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Abstract

This thesis presents new methods to simulate systems with hydrodynamic and
electrostatic interactions.

Part 1 is devoted to computer simulations of Brownian particles with hydrody-
namic interactions. The main influence of the solvent on the dynamics of Brownian
particles is that it mediates hydrodynamic interactions. In the method, this is sim-
ulated by numerical solution of the Navier–Stokes equation on a lattice. To this
end, the Lattice–Boltzmann method is used, namely its D3Q19 version. This model
is capable to simulate compressible flow. It gives us the advantage to treat dense
systems, in particular away from thermal equilibrium. The Lattice–Boltzmann
equation is coupled to the particles via a friction force. In addition to this force,
acting on point particles, we construct another coupling force, which comes from
the pressure tensor. The coupling is purely local, i. e. the algorithm scales linearly
with the total number of particles. In order to be able to map the physical prop-
erties of the Lattice–Boltzmann fluid onto a Molecular Dynamics (MD) fluid, the
case of an almost incompressible flow is considered. The Fluctuation–Dissipation
theorem for the hybrid coupling is analyzed, and a geometric interpretation of the
friction coefficient in terms of a Stokes radius is given.

Part 2 is devoted to the simulation of charged particles. We present a novel
method for obtaining Coulomb interactions as the potential of mean force between
charges which are dynamically coupled to a local electromagnetic field. This al-
gorithm scales linearly, too. We focus on the Molecular Dynamics version of the
method and show that it is intimately related to the Car–Parrinello approach,
while being equivalent to solving Maxwell’s equations with freely adjustable speed
of light. The Lagrangian formulation of the coupled particles–fields system is de-
rived. The quasi–Hamiltonian dynamics of the system is studied in great detail.
For implementation on the computer, the equations of motion are discretized with
respect to both space and time. The discretization of the electromagnetic fields on
a lattice, as well as the interpolation of the particle charges on the lattice is given.
The algorithm is as local as possible: Only nearest neighbors sites of the lattice are
interacting with a charged particle. Unphysical self–energies arise as a result of the
lattice interpolation of charges, and are corrected by a subtraction scheme based
on the exact lattice Green’s function. The method allows easy parallelization using
standard domain decomposition. Some benchmarking results of the algorithm are
presented and discussed.
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Zusammenfassung

Die vorliegende Dissertation stellt neue Methoden zur Simulation von Systemen
mit hydrodynamischer und elektrostatischer Wechselwirkung vor.

Teil 1 widmet sich der Computersimulation von Brown’schen Teilchen mit hy-
drodynamischer Wechselwirkung. Der wichtigste Einfluß des Lösungsmittels auf
die Dynamik der Brown’schen Teilchen besteht darin, daß es hydrodynamische
Wechselwirkungen vermittelt. In der vorgestellten Methode wird dies simuliert
durch numerische Lösung der Navier–Stokes–Gleichung auf einem Gitter. Hi-
erzu wird die “Lattice Boltzmann”–Methode benutzt, und zwar in ihrer sogenan-
nten “D3Q19”–Version. Dieses Modell ist imstande, kompressible Strömungen zu
simulieren. Dies hat den Vorteil, daß dichte Systeme studiert werden können, ins-
besondere auch unter Nichtgleichgewichtsbedingungen. Die “Lattice Boltzmann”–
Gleichung wird mit den Teilchen über eine Reibungskraft gekoppelt. Zusätzlich
zu dieser Kraft, die auf Punktteilchen wirkt, konstruieren wir eine weitere Kraft,
die vom Drucktensor herrührt. Diese Kopplung ist streng lokal, d. h. der Al-
gorithmus skaliert linear mit der Gesamtzahl der Teilchen. Um imstande zu
sein, die physikalischen Eigenschaften der “Lattice Boltzmann”–Flüssigkeit auf
diejenigen einer Molekulardynamik–Flüssigkeit abzubilden, wird der Fall einer fast
inkompressiblen Strömung betrachtet. Die Analyse des Fluktuations–Dissipations–
Theorems für die Hybridkopplung führt auf eine geometrische Interpretation des
Reibungskoeffizienten im Sinne eines Stokes–Radius.

Teil 2 widmet sich der Simulation geladener Teilchen. Wir präsentieren eine neue
Methode, um Coulomb–Wechselwirkungen als das “potential of mean force” zwis-
chen Ladungen zu erhalten, die dynamisch an ein lokales elektromagnetisches Feld
angekoppelt werden. Dieser Algorithmus skaliert ebenfalls linear. Wir konzentri-
eren uns auf die Molekulardynamik–Version der Methode, und zeigen, daß ein enger
Zusammenhang zum Car–Parrinello–Verfahren besteht. Außerdem wird gezeigt,
daß die Methode auf die Lösung der Maxwell–Gleichungen mit frei anpaßbarer
Lichtgeschwindigkeit hinausläuft. Die Lagrange’sche Formulierung des gekoppel-
ten Systems Teilchen–Felder wird hergeleitet. Die quasi–Hamilton’sche Dynamik
des Systems wird im Detail studiert. Zur Implementation auf dem Computer wer-
den die Bewegungsgleichungen sowohl räumlich als auch zeitlich diskretisiert. Die
Diskretisierung der elektromagnetischen Felder auf dem Gitter sowie die Interpo-
lation der Teilchenladungen auf das Gitter werden angegeben. Der Algorithmus
ist so lokal wie nur möglich: Nur die nächsten Nachbarn des Gitters wechselwirken
mit einem geladenen Teilchen. Die Gitter–Interpolation der Ladungen führt zu
unphysikalischen Selbstenergien; diese werden durch ein Subtraktionsverfahren ko-
rrigiert, welches auf der exakten Gitter–Greensfunktion beruht. Die Methode läßt
sich mit Standard–Gebietszerlegung leicht parallelisieren. Einige “Benchmark”–
Testergebnisse des Algorithmus werden vorgestellt und diskutiert.
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Introduction

This thesis is divided into two main parts. The first part is devoted to the study of
a system of slow Brownian particles (in our case: monomers which are connected to
build polymer chains), immersed in a viscous fluid. The fast momentum transport
through the solvent induces long-range correlations in the stochastic displacements.
It is possible to explicitly simulate the solvent degrees of freedom together with the
Brownian particles. Originally it was done by plain Molecular Dynamics [1], where
the validity of the so-called Zimm model could be demonstrated in detail. However
it turns out that it is much more efficient (roughly 20 times) to replace the solvent
by a hydrodynamic Stokes background. P. Ahlrichs in his PhD thesis [2] has applied
a simple dissipative point particle coupling of the solvent to the polymer system.
The coupling is manifestly local. This was done in the framework of the stochastic
Lattice Boltzmann (LB) method developed by Ladd [3, 4]. With such a hybrid
method the problem of “hydrodynamic screening” could be solved [5].

In Part 1 we are trying to extend the above mentioned method to the study of
dense systems in solvent.

A completely different matter is considered in Part 2. The problem of long-range
electrostatic interactions in the simulation of complex systems is very challenging.
Accurate evaluation of the electrostatic force is the computationally most expensive
aspect of Molecular–Dynamics simulations. Though at first glance the systems
studied in Part 1 and Part 2 are different, the methods which can be applied to this
class of problems are similar. The Coulomb interaction 1/r between two charged
particles can be considered as a static limit of the retarded interaction field. Just
as in the hydrodynamic case, one can try to build a local method, which leads to
linear scaling. Both the theoretical treatment and the practical implementation
will be considered in the part “Simulation of Electrostatics”.
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Part I.

Simulation of hydrodynamics





1. Local hybrid method for
hydrodynamic interactions

1.1. Introduction

The present part is devoted to a methodological problem that occurs in the com-
puter simulation of Brownian particles with hydrodynamic interactions (HI). Es-
sentially, HI is highly correlated motion of the particles due to fast diffusive mo-
mentum transport through the solvent. This is efficiently simulated by explicitly
taking this momentum transport into account. This results in a local algorithm
which scales linearly with the number of Brownian particles. The alternative ap-
proach (Brownian Dynamics), which considers the solvent degrees of freedom as
completely integrated out, and puts the correlations directly onto the stochastic
motion of the particles, works only for very small particle numbers, since the cor-
relations are long-ranged. While straightforward Molecular Dynamics (MD) can in
principle model the momentum transport, it has turned out to be advantageous to
consider the solvent on a somewhat coarse-grained scale. Possible ways to describe
the solvent are:

• solution of the Navier-Stokes equation on a grid via a finite-difference method;

• the Lattice Boltzmann (LB) equation [3, 4];

• Dissipative Particle Dynamics (essentially MD of soft particles with a momen-
tum-conserving Langevin thermostat) [6];

• Multi-Particle Collision Dynamics [7].

Describing the solvent by such a mesoscopic method does not necessarily mean
that the Brownian particles are modeled in the same way. On the contrary, such
simulations are usually geared at taking the “microscopic” particle character into
account. In particular, in polymer simulations one needs to take into account
chain structure, excluded volume, plus (perhaps) solvent quality, chain stiffness,
and further interactions like electrostatics. Therefore, the macromolecules need to
be modeled in terms of a bead-spring model or similar. The question which then
arises is how to couple the Brownian particles to the mesoscopic solvent. This
is not immediately obvious; one only knows that the coupling should not violate
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the essential ingredients of hydrodynamics, i.e. locality, mass conservation, and
momentum conservation.

One possible hybrid approach for polymer-solvent systems was proposed by
Ahlrichs and Duenweg [8]: The solvent is modeled by the LBE, while the monomers
are MD point particles with a phenomenological friction coefficient, which are cou-
pled dissipatively to the surrounding flow field in terms of a friction force propor-
tional to the velocity difference. The solvent velocity at the position of a particle
is obtained via simple linear interpolation from the surrounding lattice sites, and
momentum conservation is enforced by removing from the lattice that amount of
momentum which was transferred from the solvent to the particle. This has worked
rather well for dilute and semidilute polymer solutions [8] where the solvent density
is essentially constant (except for minor thermal fluctuations). However, the ap-
proach has the disadvantage that dense systems, in particular away from thermal
equilibrium, cannot be properly treated. Consider, for instance, a dense polymer
network which at time t = 0 is exposed to solvent which starts to penetrate and
swell it. One would like to be able to explicitly simulate the flow of LB solvent into
the matrix (or out of it). Firstly, this requires the replacement of the original D3Q18
LB model (18 velocities corresponding to the nearest and next-nearest neighbors
of a 3-dimensional simple cubic lattice) [2], which can only simulate incompress-
ible flow correctly, by the more general D3Q19 model, which adds a zero velocity
and is capable of simulating compressible flow. Secondly, the coupling needs to be
modified. This is again easily seen from our toy system: At time t = 0, the system
is at rest and hence the unmodified coupling results in vanishing particle-solvent
forces. The consequence is that the internal pressure of the particles forces them
to “burst” into the solvent without any counter-force. The same happens to the
solvent in the other direction. This unphysical behavior will be explicitly demon-
strated in Sec. 1.7. The goal was therefore to find a coupling which would cure
this “sickness”, and to construct a hybrid model consisting of a mixture of LB fluid
and MD fluid, where the LB fluid should be just a coarse-grained description of
the MD fluid. In particular, we would require that model to describe the collective
interdiffusion of the two “species” correctly.

This goal has not been achieved. The original idea was to assign some surface
area to the particles, and to calculate the force on the particles by (essentially)
integrating the pressure over the surface (note that the pressure tensor appears as
a natural variable in the LB algorithm). As before, the overall momentum balance
is enforced. This is indeed expected to introduce a suitable counter-force against the
abovementioned “bursts”. Nevertheless, it does not model the interactions between
solvent and particles correctly in all cases. Consider, for instance, a system of MD
particles with purely repulsive interactions immersed homogeneously in LB fluid
(thermal equilibrium). Now, at time t = 0 we introduce a “quench” such that
suddenly a sufficiently strong attractive interaction between the MD particles is
turned on. Physically, this system should unmix into a MD-particle rich domain,
and a LB-fluid rich domain. However, what our system will actually do is to form an
aggregate of MD particles, while the LB fluid remains a homogeneous background.
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This is the equilibrium configuration because it minimizes the internal pressure of
the LB fluid, and there are no forces between LB fluid and the particles, since
the LB pressure profile is constant, such that the surface integrals sum up to zero.
Actually, it turns out that in thermal equilibrium the surface integral method is
essentially equivalent to the original dissipative coupling. The main difference is
that there is no longer any Langevin noise needed for the particles. Rather there is
only one common source of noise, which is the fluctuating stress tensor of the LB
method. This will be worked out in detail in Sec. 1.8.

In hindsight, it is now clear that most probably the solution to the problem
is to just introduce a potential which acts from the particle on the surrounding
lattice sites, giving rise to a local volume force. Nevertheless, the investigations
on coupling MD and LB were not further continued after the somewhat sobering
result on the surface integral method. There were several reasons to do so:

1. The abovementioned solution, though rather easy and straightforward, did
not immediately occur to us at the time.

2. Originally, the project’s plan had been to apply the improved coupling to the
long-standing problem of the dynamics of the Theta collapse [9, 10, 11, 12,
13]: Upon sudden decrease of the solvent quality, a single chain undergoes a
transition from a swollen coil to a collapsed globule. HI is expected to play
an important role in that process. We had expected that the process would
be simulated more faithfully with the modified coupling. In particular, the
globular state is very dense. In the meantime, however, substantial progress
had been made on the problem, by the simulations of Yethiraj et al. [14],
Yeomans et al. [15], and, in particular, by the work of Abrams, Lee, and
Obukhov [16].

3. We became very interested in the investigations of Part 2 at the time. The
investigation and implementation of the potential coupling is thus left for
future work.

The remainder of this part is organized as follows. At first we will describe the
LB method, focusing on the D3Q19 model. Further we consider the case of an
almost incompressible fluid in order to be able to map the physical properties of
the LB fluid onto the MD fluid. We then demonstrate the failure of the original
coupling in the interdiffusion problem, as sketched above. After that we introduce
the surface integral coupling and analyze the Fluctuation-Dissipation theorem for
that coupling. This allows us to show the (near) equivalence to the original dissipa-
tive coupling, and to assign some geometric interpretation to the friction coefficient
in terms of (essentially) a Stokes radius.
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1.2. Lattice-Boltzmann method

Lattice-Boltzmann methods were originally introduced [17] to simplify the macro-
scopic dynamics of the lattice-gas model, by removing the effects of thermal fluctu-
ations. The averaging inherent in the Boltzmann equation leads to Navier-Stokes
dynamics. Lattice-Boltzmann simulations of three-dimensional flow typically use
a linearized collision operator [18] to simplify the complex collision rules of three-
dimensional lattice gases [19]. Although a linearized collision operator loses the
unconditional stability of the original lattice-gas [20] and Lattice-Boltzmann [17]
models, this is compensated by the speed and simplicity of the code. A further
advantage of the linearized collision operator is that equilibrium distributions can
be constructed that lead to Galilean invariant forms of the hydrodynamic equa-
tions [21, 22, 23]. Further developments in lattice-Boltzmann simulation techniques
are summarized in a recent review article [24].

The fundamental quantity in the lattice-Boltzmann model is the discretized one-
particle velocity distribution function ni(r, t), which describes the mass density of
particles with velocity ci, at a particular node of the lattice r, at a time t; r, t and
ci are discrete, whereas ni is continuous. The hydrodynamics fields, mass density
ρ, momentum density j = ρu, and momentum flux Π, are moments of this velocity
distribution:

ρ =
∑

i

ni, j = ρu =
∑

i

nici, Π =
∑

i

nicici. (1.1)

For simulations of particulate suspensions, the lattice-Boltzmann model has two
particularly useful properties. First, the connection to molecular mechanics makes
it possible to derive simple local rules for the interactions between the fluid and the
suspended solid particles [4]. Second, the discrete one-particle distribution func-
tion, ni, contains additional information about the dynamics of the fluid beyond
that contained in the Navier-Stokes equations; in particular, the fluid stress tensor,
although dynamically coupled to the velocity gradient [25], has an independent
significance at short times. This approach is quite different from Brownian dy-
namics [26] or Stokesian dynamics [27], where correlated fluctuations are applied
directly to the particles.

1.3. A 3D Lattice-Boltzmann model

The time evolution of the velocity distribution function, ni(r, t), is described by a
discrete analogue of the Boltzmann equation [25],

ni(r + ci∆t, t + ∆t) = ni(r, t) + ∆i [n(r, t)] , (1.2)

where ∆i is the change in ni due to instantaneous molecular collisions at the lattice
nodes and ∆t is the time step. The time evolution of a lattice-gas is described by
a similar equation, except that the continuous population densities are replaced by
discrete bit fields. The collision operator ∆i(n) depends on all the ni’s at the node,
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denoted collectively by n(r, t). It can take any form, subject to the constraints of
mass and momentum conservation. A computationally useful form for the collision
operator can be constructed by linearizing about the local equilibrium neq [18], i.e.

∆i(n) = ∆i (n
eq) +

∑
j

Lijn
neq
j , (1.3)

where Lij are the matrix elements of the linearized collision operator, nneq
j =

nj − neq
j , and ∆i (n

eq) = 0. The computational utility of lattice-gas and lattice-
Boltzmann models depends on the fact that only a small set of velocities are nec-
essary to simulate the Navier-Stokes equations [20].

A particular lattice-Boltzmann model is defined by a set of velocities ci, an
equilibrium distribution neq

i , and the eigenvalues of the collision operator. The
population density associated with each velocity has a weight aci that describes the
fraction of particles with velocity ci, in a system at rest; these weights depend only
on the speed ci and are normalized so that

∑
i a

ci = 1. Note that the velocities ci

are chosen such that all particles move from node to node simultaneously. For any
cubic lattice, ∑

i

acicici = C2c
21, (1.4)

where c = ∆x
∆t

, ∆x is the grid spacing, and C2 is a numerical coefficient that
depends on the choice of weights. However, in order for the viscous stresses to be
independent of direction, the velocities must also satisfy the isotropy condition;

∑
i

aciciαciβciγciδ = C4c
4 {δαβδγδ + δαγδβδ + δαδδβγ} . (1.5)

In three dimensions, isotropy requires a multi-speed model, for example the
18-velocity model described in reference [4]. This model uses the [100] and [110] di-
rections of a simple cubic lattice, with twice the density of particles moving in [100]
directions as in [110] directions; alternatively a 14-velocity model can be constructed
from the [100] and [111] directions with the density ratio of 7:1. Although the 14-
velocity model requires less computation and less memory than the 18-velocity
model, it suffers from “checkerboard” invariants [28] and is less accurate. The 18-
velocity model can be augmented by stationary particles, which then enables it to
account for small deviations from the incompressible limit. Also the extension to
19 velocities should lead to substantial improvements in the equipartition of energy
between particles and fluid in simulations of Brownian particles.

1.3.1. Equilibrium distribution

The form of the equilibrium distribution is constrained by the moment conditions
required to reproduce the inviscid (Euler) equations on large length scales and time
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Figure 1.1.: 19 velocity lattice-Boltzmann model with rest particles at each lattice
site (D3Q19 model).

rest particle

scales. In particular, the second moment of the equilibrium distribution should be
equal to the inviscid momentum flux p1 + ρuu:

ρ =
∑

i

neq
i (1.6)

j =
∑

i

neq
i ci = ρu (1.7)

Πeq =
∑

i

neq
i cici = ρc2

s1 + ρuu (1.8)

The equilibrium distribution can be used in Eqs. 1.6 and 1.7 because mass and
momentum are conserved during the collision process; in other words

∑
i

nneq
i =

∑
i

nneq
i ci = 0. (1.9)

The pressure in Eq. 1.8, p = ρc2
s, takes the form of an ideal gas equation of state

with adiabatic sound speed cs. It is also adequate for the liquid phase if the density
fluctuations are small (i.e. the Mach number M = u/cs ¿ 1), so that ∇p = c2

s∇ρ.
For small Mach numbers, the equilibrium distribution of the 19-velocity model

that satisfies Eqs. 1.6- 1.8, as well as the isotropy condition (Eq. 1.5), is [23]

neq
i = aci

[
ρ +

jci

c2
s

+
ρuu : (cici − c2

s1)

2c4
s

]
, (1.10)

where cs =
√

c2/3 and the coefficients of the three speeds are

a0 =
1

3
, a1 =

1

18
, a

√
2 =

1

36
. (1.11)
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In this the coefficient in Eq. 1.5 is C4 = (cs/c)
4.

In contrast to the equilibrium distributions of lattice-gas models [20], Eqs 1.10
and 1.11 ensure that the inviscid hydrodynamic equations are correctly reproduced.
The viscous stresses come from moments of the non-equilibrium distribution, as
in the Chapman-Enskog solution of the Boltzmann equation. The fundamental
limitation of this class of lattice-Boltzmann models is that the Mach number be
small, less than 0.3.

1.3.2. Collision operator

The linearized collision operator must satisfy the following eigenvalue equations:

∑
i

Lij = 0,
∑

i

ciLij = 0,
∑

i

ciciLij = λcjcj,
∑

i

c2
iLij = λvc

2
j (1.12)

where cjcj indicates the traceless part of cjcj. The first two equations follow
from conservation of mass and momentum, and the last two equations describe the
isotropic relaxation of the stress tensor; the eigenvalues λ and λv are related to
the shear and bulk viscosities and lie in the range −2 < λ < 0. Equation 1.12
accounts for only 10 of the eigenvectors of L. The remaining 9 modes are higher-
order eigenvectors of L that are not relevant to the Navier-Stokes equations. In
general the eigenvalues of these kinetic modes are set to −1, which both simplifies
the simulation and ensures a rapid relaxation of the non-hydrodynamic modes [4].

The bulk viscous mode is free to relax, so as to account for all the viscous
stresses present in a dense fluid.

The collision operator can be further simplified by taking a single eigenvalue
for both the viscous and kinetic modes [29, 23]. This exponential relaxation time
(ERT) approximation, ∆i = −nneq

i /τ , has become the most popular form for the
collision operator because of its simplicity and computational efficiency. However,
this results in an absence of a clear time scale separation between the kinetic and
hydrodynamic modes, and thus we prefer the more flexible collision operator de-
scribed by Eq. 1.12.

In our simulations we use a 3-parameter collision operator, allowing for separate
relaxation of the 5 shear modes, 1 bulk mode, and 9 kinetic modes. The post-
collision distribution n∗i = ni + ∆i is written as a series of moments (Eq. 1.1), as
for the equilibrium distribution (Eq. 1.10),

n∗i = aci

(
ρ +

jci

c2
s

+
(ρuu + Πneq,∗) : (cici − c2

s1)

2c4
s

)
. (1.13)

The zeroth (ρ) and first (j = ρu) moments are the same as in the equilibrium
distribution (Eq. 1.10), but the non-equilibrium second moment Πneq is modified
by the collision process, according to Eq. 1.12:

Πneq,∗ = (1 + λ)Π
neq

+
1

3
(1 + λv)(Π

neq : 1)1, (1.14)
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where Πneq = Π−Πeq. The kinetic modes can also contribute to the post-collision
distribution, but we choose the eigenvalues of these modes to be -1, so that they
have no effect on n∗i . Equation 1.14 with λ = λv = −1 is equivalent to the ERT
model with τ = 1.

1.3.3. External forces

In the presence of an externally imposed force density f , for example a pressure
gradient or a gravitational field, the time evolution of the lattice-Boltzmann model
includes an additional contribution fi(r, t),

ni(r + ci∆t, t + ∆t) = ni(r, t) + ∆i [n(r, t)] + fi(r, t). (1.15)

The forcing term can be expanded in a power series in the particle velocity; i.e.

fi = aci

[
A +

B · ci

c2
s

+
C : (cici − c2

s1)

2c4
s

]
∆t, (1.16)

where A, B, and C are determined by requiring that the moments of fi are con-
sistent with the hydrodynamic equations. Then the zeroth and first moments are
given by

∑
i fi = A = 0 and

∑
i fici = B = f . The second moment, C, is usually

neglected,because numerical simulations show the variations in C have negligible
effect on the flow. A systematic introduction of external forces in the lattice-
Boltzmann scheme can be found in reference [30].

1.3.4. Fluctuations

The lattice-Boltzmann model can be extended to simulate thermal fluctuations,
which lead to Brownian motion of the particles. The fluctuating lattice-Boltzmann
model [3] incorporates a random component into the momentum flux during the
collision process (c.f. Eq. 1.14):

Πneq,∗ = (1 + λ)Π
neq

+
1

3
(1 + λv)(Π

neq : 1)1 + Πf

Πf = ζR + ζvRv1, (1.17)

where Rv is a Gaussian random variable with zero mean and unit variance, and R
is a symmetric matrix of Gaussian random variables of zero mean. The off-diagonal
elements of R have a variance of 1, while the diagonal elements have a variance
2. In this particular implementation, 6 random numbers are required to generate
the components of the symmetric matrix R, together with the constraint that R is
traceless. The average stress fluctuations are local in space and time, as in Eq. 1.50,
with a variance given by

〈
Πf

αβΠf
γδ

〉
= ζ2

(
δαγδβδ + δαδδβγ

)
+ ζ2

vδαβδγδ. (1.18)
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The lattice modifies the result for continuous fluids and the amplitudes of the
random fluctuations are given by these formulas

ζ =

(
2kbTηλ2

∆x3∆t

)1/2

, ζv =

(
2kbTηvλ

2
v

∆x3∆t

)1/2

, (1.19)

where η and ηv are shear and bulk viscosities in the continuum, respectively; ∆x
is the lattice spacing and ∆t is the time step. The additional factor of

√
λ2 is a

consequence of discrete lattice artifacts. For the choice of eigenvalues λ = λv = −1,
an exact correspondence with the fluctuation-dissipation relation for continuous
systems is obtained. However the discrete version (Eq. 1.19) can also be applied to
systems where the viscous eigenvalues are not equal to -1 [4].

1.4. Decay rate of longitudinal waves

We turn now to the problem of describing the decay of long-wavelength fluctuations
in the collective dynamical variables. The macroscopic local densities associated
with the conserved variables are the mass density ρ(r, t), the momentum density
j(r, t) and the energy density e(r, t). Because lattice-Boltzmann has a very nice
properties in the isothermal case, in the future we will use only isothermal equations.
It means we will not consider the energy equations which in our case is trivial. The
local velocity field u(r, t) is defined via the relation

j(r, t) = ρ(r, t)u(r, t) (1.20)

The conservation laws for the local densities are of the form

∂ρ(r, t)

∂t
+∇j(r, t) = 0 (1.21)

∂j(r, t)

∂t
+∇Π(r, t) = 0. (1.22)

where Π(r, t) is the momentum current or stress tensor. These equations are supple-
mented by constitutive relation in which Π is expressed in terms of the dissipative
processes in the fluid. The stress tensor is given macroscopically (Ref. [31])

Παβ(r, t) = δαβp(r, t)−
η

(
∂uα(r, t)

∂rβ

+
∂uβ(r, t)

∂rα

)
+ δαβ

(
2

3
η − ηv

)
∇u(r, t) (1.23)

where p(r, t) is the local pressure, η is the shear viscosity and ηv is the bulk viscosity.
We now choose a frame of reference in which the mean velocity of the fluid is zero,
and assume that the local deviations of the hydrodynamic variables from their
average values are small. The equations above may then be linearized with respect
to the deviations. In particular, the momentum density may be expressed as

j(r, t) = [ρ + δρ]u(r, t) ' ρu(r, t) (1.24)
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Substitution of Eq. 1.23 and Eq. 1.24 in Eq. 1.22 gives the Navier-Stokes equation
in linearized form

ρ
∂u(r, t)

∂t
+∇p(r, t)− η∇2u(r, t)−

(
1

3
η + ηv

)
∇∇u(r, t) = 0 (1.25)

If we invoke the hypothesis of thermodynamic equilibrium, the deviations of the
local thermodynamic variables from their average values can be expressed in terms
of a set of statistically independent quantities. Choosing as independent variable
the density, for the pressure we obtain

δρ(r, t) = ρ(r, t)− ρe (1.26)

δp(r, t) =

(
∂p

∂ρ

)

T

δρ(r, t) (1.27)

We consider also the isothermal case δT (r, t) = 0. The continuity equation may be
rewritten as

∂δρ(r, t)

∂t
+∇j(r, t) = 0 (1.28)

and the Navier-Stokes equation as

(
∂

∂t
− η

ρ
∇2 −

1
3
η + ηv

ρ
∇∇

)
j(r, t) +

(
∂p

∂ρ

)

T

∇δρ(r, t) = 0 (1.29)

Equations 1.28 and 1.29 are readily solved by taking the double transforms with
respect to space (Fourier) and time (Laplace) to give

−izρ̃k(z) + ikj̃k(z) = ρk (1.30)(
−iz +

η

ρ
k2 +

1
3
η + ηv

ρ
kk

)
j̃k(z) + ik

(
∂p

∂ρ

)

T

ρ̃k(z) = jk (1.31)

where the transformations are given by these formulas:

ρ̃k =

∫ ∞

0

dtexp(izt)

∫
δρ(r, t)exp(−ikr)dr (1.32)

ρk = ρ̃k(t = 0) (1.33)

Choosing k along the z-axis we obtain:

(−iz + bk2
)
j̃z
k(z) + ik

(
∂p

∂ρ

)

T

ρ̃k(z) = jz
k (1.34)

(−iz + νk2
)
j̃α
k = jα

k , α = x, y (1.35)

where b =
4
3
η+ηv

ρ
is the kinematic longitudinal viscosity, and ν = η

ρ
is the kinematic

shear viscosity.
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In matrix form our system of linear equations can be written




−iz ik 0 0

ik
(

∂p
∂ρ

)
T
−iz + bk2 0 0

0 0 −iz + νk2 0
0 0 0 −iz + νk2







ρ̃k(z)
̃z
k(z)

̃x
k(z)

̃y
k(z)


 =




ρk(z)
jz
k(z)

jx
k(z)

jy
k(z)




The matrix of coefficients is called the hydrodynamic matrix. Its block-diagonal
structure shows that the transverse-current fluctuations are completely decoupled
from the fluctuations in the other (longitudinal) variables. The determinant of the
hydrodynamic matrix therefore factorizes into the product of purely longitudinal
(l) and transverse (t) parts, i.e.

D(k, z) = Dl(k, z)Dt(k, z) (1.36)

with

Dl(k, z) = −z2 − izbk2 + k2

(
∂p

∂ρ

)

T

(1.37)

The dispersion relation for the longitudinal collective modes is given by the complex
roots of the equation Dl(k, z) = 0, i.e.

z2 + ibk2z − k2

(
∂p

∂ρ

)

T

= 0. (1.38)

Defining the adiabatic sound velocity

c2
s = γ

(
∂p

∂ρ

)

T

=
cp

cv

(
∂p

∂ρ

)

T

,

where cp and cv are the specific heat at constant pressure and constant volume,
respectively, we obtain the solution for z:

z = −ib

2
k2 ±

√(
c2
s

γ
− b2k2

4

)
k (1.39)

Since the hydrodynamic calculation is valid only in the long-wavelength limit, it is
sufficient to calculate complex frequencies to order k2. For small k we obtain the
decay rate, or sound-attenuation coefficient as:

Γ =
b

2
k2 (1.40)

1.5. Simulations of sound modes

Equation 1.40 shows that sound modes in our LB model are characterized by
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• the isothermal sound velocity

csγ
−1/2 =

∂p

∂ρ

∣∣∣∣
T

,

which follows trivially from the model’s ideal gas equation of state, and

• the shear and bulk viscosities η and ηv, which are input parameters directly
related to the eigenvalues λ and λv.

Figure 1.2 shows the expected behavior of a damped harmonic oscillator for the
longitudinal component of the current density. These data were obtained by a
simple computer experiment, where at t = 0 a small sine wave was superimposed
over the constant density profile, such that it was compatible with the periodic
boundary conditions of the overall simulation box. The parameter ηv was first set
to zero, and then varied over two orders of magnitude. One sees that even for ηv = 0
there is a substantial damping of the sound, as a consequence of the nonzero value
of η, whereas a really large value of ηv results in completely overdamped motion.

Such computer experiments are, on the contrary, very useful to determine the
material parameters, by fitting the curves to the expected behavior. This is of
course not needed for the LB model (there the macroscopic transport coefficients
are anyways known beforehand), but for an MD fluid it clearly is: Recall that the
goal is to map an MD fluid as faithfully as possible onto the LB fluid. This requires
that all three parameters (speed of sound, plus viscosities) are measured via MD.
The older work by Ahlrichs and Dünweg [8] needed to worry only about the shear
viscosity, but in the present case, where we are interested in longitudinal fluctu-
ations, too, we need the other two parameters as well. Figure 1.2 then suggests
a rather straightforward way how to obtain them: Set up a long-wavelength den-
sity wave and study its decay. This allows to simultaneously determine the sound
velocity and the attenuation coefficient. Furthermore, the shear viscosity can be
determined by setting up an analogous transversal velocity mode, and studying
its (purely exponential) decay. A little caveat must be taken into account. Since
the MD should be run with realistic dynamics, one should do nothing but solve
Newton’s equations of motion. This implies that in the MD system the energy is
conserved, and thermal conduction must be taken into account in the hydrody-
namics. In this case the sound attenuation coefficient is not given by Eq. 1.40, but
rather by [32]

Γ =
k2

2

{
a(γ − 1)

γ
+ b

}
(1.41)

where a = λT /(ρcv), and λT the thermal conductivity. Therefore, one also needs to
determine λT (this can be done, for instance, by the algorithm developed by Müller-
Plathe [33]), and the specific heat (this can be done via a fluctuation relation [32]).
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Figure 1.2.: The damping of longitudinal modes for the fluid with different values
of bulk viscosity.
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1.6. Realization of the coupling

Let us recapitulate the original coupling term, presented in the work [8].
The coupling force can be divided in 2 terms - the pure friction term, the

fluctuating force term. The first term is an analogy of the Stokes Law for a sphere
in a viscous fluid, i.e. the force which acts on the fluid from the monomer is
proportional to the difference of monomer velocity v and the fluid velocity u(R)
at the position of the monomer

F
(fric)
fl = −ξbare [v − u(R, t)] . (1.42)

Here the ξbare is the coefficient of proportionality, which will be referred to as the
“bare” friction coefficient. Due to the dissipative character of the coupling, it is
necessary to incorporate fluctuations in the particle equations by extending Eq. 1.42
to

F
(fric)
fl = −ξbare [v − u(R, t)] + f . (1.43)

Here f is a stochastic force of zero mean and variance

〈fα(t1)fβ(t2)〉 = 2kBTξbareδαβδ(t1 − t2) (1.44)

Because the fluid velocity is only calculated at the discrete lattice sites in the
simulation, one has to interpolate to get u(R, t) at the monomer’s position. One can
use a simple linear interpolation using the grid points on the elementary lattice cell
containing the monomer. This scheme can be interpreted also as flow field which
acts on a particle of finite extent. For example, using a particle of the same size as
a grid cell and of rectangular form, as shown on Fig. 1.3, the flow velocity from the
grid point (i,j) comes with the weight which is the closest shaded area to this point.
This area weighting procedure is easily seen to be a bilinear interpolation and is
readily generalized to three dimensions by using 8 nearest cell centers [34]. This
approach is particularly useful when we will consider the electrodynamic problems.

From the above mentioned considerations, the flow velocity is averaged over the
size of the particle. Denoting the relative position of the particle in this cell as
(x, y, z), with the origin being at the lower left front edge (see Fig. 1.3), we can
write

u(R, t) =
∑
r∈ng

wru(r, t) (1.45)

where ng denotes the grid points on the considered elementary lattice cell and
weights are given by the formulas

w(i,j,k) = (1− x/∆x)(1− y/∆x)(1− z/∆x) (1.46)

w(i+1,j,k) = x/∆x(1− y/∆x)(1− z/∆x).

In order to conserve the total momentum of fluid and monomer we have to
assign the opposite force to the fluid in that cell. Then the interaction is purely
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Figure 1.3.: An interpolation scheme for the coupling of the monomer with fluid.

local, the force density −Ffl/(∆x)3 which is to be given to the fluid leads to a
momentum density transfer per MD time step ∆t of

−Ffl/(∆x)3 =
∆j

∆t
=

∑
i,r∈ng

∆ni(r, t)ci
1

∆t
(1.47)

The way how to calculate the corresponding ∆ni is described in [8].

1.7. Diffusion properties of Lennard–Jones and
Lattice–Boltzmann mixture

Diffusion phenomena in fluids and fluid mixtures are of immense importance [35]
and have been investigated from time to time using the latest tools available at each
stage. In order to be able to freely interchange between Lennard-Jones particles
and Lattice–Boltzmann particles we have to adjust the collective properties of these
two different fluids. The first transport coefficient on our agenda is the diffusion
coefficient.

Even the simple one-component Lennard–Jones fluid can be considered as a
mixture of several components. This can be achieved by labeling the atoms of
the fluid. Further we will call it coloring and consider only binary mixtures. This
allows us to study the collective interdiffusion coefficient, whose value is similar to
the single-particle single–diffusion coefficent.

For this problem we perform simple test simulations, studying a dense repulsive
Lennard–Jones fluid whose parameters are given in Ref. [8]. Let us prepare a
system in which red particles are contained in the slab directly at the center of the
simulation box. The rest part of the box is occupied by the blue one. In Fig. 1.4
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we present the changing of the shape of the density profile with respect to time
of simulation. One can easily see that we observe diffusive behavior. Next we
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Figure 1.4.: Evolution of the density profile for the Lennard-Jones fluid mixture of
“red” and “blue” particles.

want to perform the same experiment for a mixture of Lennard–Jones particles and
Lattice–Boltzmann particles. From Fig. 1.5 one can directly see that in the case of
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Figure 1.5.: Evolution of the density profile for the mixture of Lennard-Jones fluid
(middle core) and lattice-Boltzmann fluid (background fluid).

this mixture there is no diffusive behavior of the MD-particles. After a short time
the MD-particles are simply smeared out through the whole simulation box. There
must be a driving force and this force is pressure (see Fig. 1.6). At the beginning
the pressure must relax and only after that one can observe diffusive behavior.

It means our coupling force between lattice-Boltzmann fluid and MD-particles
can not catch the changes in the pressure. We have to modify this term and we do
it directly by adding pressure and counter pressure terms in our equations.
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Figure 1.6.: Pressure drop in the system of lattice-Boltzmann and Lennard-Jones
particles.

1.8. Modification of the coupling

1.8.1. Pressure and counter pressure

In this work we propose to modify the coupling force between monomers and the
fluid, which was introduced in the work [8] and is given by Eq. 1.43. In addition to
using the friction force, acting on the point particle, we construct another coupling
force, which comes from the pressure tensor. This method can catch the differences
in the density of the fluid. Because pressure always acts on a surface, we need
to assign to our particles some artificial surface. The simplest approach would be
to consider our particles as spheres of radius R. The value of this radius will be
defined from the Fluctuation–Dissipation theorem.

The coupling force can be divided into three terms - the pure friction term, the
pressure term and the fluctuating stress tensor term. The first term is an analogy
of the Stokes Law for a sphere in a viscous fluid, i.e. the force which acts on the
fluid from the monomer is proportional to the difference of monomer velocity v and
the fluid velocity u(R) at the position of the monomer

F
(fric)
fl = −ξbare [v − u(R, t)] . (1.48)

Here the ξbare is the coefficient of proportionality, which will be referred to as the
“bare” friction coefficient. This term is needed as a symplistic replacement of
the hydrodynamic “stick” boundary condition. The second term incorporates the
response of the force to the local changes of the density and therefore pressure (see
Fig. 1.7):

F
(pressure)
fl = −

∑
i

ΠiAi (1.49)

where the summation goes over the surrounding lattice sites i, and Πi is the pressure
tensor on site i. The area vectors Ai point in [111] direction; the precise direction
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is given by the octant in which site i is found. The underlying picture of the sphere
of radius R, whose surface is divided into eight sub-surfaces of equal size,

|Ai| = 1

8
4πR2.

The momentum transfer to the fluid and the interpolation scheme for the new
coupling are the same as for the case of the original coupling.

1.8.2. Modification of the stochastic force

One has to take care when adding stochastic terms to the system. Due to the
dissipative nature of the coupling, it is necessary to incorporate fluctuations to
both the fluid and the monomers. In order to be able to consider the fluctuational
hydrodynamic one can add fluctuations directly to the stress tensor. The amplitude
of these fluctuations can be calculated from statistical thermodynamics [36], and
their time evolution is described by the laws of linear hydrodynamics [31]. The
components of the stress tensor Πf behave as Gaussian random variables with zero
mean and variance [31]:

〈δΠik(r1, t1)δΠlm(r2, t2)〉 =

2kBT

[
η (δilδkm + δimδkl) +

(
ηv − 2

3
η

)
δikδlm

]
δ(r1 − r2)δ(t1 − t2)

(1.50)

It should be noted that Eq. 1.50 does not describe the instantaneous fluctuations in
stress on a molecular time scale. Rather it expresses the time-dependent relaxation
of stress fluctuations in a form that is local in space and time, yet consistent with
the Green-Kubo expressions for the shear and bulk viscosities. Such expressions
are valid on length and time scales that are large compared with molecular scales;
our simulations satisfy both these requirements.

Let us now discuss the coupling term −∑
i ΠiAi, which can be viewed as a

surface integral, in some more detail. We are particularly interested in this coupling
in the case of thermal equilibrium. In the continuum limit, the pressure tensor has
the form

Π = p1− η
(∇u + (∇u)†

)
+

(
2

3
η − ηv

)
∇ · u + δΠ (1.51)

where (∇u)† is the matrix transpose of (∇u) and the δΠ is a fluctuating part of
the stress.

However, in the coupling term in thermal equilibrium we can neglect all terms
of Π except the fluctuating stress. The reason is that neither p nor u vary much
in thermal equilibrium. Hence the contributions of the neglected terms to the
surface integral are small. In particular, these contributions are proportional to the
lattice spacing, and become vanishingly small in the limit of small lattice spacing.
Conversely, the fluctuating stress at a lattice site scales as (∆x)−3/2, where ∆x is the
lattice spacing. The particle radius will later on turn out to scale as (∆x)3/4, i. e.
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the areas Ai scale as (∆x)3/2. In other words, the fluctuating part is independent
of the lattice spacing. The omitted parts are hence safe to neglect in the limit of
vanishing lattice spacing. We thus arrive at

Ffl = −ξbare [v − u(R, t)] + fp. (1.52)

where fp is a stochastic force of the form

fp = −
∑

i

δΠiAi

We now wish to make sure that this stochastic force satisfies the usual fluctuation–
dissipation theorem, i. e.

〈fα(t1)fβ(t2)〉 = 2kBTξbareδαβδ(t1 − t2).

R_mono

n

00 01

10 11

lattice spacing

Figure 1.7.: The stochastic force in the coupling of the monomer with fluid.

The left-hand side is straightforward to calculate:

〈fα(t1)fβ(t2)〉 =
∑
ri

∑
rj

Aγ(ri)Aδ(rj)
〈
Πf

αγ(ri, t)Π
f
βδ(rj, t)

〉
(1.53)

where the repeated index means summation over. Using the explicit form of the
variance of stress tensor (Eq. 1.50) we get

〈fα(t1)fβ(t2)〉 = 2kBT
δ(t1 − t2)

(∆x)3

∑
ri

∑
rj

Aγ(ri)Aδ(rj)δri,rj

[
η (δαβδγδ + δαδδγβ) +

(
ηv − 2

3
η

)
δαγδβδ

]
(1.54)
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In the three dimensional space the value of surface area is given by the area of
sphere, noting the fact, that we have 8 neighbor sites, for the area per one neighbor
site we have

A(ri) =
4πR2

8
ni =

πR2

2
ni (1.55)

After inserting the expression for the area surface to Eq. 1.54 the equation for the
variance of the stochastic force obtains the form

〈fα(t1)fβ(t2)〉 = kBT
π2R4

2

δ(t1 − t2)

(∆x)3
×

∑
ri

nγ(ri)nδ(ri)

[
η (δαβδγδ + δαδδγβ) +

(
ηv − 2

3
η

)
δαγδβδ

]
=

= kBT
π2R4

2

δ(t1 − t2)

(∆x)3
×

∑
ri

[
η

(
δαβn2(ri) + nα(ri)nβ(ri)

)
+

(
ηv − 2

3
η

)
nα(ri)nβ(ri)

]
(1.56)

For the normal vector n(ri) we can use the elementary properties such as the unity
of the absolute value and orthogonality:

∑
ri

nα(ri)nβ(ri) =
8

3
δαβ,

∑
ri

n2(ri) = 8 (1.57)

Finally we have the following expression for the variance of the stochastic force

〈fα(t1)fβ(t2)〉 =

kBTπ2R4 δ(t1 − t2)

2(∆x)3

[
η

(
8δαβ +

8

3
δαβ

)
+

(
ηv − 2

3
η

)
8

3
δαβ

]
=

=
4kBTπ2R4

3

δ(t1 − t2)

(∆x)3
δαβ

[
10

3
η + ηv

]
(1.58)

Therefore the value of the radius R of our artificial sphere is determined by
relating the last equation to the usual Langevin equation with the friction term

ξbare =
2

3
π2 R4

(∆x)3

[
10

3
η + ηv

]
(1.59)

1.9. Fluctuation–Dissipation theorem

The main requirement for our model is the fulfillment of Fluctuation–Dissipation
theorem. Only in this case we can be sure in the reliability of the obtained data. In
this section we want to prove the Fluctuation-Dissipation Theorem for our model
in the continuum case. As a consequence it means the equivalence of the two
formulations of the coupling term (original and modified).
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The starting point is the compressible Navier–Stokes equation with fluctuations.
Our system consists of the coupled equations of the monomer movement and

the compressible Navier–Stokes equations. Defining as m the mass of the particle,
R - position of the particle, v - the velocity and by Fext the external force, we
obtain:

dR

dt
= v (1.60)

dv

dt
=

1

m
Fext − ξbare (v − u) +

1

m
Ff (1.61)

∂ρ

∂t
+∇j = 0 (1.62)

dj

dt
= −∇Π +

[
ξbare (v − u)− 1

m
Ffδ(r−R)

]
(1.63)

where Ff is the stochastic force discussed in the previous section.
The longitudinal j‖ = k̂ · j and transverse j⊥ = (1 − k̂k̂)j components can be

calculated separately.
Our transformed system of equations have the following form

dR

dt
= v (1.64)

dv

dt
=

1

m
Fext − ξbare

m

(
v − j

ρ

)
+

1

m
Ff (1.65)

∂ρ

∂t
= ikj (1.66)

dj‖
dt

= −νlk
2j‖ +

1

V

[
ξbare

(
v‖ − 1

ρ
j‖

)
− Ff

‖

]
e−ikR + ikδΠ‖(k, t) (1.67)

dj⊥
dt

= −νk2j⊥ +
1

V

[
ξbare

(
v⊥ − 1

ρ
j⊥

)
− Ff

⊥

]
e−ikR + ikδΠ⊥(k, t) (1.68)

These equations are Langevin equations with random forces δΠ‖ = k̂ · δΠ · k̂,

δΠ⊥ = k̂ · δΠ · (1− k̂k̂), F‖ = k̂ ·F · k̂ and F⊥ = k̂ ·F · (1− k̂). Given the results of
Ref. [2], it will be very surprising if the Fluctuation–Dissipation theorem does not
hold for our system. We can convince ourselves by explicit calculations.

As shown in Ref. [2] one can restrict attention to the additional terms in the
equations of motion, because separately both fluid and the particles satisfy the
Fluctuation–Dissipation theorem. We have to calculate only the additional term
Ladd in the dynamical operator. The dynamic operator in general is the sum of
drift and diffusional parts [37]

−iL = − ∂

∂xi

Di ({x} , t) +
∂2

∂xi∂xj

Dij ({x} , t) , (1.69)

where the {x} are the phase space variables, Di ({x} , t) is the drift vector and
Dij ({x} , t) is the diffusion matrix and Einstein summation is applied. They are
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defined through these formulas:

Di ({x} , t) = lim
τ→0

1

τ
〈ξi(t + τ)− ξi(t)〉 |ξk(t)=xk

(1.70)

Dij ({x} , t) =
1

2
lim
τ→0

1

τ
〈[ξi(t + τ)− ξi(t)] [ξj(t + τ)− ξj(t)]〉 |ξk(t)=xk

(1.71)

where |ξk(t)=xk
means that the stochastic variables ξk at time t have the values xk.

In our case the variables are {x} =
{
R, v‖, v⊥, j‖(k, t), j⊥(k, t), ρ

}
. Further we use

a shorthand notation ∆xi = [ξi(t + τ)− ξi(t)] and instead of | ξk(t) = xk write |τ .
Because the longitudinal and transverse components in the equations are fully

decoupled, we can consider only one case, for example the longitudinal components.
The additional term to the drift coefficient is caused by the coupling term:

−iL(drift)
add = −ξbare

ρm
j‖ · ∂

∂v‖
−

∑

k

∂

∂j‖(k)

ξbare

V

(
v‖ −

j‖(R)

ρ

)
e−ikR. (1.72)

The additional second order term comes from the additional stochastic force in the
Navier-Stokes equation. There are 2 terms, the first:

lim
τ→0

1

τ

〈
∆j‖(k, t)∆v‖

〉 |τ=

− lim
τ→0

1

τV m
e−ikR

∫ τ

0

dt

∫ τ

0

dt′
〈
F‖(t)F‖(t

′)
〉

= −2
ξbarekBT

V m
e−ikR. (1.73)

The prefactor 1/2 was omitted because the term occurs twice. The second term
has a similar structure and we give only the result

lim
τ→0

1

2τ

〈
∆j∗‖(k, t)∆j‖(q, t)

〉 |τ= ξbarekBT

V 2
ei(k−q)R. (1.74)

Combining the additional terms we obtain this expression for the diffusional oper-
ator

−iL(diff)
add =

ξbarekBT

V 2

∑

k,q

ei(k−q)R ∂2

∂j‖(k)∂j∗‖(q)
−

− 2ξbarekBT

V m

∑

k

e−ikR ∂2

∂v‖∂j‖(k)
(1.75)

The equilibrium distribution for the longitudinal components in our case has the
form

P ∝ exp

(
−

mv2
‖

2kBT
− V

2kBTρ

∑
q

| j‖ |2
)

. (1.76)
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The action of the additional terms in the dynamic operator on the distribution
function is

−iLaddP = −ξbare

ρ
j‖

(
− v‖

kBT

)
P−

− ξbare

V

(
v‖ −

j‖(R)

ρ

) ∑

k

e−ikR

(
− V

kBTρ

)
j∗‖(k)P +

+
ξbare

ρV

(∑

k

1

)
P −

− 2ξbarekBT

V

∑

k

e−ikR

(
− v‖

kBT

)(
− V

kBTρ

)
j∗‖(k)P −

− V

kBTρ

ξbarekBT

V 2

∑

k,q

ei(k−q)R

[
δkq − V

2kBTρ
j‖(k)j∗‖(q)

]
P (1.77)

Applying the Fourier transformation to the last equation finally we obtain

−iLaddP =
ξbare

ρkBT
v‖j‖P +

ξbare

ρkBT

[
v‖ −

j‖(R)

ρ

]
j‖(R)P

+
ξbare

ρV

(∑

k

1

)
P − ξbare

ρV

(∑

k

1

)
P +

ξbare

kBTρ2
j‖(R)2P

− 2
ξbare

ρkBT
v‖j‖P = 0.

(1.78)

From the obtained result we see that the Boltzmann distribution function satis-
fies the stationary Fokker-Planck equation. Therefore the Fluctuation-Dissipation
theorem is also satisfied for our model.

1.10. Technical details and numerical tests

For the integration of the Molecular Dynamics (MD) part we apply the Velocity-
Verlet integrator [38, 39, 40]. For the fluid update we apply a further scheme: the
calculation of the force between fluid and particles at the current position of the
particle. With this coupling we change ni and also the fluid velocity u. After
that we apply collision and propagation steps for the fluid. In order to accelerate
the force calculation between particles we use standard tricks of MD-simulation for
short-ranged forces between particle pairs. The link–cell algorithm is applied in our
case [38, 39]. In order to check the validity of our new model we can do a simple
experiment of the relaxation of the initially kicked particle in the fluid. The particle
at time t = 0 has the initial velocity vx in x-direction and moves freely through the
fluid which at the moment t = 0 has zero velocity. The expected behavior is an
initial exponential decay vx ∝ exp(−ξt/m). The asypmtotic behavior for long times
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Figure 1.8.: Relaxation of the kicked at t=0 particle in the fluid for two different
bulk viscosities ηv.

is given by hydrodynamic interaction, “the long-time tail” regime is expected, i.e.
vx(t) ∝ t−3/2 [41, 42]. These two regimes are actually observed in the experiment
(see Fig. 1.8). In two simulations we have chosen the same time step for the fluid
update and for the particle propagation δt = h = 0.01, the value for the mass of the
fluid particles and MD-particles mp = mfl = 1.0, ρ = 0.85mfl/(∆x)3, λ = −1.75
and ∆x = 1.0. It has to be noted that the function vx(t) does not go to zero,
because the simulation is performed in a simulation box of length L with periodic
boundary conditions: In the long–time regime , one observes the overall motion of
the particle–fluid system.

Furthermore, it is interesting to note that the “hump” in the relaxation function
is apparently an effect of longitudinal sound modes: For a large value of the bulk
viscosity (strong sound attenuation), this feature goes away.



Part II.

Simulation of electrostatics





2. Trying to understand the
evolution of charged systems

2.1. Introduction

Simulations of charged systems face a big computational challenge due to the long–
range nature of the electrostatic interaction. If N is the number of charges, then
the computational cost of the most naive approach to evaluate the interaction
energy would scale as N2, since every charge interacts with every other charge.
Very sophisticated algorithms have been developed to tackle this problem and to
reduce the computational complexity. The most prominent ones are the so–called
P3M method (“particle–particle / particle–mesh”), which is based on Fast Fourier
Transforms and scales as N log N [43], and the Fast Multipole method [44] which
scales linearly with N .

A similar problem arises in the simulation of Brownian particles which interact
hydrodynamically: Their stochastic displacements are highly correlated, due to fast
diffusive momentum transport through the solvent. For sufficiently slow particles,
a quasi–static approximation works excellently, and in this case the correlation
function decays as 1/r (r interparticle distance) [45], just as in electrostatics. For
these systems, it has turned out that it is both much simpler and also more efficient
to explicitly simulate the momentum transfer through the surrounding solvent. This
makes the simulation of several ten thousands of Brownian particles feasible [46, 5].
Although most of the computational effort goes into the flow field (for two reasons
— one needs reasonable spatial resolution of the flow field, and it moves much
faster than the Brownian particles), this approach ultimately wins, because it is
inherently local, and therefore scales linearly with N .

This observation raises the question if something similar could be tried for
Coulomb interactions. After all, electrostatics is just the quasi–static limit of full
electrodynamics. The obvious approach would be to couple a system of charges
to an electromagnetic field which propagates according to the Maxwell equations
(ME), and then run Molecular Dynamics (MD). A suitable acronym for such a
method might be MEMD (“Maxwell equations Molecular Dynamics”). Just as
in the hydrodynamic case, this is an intrinsically local algorithm, and therefore
scales linearly. The instantaneous 1/r interaction is thus replaced by some retarded
interaction travelling with the speed of light c. Using the actual physical value of c
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will of course not work, since then the separation of time scales between charges and
fields will be prohibitive. However, there is no need to take such a large c value. It is
sufficient to just make c large enough such that the quasi–static approximation still
holds to sufficient accuracy. This is the lesson we have learned from Car–Parrinello
(CP) simulations [47], where the electrons are assigned an unphysically large mass,
precisely for the same reason. The analogy between MEMD and CP actually goes
much further, as we will see in Chapter 3. This should not be too much of a surprise,
since the universal applicability of the CP approach to a wide variety of problems
in physics (e. g. classical field theories) has already been observed in the original
publication [47], and exploited in the context of classical density–functional theory
[48].

The MEMD idea has been pursued recently by A. C. Maggs and collaborators
[49, 50, 51], and by us [52], in close contact with him.

In the current chapter we will give an outline of the Car–Parrinello method. Fur-
thermore, present methods for the simulation of charged systems will be critically
discussed. In order to understand the evolution of charged systems, the relations
between Quantum Lattice Models and Classical Field Theory will be investigated.
The naive approach of direct application of the Car–Parrinello method to Molecular
Dynamics of charged systems will be presented, as well as its drawbacks. Although
this approach has appeared to be unsuccessful, it will help us to construct the right
method in the next chapter.

2.2. Car–Parrinello method

2.2.1. Kohn-Sham equations

We begin with considering possible methods of solving the Kohn-Sham equations.
Suppose we want to construct a Molecular Dynamics method for the electronic

structure of solids. Particularly we consider such a system for which the Born-
Oppenheimer (BO) approximation holds, i.e. we will assume that the electronic
excitation spectrum has a gap between the ground state and the first excited state
which is much larger than the energy associated with the ionic motion. If this
condition is satisfied, the behavior of the coupled electron ion system can be re-
garded as adiabatic. It can also be assumed that the ions are described by classical
mechanics, with interaction potential

Φ ({RI}) = 〈ψ0 |H|ψ0〉 (2.1)

where H is the Hamiltonian of the system at fixed ionic position RI and ψ0 is
the corresponding instantaneous ground state. The use of this equation allows us
to define the interaction potential from first principles (ab-inito simulation). In
order to use Eq. 2.1 in a Molecular Dynamics (MD) run, calculations of ψ0 for a
number of configurations are needed. This is computationally very expensive. A
viable alternative is offered by Density functional theory (DFT) [53] which provides
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a practical and accurate method of calculating Φ ({RI}). According to DFT the
total energy E ({RI}) of a system of interacting electrons and nuclei, corresponding
to the nuclear configuration {RI}, is a unique functional of the electronic density
ρe(r) [54]. Within a mean field framework ρe(r) can be expressed in terms of N
doubly occupied single-particle orbitals (ψi):

ρe(r) = 2
occ∑
i

|ψi(r)|2 (2.2)

where the factor 2 accounts for double occupancy of each electronic state. If one
assumes that all occupation numbers are equal (there is no incompletely filled
state), then the ground-state energy Φ can be found by minimizing the functional
E [{ψi} , {RI}] with respect to the electronic degrees of freedom {ψi}, i.e.

Φ ({RI}) = min
{ψi}

E [{ψi} , {RI}] . (2.3)

The functional E [{ψi} , {RI}] is given by (we use atomic units e = h̄ = me = 1)

E [{ψi} , {RI}] = 2
occ∑
i

∫
drψ∗i (r)

(
−1

2
∇2

)
ψi(r) +

∫
drV ext(r)ρe(r)

+
1

2

∫
drdr′

ρe(r)ρe(r
′)

|r− r′| + Eexch [ρe] +
1

2

∑

I 6=J

ZIZJ

|R−R′| .
(2.4)

V ext(r) is the total external potential felt by electrons, i.e. the total electrostatic
potential from the nuclei in an all-electron formulation, ZI are the nuclear charges.
Eexch [ρe] is the exchange-correlation energy functional, in which all the intricacies
of the many-body electronic problem are contained. The so–called local density
approximation (LDA) [55, 53] assumes that Eexch [ρe] is a function and not a func-
tional of ρe(r).

The single-particle orbitals ψi are subject to orthonormality constraints:
∫

drψ∗i (r)ψj(r) = δij. (2.5)

The standard way of solving Eq. 2.3, subject to constraints given by Eq. 2.5, consists
of solving the associated Euler-Lagrange equations, i.e.

Hψi(r) = εiψi(r), (2.6)

where

H = −1

2
∇2 + V ext(r) + V H(r) + µexch(r). (2.7)

Here V H(r) =
∫

dr′ ρe(r′)
|r−r′| is the Hartree potential and

µexch(r) = δEexch [ρe] /δρe(r)
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is the exchange-correlation potential. The Schrödinger-type equations 2.6 are called
Kohn-Sham (KS) [55] equations and provide the theoretical framework of most self-
consistent electronic structure calculations. In a conventional approach [56], one
would proceed as follows:

1. An initial value for ρe(r) is estimated.

2. The potential in Eq. 2.7 is then calculated accordingly and Eqs. 2.6 are solved
by diagonalization of the Hamiltonian matrix.

3. From the eigenvectors a new ρe(r) is calculated and the entire process is
repeated till self-consistency is achieved.

Since the cost of a standard diagonalization grows as O(M3), where M is the
number of functions in the basis set in terms of which the Kohn and Sham orbitals
are expanded, this procedure becomes very costly for large systems.

2.2.2. Molecular Dynamics in the coupled electron–ion
parameter space

It is therefore highly desirable to have an alternative approach in which the in-
teratomic forces are generated in a consistent and accurate way as the simulation
proceeds. Such an alternative scheme was devised by Car and Parinello (CP) [47].

Here we show how the Newtonian dynamics (second order differential equations)
in the DF parameter space enhances our computational capabilities and allows us to
implement a DF-based MD scheme. For this purpose we consider the parameters ψi

and RI in the E functional to be dependent on time and write the Lagrangian [47,
57]

L =
1

2

occ∑
i

∫
drµi

∣∣∣ψ̇(r)
∣∣∣
2

+
1

2

∑
I

MIṘ
2
I − E [{ψi} ,RI ] +

1

2

∑
ij

Λij

(∫
drψ∗i (r)ψj(r)− δij

)
,

(2.8)

where MI are the physical ionic masses and µi are arbitrary mass–like parameters
of appropriate units. We assume equality of all µi. In Eq. 2.8 we have two classical

kinetic energy terms: Ke = 1/2
∑occ

i

∫
drµi

∣∣∣ψ̇(r)
∣∣∣
2

, associated with the electronic

parameters ψi, and KI = 1
2

∑
I MIṘ

2
I , associated with the nuclear coordinates. Ke

and KI measure the rate of variation of the respective degrees of freedom in the
coupled electron-ion parameter space. The Lagrangian multipliers Λij are used to
impose the orthonormality constraints (Eq. 2.5) that, in a language of classical
mechanics, are simply holonomic constraints [58].
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The Lagrangian in Eq. 2.8 generates a dynamics for the parameters ψi and RI

through the equations of motion:

µψ̈i(r, t) = − δE

δψ∗i (r, t)
+

∑
j

Λijψj(r, t) (2.9)

MIR̈I = − ∂E

∂RI(t)
. (2.10)

These equations allow the sampling of the complex parameter space of the ψi and
RI with the MD techniques used in statistical mechanics simulations [59]. In par-
ticular, the equilibrium value 〈K〉 of the classical kinetic energy K = Ke + KI

can be calculated as the temporal average over the trajectories generated by the
equations of motion (2.9) and (2.10), and related to the temperature of the sys-
tem by suitable normalization. By variation of the velocities, i.e. the ψ̇i and the
ṘI , one can vary the temperature of the system. In this way one can make the
fictitious dynamical system undergo various thermal treatments, such as annealing
and quenching. During such processes, all relevant degrees of freedom, both nuclear
and electronic, are relaxed simultaneously. In particular, we can set up a dynamical
process that brings the system to its equilibrium state at T = 0 by slowly reduc-
ing the temperature. This process is called dynamical simulated annealing (DSA),
which is a specific application of the concept of simulated annealing, introduced by
Kirkpatrick, Gelatt and Vecchi [60] to solve complex optimization problems.

If one wants to compare the ionic dynamics generated with Eq. 2.10 and the
correct classical dynamical equations for the nuclei given by

MIR̈I = −∂Φ ({RI})
∂RI

(2.11)

where Φ ({RI}) is the physical potential defined in Eq. 2.3, one finds nonequiva-
lence of the two dynamics. Indeed, the nuclear trajectories generated by Eq. 2.10
and those obtained from Eq. 2.11 generally do not coincide, unless E [{ψi} , {RI}]
is at the instantaneous minimum. However, the parameter µ and the initial condi-
tions {ψi}0, {ψ̇i}0 can be chosen such that the time scale for the electronic degrees
of freedom is much shorter than that of the nuclei. In this case the nuclear tra-
jectories, initially lying on the Born-Oppenheimer surface, will fluctuate around it,
and deviate substantially only after rather long times. In other words, if µ and
{ψi}0, {ψ̇i}0 are chosen such that the two sets of classical degrees of freedom, ions
and electrons, are only weakly coupled, the transfer of energy between them is small
enough to allow the electrons to follow adiabatically the ionic motion, remaining
close to their instantaneous Born-Oppenheimer surface. In such a metastable situ-
ation meaningful temporal averages can be computed. This dynamics is meant to
reproduce in a computationally effective way what indeed occurs in reality, that is
electrons following adiabatically the motion of the ions.
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2.3. Analysis of current simulation methods for
Coulomb interaction

The electrostatic interaction between two point charges in a medium with uniform
dielectric constant ε0 varies as q1q2/4πε0r. The large numerical value of this energy
together with its long range are such that the accurate evaluation of this interaction
is almost always the most costly component in the simulation of charged condensed
matter systems [61]. Naive evaluation of the electrostatic energies in Molecular
Dynamics and Monte-Carlo algorithms leads to inner loops where the summation
over all particle pairs leads to a complexity of the order of O(N2). Historically,
the quadratic (O(N2)) computational complexity of the all-pairs N -body problem
of electrostatics was reduced by using truncated Coulomb potentials, where all
interactions past a certain distance were simply ignored. Though acceptable for
some simulation experiments, this cutoff approximation leads to unphysical behav-
ior in many situations [62]. An alternative “brute force” quadratic method tailored
to specialized parallel hardware [63] increased the size of systems that could be
simulated “exactly”, but the quadratic complexity eventually overwhelmed such
systems.

New algorithms and new implementations of old algorithms have dramatically
reduced the cost of performing accurate evaluations of electrostatic interactions.
These methods have linear (O(N)) or O(N log N) computational complexity for
the N -body problem. This section describes the contemporary methods used in
MD and Monte Carlo algorithms.

2.3.1. Optimized Ewald summation

Many simulations are best suited for periodic boundary conditions. Periodic bound-
ary conditions are a standard way of imitating a bulk system with a finite set of
particles. They also help to reduce surface effects. A primary box is taken as the
unit cell (or “base”) of a space-filling “crystal” of such boxes (actually, a Bravais
lattice), and all particles in this infinite and periodic universe interact with each
other [39, 38]. In an appropriate unit system, the potential on particle i in the
original simulation cell of the size L due to all other particles j in the cell and all
periodic images of all particles can be written as

Φi =
N∑

j=1

′∑
n

qiqj

ri,jn

(2.12)

where n is an integer triple identifying a particular image cell; n=(0,0,0) indicates
the “real” simulation cell, and all other cells are identified by their displacement
from the central cell; ri,jn = |ri − rj + nL|. The prime on the second sum indicates
that for i = j the lattice vector n = 0 must be omitted.

The Ewald summation was invented in 1921 [64] to permit the efficient compu-
tation of lattice sums arising in solid state physics. These sums are not absolutely,



2.3 Analysis of current simulation methods 39

but only conditionally convergent. Ewald recognized that the slowly convergent
sum can be recast as two rapidly converging sums, one in real space and one in
reciprocal (or Fourier) space. One physical explanation of Ewald’s observation is
that an auxiliary Gaussian charge distribution can be both added to and subtracted
from the original charge distribution (see Fig. 2.1). From the mathematical point of
view this transformation can be regarded as a special case of the Jacobi imaginary
transformation for the theta functions [65]. The real space sum is now in terms of

ρρ

r =
R

r +
ρ

r

Figure 2.1.: Motivation for the Ewald formulae. A point charge distribution is split
into a screened point charge distribution (in the real space) and the
corresponding screening distribution.

the rapidly converging complementary error function erfc(r) rather than the slowly
converging 1/r thanks to the Gaussian screening of the charges; the other sum of
Gaussian countercharges can be Fourier transformed into a rapidly converging form
as well.

Ewald’s formalism reduces the infinite lattice sum to a serial complexity of
O(N2) in naive implementation. The Fourier transformations involved in the cal-
culation of the Ewald sum are the most time consuming part of the method. A
more efficient method can be constructed if one combines the existing Ewald method
with a “Link–Cell” method of Hockney and Eastwood [43]. This method has been
known for some time [66] and the idea is the following. The Fourier transform can
be represented by the finite amount of reciprocal lattice vectors k. It means the
k-values have an upper bound, say kmax. This kmax is independent of the number of
particles, hence we would expect the overhead from the Fourier space contribution
to become relatively less important as the number of particles N increases.For the
real space part we can use the property of “short-ranged” interactions, i.e. con-
tributions to the real space forces on a particular particle could be neglected for
all but particles in the immediate vicinity. More precisely, suppose that we di-
vide each side of the cubic simulation box into m equal segments, each of length
L/m. This leads to a tesselation of the original cubic box into M = m3 identical
cubic sub-boxes, each containing on average N/M particles. If we insist that all
interactions between particles separated by more than this distance L/m can be
neglected, then we need only to evaluate the real space contribution to the force on
a particle from particles in the same small box and from those in half of the (33−1)
neighboring boxes. If the boxing algorithm is implemented with the optimum value
of the number of boxes, then the computer time increases as N3/2, a considerable
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improvement over the rate N2 for traditional methods.

2.3.2. Fast multipole method

Multipole-accelerated algorithms first appeared in the astrophysical literature for
solving gravitational N -body problem [67, 68]; Greengard and Rokhlin [44] have
placed this class of algorithms on a more rigorous theoretical footing. The multipole-
accelerated algorithms overcome the O(N2) complexity of the N -body problem by
using a hierarchy of approximations to represent the effect of increasingly distant
groups of charged particles on a particle of interest (Fig. 2.2). The central strategy

Figure 2.2.: The fast–mutipole algorithm exploit an approximate representation of
the effect of groups of distant particles. A hierarchy of this approxi-
mations allows increasingly larger groups of particles to be represented
by a single power series as the distance from the particles of interest
increases.

of the method is clustering particles at various spatial lengths and computing in-
teractions with other clusters which are sufficiently far away by means of multipole
expansions. Interactions with particles which are nearby are handled directly.

To be more specific, let us at first define the multipole expansion. In the two–
dimensional case the potential at point z with |z| > r from m charges {qi, i =
1, . . . , m}, located at points {zi, i = 1, . . . , m}, with |zi| < r is given by

φ(z) = Q ln(z) +
m∑

k=1

ak

zk
, (2.13)
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where

Q =
m∑

i=1

qi, ak =
m∑

i=1

−qiz
k
i

k
(2.14)

Furthermore, the error of the truncation approximation is bounded

∣∣∣∣∣φ(z)−Q ln(z)−
p∑

k=1

ak

zk

∣∣∣∣∣ ≤
m∑

i=1

|qi|
(

1

2

)p

(2.15)

where p ≥ 1 is. This means that in order to obtain a relative precision ε (with re-
spect to the total charge), p must be of the order − log2(ε). Therefore the multipole
expansion is one suitable power series representation which converges quite rapidly
when groups of particles are “well separated”. This rapid convergence permits the
series to be truncated at a relatively small number of terms and still provide an
accurate representation of the exact potential. For close interparticle separations,
the power series representation typically converges very slowly or not at all (log-
arithm in our formulas for the two-dimensional case); thus, Coulomb interactions
involving nearby particles must be computed directly via the 1/r law.

2.3.3. Lattice methods

The Fourier transformations involved in the calculation of the Ewald sum are the
most time-consuming part of the algorithm. The essential idea of lattice methods
is to modify the problem in such a way that it permits the application of the
Fast Fourier Transformation (FFT, see [69]). This reduces the complexity of the
reciprocal part of the Ewald sum to N log N . If the real space cutoff is chosen to be
small enough, this scaling applies to the complete Ewald sum. Since FFT is a grid
transformation there are discretization problems to be solved and corresponding
discretization errors to be minimized.

The algorithm, called the particle mesh Ewald (PME) method [70], was inspired
by Hockney and Eastwood’s [43] particle-particle particle-mesh method of splitting
the total electrostatic energy into local interactions which are computed explicitly
and long-range interactions which are approximated by a discrete convolution on
an interpolating grid, using the three-dimensional fast Fourier transform (3DFFT)
to efficiently perform the convolution.

The first thing that one has to do in order to use the PME algorithm is to
interpolate charges on some grid (See Fig. 2.3). The accuracy of charge assign-
ment scheme depends on the number of grid points used in the interpolation. Of
course, the complexity of such an algorithm is increased. PME originally employed
Lagrange interpolation, but later a revised PME formulation which uses B-spline
interpolation functions was developed [71].

After the interpolation one has to solve the Poisson equation on the lattice, and
finally to calculate electrostatic forces.
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Figure 2.3.: Charge assignment from a single particle in a curvilinear coordinate
system (general case). The interpolation is done only for the neighbor-
ing grid points.

2.3.4. Various drawbacks of the present day simulation
schemes for Coulomb interactions

It is impressive to look back and appreciate how far the field of electrostatic mod-
eling has progressed from the first attempts of simulation. Developments in theory,
experiment, and computer technology have made simulations of larger systems over
longer times with greater accuracy possible. But the asymptotic improvement in
efficiency comes with great increases in the complexity of the coding, especially
when distributed on multiprocessor computers. The numerical prefactors in these
scaling laws are uncomfortably large: Despite the great effort put into optimizing
the electrostatic loop, it is found that in simulations of large systems the great
majority of the CPU time is still used there.

The classical methods for treating charged systems have another disadvantage,
their inability to treat systems with inhomogeneous dielectric constants. In stan-
dard accelerated Coulomb methods dielectric effects must be included by adding
supplementary charge degrees of freedom to mimic, for instance, electronic polariz-
ability. It would be of a great interest if a simpler method were available to simulate
inhomogeneous systems.

2.4. Monte Carlo method for constrained
electrostatics

Help comes from a completely different point of view. All present day methods
are based on the construction of a fast “Poisson solver”. The Poisson equation is
an elliptic equation, the solution of which is completely defined by the boundary
conditions. It means that in order to solve the electrostatic problem in a given region
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one has to propagate an iterative method through all of the system. Therefore
Poisson solver methods are global methods.

But one can find interesting properties of electrostatics by investigating the cor-
responding quantum field theory. The classical quantization of the electromagnetic
field is the substitution of the continuum field theory by discretized quantities.
Could it be that by observing the analogies between Quantum Electrodynamics
and the discretized equations of the electrodynamics we can find something special
and helpful?

2.4.1. Lattice Gauge theory

An important topic in the physics of the 20th century is local gauge invariance.
The notion of gauge invariance was first introduced by Weyl [72] in his attempt to
describe the gravitational and electromagnetic interaction of an electron on equal
footing. In order to understand the meaning of this notion we will consider the
famous “toy” of the physicist - the Ising model.

Consider a square lattice in two dimensions with sites labeled by a vector of
integers, n = (n1, n2). Place a “spin” variable σ(n) at each site and suppose that
σ can only be “up” (σ = +1) or “down” (σ = −1. Then the energy or “action” of
the model is

S = −J
∑

n,µ̂

σ(n)σ(n + µ̂) (2.16)

where µ̂ denotes one of the two unit vectors of the lattice as depicted in Fig. 2.4.
J is the coupling constant and positive, so the action favors aligned spins. It is

n i

j

Figure 2.4.: The unit vectors of the square lattice in two dimensions.

necessary to note two important properties of the model:

1. Only nearest-neighbor spins are coupled. The action is as local as possible.

2. The model has a global symmetry. If all spins are flipped, S is left unchanged.

Now we want to take the degrees of freedom of the Ising model and couple them
together in such a way that the global symmetry of the old model is changed to a
local symmetry. The notion “local symmetry” reflects the idea of invariance with
respect to local reference frame transformations. Suppose there is a “frame of
reference” at each site of our lattice. Suppose that these frames can be oriented
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arbitrarily from site to site. We want to construct the action of the theory so that
it is invariant to changes in the orientation of the local frames of reference.

F. Wegner invented such an “Ising lattice gauge theory” in 1971 [73]. His
motivation was to obtain models which could not magnetize but would have non
trivial phase diagrams.

Consider again a cubic lattice in a three-dimensional Euclidean space. Label
the links which connect the adjacent points of the lattice by a site n and a unit
lattice vector µ̂. The same link can be labeled as (n, µ̂) or (n + µ̂,−µ̂) where site
(n+ µ̂) means the site adjacent to n in the direction µ̂. At this time we place Ising
spins σ on the links. Again we consider only “up” and “down” spins. Define a local
gauge transformation at the site n as the operation G(n) of flipping all the spins
on links connected to that site. An example is shown in Fig. 2.5. An action has a

G(n)

Figure 2.5.: A local symmetry operation in Ising lattice gauge theory in three di-
mensions.

huge invariance group because G(n) can be applied everywhere. A nontrivial action
having this symmetry consists of the product of spins around primitive squares, or
“plaquettes”, of the lattice,

S = −J
∑

n,µ̂,ν̂

σ(n, µ̂)σ(n + µ̂, ν̂)σ(n + µ̂ + ν̂,−µ̂)σ(n + ν̂,−ν̂) (2.17)

where the arguments of the spin variables label the links. We must check that S
is invariant under arbitrary local gauge transformations. If the operation G(n) is
applied at the site n, then both spins σ(n, µ̂) and σ(n + ν̂,−ν̂) = σ(n, ν̂) change
sign. Therefore S is unchanged. It is not difficult to see that the essential ingredient
in guaranteeing the gauge invariance of S is that it has to be constructed from
products of σ taken around closed paths of links. In order to keep the action S as
local as possible one chooses primitive squares of four links. We come to the notion
of the plaquette as a fundamental unity of the theory (see Fig. 2.6).

When our construction is generalized to systems with continuous symmetries,
we will recognize the model as lattice version of theories with gauge symmetries. For
the Abelian groups this has been done by K.G.Wilson [74]. Lattice gauge theories
were independently invented by A.M. Polyakov [75]. The quantum Hamiltonian
approach was developed by Kogut and Susskind [76].
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Figure 2.6.: A plaquette of spin variables.

2.4.2. Formulation of Quantum Electrodynamics on a lattice

Our aim is to try to understand similarities between quantization of the electro-
magnetic field and the approximate solution of the electrostatic problem. For this
purpose let us consider “classical” Quantum Electrodynamics.

“Latticization”

We present our analysis in the A0 = 0 gauge, where Aµ is the four-potential,
because it is best suited to the Hamiltonian approach. Such an approach dates
back to H.Weyl [77] and W.Heisenberg and W. Pauli [78], and is known as temporal
or Weyl gauge. In this gauge the vector potential A and the electric field E are
canonically conjugate variables.

The Hamiltonian for the photon field (or the free electrodynamic field) in the
temporal gauge has the form

H =
1

2

∫
dr

(
E2 + (∇×A

)2
). (2.18)

For simplicity we describe our notation in terms of a two-dimensional planar lattice.
Its extension to a cubic lattice in three space dimensions is straightforward. We

în+

n+̂

n

j

Ax
n

Ay
n

Figure 2.7.: Labeling of sites and links in a two-dimensional lattice.
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place our conjugate variables A and E on the links of the lattice, so that each site
n = (nx, ny) has associated with it field components Ax

n and Ay
n residing on the

links leaving the site n in +x and +y directions, respectively (see Fig. 2.7).
We then define the magnetic field Bn as the lattice curl

Bn = (∇×A)n ≡
1

a

(
Ax

n + Ay
n+ı̂ − Ax

n+̂ − Ay
n

)
, (2.19)

where a is the lattice spacing. Like all pseudovectors B has one component, directed
out of the plane in accordance with a right-hand rule and located at plaquette
centers; plaquettes are labeled by their lower left-hand corners (Fig. 2.8). We also
define the divergence of a vector (a scalar defined at each site; see Fig. 2.8)

(∇ · E) =
1

a

(
Ex

n + Ey
n − Ex

n−ı̂ − Ey
n−̂

)
. (2.20)
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Figure 2.8.: Identification of the plaquette variable Bn in terms of link variables An

(left). Divergence of En shown in terms of contributing links (right).

Our Hamiltonian from Eq. 2.18 can be “latticized” as following

H =
a2

2

[∑

links

(Ea
n)2 +

∑

plaquettes

(Bn)2

]
. (2.21)

The canonical commutators become on the lattice (Latin superscripts are vector
indices) [

Aa
n1

, Eb
n2

]
= −i

1

a2
δn1n2δab. (2.22)

Equations 2.21 and 2.22 define a version of lattice Quantum Electrodynamics that
is closely parallel to the continuum theory and is refered to as the noncompact
version since the variable B can assume arbitrarily large values.

The Hilbert space and gauge fixing

We must next specify the Hilbert space on which our operators act. We interpret
An and En as the operators of multiplication and differentiation on the space of
square integrable functions of the variables An.
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The next step is to recognize that not all of the En’s are truly quantum variables.
First we notice that there is only one variable Bn but several variables Ea

n for each
plaquette. Hence we would like to rewrite the kinetic part of the Hamiltonian in
terms of variables conjugate to the Bn’s plus those linear combinations of En’s
which commute with all of the Bn’s and hence can be diagonalized along with H.
This is readily achieved if we note that certain linear combinations of the En’s are
the generators of time-independent gauge transformations, which commute with our
Hamiltonian. To be specific, in the A0 = 0 gauge, the Hamiltonian is unchanged if
make the transformation

Aa
n → Aa

n + (∇Λ)a
n , (2.23)

where the lattice gradient is defined as

(∇Λ)x
n =

1

a
(Λn+ı̂ − Λn)

(∇Λ)y
n =

1

a
(Λn+̂ − Λn) (2.24)

From Eq. 2.22 it follows that this transformation is effected by the operator

U ({Λn}) = exp

[
i
∑
n,a

(∇Λ)a
n Ea

n

]
≡ exp

(
−i

∑
n

ΛnGn

)
. (2.25)

where Gn is the gauge generator. Noting, that for Λ(∞) = 0,

∑
n

(∇Λ)a
n Ea

n = −
∑
n

Λn (∇ · E)n , (2.26)

we can identify the gauge generator G by

Gn = (∇ · E)n . (2.27)

Furthermore, the Heisenberg equations of motion are

i
d

dt
Ak(n) =

[
Ak(n),H]

=
a2

2

[
Ak(n),

∑

n′
Ek(n′)Ek(n′)

]
= −iEk(n) (2.28)

i
d

dt
Ek(n) =

[
Ek(n),H]

=
a2

2

[
Ek(n),

∑

n′
εjmp∇mAp(n′)εjrs∇rAs(n′)

]

= − i

2
εjmpεjrs

∑

n′
{δkp∇mδnn′∇rAs(n′) + δks∇rδnn′∇mAp(n′)}

= iεkjl∇jεlmn∇mAn(n) = i (∇×B)k
n (2.29)
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where the curl of B(n) on the lattice is defined as following

(∇×B)x
n =

1

a
(B(n)−B(n− ̂))

(∇×B)y
n =

1

a
(B(n− ı̂)−B(n)) (2.30)

From the equations of motion it is clear that the gauge generators G(n) commute
with the Hamiltonian. Therefore we can diagonalize them and work within any
individual eigensubspace.The eigenvalues of G(n) may be interpreted as external
charges ρ(n), and in this way we see that the eigenvalue equation is nothing but
Gauss’s law, i.e.

[(∇ · E) (n)− ρ(n)] | ψ〉 = 0, (2.31)

for all states | ψ〉 in this sector of our Hilbert space. This is a very important
consideration which we will use further. We want to stress that the invariance of
the Hamiltonian under time-independent local gauge transformations leads to a
conserved quantity G(n) for each lattice point; in particular, if we impose Gauss’s
law G(n)− ρ(n) = 0 initially, it will remain zero for all times.

Restricting ourselves henceforth to any such eigensubspace we now decompose
the electric field into a classical (longitudinal) and a quantum (transverse) part,
writing

E = E‖ + E⊥ (2.32)

where E‖ and E⊥ are defined by the conditions
(∇× E‖) = 0, ∇ · E⊥ = 0. (2.33)

The lattice curl and divergence in Eq. 2.33 are defined as in Eq. 2.19 and 2.20. Now,
Eq. 2.33 implies that the longitudinal component can be presented as gradient of
a scalar function

E‖ = −∇φ (2.34)

and, by Eq. 2.31, φ satisfies

∇ · E = ∇ · E‖ = −∇2φ = ρ, (2.35)

where the lattice Laplacian is defined to be

(∇2φ
)
(n) =

1

a
[φ(n + ı̂) + φ(n− ı̂) + φ(n + ̂) + φ(n− ̂)− 4φ(n)] . (2.36)

As for the transversal part of the electric field E⊥, Eq. 2.33 implies

E⊥ = ∇× θ, (2.37)

where θ is a pseudovector (loop variable) defined on each plaquette of the lattice
with

(∇× θ)x (n) ≡ 1

a
[θ(n)− θ(n− ̂)]

(∇× θ)y (n) ≡ 1

a
[−θ(n) + θ(n− ı̂)] (2.38)
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These equations can easily be inverted:

θ(n) =

ny∑
j=−∞

E⊥x(nx, j). (2.39)

Summing up all our results, for each link of the lattice we have the electric field in
this form

Ex(n) =
1

a
[− (φ(n + ı̂)− φ(n)) + (θ(n)− θ(n− ̂))] ,

Ey(n) =
1

a
[− (φ(n + ̂)− φ(n))− (θ(n)− θ(n− ı̂))] (2.40)

From Eq. 2.39 and 2.22 we can easily deduce the value of the commutator

[θ(n), B(n′)] =
i

a2
δnxn′xδnyn′y (2.41)

Thus θ and B are conjugate quantum variables. We now can rewrite the E2 term
in the Hamiltonian as

H =
1

2

∑

links

E2 =
1

2

∑

links

[
(E‖)2 + 2E‖ · E⊥ + (E⊥)2

]
(2.42)

In the continuum we have the property,

∫
d3rE‖ · E⊥ =

∫
d3r (−∇φ) · E⊥

=

∫
d3rφ∇ · E⊥ = 0

(2.43)

and the same integration by parts is easily demonstrated on the lattice. Hence we
are left with the usual Coulomb term plus the dynamical term written in terms of
variables conjugate to the B’s, i.e.

H =
1

2

∑

links

[
(∇φ)2 + (∇× θ)2

]
+

1

2

∑

plaquettes

B2 (2.44)

Introducing charges

To complete our formulation of Quantum Electrodynamics on a lattice we now spec-
ify the way in which quantum charges are introduced. Under local transformations
the quantum fields transform as

ψ(r) → exp [ieΛ(r)] ψ(r),

ψ†(r) → exp [−ieΛ(r)] ψ†(r),

A(r) → A(r) +∇Λ(r), (2.45)
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hence it is easy to see that ψ†(r + ξ)ψ(r) is not gauge invariant as long as ξ 6= 0.
Therefore this operator must be modified if it is to be used in dynamical calculations
which are to be consistent. Schwinger [79] suggested the operator

ψ†(r + ξ) exp

[
ie

∫ r+ξ

r

A(r)dr

]
ψ(r), (2.46)

because the line integral restores the desired local gauge invariance. So, if matter
fields ψ were placed on a lattice, we receive

ψ†(r + ν) exp [iaeAν(r)] ψ(r) (2.47)

This gauge operator creates a pair of opposite charges at two separated points.
Since the operator does not commute with the operator θ, the eigenvalues of this
operator are changed when a state with pairs is created. This specific change can
be computed directly from Gauss’s law. The gauge operator creates a string of unit
field strength along the link from n to n + ı̂ and thereby changes ∇ ·E by +1 unit
at n and by -1 unit at n + ı̂. By 2.31 this means a change in the static Coulomb
field owing to the additional field of a dipole pair with +1 unit of charge at n and
-1 at n+ ı̂. According to 2.40 there must then be a compensating change in θ such
that

(∇× θ) (n) = Estring(n)− ECoulomb(n). (2.48)

In particular if we start with a state with no charges and θ(n) = 0, there will
necessarily be a non–vanishing θ everywhere in the sector of states with charges
present.

One-plaquette universe

We now turn to the problem of a very tiny universe made of a single square, as
illustrated in 2.9. Our reason for doing so is that this very simple problem allows

(01)
+ _

(00)

(10) (11)

Figure 2.9.: A single-plaquette universe showing the charge configuration and no-
tation discussed in the text.

us to present the physics of the more interesting problem of a lattice whose linear
dimension is arbitrarily large.



2.4 Monte Carlo method for constrained electrostatics 51

For a single square the Hamiltonian 2.44 becomes

H =
1

2

∑

links

(∇φ)2 +
1

2

(
4θ2

)
+

1

2
B2. (2.49)

This is a trivial theory to solve. The energy of the ground state for any charge
distribution is the energy of the Coulomb configuration corresponding to that dis-
tribution plus the ground-state energy of a harmonic oscillator of frequency ω = 2.

Let us compute the expectation values of the electric field strengths created on
the links of the plaquette by the presence of the dipole. It follows from Eq. 2.34
and 2.31 that the Coulomb field corresponding to this charge distribution is

ECoulomb,x
00 =

3

4

ECoulomb,y
00 = ECoulomb,x

01 = −ECoulomb,y
10 =

1

4
(2.50)

Since e−iAx
00 creates a unit string Ex

00 = 1, Eq. 2.40 tells us that 〈ψ|θ|ψ〉 = 1
4

at
t = 0. So this state describes a coherent oscillator with ω = 2. The time–dependent
expectation values of the electric field are

〈Ex
00(t)〉 =

3

4
+

1

4
cos ωt,

〈Ey
00(t)〉 = 〈Ex

01(t)〉 = −〈Ey
10(t)〉 =

1

4
− 1

4
cos ωt. (2.51)

This state describes a static Coulomb configuration plus an oscillating photon cloud.
Even though the cloud oscillates it is clear that the time-averaged value of the E
field in this state is exactly the Coulomb value. The oscillating nature of the cloud
is an artifact of our very small “universe”-the radiation cloud can not radiate away
because it hits the nearby boundaries of this small system and is reflected back. In
an infinite system the coherent cloud would simply radiate away, unshielding the
Coulomb field of the two charges.

2.4.3. Electrostatics as a variational problem with constraint

After obtaining the knowledge of the quantum behavior of our system, we will try
to map our considerations onto the classical case.

In a classical case for static charges we can neglect the magnetic component of
the Hamiltonian. Gauss’ law serves as the analog of gauge invariance in Quantum
electrodynamics, so we will keep it for future use. The energy of a system of static
charged particles in a uniform dielectric background is expressed as a function of
the electric field E

U = ε0

∫
E2

2
d3r. (2.52)

Combining this equation with Gauss’ law

∇ · E− ρ/ε0 = 0 (2.53)
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we can consider the problem of finding the energy of the system as a variational
problem with constraint. It was done by Maggs and Rossetto [49] using the following
approach.

One can introduce a Lagrange multiplier and construct the functional

A =

∫ [
ε0

E2

2
− λ(r)(ε0∇ · E− ρ)

]
d3r (2.54)

Variation of this functional with respect to E gives E + ∇λ = 0. Therefore the
Lagrange multiplier is identical to the electrostatic potential φ and the minimum
energy is UCoulomb = ε0

2

∫
(∇φ)2d3r. Again the cross term in Eq. 2.52 vanishes, as it

is seen by integration by parts and we can write

U =
ε0

2

∫ [
(∇φ)2 + (∇× θ)2

]
d3r (2.55)

We can understand a constrained electrostatics as the analogue of the Car–Parrinello
method. While Gauss’ law fixes only the longitudinal component of electric field
strength E‖, the “Born–Oppenheimer surface” can be understood as the surface on
which the transverse component of electric field vanishes, i.e. E⊥ = 0. Therefore
during the dynamics we allow the field to leave the “Born-Oppenheimer surface”.

The additivity of the electrostatic energy with respect to the longitudinal and
transversal part means the factorization of the statistical partition function [49]

Z({r}) = exp

[
−βε0

2

∫
(∇φ)2d3r

] ∫
DE⊥ exp

[
−βε0

2

∫
(E⊥)2d3r

]
(2.56)

where DE⊥ =
∏

r δ(∇E − ρ/ε0)DE performs the summation over all rotational
degrees of freedom of the field described by the potential θ. All the dependence on
the particle positions is in the prefactor characterized by the electrostatic potential
φ found by solving Poisson’s equation. This prefactor gives the Coulomb interaction
between the particles. The remaining integral is independent of the positions of the
charges and multiplies the standard partition function by a simple constant. This
extra factor can be simply ignored.

Right now we are able to describe a local Monte–Carlo algorithm for the calcu-
lation of the electrostatic energy. Again we consider a lattice, the charges are living
on the vertices of the lattice, i.e. the charge ρ is a function of the vertex position
n. The electric field is placed on the links of the lattice E(n + a). Charges are
allowed to hop from a site to a neighboring one, as described in Fig. 2.10 for the
two-dimensional case.

As for Quantum Electrodynamics on the lattice we define lattice versions of
divergence and curl:

(∇ · E) (n) =
1

a
(Ex(n) + Ey(n)− Ex(n− ı̂)− Ey(n− ̂)) . (2.57)

(∇× E) (n)|z =
1

a
(Ex(n) + Ey(n + ı̂)− Ex(n + ̂)− Ey(n)) (2.58)
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Figure 2.10.: The placement of the charges and electric field on the sites and links;
the hopping of the charge from one site to a neighboring one (a -
lattice spacing).

The discretized version of the energy is given by

U =
ε0a

3

2

∑

links

E2(n). (2.59)

where a is the lattice spacing.

Let us describe the process of moving of the charge from the site n in x-direction,
i.e. to the site n + ı̂. The Gauss law for these two sites before the hopping can be
found with the help of Eq. 2.57

ρ1 =
1

a3
q1 =

ε0

a
(Ex(n) + Ey(n)− Ex(n− ı̂)− Ey(n− ̂))

ρ2 =
1

a3
q2 =

ε0

a
(Ex(n + ı̂) + Ey(n + ı̂)− Ex(n)− Ey(n + ı̂− ̂))

We can update the electric fields on the links after hopping in such a way, that the
procedure will be as local as possible and after the hopping the Gauss’ law will still
be satisfied. If the amount of charge from the left site to the right site is δq, then
we update the field on the link (n, x) by the amount δq

a2ε0
. Let us check Gauss’ law
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after hopping.

q1 + δq =

a2ε0

(
Ex(n) + Ey(n)− Ex(n− ı̂)− Ey(n− ̂) +

δq

a2ε0

)

q2 − δq =

a2ε0

(
Ex(n + ı̂) + Ey(n + ı̂)− Ex(n)− Ey(n + ı̂− ̂)− δq

a2ε0

)

So Gauss’ law is unchanged after this updating. But if we calculate the curl of the
electric field, we will easily see, that it has nonzero value. It means, that after the
update of the field on the link we leave the Born-Oppenheimer surface.

On the other hand we see a strong analogy with the quantum approach. The
hopping of the charge can be considered as the creation of 2 charges with oppo-
site values. We have already seen that this operation leads to the generation of a
“string” field on the link which connects these two charges. Furthermore, this pair
changes the transverse field, i.e. field θ, which lives on the plaquette. Therefore
using this process of generation of “particle-antiparticle” pairs and restricting ac-
cordingly the possible moves, we can reduce the transverse part of the electrostatic
energy and finally obtain the solution of our electrostatic problem. Of course in
the classical case the analog of local gauge invariance is Gauss’ law and we have to
satisfy it at each hopping process.

The Monte Carlo algorithm can be implemented as following

1. At time t = 0 start with the system where the constraint is satisfied.

2. Displace the charge and update correspondingly the electric field on the con-
necting link. Accept or reject this move according to the Metropolis crite-
rion [80]. This is the trial move for the particles;

3. Update all the field values of a single plaquette while conserving the constraint
at each vertex. This is done by adding a random increment ∆ to the fields
Ex(n) and Ey(n + ı̂) and simultaneously decreasing by the same ∆ fields
Ex(n + ̂) and Ey(n). Gauss’ law is still satisfied. This is the trial move for
the fields.

4. The two moves are not sufficient to equilibrate a system with periodic bound-
ary conditions in all situations. This problem is linked with the solution
φ = −E · r or E = E of the Laplace equation on a torus, where E is an
arbitrary constant vector. The motion of the charges generates fluctuations
in E, while updates of the field conserve this component E. In order to be
absolutely sure that the algorithm is ergodic a third possible Monte-Carlo
move is introduced, which shifts E. In large systems fluctuations in this sin-
gle mode should give a small contribution to the thermodynamics if the initial
conditions are typical; in such cases this update can be eliminated.
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The total complexity is of the order of O(N), so the method is as local as possible.
Great.

2.5. What one should definitely not do

Inspired by the success of the Monte Carlo method, we want to construct a Molec-
ular Dynamics algorithm for charged systems. One has to construct some artificial
dynamics where Gauss’ law will play the role of a constraint.

2.5.1. The Lagrangian of the constrained system of charges
and fields

In order to describe the dynamics of the charged system one has to construct the
equations of motion. The first step in this direction is to postulate the Lagrangian.
The usual Lagrangian for the charged system is

L0 =
∑

i∈charges

mi

2
ṙ2

i −
∑
i<j

ULJ(rij)− a3
∑

j∈links

ε0

2
E2

j (2.60)

where a is the lattice spacing, mi the masses of the particles, ṙi their velocities, ULJ

the pair–wise interaction potential between the particles (LJ means Lennard–Jones
potential), E the electric field on the links. We can find the equations of motion
from the Lagrangian and finally solve them. But for each time step we would have
to find the electric field E by solving (on the lattice) the equations of electrostatics,
i. e.

∇ · E =
1

ε0

ρ, ∇× E = 0 (2.61)

In other words, we would have to implement some sort of Poisson equation solver,
which is complicated and costly, as outlined in Sec. 2.3.3. As discussed before,
Eq. 2.61 means that we have to keep the system on both the constraint surface
(Gauss’ law) and the Born–Oppenheimer surface (vanishing transversal compo-
nent).

In the Car–Parrinello method [81, 82] we abandon the requirement of staying
strictly on the Born–Oppenheimer surface, and rather replace this by some artificial
dynamics. In the Car–Parrinello method we include the electric fields as additional
degrees of freedom via an extended Lagrangian formalism which enables us to
systematically derive equations of motion for them. The time derivatives of these
extra variables, therefore, generate extra kinetic energy terms to which we will
refer as the “fictitious” kinetic energy. The full kinetic energy, which contains the
contribution from the translation of the charged particles as well as the translation
of the electric fields is:

T =
∑

i∈charges

mi

2
ṙ2

i + a3
∑

j∈links

µj

2
Ė2

j (2.62)
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where j labels the links, Ėj is the “velocity” of the electric field and µj is the
inertia associated with the electric field velocity. Further we will not use mixtures
of particles and define the mass of the particles as m. The same is true for the fields
(it is difficult to imagine for which purpose we need different masses for different
fields on the links); we hence use µ without indexing.

Our extended Lagrangian can be written as the difference of kinetic and poten-
tial terms:

L =
∑

i∈charges

mi

2
ṙ2

i + a3
∑

j∈links

µj

2
Ė2

j−

∑
i<j

ULJ(rij)− a3
∑

j∈links

ε0

2
E2

j −
∑

n∈sites

λ(n)

[
(∇ · E)(n)− ρ(n)

ε0

] (2.63)

where we have put the constraint on each vertex n with the help of Lagrange
multiplier λ(n).

2.5.2. Introducing units

We have to take care about units which we will use for our system. Usually it is
very convenient in the simulation to use Lennard–Jones units. Therefore we have
to adjust the electric units to Lennard–Jones units. The pair-wise Lennard–Jones
potential for particles i and j has the following form

ULJ(rij) = 4εLJ

{(
σ

rij

)12

−
(

σ

rij

)6

+
1

4

}
(2.64)

for rij < 21/6σ (ULJ is zero otherwise), where rij is the distance between two parti-
cles. Using εLJ as the unit of energy and σ as the unit of length, we can rewrite the
Lennard–Jones potential in dimensionless form (tilde means dimensionless quan-
tity)

ŨLJ(r̃ij) = 4

{(
1

r̃ij

)12

−
(

1

r̃ij

)6

+
1

4

}
(2.65)

Furthermore we can write down dimensionless time and velocity. Together with
energy and length we have this transformation mapping

U → Ũ =
U
εLJ

r → r̃ =
r

σ

t → t̃ =
t√
mσ2

εLJ

=

√
εLJ

mσ2
t

p → p̃ =
p

mσr
mσ2

εLJ

=
p√

mεLJ



2.5 What one should definitely not do 57

where p is the momentum of the particle.
It is a simple, but a little bit tedious algebra to show the transformation rules

for the electric field and the velocity of the electric field. The result is

E → Ẽ =
E√
εLJ

ε0σ3

Ė → ˙̃E =

√
mε0σ5

εLJ

Ė

After the transformation to Lennard-Jones units our Lagrangian (without con-
straint term) receives the form

L̃ =
∑

i∈charges

p̃2
i

2
+ ã3µ

2

ε2
LJ

mσ2ε0

∑

j∈links

˙̃E2
j −

∑
i<j

ŨLJ(r̃ij)− ã3

2

∑

j∈links

Ẽ2
j

where ã is the dimensionless lattice spacing. From the last equation we can deduce
that we are forced to introduce some reduced mass of the field, i.e.

µ̃ =
ε2
LJ

mσ2ε0

µ

Further we have to transform Gauss’ law to dimensionless form. Usually the
strength of the electrostatic interactions is expressed by the Bjerrum length [83]. It
is the distance at which two unit charges have an interaction energy equal to kBT
(T is the thermodynamic temperature)

lB =
e2

4πε0kBT
(2.66)

where e is the unit charge.
For a charge q on a lattice site, we can introduce a dimensionless charge

q̃ =
q√

4πε0kBT lB
(2.67)

(q̃ = 1 cooresponding to q = e and a dimensionless charge density

ρ̃ =
q̃

ã3
. (2.68)

Gauss’ law
1

a
E ∼ 1

ε0

ρ (2.69)

is then transformed to the dimensionless form

1

ã
Ẽ ∼ ρ̃

√
4πkBT̃ l̃B (2.70)

From now on, we will assume LJ units throughout, and drop the tilde.
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2.5.3. The simulation technique

From the extended Lagrangian we obtain the equations of motion for particles and
for fields:

m
d2ri

dt2
= −

∑

j 6=i

∂ULJ(|ri − rj|)
∂ri

− a3
∑

n∈sites

λ(n)
∂

∂ri

(
∇ · E− ρ

ε0

)
(n)

µ
d2Ek

dt2
= −ε0Ek −

∑
n∈sites

λ(n)
∂

∂Ek

(
∇ · E− ρ

ε0

)
(n) (2.71)

where index i goes over all particles and index k over all links. It means that
from the Lagrangian with holonomic constraints we came to the unconstrained
formulation of Molecular Dynamics.

Introducing the Hamiltonian

H =
∑

i

piṙi +
∑

i∈links

pE
i Ėi − L (2.72)

the equations of motion can be recast in a more suitable for the time-discretization
form

dri

dt
=

pi

m
(2.73)

dEk

dt
=

pE
k

µ
(2.74)

dpi

dt
= −

∑

j 6=i

∂ULJ(|ri − rj|)
∂ri

− a3
∑

n∈sites

λ(n)
∂

∂ri

(
∇ · E− ρ

ε0

)
(n)

(2.75)

dpE
k

dt
= −ε0Ek −

∑
n∈sites

λ(n)
∂

∂Ek

(
∇ · E− ρ

ε0

)
(n) (2.76)

The constrained Verlet algorithm

Eqs. 2.73 - 2.76 can be written in the compact form:

q̇ = M−1p (2.77)

ṗ = −∇qV (q)− g′(q)T λ (2.78)

g(q) = 0 (2.79)

Here q ∈ R3N+Nsites and p ∈ R3N+Nsites are the vectors of Cartesian positions and
momenta (N – the number of particles, Nsites – number of lattice sites), M is a
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3N + Nsites–dimensional positive diagonal mass matrix of the form

M = diag(m,m, m, . . . , m︸ ︷︷ ︸
3N elements

, µ, µ, µ, . . . , µ︸ ︷︷ ︸
3Nsites elements

), (2.80)

g : R3N+Nsites → RNsites is the mapping which gives Nsites holonomic constraints, g′

is the matrix of partial derivatives with respect to the positions q, and λ ∈ RNsites

is a vector of time-dependent Lagrange multipliers. These equations form a system
of differential-algebraic equations (DAEs) of index three: three differentiations of
Eq. 2.79 with respect to time are required to reduce the equations to a system of
ordinary differential equations [84]. The solution manifold underlying Eq. 2.77 -
Eq. 2.79 is

M =
{
(q, p)|g(q) = 0, g′(q)M−1p = 0

}
.

The so called hidden constraint g′(q)M−1p = 0 is obtained through time differenti-
ation of the position constraint.

A computational approach for unconstrained problems that remains the basis
for modern Molecular Dynamics simulations is a discretization that is often referred
to as the Verlet method [85] when applied in Molecular Dynamics. When rewritten
as a one-step discretization incorporating half–steps in the momenta,

p(tn +
h

2
) = p(tn)− h

2
∇qV (q(tn))

q(tn + h) = q(tn) + hM−1p(tn +
h

2
)

p(tn + h) = p(tn +
h

2
)− h

2
∇qV (q(tn + h))

it is called the velocity Verlet algorithm. Due to its evident simplicity and effi-
ciency, the Verlet method continues to be popular in Molecular Dynamics. It is
known that the method is symplectic, i.e. conserves the wedge product dq ∧ dp
of differentials [58]. The property of being symplectic reproduces a corresponding
property for the true flow map of a Hamiltonian system, and may explain the good
performance of the method for long time interval simulations [86]. In particular,
the property of being symplectic implies the Liouville property of conservation of
volume in phase space.

The Verlet method was adapted to allow for bond constraints by Ryckaert et
al [87], and the resulting discretization scheme is referred to as the Verlet method
with SHAKE–type constraints, or simply SHAKE. An alternative velocity–level
formulation for the constrained case, RATTLE, was proposed by Andersen [88].
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The SHAKE algorithm can be written in this form

p(tn +
h

2
) = p(tn)− h

2
∇qV (q(tn))− h

2
g′ (q(tn))T λ(tn) (2.81)

q(tn + h) = q(tn) + hM−1p(tn +
h

2
) (2.82)

0 = g (q(tn + h)) (2.83)

p(tn + h) = p(tn +
h

2
)

− h

2
∇qV (q(tn + h))− h

2
g′ (q(tn + h))T λ(tn + h)

(2.84)

and the RATTLE algorithm correspondingly

p(tn +
h

2
) = p(tn)− h

2
∇qV (q(tn))− h

2
g′ (q(tn))T λ(tn) (2.85)

q(tn + h) = q(tn) + hM−1p(tn +
h

2
) (2.86)

0 = g (q(tn + h)) (2.87)

p(tn + h) = p(tn +
h

2
)

− h

2
∇qV (q(tn + h))− h

2
g′ (q(tn + h))T µ(tn + h)

(2.88)

0 = g′ (q(tn + h)) M−1p(tn + h) (2.89)

At each step of discretization like RATTLE or SHAKE, a system of nonlinear
algebraic equations must be solved. Assuming that the nonlinear equations are
solved exactly at each step, SHAKE and RATTLE are globally second order ac-
curate. The two methods are equivalent at time steps in position and at half step
in momenta and, moreover, the RATTLE method is a symplectic discretization.
The SHAKE algorithm is essentially symplectic [89] in that the wedge product
is preserved, but the computed solution does not conserve the hidden constraint
g′(q)M−1p = 0. Symplectic discretization schemes for ordinary differential equa-
tions are discussed in [90], and symplectic methods for constrained problems are
discussed in [91]. The SHAKE and RATTLE discretizations have been generalized
to families of higher order schemes by Reich [92] through concatenation of steps
with appropriately chosen step sizes. Regardless of which discretization is used,
it is necessary to solve the nonlinear equations at each step accurately in order to
retain the desirable theoretical properties.

The SHAKE iteration for the nonlinear equations

As has already been mentioned both the SHAKE and the RATTLE algorithms
lead to identical results in terms of the q variable (see Ref. [89]). So, we decided to
use the SHAKE version, because the implementation of that method is a little bit
simpler than for RATTLE.
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It has been also shown [89] that equations 2.82 - 2.84 is a second–order, time–
reversible, symplectic discretization of the equation system 2.77 - 2.79. In addition,
the method conserves angular momentum [93] and can be viewed as the exact
solution of a perturbed constrained Hamiltonian system [92].

But SHAKE requires an efficient technique for solving the nonlinear equations
at each step. In fact, the original paper [87] describing the SHAKE discretization
presented an iterative solver for the nonlinear equations, and the term SHAKE
typically is used to refer to the overall procedure consisting of discretization together
with the iterative solver used in satisfying the constraints (coordinate resetting).

Substituting Eq. 2.81 in Eq. 2.82 leads to the equations

q(tn + h) = q(tn) + hM−1(p(tn)− h

2
∇qV (q(tn))− h

2
g′ (q(tn))T λ(tn))

0 = g(q(tn + h))

Denoting Q ≡ q(tn + h), G ≡ g′(q(tn)) and Λ ≡ h2

2
λ(tn) we can write the nonlinear

system as
g

(
Q−M−1GT Λ

)
= 0, (2.90)

where

Q ≡ q(tn) + hM−1(p(tn)− h

2
∇qV (q(tn)) (2.91)

represents the result of an unconstrained step of size h.
The system of nonlinear equations (Eq. 2.90) can be written in terms of indi-

vidual unknowns as

g

(
Q−M−1

Nsites∑
i=1

ΛiG
T
i

)
= 0, (2.92)

where Λi is the ith component of Λ, and GT
i = ∇qgi(q(tn)). In the SHAKE iteration,

we cycle through the constraints one by one, adjusting one multiplier at each step.
This results in the following scheme:

1. We initialize Q = Q as the unconstrained coordinate, which corresponds to
the initial guess Λ = 0.

2. We compute the correction of the ith component ∆Λi needed to satisfy the
ith linearized constraint equation:

∆Λi ← gi(Q)

g′i(Q)M−1GT
i

, (2.93)

3. Update Q by
Q ← Q−M−1GT

i ∆Λi. (2.94)

4. This cycle should be repeated until all constraint residuals gi(Q) are below a
prescribed value.
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Initialization procedure

We have already seen that in order to be able to propagate our constrained system,
we have to solve the system of nonlinear equations. Solving them iteratively means
that we have only local convergence. Therefore an initial solution must be pretty
close to the constraint surface. This leads to the problem of initialization of our
fields.

We search for some solution of Gauss’ equation in three-dimensional space by
means of a simple procedure. For a given charge distribution on the lattice which
satisfies the condition of overall neutrality, we find a particular solution of Gauss’
law as the result of the following recursive procedure (see Fig. 2.11):

1. In each plane perpendicular to the z-axis, find the average charge. Place this
charge on each vertex of that plane.

2. On the links which go to the plane z = 0 (in z-direction) set the field to zero.

3. On the links which go out of the plane z = 0, put a field which is larger or
smaller by the amount of plane charge in between.

4. Proceed throughout the box.

5. At the end, we must again wind up at zero field because of overall neutrality
and the periodic boundary conditions.

6. Calculate the average field in z direction and subtract that value from all the
fields we have found.

7. For each vertex, subtract the plane charge from the charge value.

8. Find the average charge in each line in x direction.

9. Find the fields in y direction, where the line charge gives the change in electric
field.

10. Do subtraction analogous to before.

11. Find the field in x direction, and subtract again the average field.

12. Put charges back on to the lattice.

Let us check Gauss’ law. According to the construction at each vertex n of the
lattice we have

E2
z − E1

z =
qplane

ε0a2

E2
y − E1

y =
qwire

ε0a2

E2
x − E1

x =
qvertex

ε0a2
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Figure 2.11.: The Recursive treatment of spacial dimensions for the calculation of
some Gauss’ law solution.(1st step) The charge in the plane z = zplane

is qplane = 1
N

∑
i q(ri)δ(zi − zplane), N is the number of charges

in plane z = zplane. Update the z-field according to the formula
E2

z = E1
z +

qplane

ε0a2 .(2nd step) Subtract the charge qplane from the each
charge on sites of zplane. The charge of the wire y = ywire, z = zplane

is qwire = 1
N

∑
i q(ri)δ(zi − zplane)δ(yi − ywire), N now meaning the

number of charges in the wire. Update y-field E2
y = E1

y + qwire

ε0a2 . (3rd
step) Subtract the charge qwire from the each charge on the sites of
(ywire, zplane). Update x field E2

x = E1
x + qvertex

ε0a2
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Since the total charge is given by

qplane + qwire + qvertex

these equations yield Gauss’ law directly.

Charge interpolation scheme

The simulation runs a coupled system of point charges qi living in the continuum,
and electric fields on the lattice. Therefore we have to interpolate charges to the
vertices of the lattice. As can be seen from Eq. 2.93 for the calculation of a new Λ
we need to calculate the derivative of the constraint. The derivative g′ is defined
also by the derivative of the charge with respect to the coordinate, i.e. ∂

∂ri
ρ(n). This

leads to the requirement that the interpolation scheme must be at least continuously
differentiable. The simple linear interpolation does not satisfy this condition - the
first derivative has jumps and we have taken a smoother one: suppose a charge q0

is somewhere in the cube at coordinates x, y, z with 0 ≤ x ≤ a, 0 ≤ y ≤ a, and
0 ≤ z ≤ a. Then the charge on the vertex (i, j, k), where each index can be zero or
one, is given by

q(i, j, k) = q0 cos2
{π

2

(x

2
− i

)}
cos2

{π

2

(y

2
− j

)}
cos2

{π

2

(z

2
− k

)}

This interpolation function is infinitely differentiable, and satisfies the condition of∑
i,j,k q(i, j, k) = q0.

Why it was a bad idea to implement such an algorithm

As shown in [94], the SHAKE algorithm can be viewed as a 1-step nonlinear Gauss-
Seidel-Newton iteration in the framework developed by Ortega and Rheiboldt [95].
Local convergence to a solution Q∗ is guaranteed precisely when standard Gauss-
Seidel iteration converges for the linear system of equations

Anx = b,

where An = g′(q(tn+h))M−1g′(q(tn)). If the unconstrained approximation q(tn+h)
is sufficiently close to q(tn + h) (i. e. for sufficiently small time step h), SHAKE
iteration converges with an asymptotic rate of convergence of approximately

ρ
(
(D + L)−1U

)
,

where An = L+D+U is the splitting of An into strictly lower triangular, diagonal,
and strictly upper triangular parts and ρ(·) is the spectral radius of a matrix.

The matrix Bn = g′(q(tn))M−1g′(q(tn)) = An +O(h) has a very special struc-
ture and in some cases can be easily analyzed. In the case of molecules one can
consider only the bond length constraints, and it can be shown that the matrix is
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nearly constant along solutions, so also the matrix An is nearly constant along so-
lutions. It can also be seen that the SHAKE iteration will converge very slowly for
chainlike structures unless successive bonds are nearly perpendicular, and degraded
convergence would be anticipated for molecules with high connectivity.

For our case of constrained electrostatics it is much harder to analyze the struc-
ture of the matrix Bn, so we decided to perform the simulation. The preliminary
results have shown that the convergence rate is indeed very poor and the method
in the proposed form can not compete with existing methods at all. Apparently,
the necessary number of iterations increases strongly with the system size.

A natural improvement to Gauss–Seidel iteration is based on the use of overre-
laxation. In this method, we update the iterate at each step by forming a weighted
combination of the previous iterate and the Gauss–Seidel step: in essence, we ex-
aggerate each Gauss–Seidel correction by a relaxation parameter ω, changing the
update of Λ from

Λi ← Λi + ∆Λi

to
Λi ← Λi + ω∆Λi

The parameter ω can be a fixed value obtained through some preliminary experi-
ment, or it can be obtained automatically during the integration by a simple adap-
tive algorithm [94].

This adjustment is essentially free of cost. And it can mean substantial speedups
in coordinate resetting. Since the method is just alternative nonlinear equation
solver to the SHAKE iteration, the converged numerical solution will be identical
(up to roundoff error) to that computed by SHAKE iteration.

For our simulation we have tried this “overrelaxation” method, but still there
was not a big improvement in the convergence rate. Pech gehabt.

A few words of encouragement

Our artificial Lagrangian and the method of Ryckaert et al [87] can not be con-
sidered as an alternative to the existing methods of simulation of charged systems.
But there are some good ideas, which we will use in our further attempts. Among
them is definitely the initialization scheme for the electric field which will be used
unchanged in the new method.
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3. Maxwell equations Molecular
Dynamics

3.1. Introduction

Despite the numerical inefficency of the method described at the end of the previous
chapter, its development brought to light some useful ideas which will be employed
in the following chapter:

1. The method will be devoleped in the framework of the Car–Parrinello method.

2. The discretization method of electromagnetic fields will not be changed as
well.

3. The initial solution of the Gauss equation will be implemented along the lines
of the previous chapter.

Nevertheless we have to modify the interpolation scheme for the charges and to
choose a better constraint function, which will allow constructing a more robust
method.

It has been already mentioned in the previous chapter, that the idea of “Maxwell
equations Molecular Dynamics” (MEMD) was suggested recently by A. C. Maggs
[49, 50]. The development outlined below was done in rather close contact with
him. He has made a couple of very important observations, which have deepened
our insight into the approach significantly, and contributed to the answer of a
number of very important questions:

1. Is Maxwell dynamics the only possible way to propagate the fields? The
answer is no; it is also possible to propagate them in a diffusive fashion. This
has been implemented by means of a Monte Carlo algorithm [49, 50] for a
lattice gas of charges.

2. If we restrict attention on Hamiltonian or quasi–Hamiltonian dynamics of the
system, and want wave–like propagation of the signal, is then Maxwell–style
dynamics the only choice? The answer is a cautious yes; one can show that
the Maxwell equations arise in a very natural way if one derives the method
along the lines of CP.
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3. Is there a contradiction between the Lorentz covariance of the ME, and the
strictly nonrelativistic setup of MD? The answer is no; the Lorentz covari-
ance actually has to do with the fact that the value of c is the same in all
reference frames. This, however, is not the case here: In our context, c means
nothing but the propagation velocity of electromagnetic waves relative to the
discretization lattice which provides an absolute reference frame (an “ether”).

4. Is it necessary to use a large value of c to avoid violation of a quasi–static
behavior? The answer is no as long as just static properties of the system in
thermal equilibrium are considered — the values of these properties turn out
to be completely independent of c.

In what follows, we will essentially re–derive the MEMD algorithm outlined
in Ref. [51], and discuss some details of our implementation (Ref. [52]). We will
answer to these questions:

1. Is it necessary to apply a thermostat to the system? Ref. [51] claims yes, in
order to avoid unwanted conserved quantities. Our belief is no, based upon
the fact that the particle dynamics provides lots of nonlinearities into the
equations of motion. For more details, see below.

2. How is MEMD implemented? We try to provide somewhat more detail.

3. How does MEMD perform, in particular in comparison with existing meth-
ods? In this respect, there is also so far only little information available.

We will present some benchmark results, comparing MEMD with P3M for the
same system. It turns out that our implementation of MEMD is quite competitive
with P3M for large charge densities, while for very dilute systems P3M is better.
However, we believe that our MEMD implementation can be further improved by
combining it with a direct evaluation of Yukawa–like forces on short length scales,
roughly along the lines as suggested in Ref. [51].

3.2. Lagrangian treatment of dynamics

We are facing the same problem as before: calculate the electric field for a moving
charge distribution. As the initial condition of Cauchy problem (time t = 0) we
choose the exact solution of Gauss’ law, i.e. E(t = 0) = E0, such that

ε0∇ · E0 = ρ0 ≡ ρ(t = 0)

where ρ0 is the initial charge distribution. For the solution at a later time t we use
incremental updates

E(t) = E0 + E′, E′(t = 0) ≡ 0 (3.1)
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and E again satisfies Gauss’ law

ε0∇ · E(t) = ρ(t)

In order to find the increment of the electric field E′ we multiply the left- and right-
hand side of the Eq. 3.1 by ε0∇ · :

∇ · E′ =
1

ε0

[ρ(t)− ρ0] (3.2)

Trying to solve the last equation directly will lead us to the same problems as
before. Therefore we want to investigate the case of a kinematic constraint, i.e. the
constraint which is the time derivative of Eq. 3.2:

∇ · Ė′ =
1

ε0

ρ̇ = − 1

ε0

∇ · j (3.3)

where the charge conservation law ρ̇ +∇ · j = 0 was used. In the construction of
the method we will use the constraint

∇ ·
[
ε0Ė

′ + j
]

= 0 (3.4)

The simplistic solution of 3.4

E′ = − 1

ε0

t∫

0

dτ j(τ) (3.5)

does not give the right answer. Consider the case of a ring current in a metal where
j 6= 0, ρ = 0 and ρ̇ = 0. From Gauss’ law we can immediately conclude that for this
problem the electric field is zero, E ≡ 0. On the other hand the solution of Eq. 3.5
would give a field, which increases linearly in time. In our problem the energy
is bounded, therefore it is an unphysical behavior. Hence we have to introduce
another field E′′ and the general solution of Eq. 3.4 has the form

E′ = − 1

ε0

t∫

0

dτ j(τ) + E′′ (3.6)

Taking the time derivative of last equation and multiplying by ∇, we find:

ε0 · Ė′ + j = ε0 · Ė′′ ⇒ ∇ · Ė′′ = 0 (3.7)

The time evolution of the vector field E′′ is given by the following equation

∂

∂t
(∇ · E′′) = 0 (3.8)
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If we specify E′′ = 0 as the initial condition, we obtain

∇ · E′′ = 0 (3.9)

for all times t > 0. Hence from the Helmholtz theorem [96] we conclude that the
vector field E′′ is of purely solenoidal nature:

E′′ = ∇×Θ

As E′′ violates the condition ∇×E = 0, the general solution of Eq. 3.4 contains a
transversal component.

Therefore the most general form of constraint Eq. 3.4 is

ε0Ė + j− ε0∇× Θ̇ = 0 (3.10)

A simple illustrative example, given in [50], helps to understand the nature of
the kinematic constraint. Consider two gears described by the rotation angles φ
and ψ. Setting the gears in a contact and imposing on them the potential energy
g(φ) and h(ψ) we can write the Lagrangian

L =
φ̇2

2
+

ψ̇2

2
− g(φ)− h(ψ) + A(φ̇ + ψ̇) (3.11)

where the φ̇ + ψ̇ = 0 is the rolling constraint.
From this Lagrangian one can simply obtain the equations of motion

pφ = φ̇ + A (3.12)

∂2φ

∂t2
= −dg

dφ
− dA

dt
(3.13)

Later we will see, that if we identify the Lagrange multiplier A with the vector
potential, these equations are very similar to the equations of electromagnetism.
Such a description of electromagnetic fields in terms of rotors (or wheels) was known
to FitzGerald in the nineteenth century as a mechanical analogy of the ether [97].
In two dimensions it can be represented as an array of wheels, connected by elastic
bands, Fig. 3.1. The spinning of the wheels represented a magnetic field. The
elastic bands served to convey motion from one wheel to the next.

In the following we construct an electromechanical model of electromagnetism
using the arguments described above. We study a Car–Parrinello–style (CP–style)
dynamics, where the equation of motion for Θ is of second order in time. We thus
need to supply an initial condition for Θ̇, too; we choose Θ̇(t = 0) = 0. The most
straightforward way to generate a coupled dynamics is to add a kinetic energy term
(1/2)(ε0/c

2)
∫

d3r Θ̇2 to the system Lagrangian; here the prefactor is a mass–like
parameter, to be freely chosen in analogy to the electron mass in CP. c will later
on turn out to be the speed of light.
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Figure 3.1.: FitzGerald’s wheel–and–band model of the ether.

The starting point is the Lagrangian treatment of mechanics with a phenomeno-
logical Lagrangian

L =
∑

i

mi

2
v2

i − U

+
1

c2

ε0

2

∫
d3r Θ̇2 − ε0

2

∫
d3rE2

+

∫
d3rA

(
ε0Ė− ε0∇× Θ̇ + j

)
,

(3.14)

where the Lagrange multiplier A imposes the kinematic constraint; the particle
masses are mi, their velocities are vi and the interparticle potential (of non–
electromagnetic type) is U . Inserting the charge current of point particles

j =
∑

qiδ(r− ri)vi (3.15)

into Eq. 3.14 we obtain

L =
∑

i

mi

2
v2

i − U +
∑

i

qiA(ri) · ṙi

+
1

c2

ε0

2

∫
d3r Θ̇2 − ε0

2

∫
d3rE2 +

∫
d3rA

(
ε0Ė− ε0∇× Θ̇

) (3.16)

We find the equations of motion by the usual variational calculus. Variation with
respect to ṙi gives us

∂L

∂ṙα
i

= miṙ
α
i + qiA

α(ri) (3.17)

Further we calculate the time derivative of Eq. 3.17

d

dt

∂L

∂ṙα
i

= mir̈
α
i + qiȦ

α(ri) + qi
∂Aα

∂rβ
i

ṙβ
i (3.18)
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Variation with respect to ri yields

∂L

∂rα
i

= − ∂U

∂rα
i

+ qiṙ
β
i

∂Aβ

∂rα
i

(3.19)

Combining Eqs. 3.18 and 3.19 results in the equation of motion for the particle

mir̈
α
i = − ∂U

∂rα
i

− qiȦ
α + qiṙ

β
i

(
∂Aβ

∂rα
i

− ∂Aα

∂rβ
i

)
(3.20)

If we introduce the vector
B = ∇×A (3.21)

then the last equation written in vector notation transforms to

mir̈i = −∂U

∂ri

− qiȦ + qi vi ×B (3.22)

where we have used the usual rule of vector calculus

(v ×B)α = εαβγεγµνvβ∂µA
ν = vβ

(
∂αAβ − ∂βAα

)

In order to find the equations of motion for the electromagnetic fields we variate
the Lagrangian density L, which is by definition satisfies L =

∫
d3rL.

Variation in Θ̇ yields

∂L
∂Θ̇

=
ε0

c2
Θ̇− ε0∇×A

=
ε0

c2
Θ̇− ε0B

(3.23)

(note
∫

d3rA · (∇×Θ) =
∫

d3 rΘ · (∇×A)) and the equation of motion is

0 =
d

dt

∂L
∂Θ̇

=
ε0

c2
Θ̈− ε0Ḃ (3.24)

or
1

c2
Θ̈ = Ḃ (3.25)

The next variation in E gives us the relation between vectors the Ȧ and E:

Ȧ = −E (3.26)

Therefore Eq. 3.22 can be rewritten in a more appropriate form

mir̈i = −∂U

∂ri

+ qi (E + v ×B) (3.27)

which we recognize as the sum of the nonelectromagnetic force and the conventional
Lorentz force.
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Using the natural initial condition Θ̇(t = 0) = 0 we can write the following
identity

1

c2
Θ̇ = B (3.28)

With that, using the constraint equation, we obtain another Maxwell equation,
namely Ampere’s law

∂E

∂t
= c2∇×B− 1

ε0

j (3.29)

From relation 3.26 we derive Faraday’ law

∂B

∂t
= ∇× Ȧ = −∇× E (3.30)

Note that Eq. 3.26 and 3.21 can be considered as a kind of special gauge and the
vector A can be considered as a vector potential. This gauge has the name of
temporal or Weyl gauge, in which the scalar electrostatic potential φ ≡ 0 (see [98]).

To summarize: The requirement of local updates, combined with treating the
deviations from the BOS (Born–Oppenheimer surface) in the CP manner, has led
us in a natural way to standard electromagnetism, where the temporal gauge turns
out to be the most appropriate one for our purposes. It should be stressed that
this is a consistent non–relativistic setting, where the equations of motion are valid
in one particular chosen frame of reference.

From Eq. 3.14 the equation of motion for the field degree of freedom A can be
derived:

∂2

∂t2
A = −c2∇×∇×A +

1

ε0

j (3.31)

This is the usual wave equation. Equation 3.22 with 3.31 supply the full description
of the coupled system of charged particles plus electromagnetic field.

Note that the same equations of motion can be derived from a slightly different
Lagrangian (see [52]), written in terms of A as the (only) field degree of freedom,
which is common practice in electromagnetism [99]. To derive the same equations
of motion, namely Eq. 3.20 and 3.31, it is sufficient to consider the Lagrangian

L =
∑

i

mi

2
v2

i − U +
ε0

2

∫
d3r Ȧ2

− ε0 c2

2

∫
d3r (∇×A)2 +

∫
d3rA · j

(3.32)

This Lagrangian has a very nice property: Because it is unconstrained, we can
easily construct the whole Hamiltonian formalism.

3.3. Hamiltonian description of the coupled system

As was already mentioned in the previous section, the Hamilton description for
our system can be derived from the Lagrangian 3.32 by means of usual Legendre
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transformation. In order to construct the Hamiltonian for our system, we have to
introduce canonically conjugate momenta. We introduce new variables

Pi = miṙi + qiA(ri) (3.33)

pA = ε0Ȧ (3.34)

where Pi are the canonically conjugate particle momenta, and pA play the role of
field momenta. The Hamiltonian has the following form

H =
∑

i

1

2mi

[Pi − qiA(ri)]
2 + U

+
1

2ε0

∫
d3r p2

A +
ε0c

2

2

∫
d3r (∇×A)2

(3.35)

and the equations of motion (derived from the latter Hamiltonian) are

d

dt
ri =

1

mi

(Pi − qiA(ri)) (3.36)

d

dt
Pα

i = − ∂U

∂rα
i

+
qi

mi

[
P β

i − qiA
β(ri)

] ∂Aβ

∂rα
i

(3.37)

d

dt
A =

1

ε0

pA (3.38)

d

dt
pA =

∑
i

qi

mi

(Pi − qiA(ri)) δ(r− ri)− ε0c
2∇×∇×A (3.39)

3.4. A Liouville like theorem for non-Hamiltonian
dynamics

The Hamiltonian dynamics has a couple of very desirable properties: Firstly, it
conserves the phase–space volume and the energy, the latter being given by

H =
∑

i

mi

2
ṙ2

i + U (3.40)

+
ε0

2

∫
d3rE2 +

ε0c
2

2

∫
d3rB2.

Furthermore, one can show that the total momentum, given by

P =
∑

i

miṙi +
1

c2

∫
d3rE×H, (3.41)

where H = ε0c
2B, is conserved as well. For the proof one can employ the dynamic

equations for the particles and fields, and make use of the identity
∫

d3rX× (∇×X) =

∫
d3rX (∇ ·X) , (3.42)
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which holds for any vector field X as long as partial integration with vanishing
boundary terms can be applied.

Now we want to modify our equations of motion of particles 3.36 and 3.37. If we
omit the magnetic part of the Lorentz force, we destroy the Hamiltonian structure
of the system. But on the other hand the particle part of the equations of motion
will be easier, which is important for the numerical implementation. The energy,
as given by Eq. 3.40, is still conserved.

The new equations of motion have the form

ṙi =
1

mi

pi (3.43)

ṗi = −∂U

∂ri

+ qiE(ri) (3.44)

Ȧ = −E (3.45)

Ė = c2∇× (∇×A)− 1

ε0

j, (3.46)

where pi are kinematic momenta of the particles.
We should investigate the phase flow for the modified system. Suppose we are

given a system of n ordinary differential equations

ẋ = f(x), x = (x1, . . . , xn), (3.47)

whose solution may be extended to the whole time axis. Let {gt} be the corre-
sponding group (or the map) of time transformations:

gt(x) = x + f(x)t +O (
t2

)
, (t → 0) (3.48)

It can be shown that if∇·f = ∂fi/∂xi ≡ 0 then the one–parameter map gt conserves
the volume in x-space [58].

If we consider Hamilton equations then the right-hand sides of them give a
vector field: at each point (p,q) of phase space there is a 2n-dimensional vector
(−∂H/∂q, ∂H/∂p). Therefore for Hamilton system we have

∇ · f =
∂

∂p

(
−∂H

∂q

)
+

∂

∂q

(
∂H
∂p

)
≡ 0 (3.49)

This is the Liouville theorem: the phase flow conserves the volume in phase space.
Applying the general approach to our system, the divergence of the flow is given

by this expression

∇ · fcoul = − ∂

∂A
E +

∂

∂E

{
c2∇× (∇×A)− 1

ε0

j

}

+
∂

∂ri

1

mi

pi +
∂

∂pi

{
qiE(ri)− ∂U

∂ri

} (3.50)
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From the last equation it is immediately seen that

∇ · fcoul ≡ 0. (3.51)

However, momentum conservation does not hold for our modified dynamics. The
momentum carried away by the electromagnetic waves is not completely balanced
by the particle momenta. Rather, we have the relation

∑
i

pi = const. + O
(
c−2

)
. (3.52)

This is not a catastrophe, since momentum conservation is usually only important
in studies of dynamics. However, for such calculations one has to use a fairly large
value of c anyways, since otherwise the electromagnetic field is not in its quasi–
static limit, and the particle trajectories get too much distorted. Furthermore, one
must expect that momentum conservation is also violated as a result of the lattice
discretization, which breaks the translational invariance of the system.

We now assume that the dynamics is sufficiently nonlinear to make the system
ergodic. This seems reasonable for the case of a many–charge system, in particular if
the potential U has a strongly repulsive core to facilitate “collisions”. We therefore
assume that the system has no further important conservation law except for the
fact that it stays on the constraint surface, and that the energy H is conserved.

Hence our map conserves the phase space volume and can be considered as a
quasi–Liouville operator, which conserves the measure

dµ =
∏
r

dEr dAr

∏
i

dri dpi (3.53)

3.5. Thermalized electrodynamics

Making use of the fact that thermodynamic ensembles are equivalent in the large–
system limit, we can emply the canonical ensemble. Coupling the particles with a
Gaussian noise, we write equations of motion for the thermalized electrodynamics

ṙi =
1

mi

pi (3.54)

ṗi = −∂U

∂ri

+ qiE(ri)− ζ

mi

pi + fi (3.55)

Ȧ = −E (3.56)

Ė = c2∇× (∇×A)− 1

ε0

j, (3.57)

where ζ is the particle friction constant, and fi is a random force satisfying the
standard fluctuation–dissipation theorem:

〈
fα

i (t)fβ
j (t′)

〉
= 2ζkBTδijδαβδ(t− t′), (3.58)
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where α and β denote Cartesian indices.
With β = 1/(kBT ), where kB is Boltzmann’s constant and T the absolute

temperature, we may therefore write the partition function as

Z =

∫
dri

∫
dpi

∫
DA

∫
DE exp (−βH)

×δ

(
∇ · E− 1

ε0

ρ

)
, (3.59)

where H is given by Eq. 3.40. It is now straightforward to integrate out the
momenta, the A field, and the transversal component of the E field. The integration
over the longitudinal component of E cancels with the delta function, such that the
only remaining degrees of freedom are the particle coordinates, for whose potential
of mean force we hence find

Hconf = U +
ε0

2

∫
d3rE2; (3.60)

here E is nothing but the solution of the standard electrostatic problem

∇ · E =
1

ε0

ρ (3.61)

∇× E = 0, (3.62)

i. e. the Coulomb field. Inserting this field into Eq. 3.60, we find the standard
Coulomb Hamiltonian,

Hconf = U +
1

2

1

4πε0

∫
d3~r

∫
d3~r′

ρ(~r)ρ(~r′)
|~r − ~r′| . (3.63)

This demonstrates that the particles behave statistically in the same way as if they
would directly interact Coulombically.

3.6. Discretized electromagnetic Lagrangian

For implementation on the computer, the equations need to be discretized with
respect to both space and time. For the moment, we will only consider the spatial
discretization, and consider time still as a continuous variable. The issue of time
discretization will be discussed later.

The Lagrangian Eq. 3.32 is simple enough in order to start the discretization.
It involves only the vector potential, velocities and coordinates of charged particles.
We consider a domain of physical space as being an affine space and divide it into
subdomains of contiguous cells of cubic shape. The charges live on the vertices of
our lattice which has the spacing a. The electric fields E(l) and vector potentials
A(l) live on the edges or links and are aligned with them. We need also the op-
erator ∇ × . It gives the vector, which lives on the faces of the cube or on the
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Figure 3.2.: Spatial elements of a cell complex. The electric field is aligned to the
edges of the cell, B is the plaquette variable, B = ∇ ×A, where the
operation of ∇× understood in the discretized sense.

plaquettes, Fig. 3.2. Within the framework of the discretized electromagnetic fields
the counterpart of the Lagrangian 3.32 has the form

L =
∑

i

mi

2
ṙ2

i +
ε0

2
a3

∑

l

Ȧ(l)2

− ε0

2
c2a3

∑
p

[(∇×A) (p)]2 + a3
∑

l

A(l)j(l)
(3.64)

where we have discarded the trivial interparticle potential.

Let us calculate the analogies of derivatives on the lattice sites and links. We
have to replace derivatives with finite differences.

∂L

∂A(l)
= a3j(l)− 1

2
ε0c

2a3 ∂

∂A(l)

∑
p

[(∇×A) (p)]2 (3.65)

Let p1, p2, p3 and p4 be the four plaquettes which encircle the link l as shown on
Fig. 3.3. Using the usual rules of vector analysis, the curl-operator can be written
as

∇×A =




∂x

∂y

∂z


×




Ax

Ay

Az


 =




∂yAz − ∂zAy

∂zAx − ∂xAz

∂xAy − ∂yAx


 (3.66)

Note that the ∇×A which lies on the plaquette p1 is a vector with only one nonzero
component in y-direction. Therefore the discretized analog of the curl operator will
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Figure 3.3.: Calculation of the discretized curl operator.

be

(∇×A) (p1) =
1

a
[A9 − A11 − A1 + A0] (3.67)

(∇×A) (p2) =
1

a
[A10 − A12 − A0 + A2] (3.68)

(∇×A) (p3) =
1

a
[A3 − A0 − A5 + A7] (3.69)

(∇×A) (p4) =
1

a
[A0 − A4 − A6 + A8] (3.70)

From the last equations it is simple algebra to obtain finite differences of ∇×A on
the lattice:

∂

∂A0

∑
p

[(∇×A) (p)]2 =

=
2

a2
[A9 − A11 − A1 + A0 − A10 + A12 + A0 − A2

−A3 + A0 + A5 − A7 + A0 − A4 − A6 + A8] =

=
2

a2
[4A0 − A1 − A2 − A3 − A4 + A5

−A6 − A7 + A8 + A9 − A10 − A11 + A12]

(3.71)
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On the other hand the z-component of ∇×∇× A on the link 0 is

[∇× (∇×A)] (0) =
1

a
[(∇×A) (p1)− (∇×A) (p2)

− (∇×A) (p3) + (∇×A) (p4)]

=
1

a2
[4A0 − A1 − A2 − A3 − A4 + A5

−A6 − A7 + A8 + A9 − A10 − A11 + A12]

(3.72)

Comparing the Eq. 3.71 and 3.72 we come to the conclusion that they are equal.
Therefore the following is valid

∂

∂A(l)

∑
p

[(∇×A) (p)]2 ≡ 2 [∇× (∇×A)] (l) (3.73)

∂L

∂A(l)
= a3j(l)− ε0c

2a3 [∇× (∇×A)] (l) (3.74)

∂L

∂Ȧ(l)
= ε0a

3Ȧ(l) (3.75)

Combining the last two equations we obtain the wave equation for the vector field
on the link

∂2

∂t2
A(l) = −c2 [∇× (∇×A)] (l) +

1

ε0

j(l) (3.76)

If we set E(l) = −A(l) we obtain the equations of motion in the “grid temporal
gauge”

Ȧ(l) = −E(l) (3.77)

Ė(l) = c2 [∇× (∇×A)] (l)− 1

ε0

j(l) (3.78)

3.6.1. Coupling the matter with the discretized
electromagnetism

We have not yet specified the interpolation procedure for the charge currents.
Therefore let us consider the coupling term in the Lagrangian. At first we will
pursue the “vakonomic” approach [100], which is particularly suitable for the case
of continous time variable and later we will switch our attention to the case of
discrete time step.

Current assignment for continuous time

The particle motion generates currents on the surrounding links. We use a linear
interpolation scheme for j, where the current is distributed onto the twelve links
which surround the cube in which the particle is. The assignment scheme uses
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the fact that the charge interpolation scheme, or the charge assignment scheme, in
the case of linear interpolation factorizes in the product of three one-dimensional
functions. If we label the nodes of the unit cube by triples of numbers (i, j, k), then
the charge assignment scheme may be written as

Uijk(ξ, η, ζ) = wi(ξ)wj(η)wk(ζ) (3.79)

and the charge assigned to node (i, j, k), where i, j, k = 0 or 1, is

Qijk = qwi(ξ)wj(η)wk(ζ) (3.80)

where w0(x) = 1−x/a, w1(x) = x/a and (ξ, η, ζ) is the displacement of the particle
from the element corner (0, 0, 0) (see Table 3.6.1). Inspection of Eq. 3.80 reveals

Table 3.1.: Fraction of the particle in each of the eight corners of cell

Weighting fraction Cell corner
(1− ξ) (1− η) (1− ζ) i, j, k
ξ (1− η) (1− ζ) i + 1, j, k
(1− ξ) η (1− ζ) i, j + 1, k
(1− ξ) (1− η) ζ i, j, k + 1
(1− ξ) η ζ i, j + 1, k + 1
ξ (1− η) ζ i + 1, j, k + 1
ξ η (1− ζ) i + 1, j + 1, k
ξ η ζ i + 1, j + 1, k + 1

the assignment scheme to be the same as area weighting [43, 101].
Now we formally define the currents on the links of a cell as following ansatz

jx(j, k) ≡ j(i, j, k → i + 1, j, k) =
q

a3
vxwj(η)wk(ζ) (3.81a)

jy(i, k) ≡ j(i, j, k → i, j + 1, k) =
q

a3
vywi(ξ)wk(ζ) (3.81b)

jz(i, j) ≡ j(i, j, k → i, j, k + 1) =
q

a3
vzwi(ξ)wj(η) (3.81c)

where v = (vx, vy, vz) is the velocity of the point charge q.
This assignment scheme can be viewed as a two–dimensional interpolation of

the current (see Fig. 3.4).
Let us check the charge conservation for this scheme. Using Eq. 3.80 for the

time derivative we can write

∂

∂t
ρ(i, j, k) =

q

a3

{
−∂ξ

∂t
wj(η)wk(ζ)− ∂η

∂t
wi(ξ)wk(ζ)− ∂ζ

∂t
wi(ξ)wj(η)

}
=

− q

a4
{vxwj(η)wk(ζ) + vywi(ξ)wk(ζ) + vzwi(ξ)wj(η)}

(3.82)
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Figure 3.4.: The current assignment scheme as the interpolation of the current in
two dimensions. The cut of the cell is in the yz-plane.

On the other hand the divergence of the current in corner (i, j, k) has the following
form

[∇ · j] (i, j, k) =
1

a
{j(i, j, k → i + 1, j, k) +

+ j(i, j, k → i, j + 1, k) + j(i, j, k → i, j, k + 1) } =

=
q

a4
{vxwj(η)wk(ζ) + vywi(ξ)wk(ζ) + vzwi(ξ)wj(η)}

(3.83)

Therefore we have an exact charge conservation scheme at each vertex of the lattice.

Derivation from vakonomic approach

As we have already mentioned, there exist two approaches of obtaining of the
equations of motions. The first one is the vakonomic method [100], which considers
the Lagrange multiplier as an additional degree of freedom. We have already used
this method in order to derive the equations of motion in the continuum case. And
now we focus on the discrete equations. On the other hand the principle of virtual
work, or D’Alembert principle of imposing nonholonomic constraints, can also give
the equations of motion. In general, for a nonholonomic constraint, they are not
equivalent [102].

In order to derive the “discretized Lorentz force” we consider the case of one
charge and reduced Lagrangian

λ =
1

q
a3

∑

l

A(l)j(l) (3.84)

This is the normalized interaction term. Written explicitly in terms of links it is
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transformed to

λ = A(0, 0, 0; 1, 0, 0)vxw(y, 0)w(z, 0)

+ A(0, 1, 0; 1, 1, 0)vxw(y, 1)w(z, 0)

+ A(0, 0, 1; 1, 0, 1)vxw(y, 0)w(z, 1)

+ A(0, 1, 1; 1, 1, 1)vxw(y, 1)w(z, 1)

+ A(0, 0, 0; 0, 1, 0)vyw(x, 0)w(z, 0)

+ A(1, 0, 0; 1, 1, 0)vyw(x, 1)w(z, 0)

+ A(0, 0, 1; 0, 1, 1)vyw(x, 0)w(z, 1)

+ A(1, 0, 1; 1, 1, 1)vyw(x, 1)w(z, 1)

+ A(0, 0, 0; 0, 0, 1)vzw(x, 0)w(y, 0)

+ A(1, 0, 0; 1, 0, 1)vzw(x, 1)w(y, 0)

+ A(0, 1, 0; 0, 1, 1)vzw(x, 0)w(y, 1)

+ A(1, 1, 0; 1, 1, 1)vzw(x, 1)w(y, 1)

(3.85)

where we have slightly changed the indexing of the interpolation function w. Let
us consider the x-direction. The last two can be made by analogy. So

∂λ

∂x
=

1

a
{−A(0, 0, 0; 0, 1, 0)vyw(z, 0)

+A(1, 0, 0; 1, 1, 0)vyw(z, 0)

−A(0, 0, 1; 0, 1, 1)vyw(z, 1)

+A(1, 0, 1; 1, 1, 1)vyw(z, 1)

−A(0, 0, 0; 0, 0, 1)vzw(y, 0)

+A(1, 0, 0; 1, 0, 1)vzw(y, 0)

−A(0, 1, 0; 0, 1, 1)vzw(y, 1)

+A(1, 1, 0; 1, 1, 1)vzw(y, 1)}

(3.86)



84 Maxwell equations Molecular Dynamics

d

dt

(
∂λ

∂ẋ

)
=

d

dt
{A(0, 0, 0; 1, 0, 0)w(y, 0)w(z, 0)

+A(0, 1, 0; 1, 1, 0)w(y, 1)w(z, 0)

+A(0, 0, 1; 1, 0, 1)w(y, 0)w(z, 1)

+A(0, 1, 1; 1, 1, 1)w(y, 1)w(z, 1)}
=

{
Ȧ(0, 0, 0; 1, 0, 0)w(y, 0)w(z, 0)

+Ȧ(0, 1, 0; 1, 1, 0)w(y, 1)w(z, 0)

+Ȧ(0, 0, 1; 1, 0, 1)w(y, 0)w(z, 1)

+Ȧ(0, 1, 1; 1, 1, 1)w(y, 1)w(z, 1)
}

+
1

a
A(0, 0, 0; 1, 0, 0) [−vyw(z, 0)− vzw(y, 0)]

+
1

a
A(0, 1, 0; 1, 1, 0) [+vyw(z, 0)− vzw(y, 1)]

+
1

a
A(0, 0, 1; 1, 0, 1) [−vyw(z, 1) + vzw(y, 0)]

+
1

a
A(0, 1, 1; 1, 1, 1) [+vyw(z, 1) + vzw(y, 1)]

(3.87)

After an easy but tedious algebra and using the equality Ȧ(l) = −E(l) we can write
the Euler–Lagrange equation

d

dt

(
∂λ

∂ẋ

)
− ∂λ

∂x
= −{E(0, 0, 0; 1, 0, 0)w(y, 0)w(z, 0)

+E(0, 1, 0; 1, 1, 0)w(y, 1)w(z, 0)

+E(0, 0, 1; 1, 0, 1)w(y, 0)w(z, 1)

+E(0, 1, 1; 1, 1, 1)w(y, 1)w(z, 1)}
+

1

a
vyw(z, 0) [A(0, 1, 0; 1, 1, 0)− A(0, 0, 0; 1, 0, 0)

+A(0, 0, 0; 0, 1, 0)− A(1, 0, 0; 1, 1, 0)]

+
1

a
vyw(z, 1) [A(0, 1, 1; 1, 1, 1)− A(0, 0, 1; 1, 0, 1)

−A(1, 0, 1; 1, 1, 1) + A(0, 0, 1; 0, 1, 1)]

+
1

a
vzw(y, 0) [A(0, 0, 1; 1, 0, 1)− A(0, 0, 0; 1, 0, 0)

−A(1, 0, 0; 1, 0, 1) + A(0, 0, 0; 0, 0, 1)]

+
1

a
vzw(y, 1) [A(0, 1, 1; 1, 1, 1)− A(0, 1, 0; 1, 1, 0)

−A(1, 1, 0; 1, 1, 1) + A(0, 1, 0; 0, 1, 1)]

(3.88)

The expression in the first brackets of the latter equation can be understood as an
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average of the x-component of the electric force over the grid cell:

F e
x = −q {E(0, 0, 0; 1, 0, 0)w(y, 0)w(z, 0) + E(0, 1, 0; 1, 1, 0)w(y, 1)w(z, 0)

+E(0, 0, 1; 1, 0, 1)w(y, 0)w(z, 1) + E(0, 1, 1; 1, 1, 1)w(y, 1)w(z, 1)} (3.89)

Analogous, this can be written for the y ans z components of the electric force:

F e
y = −q {E(0, 0, 0; 0, 1, 0)w(x, 0)w(z, 0) (3.90)

+E(1, 0, 0; 1, 1, 0)w(x, 1)w(z, 0)

+E(0, 0, 1; 0, 1, 1)w(x, 0)w(z, 1)

+E(1, 0, 1; 1, 1, 1)w(x, 1)w(z, 1)}
F e

z = −q {E(0, 0, 0; 0, 0, 1)w(y, 0)w(x, 0) (3.91)

+E(0, 1, 0; 0, 1, 1)w(y, 1)w(x, 0)

+E(1, 0, 0; 1, 0, 1)w(y, 0)w(x, 1)

+E(1, 1, 0; 1, 1, 1)w(y, 1)w(x, 1)}

The second part of the equation 3.88 can be rewritten by means of the discretized
curl-operator as

Fm
x /q =

1

a
{vy [w(z, 0)Bz(0) + w(z, 1)Bz(1)]

−vz [w(y, 0)By(0) + w(y, 1)By(1)]}
(3.92)

where Bz(i) is the z-component of the magnetic field, lying in the z = i plaquette;
By(i) is the y-component of the magnetic field, lying in the y = i plaquette, and
i = 0, 1. This is the discretized analog of the usual magnetic part of the Lorentz
force.

Magnetic self–force

Due to the finite grid spacing, we have to expect that the lattice structure of our
system leads to artefacts in the magnetic force calculation. In order to check this,
we simulate a wire with a current in a box (see Fig. 3.5). Measuring the force which
acts on the charged particles we can measure the total force on the wire.

The resulting force is given in the Fig. 3.6. It is clearly seen that the magnetic
self-force vanishes only in the situation of perfect symmetry – the wire traverses
through the center of the grid cell.

3.6.2. Principle of virtual work

There is an alternative approach of the treatment of constrained systems. Our
kinematic constraint 3.4 can be transformed to the following form

dE +
1

ε0

jdt−∇× dΘ = 0 (3.93)
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This is an example of a nonholonomic constraint [103]. One can consider the
constraints as certain additional external forces, namely the forces which have to
be exerted by the constraints in order to compel the system to fulfill the kinematical
conditions. These forces must satisfy a certain principle. It is presented as an axiom
of mechanics which is not derivable from the other basic axioms. It has the name
of D’Alembert and is typically stated as follows: The work done by the forces of
constraint is zero on motions allowed by the constraint. One can say that the
Principle of Virtual Work is satisfied by the curve c, if there exists external forces
F c

i which do no work on the constraints and are such that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= F c

i (3.94)

where L is the Lagrange function of the mechanical system.
This principle is more elementary than the variational principles because it

requires no integration with respect to the time. It uses the notion of “virtual
displacements” and is of great use in Mechanics [104]. It will serve for us as other
derivation of the equations of motion.

Since the sources of the electromagnetic field are charges and these are scalar
quantities, it follows that all the integral quantities of electromagnetism are scalars.
These are charge, charge flux, electric and magnetic fluxes, electric and magnetic
voltages. The laws of electromagnetism, when one uses integral quantities, are
all relation between scalar variables and then they are expressed by scalar equa-
tions [105]. For example, the Faraday’s electromagnetic induction law has the

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

j 1 j 2

j 3
j 4a/2

-
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-
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-

- -

-

r

Figure 3.5.: Electric wire placed in the grid cell. Positive particles are moving with
velocity v in z-direction, generating currents on the links of the grid
cube. They interact with each other according to the Bio-Savart Law.
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Figure 3.6.: Magnetic self-force as a function of the wire displacement in the grid
cell. Time is measured in Lennard-Jones units, force is measured in
units of q2/(ε0a

2), where a is the grid-spacing. The lowest curve corre-
sponds to the wire close to the left boundary of the grid cell r = 0.1a,
and the highest curve is placed on the right boundary of the grid cell
r = 1a; c = 1, L = 11.

following form ∫

∂A

E · dl = −
∫∫

A

∂

∂t
B · dA (3.95)

where A and ∂A are correspondingly surface area and its boundary. At the same
time this law can be rewritten as

E [∂A] = − ∂

∂t
Ψ[A] (3.96)

where E is the electromotive force and Ψ is the magnetic flux; i.e. the electromo-
tive force impulse (or the electric voltage) referred to the boundary of a surface
endowed with inner orientation during a time interval is opposite to the magnetic
flux variation across the surface in the same interval.

Therefore following [106] we can define the electric state of the system by the
electric flux map

φ : C2(M) → R (3.97)

which associates a real number, the electric flux, to any surface in manifold M.
Although the electric flux map 3.97 determines completely the fluxes in the

system, it does not give the local value of the electric induction field, which is needed
for the calculation of the electric energy. In this context fields can be considered
as secondary quantities obtained by a kind of interpolation. The properties of
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that interpolation process are not trivial. In the case of the electric induction
fields, the selection of a set of facets of C2(M) is involved, as well as an accuracy
and convergence analysis. The interpolation with Whitney facet elements is an
example of such an interpolation [107]. Taking into account that in our coupled
system charges can also change fields we can write the electric induction field D as
a function of electric flux and the positions of the charges

D = D(φ, ri) (3.98)

Since fluxes and particle positions are independent of each other, they are suitable
variables for the definition of the energy functional of the coupled electromagnetic
system. One has

Ψ(φ, ri) =

∫
ρΨ (D(φ, ri)) d3r (3.99)

where the energy density ρΨ (D(φ, ri)) depends on the map φ through the interpo-
lated field D. According to the principle of virtual work, the definition of forces
follows now from the variation δΨ of those energy functionals and the factorization
of the result thereof under the form of a mechanical work monomial f · δx.

Let us now consider the virtual displacement of the charge. Under this displace-
ment only the interpolated charges on the eight nodes of the surrounding cube are
changed. Therefore only that cube gives contribution to the force onto the particle.
We consider the changes of the fields in the unit cube M , Fig. 3.7. Let O ≡ (0, 0, 0),

δr

z

A

B

C

O

x

y

Figure 3.7.: Theoretical setup for the calculation of the force using the virtual work
principle.

A ≡ (1, 0, 0), B ≡ (0, 1, 0) and C ≡ (0, 0, 1) be four particular points of the cube
M . Given a set of points O, A, B, C, an affine combination is defined to be the
point [108]:

α0 O + α1 A + α2 B + α3 C (3.100)

where the αi are scalars and

α0 + α1 + α2 + α3 = 1 (3.101)
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Then the point r inside a cube can be written in barycentric coordinates as

r = (1− α− β − γ)O + αA + βB + γC (3.102)

Let φx, φy and φz be the electric fluxes obtained by applying the electric flux
map to the particular parallelogram facets OBC, OCA and OAB of M . If the
cube is small enough, the induction field D, to first approximation, is the uniform
vector field that satisfies

φx = (s× t) ·D, φy = (t× r) ·D, φz = (r× s) ·D (3.103)

where r = A−O, s = B−O and t = C−O are three linearly independent vectors.
By inverting these relations one finds the expression for the interpolated induc-

tion field

D =
r

V
φx +

s

V
φy +

t

V
φz (3.104)

where V is the volume of the cube:

V = (r× s) · t = (s× t) · r = (t× r) · s (3.105)

The variation of D can be obtained by the variation of the fluxes

δD =
r

V
δφx +

s

V
δφy +

t

V
δφz (3.106)

In order to find the variations of fluxes we can use Gauss’ law in integral form [105]

δφx[∂V ] = δQx[V ], δφy[∂V ] = δQy[V ], δφz[∂V ] = δQz[V ] (3.107)

where δQx, δQy and δQz are the changes of the charge through the facets (or
plaquettes) OBC, OCA and OAB respectively.

The general expression for the energy density in the continuum involves two
vectors – the electric field intensity E and the electric induction field D. Though
they are both vectors, they have a completely different origin. It was Maxwell
himself who advised to be very careful in assigning a certain physical quantity to
a mathematical object. As it turns out, the mathematical images of D and E are
different from each other. Using the language of differential forms, one can say that
D is a 2–form and E is a 1–form. For our simple case of a cubic lattice and vacuum
conditions we can express this difference by placing the E field on the links of the
primary lattice and D on the plaquettes of the dual lattice [109], Fig. 3.8.

The expression for the density energy in the continuum has the form

ρ =
E ·D

2
(3.108)

and it has the same form in the lattice theory [110]. In the situation of no dielectric
matter we can write

Ψ = V
|D|2
2ε0

(3.109)
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Figure 3.8.: Calculation of the discrete electric energy. A is the area on the dual
lattice, and Ex is the electric field on the link of the primary lattice.

Therefore the variation of the energy functional is given by this relation

δΨ =
V

ε0

D · δD = E · (rδφx + sδφy + tδφz) (3.110)

Finally the force acting on the charge is given by

F = −E

(
r
δQx

δx
+ s

δQy

δy
+ t

δQz

δz

)
(3.111)

The calculation of the force depends on the calculation of the charge differences.
This is directly connected to the choice of the current assignment scheme. Because
the variations of positions are infinitesimal, for the linear interpolation scheme the
forces are given by Eqs. 3.89 – 3.91.

3.6.3. Current assignment based on the charge fluxes

In the following subsection we will give a geometric derivation of the current as-
signment scheme. In order to assign currents to the links we can use the integral
form of the continuity equation

∫

∂V

jds =

∫

V

∂

∂t
ρ dV (3.112)

i. e. the flux J =
∫

∂V
jds through the boundary of the volume V is equal to the

change of the charge inside this volume. Let us consider the fluxes which are caused
by the changing of the charge on each vertex of the cell during one time step h.

The primary cells are indexed by the integral position coordinates x = ia, y =
ja, z = ka of their left–forward–low corners. Its indexing generates the indexing of
the dual cells by the position coordinates of their centers. In an equidistant grid,
the address of the cell, or the triple of numbers (i, j, k), a particle with coordinates
(xp, yp, zp) is located in, is defined by

i =
[xp

a

]
, j =

[yp

a

]
, k =

[zp

a

]
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where the brackets [ ] mean the integer part of the number and a is the mesh size.

Then the location of a given particle (i.e. the center of the particle cube) inside
this cell can be written as x/a = i + ξ, y/a = j + η, z/a = k + ζ , where ξ, η, ζ
lie between 0 and 1, and the Table 3.6.1 shows what fractions of the particle lie on
each of the eight cell corners.

∆

Jy2Jy1

Jx2

Jx1

x∆

y
∆

x, y

x+  x, y+  y∆

i, j

i, j+1

i+1, j

i+1, j+1

Figure 3.9.: Two–dimensional case of the current assignment scheme. The motion
of the charge creates currents across the four cell boundaries of dual
lattice. A move as shown will create the four fluxes Jx1, Jx2, Jy1 and
Jy2 as given in the text. The coordinates describing the location of
the charge center at the start of the move are measured relative to the
“local origin”.

Each particle cube straddles twelve dual cell faces, four for each of the three
orientations: x-facing, y-facing and z-facing. Consider a particle which moves
straight from (i + ξ1, j + η1, k + ζ1) to (i + ξ2, j + η2, k + ζ2) linearly with time,
covering a displacement ∆ξ = ξ2 − ξ1, ∆η = η2 − η1, ∆ζ = ζ2 − ζ1 in the time h.
The total flux transported in to the dual cell indexed (i + 1, j + 1, k + 1) across its
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x-facing boundary shared with the dual cell indexed (i, j + 1, k + 1) is

q

h

∫ ξ2

ξ1

η(t)ζ(t)dξ =
q

h

∫ 1

0

(η1 + λ∆η) (ζ1 + ∆ζ) ∆ξdλ =

=
q∆ξ

h

{
1

3
∆η∆ζ +

1

2
(η1∆ζ + ζ1∆η) + η1 ζ1

} (3.113)

This is the contribution to Jx at the link (i, j + 1, k + 1) → (i + 1, j + 1, k + 1),
which corresponds to Jx2 in Fig. 3.9.

Further, the total flux transported into the dual cell indexed (i + 1, j, k + 1)
across its x-facing boundary shared with the dual cell indexed (i, j, k + 1) is

q

h

∫ ξ2

ξ1

(1− η(t)) ζ(t)dξ =
q

h

∫ 1

0

(1− η1 − t∆η) (ζ1 + ∆ζ) ∆ξdλ =

=
q∆ξ

h

{
−1

3
∆η∆ζ +

1

2
{(1− η1)∆ζ − ζ1∆η}+ (1− η1)ζ1

} (3.114)

And quite similar we derive the fluxes Jx on the links (i, j, k) → (i + 1, j, k) and
(i, j + 1, k) → (i + 1, j + 1, k):

Jx {(i, j, k) → (i + 1, j, k)} =
q∆ξ

h

{
1

3
∆η∆ζ−

−1

2
{(1− η1)∆ζ + (1− ζ1)∆y}+ (1− η1)(1− ζ1)

} (3.115)

Jx {(i, j + 1, k) → (i + 1, j + 1, k)} =
q∆ξ

h

{
−1

3
∆η∆ζ+

+
1

2
{(1− ζ1)∆η − η1)∆z}+ η1(1− ζ1)

} (3.116)

The four contributions to Jy and Jz are obtained from Eqs. 3.114 – 3.116 by the
cyclic rotation

i, ∆ξ, ξ ⇒ j, ∆η, η ⇒ k, ∆ζ, ζ (3.117)

A similar assignment scheme was used in [111] in the simulation of plasma physics.

Note that the terms of the order O(t2) are necessary for the exact charge con-
servation. The same current updating scheme can be derived if one integrates over
the time step Eqs. 3.81a– 3.81c.

Let us check the charge conservation for this scheme. By linear superposition,
conservation of charge for one trajectory moving through a single time step implies
the same for the sum of all trajectories. Addition of the three fluxes from a single
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charge into the dual cell indexed (i + 1, j + 1, k + 1) yields

(Jx + Jy + Jz) {(i, j, k) → (i + 1, j + 1, k + 1)} =
q

h
{

∆ξ∆η∆ζ +
∆ξ

2
(η1∆ζ + ζ1∆η) + η1ζ1∆ξ+

+
∆η

2
(ξ1∆ζ + ζ1∆ξ) + ξ1ζ1∆η+

+
∆ζ

2
(ξ1∆η + η1∆x) + ξ1η1∆ζ } =

q

h
{(ξ1 + ∆ξ) (η1 + ∆η) (ζ1 + ∆ζ)− ξ1 η1 ζ1}

(3.118)

On the other hand, the difference between the particle fractions protruding into
the dual cell before and after the move is

∆Q(i + 1, j + 1, k + 1) = q {(ξ1 + ∆ξ) (η1 + ∆η) (ζ1 + ∆ζ)− ξ1 η1 ζ1} (3.119)

This, then confirms the rigorous charge conservation.
Note that if we suppose that the current on the link is constant then the flux

on the same link can be written as J = j · s = ja2. Moreover, the change of particle
position can be written as the velocity times time step, i.e. ∆ξ = vxh

a
, ∆η =

vyh

a
, ∆ζ = vzh

a
. In this case we have from Eq. 3.113

j(i, j + 1,k + 1 → i + 1, j + 1, k + 1) =

qvx

a3

{
1

3

vyvzh
2

a2
+

h

2a
(η1vz + ζ1vy) + η1 ζ1

}
(3.120)

Therefore for sufficiently small time step we have the equivalence of two assignment
schemes (for continuous and discretized time variable), i.e.

lim
h→0

j(i, j + 1, k + 1 → i + 1, j + 1, k + 1) =
q

a3
vxη1ζ1 (3.121)

3.7. Self–energy artefacts

In the continuum the solution of the Maxwell equations for point charges is singular
at the point where a charge is. The point charge carries along with it a potential
which at short distances diverges as the Coulomb potential, and which therefore
has the electrostatic energy

1

2

∫

{|r−ri(t)|≤R}

d3rE(r, t)2 ∝
∫ R

0

drr2
(
r−2

)2
=

∫ R

0

drr−2 = ∞ (3.122)

where we assume the nonrelativistic case (velocity of the particle is much smaller
than speed of light, v ¿ c). Taking literally such an object would have an infinite
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mass and cannot respond to external forces. It would maintain its velocity forever,
which is not what we want in our simulations.

Our spatial lattice with lattice spacing a, on which we interpolate charges, in-
troduces an efficient “cut–off” for this self–interaction of the charged particle with
its own field. On the lattice the charge is no more a point object and has a charac-
teristic diameter of the order of the lattice spacing. Therefore the singularities are
removed from the theory.

Nevertheless the force exerted on a particle by its own field depends on the
value of the lattice spacing and with a → 0 goes to infinity. Furthermore, the self
energy Uself of an interpolated charge distribution ρint(r) becomes a function of its
position with respect to the mesh. In general,

Uself =
1

2

∫
d3rρint(r)φ(r) (3.123)

where the φ(r) is the solution of the Poisson equation for the given interpolated
charge distribution. The solution of Poisson equation can be written as a convo-
lution of the charge distribution with the Green function, i. e. the function which
satisfies the homogeneous Poisson equation:

∆(r′)G (r− r′) = −δ (r− r′)

Therefore Eq. 3.123 can be written as

Uself =
1

2ε0

∫
d3rd3r′G (r− r′) ρint(r)ρint(r

′) (3.124)

The last relation is a convolution and, therefore, takes on a very simple form when
Fourier transformed in space:

Uself =
1

2ε0

∫
d3kd3rd3r′

(2π)3
G(k)eik(r−r′)ρint(r)ρint(r

′)

=
1

2ε0

∫
d3k

(2π)3
G(k)Sint(k)

(3.125)

where Sint(k) is the structure factor of the interpolation of the charge to the lattice.
For the Coulomb interaction, the Green function is Gcoulomb(r− r′) = 1/(4π|r− r′|)
and its Fourier transform G(k) = 1/k2. Introduction of the lattice spacing a leads
to an upper bound of the potential amplitude ∆Uself , which has the orderO(q2/ε0a)
where q is the charge of the particle. It is not difficult to see that this potential is
periodic.

Let us now consider a single particle with charge q in a large one–dimensional
system. Place the particle between adjacent mesh points located at x = 0 and
x = a and apply the linear interpolation scheme. Then the self energy is

Uself =
a

2
(ρ0φ0 + ρ1φ1) (3.126)
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The mesh-defined potential is given by the solution of the set of algebraic equations

φi−1 − 2φi + φi+1 = −ρia
2

ε0

(3.127)

Solving Eq. 3.127 for an isolated charge ρ0 at grid point 0, taking φ0 = 0 and using
the symmetry of the problem, gives

φi = −ρ0a

2ε0

|xi| (3.128)

For the Eq. 3.126 using the superposition principle we obtain:

Uself = − q2

4ε0

(1− x

a
)x =

q2

4aε0

(
x− a

2

)2

+ const (3.129)

This is a simple harmonic oscillator potential well. It yields an oscillation frequency

ωself =

(
q2

2mε0a

)1/2

(3.130)

where m is the particle mass. Using the definition of the plasma frequency ω2
p =

nq2/ε0m the frequency ωself has the form

ωself =
ωp√
2na

(3.131)

If the number of particles per cell is large, then ωself is much smaller than the
plasma frequency. This is the case of plasma simulations (see Ref. [101]).

The well–depth energy ∆Uself may be compared to the thermal energy:

∆Uself

kbT
=

q2a

16ε0kbT
=

a

16nλ2
D

(3.132)

where λD =
√

ε0kbT/nq2 is the Debye length.
Dimensional arguments indicate that in three dimension this ratio will be of the

order
∆Uself

kBT
∝ 1

Nc

(
a

λD

)2

where Nc = nVc is the number of particles per cell Vc = a3. Note that this ratio is
desirably small when Nc is large. Re–writing

∆Uself

kBT
∝ 1

naλD
2 ,

we see that for dilute systems and fine meshes the self–energy plays an important
role. Due to the presence of this periodic potential, the particle is “trapped” in the
center of the grid cell where the self energy is lowest(see Fig. 3.10).
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Figure 3.10.: Self–energy along z = 0.5 of a grid cube for the pure Coulomb inter-
action. The energy was calculated using the lattice Green function.
Coordinates x and y are normalized to the lattice spacing a.

The conventional remedy to the situation consists simply in spreading out the
charge over a wider range of lattice sites, thereby reducing the self-energy artefacts.
This is typically done with a convolution step that distributes charges over several
hundred sites using Gaussian distributions [112] after interpolation to the grid.
These convolutions are easy to perform in Fourier space, but are complicated and
time consuming in real space. They would also drastically reduce the speed of the
algorithm.

3.7.1. Dynamic subtraction of lattice artefacts

Recently Maggs and Rottler [113] have introduced a dynamic correction that leads
to an effective convolution of the charge distribution with minimal computational
overhead.

The idea is similar to the introduction of “strong interaction” in quantum elec-
trodynamics. In the same spirit the interpolated charge cloud is stabilized by
Yukawa interactions.

In order to understand the latter, let us first consider the functional

F = −ε0

2

∫
d3r (∇ψ)2 +

∫
d3r ρψ (3.133)

and study, for fixed ρ,
δF
δψ

= 0. (3.134)
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It is straightforward to see that (i) this variational problem is equivalent to the
Poisson equation for the electrostatic potential ψ, and that (ii) insertion of the
solution into F yields F = +(1/2)

∫
d3r ρψ, i. e. the correct electrostatic energy.

However, this functional is useless for dynamic simulations where one would try to
simulate a coupled dynamics of ρ and ψ. The reason is that the ∇ψ term has the
wrong sign, such that arbitrarily large variations of ψ are favored and the simulation
would be inherently unstable (the partition function for integrating out the ψ field
would not exist).

A well–behaved theory, however, is obtained by just turning the sign of the ∇ψ
term:

F = +
ε0

2

∫
d3r (∇ψ)2 +

∫
d3r ρψ. (3.135)

This results in +∇2ψ = ρ/ε0, and insertion into the functional yields again
F = +(1/2)

∫
d3r ρψ. Since, however, ψ is just the negative of the real (physical)

electrostatic potential, one obtains a theory which describes attraction between like
charges and repulsion between unlike charges. We now introduce an additional field
degree of freedom ψ, and couple this to the original method (Lagrangian) via

L → L+
ε0

2c2
ψ

∫
d3r ψ̇2 (3.136)

−ε0

2

∫
d3r (∇ψ)2 −

∫
d3r ρψ.

Here cψ is another dynamical parameter of dimension velocity. It can be set identical
to c, but need not. This modified method would result in an additional potential of
mean force between the charges which would exactly cancel the original Coulomb
potential (including self–terms). This is apparently not useful. However, we can
introduce a slightly modified coupling with a screening parameter µ > 0:

L → L+
ε0

2c2
ψ

∫
d3r ψ̇2 (3.137)

−ε0

2

∫
d3r (∇ψ)2 − ε0

2

∫
d3rµ2ψ2 −

∫
d3r ρψ.

This introduces an additional potential of mean force between the charges, which,
in the continuum limit, would read

UY (r) = − 1

4πε0

q1q2

r
exp(−µr), (3.138)

such that unlike charges repel each other with a screened Coulomb interaction.
In the simulation the charges are coupled simultaneously to the unconstrained

scalar field

FY [ψ] =

∫
d3r

{ε0

2

[
(∇ψ)2 + µ2ψ2

]
+ ρψ

}
(3.139)
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as well as to constrained vector field Eq. 2.54. The total partition function then
reads

Z(r) = Zcoulomb(r)×ZY (r)× const (3.140)

where

ZY (r) =

∫
Dψe−FY [ψ](r)/kBT (3.141)

and implies an effective interaction between two charges q1 and q2 given by

U(r) =
q1q2

4πε0r

(
1− e−µr

)
(3.142)

At large separation there is a pure Coulomb interaction; at short distances the
potential has been regularized.

Using the standard calculus of variations, from the Eq. 3.139 the Yukawa–
Helmholz can be derived

∆ψY − µ2ψY =
ρ

ε0

(3.143)

The corresponding Green’s function for the last equation is

GY (k) = − 1

k2 + µ2
(3.144)

Summing up the Green’s functions for the pure Coulomb and Yukawa scalar fields
we obtain the Green’s function for the regularized potential

G(k) =
1

k2
− 1

k2 + µ2
=

µ2

k2 (k2 + µ2)
(3.145)

By inserting Eq. 3.145 into Eq. 3.123, we find that the self–energy is now finite
for a → 0. The additional factor in the last equation can be considered as the
convolution function with the initial interpolated charge distribution. Then one
writes the structure factor Sconv(k) of it

Sconv(k) =
µ2

k2 + µ2
(3.146)

By reducing µ one obtains better smoothing of the pure Coulomb interaction. At
the same time this weakens the original Coulomb interactions on a local scale, and
can be corrected by adding −UY to the standard interparticle potential. Here one
can use the continuum version of the potential; this will only serve to decrease the
influence of lattice artifacts.

From numerical integration Maggs and Rottler [113] have obtained a variation
of the periodic energy barrier which is of the order (µa)2 for small µ. In order to
enhance the convergence of such a coupling they have introduced another uncon-
strained field:

Fv[h] =

∫ {
ε0h(r)2

2
− (ε0∇h(r)− ρ(r))2

2µ2

}
d3r (3.147)
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This is a vector field. The corresponding Green function has the form

G(k) = − µ2

(k2 + µ2) (k2 + 2µ2)
(3.148)

By coupling the charges to three fields, respectively a constrained vector, a scalar
and an unconstrained, we obtain the following interaction potential

V(r) =
q1q2

4πε0r

(
1− 2e−µr + e−

√
2µr

)
(3.149)

The inhomogeneity in the self-energy is smaller than when using only the scalar
Yukawa field, and the barrier now varies as (µa)4 for small µ.

3.7.2. Direct subtraction of the self–energy

Instead of decreasing the self–energy barrier by choosing appropriate convolution
functions there exists another approach. The main idea is to directly subtract the
self–energy of the charge interpolated cloud.

Let consider the electrostatic problem of one charge placed at r = (0, 0, 0) in
an infinite lattice. The Green’s function for this problem satisfies the following
equation

∆(r′)G(r− r′) = − 1

a2
δr,r′ (3.150)

Then the electrostatic potential φ can be found as convolution with the Green
function

φ(r) =
a2

ε0

∑

r′
G(r− r′)ρ(r′) (3.151)

Taking into account the fact that the charge distribution of a point charge is the
delta function, Eq. 3.151 can be rewritten as

φ(r) =
q

aε0

G(r) (3.152)

where a is the lattice spacing. The Laplace operator on the left hand side of
Eq. 3.150 for the cubic lattice transforms to finite–differencing operator

∆(r)f(r) =
1

a2

∑
n

[f(r + n)− f(r)] (3.153)

where the n are the vectors form site r to its nearest neighbors (n = ±aı, i =
1, . . . , 3 for a three–dimensional lattice) and aı are independent primitive translation
vectors.

To find the lattice Green’s function defined by Eq. 3.150 we take periodic bound-
ary conditions at the edges of the cube. Consider a cube with L lattice points along
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each side. Thus the total number of sites in the 3-dimensional cube is L3. Substi-
tuting the Fourier transform

G(r) =
1

L3

∑

k∈BZ

G(k)eikr (3.154)

of the lattice Green’s function into Eq. 3.150, we find

G(k) =
1

ε(k)
, (3.155)

for the three–dimensional cube where we have defined

ε(k) = 2
3∑

i=1

(1− coskaı). (3.156)

Owing to the periodic boundary conditions, the wave vector k in Eq. 3.154 is limited
to the first Brillouin zone and is given by

k =
m1

L
b1 +

m2

L
b2 +

m3

L
b3 (3.157)

where m1,m2,m3 are integers such that −L/2 ≤ mı ≤ L/2 for i = 1, 2, 3, and b

are reciprocal lattice vectors defined by aıb = 2πδı. Here we assumed that L is
an even integer, which will be irrelevant in the limit L →∞. Alternatively we may
shift these vectors by half a period and obtain an equivalent range which is valid
for any values of L. The mathematical description of the crystal lattice and the
concept of the Brillouin zone can be found in many books on solid state physics
(see Ref. [114], [115], [116]).

Finally, with the help of the inverse Fourier transform, the lattice Green’s func-
tion takes the form

G(r) =
1

L3

∑

k∈BZ

eikr

ε(k)
. (3.158)

If we take the limit L →∞ then the discrete summation over k can be substituted
by an integral (see [114]):

1

L3

∑

k∈BZ

7→ a3

∫

k∈BZ

d3k

(2π)3
. (3.159)

Thus the lattice Green’s function is

G(r) = a3

∫

k∈BZ

d3k

(2π)3

eikr

ε(k)
(3.160)

Using Eqs. 3.152 and 3.158 the electrostatic potential from the point charge on a
cubic lattice is

φ(r) =
q

L3ε0a

∑

k∈BZ

eikr

ε(k)
(3.161)
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Writing the electric field on the link as the difference of potentials on the ends
of that link Eı(r) = − 1

a
[φ(r + aı)− φ(r)] for the Fourier transformed component

of the electric field we obtain

Êı(k) = −1

a
φ̂(k)

(
eikaı − 1

)
(3.162)

The Parseval’s theorem allows us to write the electrostatic self–energy in the form

Uself =
ε0a

3

2

∑
r

3∑
i=1

Eı(r)
2 =

ε0a
3

2L3

∑

k

3∑
i=1

Êı(k)Ê∗
ı (k) (3.163)

Inserting 3.162 into the last equation, we obtain

Uself =
ε0a

2

2L3

3∑
i=1

∑

k

Êı(k)φ̂∗(k)
(
1− e−ikaı

)
(3.164)

Transforming back into real space, the self-energy is

Uself =
ε0a

2

2

3∑
i=1

∑
r

(Eı(r)− Eı(r− aı))φ(r) =
1

2

∑
r

q(r)φ(r) (3.165)

where we have used the expression for the Gauss law on the lattice:

3∑
i=1

(Eı(r)− Eı(r− aı)) =
q(r)

ε0a2
(3.166)

We see that the lattice electrostatic energy has the same expression as in the
continuum. The self–energy of a point charge is the value of the electrostatic
potential at the point where the particle is:

Uself =
1

2
q · φ(0) =

q2a2

2ε0

∫

k∈BZ

d3k

(2π)3

1

ε(k)
(3.167)

In order to calculate this lattice integral we can calculate the sum for different
values of L and then take the limit of infinite lattice size.

Uself (L) =
q2

8L3ε0a

L−1∑
p1=0

L−1∑
p2=0

L−1∑
p3=0

1

sin2
(

π
L
p1

)
+ sin2

(
π
L
p2

)
+ sin2

(
π
L
p3

) (3.168)

where p = (p1, p2, p3) 6= 0. The numerical values along with the fit are presented
on the Fig. 3.11.

Moreover, the integral 3.167 can be evaluated analytically. Eq. 3.158 can be
simplified if we specify the lattice point as r = l1a1 + l2a2 + l3a3:

G(l1, l2, l3) =

π∫

−π

dx1

2π

π∫

−π

dx2

2π

π∫

−π

dx3

2π

ei(l1x1+l2x2+l3x3)

2
∑3

i=1(1− cos xı)
(3.169)
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In our case we are searching for the value of Green’s function at point (0, 0, 0). The
exact value for the cubic lattice function was given in the paper [117]:

2G(0, 0, 0) =
2
√

2

π2
k′+k′−K+K−

=
4

π2
(18 + 12

√
2− 10

√
3− 7

√
6)K2

− ≈ 0.5054620197

(3.170)

where K± = K(k±) is the complete elliptic integral of the first kind with modulus

k± = (2−
√

3)(
√

3±
√

2)

Therefore the self-energy equals

aε0

q2
Uself =

1

2
G(0, 0, 0) ≈ 0.126365505

which is in good agreement with the numerical calculations.
We are ready to calculate the self–energy for the interpolated charge cloud.

In general inserting the discrete charge distribution ρ(r) = a−3
∑

i qiδr,Ri
into the

Eq. 3.151 for the electrostatic potential we have

φ(r) =
1

ε0a

∑

r′
G(r− r′)

∑
i

qiδr′,Ri
=

1

ε0a

∑
i

qiG(r−Ri) (3.171)

Further, inserting the last equation into Eq. 3.165 we calculate the self-energy

Uself =
1

2

∑
i

qiφ(Ri) =
1

2aε0

∑
i

∑
j

qıqG(Rı −R) (3.172)
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Figure 3.11.: Self-energy magic number. Numerical calculation of the lattice sum
(Eq. 3.168). Taking the limit L → ∞ gives the value of the inte-
gral 3.167, which is approximately 0.126364.
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For the finite lattice using Eq. 3.158 this yields

Uself =
1

2aε0L3

∑

k

∑
ı

∑


qiqje
ik(Rı−R)

ε(k)
(3.173)

Using the explicit expression for ε(k) (Eq. 3.156) one can write

Uself =
1

4aε0L3

∑

k

∑
ı

∑


qiqj cosk(Rı −R)

∑3
ı=1(1− coskaı)

(3.174)

For the simple cubic lattice in three dimensions the linear interpolation will give
8 charges which are placed at the corners of the cube with edge length a (see
Fig. 3.12). Therefore in our case the self-energy is a symmetric bilinear form defined

1
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a

q

q

q q

q
3 4

5
q
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7 8

Figure 3.12.: Charge assignment scheme for the cubic lattice. The order of the
interpolation scheme is 1 (nearest neighbors).

by the matrix {αij}, the elements of which do not depend on the position of the
charge. In our algorithm the values of the coefficients

αij =
1

4aε0L3

∑

k

cosk(Rı −R)∑3
ı=1(1− coskaı)

(3.175)

are calculated during the initialization step and are used in the calculation of the
self-force. The value of the self-force which has to be subtracted from the overall
forces is given by the following ansatz

Fself = −∂Uself

∂r
= −

∑
i

∑
j

αij

[
qi

∂qj

∂r
+ qj

∂qi

∂r

]
. (3.176)

Note that for the infinite lattice the analytic expression for the value of the
electrostatic potential (and therefore also the value of the self-energy) can be ob-
tained. For example, using the enumeration of cube sites shown in Fig. 3.12 the
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electrostatic potential at the front left bottom corner of the cube is

φ(0) =
1

ε0a
{q1G(0, 0, 0) + (q2 + q3 + q5)G(1, 0, 0)

+(q4 + q6 + q7)G(1, 1, 0) + q8G(1, 1, 1)}
(3.177)

where G(l1, l2, l3) is given by Eq. 3.169 and we have used the symmetry of the task.
We have already calculated the value G(0, 0, 0) (Eq. 3.170). Again, due to the
symmetry and using Gauss’ law we obtain

G(1, 0, 0) = G(0, 0, 0)− 1

6
(3.178)

The value G(1, 1, 0) is calculated in [117]:

G(1, 1, 0) =
5

4
G(0, 0, 0)− 1

4
G(2, 0, 0)− 1

4

where G(2, 0, 0) can be found using the recurrence formula of Horiguchi and
Morita [118]:

G(2, 0, 0) =
10

3
G(0, 0, 0) +

1

π2G(0, 0, 0)
− 1.

The recursion scheme developed by Duffin and Shelly [119] allows us to determine
the last value G(1, 1, 1):

G(1, 1, 1) = r1G(0, 0, 0) +
r2

π2G(0, 0, 0)

where r1 = −1/8 and r2 = 3/16.

3.8. Implementation

For the field propagation one is forced to choose whether to implement the electric
fields E(l) and the vector potentials A(l) on the links or the electric field E(l) and
magnetic flux B(p). The latter algorithm was used in Ref. [51].

In the implementation of the algorithm we assume that particles with masses
mi live in the continuum (off–lattice approach). Particles have charges qi and
interact between themselves also by a Lennard–Jones potential. The Lennard–
Jones potential of scale σ is truncated at its minimum, rc = 21/6σ.

The charges are interpolated on the lattice with grid spacing a using the lin-
ear interpolation scheme. All electromagnetic fields live on the links of the lattice,
therefore the electric field E is associated with 3L3/a3 links, where L is the dimen-
sion of the simulation box.

In order to start the simulation for the given random distribution of charges
we have to calculate the initial electrostatic field, i. e. the exact solution of the
electrostatic problem. For this purpose we use the hierarchical scheme described in
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section 2.5.3. For the overall system, we use a checkerboard decomposition which
allows easy parallelization.

The value of speed of light has always satisfied the stability criterion h ¿ a/c.
Ideally, one would like to run MEMD via an integrator which leaves the phase–

space volume invariant and is time–reversible, such as the Verlet algorithm in stan-
dard MD [39]. Since the equations of motion (even in the lattice–discretized case)
have these properties, it is indeed possible to construct such a scheme. An analog
to the Verlet algorithm for MEMD would be the following integrator, based upon
a time step h:

1. Update the particle momenta by half a time step.

2. Update the A field by half a time step.

3. Update the particle positions by half a time step.

4. Update the electric field by a full time step.

5. Update the particle positions by half a time step.

6. Update the A field by half a time step.

7. Update the particle momenta by half a time step.

Here, “update” means the simple Euler rule x(t + h) = x(t) + ẋ(t)h. The time
consuming part (update of the particle momenta, update of the electric field) is
arranged in such a way that only one “force calculation” per time step is necessary.
This scheme does conserve the phase–space volume and is time–reversible. Since the
updates of A and of the particle momenta are interchangeable due to the omission
of magnetic forces, we can replace this by an equivalent scheme:

1. Update the particle momenta by half a time step.

2. Update the A field by a full time step, from t− h/2 to t + h/2.

3. Update the particle positions by half a time step.

4. Update the electric field by a full time step.

5. Update the particle positions by half a time step.

6. Update the particle momenta by half a time step.

However, this algorithm suffers a severe disadvantage: The update of the electric
field (step 4) is based upon a particle configuration (in real space and velocity space)
which has so far only progressed by half a time step. As a consequence, Gauss’
law is not satisfied within machine accuracy, but rather only within the accuracy
of the time discretization. This is very undesirable, and hence we have modified
the scheme as follows:
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1. Update the particle momenta by half a time step.

2. Update the A field by a full time step, from t− h/2 to t + h/2.

3. Update the particle positions by a full time step.

4. Update the electric field by a full time step.

5. Update the particle momenta by half a time step.

In order to update the electric field on the link l we calculate charge fluxes (see
section 3.6.3):

E(l; tn + h) = E(l; tn)

+ c2h (∇×∇×A)

(
l; tn +

h

2

)
− h

a2ε0

J

(
l; tn +

h

2

)
,

(3.179)

where the flux J is given at half time step, the operation of curl understood in
the discretized sense, and a is the lattice spacing. Note that the calculation of
J(l; tn + h/2) requires knowledge of both the initial and the final positions of the
particles, see Sec. 3.6.3. Thus the continuity equation 3.112 is satisfied exactly, and
this ensures that the system stays on the constraint surface, as discussed above in
detail.

For the particles velocities we use the electric force from Eqs. 3.89 – 3.91:

pi

(
tn +

h

2

)
= pi(tn) +

h

2
{FLJ(tn) + Fe(tn)} (3.180)

where FLJ is the force derived from the Lennard–Jones potential.

However, this scheme does no longer satisfy time–reversal symmetry (this is
obvious since the updates of the particle positions and of the electric field do not
commute), and probably also violates phase–space volume conservation, since j is
no longer just a simple function on phase space. Nevertheless, we considered it as
most important to keep the system on its constraint surface.

We have added a Langevin thermostat to the particles:

d

dt
pi = −∂U

∂ri

+ qiE(ri)− γ

mi

pi + ξi, (3.181)

where γ is the particle friction constant, and ξi is a random force satisfying the

standard fluctuation–dissipation theorem:
〈
ξα
i (t)ξβ

j (t′)
〉

= 2γkBTδijδαβδ(t− t′), (3.182)

where α and β denote Cartesian indices. This puts the system into the canonical
ensemble. For large systems, one can rely on the equivalence of ensembles, and there
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is no fundamental statistical–mechanical need for such a thermostat — it is just a
matter of technical convenience: Usually a Langevin thermostat tends to stabilize
the simulation due to its inherent feedback mechanism, such that larger time steps
are feasible. It should be noted that such thermostatted dynamics violates time
reversibility and phase–space volume conservation.

3.8.1. Intersection with lattice cube boundaries

When a particle during one time step intersects the boundary of the grid cell, it
will generate currents on more than four links per direction. In this case we have
automated the particle splitting procedure. We calculate the intersection points
with each cell face and split the trajectory of the particles on the segments. On
each segment the currents are interpolated onto the links and the update of the
electric field is completed.

3.8.2. Data structure

For the implementation of the parallel version we have used the domain decom-
position strategy. The computational domain is split into a set of blocks, where
each block has its own fields and particles and communicates with other blocks and
boundaries via its glue-patches, Fig. 3.13. The standard MPI-interface [120], [121]

glue-patch

x xx

. ..

block 1 block 2

Figure 3.13.: All interior boundary conditions are applied by passing data between
blocks via glue-patches.

was used for the communication between blocks, i. e. processes. This standard is
available virtually for all platforms which provides a portability of the code.

All the field variables which live on one site of the lattice (electric fields, charges,
vector fields plus auxiliaries) are found in structures of type t_site. Each node of
the parallel machine has an array of such structures called lattice, with as many
elements as there are sites on the node. In scalar mode there is only one node. The
site structure looks like this:

typedef struct
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/* coordinates of this site */

short r[SPACE_DIM];

/* interpolated charge */

double charge;

/* 3d vector of electric field */

t_dvector field;

/* rotor of vector field */

t_dvector curlA;

/* vector field */

t_dvector A;

/* 3d vector of electric flux */

t_dvector flux;

/* additional variables for Yukawa fields */

double addDOF_p[ADD_DOF_DIM];

double addDOF_v[ADD_DOF_DIM];

double addDOF_f[ADD_DOF_DIM];

t_site;

At run time space for the lattice sites is allocated dynamically, typically as an
array lattice[i], each element of which is a site structure. Thus, to refer to the A
field on a particular lattice site, site ”i” on this node, you say

lattice[i].A

In addition to the fields in the t_site structure, there is the set of vectors whose
elements correspond to lattice sites. This is the six vectors of integer’s:

static t_dirs* neighbor

where t_dirs is the array of six integers.

neighbor[XDOWN][i]

is the index of the site in the XDOWN direction from the i’th site on the node, if that
site is on the same node. If the neighboring site is on another node, this pointer
will be NOWHERE (= -1).

Often we use the name of a field as an argument to a routine. These fields are
elements of the structure t_site, and such variables can not be used directly as
arguments in C. Instead, we use a macro to convert the name of a field into an
integer, and another one to convert this integer back into an address at a given
site. A type field_offset, which is secretly an integer, is defined to help make
the programs clearer.

F_OFFSET(fieldname) gives the offset in the site structure of the named field.
F_PT(*site, field_offset) gives the address of the field whose offset is
field_offset at the site *t_site.

The algorithm was implemented both as a stand-alone program and as a mod-
ule of the multipurpose scientific package ESPResSo [122]. This is a newly written
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program package, that was designed to perform numerical MD/MC simulations for
a broad class of soft matter systems in a parallel computing environment. For the
short–range interactions the link–cell method is used. The particles are sorted into
cells which are about as large as the largest range of a short–ranged interaction.
Then short–ranged interactions only occur between particles in adjacent cells. For
systems of homogeneous density the number of particles in these cells is constant,
therefore reducing the computational order to O(N). Distributing the particles ac-
cording to their spatial position, known as domain decomposition, is also a standard
method for parallelization in multiprocessor environments.

The input/output of data is done on script language level. The whole system
setup is contained within a Tcl [123] script. Inside a simulation script, one can
handle the entire simulation process from the specification of a system, the actual
simulation, its analysis and the graphical output of the results.

3.8.3. Validity check of the algorithm

As a validity check of the algorithm we have simulated two unlike charges in the
box. The electrostatic potential for such a system is given by the approximate
expression [113]:

V = − q2

4πε0r
− q2r2

6ε0L3
(3.183)

where L is the dimension of the simulation box. We have used the value of L = 8.0
and the Bjerrum length lb = 1.0. Figure 3.14 shows a good agreement with the
experimental data.

3.9. Numerical results

As a simple test system, we have studied N charged particles in a cubic box with
periodic boundary conditions. They interact via a purely repulsive Lennard–Jones
(LJ) potential

ULJ =





4ε

[(σ

r

)12

−
(σ

r

)6

+
1

4

]
r ≤ 21/6σ

0 r ≥ 21/6σ
. (3.184)

We choose a unit system where the potential parameters σ and ε, as well as the
particle mass m, are set to unity. Time is thus measured in units of τLJ =

√
mσ2/ε.

We study systems at temperature kBT = 1 and particle number density ρ = 0.07.
The equations of motion were integrated by the algorithm outlined in Sec. 3.8 (no
Yukawa subtraction), using a time step h = 0.01. The friction constant for the
Langevin thermostat was set to γ = 1.
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Figure 3.14.: Pair potential from the pair correlation function of two charges for L =
8, comparing to the analytical curve. Two different lattice spacings
are used.

Each particle is assigned a charge ±q. The strength of the electrostatic interac-
tion is given in terms of the Bjerrum length

lB =
e2

4πε0kBT
, (3.185)

for which we used the value lB = 20 (rather strong electrostatic coupling). We
chose this system because it had been studied previously by P3M [122]. However,
meanwhile it has turned out that this is probably not the best state point for a
benchmark, since the coupling is so strong that it actually induces phase separation
(gas–liquid transition). This is in accord with the phase diagram presented in Ref.
[124]; the system studied there is not too different from ours.

The simulation was carried out in the NVT-ensemble. After warm-up and
equilibration period we have measured the CPU time. The runs were performed
on an IBM Regatta H Server (eServer 690 Modell 681 with 32 Power4 Processors
at 1.3 GHz each).

The previous P3M studies [122] have used system sizes between N = 2000 and
N = 64000. For each system size the P3M parameters were optimized separately;
for N = 2000 they were: Mesh size 323; 5th order charge assignment; real–space
cutoff 8.2; α = 0.36 (this parameter controls the split–up of the computational load
between real and Fourier space). This results in an estimated relative error of the
force per particle of roughly 10−3. For further details, see Refs. [125, 126].

The pair correlation functions of this system are shown in Figs. 3.15 and 3.16.
The run was long enough to equilibrate the system reasonably well on the local
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Figure 3.15.: Pair correlation function of like charges at density ρ = 0.07, comparing
data obtained with P3M with those from MEMD for different lattice
spacings.
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Figure 3.16.: Pair correlation function of unlike charges at density ρ = 0.07, again
comparing P3M with MEMD.
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scale. As a control, we also ran a more accurate P3M simulation and found no visible
difference. We then estimated the performance of the P3M program by measuring
the CPU time needed until the single–particle mean square displacement reaches
the value 〈∆~r2〉 = 20. For the N = 2000 system, this is 230 seconds on a single
processor of an IBM Regatta H server. Further increase of the particle number
and processor number (always keeping N = 2000 particles on each processor on
average) results in considerable loss of performance due to parallelization overhead;
for a large system on 32 processors the program runs at roughly half the single–
processor speed, while for 16 processors the performance was roughly 75%. We
believe that a great deal of these losses can be explained by load–balancing problems
due to a substantially inhomogeneous density.

We now turn to the simulation of the same system by MEMD. Firstly, we varied
the lattice spacing a and measured the pair correlation functions, as shown in Figs.
3.15 and 3.16. For large lattice spacings, there are systematic deviations, while
the correlation function converges to the P3M result with decreasing a. We found
a value of a = 0.53 acceptable, corresponding to a 583 lattice for the N = 2000
system. For such a fine lattice, there is practically never more than one particle
per cube.

We then varied the speed of light c. The single–particle mean square displace-
ment as a function of time (measured in Lennard–Jones units) is shown in Fig.
3.17. Since the CPU time per step does not depend on c, we see that the fastest
dynamics (i. e. fastest decorrelation) occurs for the largest values of c. The opti-
mum choice is therefore mainly dictated by stability considerations. For c = 20, we
find that 170 seconds CPU time (again one processor IBM Regatta H) are needed
for the N = 2000 system until the single–particle mean square displacement reaches
the value 20. This means that MEMD for that system is slightly faster than P3M.
However, the P3M simulation probably provides somewhat more accurate results.
Nevertheless, this result is encouraging enough to pursue the MEMD approach
further in the future.

Furthermore, we studied the scalability of our parallel program, systematically
increasing the particle number and the number of processors such that each pro-
cessor keeps N = 2000 particles on average. Figure 3.18 presents the scalabity
factors as a function of the number of processors. The decrease is rather similar
to what was found with P3M, and this further supports our speculation that the
losses are mainly a result of an inhomogeneous density. The snapshot of the sys-
tem configuration provides clear evidence, that there is indeed a phase–separating
region (Figure 3.19).

We have therefore seen that MEMD with our current implementation is quite
competitive for sufficiently dense systems. However, in electrostatic problems one
often goes to much smaller densities. If we would apply the present MEMD method
to such a dilute system, the number of grid points would become overwhelmingly
large. P3M does not have this problem; due to the split–up of the work between real
space and Fourier space it is possible to keep the number of grid points reasonably
small. It is therefore clear that MEMD for such systems can only be competitive
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Figure 3.17.: Single–particle mean square displacement as a function of time, for
different speeds of light, for the N = 2000 system at density ρ = 0.07.
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Figure 3.18.: Scalability factor (i. e. performance of the parallel program, divided
by the ideal value that would occur if there were no parallelization
overhead) of MEMD of the ρ = 0.07 system, as a function of processor
number. Each processor contains N = 2000 particles on average.
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Figure 3.19.: System configuration snapshot for the parameters used in the bench-
marking simulations. On the figure the xy-projection of the particles’
coordinates is presented.

if it is also possible to use a reasonably coarse grid. We believe that this might be
possible by introducing Yukawa subtraction combined with our Green’s function
subtraction for both the unscreened and the screened interaction. Such further
refinements are left for future work.



Conclusion

Part 1 is devoted to the study of dense systems of Brownian particles in solu-
tion. The solvent is modeled explicitly via the hybrid scheme of particle–Lattice
Boltzmann fluid. The D3Q19 velocity version of Lattice Boltzmann method was
implemented and tested. A modification of the coupling presented in [8] was pro-
posed and its equivalence with the original one is proved. The validity of the D3Q19
model in the almost incompressible regime was investigated.

Part 2 of the present work describes the new method of simulating Coulomb
interactions as the potential of mean force between charges which are dynamically
coupled to a local electromagnetic field. The study of large ionic systems is always
limited by the computationally demanding treatment of long-range interactions.
The MEMD (“Maxwell equations Molecular Dynamics”) discussed and used in
this work offer an elegant solution to this problem due to its local character. The
efficiency of the method and the gain of CPU power during the last years gives the
possibility to study more complex system of charged particles.

The numerical results, though being far from conclusive yet, seem to indicate
that the algorithm is a competitive alternative to existing schemes, at least for dense
systems. The effect of self-interaction of the charges due to the lattice discretiza-
tion artefacts has been controlled by introducing an effective counter–interaction
between interpolated charges. It is hoped that a combination of the Yukawa sub-
traction scheme by Maggs et al. with our lattice Green’s function method will allow
us to use coarser discretization lattices, and thus better numerical performance.

On the other hand, it is necessary to investigate the accuracy of momentum
conservation, and how this depends on the lattice spacing and the speed of light.
This latter question is particularly important when considering applications which
aim at dynamic properties, like, e. g. the dynamic behavior of charged colloidal
suspensions. Much remains to be done, but the existing results are reasonably
encouraging.
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