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Abstract

We show that given two Boolean circuits f and g the following
three problems are £3-complete: (1) Is f a c-subfunction of g, i.e. can
one set some of the variables of g to 0 or 1 so that the remaining circuit
computes the same function as f? (2) Is f a v-subfunction of g, i.e.
can one change the names of the variables of g so that the resulting
circuit computes the same function as f? (3) Is f a cv-subfunction
of g, i.e. can one set some variables of g to 0 or 1 and simultanously
change some names of the other variables of g so that the new circuit
computes the same function as f? Additionally we give some bounds
for the complexity of the following problem: Is f isomorphic to g,
i.e. can one change the names of the variables bijectively so that the
circuit resulting from g computes the same function as f?

1 Introduction

The questions which we are concerned with in this paper can be very roughly
stated as follows - given two Boolean circuits, what is the complexity of
determining if the functions computed by them satisfy a certain relationship.
For instance, given two boolean circuits f and g, how difficult is it to decide



if f computes the same function as g7 We are interested in relations that
relate to equivalence and which are natural extensions of equivalence, for
example the notion of subfunctions.

The paper is organized as follows. After the preliminairies we will give in
section 3 the necessary background and definitions required to formulatete
the questions that we are interested in. In section 4 we prove the main
results in this paper. Roughly stated, the first result shows that given two
circuits f and g the problem of determining that f is a “restriction” of g
is X5-complete. The second result shows that allowing only the change of
variables also results in a X5-complete problem, and the third result shows
that to determine if f results by a restriction and an additional change of
the names of the variables of g is also X5-complete. In section 5 we present
some results about the complexity of the circuit isomorphism problem - the
problem of determining if f results from g by a one-to-one renaming of the
variables.

2 Preliminaries

2.1 Circuits

Let C = {0,1} be the set of Boolean constants and let V' be a countably
infinite set of variables. Let CIR be the set of (finite Boolean) circuits with
input variables from V', using the constants 0,1 and A-gates, V—gates and
——gates for conjunction, disjunction and negation, respectivily. Note that
already a single variable or constant is a circuit. For a given circuit f we call
a variable which is used by f as an input variable a variable occuring in f.

A total assignment 7 is a function from V to C. An assignment as defined
here is an infinite object. This is to facilitate the formulation of the problems
that we are interested in. Given any total assignment a circuit evaluates
either to 0 or 1 in the usual way. Clearly, for any circuit, only a finite part
of a total assignment is relevant for evaluation.

Two circuits f and g are said to be equivalent, denoted f = g, iff for all total
assignments they evaluate to the same value. In other words, two circuits are
equivalent if they compute the same function. We give two brief examples



to clarify the definitions.

Examples: The circuit (z, V —z,) is equivalent to (z, V —z,) though they
use different variables. (z; V z3) is not equivalent to (233 V z4), because a
total assignment 7 with 7(z;) = 0,7(z2) = 0, 7(23) = 1, 7(z4) = 1) evaluates
the first circuit to 0 and the second to 1. Later we will define the notion of
circuit isomorphism and we will see that these two circuits are isomorphic.

A circuit f is dependent on a variable z if there are two total assignments
which differ only on z such that f evaluates to different values on these two
assignments. It is clear that a circuit is independent of each variable not
occuring in it, but also it may be independent of a variable occuring in it.

2.2 Parity

Given fi, ..., f» € CIR we define &(fi, ..., fn) as the circuit that computes par-
ity of the outputs of fi, ..., f». Formally, one defines as follows: &(f1) := fi,

- B(f1, f2) =((AA=L)V(=AA L)), ®(f1y -y fat1) := ©(D(f1y -y fr)y frtr)-

Besides properties like ®(0, f1,..., fa) = ®(f1y ey Fu)y ©(9)9, Firyooer f) =
&(f1,..-, fn) O B(=g, f1,-s fu) = = ® (g, f1,---, fn) We will often refer to
the following properties of the parity—circuits:

(P1) &(f1,--» fr) = &(foq1)) --+» fo(n)) for every permutation o of {1,...,n}
If vy, ..., € V are all different from each other we also havé:

(P2) &(v1,...,vs) is dependent on each v;

(P3) ®(v1, .-y Un, 1) = ®(v1,...r0n, f) <= 1= f.

2.3 Computational Complexity

We assume familiarity with the complexity classes within the Polynomial-
time Hierarchy like P, NP, co-NP, X} and also with the notion of polynomial-
time many-one reducibility (<%,), equivalence (=5,) and completeness.

We may assume from now on that circuits are defined in some usual way as
strings over some fixed alphabet.

We know that SAT = {f € CIR | f # 0} is NP-complete and that TAUT =
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{f € CIR | f = 1} is co-NP-complete.

For a binary relation R on circuits let ((R)) denote the corresponding set of
coded pairs {(f, g) | f,9 € CIR and (f,g) € R}. With this notation TAUT
and ((=)) are polynomial-time many-one equivalent by the reductions f —
(1, f) and (f,9) — ~(&(f,9))-

Let IVCIR denote the set of quantified circuits Jz;...32,,Vy;...Vynf such that
f is a circuit, the variables z;, ..., Zm, ¥1, ..., Yn are all different from each other
and are exactly the variables occuring in f. Note that IVCIR is recognizable
in polynomial time. We know from [2] that B, := {g € IVCIR | g evaluates
to true} is X5-complete.

3 Replacements and Relations

3.1 Replacements

In general, a replacement is a function V — CIR, and the set of all replace-
ments is called R. For a circuit f € CIR and a given replacement p € R the
application of p to f — denoted by f, — represents the circuit resulting from
f where every variable v is replaced by p(v). Of course, for a circuit f and
a replacement p the construction of f, only depends on the p-values of the
variables occuring in f.

Example: Let f be the circuit ((zVy)Az), and let p be a replacement with
p(z) = (z A 2) and p(y) = 1. Then f, is the circuit ((z A 2) V1) A (z A 2)).

Often we use f,,, . ,. to denote application of p, to f,,,. . .-

- Note that application of a replacement respects equivalence in a double sense:
1) f=g= fo=g,forall f,g € CIR,p € R and (2) for all f € CIR, if
for two replacements p,o € R p(y) = o(y) for all y € V then f, = f,.

3.2 Special Sets of Replacements

We already defined the set of total assignments Ry = {p € R | p(V) C C}
in the preliminairies. We now define some more sets of replacements:



o the set of c-mappings or partial assignments Rc = {p € R | p(V) C
C UV and if p(v) € V then p(v) = v}

o the set of v-mappings Ry={pe R | p(V)C V}
o the set of cv-mappings Rey={peR | p(V)C CUV}

o the set of renamings Ry = {p € R | p(V) C V and p is bijective}

A c-mapping — which will always call partial assignment — allows to set some
of the variables to constants, leaving the other variables unchanged. A v-
mappings allows to change the names of variables. A cv-mapping combines
the power of c-mappings and v-mappings by allowing for each variable either
to set it to a constant or to change its name. A renaming is a bijective
v-mapping. Note that R; C R¢ C Rey and R C Ry C Rew.

3.3 Relations on Circuits

Given the these four sets of replacements we uniformly define corresponding
relations < ¢, €y, < cv and ~ on circuits:

o f<Kcg < FpeRc: f=g, (fis a c-subfunction of g)
o fKpg < FpeRy: f=g,. (fisa v-subfunction of g)
e f<Lewg < FpeRey: f=g, (fisa cv-subfunction of g)

o f~g < FpeRy: f=g, (fis isomorphic to g)

In other words: f is a c-subfunction of g iff there is way of setting some vari-
ables of g to 0-1 such that the resulting circuit computes the same function
as f. Similarly, f is a v-subfunction of g iff there is a way of changing the
names of variables (we allow to give different variables the same new name)
of g such that the resulting circuit ¢’ is equivalent to f. Likewise, f is a
cv-subfunction of g iff there is a way of setting some variables of g to 0-1
and simultanously changing the names of some other variables of g so that
the resulting circuit ¢’ is equivalent to f. And f is isomorphic to g if f is



equiva.lént to the circuit g’ which results from g after a bijective renaming of
the variables V.

Obviously we have f = g = f<Kcg9g = f<Lew g,and f=g = f ~
g = f Kvg = f <cv g- By the following examples these implications
do not hold for the opposite direction.

Examples: Let z,y, z be three different variables. (1) The circuit (z A z) is
a c-subfunction of ((z A y) A z) by setting y to 1, though the two circuits are
not equivalent. (2) The circuit z is a cv-subfunction but not a c-subfunction
of the circuit (y V z). (3) The circuits (z A y) and ~(—y V ~z) are isomorphic
but not equivalent. (4) The circuit  is a v-subfunction of (y A z) by setting
both y and z to x, but the two circuits are not isomorphic. (5) The circuit «
is a cv-subfunction but not a v-subfunction of the circuit ®(y, 2).

- Observe that for circuits f and g whether or not f K¢ g (f €v g, f <Lcv 9)
depends only on the functions computed by f and g. This justifies the
nomenclature “subfunction”.

Note that the first three relations are preorders and the last is an equivalence
relation.

In the next section we will investigate the computational complexity of the
first three relations, leaving the last relation to section 5.

4 The Complexity of the Subfunction Rela-
tions

In this section we will locate the computational complexity of the relations
<K ¢y <y and K ¢y. The first observation is the following:

Lemma 1 (<)), ((€v)), ((Kev)) are in 3.

Proof: Note that replacements for a given circuit f can be encoded by only
coding the values for the variables occuring in f. To decide the question
f K¢ g for a given pair of circuits (f,g), just guess a code for a partial
assignment p for g, and check for each code of a total assignment 7 for f if



f- evaluates to the same constant as g,,. Thus, ({<¢)) is in X3. The proof
for ((<cv)) and ((<v)) works in an analog way. m]

We shall now state and prove the main result in this paper.
Theorem 1 ((<¢)), ((Kv)), ({Kcv)) are Tj-complete.

Proof: Since we know that these problems are in ¥) and that B, is X5-
complete, to show Z3-completeness it suffices to give for each problem a
polynomial-time many-one reduction from B, to it.

In the proofs we will use the following equivalent definition of B,: a quantified
circuit ¢ = J=x;...32,,V¥;...Vy,f € IVCIR belongs to B, iff there is a partial
assignment x which sets none of the variables y;, ..., ¥, to constants and for
which f, is a tautology, i.e. f, =1.

(a) B; <7, ((<c))

Let ¢ = dz,...32,,,Vy1...Vy.f € IVCIR be given.

The first appoach for the reduction would be to construct from g something
like the pair of circuits (1, f), and in fact if ¢ € B, then 1 <¢ f, but for the
other direction this construction is not correct: take ¢ = J=Vy(z A y), then
1 €c¢ (2 Ay) but ¢ € B,. We observe that we have to garantee that the

variables y; are not set to constants by the partial assignment. This is done
with the help of the parity-function with its special property (P2):

Given ¢ from above, construct the pair of circuits (g, k) with
9=, ¥n,1)
h= @(yl, veey Yny f)

This construction can be done in polynomial time. Hence, it remains to show
thatquz — g<<ch:

(=) Given that g € B,, take the assignment x from the characterization of
B, from above, so 1 = f,. Because x does not change the variables y1,...,¥n
we have hy, = ®(y1,...,¥Yn, fx) and therefore hy = @®(y1,...,Yn,1). Thus,
g = h,.

(¢<=) I there exists a partial assignment p € R¢ such that g = h, then none
of the variables of yi, ..., ¥, can be mapped a to constant because otherwise
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h, would be independent of some y; while g is by (P2) dependent on y;. Thus
we have (1, ..s Yn, fo) = hp = 9 = &(¥1, ..., Yn, 1), and by (P3) we conclude
1 = f,. By the characterization of B, from above we have that g € B,.

We will first prove the completeness of the third problem because then the
proof of the second becomes more clear:

(c) B2 <2, ((Kew))
Let ¢ = J2;...32,,Vy;:...Vy.f € IVCIR be given.

If we try to apply here the previous construction we still have that if ¢ € B,
then g K cy h, but the opposite direction is not correct: let ¢ = JzVy(z A y),
then &(y,1) <cv (¥, (z A y)) by the cv-mapping which sets z to y and y
to 1, but ¢ € B,. We observe that the problem is that a variable #; can be
mapped to a variable y; and vice versa. The idea is to “blow up” the variables
y; by huge parity circuits which “swallow” the values for the variables z; of
a cv-mapping:

Given ¢ form above, let X denote the set of variables {z1,...,z,n} and let ¥
denote the set of variables {y1, ..., ¥n}. Let s = 2m+1, and choose (n X s) new
variables z],...,2%,...,..., 2}, ..., 25, Call Z; := {2},...,2!}, Z :== Z, U ...U Z,.
Take the replacement w with w(y;) := &(z}, ..., 2{) and w(v) := v otherwise.
Then f, looks like f besides that each variable y; € Y is replaced by the
parity-circuit w(y;).

For the reduction, construct the pair of circuits (g, k) with

g=0(z}, .., 2}, ey ony o Zpy 1)

h=@(z], ) 28y ey ey 2oy o2y f)

This construction can be carried out in polynomial time. We show that
q (= Bz — g <<cv h

(=)

If ¢ € B, then take the partial assignment x from the characterization of
B, above. Note that we can assume that x only sets variables from X
to constants. We have that f, is a tautology, so also f, . is a tautology.
But f, ., = f., because x does not change the variables from Z and w

does not cha.nge the va.riables from X. Therefore 1 = f,, and so hy, =
&(21, .., 25, fuz) = O(22, ... z2,1) = g. Because x is a cv-mapping we have



g <Lcvh.
(=)

Let g = h, with p € Rcy. One first recognizes that Z C p(X UZ) because by
(P2) g depends on each variable of Z and in k occur only variables from X
and Z. Now we have the following simple combinatorical conclusion: because
8 > m there are two subsets A := {ay, ..., a,}, B := {by, ..., b,} of Z such that
A and B have exactly n elements, a; € Z;, p(a;) = b; and each variable b; € B
is neither the p-image of a variable in X nor the p-image of a variable in Z
different from a;.

We wﬂl define a partial assignment v distinguishing two cases (I) and (II):

(I) p(Z \ A) = Z \ B: then p permutes Z and so by (P1) and (P3) 1 = f,,.
Let 4 be the partial assignment which sets every variable to 0 except the
variables of B. Then we have still 1 = f, ,,.

(I1) 3v € Z\ B : v &€ p(Z \ A): Let B be the partial assignment which
~ sets every variable to 0 except v and the variables of B. gg is equivalent
to either &(v,by,...,bn,1) or its negation, and h,g is equivalent either to
@®(b1, ..., bn, fup,p) OF its negation. Extend S to a partial assignment 4 by
mapping v to that constant which makes (P3) applicable so that we can
conclude 1 = £, ;-

In both cases we have that 1 = f,,, and for each z; we see that w(z), is
equivalent either to b; or to —b;, because every variable 2] € Z; besides a; is
finally mapped to a constant.

Let = be the following partial assignment setting all variables from X to
constants and leaving the other variables unchanged:

v fvgX
w(v) = { p(v) ifveX and p(v) e C
L v(p(v)) else

Now compare f, and f, ,,: the variables z; € X are by definiton of 7 in both
circuits replaced by the same constants, and instead of a variable y; in f, we
find in f,,, a circuit equivalent to either b; or —b;. Thus the two circuits
are “very similar” in the following precise sence: let 7 be a total assignment
and define the total assignment 7' by



T(v) fv¢g B

0 if v=">; € B, 7(y:;) = 0 and w(¥;:),y is equivalent to b;
1 ifv=>5 € B, 7(y;) = 1 and w(¥:),, is equivalent to b;
1 if v=">; € B, 7(y:;) = 0 and w(¥:),,y is equivalent to —b;
0 if v=1>8; € B, 7(y:;) = 1 and w(¥:),, is equivalent to —b;

r'(v) =

Then f, ,~ evaluates with the total assignment 7’ to the same constant f,
evaluates to with the total assignment 7.

Assume that f, is not a tautology. Then there is a total assignment 7 which
lets f, evaluate to 0. But then f, ,, evaluates with 7/ also to 0, contradicting
the fact that it is a tautology. Thus f. is a tautology, where 7 is a partial
assignment which does not change the variables from Y. So ¢ € B, by the
characterization of B; from above.

And finally we come to part (b):

(b) B <7, (<))

First consider the following reduction from SAT to ((Kv)):
Given a circuit f construct the pair of circuits (g, h) with

g = ®(re,m1,1)

h = &(ro, 71, d) with

d=(roV-rVf)

where 7o, 7, are two different variables not occuring in f.
We show that f € SAT < g<v h:

(=) if f evaluates to 1 for a total assignment 7, then construct the following
v-mapping §: let §(ro) := 7o, §(r1) := 71, and else if 7(v) = 0 then define
8(v) := 7o, and if 7(v) = 1 then define §(v) := ;. Now ds is a tautology: if
for a total assignment ¢ £(ro) = 1 or £(r1) = O then ds evaluates to 1, and
if {(ro) = 0 and {(r,) = 1 then f5 evaluates with £ to 1 the same way like
f evaluates with 7 to 1, thus ds is a tautology. We conclude g = hs. Thus
g <Ly h.

(«<=) if g = h, for a v-mapping p, then we can conclude that p({ro,m1}) =
{ro,71}: assume that neither 7o nor =, is mapped to ro by p. Then define the
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partial assignment 7 which only sets p(ro) to 1 and leaves all other variables
unchanged. Then g, is still dependent on ro while k,, is not, what contradicts
the equivalence of g and h,. Together with the analog reasoning for r, we
have that p({ro,1}) = {ro,71}. With (P1) and (P3) we conclude that d, is
a tautology. Because p(ro) # p(r1) we can define the total assignment ¢ with
€(p(ro)) =0, £(p(r1)) = 1 and £(v) = 0 else. f, with the total assignment £
has to evaluate to 1, showing that f.is in SAT.

Now back to the reduction from B, to ((<Ky)):

Given a word ¢ = 3z;...32,Vy:...Vy,.f € IVCIR, construct the pair of circuits
(g, R) with

— 1 3 1 3
= B2y gy copemnbny o Zhs Bos Py 1)
—_ 1 s 1 f]
h=®(21, .12}, ey ey Zpy ooy 2y T0y P1, 70 V 0L V f)

where 7o, 7, are choosen like above, and where z/ and w are choosen as in the
proof of part (c).

We have ¢ € B, <= g <y h with a proof which combines the arguments
of the proof of (c) and the proof of the reduction from SAT above. O

5 Circuit Isomorphism

In this section we will investigate the equivalence relation ~ from section 3.
First we show that ~ could be defined by means of < ¢y and <y:

The relations < ¢, € ¢y and <y are reflexive and transitive, so let us define
the corresponding equivalence relations ~¢, ~cy and ~y by

o frRcg < f<cgand g<cf,
o fryg < f<ygand g <y,

o frwg &< f<Kwgand g <o f.

Proposition 1 Vf,g € CIR
f=g9g = freg andf~g < fryg < f=wy.

11



Proof:
fEsg=frcy

If f = g then the identity on the variables ¢d : V — V : v — v is a partial
assignment with fu =9 = f = gia.

fReg=f=g

Ifg=f, and f = g, with p,0 € R¢c then f =g, = f,,. In f,, the variables

which were set by p to constants don’t occur any longer so that f,,, = f,»
and therefore f = f,, = foop=fr =g

fr9=Ffrug

If there exists a bijection p : V — V such that f = g, then g = f,—1 because
9 = gpp-1 = fo-1, and therefore f <y g and g <y f.

frvg=f~g

Let g = f, and f = g, with p,o € Ry. We define f! := f,g" := f}, f** :=
gr. Then, for all n, f = f* and g = g™ because if f = f* and g = ¢"
then f**! = g7 = g, = f and ¢g"** = f} = f, = g. Let Occ(f) denote the
set of variables occuring in f and consider the sequence of natural numbers
Occ(£1)] > [Occ(g)] > [Oce(f2)] > 10cc(g?)| > |Oce(f)] > {Occ(F%)].
Because |Occ(f)| is finite this sequence must have two consecutive members
with the same value, say that |Occ(f*)| = |Occ(g™)|. We can conclude that
o restricted to Occ(f™) — Occ(g") is a bijection and that there is some
bijection a : Oce(g™) — Oce(f™) — Occ(f") — Occ(g™). We know that ™ is
independent of all variables in V' — Occ(f"); therefore define the bijection 3
by B(v) := p(v) for v € Occ(f*) and B(v) := (v) for v € Occ(g™) — Oce(f*)
and B(v) := v otherwise. Now we have g = g" = f}' = fz = f3. Thus f and
g are isomorphic.

The proof for ~ ¢y works the same way like that for ~y. m]

From the proposition above, it follows that ((=¢)) is co-NP-complete. We

shall call the problem ((~v)) = ({(=cv)) = ((~)) the Circuit Isomorphism
problem, short CI.

Regarding its complexity we have the following proposition where GI denotes
the Graph Isomorphism Problem (for its definition see [1], p.155):

12



Proposition 2 CI € £}, TAUT <?, CI and GI <%, CL

Proof: With a proof similar to that for ((<,)) we have that CI € ¥3. The
reduction from TAUT to CILis by f — (f,1).

For the Graph Isomorphism problem, let hg for a graph G = (V, E) be the
circuit defined as follows: for every vertex 2 € V in G choose a different
variable v;; then hg = V(; j)ep(vi A v;). Now, it is not difficult to see that G,
and G, are isomorphic if and only if kg, ~ he,. O

The following picture places CI graphically. The arrows denote the knowl-
edge of the existence of a <2 -reduction:

Bz\

CI

N

SAT TAUT
\
G

I

€P

6 Remarks and Open Questions

We would like to remark that analogous results can be stated for formulas
instead of circuits.

Note the analogy in the definition of GI and CI: Two graphs are isomorphic
iff they are the “same” graphs — modulo node names. Similarly, two circuits
are isomorphic iff the compute the “same” function — modulo variable names.
Note that Graph Isomorphism like Circuit Isomorphism can be defined as

13



the corresponding equivalence relation of a preorder, namely the preorder
Subgraph Isomorphism, which is NP-complete, see [1], p. 202.

Some open questions of interest that remain are:

e What exactly is the complexity of CI? Is it a X5-complete problem?
If not, is it possibly in A%?

e Could one define a II3-complete or a X3-complete problem based on
one of the X5-complete problems defined here?

o The relations < and < obtained via the most general and most re-
strictive replacement schemes R and R; are in co-DP and DP respec-
tively and hence unlikely to be X3-complete. It will be interesting to
study the question of complexity for replacement schemes other than
the ones investigated here. In this regard we would like to mention
that the problem ((<)), where f <) g if f can be obtained from g
via a replacement that maps variables to literals (literal mapping), is
¥?-complete.
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