : f == gp. (J is a ev-subfunetion of g) 

• f '" 9 ~ :3p E R r : f = gp' (J is isomorphie to g) 

In other words: fis a e-subfunetion of 9 iff there is way of setting some vari­
ables of 9 to 0-1 sueh that the resulting cireuit eomputes the same funetion 
as f. Similarly, fis a v-subfunetion of 9 iff there is a way of ehanging the 
names of variables (we allow to give different variables the same new name) 
of 9 such that the resulting cireuit g' is equivalent to f. Likewise, f is a 
ev-subfunetion of 9 iff there is a way of setting some variables of 9 to 0-1 
and simultanously changing the names of some other variables of 9 so that 
the resulting eireuit g' is equivalent to f. And fisisomorPhie to 9 if f is 
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equivalent to the eireuit 9' whieh results from 9 after a bijective renaming of 
the variables V. 

Obviously we have f = 9 ==> f ~c 9 ==> f ~cv 9, and f = 9 ==> f f'V 

9 ==> f ~v 9 ==> f ~cv 9· By the following examples these implieations 
do not hold for the opposite direetion. 

Examples: Let z, y, z be three different variables. (1) The eireuit (z 1\ z) is 
a e-subfunction of (( z 1\ y) 1\ z) by setting y to 1, though the two eireuits are 
not equivalent. (2) The cireuit z is a ev-subfunetion but not a e-subfunction 
of the cireuit (y V z). (3) The eireuits (z 1\ y) and -,( -'y V -,z) are isomorphie 

. but not equivalent. (4) The cireuit z is a v-subfunetion of (y 1\ z) by setting 
both y and z to x, but the two eireuits are not isomorphie. (5) The cireuit z 
is a ev-subfunetion but not a v-subfunction of thecireuit E9(y, z). 

Observe that {or eireuits f and 9 whether or not f ~c 9 (f ~v 9, f ~cv 9) 
depends only on the functions eomputed by f and 9. This justüies the 
nomenclature "subfunetion». 

Note that the first three relations are preorders and the last is an equivalenee 
relation. 

In the next seetion we will investigate the eomputational eomplexity of the 
first three relations, leaving the last relation to seetion 5. 

4 The Complexity of the Subfunction Rela­
tions 

In this seetion we will loeate the eomputational eomplexity of the relations 
~c, ~v and ~cv. The first observation is the following: 

Lemma 1 ((~c}), ((<v}), ((~cv}) are in ~~. 

Proof: Note that replaeements for a given cireuit f ean be eneoded by only 
eoding the values for the variables oeeuring in f. To decide the question 
f ~ c 9 for a given pair of cireuits (f, 9), just guess a eode for a partial 
assignment p for g, and check for eaeh eode of a total assignment T for f if 
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I.,. evaluates to the same constant as 9p,.,.. Thus, ((~e)) isin :E~. The proof 
for (( ~ cv)) and (( ~ v)) works in an analog. way. 0 

We shan now state and prove the main result in this paper. 

Theorem 1 ((~e)), ((~v)),((~ev)) are :E~-eomplete. 

Proof: Since we know that these problems are in :E~ and that B 2 is :E~­
complete, to show :E~-completeness it suffices to give for each problem a 
polynoInial-timemany-one reduction from B 2 to it. 

In the proofs we will use the following equivalent definition of B 2: a quantified 
circuit q = 3z1 ••• 3zm VYl ... Vyn! E 3VCIR belongs to B 2 iff there is a partial 
assignment X which sets none of the variables Yl, ... , Yn to constants and for 
which I'X is a tautology, i.e. I'X = 1. 

(a) B 2 =::;~ ((~e)) 

Let q = 3z1 •.. 3zm VYl ... VYnl E 3VCIR be given. 

The first appoach for the reduction would be to construct from q something 
like the pair of circuits (1,1), and in fact if q E B 2 then 1 ~e I, but for the 
other direction this construction is not correct: take q = 3zVy(z 1\ Y), then 
1 ~e (z 1\ y) but q f/. B 2• We observe that we have to garantee that the 
variables Yi are not set to constants by the partial assignment. This is done 
with the help of the panty-function with its special property (P2): 

Given q from above, construct the pair of circuits (9, h) with 

9 = EB(Yb ... , Yn, 1) 

h == EB(Yb ... , Yn, f) 

This construction can be done in polynomial time. Hence, it remains to show 
that q E B 2 {::=::} 9 ~ e h: 

(==}) Given that q E B 2, take the assignment X from the characterization of 
B 2 from above, so 1 = I'X. Because X does not change the variables Yl, ... , Yn 
we have h'X = EB(Yl' ... , Yn, Ix) and therefore h'X = EB(Yl, ... , Yn, 1). Thus, 
9 = h'X. 

( <== ) H there exists a partial assignment p E Re such that 9 = hp then none 
of the variables of Yt, ... , Yn can be mapped a to constant because otherwise 

7 



hp would be iridependent of some Yi while 9 is by (P2) dependent on Yi. Thus 
we have ffi(Yl, ... , Yn, fp)= hp = g= ffi(Yl' ... , Yn, 1), and by (P3) we condude 
1 = fp. By the charactenzation of B 2 from above we have that q E B 2• 

We will first prove the completeness of the third problem because then the 
proof of the second becomes more dear: 

(c) B 2 ::S;~ ((«cv)) 

Let q = 3z1 ... 3zm VY1",VYnf E 3VCIR be given. 

If we try to apply here the previous construction we still have that if q E B 2 

then 9 «cv h, but the opposite ditection is not correct: let q = 3zVy(z A Y), 
then ffi(y,1) «cv ffi(Y, (z A y)) by the cv-mapping which sets z to Y and Y 
to 1, but q f/. B 2 • We observe that the problem is that a variable Zi can be 
mappedto a variable Yj and vice versa. The idea is to "blow up" the variables 
Yj by huge panty circuits which "swallow" the values for the variables Zi of 
a cv-mappmg: 

Given q form above, let X denote the set of variables {Zl' ... , Zm} and let Y 
denote theset of variables {Yl, ... , Yn}. Let s = 2m+ 1, and choose (n X s) new 
variables z~, ... , z~, ... , ... , z!, ... , z~. Call Zi := {z}, ... , zn, Z := Zl U ... U Zn. 
Take the replacement w with W(Yi) := ffi(z}, ... , zt) and w( v):= v otherwise. 
Then fw looks like fbesides that each variable Yi E Y is replaced by the 
panty-circuit W(Yi). 

For the reduction, construct the pair of circuits (g, h) with 

9 = ffi(zi, ... , z~, ... , ... ,z!, ... , z~, 1) 

h ~ ffi(z~, ... , z~, ... , ... , z!, ... z~, fw) 

This construction can be carried out in polynomial time. We show that 
q E B 2 .{=> g«cv h. 

(==» 

If q E B 2 then take the partial assignment X from the charactenzation of 
B 2 above. Note that we can assume that X only sets variables from X 
to constants. We have that fx. i's a tautology, so also fx..w is a tautology. 
But fx..w = fw.p because X does not change the variables from Z and W 

does not change the variables from X. Therefore 1 = f w.x. and· so hx. = 
ffi( z~ , ... , z!,! w.x.) . ffi( zi, ... , z!, 1) = g. Because X is a cv-mapping we have 
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9 ~cv h. 

(~) 

Let 9 = hp with p E R cv. One first recognizes that Z ~ p(X U Z) hecause hy 
(P2) 9 depeJ;l.ds on each variahle of Z and in h occur only variahles from X 
and Z. N ow we have the following simple comhinatorical conclusion: hecause 
s > m there are two suhsets A := {ab ... , an}, B := {bb ... , bn} of Z such that 
A and B have exactly n elements, ai E Zi, p( ai) = bi and each variahle bi E B 
is neither the p-image of a variahle in X nor the p-image of a variahle in Z 
different from ai. 

We will define a partial assignment '"'( distinguishing two cases (I) and (Il): 

(I) p(Z \ A) = Z \ B: then p permutes Z and so hy (PI) and (P3) 1 = !""p. 
Let '"'( he the partial assignment which sets every variahle to 0 except the 
variahles of B. Then we have still 1 = ! "',p,'Y. 

(H) 3v E Z \ B : v ~ p(Z \ A): Let ß he the partial assignment which 
sets every variahle to 0 except v and the variahles of B. gß is equivalent 
to either E9(V, b1 , ... ,bn , 1) or its negation, and hp,ß is equivalent either to 
E9(~, ... , bn , !"',P,ß) or its negation. Extend ß to a partial assignment '"'( hy 
mapping v to that constant which makes (P3) applicahle so that we can 
conclude 1 = ! "',P,'Y. 

In hoth cases we have that 1 = !"',P,'Y and for each Zi we see that W(Zi)p,'Y is 
equivalent either to bi or to ..,bi, hecause every variahle z1 E Zi hesides ai is 
fina.lly mapped to a constant. 

Let 71" he the following partialassignment setting a.ll variahles from X to 
constants and leaving the other variahles unchanged: 

71"( v) := { ;( v) 
, '"'((p(v)) 

ifv ~ X 
if v E X and p( v) E C 
else 

Now compare!'Jr and !"',P,'Y: the variahles Zi E X are hy definit on of 71" in hoth 
circuits replaced hy the same constants, and instead of a variahle Yi in !7r we 
find in !""P,'Y a circuit equivalent to either bi or ..,bi . Thus the two circuits 
are "very similar" in the following precise sence: let T he a total a.ssignment 
and define the total a.ssignment T' hy 
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T( V) if v fj. B 
o if v = bi E B, T(Yi) = 0 and W(Yi)p,'Y is equivalent to bi 

T'(V) := 1 if v = bi E B, T(Yi) = 1 and W(Yi)p,'Y is equivalent to bi 
1 if v = bi E B, T(Yi) = 0 and W(Yi)p,'Y is equivalent to -,bi 

. 0 if v = bi E B, T(Yi) = 1 and W(Yi)p,'Y is equivalent to -,bi 

Then Iw,p,'Y evaluates with the total assignment T' to the same constant 1'Ir 
evaJ.uates to with the total assignment T. 

Assume that 1'Ir is not a tautology. Then there is a total assignment T which 
lets 17r evaluate to O. Hut then Iw,p,'Y evaJ.uates with T' also to 0, contradicting 
the fact that it is a tautology. Thus 1'Ir is a tautology, where 7r is a partial 
assignment which does not change the variables from Y. So q E B 2 by the 
charactenzation of B 2 from above. 

And finally we come to part (b): 

(b) B2 ::;~ (( ~v)} 

First consider the following reduction from SAT to (( ~ v) }: 

Given a circuit 1 construct the pair of circuits (g, h) with 

9 = $(ro, rl, 1) 

h = $( ro, rl, cl) with 

d = (ro V -,rl V f) 

where ro, rl are two different variables not occuring in I. 
We show that 1 E SAT {:::::} 9 ~ v h: 

(===> ) if 1 evaluates to 1 for a total assignment T, then construct the following 
v-mapping 6: let 6(ro) :~ rO,6(rl) := rl, and else if T(V) = 0 then define 
6(v) := ro, and if T(V) ~ 1 then define 6(v) := rl' Now d6 isa tautology: if 
for a total assignment e e(ro) = 1 or e(rt) = 0 then d6 evaluates to 1, and 
if e(ro) = 0 and e(rt) . 1 then 16 evaJ.uates with e to 1 the same way like 
1 evaluates with T to 1, thus d6 is a tautology. We conclude 9 = h6• Thus 
g~vh. 

(~) if 9 = hp for a v-mapping p, then we can conclude that p({ro, rtl) = 
{ro, rl}: assume that neither ro nor rl is mapped to ro by p. Then define the 
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partial assignment 7r which only sets p(ro) to 1 and leaves all other variables 
unchanged. Then g'7( is still dependent on ro while hp7f is not, what contradicts 
the equivalence of 9 and hpo Together with the analog reasoning for rl we 
have that p( {ro, rl}) = {ro, rl}. With (PI) and (P3) we conclude that dp is 
a ta.utology. Because p(ro) #- p(rd we can define the total assignment € with 
€(p(ro)) = 0, €(p(rd) = 1 and €(v) = 0 else. fp with the total assignment € 
has to evaluate to 1, showing that f.is in SAT. 

Now back to the reduction from B 2 to ((~v}): 

Given a word q = ::Jz1 ... ::Jzm VYl ... VYnf E ::JVCIR, construct the pair of circuits 
(g, h) with 

9 = ffi(zi,···,z~, ... , ... ,z!, ... ,z!,rO,rl,l) 

h = ffi( zi, ... , zi, ... , ... , z!, ... , z!, ro, rl, ro V orl V f w ) 

where ro, rl are choosen like above, and where zt and ware choosen as in the 
proof of part (c). 

We have q E B 2 <===} 9 ~ v h with a proof which combines the arguments 
of the proof of (c) and the proof of the reduction from SAT above. 0 

5 Circuit Isomorphism 

In this section we will investigate the equivalence relation ~ from section 3. 
First we show that ~ could be defined by means of ~ cv and ~ v: 

The relations ~ c, ~ cv and ~ v are reflexive and transitive, so let us define 
the corresponding equivalence relations ~c, ~cv and ~v by 

• f ~c 9 <===} f ~c 9 and 9 ~c f, 

• f ~v 9 <===} f ~v 9 aild 9 ~v f, 

• f ~cv 9 <===} f ~cv 9 and 9 ~cv f. 

Proposition 1 V f, 9 E CIR 

f = 9 <===} f ~c g, and f ~ 9 <===} f ~v 9 <===} f ~cv g. 

11 



Proof: 

I = 9 ==> I~e g: 

H I = 9 then the identity on the variables id : V ~ V : v ~ v is a partial 
assignment with lid = 9 = I = gid· 

I ~e g==>I = g: 

Hg = I p and I = gu with p, u E Re then I = gp = Ip,u' In Ip,u the variables 
which were set by p to constants don't occur any longer so that Ip,u,p = Ip,u 
and therefore I = Ip,u = Ip,u,p = Ip = g. 

I '" g==>I ~v g: 

H there exi.sts a bijection p : V ~ V such that I = gp then 9 = Ip-l because 
. 9 = gp,p-l = Ip-l, and therefore I ~v 9 and 9 ~v I. 

I ~v g==>I '" g: 

Let 9 = Ip and f = gu with p, u E R v. We define 11 := I, gn := 1';:, In+! := 

g;. Then, for all n, I = r and 9 = gn because if I = In and 9 = gn 
then In+l = g; = gu= I and gn+! = I;: = Ip = g. Let Occ(f) denote the 
set of variables occuring in I and consider the sequence of natural numbers 
IOcc(jI)1 2: IOCC(gl)1 > IOcc(P)1 2: IOCC(g2)1 2: IOcc(j3)1 > ~Occ(j3)I .... 
Because IOcc(f)1 is finite this sequence must have two consecutive members 
with the same value, saythat IOcc(fn)I = IOcc(gn)l. We can conclude that 
u restricted to Occ(r) ~ Occ(gn) is a bijection and that there is some 
bijection a: Occ(gn) - Occ(r) .~ Occ(fn) - Occ(gn) . We know that r is 
independent of all variables in V - Occ(fn)j therefore define the bijection ß 
by ß(v) := p(v) for v E Occ(r) and ß(v) := a(v) for v E Occ(gn) - Occ(r) 
and ß( v) := v otherwise. Now we have 9 = gn = I;: = fß = Iß. Thus I and 
gare isomorphie. 

The proof for ~ev works the same way like that for ~v. 0 

From the proposition above, it follows that ((~e)) is co-NP-complete. We 
shall call the problem (( ~ v)) = (( ~ ev)) = (( "')) the Circuit Isomorphism 
problem, short CI. 

Regarding its complexity we have the following proposition where GI denotes 
the Graph Isomorphism Problem (for its definition see [1), p.155): 
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Proposition 2 CI E ~~, TAUT ~~ CI and GI ~~ CI. 

Proof: With a proof similar to that for (( <t::p )) we have that CI E ~~. The 
reduetion from TAUT to CI is by f --t (j,1). 

For the Graph Isomorphism problem, let hG for a graph G = (V, E) be the 
eireuit defined as follows: for every vertex i E V in G ehoose a different 
variable Vi; then hG = V(i,i)EE(ViAVi)' Now, it is not diffieult to see that G1 

and O 2 are isomorphie if and only if hG1 '" hG,. 0 

The following pieture plaees CI graphieally. The arrows denote the knowl­
edge of the existenee of a ~~-reduetion: 

CI 

~ 
SAT TAUT 

~ 
GI 

\ 
EP 

6 Remarks and Open Questions 

We would like to remark that analogous results ean be stated for formulas 
instead of cireuits. 

Note the analogy in the definition of GI and CI: Two graphs are isomorphie 
iff they are the "same" graphs - modulo node names. Similarly, two cireuits 
are isomorphie iff the eompute the "same" function - modulo variable names. 
Note that Graph Isomorphism like Cireuit Isomorphism ean be defined as 
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the corresponding equiva.lence relation of apreorder, namely the preorder 
Subgraph Isomorphism, which is NP-complete, see [1], p. 202. 

Some open questions of interest that remain are: 

• What exactly is the complexity of CI? Is it a ~~-complete problem? 
If not, is it possibly in A~? 

• Could one define a IFa-complete or a ~~-complete problem based on 
one of the ~~-complete problems defined here? 

• The relations ~ and ~t obtained via the most general and most re­
strictive replacement schemes R and Rt are in co-DP and DP respec­
tively and hence unlikely to be ~~-complete. It will be interesting to 
study the question of complexity for replacement schemes other than 
the ones investigated here. In this regard we would like to mention 
that the problem ((~Ü), where f ~l 9 if f can be obtained from 9 
via areplacement that maps variables to literals (literal mapping), is 
~~-complete. 
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