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ZusammenfassungDiese Arbeit befasst si
h mit den konzeptionellen und te
hnis
hen Entwi
klungdes �Adaptive Resolution S
heme� (AdResS) , einer Methode der Molekular-dynamik, wel
he die glei
hzeitige Simulation eines System in unters
hiedli
henAu�ösungen, ermögli
ht. Die Simulationsdomäne teilt si
h in einen Berei
h mithöherer und einen Berei
h mit geringerer Au�ösung. Gekoppelt sind sie dur
heinen Übergangsberei
h, indem die Moleküle frei di�undieren können.Der erste Teil der Dissertation ist auf die thermodynamis
he Konsistenz derMethode fokussiert, die an einem �üssigen Modell aus tetraedris
hen Molekülengetestet und veri�ziert wurde. Die Ergebnisse erlauben die Einführung desKonzepts der Thermodynamis
hen Kraft, bei dem ein externes Feld unphysikalis-
he Di
hte�uktuationen im Übergangsberei
h, die in übli
hen AdResS Simula-tionen auftreten, korrigiert. AdResS wird au
h auf ein System angewandt, beidem si
h zwei unters
hiedli
he Darstellungen mit identis
hem Au�ösungsniveaugegenüberstehen. Dieser einfa
he Test erweitert die Anwendbarkeit der Meth-ode von einem S
hema mit adaptiver Au�ösung zu einem S
hema mit adaptiverDarstellung, in dem unters
hiedli
he Kraftfelder, die auf thermodynamis
henKonsistenzargumenten basieren, gekoppelt werden können. Die Methode derThermodynamis
hen Kraft wurde in dem hier dargestellten Beispiel erfolgrei
hangewandt.Ein alternativer, auf konstantem Dru
k basierender Ansatz für die Deduk-tion der Thermodynamis
hen Kraft, ermögli
ht die Interpretation des AdResSals ersten S
hritt hin zu einer molekulardynamis
hen Simulation im groÿkanon-is
hen Ensemble. Ausserdem hilft eine sol
he De�nition die Thermodynamis
hesKraft, die in der bekannten tetraedris
hen Flüssigkeit getestet wird, einfa
herzu bestimmen. Die E�ekte von AdResS und deren Korrektur im atomistis
heBerei
h der Simulation wurden dur
h die Untersu
hung der lokalen Verteilungder Ges
hwindigkeiten, Radialverteilungsfunktionen, Dru
k und S
hwankungder Partikelanzahl, analysiert. Deren Verglei
h mit analogen Ergebnissen ausrein atomisti
hen Simulationen zeigt eine gute Übereinstimmung, die unter demEin�uss des externen Feldes no
h gesteigert wird.Ein weiterer S
hritt in der Entwi
klung des AdResS, der für vers
hiedeneAnwendungen in der Biophysik und Materialkunde nötig ist, setzt seine An-wendung zu Multikomponentensystemen voraus. In dieser Hinsi
ht wird dieDarstellung in höherer Au�ösung eines binären Mis
hungsmodells gegen seinevergröberte (
oarse-grained) Darstellung systematis
h parametrisiert. Dabeibringt die Methode der Thermodynamis
hen Kraft zufriedenstellende Ergeb-nisse, au
h wenn ihre Entwi
klung eine no
h feinere Bearbeitung benötigt.S
hlieÿli
h wurde das AdResS in Systemen mit zweikörper-gebundenenKräftendur
h die Simulation von einemModellpolymer, dem es erlaubt ist, seine Darstel-lung adaptiv zu verändern, getestet. Es wird gezeigt, dass die Verteilung derFunktionen, die die Polymerstruktur 
harakterisieren, in der Praxis dur
h eineVeränderung der Au�ösung ni
ht beein�usst wird.Die Erläuterung der te
hnis
hen Details für die Ausführung von AdResS imESPResSo Softwarepaket bildet den letzten Teil dieser Dissertation.





SummaryThis thesis work is devoted to the 
on
eptual and te
hni
al development ofthe Adaptive Resolution S
heme (AdResS), a mole
ular dynami
s method thatallows the simulation of a system with di�erent levels of resolution simultane-ously. The simulation domain is divided into high and low resolution zones anda transition region that links them, through whi
h mole
ules 
an freely di�use.The �rst issue of this work regards the thermodynami
 
onsisten
y of themethod, whi
h is tested and veri�ed in a model liquid of tetrahedral mole
ules.The results allow the introdu
tion of the 
on
ept of the Thermodynami
 For
e,an external �eld able to 
orre
t spurious density �u
tuations present in thetransition region in usual AdResS simulations. The AdResS is also applied toa system where two di�erent representations with the same degree of resolu-tion are 
onfronted. This simple test extends the method from an AdaptiveResolution S
heme to an Adaptive Representation S
heme, providing a way of
oupling di�erent for
e �elds based on thermodynami
 
onsisten
y arguments.The Thermodynami
 For
e is su

essfully applied to the example des
ribed inthis work as well.An alternative approa
h of dedu
ing the Thermodynami
 For
e from pres-sure 
onsisten
y 
onsiderations allows the interpretation of AdResS as a �rststep towards a mole
ular dynami
s simulation in the Grand Canoni
al ensem-ble. Additionally, su
h a de�nition leads to a pra
ti
al way of determining theThermodynami
 For
e, tested in the well studied tetrahedral liquid. The e�e
tsof AdResS and this 
orre
tion on the atomisti
 domain are analyzed by inspe
t-ing the lo
al distribution of velo
ities, radial distribution fun
tions, pressureand parti
le number �u
tuation. Their 
omparison with analogous results 
om-ing from purely atomisti
 simulations shows good agreement, whi
h is greatlyimproved under the e�e
t of the external �eld.A further step in the development of AdResS, ne
essary for several appli-
ations in biophysi
s and material s
ien
e, 
onsists of its appli
ation to multi-
omponent systems. To this aim, the high-resolution representation of a modelbinary mixture is 
onfronted with its 
oarse-grained representation systemati-
ally parametrized. The Thermodynami
 For
e, whose development requires amore deli
ate treatment, also gives satisfa
tory results.Finally, AdResS is tested in systems in
luding two-body bonded for
es,through the simulation of a model polymer allowed to adaptively 
hange itsrepresentation. It is shown that the distribution fun
tions that 
hara
terize thepolymer stru
ture are in pra
ti
e not a�e
ted by the 
hange of resolution.The te
hni
al details of the implementation of AdResS in the ESPResSopa
kage 
on
lude this thesis work.
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Introdu
tionComputer simulations have be
ome a major topi
 in physi
s during the lastde
ades and a powerful tool to inquire into the details of 
omplex systems. They
an provide detailed information that is not a

essible from an experimentalperspe
tive, or allow the study of a system under 
onditions that are di�
ult orunfeasible to a
hieve in real experiments. Additionally, mole
ular simulations
an be the key to obtaining a more 
omplete pi
ture of systems where theoreti
almodels 
an only provide qualitative information about their properties.However, the same 
omplexity that requires this treatment 
an be
ome a
hallenge to simulate. For example, when the time that a system needs to rea
hequilibrium demands simulations over times that are far beyond the 
urrent
apabilities, an exhaustive des
ription is prohibitive. Therefore, the problem
an be addressed through a simpler approa
h by removing the faster degrees offreedom, and e�e
tively reintrodu
ing them, keeping the relevant physi
s fromthe original pi
ture. The simpli�
ation leads to a 
oarse-grained representation,where the number of degrees of freedom has been redu
ed, resulting in a modelthat is less 
omputationally expensive. Furthermore, it also permits the removalof spe
i�
 details in order to analyze their importan
e in the phenomena ofinterest. By this means, it is possible to treat ea
h s
ale of a system separately,bridging them in a hierar
hi
al way.Another possible approa
h is to simulate a system where the detailed de-s
ription is restri
ted to a limited region while the rest is treated in a 
oarsermanner. Several methods have been proposed with the aim of linking di�erentrepresentations des
ribed by quantum, 
lassi
al or 
ontinuum me
hani
s. TheAdaptive Resolution S
heme (AdResS), the method of 
on
ern in this work, fallsinto this 
ategory. It allows the performan
e of mole
ular dynami
s simulationsof di�erent 
lassi
al representations of the same system, through whi
h parti
les
an freely di�use.The present work 
ontributes to its development by studying its thermo-dynami
 
onsisten
y, and improving its results by means of these prin
iplesthrough the de�nition of the Thermodynami
 For
e. It also states the prin
i-ples that allow AdResS to be interpreted as a �rst step towards the simulationof open systems.The thesis is 
omposed of eight 
hapters.
• Chapter 1 introdu
es basi
 
on
epts of statisti
al me
hani
s that will be1



useful for the latter 
hapters. It also provides the basi
s of mole
ulardynami
s simulations that will orient the reader in the 
ontext of thefollowing work.
• Chapter 2 is 
on
erned with 
oarse-graining in simulations of soft mattersystems. The main 
on
epts and the methods employed in this thesis aredes
ribed here.
• Chapter 3 is dedi
ated to the Adaptive Resolution S
heme. The equa-tions of motion are presented, and the interpretation of thermodynami
quantities in a system with a variable number of degrees of freedom is in-trodu
ed, based on the prin
iples of fra
tional 
al
ulus. The nature of theequations and their 
onsequen
es are also explained. The 
hapter is 
on-
luded with the analysis of a well studied model system: a medium denseliquid of tetrahedral parti
les. It presents the main features of an AdResSsimulation, its advantages and the e�e
ts of the equations of motion inthe region where the two resolutions are mat
hed.
• Chapter 4 introdu
es the 
on
ept of the Thermodynami
 For
e, an exter-nal �eld able to 
orre
t the spurious e�e
ts that AdResS 
an produ
e inthe density of the system, whi
h development is based on thermodynami

onsiderations. It is applied to the previously introdu
ed tetrahedral sys-tem, and to a set of two one-site potentials, where the resolution does not
hange but the for
e �elds do. A pra
ti
al implementation is presented,based on an alternative interpretation that leads to the thermodynami

onsisten
y with the grand 
anoni
al ensemble.
• Chapter 5 
onsists of the study of a model binary mixture. A 
oarse-grained set of potentials is developed and 
onfronted with its atomisti
representation in AdResS. In addition, the thermodynami
 for
e is 
al
u-lated for this system.
• Chapter 6 
ontains the �rst AdResS results of two-body bonded intera
-tions from the study of a model polymer.
• Chapter 7 des
ribes the implementation of AdResS in the ESPResSo sim-ulation pa
kage, a more te
hni
al aspe
t that provides helpful insight intothe equations of motion.
• Finally, the 
on
lusions are presented in Chapter 8.

2



Chapter 1Basi
 
on
eptsThis 
hapter is 
omposed of two se
tions that provide the main theoreti
al ele-ments used in this thesis. The �rst part 
ontains the basi
 statisti
al me
hani
sand distribution fun
tions and their relation to thermodynami
s. The de�ni-tion of the Potential of Mean For
e, a quantity of relevan
e in this work, is alsointrodu
ed. The se
ond se
tion explains some basi
 
on
epts of mole
ular dy-nami
s simulations and some features of the 
al
ulations presented in the later
hapters.1.1 The radial distribution fun
tionThe state of a 
lassi
al system 
onstituted of a large number of parti
les Nis totally de�ned by the positions rN and momenta pN of its 
omponents ata 
ertain time t. However, its exhaustive des
ription is not only unfeasible,but unne
essary for the 
al
ulation of ma
ros
opi
 properties. Therefore, astatisti
al treatment results more pra
ti
al and meaningful. The average of aquantity A(rN ,pN ) sampled over a traje
tory is de�ned as
〈A〉t = lim

τ→∞

1

τ

∫ τ

0

A(rN (t),pN (t))dt (1.1)In addition, if it is assumed that in a traje
tory position and momentum spa
eis sampled thoroughly [?℄, the ensemble average of A(rN ,pN ) is de�ned by [?,?℄
〈A〉 =

∫ ∫

A(rN ,pN)f(rN ,pN )drNdpN (1.2)where ea
h point is weighted by the probability distribution f(rN ,pN ) [?,?,?℄.Su
h a fun
tion is determined by the thermodynami
 quantities that 
hara
ter-ize the ma
ros
opi
 state of the system, providing a link between the mi
ros
opi
and ma
ros
opi
 levels of des
ription. For the 
anoni
al ensemble, where thenumber of parti
les, temperature and volume are �xed, f is given in terms of3



the Hamiltonian H of the system, by
fNV T (rN ,pN) =

e−βH(rN ,pN )

QN (V, T )
(1.3)where β = 1/kBT , with kB the Boltzmann's 
onstant. The normalization fa
tor

QN (V, T ) is the partition fun
tion [?,?,?,?℄. fNV T is a huge obje
t that 
ontainsan enormous amount of information whi
h is unne
essary for pra
ti
al purposes.A way of distilling its physi
al meaning is to deal with redu
ed distributionfun
tions.The most simple 
ase is to 
al
ulate the probability of �nding a parti
leat some position r, independent of the 
on�guration of the rest of the system,given by [?, ?℄
ρ(r1) = N

∫

r2 . . .

∫

drN

∫

dpNf(rN ,pN ) (1.4)where the prefa
tor N indi
ates that any parti
le 
an be 
hosen among the Nindistinguishable parti
les.In a homogeneous system, ρ(r) is independent of r and be
omes simply
N
V . This is enough to des
ribe the thermodynami
s in an ideal gas, that la
ksof stru
ture. However, if the for
es between the parti
les are relevant, the
orrelations indu
ed by them must be 
onsidered for a proper des
ription of thesystem. Further information 
an be extra
ted from the probability distributionby de�ning

ρ
(2)
N (r1, r2) = N(N − 1)

∫

dr(N−2)

∫

dpNf(rN ,pN ) (1.5)the pair density fun
tion [?,?℄. This density gives the probability of �nding twoparti
les at r1 and r2, independent of their identity. It is remarkable that in ahomogeneous system of non-intera
ting 
omponents, ρ
(2)
N (r1, r2) = ρ2

(

1 − 1
N

),that is simply ρ2 for large N. It is thus 
onvenient to measure the degree of
orrelation between two parti
les by 
omparing the pair density fun
tion withthis referen
e value as
g
(2)
N (r1, r2) =

ρ
(2)
N (r1, r2)

ρ(r1)ρ(r2)
(1.6)If the system is homogeneous, g

(2)
N (r1, r2) depends only on the distan
e r =

|r1 − r2| and it is denoted simply by g(r), the radial distribution fun
tion. Thisfun
tion is of vital importan
e in the theory of liquids. It provides basi
 infor-mation about the mi
ros
opi
 stru
ture, but it is also 
losely linked to the ther-modynami
s of the system and determines it 
ompletely when parti
les intera
tthrough pair potentials. Moreover, g(r) 
an be measured experimentally [?,?,?℄.In addition, higher order density fun
tions 
an be de�ned as
ρ
(n)
N (rN ) = N(N − 1) . . . (N − n + 1)

∫

drn+1 . . . drN

∫

dpNf(rN ,pN ) (1.7)4



and the n-parti
le distribution fun
tions are given by
g
(n)
N (rn) = ρ

(n)
N (r1, r2, . . . , rn)/

n
∏

i=1

ρ
(1)
N (ri) (1.8)For the 
ases 
onsidered in this thesis work, the analysis will be restri
ted tothe radial distribution fun
tion g(r) and pair potentials in liquids, with someex
eptions that will be explained in detail when required.1.1.1 Relation to Thermodynami
sThe average of a fun
tion that depends on the position of two parti
les 
an beeasily expressed in terms of integrals of g(r). A typi
al example is the potentialenergy, that initially is written as a sum of many-body 
ontributions [?℄

U(rN ) =
∑

i

U (1)(ri) +
∑

i<j

U (2)(ri, rj) +
∑

i<j<k

U (3)(ri, rj , rk) + . . . (1.9)where the two-body 
ontribution U (2) 
an be averaged over the positions r1 and
r2 as

〈U (2)〉 =
1

N(N − 1)

∫

ρ
(2)
N

(

1

2
U (2)(r1, r2)

)

dr1dr2 (1.10)resulting, in terms of the pair distribution fun
tion, in
〈v〉 = 2πρ2V

∫

g(r)v(r)r2dr. (1.11)A more general form for the average potential energy is
〈U〉 =

ρ2V

2

∫

drU (2)(r)g(r) +
ρ3V

6

∫ ∫

drdr′U (3)(r, r′)g(3)(r, r′) + . . . (1.12)The s
alar pressure has an analogous relation on
e it has been expressed asthe average of a fun
tion of pairs of 
oordinates. Su
h relation is des
ribed interms of the virial [?,?℄, de�ned as
Θ = −1

2

N
∑

i=1

(ri ·Fi) (1.13)The for
es used in the sum have two sour
es: one 
omes from the intermole
ularfor
es while the other, the external virial Θe, from the pressure exerted by thewalls of the 
ontainer that 
on�ne the system to its volume V . Hen
e, Θ 
anbe written as
Θ =

1

2

N
∑

i=1

(

ri · ∇iU(rN )
)

− Θe (1.14)5



On average, the walls will exert a total for
e of −pndA per unit area, where
ndA is an in�nitesimal unit of area pointing away from the 
ontainer. Thus,from the external virial it is given

〈Θe〉t =
3

2
pV (1.15)while its total average is

〈Θ〉t = − lim
τ→∞

[

1

τ

∫ τ

0

(

∑

i

d

dt
(miri · ṙi) −

∑

i

miṙ
2
i

)

dr

] (1.16)Assuming that velo
ities and displa
ements are bounded [?,?℄, the �rst term inthe right side of 1.16 vanishes in the limit τ → ∞. Consequently, it yields
3

2
pV − 1

2

N
∑

i=1

(

ri · ∇iU(rN )
)

= 〈
∑

i

miṙ
2
i 〉 (1.17)By identifying the average kineti
 energy per parti
le as 3NkBT [?℄, with kBthe Boltzmann's 
onstant and T the temperature, it is possible to 
on
lude that

p = ρkBT − 1

3V
〈∇U · r〉t (1.18)or

p = ρkBT − 2

3
πρ2

∫ ∞

0

dv(r)

dr
g(r)r3dr (1.19)while a more general formula involving many-body terms is given by

p = ρkBT − ρ2

6

∫

dr
dU (2)(r)

dr
g(r) − ρ3

18

∫ ∫

drdr′r
dU (3)(r, r′)

dr
g(3)(r, r′) + . . .(1.20)1.1.2 The Potential of Mean For
eBy �xing the position of two parti
les, it is possible to write the average for
eon one of them as a fun
tion of their distan
e, by integrating over the positionsof the N − 2 remaining parti
les. This for
e 
an be derived from a potentialdire
tly linked to the pair distribution fun
tion: the potential of mean for
e [?℄.In fa
t, by labeling the �xed parti
les as 1 and 2, the for
e on the �rst oneis

〈−∇1U(rN )〉1,2 =

∫

dr3 . . . drN

(

− ∂U
∂r1

)

e−βU

∫

dr1 . . . drNe−βU
(1.21)The previous quotient 
an be written as

−kBT
∇g(r)

g(r)
(1.22)6



so, a

ording to the previous de�nition, the potential of mean for
e is
UPMF = −kBT log g(r) (1.23)It 
an also be proven that UPMF(r) approa
hes the potential v(r) in the lowdensity limit [?℄.1.2 Mole
ular dynami
s simulationsComputer simulations [?, ?℄ are a powerful tool for the study of phenomenadi�
ult to 
hara
terize by experiment, and too 
omplex to be treated in detailby theory. They also provide a good testing �eld for mat
hing the mi
ros
opi
laws of a system with its thermodynami
 features; a numeri
al implementationof statisti
al me
hani
s.This se
tion 
ontains the basi
 
on
epts of a simulation, followed by the basi
relations to thermodynami
s and 
on
ludes with a brief des
ription of sto
hasti
thermostats, a subje
t of relevan
e in the following work.1.2.1 Equations of motionA mole
ular dynami
s simulation 
onsists basi
ally in the numeri
al solutionof the equations of motion of a set of parti
les. In the most general form, theequations are (in terms of the positions ri and momenta pi)

ṙi =
pi

mi
(1.24)

ṗi = fi (1.25)The for
es 
an be written as
fi = − ∂

∂ri
U(rN ) (1.26)for 
onservative systems, where a potential energy U(rN ) is well de�ned.Equations 1.24 and 1.25 
an be numeri
ally solved, in order to obtain the
on�gurations of positions and velo
ities of the system for a dis
rete set of times

tm. Thus, the time average of a fun
tion A(rN ,pN ) 
an be estimated as
lim

τ→∞

1

τ

∫ τ

0

A(t′)dt′ ≈ 1

M

T
∑

m=1

Am (1.27)where the sum is performed over the M 
on�gurations generated.The equations of motion 
an be numeri
ally solved by several s
hemes [?,?, ?, ?℄. Among them, the Verlet algorithm [?℄ is spe
ially remarkable, dueits e�
ien
y and stability [?℄. It is also time reversible, preserves the areaof the phase spa
e and displays low energy drifts throughout the simulation.7



Spe
i�
ally, the Velo
ity Verlet algorithm [?, ?℄ will be used in this work. Itsequations are
ri(t + ∆t) = ri(t) + vi(t)∆t +

1

2mi
fi(t)∆t2 (1.28)

vi(t + ∆t) = vi(t) +
1

2mi
(fi(t + ∆t) + fi(t)) ∆t (1.29)denoting by ∆t the dis
rete time step. This variant of the original Verlet methodgenerates traje
tories with an a

ura
y of order ∆t4, as in the original Verlets
heme. However, it also allows a more a

urate 
omputation of the velo
ities,whi
h requires the 
al
ulation of the for
es twi
e per integration step.For numeri
al reasons, it is usually 
onvenient to use units suitable for the
hara
teristi
 s
ales of the system [?, ?℄. In pra
ti
e, it is only ne
essary tohave a unit of energy ǫ, length σ and mass m. Then, a redu
ed time t∗ 
anbe de�ned through the relation t∗ = t/

√

(mσ2)/ǫ. The redu
ed energy 
an bewritten as U∗ = U/ǫ, while redu
ed pressure and temperature are p∗ = pσ3/ǫand T ∗ = kBT/ǫ respe
tively. The integration time step ∆t is usually writtenin these redu
ed units as a small fra
tion of the smallest time s
ale present inthe system.1.2.2 Thermodynami
 quantitiesTemperature and pressure are fundamental thermodynami
 quantities obtainedas averages in a simulation on
e the system has rea
hed equilibrium. Fromits de�nition [?, ?, ?, ?℄, the temperature is 
al
ulated as a time average of aninstantaneous temperature Tm at time tm de�ned as
Tm =

N
∑

i=0

miv
2
i (tm)

kBNf
(1.30)where Nf is the number of degrees of freedom.Analogously, the pressure 
an be obtained from a time average of the in-stantaneous pressure πm given by

πm = ρkBTm +
1

3V

∑

i<j

fij · rij (1.31)where fij and rij are evaluated at time tm.1.2.3 Sto
hasti
 thermostatsIn prin
iple, the integration of Hamilton's equations of motion generates tra-je
tories that 
onserve energy, number of parti
les and volume. Nevertheless, itis useful in most 
ases to perform simulations in the 
anoni
al ensemble, wherethe system is in 
onta
t with a heat reservoir. Several algorithms have beenproposed for this [?,?,?,?,?,?,?℄. 8



Sto
hasti
 dynami
s [?℄ provides a powerful tool to a

omplish this task,that will be used here as a thermostat [?,?℄. The idea 
onsists of the additionof a random noise fS and a fri
tion ff to the for
e on ea
h parti
le. Under thiss
heme, the equations of motion adopt the form
ṙi = vi (1.32)
v̇i =

1

mi
fHi − ζi

mi
vi +

σi

mi
fS
i (1.33)where fHi is the for
e a
ting on parti
le i 
oming from the 
onservative potential.The sto
hasti
 for
e must satisfy

〈fS
i 〉 = 0 (1.34)and

〈fS
i (t)fS

j (t′)〉 = 2δijδ(t − t′) (1.35)for ea
h of its 
omponents.It 
an be proven that the system of Langevin equations of 1.33 generates the
anoni
al distribution fun
tion in equilibrium [?,?℄ provided that the �u
tuation-dissipation theorem [?,?℄
σ2

i = kBTζi (1.36)holds.It is also known that, in general, this integration s
heme stabilizes the equa-tions of motion, allowing the use of longer time steps for integration [?, ?℄.Equilibrium properties are not a�e
ted, but shear vis
osities and di�usion 
oef-�
ients are sensitive to the 
hoi
e of the fri
tion 
oe�
ient [?℄.A major drawba
k of the equations shown above is that they do not 
on-serve momentum, whi
h is a 
ru
ial property for the reprodu
tion of 
ertainhydrodynami
 phenomena [?℄. This 
an be solved by applying the noise andfri
tion for
es in a pair-wise fashion, a
ting along the ve
tor that joins two atoms.This implementation 
orresponds to the dissipative parti
le dynami
s thermo-stat (DPD) [?, ?,?,?,?, ?℄, that preserves also the advantages of the sto
hasti
dynami
s. Thus, the fri
tion 
an be rewritten as
fD
i = −

∑

j

ζwD(rij) ((vi − vj) · r̂ij) r̂ij (1.37)while the noise is rede�ned through
fS
i =

∑

j

σwR(rij)ηij(t)r̂ij (1.38)where rij = ri − rj = rij r̂ij . The noise ηij must satisfy
〈ηij〉 = 0 (1.39)and

〈ηij(t)ηkl(t
′)〉 = 2(δikδjl + δilδkj)δ(t − t′) (1.40)9



analogous to the Langevin for
es. The fun
tions wD and wR are just weightingfun
tions that vanish for r > rc, a prede�ned 
uto� radius. In order to satisfythe �u
tuation-dissipation theorem, they must satisfy
[wR(r)]2 = wD(r) (1.41)while the 
onstants ζ and σ are related through Eq. 1.36.Their form 
an be given by a smooth fun
tion of r [?℄

wD(r) = [wR(r)]2 =

{

(1 − r/rc)
2, r ≤ rc

0, r > rc

(1.42)or a simpler expression
wD(r) = [wR(r)]2 =

{

1, r ≤ rc

0, r > rc

(1.43)Additionally, it is required that ηij = ηji.Langevin thermostats 
an also be used to tune transport properties, likedi�usion 
oe�
ients or vis
osities, by setting ζ properly, satisfying relation 1.36.For the 
ase of DPD, su
h properties are quite insensitive to these 
hanges.However, transport 
oe�
ients 
an be modi�ed by adding noise and fri
tionfor
es in a dire
tion perpendi
ular to r̂ij , whose ζT and σT 
oe�
ients arenot ne
essarily the same as those used by the DPD for
es. Su
h a transverseDPD thermostat has been su

essfully used to tune the di�usion and vis
osity
oe�
ients [?℄.

10



Chapter 2Coarse-graining in soft mattersimulationsAtomisti
 simulations are an indispensable tool for the 
hara
terization of manypro
esses in physi
s that, due their 
omplexity, are di�
ult to treat by analyti
or experimental methods. By these means, it is possible to understand moredeeply pro
esses su
h as protein folding [?,?,?,?,?℄, the formation of mi
elles[?, ?, ?, ?, ?, ?℄, the intera
tion of polymers with surfa
es [?, ?, ?, ?, ?℄, or tosimply obtain information about the equation of state [?,?,?,?,?,?,?,?,?,?℄ orto 
al
ulate of free energies of 
ertain systems [?,?,?,?,?,?℄.However, soft matter systems 
an be espe
ially 
hallenging to simulate.Their properties usually involve the interplay of several time and length s
ales,and their energy densities is in general low, of the order of the elasti
 
onstants.A

ordingly, thermal �u
tuations are a relevant fa
tor in their 
on�gurationalbehavior, whi
h demands long simulations in order to thoroughly sample thephase spa
e.This is usually the 
ase for many 
omplex liquids, biomole
ular systems andpolymer melts, where the presen
e of di�erent time and length s
ales demandslong simulations whi
h makes the 
al
ulation extremely expensive, if not unfea-sible in 
omputational terms.A more 
on
rete example of this issue is the simulation of polyethylene, anillustrative 
ase due its simpli
ity and wide number of industrial appli
ations.While a single 
hemi
al bond between 
arbon atoms is of the order of 1 Å,the e�e
tive size of a polymer 
oil, expressed through its gyration radius, 
anbe of the order of 100 Å at relevant thermodynami
 
onditions. Therefore,the system size required for a proper simulation must be beyond the longest
hara
teristi
 length, 
ontaining millions of atoms. On the other hand, the
hara
teristi
 vibration time of a bond is of the order of 10−13 se
onds, whi
h
on�nes the integration step to around 10−15 se
onds. However, the relaxationtime of 
hains (
omposed approximately of 500 monomers) in melts is estimatedto be around 10−5 se
onds [?℄, a di�eren
e of at least ten orders of magnitude.11



Hen
e, the relevant physi
s o

urring at the mesos
opi
 s
ales 
an be di�
ultif not impossible to 
over due to the prohibitive 
omputational e�orts required.A possible way to avoid these limitations is by employing simpli�ed models ofthe original system, where the details belonging to the fast s
ales are omitted inthe integration, but properly reintrodu
ed through e�e
tive intera
tions on theslower variables. The aim of su
h a 
oarse-grained representation is to redu
e thenumber of degrees of freedom, 
apturing at the same time the essential physi
srequired to des
ribe the phenomena of interest as a

urately as possible. As a
onsequen
e of this redu
tion, the time needed to simulate larger systems andto perform longer runs is redu
ed. In this spirit, the di�erent levels of resolution
an be simulated separately by di�erent methods and 
onsistently 
oupled formaking a 
omplete pi
ture and obtain quantitative predi
tions.The form of designing a 
oarse-grained model strongly depends on the phys-i
al quantities of relevan
e for the problem. In some simulations of lipid mem-branes in water, for example, it is useful to remove the solvent from the inte-gration of the equations of motion and in
lude it into the e�e
tive intera
tionsof the solute parti
les [?,?,?,?,?,?℄. However, the approa
h taken in this work
onsists of the 
lustering of a group of atoms onto a mapping point. The posi-tion of this superatom will be a fun
tion of the positions of its n 
omponents,written as Ri(r1, r2, . . . , rn), while the mass and velo
ity are de�ned in a 
on-sistent manner. Consequently, the number of degrees of freedom is redu
ed.Figure 2.1 illustrates a water mole
ule mapped onto a stru
tureless bead 
en-tered at its 
enter of mass. On
e mapping sites have been de�ned as a fun
tionof the atomisti
 positions, the e�e
tive intera
tions that govern them have to bedetermined to suitably resemble the aspe
ts of interest of the original system.
Figure 2.1: Water mole
ule mapped into its 
enter of mass.It is also of importan
e that the 
oarse-graining methods are not only anattempt to over
ome the te
hni
al limitations found in the simulation of 
omplexsystems, but also, a way to distillate the essential physi
s that determines thepro
ess under study. In this framework, 
oarse-graining 
an also be 
onsideredto be an analysis tool [?,?,?,?,?℄.Depending of the problem, a 
oarse-grained system 
an be designed tomat
h, the total energy of the atomisti
 system [?℄, the instantaneous for
eat the mapping points [?, ?℄, or thermodynami
 aspe
ts in order to emulate
ertain biologi
al fun
tions [?℄. In this work, however, the 
oarse-graining pro-
edure will be fo
used on the mapping of the thermodynami
s and some basi
12



stru
ture fun
tions. In the following se
tions, the reasons for this 
hoi
e will beexplained, followed by the des
ription of the methods employed for this aim, to
on
lude with the limitations of su
h approa
hes.2.1 Stru
ture-based 
oarse-grainingThe main feature of a stru
ture-based 
oarse-graining is the 
lose link betweenits 
on�gurations and that of its atomisti
 model. This allows a dire
t 
om-parison with experiments, and makes possible, in some 
ases, the reinsertion ofatomisti
 details when needed [?℄.The goal of stru
tural 
oarse-graining is to reprodu
e 
ertain distributionfun
tions, de�ned between the mapping points in the atomisti
 system. Typi-
ally, ea
h distribution fun
tion is adjusted by the modi�
ation of its asso
iatedfor
e �eld. In a simple liquid, for example, the basi
 stru
ture is 
ontained inthe radial distribution fun
tion that is tuned through a non-bonded pair poten-tial between the 
orresponding mapping points. In more 
omplex stru
tures,like polymers, the monomers 
an be represented by one or more units whi
h arebonded by two, three or four-body potentials. Ea
h of these for
e �elds mat
hesits respe
tive distribution fun
tion, although more 
omplex distributions 
ouldrequire more spe
i�
 and sophisti
ated treatments [?℄.Several te
hniques provide a way of generating these for
e �elds. Never-theless, in an ideal situation, the form of an e�e
tive pair potential should beindependent of how it is obtained, as it has been rigorously proven by Hender-son [?℄. In his theorem it is stated that, in a simple liquid, two pair potentialsthat reprodu
e the same radial distribution fun
tion are identi
al up to a trivial
onstant.However, it has been lately shown that signi�
antly di�erent for
e �elds 
anprodu
e distribution fun
tions that are pra
ti
ally indis
ernible [?℄. This issueestablishes a numeri
al dependen
e of the potential on the te
hni
al implemen-tation of the 
oarse-graining pro
edure.Iterative methods, like Reverse Monte Carlo (RMC) [?℄ or Iterative Boltz-mann Inversion (IBI) [?℄ are easy to implement and they have been su

essfullytested on many systems. Reverse Monte Carlo employs a 
orre
tion based onrigorous prin
iples, and 
onsequently, it generally 
onverges faster than the It-erative Boltzmann Inversion, whose formula is inspired on phenomenologi
al
onsiderations. However, the former also requires better statisti
s on ea
h step,that demands longer runs [?℄, and exhibits mu
h more sensitivity to the systemsize. Hen
e, there is a balan
e between both methods in terms of 
omputa-tional time: while the �rst 
onverges faster, the latter 
an be iterated withshorter simulations.The Iterative Boltzmann Inversion is of main 
on
ern in this work, spe
if-i
ally in the 
ases of simple liquids, binary mixtures and model polymers thatwill appear in the following 
hapters. Its implementation is explained in thenext se
tion. 13



2.2 Te
hni
al implementation: the Iterative Boltz-mann InversionThe Iterative Boltzmann Inversion allows one to obtain a potential that repro-du
es its respe
tive target stru
ture fun
tion, previously obtained from experi-mental data or high-resolution simulations. For this aim, in a polymer system,the 
oarse-grained potential is usually de
omposed into bonded and non-bonded
ontributions, whi
h 
onstitutes the �rst assumption in this approa
h. Theirrespe
tive treatment is explained in the following se
tions.2.2.1 Bonded intera
tionsThe simplest 
oarse-grained polymer 
an be represented by a 
hain of stru
ture-less monomers. Its 
onformations are basi
ally determined by the bond length
r, that is the distan
e between two monomers, and the angles formed by thebonds shown in Fig. 2.2. The angle θ is de�ned as the angle formed by three
onse
utive monomers, while a torsion is the angle between the plane de�nedby the parti
les p1, p2 and p3 and the plane de�ned by the parti
les p2, p3 and
p4. This implies the ne
essity of introdu
ing three and four body potentials toadjust the distribution fun
tions.

Figure 2.2: Angles and torsions in a model polymer.14



A basi
 mapping of the stru
ture expresses the probability distribution interms of these parameters as P (r, θ, φ). In addition, for pra
ti
al purposes, awidely used simpli�
ation is to fa
torize it as P b(r)P a(θ)P t(φ), assuming thatea
h 
oordinate is un
orrelated with the rest. The proper 
hoi
e of the mappingpoints [?℄ 
an help to de
orrelate su
h variables. In some 
ases, however, it isne
essary to resort to more 
omplex distribution fun
tions [?℄.A �rst guess for an e�e
tive intera
tion is the Boltzmann Inversion, that
onsists of starting from the mean for
e potential, de�ned as
U bPMF(r) = −kBT log

P btarget(r)
r2

+ Cr (2.1)in terms of the target bond length distribution probability P btarget(r) and thetemperature T . Here Cr is an arbitrary 
onstant that sets the minima of thepotential, while the fa
tor r−2 in the logarithm 
omes from the radial term of theJa
obian r2 sin θ. This guarantees the proper normalization of the distributionfun
tions, when they are obtained as simple normalized histograms sampledfrom the original data.For the angular intera
tions, the inverted potential is given in terms of thetarget angle distribution P atarget(θ) by
UaPMF(θ) = −kBT log

P atarget(θ)
sin θ

+ Cθ (2.2)The denominator of the argument of the logarithm 
ontains a sin θ fa
tor toensure the proper normalization of the probability. Cθ, as before, is an arbitrary
onstant.In an analogous way, for the torsion angles the potential is
U tPMF(φ) = −kBT log P ttarget(φ) + Cφ (2.3)where Cφ is an arbitrary shift and P ttarget(φ) is the target distribution.All these potentials 
an be re�ned iteratively by means of the re
ursion
Ui+1(r) = Ui(r) + kBT log

Pi(r)

Ptarget(r) (2.4)where Ui+1(r) and Ui(r) are the potentials of steps i+1 and i, respe
tively, while
Pi(r) is the 
orresponding distribution fun
tion obtained from the integrationof the equations of motion using Ui(r) as input. From the equation above, itis 
lear that the potential be
omes more repulsive where there is an ex
ess ofparti
les in 
omparison with the target distribution, and vi
e versa.2.2.2 Non-bonded intera
tionsStarting from a target distribution gtarget(r), the pair 
orrelation fun
tion be-tween the mapping points in the atomisti
 system, the potential of mean for
eis de�ned as

UPMF(r) = −kBT log gtarget(r) (2.5)15



and 
orresponds to the Boltzmann Inversion of g(r) [?℄. Su
h a potential gen-erates the target radial distribution fun
tion in the limit of an in�nitely dilutesystem. However, this is usually not the 
ase for medium and high density sys-tems [?℄, and additional 
orre
tions have to be introdu
ed iteratively, followingEq. 2.4.When more spe
ies are present in the system, the pro
edure to follow isstraightforward. The potential Uij(r) between the 
omponents i and j is as-so
iated with the 
orresponding radial distribution fun
tion gij(r). Thus, theiterative re�nement of Eq. 2.4 
an be applied to the potential of mean for
e ofEq. 2.5 separately for ea
h pair of spe
ies.2.2.3 Pressure 
orre
tionIn addition to the stru
ture adjustment, it 
ould also be ne
essary to �t thepressure at the density of the target system through the non-bonded pair po-tentials [?℄. In this 
ase, a small linear potential 
an be added, as
∆U(r) = V0

(

1 − r

rc

) (2.6)for r < rc, where rc is the 
uto� radius of the pair potential and V0 is a small
orre
tive 
onstant. The 
orre
tion from Eq. 2.6 yields a 
onstant for
e thatmakes the intera
tion more attra
tive if V0 is negative, and more repulsive inthe opposite 
ase. Thus, the pressure 
an be 
ontrolled by initially 
hoosinga small value (typi
ally 0.1kBT ) and adding iteratively ∆U(r), 
onse
utivelyde
reasing V0 for a higher a

ura
y.A more pre
ise form of estimating V0 is to use the virial expression of thepressure in terms of the for
e �eld F (r) and density ρ

p = ρkBT +
2

3
πρ2

∫ ∞

0

F (r)r3g(r)dr (2.7)from whi
h the 
ontribution to the pressure pc introdu
ed by the 
orre
tion 
anbe written as
pc ≈ 2

3
πρ2 V0

rc

∫ rc

0

r3g(r)dr (2.8)where it has been assumed that the g(r) stays the same under the slight modi-�
ation of the for
e �eld. This yields an estimate of V0 of
V0 ≈ pc

2
3πρ2

∫ rc

0 r3g(r)dr
(2.9)as a fun
tion of pc, that has to be evaluated as the di�eren
e of the pressure ofthe 
urrent 
oarse-grained system with the target value [?℄.If V0 is not small enough, the stru
ture 
an be 
onsiderably modi�ed, andhen
e, it will have to be readjusted, until a reasonable balan
e between thea

ura
y of the �t of the radial distribution fun
tion and pressure is rea
hed after16



a re
ursive alternation between these methods [?℄. In most 
ases in the presentwork, however, the 
orre
tion will be applied at ea
h step of the Boltzmanniterations, in order to minimize its e�e
ts on the stru
ture of the system.It has been observed that the simultaneous adjustment of two or more prop-erties in 
oarse-grained systems is a di�
ult task and is not always possible [?℄.This trend is a well known disadvantage of any 
oarse-graining pro
edure, andit is brie�y dis
ussed in the next se
tion.2.3 Limitations of stru
ture-based 
oarse-grainingIn general, a 
oarse-grained model 
an not be expe
ted to reprodu
e the physi
alproperties of the atomisti
 model. A 
ommon 
on�i
t lies on the in
ompatibil-ity between thermodynami
s and stru
ture [?℄. The 
ase of water models, forexample, has been widely studied, displaying this mismat
h between pair stru
-ture and pressure [?℄. In addition, the 
ompressibility, that in theory should bedetermined by the pair 
orrelation fun
tion [?℄, has been shown to be unable toadjust simultaneously to the pressure [?℄ by means of pair potentials. Clearly,the simpli�
ation of the 
oarse-grained system does not 
onsider multiple-bodypotentials, and therefore, 
orrelation fun
tions of order higher than two are notne
essarily reprodu
ed. It is expe
ted then that a redu
tion of the number ofdegrees of freedom and the simpli�ed form of the e�e
tive potential restri
t therange of observables that the 
oarse-grained system 
an emulate.Transferability problems are another limitation of 
oarse-grained approa
hes.The use of a 
oarse-grained for
e �eld on a di�erent state point from where ithas been 
onstru
ted 
an lead to a mismat
h of the adjusted properties with re-spe
t to the referen
e system. Su
h behavior has been observed, for example, insimulations of ortho-terphenyl [?℄ parametrized by means of the Iterative Boltz-mann Inversion above and below the temperature of the glass transition. Bothfor
e �elds produ
e qualitatively di�erent behaviors at low temperatures: in the�rst 
ase the system exhibits a glassy state while in the se
ond, it 
rystallizes.Thus, a glass transition temperature in this 
ase 
an not be de�ned 
onsistentlysin
e the phase spa
e depends on the state point of the referen
e system [?℄.The origin of this dependen
e on the thermodynami
s 
omes from a redu
-tion of the faster degrees of freedom as an average e�e
t on the rest of thesystem. This pro
edure makes impli
it use of the probability distribution thatdepends of the ma
ros
opi
 thermodynami
 quantities. Consequently, a 
hangein the state point will imply a new 
al
ulation of the e�e
tive intera
tions. Thistrend is a more general tenden
y shown every time that a many-body for
e �eldis redu
ed to an e�e
tive set of for
es a
ting on a lower number of degrees offreedom. Su
h simpli�
ation is often performed in every �eld of physi
s whenphenomenologi
al 
onstants are introdu
ed. A simple example resides in the def-inition of the e�e
tive values of ǫ and σ in the usual Lennard-Jones potential fornoble gases, sin
e they are a simpli�
ation from the three-body Axilrod-Tellerpotential [?℄.A �nal remark is the di�eren
e between the dynami
al properties of atomisti
17



and 
oarse-grained simulations. Normally, the 
oarse-grained systems displayfaster dynami
s due to their smoother potential energy lands
ape. Su
h a trend
an be used as an advantage, sin
e longer e�e
tive integration time steps 
anbe used, and the e�
ien
y of the simulation is enhan
ed. However, transportproperties su
h as di�usion 
oe�
ients or vis
osities must be res
aled properlyto have physi
al meaning [?℄.
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Chapter 3The Adaptive ResolutionS
hemeMany soft matter systems involve a 
lose relationship between several length andtime s
ales whi
h demands a fully atomisti
 des
ription for their proper 
hara
-terization. Su
h requirement 
an usually be addressed by means of a multis
aleapproa
h, where ea
h s
ale is studied in detail separately. The 
onsisten
y be-tween them is imposed by using the output of the high resolution simulationsas input for the lower resolution models in a hierar
hi
al fashion [?,?,?,?,?℄.However, if a detailed des
ription is required in a spe
i�
 region of the spa
e,an approa
h that is able to deal simultaneously with several levels of resolutionwould be mu
h more pra
ti
al. A typi
al example of this situation is found inthe study of solvation properties [?℄, where a high resolution model is ne
essaryonly in the solute and the �rst solvation shells while the bulk of the solvent 
anbe treated in a less sophisti
ated way.This is the aim of several methods [?,?℄ that 
ouple, for example, quantumme
hani
al des
riptions with 
lassi
al ones, relegating the 
hemistry to a boundregion while treating the less relevant surrounding parti
les in a 
oarser, 
lassi
almanner. Additionally, several approa
hes have been designed to link mesos
aleand atomisti
 des
riptions [?,?,?,?,?,?,?,?,?℄, 
ommonly used for the modelingof 
ra
k propagation in 
ertain materials. However, in these 
ases, the regions ofdi�erent resolution are rigidly de�ned and do not allow the ex
hange of parti
lesbetween them, whi
h, in �u
tuating soft matter systems, is an important issueto 
onsider.The Adaptive Resolution S
heme (AdResS) [?,?,?,?℄ is one of the mole
ulardynami
s algorithms designed to ful�ll these requirements [?,?℄. It allows thedes
ription of a system divided in regions of di�erent resolution a
ross whi
hparti
les 
an freely di�use, 
hanging smoothly their number of degrees of free-dom. Su
h a transition from one level of resolution to another should not a�e
tthe global physi
s of the system, sin
e only the representation of the spe
ieshas 
hanged but not its nature. Therefore, equilibrium 
onditions su
h as pres-19



sure balan
e, thermal equilibrium and the absen
e of mole
ular �ux [?℄ must beful�lled.Re
ently, the adaptive simulation of quantum/
lassi
al systems has also beenextended to an adaptive s
heme [?, ?℄. However, su
h approa
hes are beyondthe s
ope of this work.The present 
hapter begins exposing the equations of motion of AdResS.It follows the de�nition of the thermodynami
 quantities of interest under thes
heme and 
ontinues with the main features of the non-Hamiltonian natureof the equations, giving the main arguments that support the 
hoi
e of theirform. Finally, the method is illustrated through the appli
ation to a previouslystudied model of tetrahedral parti
les [?, ?, ?℄.3.1 Equations of motionIt will be assumed along this work that the 
oarse-grained model 
onsists ofan intera
ting site mapped at the 
enter of mass of the atomisti
 mole
ule.The intera
tion between these sites 
an be obtained by means of the methodsmentioned in Chapter 2. Therefore, having the 
oarse-grained and atomisti
for
e �elds FCG and FAT , the total for
e between two mole
ules α and β isgiven by
Fαβ = w(Rα)w(Rβ)FAT

αβ + (1 − w(Rα)w(Rβ))FCG
αβ , (3.1)in terms of the weighting fun
tion w(R). This fun
tion depends ex
lusivelyof the position of the mapping point of the mole
ule, denoted by R, while its
onforming atoms inherit its value. This fun
tion gives a

ount of the degree ofresolution of ea
h parti
le, ranging from 0 to 1. From Eq. 3.1, it is straightfor-ward that w = 0 yields a purely 
oarse-grained for
e �eld, while w = 1 leavesthe purely atomisti
 
ontribution. The region where w has a non-integer value is
alled the hybrid or swit
hing region. Figure 3.1 illustrates the implementationin a one-dimensional geometry.In the hybrid region, the for
e felt by the mole
ules is a linear 
ombinationof the two for
e �elds that ensures a smooth 
hange of the representation of themole
ules, and 
onsequently, a gradual removal or in
lusion of the degrees offreedom that are absent in the 
oarse-grained regime.3.2 Consequen
es of a non-hamiltonian approa
hAs the number of degrees of freedom of ea
h representation is not the same,thermodynami
 quantities like the 
hemi
al potential will not ne
essarily mat
h.Therefore, the system must be 
oupled to a lo
al thermostat that provides (orremoves) the required amount of heat in order to keep the system in equilibrium.Thus, every time that a mole
ule leaves the 
oarse-grained regime, its internaldegrees of freedom are set up a

ording an equilibrium distribution, while thethermostat takes 
are of keeping su
h distribution.20



Figure 3.1: Pi
torial representation of an x-dependent setup, w(x) =

sin2
[

πx
2dhy

].In this sense, an adaptive simulation 
an be seen (with 
ertain limitations) asa geometri
ally indu
ed phase transition, where the energy required to a
tivatethe internal degrees of freedom of a mole
ule is identi�ed as a latent heat.A se
ond issue to be mentioned is the impossibility to dedu
e the for
es ofEq. 3.1 from an energy-
onserving approa
h. This 
an be easily seen by writingequations of motion 
oming from an interpolation of potentials,
Uαβ = w(Rα)w(Rβ)UAT

αβ + (1 − w(Rα)w(Rβ))UCG
αβ (3.2)that produ
e the AdResS for
es and an additional drift for
e Fd proportionalto

Fd ∝ (UCG − UAT )∇w(R) (3.3)From this very initial point it is possible to note that su
h approa
h wouldseriously depend on the shape of the weighting fun
tion. In addition, Newton'sthird law is violated. An attempt to remove this drift by the addition of anexternal �eld would lead to the set of equations
UCG∇αf(Rα,Rβ) − UAT∇αg(Rα,Rβ) = 0

UCG∇βf(Rα,Rβ) − UAT∇βg(Rα,Rβ) = 0 (3.4)denoting by ∇i the gradient with respe
t to the position of parti
le i, andintrodu
ing f(x, y) and g(x, y) as the interpolation fa
tors used Eq. 3.1, writtenin a more general way.The requirements presented in Eq. 3.4 are 
learly impossible to satisfy ingeneral [?℄, sin
e they 
onsist of two boundary 
onditions for a system of di�er-ential equations of �rst order. Then, a Hamiltonian approa
h is possible onlyin trivial 
ases [?℄, although some e�orts have been made in this subje
t [?, ?℄.21



3.3 Thermodynami
 quantitiesSin
e the number of degrees of freedom of a mole
ule 
hanges in time as par-ti
les �u
tuate between atomisti
 and 
oarse-grained regions, it is ne
essary torede�ne temperature and pressure in a 
onsistent way.The pressure is expressed in terms of mole
ular intera
tions, sin
e the num-ber of mole
ules is 
onstant throughout the simulation. Thus,
p = ρNkBT +

1

3V

∑

α

∑

β>α

Fαβ ·Rαβ (3.5)where ρN is the density of mole
ules, T is the temperature and Fαβ and Rαβ,the total for
e and radius-ve
tor between mole
ules α and β.The temperature, on the other hand, is well de�ned on purely atomisti
 or
oarse-grained representations through the equipartition theorem [?℄
T AT/CG = 2

〈KAT/CG〉
NAT/CG

(3.6)where the average kineti
 energy per degree of freedom is 〈KAT/CG〉 and theirnumber is denoted by NAT/CG on the respe
tive representation. It is 
lear that
ertain degrees of freedom, like the 
oordinates of the 
enter of mass of themole
ules, are present a
ross the whole system, so Eq. 3.6 
an be applied tothem with no modi�
ations. However, for a swit
hable degree of freedom q, it isne
essary to take into a

ount that its 
ontribution to the statisti
s varies fromthe 
oarse-grained representation, where it is zero, to the atomisti
 one, whereit has to be fully 
onsidered. Consequently, the number of degrees of freedom,statisti
ally speaking, 
hanges 
ontinuously as a fun
tion of spa
e a

ording therepresentation of the parti
les is 
hanged. Moreover, the dimensionality of thephase spa
e region belonging to q is a fra
tional number between 0 and 1 in thehybrid region.The volume element of a spa
e of fra
tional dimension w 
an be obtainedby means of the fra
tional 
al
ulus [?℄,
dVw =

Γ
(

w
2

)

2πw/2Γ(w)
dwq =

|q|w−1

Γ(w)
dq =

1

wΓ(w)
dqw (3.7)with Γ(w) the usual Γ fun
tion [?℄. Hen
e, the ensemble average of the kineti
energy asso
iated is

〈Kq〉w =

∫∞

0
e−βp2

qqw+1dq
∫∞

0 e−βp2
qqw−1dq

(3.8)that is [?℄
〈Kq〉w =

w

2
β−1 (3.9)Su
h result is 
alled the generalized equipartition theorem, that states thatthe average of a quadrati
 fun
tion of a fra
tional degree of freedom is propor-tional to its dimensionality. 22



3.4 AdResS simulation of tetrahedral liquidThe AdResS applied to a liquid of tetrahedral mole
ules has been previouslystudied [?, ?,?℄. Here, the main results are reprodu
ed due to the relevan
e ofthe model for the later 
hapters.A tetrahedral mole
ule is 
omposed of four atoms of mass m0. All the atomsintera
t through a purely repulsive Weeks-Chandler-Andersen (WCA) potentialof the form
UWCA(riαjβ) =

{

4ǫ[(σ/riαjβ)12 − (σ/riαjβ)6] + 1
4 , riαjβ ≤ 21/6σ

0, riαjβ > 21/6σ
(3.10)where riαjβ is the distan
e between atom i of mole
ule α and atom j of mole
ule

β. From now on, ǫ and σ will be the referen
e units of energy and length used.In a mole
ule, atoms are bonded via a �nite extensible nonlinear elasti
(FENE) potential
UFENE(riαjα) =

{

− 1
2kR2

0ln[1 − (riαjα/R0)
2], riαjα ≤ 21/6σ

∞, riαjα > 21/6σ
(3.11)being R0 = 1.5σ and k = 30ǫ/σ2m the divergen
e length and the sti�ness respe
-tively. By 
onstru
tion, the bond length is approximately 1.0σ at temperature

kBT = ǫ.In the 
oarse-grained representation, the mole
ule is mapped into a beadlo
ated at its 
enter of mass [?, ?℄. The e�e
tive intera
tion was obtained at amole
ular density of ρ = 0.175σ−3 using the Iterative Boltzmann Inversion inorder to reprodu
e the radial distribution fun
tion. Additionally, the pressurewas adjusted with a simple pressure 
orre
tion at ea
h step [?℄.AdResS simulations were performed in a box of dimensions 36 × 20 × 20σ3with periodi
 boundary 
onditions, using a time step of 0.005τ , where τ =
(ǫ/m0σ

2)−1/2 is the redu
ed unit of time. After an equilibration of 2500τ , aprodu
tion run of 7500τ was performed saving the 
on�guration of the sys-tem every 1000 steps. A Langevin Thermostat, presented in Chapter 1, wasemployed using the value Γ = 0.5τ−1.The weighting fun
tion is given in terms of the box length Lx along the xdire
tion and h, the half of the hybrid zone width a,
w(x) =































0, h < x < Lx/2 − h

1, h + Lx/2 < x ≤ Lx − h

sin2[ π
4h(x − Lx + h)], Lx/2 − h ≤ x ≤ Lx/2 + h

cos2[ π
4h (x − Lx + h)], Lx − h < x ≤ h

cos2[ π
4h (x + h)], 0 ≤ x ≤ h

(3.12)plotted on Fig. 3.2.Figure 3.3 shows the radial distribution fun
tion between the 
enters of massof all parti
les, regardless their representation, and the density pro�le of an23
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tionAdResS simulation with h = 2σ. Note that this fun
tion slightly deviates fromthe result of a purely atomisti
 simulation. Su
h deviation depends on the sizeof the hybrid region as reported previously [?,?℄. On the other hand, the densitypro�le displays the same value in both resolution domains, but its drop observedin the hybrid region is a 
lear artifa
t of the for
e interpolation on it. Sin
e the
r∗

g
(r

∗ )

54.543.532.521.51

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

AdResS
Atomistic

Radial distribution fun
tion
ATHYCG

x∗

ρ
∗ /

ρ
∗ 0

35302520151050

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

AdResS
Atomistic

Density pro�leFigure 3.3: Equilibrium properties of an AdResS simulation.equations of motion 
ouple the representations in this zone, it is expe
ted thattheir main e�e
ts will be manifested there. The explanation lies on the fa
tthat if two potentials have the same state point at 
ertain temperature, a linearinterpolation of for
es will not ne
essarily produ
e the same thermodynami
s.24



The pressure in redu
ed units, that has a value of 1.98± 0.02 and 1.98± 0.02 inatomisti
 and 
oarse-grained simulations respe
tively, in
reases to 2.04 ± 0.03in the AdResS simulation. Su
h disagreement be
omes more pronoun
ed withthe size of the swit
hing region, what means that this zone a�e
ts not only thestru
ture, but also the thermodynami
s of the whole system.Despite these e�e
ts, parti
les 
an freely di�use a
ross the simulation box.Figure 3.4 shows the di�usion pro�le for a set of parti
les lo
ated initially inthe 
oarse-grained and atomisti
 regimes, whi
h 
on�rms this statement. How-ever, transport properties must also be analyzed 
arefully. It is well known thatin general, di�usion 
oe�
ients and vis
osities do not ne
essarily mat
h be-tween atomisti
 and 
oarse-grained representations, sin
e the smoother energylands
ape in the latter leads usually to a faster dynami
s [?℄. In 
onsequen
e,parti
les 
an di�use in an inhomogeneous way during the simulation.
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Coarse-grainedFigure 3.4: Di�usion pro�le for parti
les lo
ated initially in atomisti
 and 
oarse-grained regimes.A possible solution to this problem is the use of a position-dependent sto
has-ti
 thermostat [?℄. It is well known that transport 
oe�
ients 
an be tunedfrom the fri
tion 
oe�
ient [?, ?℄. Therefore, the 
oarse-grained dynami
s 
anbe slowed down by a lo
al in
rease of the fri
tion 
oe�
ient of the thermostatin order to mat
h the behavior of the atomisti
 system, as it has already beentested on adaptive water simulations [?℄. However, this pro
edure is usuallyavoided.3.5 Interfa
e 
orre
tionA �rst attempt to redu
e the unphysi
al behavior in the hybrid region 
onsistedof repla
ing the 
oarse-grained for
e �eld by
F

CG,corrected
αβ = s (w(Rα)w(Rβ))FCG

αβ + [1 − s (w(Rα)w(Rβ))]FCG,HY
αβ (3.13)25



where F
CG,HY
αβ is a 
oarse-grained potential able to mat
h the thermodynami
sand stru
ture of a system at 
onstant weighting fun
tion w0 = 0.5. Ithas been pointed that in this system [?℄, the disagreement with the referen
eproperties is maximum around this point. s (w(Rα)w(Rβ)) is, on the otherhand, the 
orre
tion fun
tion. Its 
hoi
e requires s(0) = 1 and s(w0) = 0. Atested form is given by [?℄

s(x) = 4(
√

x − 1/2)2 (3.14)The radial distribution fun
tion and density pro�le are plotted on Fig. 3.5.The improvement is notorious, 
onsidering that the pressure in redu
ed units isof 1.99 ± 0.02, 
loser to the referen
e value.
r∗

g
(r

∗ )

54.543.532.521.51

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

AdResS
AdResS-ic
Atomistic

Radial distribution fun
tion
ATHYCG

x∗

ρ
∗ /

ρ
∗ 0

35302520151050

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

AdResS
AdResS-ic

Density pro�leFigure 3.5: Equilibrium properties 
ompared for atomisti
, AdResS andAdResS-
orre
ted simulations.The main drawba
k of this pro
edure is the high 
omputational 
ost requiredfor reparametrization of the intera
tions under a purely hybrid representation,sin
e it involves several simulations of a double-resolution system. In addition,it is only a lo
al 
orre
tion, unable to 
orre
t e�e
ts that arise from the intrin-si
 di�eren
e between the thermodynami
s of the atomisti
 and 
oarse-grainedrepresentations. In su
h 
ases, it 
ould be ne
essary to 
orre
t the density bymeans of external for
es, an approa
h presented in the next 
hapter.
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Chapter 4The 
on
ept ofthermodynami
 for
e: one
omponent systemThe thermodynami
 for
e 
an be seen as an external �eld applied in the hybridregion that leads to a homogeneous density ρ0 a
ross the whole system. Itsdetermination is based on thermodynami
 
onsisten
y 
onsiderations.Nevertheless, the introdu
tion of this 
on
ept is not only justi�ed by te
h-ni
al reasons or to 
he
k thermodynami
 
onsisten
y of AdResS, sin
e it alsomakes possible the 
oupling between di�erent representations on whi
h the num-ber of degrees of freedom is not ne
essarily di�erent. This issue greatly extendsthe idea behind the method and situates it in a mu
h more general framework.The 
hapter begins with the presentation of the approa
h based on the ad-justment of the 
hemi
al potential and the 
omparison with the previously de-veloped interfa
e 
orre
tion [?℄. The method is also tested on the 
oupling oftwo one-site pair potential with satisfa
tory results. Later on, an alternativeapproa
h based on the 
onsisten
y of the pressure is introdu
ed, together witha pra
ti
al way of obtaining the thermodynami
 for
e. It will be numeri
allyshown that su
h 
orre
tions (and AdResS by itself) do not a�e
t the lo
al dis-tribution fun
tions in the atomisti
 region. Finally, an interpretation of thefor
e in terms of an analogy with the Grand Canoni
al Ensemble 
on
ludes this
hapter.4.1 Chemi
al potential approa
hIt was already shown that AdResS simulations display a stationary state wherethe density is inhomogeneous in spa
e. Su
h e�e
t 
an be 
orre
ted by applyingan external for
e that provides the right amount of work to ea
h mole
ule.27



In this framework, the thermodynami
 for
e is de�ned as
fth = ∇µe� (4.1)where µe� is the e�e
tive 
hemi
al potential in an AdResS system, 
al
ulatedon a 
on�guration at 
onstant density ρ0.For its determination, the 
hemi
al potential of a mole
ule is de
omposedinto two 
ontributions, as [?℄

µ = µid + µex (4.2)
µid is the ideal gas 
ontribution, the 
hemi
al potential of a nonintera
tingparti
le. µex, on the other hand, is the ex
ess 
hemi
al potential due ex
lusivelyto the intermole
ular intera
tions. Later on, it will be shown that only the latter
ontribution has to be 
orre
ted.4.1.1 Development of the thermodynami
 for
eEquation 4.2 requires the knowledge of the 
hemi
al potential pro�le along thehybrid region. A way of estimating it is by dividing su
h region into N slabs, asillustrated in Fig. 4.1 for a one dimensional setup. At ea
h slab i, it is asso
iateda weighting fun
tion wi and an ex
ess 
hemi
al potential µex(wi). The latteris obtained from an independent simulation of a bulk system at density ρ0 inthe 
anoni
al ensemble. The intermole
ular for
es used in these system 
orre-spond to the AdResS interpolation of for
es from Eq. 3.1 at 
onstant weightingfun
tion wi. Su
h for
es 
ome from the Hamiltonian

Hi = w2
i HAT + (1 − w2

i )HCG (4.3)that is nothing less than a linear interpolation of HAT and HCG. Under thissetup, it is evident that the spurious drift that emerges from the interpolation ofHamiltonians in Eq. 3.3 is now zero. Therefore, the existen
e of a Hamiltonianallows the 
al
ulation of the ex
ess 
hemi
al potential by means of 
onventionalmethods like the test parti
le insertion [?℄ sin
e µex is in these 
ases a wellde�ned quantity. The ex
ess 
hemi
al potentials 
al
ulations were performed inthe GROMACS simulation pa
kage [?℄.Having a numeri
al expression for ∂µex

∂w , it is possible to evaluate ∂µex

∂w ∇wmaking use of the analyti
 form of the weighting fun
tion. The result is, of
ourse, a �rst approximation, sin
e it does not 
onsider the intera
tion betweensubsystems with di�erent weighting fun
tions.4.1.2 Role of the thermostatA lo
al thermostat must keep thermalized the atoms and 
enters of mass inthe whole system. The internal degrees of freedom of a mole
ule that are addedwhen it passes from 
oarse-grained to hybrid resolution, must also be introdu
ed28



Figure 4.1: Partition of the simulation domain for the 
al
ulation of the ther-modynami
 for
e.properly [?,?℄. Hen
e, the lo
al thermostat keeps the mole
ules thermalized re-gardless their resolution. A pra
ti
al interpretation, 
onsistent with the numer-i
al implementation explained in detail in Chapter 7, is to 
onsider the wholeAdResS simulation as a double-resolution system. Hen
e, mole
ules 
ontain theatoms and 
enter-of-mass positions and velo
ities, while the 
hange of resolutionis ex
lusively attributed to the interpolation of intermole
ular for
es of Eq. 3.1.Clearly, the atomisti
 degrees of freedom do not play any role in the physi
sof the 
oarse-grained region, sin
e they are de
oupled from the dynami
s andtheir integration 
an be omitted for pra
ti
al purposes. The initialization of theinternal degrees of freedom is dis
ussed with more detail in Chapter 7.From the theoreti
al point of view, the ideal 
hemi
al potential 
an be writ-ten in terms of the dimensionality of the phase spa
e at ea
h point of the spa
e.The phase spa
e integral asso
iated to the kineti
 
ontribution of a fra
tionaldegree of freedom is proportional to
∫

e−βp2

dwp (4.4)(without 
onsidering 
onstants su
h as the mass), where dwp = pw−1dp/Γ(w) isthe fra
tional volume element [?℄. Therefore, the 
hemi
al potential asso
iatedis
−kBT

w

2
log T − kBT log

Γ
(

w
2

)

Γ(w)
(4.5)29



The se
ond term, 
onsidering the 
lassi
al temperature regime, is negligible.Sin
e in these approa
h, the 
ontribution of a degree of freedom is statisti
allyweighted a

ording to its degree of resolution given by w. Statisti
ally speaking,this means that the amount of free energy has to be properly 
ounted, so in both
ases, the work provided by the thermostat to a parti
le has to be independentof the resolution.A numeri
al test of this assertions is depi
ted on Fig. 4.2, 
al
ulated in atetrahedral system 
omposed of 2520 mole
ules in a box of 36× 20× 20σ3, witha hybrid region of width 12σ. The work done by the thermostat on the atomssubtra
ting the work done on the 
enter of mass [?℄ on a mole
ule is de�ned as
W =

∑

i

fi · ∆ri −
∑

i

fi ·
1

M

∑

j

mj∆rj (4.6)where fj is the for
e exerted by the thermostat on atom j and ∆ri, the displa
e-ment of atom i at the same integration step. This quantity has been 
al
ulatedfor simulations of 5000τ , sampled every 100 iterations. The plot shows W asa fun
tion of the 
oordinate x, along whi
h the representation of the mole
ules
hange. There is no di�eren
e between purely atomisti
 and AdResS simula-tions.
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Figure 4.2: Work performed by the Langevin thermostat on ea
h mole
ule,subtra
ting the work on the 
enter of mass.4.1.3 Appli
ation to the tetrahedral systemThe thermodynami
 for
e is 
al
ulated and applied to a system of tetrahedralmole
ules at a density of 0.175σ−3. The 
hemi
al potential pro�le is displayed30



on Fig. 4.3, as a fun
tion of the weighting fun
tion. Ea
h point was obtainedfrom a simulation of 10000τ in a box of dimensions 20 × 20 × 20σ3 with 106insertions. Error bars were obtained using Ja
kknife analysis [?℄.
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ess 
hemi
al potential in terms of the weighting fun
tion.As expe
ted, the 
hemi
al potential has its maximum around w = 0.5, wherethe density hole of AdResS simulations is typi
ally lo
ated(see previous 
hap-ter). In addition, the 
hemi
al potentials of the atomisti
 and 
oarse-grainedrepresentations are 
onsistent. This is not surprising sin
e their state points arethe same and, more generally, their equations of state have a very similar shapeas shown in Fig. 4.4. Small di�eren
es are expe
ted in their thermodynami
properties under these 
ir
umstan
es.After applying a smoothing pro
edure on the 
hemi
al potential pro�le, thethermodynami
 for
e is 
al
ulated from fth = ∂µ
∂w

∂w
∂x . Its �nal form is shown inFig. 4.5, 
ompared with a sinusoidal �t.The thermodynami
 for
e is applied to a system of 2520 mole
ules in a boxof 36× 20× 20σ3, with a hybrid region width of 12σ. The density pro�le of thissimulation, plotted in Fig. 4.6, shows a 
lear improvement with respe
t to theun
orre
ted AdResS simulation.The radial distribution fun
tion fun
tion and state point are pra
ti
ally notperturbed by the appli
ation of the for
e. Figure 4.7 
ompares the 
enter ofmass radial distribution fun
tion between a purely atomisti
 simulation, anun
orre
ted AdResS simulation and an AdResS simulation under the e�e
t ofthe thermodynami
 for
e, averaged over the whole simulation box. It is 
learthat the e�e
ts on the stru
ture 
oming from the hybrid regime are not removedby the thermodynami
 for
e. Analogously, the virial pressure in redu
ed units,that 
ounts only the intermole
ular 
ontributions, does not 
hange 
onsiderably:its value of 2.15 ± 0.03 of an un
orre
ted AdResS simulation in
reases slightly31
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to 2.17 ± 0.04 under the e�e
t of the for
e.32
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 simulations.4.1.4 Finite size e�e
tsSpurious e�e
ts on the density pro�le are expe
ted when the width of the hybridregion is too small. Under these 
ir
umstan
es, the strength of the thermody-nami
 for
e 
an be
ome too high, sin
e the �eld must now provide the di�eren
eof 
hemi
al potential in a mu
h smaller region. In addition, the 
onstru
tion ofthe thermodynami
 for
e has been make on the assumption that, at ea
h point,33



the 
hemi
al potential 
an be estimated from a bulk simulation at the 
orre-sponding weighting fun
tion. The redu
tion of the hybrid zone 
an eventuallybreak down this ansatz.The e�e
ts of the width of the hybrid region on simulations under the e�e
tof the thermodynami
 for
e are analyzed below. Figures 4.8 show the densitypro�les for a box of size 36 × 20 × 20σ3 and hybrid regions of 4σ and 8σ. The
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0.6 Width = 8σ.Figure 4.8: Density pro�les for the same box, with narrower hybrid regions.results show that parti
les tend to agglomerate in the hybrid region, forminga layered pattern that be
omes more pronoun
ed as the hybrid region be
omesnarrower.The numeri
al eviden
e of this layering e�e
t plus the arguments aforemen-tioned suggest that the thermodynami
 for
e requires a minimum size of theregion where it is applied.On the other hand, an in
rease of the size of the hybrid region does inpra
ti
e not a�e
t the density pro�le. Figure 4.9 shows that the density isalmost homogeneous, displaying a small bump in the hybrid zone that is alsopresent in the �rst appli
ation.The in
rease of the size of the atomisti
 or 
oarse-grained domains improvesthe agreement of the radial distribution fun
tion and pressure with their atom-isti
 referen
es as reported previously [?℄. Simulations with a hybrid regionwidth of 12σ and atomisti
 (and 
oarse-grained) widths of 6σ, 13σ and 18σ givepressures listed in Table 4.1 and radial distribution fun
tions plotted in 4.10 inagreement with the previous results. The thermodynami
 for
e does not 
hangethis general trend.4.1.5 Interfa
ing two generi
 for
e �elds: example in aone-site modelThe interpolation of for
es that 
hara
terizes the equations of motion 
an begeneralized to two arbitrary for
e �elds. In this 
ontext, the 
hange of resolutionis merely a spe
i�
 
ase of the 
oupling between two levels of representation.34
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Lat p∗6 2.17 ± 0.0413 2.12 ± 0.0218 2.1 ± 0.02Atomisti
 1.98 ± 0.02Table 4.1: Pressure at hybrid width = 12σ.
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 simulations.An illustrative example is to interfa
e two 
oarse-grained models of thetetrahedral system that have been derived at di�erent thermodynami
 state35



points. Figure 4.11 shows the equation of state of the tabulated potential ad-justed around ρ = 0.175σ−3 with an analyti
al Morse potential adjusted at
ρ = 0.1σ−3 [?℄. The potentials are interfa
ed in an AdResS simulation at an
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Figure 4.11: Equation of state of two 
oarse-grained representations of the tetra-hedral liquid.intermediate density of 0.135σ−3. Here there is a 
lear mismat
h between theirequations of state. The pro�le of 
hemi
al potential and the for
e produ
edfrom it are plotted in Fig. 4.12, obtained from simulations in a box of dimen-sions 20×20×20σ3 with 1080 mole
ules. The integration was over 25000τ with
5 × 106 insertions for the test parti
le insertion method.The density pro�le obtained from the appli
ation of this for
e is shown inFig. 4.13, 
ompared with the result of an un
orre
ted AdResS simulation. Asin the previous 
ase, the density is 
onsiderably improved under the appli
ationof the for
e.This short test is a �rst step towards the 
on
eptual extension of the AdResSto a more general approa
h that allows the 
oupling between di�erent represen-tations through thermodynami
 
onsiderations, whi
h is 
learly far beyond theoriginal AdResS idea.4.2 Iterative approa
hesIn this se
tion, a more pra
ti
al way to dedu
e the thermodynami
 for
e is pre-sented, starting from the assumption that in a stationary situation, an AdResSsystem will evolve to a 
on�guration where the pressure is the same through-out the whole box [?℄. Pressure is a well de�ned quantity sin
e it 
an bede�ned in terms of the intermole
ular for
es, provided the existen
e of an equi-36
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Figure 4.13: Density pro�les with and without thermodynami
 for
e.
librium state [?℄. In AdResS, however, the averages of thermodynami
 quantitiesare taken over stationary states that have been numeri
ally observed [?,?,?,?,?℄.It is well known that a homogeneous pressure 
on�guration displays a nonhomogeneous density pro�le in the absen
e of 
orre
tions [?, ?℄. This 
an betested numeri
ally by 
al
ulating the pressure pro�le, using the expression pro-37



posed by Todd, Evans and Davis [?℄ for the pressure tensor
p̄βα(α) =

1

2Aα∆α

〈

∑

α−∆α≤αi≤α+∆α

miviβviβ

〉

+
1

2Aα

〈 N
∑

i=1

Fiβsgn(αi − α)

〉(4.7)where Aα is a 
ross-se
tional area perpendi
ular to the dire
tion α. The �rstterm is the ideal gas 
ontribution 
al
ulated in a slab 
entered at α of thi
kness
2∆α, and the se
ond represents the 
ontribution of the intermole
ular intera
-tions.In the 
ase of two-body for
es, the se
ond sum is redu
ed to the 
ount of thefor
es that 
ross the area Aα. Parti
les at distan
es bigger than the maximal
uto� of the non-bonded intera
tions do no 
ontribute to the sum. In the samespirit, it is possible to note that this way of 
ounting the for
es per area isnot a�e
ted by the periodi
 boundary 
onditions provided that the sides of thesimulation box are longer than the longest range of the intera
tions.Figure 4.14 shows the 
omponent pxx of the pressure tensor along the xdire
tion, on whi
h the 
hange of resolution o

urs. The pro�le is plotted forthree systems: a purely atomisti
 liquid and two AdResS simulations with hybridregions of width 4σ and 12σ. In all 
ases, pxx is pra
ti
ally 
onstant, eventhough in the AdResS simulations the density pro�les are not. Its averagevalue, however, is higher in these 
ases with respe
t to the atomisti
 referen
e,and in
reases with the size of the hybrid region. This is not surprising sin
ehybrid parti
les in
rease the pressure, as it has been reported in this tetrahedralsystem [?, ?℄.
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In an analogous way, a �at density pro�le will require the appli
ation of anexternal for
e to remain stationary. Knowing the pressure pro�le pf of a �atdensity 
on�guration, the thermodynami
 for
e 
an be written as
fth =

1

ρ0
∇pf (4.8)where ρ0 is the value of the homogeneous density. This for
e 
an be estimated bythe same slab pro
edure used in the 
hemi
al potential approa
h. By dividingthe simulation domain into several subsystems 
entered at xi, the pressure atea
h point is approximated as the value obtained from a hybrid simulationperformed at 
onstant weighting fun
tion w(xi).However, this pro
edure, rather tedious, 
an be di�
ult to a
hieve in systemslike water, where a

urate estimations of the pressure demand long runs [?℄. Itis re
ommendable then to devise a simpler and faster way to estimate fth inan a

urate and less expensive manner, making use of the density pro�le of anun
orre
ted AdResS simulation.Starting from the stationary density pro�le of an un
orre
ted AdResS simu-lation, the pressure 
an be written as p(ρ(r)), assuming that it depends lo
allyon the density. Therefore, expanding to �rst order at ea
h point

p(r) = pf (r) + (ρ(r) − ρ0)

[

∂p

∂ρ

]

ρ=ρ0

+ O([ρ(r) − ρ0]
2) (4.9)Hen
e, by taking the gradient at both sides of 4.9, and knowing that ∇p = 0, ityields

∇pf (r) ≈ −∇
[

1

ρ0κT
(ρ(r) − ρ0)

] (4.10)by using the isothermal 
ompressibility κT , as in
[

∂p

∂ρ

]

ρ=ρ0

=
1

ρ0κT
(4.11)and negle
ting higher order terms. For simpli
ity, the 
ompressibility is takenas a 
onstant, that 
an be its atomisti
 (or 
oarse-grained) value. Su
h 
hoi
ewill later be proven to be a good approximation in the tetrahedral liquid. Thus,the �rst guess of the thermodynami
 for
e is

f0
th(r) = − 1

ρ2
0κ

at
T

∇ρ(r) (4.12)The in
lusion of higher order derivatives in the equation of state would re-quire the knowledge of the 
oe�
ients of the whole expansion, whi
h is a nontrivial, if not prohibiting problem. To over
ome this situation, the for
e 
an beiteratively 
orre
ted as
f i+1
th (r) = f i

th(r) − 1

ρ2
0κ

at
T

∇ρi(r) (4.13)39



until a �at density pro�le is rea
hed.The e�e
ts of the thermodynami
 for
e 
al
ulated from the pressure pro�leon the lo
al pressures 
an be seen in Fig. 4.15. In the 
orre
ted AdResSsimulation, pxx shows a sizeable bump in
rease in the hybrid region, while inthe atomisti
 and 
oarse-grained regimes it mat
hes the referen
e values. Su
hinhomogeneities are 
ompensated by the thermodynami
 for
e, as it 
an be seenby monitoring the quantity pxx +ρoφ, where φ is the potential asso
iated to theexternal �eld. Its value a
ross the x axis is pra
ti
ally 
onstant, similar to theatomisti
 pro�le.
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Figure 4.15: Pressure pro�le of a purely atomisti
 simulation 
ompared withAdResS under the thermodynami
 for
e. It also in
ludes the pro�le 
orre
ted,adding the 
ontribution of the thermodynami
 for
e. Note that in the un
or-re
ted 
ase, the lo
al pressure at the atomisti
 region mat
hes the atomisti
value.The other 
omponents of the pressure tensor pyy and pzz are expe
ted todisplay an analogous pro�le to pxx, sin
e in equilibrium, the pressure tensormust satisfy
pxx = pyy = pzz (4.14)However, Eq. 4.7 permits the 
al
ulation of pyy(y) and pzz(z), but nottheir pro�les a
ross the x dire
tion. Therefore, the validity of 4.14 
an onlybe assumed and numeri
ally tested by 
omparing the averages of pyy and pzzalong the dire
tions y and z respe
tively. Their pro�les, in Figs. 4.16, are �at,with averages of 〈pL

yy〉y = 2.161±0.003, 〈pL
zz〉z = 2.161±0.002 in redu
ed units.These values mat
h the average 〈pL

xx〉x = 2.2± 0.2, in agreement with Eq. 4.14.40



If su
h equation holds, it is possible to 
on
lude that
p

ρ0
+ φ (4.15)is 
onstant a
ross the whole spa
e in an AdResS simulation.
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zz(z)Figure 4.16: Pressure pro�les along the y and z dire
tions for 
orre
ted andun
orre
ted simulations, 
ompared with the atomisti
 result.The presented approa
h is also relevant from a 
on
eptual point of view,sin
e it establishes that the pressure, and 
onsequently, −pV , are 
onstant inthe whole simulation domain independent of the representation. The thermo-dynami
 for
e, as shown in Fig. 4.15, imposes a �at density pro�le by 
ompen-sating this quantity. Therefore, in the thermodynami
 limit, su
h for
e 
an beidenti�ed with the derivative of the Grand Canoni
al potential divided by thenumber of parti
les. An AdResS simulation 
an then be numeri
ally 
onsistentwith an open system where the region of interest is the atomisti
 one. Thus,the system 
an be divided into various subvolumes with di�erent mole
ular rep-resentation that 
an be approximated as a parti
le reservoir for the adja
entsubvolumes.4.2.1 Iterative thermodynami
 for
e on tetrahedral liquidThe iterative pro
edure 
an be tested with the 
ompressibility of the atomisti
or 
oarse-grained representations that do not di�er substantially, due to thesimilarity between their equations of state. The prefa
tor C = 1

ρ2

0
κT

is CAT =

236.86ǫσ3 and CCG = 190.62ǫσ3 for ea
h representation. The for
es produ
edby the �rst iterations using these 
oe�
ients are displayed in Fig. 4.17. Ittakes in both 
ases two steps to obtain a �at density pro�le, as depi
ted inFig. 4.18. The �nal shape of the for
e is 
ompared with the previous 
al
ulatedthermodynami
 for
e, using both the 
hemi
al potential and pressure pro�lesin Fig. 4.19, with the respe
tive density pro�les in Fig. 4.20.Clearly, the density displays a uniform pro�le after a few AdResS simula-tions, without the ne
essity of simulating several hybrid systems. It is also41
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for
es 
al
ulated with atomisti
 and 
oarse-grained 
ompressibilities.noti
eable that the small ex
ess of parti
les in the hybrid region produ
ed bythe appli
ation of the thermodynami
 for
e 
oming from the 
hemi
al potentialapproa
h is now absent.4.2.2 Comparison with Interfa
e Pressure Corre
tionThe density pro�les obtained 
an be 
ompared with the old approa
h of theinterfa
e 
orre
tion. As shown on Fig. 4.21, the thermodynami
 for
e produ
esa �atter distribution of parti
les. Another advantage is that it 
an be used tomat
h representations that do not have the same state point, while the interfa
e
orre
tion is just able to 
orre
t the density lo
ally in the hybrid region. How-ever, the thermodynami
 for
e does not a�e
t notoriously the radial distributionfun
tion of the whole system, as it will be shown in the next subse
tion.42
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Figure 4.20: Final shape of the density pro�le of the iterative thermodynami
for
e 
ompared with the other approa
hes.4.2.3 Distribution fun
tionsIt is important to show that the re
ently developed 
orre
tions do not alter thephysi
s of the atomisti
 region. This 
an be 
he
ked by monitoring the velo
-ity distribution and pair 
orrelation fun
tion in that region, and 
omparing it43
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hes.with the purely atomisti
 results. Figure 4.22 shows the velo
ity distribution ofthe atoms of the atomisti
 domain of an AdResS simulation with and withoutthermodynami
 for
e. The 
omparison with the distribution taken in a subdo-main of the same dimensions from a purely atomisti
 simulation shows goodagreement.
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gion. Figure 4.23 shows the distribution of velo
ities for parti
les with weightingfun
tion between 0.4 and 0.6, 
ompared with the analyti
 expression. Again, itis observed that both 
urves mat
h in the numeri
al pre
ision.
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Figure 4.23: Velo
ity distribution of atoms, hybrid region.Consequently, in a stationary situation, the thermostat is able to keep theregions of interest thermalized independent of the appli
ation of the thermody-nami
 for
e.Con
erning the 
on�gurational distribution, it is possible to evaluate partof its information through the lo
al analysis of the radial distribution fun
tion.It is well known that the parti
les in the hybrid region distort it; however, it isimportant to see if this e�e
t is not propagated over the atomisti
 regime.Figures 4.24 show the radial distribution fun
tion of parti
les restri
ted tothe atomisti
 domain in AdResS simulations. An analogous 
al
ulation onpurely atomisti
 simulations gives distributions that are in ex
ellent agreementwith the previous results. The de
ay of the fun
tions for long distan
es is duethe size of the atomisti
 region.4.2.4 Parti
le number �u
tuationsFinally, Table 4.2 displays the parti
le number �u
tuations in the AdResS andatomisti
 systems. It is 
lear that this quantity, within the error bars, is nota�e
ted by AdResS nor its 
orre
tions.Therefore, it is possible to 
on
lude that the thermodynami
 for
e 
an beused to obtain a �at density pro�le, restoring the lo
al state point of the atom-isti
 domain. It also does not a�e
t the lo
al velo
ity distribution and radial45
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al radial distribution fun
tion.Table 4.2: Number of parti
les and �u
tuations of atomisti
 regions.System N σ2(N)Atomisti
 420 25.8 ± 0.8AdResS 429 26.1 ± 1.1AdResS-PF 420 25 ± 0.7distribution fun
tions, while the parti
les �u
tuate in this region in a 
onsistentmanner with purely atomisti
 systems. The fa
t that the di�eren
es in the ther-modynami
s 
an be 
ompensated with the thermodynami
 for
e allows the useof 
oarse-grained models that do not �t the 
hemi
al potential of their atomisti

ounterparts, but fo
us in other physi
al quantities like the basi
 stru
ture.
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Chapter 5Thermodynami
 for
e on abinary mixture.The simulation of more realisti
 situations requires the generalization of AdResSto multi
omponent systems. However, the development of a 
oarse-grainedmodel in this 
ases represents a 
hallenge by itself. This 
hapter addressesboth issues in a binary mixture 
onsisting of spheri
al solutes solvated in thealready studied tetrahedral mole
ules. It begins with the des
ription of the sys-tem and the pro
edure followed for the reparametrization of the intera
tionsare presented below. Later on, the �rsts tests on the AdResS simulation ofmulti
omponent systems are dis
ussed, to 
on
lude with the appli
ations of theinterfa
e 
orre
tion and thermodynami
 for
e.5.1 System setupThe binary mixture 
onsists of a minor 
omponent (solute) represented by spher-i
al parti
les and a major 
omponent represented by the aforementioned tetra-hedral mole
ules. The solute parti
les intera
t between themselves through arepulsive Weeks-Chandler-Andersen potential
UWCA

s (r) =

{

4ǫs[(σs/r)12 − (σs/r)6 + 1
4 ] , r ≤ 21/6σs

0 , r > 21/6σs

(5.1)where the parameters σs and ǫs 
an be written in the previously introdu
edLennard-Jones units as σs = 1.8σ and ǫs = ǫ. Their intera
tion with the solventatoms obeys Lorentz-Berthelot [?℄ rules, that is, a Weeks-Chandler-Andersonpotential with the parameters σts = 1.4σ and ǫts = ǫ.The systemati
 approa
h 
hosen for the parametrization of the intera
tionswill make use of several mixtures at di�erent 
on
entrations, whi
h are listed onTable 5.1. The 
ubi
 box size L has been adjusted to obtain the same pressure47



Table 5.1: Con
entration c and pressure of the mixtures.
c L∗ N M p∗0.007 20.05 1400 10 1.99 ± 0.050.034 20.265 1400 50 1.98 ± 0.040.125 21.01 1400 200 1.98 ± 0.04as the pure tetrahedral liquid previously studied, on
e the number of solute andsolvent parti
les have been �xed.The steps followed in the pro
edure are des
ribed in detail in the followingse
tion.5.2 Development of Intera
tionsThe 
oarse-graining model of the mixture aims to reprodu
e of the radial distri-bution fun
tion of the spe
ies and the total pressure. This is a
hieved by meansof the su

essive reparametrization of the intera
tions in systems of in
reasing
on
entration. The pro
edure is s
hematized in Fig. 5.2.

Figure 5.1: S
heme of reparametrization of the intera
tions.The systemati
 approa
h 
onsists of three steps:
• The re�nement of the intera
tion between solvents in a pure system, start-ing from the potential used in the previous systems. The pressure is si-multaneously adjusted.
• Tune the for
e between solvents and solutes in the most diluted system48



with the iterative Boltzmann inversion. In this 
ase, the for
e �eld betweenthe solutes is the same as in the atomisti
 representation.
• Finally, the potentials for the solvent-solvent, solvent-solute and solute-solute are 
orre
ted in the most 
on
entrated mixture. Te
hni
al detailsare des
ribed below.For the �rst step, the system 
onsisted of 1400 mole
ules on a box of 20 ×

20×20σ3. Between the solvents, the Iterative Boltzmann Inversion was appliedover the existent intera
tion for 8 steps, where ea
h simulation 
onsisted of
1000τ and 2500τ of equilibration and produ
tion respe
tively. A smoothingpro
edure over the potential was applied 5 times per ea
h step. The pressurewas simultaneously 
orre
ted using∆V = 0.01ǫ, giving a �nal value of 1.98±0.01redu
ed units, 
onsistent with the target pressure. The slight di�eren
e betweenthe radial distribution fun
tions is plotted in Fig. 5.2, while the potentials aredepi
ted in Fig. 5.3.
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Figure 5.2: Radial distribution fun
tion improvement for the pure solvent after8 IBI steps.For the se
ond step of the pro
edure, the intera
tion between solvent and so-lute starts from the potential of mean for
e. The for
e between the solvents usedwas the previously developed one, while the solute intera
tion intera
ted throughthe WCA potential de�ned in Eq. 5.1. The 
uto� radius was of 3.59375σ, thatmat
hes the se
ond maxima of the solvent-solute radial distribution fun
tion.This 
hoi
e resulted the e�e
tive sin
e at that point the for
e is zero. Besides,it was observed that by using a smaller 
uto� radius, the radial distributionfun
tion 
ould not be �tted properly. The use of longer 
uto�s produ
ed prob-lems as well in the �t of the �rst peak of the radial distribution fun
tion. The49
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Figure 5.3: Potentials for the solvent intera
tion in pure solvent system.solvent-solute radial distribution fun
tion is shown in Fig. 5.4, 
ompared withits target shape. The pressure was adjusted with a value of ∆V = 0.01ǫ, untilits value was of 1.98 ± 0.01 redu
ed units. The initial and �nal potentials areshown in Fig. 5.5.
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Figure 5.4: Solvent-solute radial distribution fun
tion the most dilute mixtureafter IBI.The last step 
onsists of three reparametrizations in the most 
on
entrated50
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Figure 5.5: Solvent-solute potentials for the most diluted mixture. The initialfun
tion is the Potential of Mean For
e (PMF).system, whose features are shown in Table 5.1. It begins with the re�nementof the solvent-solvent for
e �eld by means of the iterative Boltzmann inversionand the pressure 
orre
tion with ∆V = 0.01ǫ, smoothing the potential 5 timesper step. Equilibration simulations were of 500τ while produ
tion runs were of
5000τ . In 20 steps of the Iterative Bolztmann method, there was no improve-ment observed in the radial distribution fun
tion. However, the shape of thepotential keeps 
hanging in the initial iterations, until rea
hing a �xed form atiteration 10. Therefore, the last iteration was sele
ted for the later parametriza-tions. The pressure in the last iteration was of 1.89± 0.01 redu
ed units, whosevalue did pra
ti
ally not 
hange in the su

essive iterations, although the targetvalue was of 1.98ǫσ−3. This suggests that the pressure must be 
orre
ted bytuning the solvent-solute or solute-solute intera
tion.The solvent-solute intera
tion was then reparametrized for this system. Ittook 10 steps to obtain a good agreement of the radial distribution fun
tion,while the pressure was of 1.98±0.02 redu
ed units. The potential was smoothedone time per Boltzmann step to give the shape shown in Fig. 5.8, while thepressure was 
orre
ted using a value of ∆V = 0.01ǫ. Initial and �nal radialdistribution fun
tions are displayed in Fig. 5.7.Finally, the potential between the solutes is 
orre
ted, starting from theatomisti
 ex
luded volume intera
tion. The for
e �eld was 
orre
ted after onestep, without pressure 
orre
tion. The for
e is slightly modi�ed (shown in Fig.5.9, in
reasing its 
uto� radius (based on the same 
riteria as for the previousintera
tions) to 3.69 σ.The �nal pressure obtained was of 1.98 ± 0.02 redu
ed units in agreementwith the total pressure of the mixture. The �nal radial distribution fun
tions51
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Figure 5.6: Solvent-solvent potentials for the most 
on
entrated mixture.
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Figure 5.7: Solvent-solute radial distribution fun
tion the most 
on
entratedmixture after IBI.are listed in Fig. 5.10. They also are able to reprodu
e these fun
tions for thelower 
on
entrations as shown in Figs. 5.11 and 5.12, and mat
h the pressuresas well. The latter quantities are displayed in Table 5.2.The AdResS simulations using the developed 
oarse-grained representationare dis
ussed in the following se
tions.52
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Figure 5.8: Solvent-solute potentials for the most 
on
entrated mixture.

r∗

U
∗

3.532.521.51

10

8

6

4

2

0

It 0
It 1

Figure 5.9: Solute-solute potentials for the most 
on
entrated mixture.5.3 AdResS simulationsAdResS simulations have been performed for the three di�erent 
on
entrationsin boxes of the respe
tive dimensions. The hybrid region width was of 4σ, whilethe weighting fun
tion is the same as in the pure solvent 
ase, 
hanging the reso-lution along the x dire
tion. Equilibration simulations of 500τ were followed by53
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tion for 200 solute parti
les system.
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tion for 10 solute parti
les system.
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Solute-SoluteFigure 5.12: Radial distribution fun
tion for 50 solute parti
les system.produ
tion runs of 5000τ . Their density pro�les are shown in Fig. 5.13, whilethe pressures are listed in Table 5.3. As expe
ted, the solvent parti
les tend to
on
entrate in the atomisti
 and 
oarse-grained regions, displaying the typi
aldensity hole in the hybrid zone. However, the solute parti
les, whose represen-tation does not 
hange substantially as the other 
omponent, 
ompensate thisla
k of solvent, agglomerating in the swit
hing region. This trend is 
ommonfor lower 
on
entrations, as shown on Figs. 5.14.In addition, a set of 
orre
ted for
e �elds has been developed for the ap-pli
ation of the interfa
e 
orre
tion at w = 0.5. The potentials have beenreparametrized for purely hybrid simulations by iterative Boltzmann inver-54



c p0.007 1.99 ± 0.010.034 1.982± 0.0070.125 1.98 ± 0.02Table 5.2: Pressures using �nal 
oarse-grained potentials.
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Figure 5.13: Density pro�les of solvent and solute for the highest 
on
entrationsystem.
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entrationFigure 5.14: Density pro�les of solvent and solute for lower 
on
entrations.sion, 
orre
ting at the same time the pressure with 
oe�
ients ∆Vtt = 0.1ǫ,55



c p∗0.007 2.07 ± 0.030.034 2.06 ± 0.030.125 2.05 ± 0.03Table 5.3: Pressures for AdResS systems.
∆Vts = 0.05ǫ and ∆Vss = 0.01ǫ a

ording to their respe
tive 
ontribution tothe virial pressure. The 
orre
tion was performed simultaneously on all intera
-tions. The initial for
e �eld was the purely 
oarse-grained potential for all 
ases,with the ex
eption of the solvent-solvent intera
tion. The iteration for this onehas started from the 
orre
ted potential for the pure solvent previously devel-oped [?℄. After three iterations it was possible to observe a reasonable agreementbetween the radial distribution fun
tions, improving the pressures with a laststep where ∆Vtt = 0.075ǫ, ∆Vts = 0.06ǫ and ∆Vss = 0. The resulting ra-dial distribution fun
tions and pressures are plotted and listed, respe
tively, inFig. 5.15 and Table 5.3 for atomisti
 and purely hybrid simulations using the
oarse-grained and 
orre
ted 
oarse-grained potentials.
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Solute-SoluteFigure 5.15: Radial distributions fun
tion for 200 solute parti
les system.Pressure Atomisti
 Purely hybrid Purely hybrid-
orre
tedTotal 1.98 ± 0.04 2.45 ± 0.03 1.98 ± 0.03Solvent-solvent 1.36 ± 0.04 1.74 ± 0.03 1.36 ± 0.03Solvent-solute 0.41 ± 0.02 0.5 ± 0.02 0.41 ± 0.01Solute-solute 0.032± 0.005 0.039 ± 0.006 0.035± 0.006Table 5.4: Total mole
ular pressure and its 
ontributions to the virial, 
omparedbetween atomisti
 systems and the 
orre
ted hybrid simulations for the highest
on
entration. 56



For the AdResS simulations, the 
orre
tion fun
tion used was
s[x] =

{

(1 − 2x) x ≤ 0.5

0 x > 0.5
(5.2)that produ
es a linear interpolation between the normal and 
orre
ted 
oarse-grained potentials for x < 0.5, keeping its 
orre
ted shape for higher values.The resultant density pro�les are shown in Fig. 5.16. Radial distributionfun
tions show a better agreement with the referen
e fun
tions, as illustratedin Fig. 5.17.
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Figure 5.16: Density pro�les of solvent and solute for the highest 
on
entrationsystem, with the old 
orre
tive approa
h, the interfa
e 
orre
tion.
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5.4 Thermodynami
 For
esThe appli
ation of the thermodynami
 for
e in this system is slightly more
ompli
ated [?℄, sin
e spe
ial 
are must be taken for the treatment of the mixing
ontributions. Consequently, the 
hemi
al potentials are expressed as
µmix

solvent = µ0
solvent + kT log[csolvent] + fmix

int (csolvent, csolute) (5.3)
µmix

solute = µ0
solute + kT log[csolute] + gmix

int (csolvent, csolute) (5.4)where µ0 is the 
hemi
al potential of the pure 
omponent at the same density.The logarithmi
 term is the part 
oming from the entropy of mixing, that de-pends on the 
on
entration ci. fmix
int (csolvent, csolute) is, on the other hand, the
ontribution of the mole
ular intera
tions for the solvent and equivalently g forthe solute. Both f and g fun
tions are unknown.The pro
edure followed to determine the full thermodynami
 for
e is basedin two steps:

• The 
hemi
al potential pro�le is 
al
ulated for ea
h 
omponent separately,at the same density of the AdResS simulation. This will give a

ount of the
ontribution to the thermodynami
 for
e in the absen
e of intera
tions,and a �rst approximation for ea
h spe
ies. The resultant for
es are appliedto an AdResS system, to obtain a density pro�le where just µ0 has been
orre
ted.
• The remaining part of the 
hemi
al potential estimated using the resultingdensity (and 
on
entration) pro�les from the previous simulations. Thelogarithmi
 term 
an be dire
tly evaluated from the 
on
entration pro�les,while for the fun
tions f and g are treated empiri
ally. Using a linearexpansion in the densities of the fun
tions f and g from Eqs. 5.3 and 5.4,it is possible to write

fmix
int (csolvent, csolute) ≈

[

∂f

∂csolvent

]

c0

solvent
,c0

solute

· ∆csolvent (5.5)
gmix

int (csolvent, csolute) ≈
[

∂f

∂csolute

]

c0

solvent
,c0

solute

· ∆csolute (5.6)that has to be added to the simple thermodynami
 for
e to obtain its fullform. The prefa
tors, denoted by Kt and Ks for the solvent and soluterespe
tively, are determined empiri
ally.The �rst step was performed in the same way as for the one 
omponent 
aseshown in the previous 
hapter: the dis
retization of the hybrid region permitsthe 
al
ulation of a histogram of 
hemi
al potentials, whose values are plotted onFigs. 5.18 and 5.19, a

ompanied with their respe
tive thermodynami
 for
es.The thermodynami
s of the pure solvent system seems to have a greaterdependen
e on the mole
ular representation, as expe
ted sin
e its 
hange of58
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 for
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tive thermodynami
 for
e for the solute.resolution is mu
h deeper. For the solute, a small asymmetry is observed duethe fa
t that atomisti
 and 
oarse-grained intera
tions di�er only in a small tail.The systems treated 
onsists of boxes of size 36×20×20σ3 with 311 solutesin 2174 solvent parti
les. The width of the hybrid region was of 12 σ. 10 initial
onditions were simulated over 7500τ , to obtain 15000 
on�gurations that wereaveraged to give the density pro�les shown in Fig. 5.20.The 
orre
tive for
es were obtained using the 
oe�
ients Kt = 0.0017ǫ and
Ks = 0.0259ǫ. The �nal shape of the for
es is shown in Fig. 5.21. Finally,four AdResS simulations were performed over 20000τ that produ
ed the densitypro�les displayed on Figs. 5.22. The stability of the result is also shown by thenumber of parti
les per region, plotted in Fig. 5.23. The free di�usion of ea
h
omponent is proven by the di�usion pro�les depi
ted in Fig. 5.24.59
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Figure 5.20: Solvent and solute density pro�les after the 
orre
tion of µ0.
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 for
es.5.5 Iterative approa
hThe iterative s
heme 
an also be extended to multi
omponent systems, withsome minor features. The 
hosen pro
edure 
orre
ts the for
e of one spe
ies periteration, starting from the densest to the most diluted. The for
e in step i on
omponent α is then
f i
α = −Cα∇ρi

α (5.7)The prefa
tor Cα has been 
hosen as Kcα
∂p

∂ρα
. K is a value between 0 and1 that will be tuned later in order to keep the stability of the method. Notethat if the 
omponents are identi
al, K = 1 restores the one-
omponent formula60
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les per regime.sin
e ρα = cαρ.When tested, K = 1 
learly overestimates the for
es. Fig. 5.25 shows thedensity pro�les of solute and solvent after two iterations on ea
h spe
ie. Ea
h
orre
tion negle
ts its e�e
t on the other 
omponent, leading to an un
ontrolled
hange of density on it.A dire
t solution to this problem is to simply 
hoose K between 0 and 1.Its value, for simpli
ity, will be taken as the same for solvent and solute. Theprefa
tors tested were of 0.1, 0.3 and 0.5.ForK = 0.1, the density pro�les improve rapidly for the solvent, although forthe solute there is no signi�
ant improvement from the third iteration. Fig. 5.2661



Solvent SoluteFigure 5.24: Di�usion pro�les for both spe
ies in AdResS under the e�e
t ofthermodynami
 for
e.
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edure with K = 1shows the improvement in both spe
ies for six iterations on ea
h 
omponent.The prefa
tor 0.3 gives the best results, allowing to rea
h a reasonably �atdensity pro�le in seven iterations. However, a small solute density bump inferiorto the 5% is lo
ated at the borders of the 
oarse-grained region. The densitypro�les are shown in Fig. 5.27. The next two 
orre
tions do not improve thesolute density. In fa
t, on every step, the 
orre
tion on the solvent 
an
els the
orre
tion on the solute, and vi
e versa. Therefore, higher a

ura
y should bea
hieved by redu
ing the 
onstant K. Fig. 5.28 shows how the density pro�les
an improve in one iteration with K = 0.1 after seven iterations with K = 0.3.Finally, for K = 0.5, the 
orre
tions make the density pro�les os
illate moredrasti
ally (see Fig. 5.29). However, 
onvergen
e is not rea
hed in the �rst teniterations.Although a prefa
tor K able to generate the thermodynami
 for
es in areasonable number of iterations has been found empiri
ally, it is 
lear that the62
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Chapter 6Adaptive resolution s
heme ofa model polymer: furtherdevelopmentIn this 
hapter, further step towards the appli
ation of the AdResS to the sim-ulation of more 
omplex systems is developed.A previous work has already studied a model polymer solvated in tetrahedralmole
ules able to 
hange their representation under the AdResS [?℄. The systemwas designed to keep the polymer in the atomisti
 representation, by de�ningthe atomisti
 region as a sphere 
entered at the 
enter of mass of the 
hainwith a radius 
arefully determined. This setup is optimal for the simulationof a ma
romole
ule where the stru
ture of the solvent 
an be relevant for itsfun
tional properties. Additionally, the e�e
ts of the solute on the solvent 
anbe 
ru
ial for the 
hara
terization of the solvation pro
ess [?℄. Both situations
an be studied des
ribing with a detailed resolution only the �rst solvation shellsaround the solute.In the present work, however, both solvent and polymer are allowed to 
hangetheir representations. Su
h an appli
ation requires not only the 
hange of reso-lution of a multi
omponent system, but also the extension of AdResS to bondedintera
tions. The 
hange of resolution is now through a �at geometry, moresuitable to problems like the intera
tion of polymers with �at surfa
es. Theprevious study of the intera
tion of poly
arbonate with a ni
kel surfa
e [?℄ is a
lear example.The 
hapter begins exposing the system setup 
hosen for this aim. Later on,the reparametrization of the required intera
tions will be des
ribed, followed bythe results and their 
onsequent improvement by the appli
ation of the interfa
e
orre
tion [?℄. Finally, the simulations will be 
orre
ted with the appli
ation ofthe thermodynami
 for
e. 65



6.1 System setupThe model polymer is a bead-spring polymer 
hain, whose monomers are thesolute parti
les des
ribed in Chapter 5. The bonded intera
tions are FENEbonds (see Eq. 3.11) with parameters ks = 30ǫ/σ2
s and R0s

= 1.5σs, where
σs = 1.8σ.The system setup is illustrated in Fig. 6.1, where the polymer has beenlo
ated at the 
enter of the hybrid region, keeping its 
entral monomer �xed.For the moment, this setting is enough for the test of the intera
tions and theanalysis of 
ertain statisti
al properties. Later appli
ations will allow the 
hainto freely di�use a
ross the whole simulation box.

Figure 6.1: Polymer system setup. The monomers do not ne
essarily have thesame ex
luded volume in both representations.This 
on�guration demands a 
omplete reparametrization of the intera
tionsin the 
oarse-grained region; namely, the non-bonded intera
tions between sol-vents and solutes, and the bonded potentials between the monomers of themodel ma
romole
ule. The former set of potentials has been systemati
ally de-veloped in the previous 
hapter, while the latter will be treated in the following66



se
tion.The aim of the bonded 
oarse-grained intera
tions will be to reprodu
e thebond, angle and torsion distributions. In addition to this stru
ture fun
tions andthe density pro�le, some statisti
al properties of the polymer will be monitored:the end-to-end distan
e
〈R2

E〉 = 〈(rN − r1)
2〉, (6.1)where ri is the position of the ith monomer and N is the number of monomerunits; the hydrodynami
 radius RH ,

〈

1

RH

〉

=
1

N2

∑

i6=j

〈

1

rij

〉 (6.2)with rij = |ri − rj |, and the radius of gyration
〈R2

G〉 =
1

N

∑

i

〈(ri − R)2〉 (6.3)where R stands for the position of the 
enter of mass of the polymer.A deeper 
hara
terization of the 
hain stru
ture 
an be done by inspe
tingthe exponent ν that governs the s
aling behavior of 〈R2
G〉 and 〈R2

E〉 through therelation
〈R2

E〉 ∝ 〈R2
G〉 ∝ N2ν (6.4)Su
h a number 
an be obtained from the analysis of the stati
 stru
ture fa
tor

S(q) =
1

N

〈

∑

ij

eiq·(ri−rj)
〉 (6.5)whi
h 
an be experimentally measured. In the regime R−1

G ≪ q ≪ b−1, with bthe bond length, S(q) is proportional to q−1/ν .6.2 Two-body bonded intera
tionsThe studied polymer, 
omposed of 20 monomers, is solvated in 2800 tetrahedralmole
ules 
ontained in a 
ubi
 box of side of length 25.261σ. The target bondlength distribution was obtained from an atomisti
 simulation of 25000τ sampledevery 1000 time steps. The Iterative Boltzmann Inversion was then appliedto the bead-bead bond intera
tion starting from the potential of mean for
e,des
ribed in Chapter 3.The pro
edure 
onverged after three iterations. The initial and �nal inter-a
tions are shown on the left of Fig. 6.2. The agreement between the targetand 
oarse-grained distributions is shown on the right.The radial distribution fun
tions, shown in Fig. 6.3 do not require furtherparametrizations. Stru
ture fa
tor and the statisti
al properties aforementionedare shown in Fig. 6.4 and Table 6.1 respe
tively, showing good agreement.67
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Solute-SoluteFigure 6.3: Radial distribution fun
tions.System Atomisti
 Coarse-grained
p∗ 1.98 ± 0.08 1.984± 0.002

〈R2
E〉1/2 10.7 ± 0.5 10.6 ± 0.2

〈R2
G〉1/2 4.2 ± 0.1 4.24 ± 0.06

〈R−1
H 〉−1 4.15 ± 0.05 4.17 ± 0.05
ν 0.56 0.57Table 6.1: Summary of some polymer statisti
al properties. Pressure is in
ludedto show agreement. The 
hain 
onsists of 20 monomer units.The value of ν, that is 0.5 for a θ solvent and approximately 0.588 for agood solvent [?,?,?℄, is 
loser to the latter. The dis
repan
y 
ould 
ome fromthe �nite size of the 
hain, as it has been previously observed [?℄, together withthe quality of the solvent. 68
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Figure 6.4: Stru
ture fa
tor in Kratky representation.6.3 AdResS simulation of the model polymerThe AdResS simulations are performed in a box of the same size as in the atom-isti
 
al
ulations, while the hybrid region has a width of 4σ in the x dire
tion.Six di�erent initial 
onditions were integrated for 10000τ after an equilibrationof 2500τ . Ea
h 
on�guration was saved every 1000 steps.The density pro�le, shown in Fig. 6.5 shows reasonably good agreementwith the atomisti
 simulations, 
onsidering that in the transition region it isexpe
ted a la
k of solvent and a 
onsequent ex
ess of solute due the nature oftheir non bonded intera
tions, as observed previously in the multi
omponentsystem. There is no asymmetry produ
ed by the in
lusion of the bonded in-tera
tions. Every pro�le shows a density �spike� 
oming from the �xed parti
leat the 
enter of the hybrid zone. On the other hand, the bond distributionfun
tion and the stru
ture fa
tor (Fig. 6.3) do not seem a�e
ted by the adap-tive regime. These fun
tions 
an be 
ompared with the resulting forms of apurely hybrid simulation, at w = 0.5. It is well known that at this point, thedisagreement with the atomisti
 results is high, if not maximum [?℄. However,the bond distribution shows a ni
e agreement between AdResS, atomisti
 andpurely hybrid simulations. This is 
onsistent with the fa
t that the intera
tionbetween solutes does not 
hange greatly between atomisti
 and 
oarse-grainedrepresentations, as in the 
ase of the solvent parti
les.6.4 AdResS simulation with interfa
e-pressure 
or-re
tionFinally, the simulation is performed under the in�uen
e of the interfa
e-pressure
orre
tion. Sin
e the bond distribution does not 
hange appre
iably in the69
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Figure 6.7: Stru
ture fa
tor in Kratkyrepresentationpurely hybrid simulation previously shown, the 
orre
tion is applied only to thenon-bonded intera
tions.Simulations of 10000τ were performed for the same six initial 
onditions. Theproperties of the polymer, on Table 6.2 are again in good agreement with theatomisti
 values, while the bond distribution and stru
ture fa
tor do not displayany 
hange 
ompared with the result without interfa
e 
orre
tion. In addition,the monomer density pro�le of Fig. 6.8 shows a 
onsiderable improvement,mat
hing almost perfe
tly the atomisti
 result.70



System Atomisti
 AdResS AdResS-i
p 1.98 ± 0.08 2.05 ± 0.02 2 ± 0.02

〈R2
E〉1/2 10.7 ± 0.5 10.1 ± 0.3 10.1 ± 0.4

〈R2
G〉1/2 4.2 ± 0.1 4.07 ± 0.07 4.07 ± 0.09

〈R−1
H 〉−1 4.15 ± 0.05 4.08 ± 0.04 4.05 ± 0.05
ν 0.56 0.54 0.53Table 6.2: Summary of some statisti
al properties for AdResS simulation usinginterfa
e-pressure 
orre
tion. The polymer is 
omposed of 20 monomers.
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Figure 6.8: Monomer density pro�le of the model polymer on AdResS simulationwith interfa
e 
orre
tion.6.5 AdResS simulation under thermodynami
 for
es.The thermodynami
 for
e has been developed for the most diluted mixture,with 20 monomers solvated in 2400 solute parti
les in a box of dimensions
40.1× 20.05× 20.05σ3. The weighting fun
tion is the same used in the previousmixture study, with a hybrid region width of 12σ. The form of the 
hemi
alpotentials is given by the Eqs. 5.3 and 5.4 presented in the previous 
hapter.However, this time, the mixing terms are expressed in terms of the density

fmix
int (ρsolvent, ρsolute) ≈

[

∂f

∂ρsolvent

]

ρ0

solvent
,ρ0

solute

· ∆ρsolvent (6.6)
gmix

int (ρsolvent, ρsolute) ≈
[

∂f

∂ρsolute

]

ρ0

solvent
,ρ0

solute

· ∆ρsolute (6.7)71



whi
h gives a 
orre
tion to the thermodynami
 for
e of the form −Ki∇ρi forthe 
omponent i. Therefore, in
luding the term of the 
hemi
al potential of thepure spe
ies, plus the logarithm due to the entropy of mixing and above shownterm proportional to the density of ea
h 
omponent, it is possible to obtain thefull thermodynami
 for
es shown in the left of Fig. 6.9. The 
onstants were of
Kt = 26ǫσ−3 and Ks = 0.3ǫσ−3 for the solvent and solute respe
tively. Thedensity pro�les of the AdResS simulations is shown in the right of Fig. 6.9.
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Density pro�lesFigure 6.9: Results for the thermodynami
 for
es in the most diluted mixture.The solute density shows a noisy pro�le due to its low 
on
entration. How-ever, the density pro�le of the major 
omponent, whi
h mainly determines thephysi
s of the system, is pra
ti
ally homogeneous.As a �rst step, the e�e
t of the thermodynami
 for
e is studied in a polymer
hara
terized by the same intera
tions developed in the previous se
tions. Thesystem 
onsists of a 
hain 
omposed of 50 monomers solvated in 7000 tetrahedralmole
ules. The box dimensions are of 36×33.458×33.458σ3 with a hybrid regionwidth of 12σ. The target distributions and quantities were 
olle
ted from threeatomisti
 simulations integrated over 25000τ . Sin
e the bonded intera
tionshave been added, and the volume has 
hanged in 
omparison to the system onwhi
h the thermodynami
 for
es were developed, it is expe
ted that these for
eswill require 
ertain re�nement. That 
an be done by adding on to the for
e on
omponent α the 
orre
tion ∆fα = −Cα∇ρα iteratively. The 
hosen prefa
toris the one 
hosen for the iterative pro
edure on the mixture presented at theend of the previous 
hapter, Cα = 0.3 1
ρT

∂p
∂ρα

evaluated in the 
oarse-grainedrepresentation. In this 
ase, it was enough to 
orre
t the solute density overtwo steps, with a prefa
tor of Csolute = 33.975ǫσ3.For the AdResS systems, six initial 
onditions were integrated over 2500τ forequilibration and 12500τ for produ
tion. The density pro�les obtained with this
orre
ted thermodynami
 for
e are 
ompared for di�erent systems in Fig. 6.10.Statisti
al properties are listed in Table 6.3. Bond distributions and stru
turefa
tor are plotted in Fig. 6.11.The agreement in the density pro�les is almost perfe
t. It is worthy to note,72
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SoluteFigure 6.10: Density pro�les for a 50 bead 
hain without angular intera
tions.The results are 
ompared also for un
orre
ted and �nal forms of the thermody-nami
 for
es. System Atomisti
 AdResS AdResS-TF
〈R2

E〉1/2 16.2 ± 0.6 15.5 ± 0.4 15.7 ± 0.6

〈R2
G〉1/2 7.06 ± 0.2 6.7 ± 0.2 6.8 ± 0.2

〈R−1
H 〉−1 6.09 ± 0.09 5.9 ± 0.1 5.9 ± 0.1
ν 0.56 0.56 0.54Table 6.3: Some statisti
al properties of the 50 bead 
hain without angularintera
tions in atomisti
 and AdResS simulations.additionally, that the solvent density resembles the atomisti
 pro�le in bothhybrid regions, 
onsidering that the solute is 
on
entrated in the 
enter of thebox. Therefore, the same thermodynami
 for
e applied to the solvent 
ould leadto di�erent results in the absen
e of the minor 
omponent. However, this is notthe 
ase, showing the robustness method.The value of ν shows no in
rease with respe
t to the exponent of the shorter
hain, suggesting that the deviation with respe
t to a good solvent 
ould 
omefrom the solvent quality.Bond distributions are also well reprodu
ed in AdResS simulations. Stru
-tural properties agree satisfa
torily, although the stru
ture fa
tor is slightly per-turbed with respe
t to the target fun
tion. This is expe
ted sin
e the stru
tureof both solvent and solute di�er in the hybrid region. However, su
h di�eren
edoes not seem a�e
ted by the a
tion of the thermodynami
 for
es. Note alsothat the end-to-end distan
e is in every 
ase bigger than the width of the hybridregion.To 
on
lude this 
hapter, the same polymer is studied with angular and73
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ture fa
tor in Kratky representa-tionFigure 6.11: Stru
tural fun
tions for the 50 bead polymer without angular in-tera
tions.torsion intera
tions. The angular potential is given by
Ua(θ) =

kθ

2
(θ − θ0)

2 (6.8)where kθ = 3rad−2ǫ and θ0 = 2
3π. The torsion potential is, on the other hand,

U t(φ) = Kφ[1 + cos(φ)] (6.9)with Kφ = 2ǫ.Su
h for
e �elds are able to satisfa
torily reprodu
e their respe
tive distri-butions in the 
oarse-grained representation. Hen
e, the AdResS interpolationof for
es is not applied to these for
es.The thermodynami
 for
es, on the other hand, are iteratively 
orre
ted us-ing the same formula as before, starting from the parametrized for
es for thepreviously studied polymer. As it 
an be seen in the density pro�les of Fig.6.12, the thermodynami
 for
es produ
e the desired e�e
t after two iterations.Statisti
al properties, listed in Table 6.4 also show good agreement withatomisti
 results.System Atomisti
 AdResS AdResS-TF
〈R2

E〉1/2 16.8 ± 1 16.4 ± 0.5 18.2 ± 0.6

〈R2
G〉1/2 8.8 ± 0.3 8.9 ± 0.3 9.3 ± 0.2

〈R−1
H 〉−1 7.5 ± 0.2 7.6 ± 0.1 7.7 ± 0.1Table 6.4: Some statisti
al properties of the 50 bead 
hain in presen
e of anglesand torsions.Finally, the bond distribution and stru
ture fa
tor are found in Fig. 6.13,while the angle and torsion distributions are depi
ted in Fig. 6.14.74
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tor in Kratky representa-tionFigure 6.13: Stru
tural fun
tions for the 50 bead polymer with angles andtorsions.Bond and torsion distributions seem almost perfe
tly mat
hed in the 
oarse-grained and AdResS simulations. Angle distributions are also satisfa
torilyreprodu
ed, although a small di�eren
e of less than 4% is present in the se
ondpeak that 
omes form the 
oarse-grained parametrization. This small di�eren
eis inherited in the AdResS simulations and not a�e
ted by the thermodynami
for
e. A similar 
ase is observed in the stru
ture fa
tor, where the mismat
h be-tween AdResS and atomisti
 simulations is not improved by the thermodynami
for
e.The stru
ture fa
tor does not allow to 
al
ulate ν pre
isely. However, itmust be 
onsidered that the system setup and length of the simulations hasbeen designed to test the e�e
ts of the AdResS for
es and the thermodynami
for
es on the basi
 stru
ture and density pro�les.75
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tions.It is possible to 
on
lude that, in general, the thermodynami
 for
es 
anbe obtained in a systemati
 way to 
orre
t the density inhomogeneities of sys-tems with bonded intera
tions. However, 
are must be taken when reprodu
ingstru
tural properties, spe
ially in the hybrid region where, in general, they 
anbe altered by the interpolation of for
es.
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Chapter 7Implementation of theAdaptive Resolution S
hemein ESPResSoA des
ription of the numeri
al implementation of AdResS in the ESPResSopa
kage [?℄ is presented in this 
hapter. Te
hni
al details about the interfa
e
ommands, integrator and parallelization s
heme are listed in the Appendix.The 
hapter begins with a des
ription of the general overview of the systemand how the equations of motion are integrated. Later on, the parallelizations
heme is des
ribed, 
ontinued by the implementation of the thermostat. Af-ter that, the initialization of the internal degrees of freedom when a mole
uletransits form 
oarse-grained to a hybrid domain is brie�y dis
ussed, to 
on
ludewith the treatment of bonded for
es. Interfa
e pressure 
orre
tion and ther-modynami
 for
es deserve a purely te
hni
al dis
ussion that is in
luded in the
orresponding appendix.It is worthy to point that the implementation 
an greatly help to understandbetter the physi
s of the AdResS and to have a more 
omplete pi
ture of it.7.1 General setupThe system is 
omposed of mole
ules with only one mapping point, lo
ated atthe 
enter of mass. The basi
 idea behind this implementation is the treatmentof ea
h mole
ule with a double resolution, i.e., every mole
ule will be 
omposedof its atoms and a virtual parti
le that 
orresponds to its 
enter of mass. Thelatter is nothing else than a mapping point needed for the 
al
ulation of thefor
e at this point, whi
h is properly distributed among the atoms later. Hen
e,the potential between two parti
les i and j belonging to di�erent mole
ules αand β 
an be written as
Vij = V ex(ri, rj , ...) + V vs(rvs(ri, rj , . . .)) (7.1)77



where V ex is the atomisti
 potential between them, and V vs, the potentialbetween the virtual sites, whose position rvs is a fun
tion of the positions of theatoms of its mole
ule.Therefore, the for
e on atom i is distributed a

ording to
Fi = −∂(V ex + V vs)

∂ri

= Fex
i + Fvs ∂rvs

∂ri

= Fex
i +

mi
∑

i∈α mi
Fvs (7.2)This 
hoi
e avoids the 
reation and deletion of atoms, whi
h is a highly expen-sive operation that involves an a
tive manipulation of the memory. Therefore,the AdResS is redu
ed to the proper 
al
ulation and distribution of for
es onthe atomisti
 atoms, a

ording to equation 1 in Chapter 3. The virtual sites'positions are simply updated from the positions of the atoms. Naturally, theintermole
ular atomisti
 for
es will not be 
al
ulated in the 
oarse-grained re-gion, sin
e they are not involved in the dynami
s. The same holds for the
oarse-grained for
e �elds in the atomisti
 domain.The intramole
ular for
es are 
al
ulated in the whole simulation box, in-dependently of the representation of the mole
ule. They are not in
luded inthe interpolation s
heme di
tated by the AdResS equations, and their in
lusionhelps to stabilize the system.7.2 ThermostatThe Langevin thermostat [?℄ has been 
hosen for the AdResS simulations, mainlydue its lo
al nature. This feature makes sure that the stationary velo
ity distri-bution of ea
h parti
le will be 
onsistent with the temperature of the thermostat,independent from the rest of the system1. In this 
ase, the thermostat for
es a
tonly over the atoms a
ross the whole simulation box. On
e these degrees of free-dom have the 
orre
t velo
ity distribution, the thermalization of the 
enters ofmass is straightforward. The same features 
an be obtained by the appli
ationof a DPD [?, ?℄ thermostat.Counting with this global setup, there are two tested options for the initial-ization of the atoms' velo
ities (and positions) when a mole
ule 
rosses from the
oarse-grained to the hybrid regime2:

• Copy the atom's velo
ities relative to the 
enter of mass of a mole
ule froma random mole
ule from the atomisti
 region [?℄. This guarantees thatthe intramole
ular degrees of freedom will be sampled from distributions
onsistent with the atomisti
 regime that is properly thermalized.1Sin
e the for
es are not homogeneous neither 
onservative, this 
hoi
e would prevent anyeventual temperature pro�le that a global thermostat 
ould generate.2That is, the reintrodu
tion of the integrated degrees of freedom78



• Leave the positions and velo
ities untou
hed, that is a justi�ed 
hoi
esin
e the thermostat generates the 
orre
t velo
ity distribution regardlessthe representation of a mole
ule.Both approa
hes give no di�eren
e in the velo
ity distributions in the hybridregion neither the density pro�les, as shown in Fig. 7.1. However, the latterresults 
onsiderably faster than the former. Another important feature is theparallelization s
heme: sin
e the ESPResSo pa
kage divides the simulation boxinto several domains that are distributed among the pro
essors, the presen
eof atomisti
 mole
ules is guaranteed in all of them. Consequently, the se
ond
hoi
e is more plausible for parallel simulations.
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lesFigure 7.1: Comparison of distributions for AdResS simulations of tetrahedralsystems, under the two initialization s
hemes.7.3 Bonded Intera
tionsThe bonded intera
tions between atoms that belong to the same mole
ule arefully 
onsidered sin
e they are not a�e
ted by equation 1 from Chapter 3. Thisis required for the stability of the mole
ules in the 
oarse-grained region.For more 
omplex systems, like the polymer of Chapter 6, the bonded inter-a
tions are interpolated between the two representations whenever the atomsinvolved belong to di�erent mole
ules, whose virtual sites have di�erent identi-ties.
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Chapter 8Con
lusionsThis thesis work was devoted to 
on
eptual and te
hni
al advan
es of the Adap-tive Resolution S
heme.Con
eptually, the thermodynami
 
onsisten
y of the method was veri�ed inthe tetrahedral system, whi
h allowed the introdu
tion of the Thermodynami
For
e. Su
h for
e was su

essfully applied in this system and in a simpler model,where both representations 
ontain the same number of degrees of freedom. Theappli
ation of the for
e redu
es almost 
ompletely the density artifa
ts produ
edby the interpolation of for
es that 
hara
terize AdResS. Spe
ial 
are has to betaken when this 
orre
tion is applied: the reported �nite size e�e
ts manifestedthrough the formation of density patterns suggest that the width of the hybridregion must be large enough.The 
on
ept of Thermodynami
 For
e was generalized and expressed interms of pressure 
onsisten
y, whi
h allowed to establish numeri
al 
onsisten
ybetween AdResS and mole
ular dynami
s simulations of open systems. Addi-tionally, this lead to the development of an iterative pro
edure for obtainingthe Thermodynami
 For
e, that has also been applied to more 
omplex systemslike water [?℄. The lo
al physi
s of the atomisti
 region was 
ompared with theresults of purely atomisti
 simulations. Radial distribution fun
tions and velo
-ity distributions show a good agreement, while the parti
le number �u
tuationin the subvolume, pressure and density pro�les improve 
onsiderably under theappli
ation of the Thermodynami
 For
e, sin
e it restores the target density inthe whole simulation domain, and in parti
ular, in this region.Con
erning multi
omponent systems, a model mixture of spheri
al soluteswas the subje
t of study. The development of the intera
tions, whi
h is by itselfa non-trivial issue, was performed systemati
ally through su

essive appli
ationsof the Iterative Boltzmann Inversion 
orre
ting the pressure at ea
h step, givinggood results over a wide range of 
on
entrations. The e�e
ts of AdResS werealso listed for this set of mixtures, spe
ially in the most 
on
entrated 
ase.There, the interfa
e-
orre
tion and the Thermodynami
 For
e were also appliedsu

essfully to the most 
on
entrated mixture, requiring a slightly more deli
atetreatment than in the pure 
omponent systems.81



Finally, it was shown that the sole interpolation of for
es of the AdResS 
anbe applied to two-body bonded intera
tions. The distributions that 
hara
terizethe model polymer treated are not a�e
ted in the hybrid zone, showing goodagreement with purely atomisti
 simulations. Further appli
ation of the Ther-modynami
 For
e on this system did in pra
ti
e not a�e
t the basi
 stru
tureof the polymer.Con
erning the te
hni
al issues, a referen
e implementation of AdResS wasin
orporated to the ESPResSo simulation pa
kage, allowing its parallelizationand implementation in a more standard way.
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Appendix: Te
hni
al Detailsand Interfa
e of theImplementation of AdResS inESPResSo.A deeper and more te
hni
al des
ription of the AdResS implementation in theESPResSo pa
kage [?,?℄ is presented below. The integrator and parallelizations
heme are des
ribed with more detail in a systemati
 way, while the 
om-mands developed for the TCL [?℄ interfa
e of ESPResSo are also in
luded. Theappendix is stru
tured in the same way as Chapter 7, where the 
on
eptualaspe
ts were explained.General setupThe AdResS feature is enabled in ESPResSo by adding the line#define ADRESSOto the 
on�guration �le my
onfig.h. Later on, the AdResS has to initialized atthe t
l level through the lineadress set topo $kind width $width $hybrid_width \
enter x $R_x wf $wfwhere kind de�nes the general setup of the AdResS simulation. They 
an be0 disabled1 
onstant weight fun
tion2 one dimensional geometry3 spheri
al geometryand wf the weighting fun
tion type:0 
onventional 
osine-squared fun
tion1 de�ned by the userhybrid_width and width, on the other hand, are the widths of the hybridand atomisti
 region respe
tively. 83



IntegratorThe integrator used by ESPResSo 
orresponds to a standard velo
ity Verletalgorithm [?, ?℄, that 
an be summarized in four steps as1. v(t + ∆t/2) = v(t) + ∆t/2 · f(t)/m2. p(t + ∆t) = p(t) + ∆t v(t + ∆t/2)3. Cal
ulate f(t + ∆t) from p(t + ∆t), v(t + ∆t/2)4. v(t + ∆t) = v(t + ∆t/2) + ∆t/2 · f(t + ∆t)/mHowever, when the virtual sites are present, this has to be slightly modi�ed to1. v(t + ∆t/2) = v(t) + ∆t/2 f(t)/m2. p(t + ∆t) = p(t) + ∆t v(t + ∆t/2)2b. Re
al
ulate and update the positions, velo
ities and weighting fun
tions
w(R) of the virtual sites.3. Cal
ulate f(t + ∆t) from p(t + ∆t), v(t + ∆t/2)3b. Distribute the for
e of the virtual sites to its 
orresponding atoms.4. v(t + ∆t) = v(t + ∆t/2) + ∆t/2 f(t + ∆t)Therefore, the integrator works only on the atomisti
 parti
les, while the virtualsites are merely dummy points employed in the for
e 
al
ulation.Parallelization s
heme and 
ut-o�sAs mentioned in Chapter 7, the parallelization s
heme used by ESPResSo 
on-sists in a partition of the simulation domain into several boxes of �xed volume.Ea
h of these sub-volumes is surrounded by a ghost layer that 
ontains a 
opyof the parti
les of the adja
ent sub-volumes required for the 
al
ulation of thefor
es. Evidently, the thi
kness of this layer will depend of the 
ut-o� range ofthe intera
tions.The parallelization s
heme requires two additional features in the presen
e ofthe virtual sites. The �rst 
on
erns to the 
ommuni
ation of the ghost parti
les,whi
h positions must be known by ea
h pro
essor for the 
al
ulation of thevirtual sites. Therefore, the properties of these parti
les must be updated,whi
h requires a se
ond 
ommuni
ation.The se
ond issue 
onsists on the rede�nition of the ghost layer thi
kness.The implementation has to guarantee that every mole
ule that 
ontains at leastone non-ghost atom must be fully in
luded in the pro
essor. This is requiredfor the 
al
ulation of the virtual sites and for the distribution of the for
es.Consequently, the maximum 
ut-o� between the non-bonded intera
tions hasto be in
reased by approximately the size of a mole
ule. In pra
ti
e, this is84



performed by in
reasing the maximal 
uto� by twi
e the maximal 
ut-o� of thebonded intera
tions.The mole
ular 
ut-o� between parti
les type type1 and type2 
an be set to
ut-off through the senten
einter $type1 $type2 mol
ut 1 $
ut-offThis is a versatile implementation that allows the de�nition of an arbitrary 
ut-o� between mole
ules. However, a more simple implementation requires onlythe in
lusion of the line#define MOL_CUTin the 
on�guration �le my
onfig.h.ThermostatThe thermostat, as explained in Chapter 4, a
ts only on the atomisti
 repre-sentation of the mole
ules. The Langevin thermostat is initialized with thesenten
ethermostat langevin $temperature $fri
tionwhile the DPD variant requiresthermostat dpd $temperature $fri
tion $
utoffwhere, in both 
ases, temperature is the temperature and fri
tion is thefri
tion 
oe�
ient required by the for
es [?, ?, ?℄. 
utoff is the 
ut-o� of theDPD pair intera
tion.Mole
ule de�nitionThe mole
ules 
an be de�ned in the standard way provided by ESPResSo. Asimple tetrahedral mole
ule, for example, 
an be de
lared withset mole
ule_topology $mole
ule_typepart 1 pos $pos1x $pos1y $pos1z virtual 0lappend mole
ule_topology 1part 2 pos $pos2x $pos2y $pos2z virtual 0lappend mole
ule_topology 2part 3 pos $pos3x $pos3y $pos3z virtual 0lappend mole
ule_topology 3part 4 pos $pos4x $pos4y $pos4z virtual 0lappend mole
ule_topology 4part 5 pos $pos5x $pos5y $pos5z virtual 1lappend mole
ule_topology 5eval analyze set $mole
ule_topologyanalyze set topo_part_syn
 85



The position of the virtual site 
an be initialized by 
allingintegrate 0while the usual 
ommandintegrate $nstepsintegrates nsteps steps of the equations of motion, properly updating the posi-tions of the 
enters of mass.Interfa
e pressure 
orre
tionThe interfa
e pressure 
orre
tion supports only tabulated for
e �elds. There-fore, 
oarse-grained and interfa
e-
orre
ted 
oarse-grained for
e �elds must bede�ned in this way, in
luded in the �le filename. The 
ommandinter $type1 $type2 adress_tab_i
 $filenameinitializes the 
oarse-grained for
e between the virtual parti
les of kind type1and type2. The �le must be written in the same format as the tabulatedintera
tions of ESPResSo: the �rst four lines are the spe
ial 
hara
ter #, thenumber of points N and the minimum and maximum separation distan
es rminand rmax. Below, the two potentials are introdu
ed in �ve 
olumns as r, FCG/r,
UCG, FIC , U IC . The number of points and the 
ut-o� radius are assumed tobe the same for both potentials, while the values of r are equally distributedbetween rmin and rmax with a �xed distan
e (rmax−rmin)/(N−1). The positionand the potential 
olumns are ignored in the 
al
ulations; their in
lusion is onlyfor the sake of readability.Thermodynami
 for
ethermodynami
_for
e $type $filename $prefa
torwhere type is the type of the parti
le on whi
h the for
e spe
i�ed in filenamewill be exerted. prefa
tor is a 
oe�
ient de�ned by the user that multipliesthe for
e. The format is 
onsistent with the usual tabulated potential formatin ESPResSo: the initial four 
onsist in the spe
ial 
hara
ter #, followed bythe minimum and maximum distan
es rmin and rmax. Then, three 
olumnsare entered: s, − dU

ds and U. s 
orresponds to the dimensionless position in thehybrid region x
dhy

, with dhy its width, ranging from 0 to 1. The derivative ofthe potential has to be expressed in terms of this variable. The third 
olumnis the potential asso
iated with this �eld; it has no e�e
t on the equations ofmotion and is in
luded only for readability.
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