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Zusammenfassung

Diese Arbeit befasst sich mit den konzeptionellen und technischen Entwicklung
des “Adaptive Resolution Scheme” (AdResS) , einer Methode der Molekular-
dynamik, welche die gleichzeitige Simulation eines System in unterschiedlichen
Auflésungen, ermoglicht. Die Simulationsdoméne teilt sich in einen Bereich mit
héherer und einen Bereich mit geringerer Auflésung. Gekoppelt sind sie durch
einen Ubergangsbereich, indem die Molekiile frei diffundieren kénnen.

Der erste Teil der Dissertation ist auf die thermodynamische Konsistenz der
Methode fokussiert, die an einem fliissigen Modell aus tetraedrischen Molekiilen
getestet und verifiziert wurde. Die Ergebnisse erlauben die Einfiihrung des
Konzepts der Thermodynamischen Kraft, bei dem ein externes Feld unphysikalis-
che Dichtefluktuationen im Ubergangsbereich, die in iiblichen AdResS Simula-
tionen auftreten, korrigiert. AdResS wird auch auf ein System angewandt, bei
dem sich zwei unterschiedliche Darstellungen mit identischem Auflésungsniveau
gegeniiberstehen. Dieser einfache Test erweitert die Anwendbarkeit der Meth-
ode von einem Schema mit adaptiver Auflésung zu einem Schema mit adaptiver
Darstellung, in dem unterschiedliche Kraftfelder, die auf thermodynamischen
Konsistenzargumenten basieren, gekoppelt werden konnen. Die Methode der
Thermodynamischen Kraft wurde in dem hier dargestellten Beispiel erfolgreich
angewandst.

Ein alternativer, auf konstantem Druck basierender Ansatz fiir die Deduk-
tion der Thermodynamischen Kraft, ermdglicht die Interpretation des AdResS
als ersten Schritt hin zu einer molekulardynamischen Simulation im grofkanon-
ischen Ensemble. Ausserdem hilft eine solche Definition die Thermodynamisches
Kraft, die in der bekannten tetraedrischen Fliissigkeit getestet wird, einfacher
zu bestimmen. Die Effekte von AdResS und deren Korrektur im atomistische
Bereich der Simulation wurden durch die Untersuchung der lokalen Verteilung
der Geschwindigkeiten, Radialverteilungsfunktionen, Druck und Schwankung
der Partikelanzahl, analysiert. Deren Vergleich mit analogen Ergebnissen aus
rein atomistichen Simulationen zeigt eine gute Ubereinstimmung, die unter dem
Einfluss des externen Feldes noch gesteigert wird.

Ein weiterer Schritt in der Entwicklung des AdResS, der fiir verschiedene
Anwendungen in der Biophysik und Materialkunde nétig ist, setzt seine An-
wendung zu Multikomponentensystemen voraus. In dieser Hinsicht wird die
Darstellung in héherer Auflésung eines bindren Mischungsmodells gegen seine
vergroberte (coarse-grained) Darstellung systematisch parametrisiert. Dabei
bringt die Methode der Thermodynamischen Kraft zufriedenstellende Ergeb-
nisse, auch wenn ihre Entwicklung eine noch feinere Bearbeitung bendtigt.

Schlieklich wurde das AdResS in Systemen mit zweikorper-gebundenen Kriften
durch die Simulation von einem Modellpolymer, dem es erlaubt ist, seine Darstel-
lung adaptiv zu verdndern, getestet. Es wird gezeigt, dass die Verteilung der
Funktionen, die die Polymerstruktur charakterisieren, in der Praxis durch eine
Verdnderung der Auflésung nicht beeinflusst wird.

Die Erlduterung der technischen Details fiir die Ausfiihrung von AdResS im
ESPResSo Softwarepaket bildet den letzten Teil dieser Dissertation.






Summary

This thesis work is devoted to the conceptual and technical development of
the Adaptive Resolution Scheme (AdResS), a molecular dynamics method that
allows the simulation of a system with different levels of resolution simultane-
ously. The simulation domain is divided into high and low resolution zones and
a transition region that links them, through which molecules can freely diffuse.

The first issue of this work regards the thermodynamic consistency of the
method, which is tested and verified in a model liquid of tetrahedral molecules.
The results allow the introduction of the concept of the Thermodynamic Force,
an external field able to correct spurious density fluctuations present in the
transition region in usual AdResS simulations. The AdResS is also applied to
a system where two different representations with the same degree of resolu-
tion are confronted. This simple test extends the method from an Adaptive
Resolution Scheme to an Adaptive Representation Scheme, providing a way of
coupling different force fields based on thermodynamic consistency arguments.
The Thermodynamic Force is successfully applied to the example described in
this work as well.

An alternative approach of deducing the Thermodynamic Force from pres-
sure consistency considerations allows the interpretation of AdResS as a first
step towards a molecular dynamics simulation in the Grand Canonical ensem-
ble. Additionally, such a definition leads to a practical way of determining the
Thermodynamic Force, tested in the well studied tetrahedral liquid. The effects
of AdResS and this correction on the atomistic domain are analyzed by inspect-
ing the local distribution of velocities, radial distribution functions, pressure
and particle number fluctuation. Their comparison with analogous results com-
ing from purely atomistic simulations shows good agreement, which is greatly
improved under the effect of the external field.

A further step in the development of AdResS, necessary for several appli-
cations in biophysics and material science, consists of its application to multi-
component systems. To this aim, the high-resolution representation of a model
binary mixture is confronted with its coarse-grained representation systemati-
cally parametrized. The Thermodynamic Force, whose development requires a
more delicate treatment, also gives satisfactory results.

Finally, AdResS is tested in systems including two-body bonded forces,
through the simulation of a model polymer allowed to adaptively change its
representation. It is shown that the distribution functions that characterize the
polymer structure are in practice not affected by the change of resolution.

The technical details of the implementation of AdResS in the ESPResSo
package conclude this thesis work.
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Introduction

Computer simulations have become a major topic in physics during the last
decades and a powerful tool to inquire into the details of complex systems. They
can provide detailed information that is not accessible from an experimental
perspective, or allow the study of a system under conditions that are difficult or
unfeasible to achieve in real experiments. Additionally, molecular simulations
can be the key to obtaining a more complete picture of systems where theoretical
models can only provide qualitative information about their properties.

However, the same complexity that requires this treatment can become a
challenge to simulate. For example, when the time that a system needs to reach
equilibrium demands simulations over times that are far beyond the current
capabilities, an exhaustive description is prohibitive. Therefore, the problem
can be addressed through a simpler approach by removing the faster degrees of
freedom, and effectively reintroducing them, keeping the relevant physics from
the original picture. The simplification leads to a coarse-grained representation,
where the number of degrees of freedom has been reduced, resulting in a model
that is less computationally expensive. Furthermore, it also permits the removal
of specific details in order to analyze their importance in the phenomena of
interest. By this means, it is possible to treat each scale of a system separately,
bridging them in a hierarchical way.

Another possible approach is to simulate a system where the detailed de-
scription is restricted to a limited region while the rest is treated in a coarser
manner. Several methods have been proposed with the aim of linking different
representations described by quantum, classical or continuum mechanics. The
Adaptive Resolution Scheme (AdResS), the method of concern in this work, falls
into this category. It allows the performance of molecular dynamics simulations
of different classical representations of the same system, through which particles
can freely diffuse.

The present work contributes to its development by studying its thermo-
dynamic consistency, and improving its results by means of these principles
through the definition of the Thermodynamic Force. It also states the princi-
ples that allow AdResS to be interpreted as a first step towards the simulation
of open systems.

The thesis is composed of eight chapters.

e Chapter 1 introduces basic concepts of statistical mechanics that will be



useful for the latter chapters. It also provides the basics of molecular
dynamics simulations that will orient the reader in the context of the
following work.

Chapter 2 is concerned with coarse-graining in simulations of soft matter
systems. The main concepts and the methods employed in this thesis are
described here.

Chapter 3 is dedicated to the Adaptive Resolution Scheme. The equa-
tions of motion are presented, and the interpretation of thermodynamic
quantities in a system with a variable number of degrees of freedom is in-
troduced, based on the principles of fractional calculus. The nature of the
equations and their consequences are also explained. The chapter is con-
cluded with the analysis of a well studied model system: a medium dense
liquid of tetrahedral particles. It presents the main features of an AdResS
simulation, its advantages and the effects of the equations of motion in
the region where the two resolutions are matched.

Chapter 4 introduces the concept of the Thermodynamic Force, an exter-
nal field able to correct the spurious effects that AdResS can produce in
the density of the system, which development is based on thermodynamic
considerations. It is applied to the previously introduced tetrahedral sys-
tem, and to a set of two one-site potentials, where the resolution does not
change but the force fields do. A practical implementation is presented,
based on an alternative interpretation that leads to the thermodynamic
consistency with the grand canonical ensemble.

Chapter 5 consists of the study of a model binary mixture. A coarse-
grained set of potentials is developed and confronted with its atomistic
representation in AdResS. In addition, the thermodynamic force is calcu-
lated for this system.

Chapter 6 contains the first AdResS results of two-body bonded interac-
tions from the study of a model polymer.

Chapter 7 describes the implementation of AdResS in the ESPResSo sim-
ulation package, a more technical aspect that provides helpful insight into
the equations of motion.

Finally, the conclusions are presented in Chapter 8.



Chapter 1

Basic concepts

This chapter is composed of two sections that provide the main theoretical ele-
ments used in this thesis. The first part contains the basic statistical mechanics
and distribution functions and their relation to thermodynamics. The defini-
tion of the Potential of Mean Force, a quantity of relevance in this work, is also
introduced. The second section explains some basic concepts of molecular dy-
namics simulations and some features of the calculations presented in the later
chapters.

1.1 The radial distribution function

The state of a classical system constituted of a large number of particles N
is totally defined by the positions r’¥ and momenta p’¥ of its components at
a certain time t. However, its exhaustive description is not only unfeasible,
but unnecessary for the calculation of macroscopic properties. Therefore, a
statistical treatment results more practical and meaningful. The average of a
quantity A(r"", p~) sampled over a trajectory is defined as

(Ay, = lim —/ A(r p(t))dt (1.1)

T—00 T

In addition, if it is assumed that in a trajectory position and momentum space
is sampled thoroughly [?], the ensemble average of A(r™,p?V) is defined by [?,?]

A) = / / AN pY) £, pV )N dpY (1.2)

where each point is weighted by the probability distribution f(r™,p™) [2,?,7].
Such a function is determined by the thermodynamic quantities that character-
ize the macroscopic state of the system, providing a link between the microscopic
and macroscopic levels of description. For the canonical ensemble, where the
number of particles, temperature and volume are fixed, f is given in terms of



the Hamiltonian H of the system, by
B NN
Ny e~ BHET.PT)
QN(Va T)

where 3 = 1/kpT, with kg the Boltzmann’s constant. The normalization factor
QN (V,T) is the partition function [?,?,7.7]. fyvr is a huge object that contains
an enormous amount of information which is unnecessary for practical purposes.
A way of distilling its physical meaning is to deal with reduced distribution
functions.

The most simple case is to calculate the probability of finding a particle
at some position r, independent of the configuration of the rest of the system,
given by [7,7]

fnve(Y,p (1.3)

p(r1) :N/rz.../drN/def(rN,pN) (1.4)

where the prefactor N indicates that any particle can be chosen among the N
indistinguishable particles.

In a homogeneous system, p(r) is independent of r and becomes simply
%. This is enough to describe the thermodynamics in an ideal gas, that lacks
of structure. However, if the forces between the particles are relevant, the
correlations induced by them must be considered for a proper description of the
system. Further information can be extracted from the probability distribution
by defining

p2(r1,1s) = N(N — 1) / drv-2) / ap™ 7 (=Y p) (1.5)

the pair density function [?,7]. This density gives the probability of finding two
particles at r; and ro, independent of their identity. It is remarkable that in a

F . (2) ) 1
homogeneous system of non-interacting components, py’ (ri,r2) = p (1 N),
that is simply p? for large N. Tt is thus convenient to measure the degree of
correlation between two particles by comparing the pair density function with
this reference value as

(2)
) _ Py (r1,12)

gy (r1,12) = o(r1)p(r2) (1.6)

If the system is homogeneous, gg\?) (r1,r2) depends only on the distance r =

|[r1 — ro| and it is denoted simply by g(r), the radial distribution function. This

function is of vital importance in the theory of liquids. It provides basic infor-

mation about the microscopic structure, but it is also closely linked to the ther-

modynamics of the system and determines it completely when particles interact

through pair potentials. Moreover, g(r) can be measured experimentally [?,7,?].
In addition, higher order density functions can be defined as

pg\?)(rN):N(N—1)...(N—n+1)/drn+1...drN/def(rN,pN) (1.7)



and the n-particle distribution functions are given by

a8 (") = o e, o)/ TN (1) (18)

For the cases considered in this thesis work, the analysis will be restricted to
the radial distribution function g(r) and pair potentials in liquids, with some
exceptions that will be explained in detail when required.

1.1.1 Relation to Thermodynamics

The average of a function that depends on the position of two particles can be
easily expressed in terms of integrals of g(r). A typical example is the potential
energy, that initially is written as a sum of many-body contributions [?]

) =S 00+ U )+ S UD ey £ (19)

1<J i<j<k

where the two-body contribution U can be averaged over the positions r; and
ro as

1 1
(2) (2) (2) 1.1
(U™ ( 0 /PN (211 (1‘1,1‘2)) dridra (1.10)

resulting, in terms of the pair distribution function, in

(v) = 27Tp2V/g(’l”)’U(T’)T2dT. (1.11)

A more general form for the average potential energy is

2 3
U)= %/drU@)(r)g(r)+%//drdr’U(3)(r,r')g(3)(r,r’)+... (1.12)

The scalar pressure has an analogous relation once it has been expressed as
the average of a function of pairs of coordinates. Such relation is described in
terms of the wirial [?,7?], defined as

1 N
= —52 (1.13)

=1

The forces used in the sum have two sources: one comes from the intermolecular
forces while the other, the external virial O, from the pressure exerted by the
walls of the container that confine the system to its volume V. Hence, © can
be written as

N
=) (rn M) —e. (1.14)

=1

l\3|’—‘



On average, the walls will exert a total force of —pndA per unit area, where
ndA is an infinitesimal unit of area pointing away from the container. Thus,
from the external virial it is given

(O} = opV (115)

while its total average is

(@) = — lim F / (Zimm ) Zmz ) ] (1.16)

Assuming that velocities and displacements are bounded [?,?], the first term in
the right side of 1.16 vanishes in the limit 7 — oco. Consequently, it yields

N

ng - % Z (r; - V;U(Y)) = <Z m;i?) (1.17)

=1

By identifying the average kinetic energy per particle as 3NkgT [?], with kp
the Boltzmann’s constant and T the temperature, it is possible to conclude that

1
p = pkpT — W(VU-rﬁ (1.18)
or ) % g

p = pkgT — gﬂ'pQ/O Zg)g(r)rgdr (1.19)

while a more general formula involving many-body terms is given by

@)(

p=pkpT — % ddUdT //drdrr )<3>( )+ ..
(1.20)

1.1.2 The Potential of Mean Force

By fixing the position of two particles, it is possible to write the average force
on one of them as a function of their distance, by integrating over the positions
of the N — 2 remaining particles. This force can be derived from a potential
directly linked to the pair distribution function: the potential of mean force [?].

In fact, by labeling the fixed particles as 1 and 2, the force on the first one
is

fdrg...dI‘N( gU)e v
. . _ r 1.21
(=VU(x )12 fdr1 ...drye PV ( |

The previous quotient can be written as

Vg(r)
g(r)

—kpT (1.22)



s0, according to the previous definition, the potential of mean force is
Upmr = —kpT log g(7) (1.23)

It can also be proven that Upmp () approaches the potential v(r) in the low
density limit [?].

1.2 Molecular dynamics simulations

Computer simulations [?, ?] are a powerful tool for the study of phenomena
difficult to characterize by experiment, and too complex to be treated in detail
by theory. They also provide a good testing field for matching the microscopic
laws of a system with its thermodynamic features; a numerical implementation
of statistical mechanics.

This section contains the basic concepts of a simulation, followed by the basic
relations to thermodynamics and concludes with a brief description of stochastic
thermostats, a subject of relevance in the following work.

1.2.1 Equations of motion

A molecular dynamics simulation consists basically in the numerical solution
of the equations of motion of a set of particles. In the most general form, the
equations are (in terms of the positions r; and momenta p;)

. Pi
;= — 1.24
= 2 (1.24)
pi =1 (1.25)
The forces can be written as
0
fi=——U(Y 1.26
G U EY) (1.26)

for conservative systems, where a potential energy U(rV) is well defined.

Equations 1.24 and 1.25 can be numerically solved, in order to obtain the
configurations of positions and velocities of the system for a discrete set of times
tm. Thus, the time average of a function A(r’V, p”") can be estimated as

T
17 1
lim —/ Adt ~ — Am (1.27)

T—00 T

where the sum is performed over the M configurations generated.

The equations of motion can be numerically solved by several schemes [?,
?,?7,?]. Among them, the Verlet algorithm [?] is specially remarkable, due
its efficiency and stability [?]. It is also time reversible, preserves the area
of the phase space and displays low energy drifts throughout the simulation.



Specifically, the Velocity Verlet algorithm [?,?] will be used in this work. Its
equations are

ri(t+At) = r1i(t)+vi(t)At + 2;@(1&)&2 (1.28)
vilt + A1) = vilt) + o (it + At) + (1)) At (1.29)

denoting by At the discrete time step. This variant of the original Verlet method
generates trajectories with an accuracy of order At*, as in the original Verlet
scheme. However, it also allows a more accurate computation of the velocities,
which requires the calculation of the forces twice per integration step.

For numerical reasons, it is usually convenient to use units suitable for the
characteristic scales of the system [?,7]. In practice, it is only necessary to
have a unit of energy ¢, length ¢ and mass m. Then, a reduced time ¢* can
be defined through the relation t* = t/1/(mo?)/e. The reduced energy can be
written as U* = U/e, while reduced pressure and temperature are p* = po®/e
and T* = kpT/e respectively. The integration time step At is usually written
in these reduced units as a small fraction of the smallest time scale present in
the system.

1.2.2 Thermodynamic quantities

Temperature and pressure are fundamental thermodynamic quantities obtained
as averages in a simulation once the system has reached equilibrium. From
its definition [?,7,7,7], the temperature is calculated as a time average of an
instantaneous temperature 7, at time t,, defined as

N
T=Y mivi (tm) (1.30)

where Ny is the number of degrees of freedom.
Analogously, the pressure can be obtained from a time average of the in-
stantaneous pressure 7, given by

1
Tm = pkBTm + W wa “ Ty (1.31)

i<j

where f;; and r;; are evaluated at time ¢,,.

1.2.3 Stochastic thermostats

In principle, the integration of Hamilton’s equations of motion generates tra-
jectories that conserve energy, number of particles and volume. Nevertheless, it
is useful in most cases to perform simulations in the canonical ensemble, where
the system is in contact with a heat reservoir. Several algorithms have been
proposed for this [?,7,7,2,?7 7, ?].



Stochastic dynamics [?] provides a powerful tool to accomplish this task,
that will be used here as a thermostat [?,?]. The idea consists of the addition
of a random noise ¥ and a friction £/ to the force on each particle. Under this
scheme, the equations of motion adopt the form

1 i i
vi = —ft— C—vi + Jigs (1.33)

where £, is the force acting on particle i coming from the conservative potential.
The stochastic force must satisfy

5y =0 (1.34)

and
(FEOFF ) =26550(t — ) (1.35)
for each of its components.
It can be proven that the system of Langevin equations of 1.33 generates the
canonical distribution function in equilibrium [?,?] provided that the fluctuation-

dissipation theorem [?,?]
02 = kpT¢; (1.36)

holds.

It is also known that, in general, this integration scheme stabilizes the equa-
tions of motion, allowing the use of longer time steps for integration [?,?].
Equilibrium properties are not affected, but shear viscosities and diffusion coef-
ficients are sensitive to the choice of the friction coefficient [?].

A major drawback of the equations shown above is that they do not con-
serve momentum, which is a crucial property for the reproduction of certain
hydrodynamic phenomena [?]. This can be solved by applying the noise and
friction forces in a pair-wise fashion, acting along the vector that joins two atoms.
This implementation corresponds to the dissipative particle dynamics thermo-

stat (DPD) [?,7,7,7,7,7], that preserves also the advantages of the stochastic
dynamics. Thus, the friction can be rewritten as
£ == CwP(riy) (vi = v;) - 755) 75 (1.37)
J

while the noise is redefined through
£5 = ow"(rij)ni; ()7 (1.38)
J

where r;; =r; —r; = r;;f;;. The noise 7;; must satisfy

(mij) =0 (1.39)

and
(i () (t')) = 2(8ardji + dit0rz)o(t — t') (1.40)



analogous to the Langevin forces. The functions w” and w® are just weighting
functions that vanish for » > r., a predefined cutoff radius. In order to satisfy
the fluctuation-dissipation theorem, they must satisfy

[w(r)]* = w"(r) (1.41)

while the constants ¢ and o are related through Eq. 1.36.
Their form can be given by a smooth function of r [7]

_ _ (1 - T/TC)27 r S Te
wP (r) = [wi(r)? = {0, i (1.42)

Lor=re (1.43)
0, r>r.
Additionally, it is required that 7;; = n;;.

Langevin thermostats can also be used to tune transport properties, like
diffusion coefficients or viscosities, by setting ¢ properly, satisfying relation 1.36.
For the case of DPD, such properties are quite insensitive to these changes.
However, transport coefficients can be modified by adding noise and friction
forces in a direction perpendicular to #;;, whose (r and or coefficients are
not necessarily the same as those used by the DPD forces. Such a transverse
DPD thermostat has been successfully used to tune the diffusion and viscosity
coefficients [?].

10



Chapter 2

Coarse-graining in soft matter
simulations

Atomistic simulations are an indispensable tool for the characterization of many
processes in physics that, due their complexity, are difficult to treat by analytic
or experimental methods. By these means, it is possible to understand more
deeply processes such as protein folding [?,7,?,?,?], the formation of micelles
[?,7,2,7,2,7], the interaction of polymers with surfaces [?,?,?, 7 7], or to
simply obtain information about the equation of state [?,?,?,?,2,7,2,7,2,?] or
to calculate of free energies of certain systems [?,7,7,?7, 7, 7].

However, soft matter systems can be especially challenging to simulate.
Their properties usually involve the interplay of several time and length scales,
and their energy densities is in general low, of the order of the elastic constants.
Accordingly, thermal fluctuations are a relevant factor in their configurational
behavior, which demands long simulations in order to thoroughly sample the
phase space.

This is usually the case for many complex liquids, biomolecular systems and
polymer melts, where the presence of different time and length scales demands
long simulations which makes the calculation extremely expensive, if not unfea-
sible in computational terms.

A more concrete example of this issue is the simulation of polyethylene, an
illustrative case due its simplicity and wide number of industrial applications.
While a single chemical bond between carbon atoms is of the order of 1 A,
the effective size of a polymer coil, expressed through its gyration radius, can
be of the order of 100 A at relevant thermodynamic conditions. Therefore,
the system size required for a proper simulation must be beyond the longest
characteristic length, containing millions of atoms. On the other hand, the
characteristic vibration time of a bond is of the order of 10~!% seconds, which
confines the integration step to around 107'® seconds. However, the relaxation
time of chains (composed approximately of 500 monomers) in melts is estimated
to be around 107° seconds |?], a difference of at least ten orders of magnitude.
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Hence, the relevant physics occurring at the mesoscopic scales can be difficult
if not impossible to cover due to the prohibitive computational efforts required.

A possible way to avoid these limitations is by employing simplified models of
the original system, where the details belonging to the fast scales are omitted in
the integration, but properly reintroduced through effective interactions on the
slower variables. The aim of such a coarse-grained representation is to reduce the
number of degrees of freedom, capturing at the same time the essential physics
required to describe the phenomena of interest as accurately as possible. As a
consequence of this reduction, the time needed to simulate larger systems and
to perform longer runs is reduced. In this spirit, the different levels of resolution
can be simulated separately by different methods and consistently coupled for
making a complete picture and obtain quantitative predictions.

The form of designing a coarse-grained model strongly depends on the phys-
ical quantities of relevance for the problem. In some simulations of lipid mem-
branes in water, for example, it is useful to remove the solvent from the inte-
gration of the equations of motion and include it into the effective interactions
of the solute particles [?,?,7,?,7,?]. However, the approach taken in this work
consists of the clustering of a group of atoms onto a mapping point. The posi-
tion of this superatom will be a function of the positions of its n components,
written as R;(r1,ro,...,r,), while the mass and velocity are defined in a con-
sistent manner. Consequently, the number of degrees of freedom is reduced.
Figure 2.1 illustrates a water molecule mapped onto a structureless bead cen-
tered at its center of mass. Once mapping sites have been defined as a function
of the atomistic positions, the effective interactions that govern them have to be
determined to suitably resemble the aspects of interest of the original system.

a-—-0—-@

ATOMISTIC COARSE-GRAINED

Figure 2.1: Water molecule mapped into its center of mass.

It is also of importance that the coarse-graining methods are not only an
attempt to overcome the technical limitations found in the simulation of complex
systems, but also, a way to distillate the essential physics that determines the
process under study. In this framework, coarse-graining can also be considered
to be an analysis tool [?,7,7,7,7].

Depending of the problem, a coarse-grained system can be designed to
match, the total energy of the atomistic system [?], the instantaneous force
at the mapping points [?,?], or thermodynamic aspects in order to emulate
certain biological functions [?]. In this work, however, the coarse-graining pro-
cedure will be focused on the mapping of the thermodynamics and some basic
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structure functions. In the following sections, the reasons for this choice will be
explained, followed by the description of the methods employed for this aim, to
conclude with the limitations of such approaches.

2.1 Structure-based coarse-graining

The main feature of a structure-based coarse-graining is the close link between
its configurations and that of its atomistic model. This allows a direct com-
parison with experiments, and makes possible, in some cases, the reinsertion of
atomistic details when needed [?].

The goal of structural coarse-graining is to reproduce certain distribution
functions, defined between the mapping points in the atomistic system. Typi-
cally, each distribution function is adjusted by the modification of its associated
force field. In a simple liquid, for example, the basic structure is contained in
the radial distribution function that is tuned through a non-bonded pair poten-
tial between the corresponding mapping points. In more complex structures,
like polymers, the monomers can be represented by one or more units which are
bonded by two, three or four-body potentials. Each of these force fields matches
its respective distribution function, although more complex distributions could
require more specific and sophisticated treatments [?].

Several techniques provide a way of generating these force fields. Never-
theless, in an ideal situation, the form of an effective pair potential should be
independent of how it is obtained, as it has been rigorously proven by Hender-
son [?]. In his theorem it is stated that, in a simple liquid, two pair potentials
that reproduce the same radial distribution function are identical up to a trivial
constant.

However, it has been lately shown that significantly different force fields can
produce distribution functions that are practically indiscernible [?]. This issue
establishes a numerical dependence of the potential on the technical implemen-
tation of the coarse-graining procedure.

Iterative methods, like Reverse Monte Carlo (RMC) [?] or Iterative Boltz-
mann Inversion (IBI) [?] are easy to implement and they have been successfully
tested on many systems. Reverse Monte Carlo employs a correction based on
rigorous principles, and consequently, it generally converges faster than the It-
erative Boltzmann Inversion, whose formula is inspired on phenomenological
considerations. However, the former also requires better statistics on each step,
that demands longer runs [?], and exhibits much more sensitivity to the system
size. Hence, there is a balance between both methods in terms of computa-
tional time: while the first converges faster, the latter can be iterated with
shorter simulations.

The Iterative Boltzmann Inversion is of main concern in this work, specif-
ically in the cases of simple liquids, binary mixtures and model polymers that
will appear in the following chapters. Its implementation is explained in the
next section.
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2.2 Technical implementation: the Iterative Boltz-
mann Inversion

The Iterative Boltzmann Inversion allows one to obtain a potential that repro-
duces its respective target structure function, previously obtained from experi-
mental data or high-resolution simulations. For this aim, in a polymer system,
the coarse-grained potential is usually decomposed into bonded and non-bonded
contributions, which constitutes the first assumption in this approach. Their
respective treatment is explained in the following sections.

2.2.1 Bonded interactions

The simplest coarse-grained polymer can be represented by a chain of structure-
less monomers. Its conformations are basically determined by the bond length
r, that is the distance between two monomers, and the angles formed by the
bonds shown in Fig. 2.2. The angle 6 is defined as the angle formed by three
consecutive monomers, while a torsion is the angle between the plane defined
by the particles p1, p2 and ps and the plane defined by the particles po, p3 and
p4. This implies the necessity of introducing three and four body potentials to
adjust the distribution functions.

Figure 2.2: Angles and torsions in a model polymer.
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A basic mapping of the structure expresses the probability distribution in
terms of these parameters as P(r,0,¢). In addition, for practical purposes, a
widely used simplification is to factorize it as P°(r)P?(0)P!(¢), assuming that
each coordinate is uncorrelated with the rest. The proper choice of the mapping
points [?] can help to decorrelate such variables. In some cases, however, it is
necessary to resort to more complex distribution functions [?].

A first guess for an effective interaction is the Boltzmann Inversion, that
consists of starting from the mean force potential, defined as

Pt T
Ubun(r) = —koTlog 2o ) @.1)
in terms of the target bond length distribution probability Ptl;rget (r) and the

temperature 1. Here C). is an arbitrary constant that sets the minima of the
potential, while the factor =2 in the logarithm comes from the radial term of the
Jacobian 72 sinf. This guarantees the proper normalization of the distribution
functions, when they are obtained as simple normalized histograms sampled
from the original data.

For the angular interactions, the inverted potential is given in terms of the

target angle distribution P, ..(0) by
P, et (0

sin 0
The denominator of the argument of the logarithm contains a sinf factor to
ensure the proper normalization of the probability. Cy, as before, is an arbitrary
constant.

In an analogous way, for the torsion angles the potential is

Uft’MF (¢) = _kBTlog Pfarget ((b) + C¢ (23)

where Cy is an arbitrary shift and Pl .. (¢) is the target distribution.

All these potentials can be refined iteratively by means of the recursion
Pi(r)
Uit1(r) = Ui(r) + kT log ———
! ( ) l( ) Rarget(r)
where U;11(r) and U;(r) are the potentials of steps 41 and ¢, respectively, while
P;(r) is the corresponding distribution function obtained from the integration
of the equations of motion using U;(r) as input. From the equation above, it
is clear that the potential becomes more repulsive where there is an excess of
particles in comparison with the target distribution, and vice versa.

(2.4)

2.2.2 Non-bonded interactions

Starting from a target distribution giarges(r), the pair correlation function be-
tween the mapping points in the atomistic system, the potential of mean force
is defined as

UPMF(T) = _kBTloggtarget(T) (25)
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and corresponds to the Boltzmann Inversion of g(r) [?]. Such a potential gen-
erates the target radial distribution function in the limit of an infinitely dilute
system. However, this is usually not the case for medium and high density sys-
tems [?], and additional corrections have to be introduced iteratively, following
Eq. 2.4.

When more species are present in the system, the procedure to follow is
straightforward. The potential U;;(r) between the components ¢ and j is as-
sociated with the corresponding radial distribution function g;;(r). Thus, the
iterative refinement of Eq. 2.4 can be applied to the potential of mean force of
Eq. 2.5 separately for each pair of species.

2.2.3 Pressure correction

In addition to the structure adjustment, it could also be necessary to fit the
pressure at the density of the target system through the non-bonded pair po-
tentials [?]. In this case, a small linear potential can be added, as

AU(r) = Vy (1 - 1) (2.6)
Te

for r < r., where r. is the cutoff radius of the pair potential and Vj is a small
corrective constant. The correction from Eq. 2.6 yields a constant force that
makes the interaction more attractive if V[, is negative, and more repulsive in
the opposite case. Thus, the pressure can be controlled by initially choosing
a small value (typically 0.1kgT) and adding iteratively AU(r), consecutively
decreasing Vj for a higher accuracy.

A more precise form of estimating 1} is to use the virial expression of the
pressure in terms of the force field F(r) and density p

2 oo
p=pkpT + gﬂpz/ F(r)yr3g(r)dr (2.7)
0

from which the contribution to the pressure p. introduced by the correction can
be written as ) v
O c
Pe X —p?— r3g(r)dr (2.8)
3 Te Jo
where it has been assumed that the g(r) stays the same under the slight modi-
fication of the force field. This yields an estimate of Vg of

Pc
Ity rg(r)dr

as a function of p., that has to be evaluated as the difference of the pressure of
the current coarse-grained system with the target value [?].

If Vy is not small enough, the structure can be considerably modified, and
hence, it will have to be readjusted, until a reasonable balance between the
accuracy of the fit of the radial distribution function and pressure is reached after

Vo =

(2.9)
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a recursive alternation between these methods [7]. In most cases in the present
work, however, the correction will be applied at each step of the Boltzmann
iterations, in order to minimize its effects on the structure of the system.

It has been observed that the simultaneous adjustment of two or more prop-
erties in coarse-grained systems is a difficult task and is not always possible [?].
This trend is a well known disadvantage of any coarse-graining procedure, and
it is briefly discussed in the next section.

2.3 Limitations of structure-based coarse-graining

In general, a coarse-grained model can not be expected to reproduce the physical
properties of the atomistic model. A common conflict lies on the incompatibil-
ity between thermodynamics and structure [?]. The case of water models, for
example, has been widely studied, displaying this mismatch between pair struc-
ture and pressure [?]. In addition, the compressibility, that in theory should be
determined by the pair correlation function [?], has been shown to be unable to
adjust simultaneously to the pressure [?] by means of pair potentials. Clearly,
the simplification of the coarse-grained system does not consider multiple-body
potentials, and therefore, correlation functions of order higher than two are not
necessarily reproduced. It is expected then that a reduction of the number of
degrees of freedom and the simplified form of the effective potential restrict the
range of observables that the coarse-grained system can emulate.

Transferability problems are another limitation of coarse-grained approaches.
The use of a coarse-grained force field on a different state point from where it
has been constructed can lead to a mismatch of the adjusted properties with re-
spect to the reference system. Such behavior has been observed, for example, in
simulations of ortho-terphenyl [?] parametrized by means of the Iterative Boltz-
mann Inversion above and below the temperature of the glass transition. Both
force fields produce qualitatively different behaviors at low temperatures: in the
first case the system exhibits a glassy state while in the second, it crystallizes.
Thus, a glass transition temperature in this case can not be defined consistently
since the phase space depends on the state point of the reference system [?].

The origin of this dependence on the thermodynamics comes from a reduc-
tion of the faster degrees of freedom as an average effect on the rest of the
system. This procedure makes implicit use of the probability distribution that
depends of the macroscopic thermodynamic quantities. Consequently, a change
in the state point will imply a new calculation of the effective interactions. This
trend is a more general tendency shown every time that a many-body force field
is reduced to an effective set of forces acting on a lower number of degrees of
freedom. Such simplification is often performed in every field of physics when
phenomenological constants are introduced. A simple example resides in the def-
inition of the effective values of € and o in the usual Lennard-Jones potential for
noble gases, since they are a simplification from the three-body Axilrod-Teller
potential [?].

A final remark is the difference between the dynamical properties of atomistic
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and coarse-grained simulations. Normally, the coarse-grained systems display
faster dynamics due to their smoother potential energy landscape. Such a trend
can be used as an advantage, since longer effective integration time steps can
be used, and the efficiency of the simulation is enhanced. However, transport
properties such as diffusion coefficients or viscosities must be rescaled properly
to have physical meaning [?].
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Chapter 3

The Adaptive Resolution
Scheme

Many soft matter systems involve a close relationship between several length and
time scales which demands a fully atomistic description for their proper charac-
terization. Such requirement can usually be addressed by means of a multiscale
approach, where each scale is studied in detail separately. The consistency be-
tween them is imposed by using the output of the high resolution simulations

However, if a detailed description is required in a specific region of the space,
an approach that is able to deal simultaneously with several levels of resolution
would be much more practical. A typical example of this situation is found in
the study of solvation properties [?], where a high resolution model is necessary
only in the solute and the first solvation shells while the bulk of the solvent can
be treated in a less sophisticated way.

This is the aim of several methods [?,?] that couple, for example, quantum
mechanical descriptions with classical ones, relegating the chemistry to a bound
region while treating the less relevant surrounding particles in a coarser, classical
manner. Additionally, several approaches have been designed to link mesoscale
of crack propagation in certain materials. However, in these cases, the regions of
different resolution are rigidly defined and do not allow the exchange of particles
between them, which, in fluctuating soft matter systems, is an important issue
to consider.

The Adaptive Resolution Scheme (AdResS) [?,7,7,7] is one of the molecular
dynamics algorithms designed to fulfill these requirements [?,?]. It allows the
description of a system divided in regions of different resolution across which
particles can freely diffuse, changing smoothly their number of degrees of free-
dom. Such a transition from one level of resolution to another should not affect
the global physics of the system, since only the representation of the species
has changed but not its nature. Therefore, equilibrium conditions such as pres-
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sure balance, thermal equilibrium and the absence of molecular flux [?] must be
fulfilled.

Recently, the adaptive simulation of quantum/classical systems has also been
extended to an adaptive scheme [?,?]. However, such approaches are beyond
the scope of this work.

The present chapter begins exposing the equations of motion of AdResS.
It follows the definition of the thermodynamic quantities of interest under the
scheme and continues with the main features of the non-Hamiltonian nature
of the equations, giving the main arguments that support the choice of their
form. Finally, the method is illustrated through the application to a previously
studied model of tetrahedral particles [7,7,7].

3.1 Equations of motion

It will be assumed along this work that the coarse-grained model consists of
an interacting site mapped at the center of mass of the atomistic molecule.
The interaction between these sites can be obtained by means of the methods
mentioned in Chapter 2. Therefore, having the coarse-grained and atomistic
force fields F€C and FAT | the total force between two molecules o and 3 is
given by

Fop = w(Ra)w(Rp)FL) + (1 — w(Ra)w(Rp)) FSF, (3.1)

in terms of the weighting function w(R). This function depends exclusively
of the position of the mapping point of the molecule, denoted by R, while its
conforming atoms inherit its value. This function gives account of the degree of
resolution of each particle, ranging from 0 to 1. From Eq. 3.1, it is straightfor-
ward that w = 0 yields a purely coarse-grained force field, while w = 1 leaves
the purely atomistic contribution. The region where w has a non-integer value is
called the hybrid or switching region. Figure 3.1 illustrates the implementation
in a one-dimensional geometry.

In the hybrid region, the force felt by the molecules is a linear combination
of the two force fields that ensures a smooth change of the representation of the
molecules, and consequently, a gradual removal or inclusion of the degrees of
freedom that are absent in the coarse-grained regime.

3.2 Consequences of a non-hamiltonian approach

As the number of degrees of freedom of each representation is not the same,
thermodynamic quantities like the chemical potential will not necessarily match.
Therefore, the system must be coupled to a local thermostat that provides (or
removes) the required amount of heat in order to keep the system in equilibrium.
Thus, every time that a molecule leaves the coarse-grained regime, its internal
degrees of freedom are set up according an equilibrium distribution, while the
thermostat takes care of keeping such distribution.
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Figure 3.1: Pictorial representation of an x-dependent setup, w(z) =
sin? [zgfy]

In this sense, an adaptive simulation can be seen (with certain limitations) as
a geometrically induced phase transition, where the energy required to activate
the internal degrees of freedom of a molecule is identified as a latent heat.

A second issue to be mentioned is the impossibility to deduce the forces of
Eq. 3.1 from an energy-conserving approach. This can be easily seen by writing
equations of motion coming from an interpolation of potentials,

Uap = w(Ra)w(Rs)Us5 + (1 — w(Ra)w(Rg)) Uy (3.2)

that produce the AdResS forces and an additional drift force F¢ proportional
to
F? o (UYC —UAT)Vuw(R) (3.3)

From this very initial point it is possible to note that such approach would
seriously depend on the shape of the weighting function. In addition, Newton’s
third law is violated. An attempt to remove this drift by the addition of an
external field would lead to the set of equations

UCGVaf(Ra7Rﬁ> - UATvag(RaaRB> = 0
U“Vsf(Ra,Rp) — U V5g(Ra,Rs) = 0 (3.4)

denoting by V,; the gradient with respect to the position of particle i, and
introducing f(z,y) and g(z,y) as the interpolation factors used Eq. 3.1, written
in a more general way.

The requirements presented in Eq. 3.4 are clearly impossible to satisfy in
general [?], since they consist of two boundary conditions for a system of differ-
ential equations of first order. Then, a Hamiltonian approach is possible only
in trivial cases [?], although some efforts have been made in this subject |7, 7].
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3.3 Thermodynamic quantities

Since the number of degrees of freedom of a molecule changes in time as par-
ticles fluctuate between atomistic and coarse-grained regions, it is necessary to
redefine temperature and pressure in a consistent way.

The pressure is expressed in terms of molecular interactions, since the num-
ber of molecules is constant throughout the simulation. Thus,

1
p=pnksT + W;g Fos - Rap (3.5)

where py is the density of molecules, T" is the temperature and F,g and Rz,
the total force and radius-vector between molecules o and (.

The temperature, on the other hand, is well defined on purely atomistic or
coarse-grained representations through the equipartition theorem [?]
KAT/CG)

TAT/CG _ 2<

NAT/CG (3.6)

where the average kinetic energy per degree of freedom is (KAT/CG> and their
number is denoted by N47/C€C on the respective representation. It is clear that
certain degrees of freedom, like the coordinates of the center of mass of the
molecules, are present across the whole system, so Eq. 3.6 can be applied to
them with no modifications. However, for a switchable degree of freedom g, it is
necessary to take into account that its contribution to the statistics varies from
the coarse-grained representation, where it is zero, to the atomistic one, where
it has to be fully considered. Consequently, the number of degrees of freedom,
statistically speaking, changes continuously as a function of space according the
representation of the particles is changed. Moreover, the dimensionality of the
phase space region belonging to ¢ is a fractional number between 0 and 1 in the
hybrid region.

The volume element of a space of fractional dimension w can be obtained
by means of the fractional calculus [?],

__r®)
@V = 27w/ 2T (w)

[l 1
dw = d =
q T(w) q
with I'(w) the usual T function [?]. Hence, the ensemble average of the kinetic

energy associated is

dq® (3.7)

Jo e Pigutdg

<Kq>w = f()oo e_ﬁpng_ldq (3-8)
that is [7] y
(Kq)w = Eﬁ_l (3.9)

Such result is called the generalized equipartition theorem, that states that
the average of a quadratic function of a fractional degree of freedom is propor-
tional to its dimensionality.
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3.4 AdResS simulation of tetrahedral liquid

The AdResS applied to a liquid of tetrahedral molecules has been previously
studied [7,7,?]. Here, the main results are reproduced due to the relevance of
the model for the later chapters.

A tetrahedral molecule is composed of four atoms of mass mg. All the atoms
interact through a purely repulsive Weeks-Chandler-Andersen (WCA) potential
of the form

UWCA(,riajB) _ {46[(0/7“iaj6)12 —(9/7iajp)’] + i, TiajB < 21/60 (3.10)

0, TiajB > 2 /60'
where 7,3 is the distance between atom ¢ of molecule o and atom j of molecule
B. From now on, € and o will be the reference units of energy and length used.

In a molecule, atoms are bonded via a finite extensible nonlinear elastic
FENE) potential
p

—%kRgln[l - (Tiaja/Ro)Q], Tiajo S 21/60

3.11
o0, Tiaja > 21/60' ( )

UFENE (Tiaja) — {

being Ry = 1.50 and k = 30¢/0?m the divergence length and the stiffness respec-
tively. By construction, the bond length is approximately 1.00 at temperature
kBT = €.

In the coarse-grained representation, the molecule is mapped into a bead
located at its center of mass [7,7]. The effective interaction was obtained at a
molecular density of p = 0.1750 3 using the Iterative Boltzmann Inversion in
order to reproduce the radial distribution function. Additionally, the pressure
was adjusted with a simple pressure correction at each step [?].

AdResS simulations were performed in a box of dimensions 36 x 20 x 200°
with periodic boundary conditions, using a time step of 0.0057, where 7 =
(e/moo?)~1/? is the reduced unit of time. After an equilibration of 25007, a
production run of 75007 was performed saving the configuration of the sys-
tem every 1000 steps. A Langevin Thermostat, presented in Chapter 1, was
employed using the value I' = 0.5771.

The weighting function is given in terms of the box length L, along the z
direction and h, the half of the hybrid zone width a,

0, h<z<L;/2—h
1, h4L,/2<x<L,—h
w(z) = {sin®[Z(v — Ly + h)], Ly/2—h<z<L,/2+h (3.12)
cos?|f-(x — Ly +h)], Ly—h<xz<h
cos?[ 2= (x + h)], 0<z<h

plotted on Fig. 3.2.
Figure 3.3 shows the radial distribution function between the centers of mass
of all particles, regardless their representation, and the density profile of an
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Figure 3.2: Weighting function

AdResS simulation with A = 20. Note that this function slightly deviates from
the result of a purely atomistic simulation. Such deviation depends on the size
of the hybrid region as reported previously [?,7]. On the other hand, the density
profile displays the same value in both resolution domains, but its drop observed
in the hybrid region is a clear artifact of the force interpolation on it. Since the
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Figure 3.3: Equilibrium properties of an AdResS simulation.

equations of motion couple the representations in this zone, it is expected that
their main effects will be manifested there. The explanation lies on the fact
that if two potentials have the same state point at certain temperature, a linear
interpolation of forces will not necessarily produce the same thermodynamics.
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The pressure in reduced units, that has a value of 1.98 £0.02 and 1.98 £0.02 in
atomistic and coarse-grained simulations respectively, increases to 2.04 4+ 0.03
in the AdResS simulation. Such disagreement becomes more pronounced with
the size of the switching region, what means that this zone affects not only the
structure, but also the thermodynamics of the whole system.

Despite these effects, particles can freely diffuse across the simulation box.
Figure 3.4 shows the diffusion profile for a set of particles located initially in
the coarse-grained and atomistic regimes, which confirms this statement. How-
ever, transport properties must also be analyzed carefully. It is well known that
in general, diffusion coefficients and viscosities do not necessarily match be-
tween atomistic and coarse-grained representations, since the smoother energy
landscape in the latter leads usually to a faster dynamics [?]. In consequence,
particles can diffuse in an inhomogeneous way during the simulation.
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Figure 3.4: Diffusion profile for particles located initially in atomistic and coarse-
grained regimes.

A possible solution to this problem is the use of a position-dependent stochas-
tic thermostat [?]. It is well known that transport coefficients can be tuned
from the friction coefficient [?,7]. Therefore, the coarse-grained dynamics can
be slowed down by a local increase of the friction coefficient of the thermostat
in order to match the behavior of the atomistic system, as it has already been
tested on adaptive water simulations [?]. However, this procedure is usually
avoided.

3.5 Interface correction

A first attempt to reduce the unphysical behavior in the hybrid region consisted
of replacing the coarse-grained force field by

Fégeorreeted — g (w(Ro)w(Rp)) FSF + 1 — 5 (w(Ra)w(Rp))] FSF (3.13)
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where Fgg’HY is a coarse-grained potential able to match the thermodynamics
and structure of a system at constant weighting function wg = 0.5. It
has been pointed that in this system [?], the disagreement with the reference
properties is maximum around this point. s (w(Rqa)w(Rg)) is, on the other
hand, the correction function. Its choice requires s(0) = 1 and s(wg) = 0. A
tested form is given by [?]

s(z) = 4(vr — 1/2)? (3.14)

The radial distribution function and density profile are plotted on Fig. 3.5.
The improvement is notorious, considering that the pressure in reduced units is
of 1.99 + 0.02, closer to the reference value.
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Figure 3.5: Equilibrium properties compared for atomistic, AdResS and
AdResS-corrected simulations.

The main drawback of this procedure is the high computational cost required
for reparametrization of the interactions under a purely hybrid representation,
since it involves several simulations of a double-resolution system. In addition,
it is only a local correction, unable to correct effects that arise from the intrin-
sic difference between the thermodynamics of the atomistic and coarse-grained
representations. In such cases, it could be necessary to correct the density by
means of external forces, an approach presented in the next chapter.
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Chapter 4

The concept of
thermodynamic force: one
component system

The thermodynamic force can be seen as an external field applied in the hybrid
region that leads to a homogeneous density py across the whole system. Its
determination is based on thermodynamic consistency considerations.

Nevertheless, the introduction of this concept is not only justified by tech-
nical reasons or to check thermodynamic consistency of AdResS, since it also
makes possible the coupling between different representations on which the num-
ber of degrees of freedom is not necessarily different. This issue greatly extends
the idea behind the method and situates it in a much more general framework.

The chapter begins with the presentation of the approach based on the ad-
justment of the chemical potential and the comparison with the previously de-
veloped interface correction [?]. The method is also tested on the coupling of
two one-site pair potential with satisfactory results. Later on, an alternative
approach based on the consistency of the pressure is introduced, together with
a practical way of obtaining the thermodynamic force. It will be numerically
shown that such corrections (and AdResS by itself) do not affect the local dis-
tribution functions in the atomistic region. Finally, an interpretation of the
force in terms of an analogy with the Grand Canonical Ensemble concludes this
chapter.

4.1 Chemical potential approach

It was already shown that AdResS simulations display a stationary state where
the density is inhomogeneous in space. Such effect can be corrected by applying
an external force that provides the right amount of work to each molecule.
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In this framework, the thermodynamic force is defined as
£, = Vet (4.1)

where ;% is the effective chemical potential in an AdResS system, calculated
on a configuration at constant density pg.

For its determination, the chemical potential of a molecule is decomposed
into two contributions, as [?]

W= pid t+ fex (42)

Wiq is the ideal gas contribution, the chemical potential of a noninteracting
particle. pie,, on the other hand, is the excess chemical potential due exclusively
to the intermolecular interactions. Later on, it will be shown that only the latter
contribution has to be corrected.

4.1.1 Development of the thermodynamic force

Equation 4.2 requires the knowledge of the chemical potential profile along the
hybrid region. A way of estimating it is by dividing such region into N slabs, as
illustrated in Fig. 4.1 for a one dimensional setup. At each slab 1, it is associated
a weighting function w; and an excess chemical potential e, (w;). The latter
is obtained from an independent simulation of a bulk system at density pg in
the canonical ensemble. The intermolecular forces used in these system corre-
spond to the AdResS interpolation of forces from Eq. 3.1 at constant weighting
function w;. Such forces come from the Hamiltonian

H; = wiHAT + (1 — w?)YHOC (4.3)

that is nothing less than a linear interpolation of HAT and HC%. Under this
setup, it is evident that the spurious drift that emerges from the interpolation of
Hamiltonians in Eq. 3.3 is now zero. Therefore, the existence of a Hamiltonian
allows the calculation of the excess chemical potential by means of conventional
methods like the test particle insertion [?] since g, is in these cases a well
defined quantity. The excess chemical potentials calculations were performed in
the GROMACS simulation package [?].

Having a numerical expression for Optes

Fex it is possible to evaluate 85‘1‘;"” Vw
making use of the analytic form of the weighting function. The result is, of
course, a first approximation, since it does not consider the interaction between
subsystems with different weighting functions.

4.1.2 Role of the thermostat

A local thermostat must keep thermalized the atoms and centers of mass in
the whole system. The internal degrees of freedom of a molecule that are added
when it passes from coarse-grained to hybrid resolution, must also be introduced
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Figure 4.1: Partition of the simulation domain for the calculation of the ther-
modynamic force.

properly [?,?]. Hence, the local thermostat keeps the molecules thermalized re-
gardless their resolution. A practical interpretation, consistent with the numer-
ical implementation explained in detail in Chapter 7, is to consider the whole
AdResS simulation as a double-resolution system. Hence, molecules contain the
atoms and center-of-mass positions and velocities, while the change of resolution
is exclusively attributed to the interpolation of intermolecular forces of Eq. 3.1.
Clearly, the atomistic degrees of freedom do not play any role in the physics
of the coarse-grained region, since they are decoupled from the dynamics and
their integration can be omitted for practical purposes. The initialization of the
internal degrees of freedom is discussed with more detail in Chapter 7.

From the theoretical point of view, the ideal chemical potential can be writ-
ten in terms of the dimensionality of the phase space at each point of the space.
The phase space integral associated to the kinetic contribution of a fractional
degree of freedom is proportional to

/e‘ﬁp2dwp (4.4)

(without considering constants such as the mass), where d*p = p*~tdp/T'(w) is
the fractional volume element [?]. Therefore, the chemical potential associated

} r()
I'(w)

—kBT% logT — kT log (4.5)
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The second term, considering the classical temperature regime, is negligible.
Since in these approach, the contribution of a degree of freedom is statistically
weighted according to its degree of resolution given by w. Statistically speaking,
this means that the amount of free energy has to be properly counted, so in both
cases, the work provided by the thermostat to a particle has to be independent
of the resolution.

A numerical test of this assertions is depicted on Fig. 4.2, calculated in a
tetrahedral system composed of 2520 molecules in a box of 36 x 20 x 2003, with
a hybrid region of width 120. The work done by the thermostat on the atoms
subtracting the work done on the center of mass [?] on a molecule is defined as

A 7 J

where f; is the force exerted by the thermostat on atom j and Ar;, the displace-
ment of atom 4 at the same integration step. This quantity has been calculated
for simulations of 50007, sampled every 100 iterations. The plot shows W as
a function of the coordinate x, along which the representation of the molecules
change. There is no difference between purely atomistic and AdResS simula-
tions.
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Figure 4.2: Work performed by the Langevin thermostat on each molecule,
subtracting the work on the center of mass.

4.1.3 Application to the tetrahedral system

The thermodynamic force is calculated and applied to a system of tetrahedral
molecules at a density of 0.1750 3. The chemical potential profile is displayed
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on Fig. 4.3, as a function of the weighting function. Each point was obtained
from a simulation of 100007 in a box of dimensions 20 x 20 x 200% with 10°
insertions. Error bars were obtained using Jackknife analysis [?].
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Figure 4.3: Excess chemical potential in terms of the weighting function.

As expected, the chemical potential has its maximum around w = 0.5, where
the density hole of AdResS simulations is typically located(see previous chap-
ter). In addition, the chemical potentials of the atomistic and coarse-grained
representations are consistent. This is not surprising since their state points are
the same and, more generally, their equations of state have a very similar shape
as shown in Fig. 4.4. Small differences are expected in their thermodynamic
properties under these circumstances.

After applying a smoothing procedure on the chemical potential profile, the
thermodynamic force is calculated from f;;, = 3_5%' Its final form is shown in
Fig. 4.5, compared with a sinusoidal fit.

The thermodynamic force is applied to a system of 2520 molecules in a box
of 36 x 20 x 2003, with a hybrid region width of 120. The density profile of this
simulation, plotted in Fig. 4.6, shows a clear improvement with respect to the
uncorrected AdResS simulation.

The radial distribution function function and state point are practically not
perturbed by the application of the force. Figure 4.7 compares the center of
mass radial distribution function between a purely atomistic simulation, an
uncorrected AdResS simulation and an AdResS simulation under the effect of
the thermodynamic force, averaged over the whole simulation box. It is clear
that the effects on the structure coming from the hybrid regime are not removed
by the thermodynamic force. Analogously, the virial pressure in reduced units,
that counts only the intermolecular contributions, does not change considerably:
its value of 2.15 4+ 0.03 of an uncorrected AdResS simulation increases slightly
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Figure 4.4: Equation of state of atomistic and coarse-grained representation of
the tetrahedral model.
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Figure 4.5: Thermodynamic force for the tetrahedral system.

to 2.17 & 0.04 under the effect of the force.
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Figure 4.6: Density profile under the effect of the thermodynamic force.
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Figure 4.7: Center of mass ¢g(r) for AdResS and atomistic simulations.

4.1.4 Finite size effects

Spurious effects on the density profile are expected when the width of the hybrid
region is too small. Under these circumstances, the strength of the thermody-
namic force can become too high, since the field must now provide the difference
of chemical potential in a much smaller region. In addition, the construction of
the thermodynamic force has been make on the assumption that, at each point,
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the chemical potential can be estimated from a bulk simulation at the corre-
sponding weighting function. The reduction of the hybrid zone can eventually
break down this ansatz.

The effects of the width of the hybrid region on simulations under the effect
of the thermodynamic force are analyzed below. Figures 4.8 show the density
profiles for a box of size 36 x 20 x 2003 and hybrid regions of 40 and 8o. The
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Figure 4.8: Density profiles for the same box, with narrower hybrid regions.

results show that particles tend to agglomerate in the hybrid region, forming
a layered pattern that becomes more pronounced as the hybrid region becomes
narrower.

The numerical evidence of this layering effect plus the arguments aforemen-
tioned suggest that the thermodynamic force requires a minimum size of the
region where it is applied.

On the other hand, an increase of the size of the hybrid region does in
practice not affect the density profile. Figure 4.9 shows that the density is
almost homogeneous, displaying a small bump in the hybrid zone that is also
present in the first application.

The increase of the size of the atomistic or coarse-grained domains improves
the agreement of the radial distribution function and pressure with their atom-
istic references as reported previously [?]. Simulations with a hybrid region
width of 120 and atomistic (and coarse-grained) widths of 60, 130 and 180 give
pressures listed in Table 4.1 and radial distribution functions plotted in 4.10 in
agreement with the previous results. The thermodynamic force does not change
this general trend.

4.1.5 Interfacing two generic force fields: example in a
one-site model

The interpolation of forces that characterizes the equations of motion can be
generalized to two arbitrary force fields. In this context, the change of resolution
is merely a specific case of the coupling between two levels of representation.
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Figure 4.9: Density profiles for hybrid region width of 160.

Lat p*
6 2.17£0.04
13 2.12£0.02
18 2.1+ 0.02
Atomistic | 1.98 & 0.02

Table 4.1: Pressure at hybrid width = 120.
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Figure 4.10: Center of mass g(r) for AdResS and atomistic simulations.

An illustrative example is to interface two coarse-grained models of the
tetrahedral system that have been derived at different thermodynamic state
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points. Figure 4.11 shows the equation of state of the tabulated potential ad-
justed around p = 0.1750~3 with an analytical Morse potential adjusted at
p = 0.1073 [?]. The potentials are interfaced in an AdResS simulation at an

3

Morse
Tabulated

0 T L L L L L L L
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
*

p

Figure 4.11: Equation of state of two coarse-grained representations of the tetra-
hedral liquid.

intermediate density of 0.1350~3. Here there is a clear mismatch between their
equations of state. The profile of chemical potential and the force produced
from it are plotted in Fig. 4.12, obtained from simulations in a box of dimen-
sions 20 x 20 x 200 with 1080 molecules. The integration was over 250007 with
5 x 10° insertions for the test particle insertion method.

The density profile obtained from the application of this force is shown in
Fig. 4.13, compared with the result of an uncorrected AdResS simulation. As
in the previous case, the density is considerably improved under the application
of the force.

This short test is a first step towards the conceptual extension of the AdResS
to a more general approach that allows the coupling between different represen-
tations through thermodynamic considerations, which is clearly far beyond the
original AdResS idea.

4.2 Iterative approaches

In this section, a more practical way to deduce the thermodynamic force is pre-
sented, starting from the assumption that in a stationary situation, an AdResS
system will evolve to a configuration where the pressure is the same through-
out the whole box [?]. Pressure is a well defined quantity since it can be
defined in terms of the intermolecular forces, provided the existence of an equi-
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Figure 4.12: Corrective elements for the confrontation of two coarse-grained
parametrizations. Values w = 0 and w = 1 are assigned to the tabulated and
Morse potentials respectively.
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Figure 4.13: Density profiles with and without thermodynamic force.

librium state [?]. In AdResS, however, the averages of thermodynamic quantities
are taken over stationary states that have been numerically observed [?,?7,7,7,7].

It is well known that a homogeneous pressure configuration displays a non
homogeneous density profile in the absence of corrections [?,7]. This can be
tested numerically by calculating the pressure profile, using the expression pro-
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posed by Todd, Evans and Davis [?] for the pressure tensor

N

_ 1 1

Ppala) = 94 Ao Aa< E miviﬁviﬁ> + A < E Figsgn(o; — 04)>
« @\ =1

a—Aa<a;<a+Aa
(4.7)

where A, is a cross-sectional area perpendicular to the direction «. The first
term is the ideal gas contribution calculated in a slab centered at « of thickness
2Aq, and the second represents the contribution of the intermolecular interac-
tions.

In the case of two-body forces, the second sum is reduced to the count of the
forces that cross the area A,. Particles at distances bigger than the maximal
cutoff of the non-bonded interactions do no contribute to the sum. In the same
spirit, it is possible to note that this way of counting the forces per area is
not affected by the periodic boundary conditions provided that the sides of the
simulation box are longer than the longest range of the interactions.

Figure 4.14 shows the component p,, of the pressure tensor along the x
direction, on which the change of resolution occurs. The profile is plotted for
three systems: a purely atomistic liquid and two AdResS simulations with hybrid
regions of width 40 and 12¢. In all cases, p,, is practically constant, even
though in the AdResS simulations the density profiles are not. Its average
value, however, is higher in these cases with respect to the atomistic reference,
and increases with the size of the hybrid region. This is not surprising since
hybrid particles increase the pressure, as it has been reported in this tetrahedral
system [7,7].

Atomistic
2.4 ¢ AdResS (w=40 ) 1
AdResS (w=120
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Figure 4.14: Pressure profile p,,(z) for AdResS and pure atomistic simulations.
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In an analogous way, a flat density profile will require the application of an
external force to remain stationary. Knowing the pressure profile p; of a flat
density configuration, the thermodynamic force can be written as

1
fth = —fo (48)
Po

where pg is the value of the homogeneous density. This force can be estimated by
the same slab procedure used in the chemical potential approach. By dividing
the simulation domain into several subsystems centered at z;, the pressure at
each point is approximated as the value obtained from a hybrid simulation
performed at constant weighting function w(z;).

However, this procedure, rather tedious, can be difficult to achieve in systems
like water, where accurate estimations of the pressure demand long runs [?]. It
is recommendable then to devise a simpler and faster way to estimate fy; in
an accurate and less expensive manner, making use of the density profile of an
uncorrected AdResS simulation.

Starting from the stationary density profile of an uncorrected AdResS simu-
lation, the pressure can be written as p(p(r)), assuming that it depends locally
on the density. Therefore, expanding to first order at each point

p) = s+ 60 - ) | 52| Ol -y a9)

Hence, by taking the gradient at both sides of 4.9, and knowing that Vp = 0, it
yields

1
Vislr) % | (otr) = )| (4.10)
POKT
by using the isothermal compressibility 7, as in
0 1
[—p] = (4.11)
9p]pmp,  POKT

and neglecting higher order terms. For simplicity, the compressibility is taken
as a constant, that can be its atomistic (or coarse-grained) value. Such choice
will later be proven to be a good approximation in the tetrahedral liquid. Thus,
the first guess of the thermodynamic force is

£, () = — - Vpl(r) (4.12)
PokT
The inclusion of higher order derivatives in the equation of state would re-
quire the knowledge of the coefficients of the whole expansion, which is a non
trivial, if not prohibiting problem. To overcome this situation, the force can be
iteratively corrected as

£, (r) = £, (r) — vai(r) (4.13)
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until a flat density profile is reached.

The effects of the thermodynamic force calculated from the pressure profile
on the local pressures can be seen in Fig. 4.15. In the corrected AdResS
simulation, p,, shows a sizeable bump increase in the hybrid region, while in
the atomistic and coarse-grained regimes it matches the reference values. Such
inhomogeneities are compensated by the thermodynamic force, as it can be seen
by monitoring the quantity p,, + po®, where ¢ is the potential associated to the
external field. Its value across the x axis is practically constant, similar to the
atomistic profile.
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Figure 4.15: Pressure profile of a purely atomistic simulation compared with
AdResS under the thermodynamic force. It also includes the profile corrected,
adding the contribution of the thermodynamic force. Note that in the uncor-
rected case, the local pressure at the atomistic region matches the atomistic
value.

The other components of the pressure tensor p,, and p.. are expected to
display an analogous profile to p,., since in equilibrium, the pressure tensor
must satisfy

Pzz = Pyy = Pzz (414)

However, Eq. 4.7 permits the calculation of py,(y) and p..(z), but not
their profiles across the z direction. Therefore, the validity of 4.14 can only
be assumed and numerically tested by comparing the averages of p,, and p..
along the directions y and z respectively. Their profiles, in Figs. 4.16, are flat,
with averages of (pl, ), = 2.161£0.003, (p%,). = 2.161+0.002 in reduced units.
These values match the average (pZ, ), = 2.240.2, in agreement with Eq. 4.14.
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If such equation holds, it is possible to conclude that

p
ot ¢ (4.15)

is constant across the whole space in an AdResS simulation.
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Figure 4.16: Pressure profiles along the y and z directions for corrected and
uncorrected simulations, compared with the atomistic result.

The presented approach is also relevant from a conceptual point of view,
since it establishes that the pressure, and consequently, —pV, are constant in
the whole simulation domain independent of the representation. The thermo-
dynamic force, as shown in Fig. 4.15, imposes a flat density profile by compen-
sating this quantity. Therefore, in the thermodynamic limit, such force can be
identified with the derivative of the Grand Canonical potential divided by the
number of particles. An AdResS simulation can then be numerically consistent
with an open system where the region of interest is the atomistic one. Thus,
the system can be divided into various subvolumes with different molecular rep-
resentation that can be approximated as a particle reservoir for the adjacent
subvolumes.

4.2.1 Iterative thermodynamic force on tetrahedral liquid

The iterative procedure can be tested with the compressibility of the atomistic
or coarse-grained representations that do not differ substantially, due to the

similarity between their equations of state. The prefactor C = pziT is Cyr =
0

236.86e03 and Cog = 190.62e03 for each representation. The forces produced
by the first iterations using these coefficients are displayed in Fig. 4.17. It
takes in both cases two steps to obtain a flat density profile, as depicted in
Fig. 4.18. The final shape of the force is compared with the previous calculated
thermodynamic force, using both the chemical potential and pressure profiles
in Fig. 4.19, with the respective density profiles in Fig. 4.20.

Clearly, the density displays a uniform profile after a few AdResS simula-
tions, without the necessity of simulating several hybrid systems. It is also
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Figure 4.17: First iteration of the thermodynamic force using atomistic and
coarse-grained compressibilities.
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Figure 4.18: Density profile for first two iterations, applying thermodynamic
forces calculated with atomistic and coarse-grained compressibilities.

noticeable that the small excess of particles in the hybrid region produced by
the application of the thermodynamic force coming from the chemical potential
approach is now absent.

4.2.2 Comparison with Interface Pressure Correction

The density profiles obtained can be compared with the old approach of the
interface correction. As shown on Fig. 4.21, the thermodynamic force produces
a flatter distribution of particles. Another advantage is that it can be used to
match representations that do not have the same state point, while the interface
correction is just able to correct the density locally in the hybrid region. How-
ever, the thermodynamic force does not affect notoriously the radial distribution
function of the whole system, as it will be shown in the next subsection.
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Figure 4.19: Final shape of the iterated thermodynamic force compared with
the other approaches.
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Figure 4.20: Final shape of the density profile of the iterative thermodynamic
force compared with the other approaches.

4.2.3 Distribution functions

It is important to show that the recently developed corrections do not alter the
physics of the atomistic region. This can be checked by monitoring the veloc-
ity distribution and pair correlation function in that region, and comparing it
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Figure 4.21: Density profiles of AdResS simulations under different approaches.

with the purely atomistic results. Figure 4.22 shows the velocity distribution of
the atoms of the atomistic domain of an AdResS simulation with and without
thermodynamic force. The comparison with the distribution taken in a subdo-
main of the same dimensions from a purely atomistic simulation shows good

agreement.
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Figure 4.22: Velocity distribution of atoms in the atomistic domain.

It is also of interest to observe the behavior of the velocities in the hybrid re-
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gion. Figure 4.23 shows the distribution of velocities for particles with weighting
function between 0.4 and 0.6, compared with the analytic expression. Again, it
is observed that both curves match in the numerical precision.
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Figure 4.23: Velocity distribution of atoms, hybrid region.

Consequently, in a stationary situation, the thermostat is able to keep the
regions of interest thermalized independent of the application of the thermody-
namic force.

Concerning the configurational distribution, it is possible to evaluate part
of its information through the local analysis of the radial distribution function.
It is well known that the particles in the hybrid region distort it; however, it is
important to see if this effect is not propagated over the atomistic regime.

Figures 4.24 show the radial distribution function of particles restricted to
the atomistic domain in AdResS simulations. An analogous calculation on
purely atomistic simulations gives distributions that are in excellent agreement
with the previous results. The decay of the functions for long distances is due
the size of the atomistic region.

4.2.4 Particle number fluctuations

Finally, Table 4.2 displays the particle number fluctuations in the AdResS and
atomistic systems. It is clear that this quantity, within the error bars, is not
affected by AdResS nor its corrections.

Therefore, it is possible to conclude that the thermodynamic force can be
used to obtain a flat density profile, restoring the local state point of the atom-
istic domain. It also does not affect the local velocity distribution and radial
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Figure 4.24: Local radial distribution function.

Table 4.2: Number of particles and fluctuations of atomistic regions.
System N a%(N)
Atomistic | 420 | 25.8 £0.8

AdResS 429 | 26.1£1.1
AdResS-PF | 420 | 25£0.7

distribution functions, while the particles fluctuate in this region in a consistent
manner with purely atomistic systems. The fact that the differences in the ther-
modynamics can be compensated with the thermodynamic force allows the use
of coarse-grained models that do not fit the chemical potential of their atomistic
counterparts, but focus in other physical quantities like the basic structure.
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Chapter 5

Thermodynamic force on a
binary mixture.

The simulation of more realistic situations requires the generalization of AdResS
to multicomponent systems. However, the development of a coarse-grained
model in this cases represents a challenge by itself. This chapter addresses
both issues in a binary mixture consisting of spherical solutes solvated in the
already studied tetrahedral molecules. It begins with the description of the sys-
tem and the procedure followed for the reparametrization of the interactions
are presented below. Later on, the firsts tests on the AdResS simulation of
multicomponent systems are discussed, to conclude with the applications of the
interface correction and thermodynamic force.

5.1 System setup

The binary mixture consists of a minor component (solute) represented by spher-
ical particles and a major component represented by the aforementioned tetra-
hedral molecules. The solute particles interact between themselves through a
repulsive Weeks-Chandler-Andersen potential

UV eA(r) = {465[(US/T)12 —(os/r)0 +4] r <2/, (5.1)

0 > 204,

where the parameters os and €5 can be written in the previously introduced
Lennard-Jones units as o, = 1.80 and ¢, = €. Their interaction with the solvent
atoms obeys Lorentz-Berthelot [?] rules, that is, a Weeks-Chandler-Anderson
potential with the parameters ;s = 1.40 and €;5 = €.

The systematic approach chosen for the parametrization of the interactions
will make use of several mixtures at different concentrations, which are listed on
Table 5.1. The cubic box size L has been adjusted to obtain the same pressure
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Table 5.1: Concentration ¢ and pressure of the mixtures.
c L* N M p*
0.007 | 20.05 | 1400 | 10 | 1.994+0.05
0.034 | 20.265 | 1400 | 50 | 1.984+0.04
0.125 | 21.01 | 1400 | 200 | 1.98 +0.04

as the pure tetrahedral liquid previously studied, once the number of solute and
solvent particles have been fixed.

The steps followed in the procedure are described in detail in the following
section.

5.2 Development of Interactions

The coarse-graining model of the mixture aims to reproduce of the radial distri-
bution function of the species and the total pressure. This is achieved by means
of the successive reparametrization of the interactions in systems of increasing
concentration. The procedure is schematized in Fig. 5.2.

Pure solvent system: 1400 particles
L=20
Coarse-grained potential improved.

}

10 solutes, 1400 solvents 200 solutes, 1400 solvents

L=20.05 L=21.01

@ ® % : .

= 0. "0 0@

%os’® o* %
. {

Fit solvent-monomer from Fit solvent-solvent

potential of mean force Fit solvent-solute

Fit solute-solute

Figure 5.1: Scheme of reparametrization of the interactions.

The systematic approach consists of three steps:

e The refinement of the interaction between solvents in a pure system, start-
ing from the potential used in the previous systems. The pressure is si-
multaneously adjusted.

e Tune the force between solvents and solutes in the most diluted system
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with the iterative Boltzmann inversion. In this case, the force field between
the solutes is the same as in the atomistic representation.

e Finally, the potentials for the solvent-solvent, solvent-solute and solute-
solute are corrected in the most concentrated mixture. Technical details
are described below.

For the first step, the system consisted of 1400 molecules on a box of 20 x
20 x 2003, Between the solvents, the Tterative Boltzmann Inversion was applied
over the existent interaction for 8 steps, where each simulation consisted of
10007 and 25007 of equilibration and production respectively. A smoothing
procedure over the potential was applied 5 times per each step. The pressure
was simultaneously corrected using AV = 0.01¢, giving a final value of 1.98+0.01
reduced units, consistent with the target pressure. The slight difference between
the radial distribution functions is plotted in Fig. 5.2, while the potentials are
depicted in Fig. 5.3.

2 r r r
Target
L8 ¢ It 0 1
16 It8 —— |

1.4

1.2

~ 1}
0.8 |
0.6 +
04
0.2
0 .

Figure 5.2: Radial distribution function improvement for the pure solvent after
8 IBI steps.

For the second step of the procedure, the interaction between solvent and so-
lute starts from the potential of mean force. The force between the solvents used
was the previously developed one, while the solute interaction interacted through
the WCA potential defined in Eq. 5.1. The cutoff radius was of 3.593750, that
matches the second maxima of the solvent-solute radial distribution function.
This choice resulted the effective since at that point the force is zero. Besides,
it was observed that by using a smaller cutoff radius, the radial distribution
function could not be fitted properly. The use of longer cutoffs produced prob-
lems as well in the fit of the first peak of the radial distribution function. The
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Figure 5.3: Potentials for the solvent interaction in pure solvent system.

solvent-solute radial distribution function is shown in Fig. 5.4, compared with
its target shape. The pressure was adjusted with a value of AV = 0.01e, until
its value was of 1.98 + 0.01 reduced units. The initial and final potentials are

shown in Fig. 5.5.

2.5 T r y
Target
It 8
2t ™ i
A
[
1.5k |\ 4
?
O |
1)) L / \ ol .
| \. " e
0.5 , -
/)
O 1 1 1 1
0 1 2 3 4 5

Figure 5.4: Solvent-solute radial distribution function the most dilute mixture
after IBI.

The last step consists of three reparametrizations in the most concentrated
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10

U*

Figure 5.5: Solvent-solute potentials for the most diluted mixture. The initial
function is the Potential of Mean Force (PMF).

system, whose features are shown in Table 5.1. Tt begins with the refinement
of the solvent-solvent force field by means of the iterative Boltzmann inversion
and the pressure correction with AV = 0.01e¢, smoothing the potential 5 times
per step. Equilibration simulations were of 5007 while production runs were of
50007. In 20 steps of the Iterative Bolztmann method, there was no improve-
ment observed in the radial distribution function. However, the shape of the
potential keeps changing in the initial iterations, until reaching a fixed form at
iteration 10. Therefore, the last iteration was selected for the later parametriza-
tions. The pressure in the last iteration was of 1.89 4+ 0.01 reduced units, whose
value did practically not change in the successive iterations, although the target
value was of 1.98e03. This suggests that the pressure must be corrected by
tuning the solvent-solute or solute-solute interaction.

The solvent-solute interaction was then reparametrized for this system. It
took 10 steps to obtain a good agreement of the radial distribution function,
while the pressure was of 1.98+0.02 reduced units. The potential was smoothed
one time per Boltzmann step to give the shape shown in Fig. 5.8, while the
pressure was corrected using a value of AV = 0.0le. Initial and final radial
distribution functions are displayed in Fig. 5.7.

Finally, the potential between the solutes is corrected, starting from the
atomistic excluded volume interaction. The force field was corrected after one
step, without pressure correction. The force is slightly modified (shown in Fig.
5.9, increasing its cutoff radius (based on the same criteria as for the previous
interactions) to 3.69 o.

The final pressure obtained was of 1.98 + 0.02 reduced units in agreement
with the total pressure of the mixture. The final radial distribution functions
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Figure 5.6: Solvent-solvent potentials for the most concentrated mixture.

2.5 T T T T
Target
It 10

Figure 5.7: Solvent-solute radial distribution function the most concentrated

mixture after IBI.

are listed in Fig. 5.10. They also are able to reproduce these functions for the
lower concentrations as shown in Figs. 5.11 and 5.12, and match the pressures
as well. The latter quantities are displayed in Table 5.2.

The AdResS simulations using the developed coarse-grained representation

are discussed in the following sections.
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Figure 5.8: Solvent-solute potentials for the most concentrated mixture.
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Figure 5.9: Solute-solute potentials for the most concentrated mixture.

5.3 AdResS simulations

AdResS simulations have been performed for the three different concentrations
in boxes of the respective dimensions. The hybrid region width was of 40, while
the weighting function is the same as in the pure solvent case, changing the reso-
lution along the x direction. Equilibration simulations of 5007 were followed by
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Solvent-Solvent Solvent-Solute Solute-Solute

Figure 5.10: Radial distribution function for 200 solute particles system.

Target Target Target
18 da— da— 35 dc—

Solvent-Solvent Solvent-Solute Solute-Solute

Figure 5.11: Radial distribution function for 10 solute particles system.

Target
3 &G —

Solvent-Solvent Solvent-Solute Solute-Solute

Figure 5.12: Radial distribution function for 50 solute particles system.

production runs of 50007. Their density profiles are shown in Fig. 5.13, while
the pressures are listed in Table 5.3. As expected, the solvent particles tend to
concentrate in the atomistic and coarse-grained regions, displaying the typical
density hole in the hybrid zone. However, the solute particles, whose represen-
tation does not change substantially as the other component, compensate this
lack of solvent, agglomerating in the switching region. This trend is common
for lower concentrations, as shown on Figs. 5.14.

In addition, a set of corrected force fields has been developed for the ap-
plication of the interface correction at w = 0.5. The potentials have been
reparametrized for purely hybrid simulations by iterative Boltzmann inver-
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¢ p

0.007 | 1.99+0.01

0.034 | 1.982 % 0.007

0.125 1.98 +£0.02

Table 5.2: Pressures using final coarse-grained potentials.
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Figure 5.13: Density profiles of solvent and solute for the highest concentration

system.
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Figure 5.14: Density profiles of solvent and solute for lower concentrations.

sion, correcting at the same time the pressure with coefficients AV, = 0.1¢,
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AVys = 0.05¢ and AVys = 0.01€ according to their respective contribution to
the virial pressure. The correction was performed simultaneously on all interac-
tions. The initial force field was the purely coarse-grained potential for all cases,
with the exception of the solvent-solvent interaction. The iteration for this one
has started from the corrected potential for the pure solvent previously devel-
oped [?7]. After three iterations it was possible to observe a reasonable agreement
between the radial distribution functions, improving the pressures with a last
step where AV = 0.075¢, AV = 0.06e and AV, = 0. The resulting ra-
dial distribution functions and pressures are plotted and listed, respectively, in
Fig. 5.15 and Table 5.3 for atomistic and purely hybrid simulations using the

c p*
0.007 | 2.07£0.03
0.034 | 2.06 =0.03
0.125 | 2.05+0.03

Table 5.3: Pressures for AdResS systems.

coarse-grained and corrected coarse-grained potentials.

Solvent-Solvent

Solvent-Solute

Solute-Solute

Figure 5.15: Radial distributions function for 200 solute particles system.

Pressure Atomistic Purely hybrid | Purely hybrid-corrected
Total 1.98 £ 0.04 2.4540.03 1.98 +0.03
Solvent-solvent | 1.36 & 0.04 1.74+0.03 1.36 £0.03
Solvent-solute 0.414+0.02 0.54+0.02 0.41£0.01
Solute-solute | 0.0324+0.005 | 0.039 4+ 0.006 0.035 £ 0.006

Table 5.4: Total molecular pressure and its contributions to the virial, compared

between atomistic systems and the corrected hybrid simulations for the highest

concentration.
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For the AdResS simulations, the correction function used was

slz] = (5.2)

(1-22) <05
0 x>0.5
that produces a linear interpolation between the normal and corrected coarse-
grained potentials for z < 0.5, keeping its corrected shape for higher values.
The resultant density profiles are shown in Fig. 5.16. Radial distribution
functions show a better agreement with the reference functions, as illustrated
in Fig. 5.17.
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Figure 5.16: Density profiles of solvent and solute for the highest concentration
system, with the old corrective approach, the interface correction.
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Figure 5.17: Radial distribution functions for 200 solute particles system under
AdResS with and without interface correction.
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5.4 Thermodynamic Forces

The application of the thermodynamic force in this system is slightly more
complicated [?], since special care must be taken for the treatment of the mixing
contributions. Consequently, the chemical potentials are expressed as

:u:z%ent = :U‘(s)olvent + kT 1Og[0801vent] + fg:;m (Csolvent; Csoluta) (53)
.U;Zﬁte = .Ugolute + KT loglesotute] + QZZ? (Csolvent s Csolute) (5.4)

where 10 is the chemical potential of the pure component at the same density.
The logarithmic term is the part coming from the entropy of mixing, that de-
pends on the concentration ¢;. fﬁ;ﬁm (Csolvents Csolute) 18, on the other hand, the
contribution of the molecular interactions for the solvent and equivalently g for
the solute. Both f and g functions are unknown.

The procedure followed to determine the full thermodynamic force is based

in two steps:

e The chemical potential profile is calculated for each component separately,
at the same density of the AdResS simulation. This will give account of the
contribution to the thermodynamic force in the absence of interactions,
and a first approximation for each species. The resultant forces are applied
to an AdResS system, to obtain a density profile where just u® has been
corrected.

e The remaining part of the chemical potential estimated using the resulting
density (and concentration) profiles from the previous simulations. The
logarithmic term can be directly evaluated from the concentration profiles,
while for the functions f and g are treated empirically. Using a linear
expansion in the densities of the functions f and g from Eqgs. 5.3 and 5.4,
it is possible to write

mix
int (Csolventa Csolute) ~ |:867 . Acsolvent (55)
solvent otvent Cotute
mix
Gint (Csolventa Csolute) ~ [W . Acsolute (56)
0 0
solute Csolvent ' Csolute

that has to be added to the simple thermodynamic force to obtain its full
form. The prefactors, denoted by K; and K for the solvent and solute
respectively, are determined empirically.

The first step was performed in the same way as for the one component case
shown in the previous chapter: the discretization of the hybrid region permits
the calculation of a histogram of chemical potentials, whose values are plotted on
Figs. 5.18 and 5.19, accompanied with their respective thermodynamic forces.

The thermodynamics of the pure solvent system seems to have a greater
dependence on the molecular representation, as expected since its change of

58



10

8L
6L
4
* 2 //
% « )/
< :F oY !
, \
4
6
10 * 0 0.2 04 06 0.8 1
0 0.2 0.4 0.6 0.8 1 :
w x'/a’
ILLO £0
Figure 5.18: 1% and its respective thermodynamic force for the solvent.
07 i i i i 12
1t //\
0.8 | ’ \
- \
*3?_'3 & oo \
04 [ \
/ \
\
02 f \\ ]
\\
— \
o be—-"" ‘ ‘ ‘ \
0 0.2 0.4 0.6 0.8 1
x*/a*
ILLO £0

Figure 5.19: u° and its respective thermodynamic force for the solute.

resolution is much deeper. For the solute, a small asymmetry is observed due
the fact that atomistic and coarse-grained interactions differ only in a small tail.

The systems treated consists of boxes of size 36 x 20 x 2002 with 311 solutes
in 2174 solvent particles. The width of the hybrid region was of 12 ¢. 10 initial
conditions were simulated over 75007, to obtain 15000 configurations that were
averaged to give the density profiles shown in Fig. 5.20.

The corrective forces were obtained using the coefficients K; = 0.0017¢ and
K, = 0.0259¢. The final shape of the forces is shown in Fig. 5.21. Finally,
four AdResS simulations were performed over 200007 that produced the density
profiles displayed on Figs. 5.22. The stability of the result is also shown by the
number of particles per region, plotted in Fig. 5.23. The free diffusion of each
component is proven by the diffusion profiles depicted in Fig. 5.24.
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Figure 5.20: Solvent and solute density profiles after the correction of u°.
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Figure 5.21: Final form of the thermodynamic forces.

5.5 Iterative approach

The iterative scheme can also be extended to multicomponent systems, with
some minor features. The chosen procedure corrects the force of one species per
iteration, starting from the densest to the most diluted. The force in step i on
component « is then

£, = —CaVpl, (5.7)

The prefactor C,, has been chosen as KCQ;TP. K is a value between 0 and
1 that will be tuned later in order to keep the stability of the method. Note
that if the components are identical, K = 1 restores the one-component formula
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Figure 5.22: Solvent and solute density profiles under the exertion of the total
thermodynamic force.

1800

Atomistic Atomistic
1600 Coarse-grained—— Coarse-grained
i 250 Hybrid- ]
1400
1200
1000
z 7, 150
800
600 100
400 - A N e
50 Py (o oo g e sy 7 T
200 '
0 s s s s 0 s s s s
0 500 1000 1500 2000 0 500 1000 1500 2000
t* t*
Solvent Solute

Figure 5.23: Number of particles per regime.

since po, = Cop-

When tested, K = 1 clearly overestimates the forces. Fig. 5.25 shows the
density profiles of solute and solvent after two iterations on each specie. Each
correction neglects its effect on the other component, leading to an uncontrolled
change of density on it.

A direct solution to this problem is to simply choose K between 0 and 1.
Its value, for simplicity, will be taken as the same for solvent and solute. The
prefactors tested were of 0.1, 0.3 and 0.5.

For K = 0.1, the density profiles improve rapidly for the solvent, although for
the solute there is no significant improvement from the third iteration. Fig. 5.26
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Figure 5.24: Diffusion profiles for both species in AdResS under the effect of
thermodynamic force.

No force’ No force’
1.4 It1 —— 4 ) It1 ——
It2 — 2.5 It 2
1.2 -\/\/‘ '\/\/\’\’\ T T 2
*O *QO
& 1 & 1.5
Y A Ny ~
05 CcG HYB AT
0.6 | CG HYB AT
. . . 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
x* x*
Solvent Solute

Figure 5.25: Density profiles from iterative procedure with K =1

shows the improvement in both species for six iterations on each component.

The prefactor 0.3 gives the best results, allowing to reach a reasonably flat
density profile in seven iterations. However, a small solute density bump inferior
to the 5% is located at the borders of the coarse-grained region. The density
profiles are shown in Fig. 5.27. The next two corrections do not improve the
solute density. In fact, on every step, the correction on the solvent cancels the
correction on the solute, and vice versa. Therefore, higher accuracy should be
achieved by reducing the constant K. Fig. 5.28 shows how the density profiles
can improve in one iteration with K = 0.1 after seven iterations with K = 0.3.

Finally, for K = 0.5, the corrections make the density profiles oscillate more
drastically (see Fig. 5.29). However, convergence is not reached in the first ten
iterations.

Although a prefactor K able to generate the thermodynamic forces in a
reasonable number of iterations has been found empirically, it is clear that the
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Figure 5.26: Density profiles from iterative procedure with K = 0.1
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Figure 5.27: Density profiles from iterative procedure with K = 0.3.

prefactor that accompanies the density gradient does not differ form the one-
component prefactor by more than an order of magnitude.
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Figure 5.28: Fine tuning of the density profiles, with K = 0.1 after seven

iterations with K = 0.3.
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Figure 5.29: Density profiles from iterative procedure with K = 0.5.
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Chapter 6

Adaptive resolution scheme of
a model polymer: further
development

In this chapter, further step towards the application of the AdResS to the sim-
ulation of more complex systems is developed.

A previous work has already studied a model polymer solvated in tetrahedral
molecules able to change their representation under the AdResS [?]. The system
was designed to keep the polymer in the atomistic representation, by defining
the atomistic region as a sphere centered at the center of mass of the chain
with a radius carefully determined. This setup is optimal for the simulation
of a macromolecule where the structure of the solvent can be relevant for its
functional properties. Additionally, the effects of the solute on the solvent can
be crucial for the characterization of the solvation process [?]. Both situations
can be studied describing with a detailed resolution only the first solvation shells
around the solute.

In the present work, however, both solvent and polymer are allowed to change
their representations. Such an application requires not only the change of reso-
lution of a multicomponent system, but also the extension of AdResS to bonded
interactions. The change of resolution is now through a flat geometry, more
suitable to problems like the interaction of polymers with flat surfaces. The
previous study of the interaction of polycarbonate with a nickel surface [?] is a
clear example.

The chapter begins exposing the system setup chosen for this aim. Later on,
the reparametrization of the required interactions will be described, followed by
the results and their consequent improvement by the application of the interface
correction [?]. Finally, the simulations will be corrected with the application of
the thermodynamic force.
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6.1 System setup

The model polymer is a bead-spring polymer chain, whose monomers are the
solute particles described in Chapter 5. The bonded interactions are FENE
bonds (see Eq. 3.11) with parameters ks = 30¢/0? and Ry, = 1.50,, where
os = 1.80.

The system setup is illustrated in Fig. 6.1, where the polymer has been
located at the center of the hybrid region, keeping its central monomer fixed.
For the moment, this setting is enough for the test of the interactions and the
analysis of certain statistical properties. Later applications will allow the chain
to freely diffuse across the whole simulation box.

COARSE-GRAINED : HYBRID ATOMISTIC

@i”‘ vy ¢ 8% g
‘ . 8
0%0%0 0%« + "o 5e
' @,;E
|

| K

Figure 6.1: Polymer system setup. The monomers do not necessarily have the
same excluded volume in both representations.

This configuration demands a complete reparametrization of the interactions
in the coarse-grained region; namely, the non-bonded interactions between sol-
vents and solutes, and the bonded potentials between the monomers of the
model macromolecule. The former set of potentials has been systematically de-
veloped in the previous chapter, while the latter will be treated in the following
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section.

The aim of the bonded coarse-grained interactions will be to reproduce the
bond, angle and torsion distributions. In addition to this structure functions and
the density profile, some statistical properties of the polymer will be monitored:
the end-to-end distance

(RE) = ((rn —11)?), (6.1)

where r; is the position of the ith monomer and N is the number of monomer
units; the hydrodynamic radius Ry,

(&5

i#]
with r;; = |r; — rj|, and the radius of gyration

(BE) = 5 S~ R)?) (63

3

where R stands for the position of the center of mass of the polymer.

A deeper characterization of the chain structure can be done by inspecting
the exponent v that governs the scaling behavior of (R%) and (R%) through the
relation

(R%) oc (R%) o« N* (6.4)

Such a number can be obtained from the analysis of the static structure factor
S(a) = o S et (6.5)
N i

which can be experimentally measured. In the regime Rél < qg< bl with b
the bond length, S(q) is proportional to ¢~ 1/".

6.2 Two-body bonded interactions

The studied polymer, composed of 20 monomers, is solvated in 2800 tetrahedral
molecules contained in a cubic box of side of length 25.2610. The target bond
length distribution was obtained from an atomistic simulation of 250007 sampled
every 1000 time steps. The Iterative Boltzmann Inversion was then applied
to the bead-bead bond interaction starting from the potential of mean force,
described in Chapter 3.

The procedure converged after three iterations. The initial and final inter-
actions are shown on the left of Fig. 6.2. The agreement between the target
and coarse-grained distributions is shown on the right.

The radial distribution functions, shown in Fig. 6.3 do not require further
parametrizations. Structure factor and the statistical properties aforementioned
are shown in Fig. 6.4 and Table 6.1 respectively, showing good agreement.
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Figure 6.2: Results of the IBI for the bonded interaction between the monomers
of the model polymer.
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Figure 6.3: Radial distribution functions.

System | Atomistic | Coarse-grained
p* 1.98 £0.08 | 1.984+0.002

(RE)V2 | 10.7£0.5 10.6 £ 0.2

(RZ)12 1 42401 4.24 +0.06

(Ry")~1 | 415+0.05 | 4.17£0.05
v 0.56 0.57

Table 6.1: Summary of some polymer statistical properties. Pressure is included
to show agreement. The chain consists of 20 monomer units.

The value of v, that is 0.5 for a 6 solvent and approximately 0.588 for a
good solvent [?,7, 7], is closer to the latter. The discrepancy could come from
the finite size of the chain, as it has been previously observed [?], together with
the quality of the solvent.
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Figure 6.4: Structure factor in Kratky representation.

6.3 AdResS simulation of the model polymer

The AdResS simulations are performed in a box of the same size as in the atom-
istic calculations, while the hybrid region has a width of 4¢ in the z direction.
Six different initial conditions were integrated for 100007 after an equilibration
of 25007. Each configuration was saved every 1000 steps.

The density profile, shown in Fig. 6.5 shows reasonably good agreement
with the atomistic simulations, considering that in the transition region it is
expected a lack of solvent and a consequent excess of solute due the nature of
their non bonded interactions, as observed previously in the multicomponent
system. There is no asymmetry produced by the inclusion of the bonded in-
teractions. Every profile shows a density “spike” coming from the fixed particle
at the center of the hybrid zone. On the other hand, the bond distribution
function and the structure factor (Fig. 6.3) do not seem affected by the adap-
tive regime. These functions can be compared with the resulting forms of a
purely hybrid simulation, at w = 0.5. It is well known that at this point, the
disagreement with the atomistic results is high, if not maximum [?]. However,
the bond distribution shows a nice agreement between AdResS, atomistic and
purely hybrid simulations. This is consistent with the fact that the interaction
between solutes does not change greatly between atomistic and coarse-grained
representations, as in the case of the solvent particles.

6.4 AdResS simulation with interface-pressure cor-
rection

Finally, the simulation is performed under the influence of the interface-pressure
correction. Since the bond distribution does not change appreciably in the
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Figure 6.5: Monomer density profile of the model polymer on AdResS simula-
tion.

9 ™ T
Atomistic 10 . —
8 Coarse-Grained Atglél thS
7 AdResS— esi
6
—
CR —
Na S
2 &
A J
3 o
2
1
T2 d e 15 5 22 24 01
' ' ’ . : : 0.1 1 10
g q

Figure 6.6: Bond length distribution  pigyre 6.7: Structure factor in Kratky

representation

purely hybrid simulation previously shown, the correction is applied only to the
non-bonded interactions.

Simulations of 100007 were performed for the same six initial conditions. The
properties of the polymer, on Table 6.2 are again in good agreement with the
atomistic values, while the bond distribution and structure factor do not display
any change compared with the result without interface correction. In addition,
the monomer density profile of Fig. 6.8 shows a considerable improvement,
matching almost perfectly the atomistic result.
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System | Atomistic AdResS AdResS-ic
p 1.98+0.08 | 2.05+£0.02 [ 2+£0.02

(R2)V2 ] 10.7+0.5 | 10.1+0.3 | 10.1+0.4

(R2)Y2 | 4.240.1 | 4.0740.07 | 4.07 +£0.09

(Ry;")~1 | 415+£0.05 | 4.08+0.04 | 4.05+0.05
v 0.56 0.54 0.53

Table 6.2: Summary of some statistical properties for AdResS simulation using
interface-pressure correction. The polymer is composed of 20 monomers.
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Figure 6.8: Monomer density profile of the model polymer on AdResS simulation
with interface correction.

6.5 AdResS simulation under thermodynamic forces.

The thermodynamic force has been developed for the most diluted mixture,
with 20 monomers solvated in 2400 solute particles in a box of dimensions
40.1 x 20.05 x 20.0503. The weighting function is the same used in the previous
mixture study, with a hybrid region width of 120. The form of the chemical
potentials is given by the Egs. 5.3 and 5.4 presented in the previous chapter.
However, this time, the mixing terms are expressed in terms of the density

fﬂ;x (psolvenh psolute) ~ |:7 . Apsolyent (66)
apsolvent 0 0
Psolvent'Psolute
gﬁ? (psolventa psolute) ~ |: - Apsolute (67)
apsolute 0 . t=P0 Lt
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which gives a correction to the thermodynamic force of the form —K;Vp; for
the component i. Therefore, including the term of the chemical potential of the
pure species, plus the logarithm due to the entropy of mixing and above shown
term proportional to the density of each component, it is possible to obtain the
full thermodynamic forces shown in the left of Fig. 6.9. The constants were of
K; = 26e073 and K, = 0.3e0~2 for the solvent and solute respectively. The
density profiles of the AdResS simulations is shown in the right of Fig. 6.9.

' ' " Solvent ——
10 1 f\ Solute 1 - S(S)IVI'eIn,
- olute

A [\

| | A= U
S/ AT

fha*
0"/ pg
>

10 0.6
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x*/a* x*
Thermodynamic forces Density profiles

Figure 6.9: Results for the thermodynamic forces in the most diluted mixture.

The solute density shows a noisy profile due to its low concentration. How-
ever, the density profile of the major component, which mainly determines the
physics of the system, is practically homogeneous.

As a first step, the effect of the thermodynamic force is studied in a polymer
characterized by the same interactions developed in the previous sections. The
system consists of a chain composed of 50 monomers solvated in 7000 tetrahedral
molecules. The box dimensions are of 36 x 33.458 x 33.4580 with a hybrid region
width of 120. The target distributions and quantities were collected from three
atomistic simulations integrated over 250007. Since the bonded interactions
have been added, and the volume has changed in comparison to the system on
which the thermodynamic forces were developed, it is expected that these forces
will require certain refinement. That can be done by adding on to the force on
component « the correction Af, = —C,Vp, iteratively. The chosen prefactor
is the one chosen for the iterative procedure on the mixture presented at the
end of the previous chapter, C, = 0.3%88771 evaluated in the coarse-grained
representation. In this case, it was enough to correct the solute density over
two steps, with a prefactor of Csorute = 33.975¢03.

For the AdResS systems, six initial conditions were integrated over 25007 for
equilibration and 125007 for production. The density profiles obtained with this
corrected thermodynamic force are compared for different systems in Fig. 6.10.
Statistical properties are listed in Table 6.3. Bond distributions and structure
factor are plotted in Fig. 6.11.

The agreement in the density profiles is almost perfect. It is worthy to note,
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Figure 6.10: Density profiles for a 50 bead chain without angular interactions.
The results are compared also for uncorrected and final forms of the thermody-
namic forces.

System | Atomistic AdResS | AdResS-TF

(RZ)172 1 16.240.6 | 155+0.4 | 15.7+0.6

(RZ)2 1 706+0.2 | 6.7£02 | 6.8+0.2

(R7H)~1 16.09+£0.09 | 5.9+0.1 5.940.1
v 0.56 0.56 0.54

Table 6.3: Some statistical properties of the 50 bead chain without angular
interactions in atomistic and AdResS simulations.

additionally, that the solvent density resembles the atomistic profile in both
hybrid regions, considering that the solute is concentrated in the center of the
box. Therefore, the same thermodynamic force applied to the solvent could lead
to different results in the absence of the minor component. However, this is not
the case, showing the robustness method.

The value of v shows no increase with respect to the exponent of the shorter
chain, suggesting that the deviation with respect to a good solvent could come
from the solvent quality.

Bond distributions are also well reproduced in AdResS simulations. Struc-
tural properties agree satisfactorily, although the structure factor is slightly per-
turbed with respect to the target function. This is expected since the structure
of both solvent and solute differ in the hybrid region. However, such difference
does not seem affected by the action of the thermodynamic forces. Note also
that the end-to-end distance is in every case bigger than the width of the hybrid
region.

To conclude this chapter, the same polymer is studied with angular and
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Figure 6.11: Structural functions for the 50 bead polymer without angular in-
teractions.

torsion interactions. The angular potential is given by
k
U (6) = 56 — o)’ (6.8)

where kg = 3rad—2¢ and 6y = %w. The torsion potential is, on the other hand,
U'(¢) = Ky|1 + cos(¢)] (6.9)

with Ky = 2e.

Such force fields are able to satisfactorily reproduce their respective distri-
butions in the coarse-grained representation. Hence, the AdResS interpolation
of forces is not applied to these forces.

The thermodynamic forces, on the other hand, are iteratively corrected us-
ing the same formula as before, starting from the parametrized forces for the
previously studied polymer. As it can be seen in the density profiles of Fig.
6.12, the thermodynamic forces produce the desired effect after two iterations.

Statistical properties, listed in Table 6.4 also show good agreement with
atomistic results.

System | Atomistic | AdResS | AdResS-TF
(RZ)12 ] 16.84+1 | 164+05 | 18.2+0.6
(RZ)1721 88+03 | 89403 | 93+02
(RH) 1] 75+02 | 7.6+0.1 7.740.1

Table 6.4: Some statistical properties of the 50 bead chain in presence of angles
and torsions.

Finally, the bond distribution and structure factor are found in Fig. 6.13,
while the angle and torsion distributions are depicted in Fig. 6.14.
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Figure 6.12: Density profiles for a 50 bead chain with three and four body
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Figure 6.13: Structural functions for the 50 bead polymer with angles and
torsions.

Bond and torsion distributions seem almost perfectly matched in the coarse-
grained and AdResS simulations. Angle distributions are also satisfactorily
reproduced, although a small difference of less than 4% is present in the second
peak that comes form the coarse-grained parametrization. This small difference
is inherited in the AdResS simulations and not affected by the thermodynamic
force. A similar case is observed in the structure factor, where the mismatch be-
tween AdResS and atomistic simulations is not improved by the thermodynamic
force.

The structure factor does not allow to calculate v precisely. However, it
must be considered that the system setup and length of the simulations has
been designed to test the effects of the AdResS forces and the thermodynamic
forces on the basic structure and density profiles.
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Figure 6.14: Some polymer distribution functions.

It is possible to conclude that, in general, the thermodynamic forces can
be obtained in a systematic way to correct the density inhomogeneities of sys-
tems with bonded interactions. However, care must be taken when reproducing
structural properties, specially in the hybrid region where, in general, they can
be altered by the interpolation of forces.
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Chapter 7

Implementation of the
Adaptive Resolution Scheme

in ESPResSo

A description of the numerical implementation of AdResS in the ESPResSo
package [?] is presented in this chapter. Technical details about the interface
commands, integrator and parallelization scheme are listed in the Appendix.

The chapter begins with a description of the general overview of the system
and how the equations of motion are integrated. Later on, the parallelization
scheme is described, continued by the implementation of the thermostat. Af-
ter that, the initialization of the internal degrees of freedom when a molecule
transits form coarse-grained to a hybrid domain is briefly discussed, to conclude
with the treatment of bonded forces. Interface pressure correction and ther-
modynamic forces deserve a purely technical discussion that is included in the
corresponding appendix.

It is worthy to point that the implementation can greatly help to understand
better the physics of the AdResS and to have a more complete picture of it.

7.1 General setup

The system is composed of molecules with only one mapping point, located at
the center of mass. The basic idea behind this implementation is the treatment
of each molecule with a double resolution, i.e., every molecule will be composed
of its atoms and a wvirtual particle that corresponds to its center of mass. The
latter is nothing else than a mapping point needed for the calculation of the
force at this point, which is properly distributed among the atoms later. Hence,
the potential between two particles ¢ and j belonging to different molecules «
and 3 can be written as

Vij _ Vez(ri,rj,---) _'_V'us(rvs(ri’rj,,,,)) (71)
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where V¢ is the atomistic potential between them, and V"®, the potential
between the virtual sites, whose position r¥s is a function of the positions of the
atoms of its molecule.

Therefore, the force on atom 1 is distributed according to

DV + V™)
8ri
orvs
= Feo Fvs
' + 8ri

m;
EiEa m;

This choice avoids the creation and deletion of atoms, which is a highly expen-
sive operation that involves an active manipulation of the memory. Therefore,
the AdResS is reduced to the proper calculation and distribution of forces on
the atomistic atoms, according to equation 1 in Chapter 3. The virtual sites’
positions are simply updated from the positions of the atoms. Naturally, the
intermolecular atomistic forces will not be calculated in the coarse-grained re-
gion, since they are not involved in the dynamics. The same holds for the
coarse-grained force fields in the atomistic domain.

The intramolecular forces are calculated in the whole simulation box, in-
dependently of the representation of the molecule. They are not included in
the interpolation scheme dictated by the AdResS equations, and their inclusion
helps to stabilize the system.

Fi = -

= F¥ 4+ Fs (7.2)

7.2 Thermostat

The Langevin thermostat [?] has been chosen for the AdResS simulations, mainly
due its local nature. This feature makes sure that the stationary velocity distri-
bution of each particle will be consistent with the temperature of the thermostat,
independent from the rest of the system?®. In this case, the thermostat forces act
only over the atoms across the whole simulation box. Once these degrees of free-
dom have the correct velocity distribution, the thermalization of the centers of
mass is straightforward. The same features can be obtained by the application
of a DPD [?,7] thermostat.

Counting with this global setup, there are two tested options for the initial-
ization of the atoms’ velocities (and positions) when a molecule crosses from the
coarse-grained to the hybrid regime?:

e Copy the atom’s velocities relative to the center of mass of a molecule from
a random molecule from the atomistic region [?]. This guarantees that
the intramolecular degrees of freedom will be sampled from distributions
consistent with the atomistic regime that is properly thermalized.

ISince the forces are not homogeneous neither conservative, this choice would prevent any
eventual temperature profile that a global thermostat could generate.
2That is, the reintroduction of the integrated degrees of freedom
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e Leave the positions and velocities untouched, that is a justified choice
since the thermostat generates the correct velocity distribution regardless
the representation of a molecule.

Both approaches give no difference in the velocity distributions in the hybrid
region neither the density profiles, as shown in Fig. 7.1. However, the latter
results considerably faster than the former. Another important feature is the
parallelization scheme: since the ESPResSo package divides the simulation box
into several domains that are distributed among the processors, the presence
of atomistic molecules is guaranteed in all of them. Consequently, the second
choice is more plausible for parallel simulations.

1.4
No reinitialization 06 Analytic
131 Random initialization No initialization
0.5 F andom initialization
1.2
1l 04
*© A o
Ny 1 PNV N v £ \?/ 03}
Y 0o / \/ &
T 0.2 }
0.8 CG HY AT
0.1
0.7 F
0.6 0
0 5 10 15 20 25 30 35 0 1 2 3 4 5
x* v*
Density profiles Velocity distribution of hybrid particles

Figure 7.1: Comparison of distributions for AdResS simulations of tetrahedral
systems, under the two initialization schemes.

7.3 Bonded Interactions

The bonded interactions between atoms that belong to the same molecule are
fully considered since they are not affected by equation 1 from Chapter 3. This
is required for the stability of the molecules in the coarse-grained region.

For more complex systems, like the polymer of Chapter 6, the bonded inter-
actions are interpolated between the two representations whenever the atoms
involved belong to different molecules, whose virtual sites have different identi-
ties.
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Chapter 8

Conclusions

This thesis work was devoted to conceptual and technical advances of the Adap-
tive Resolution Scheme.

Conceptually, the thermodynamic consistency of the method was verified in
the tetrahedral system, which allowed the introduction of the Thermodynamic
Force. Such force was successfully applied in this system and in a simpler model,
where both representations contain the same number of degrees of freedom. The
application of the force reduces almost completely the density artifacts produced
by the interpolation of forces that characterize AdResS. Special care has to be
taken when this correction is applied: the reported finite size effects manifested
through the formation of density patterns suggest that the width of the hybrid
region must be large enough.

The concept of Thermodynamic Force was generalized and expressed in
terms of pressure consistency, which allowed to establish numerical consistency
between AdResS and molecular dynamics simulations of open systems. Addi-
tionally, this lead to the development of an iterative procedure for obtaining
the Thermodynamic Force, that has also been applied to more complex systems
like water [?]. The local physics of the atomistic region was compared with the
results of purely atomistic simulations. Radial distribution functions and veloc-
ity distributions show a good agreement, while the particle number fluctuation
in the subvolume, pressure and density profiles improve considerably under the
application of the Thermodynamic Force, since it restores the target density in
the whole simulation domain, and in particular, in this region.

Concerning multicomponent systems, a model mixture of spherical solutes
was the subject of study. The development of the interactions, which is by itself
a non-trivial issue, was performed systematically through successive applications
of the Iterative Boltzmann Inversion correcting the pressure at each step, giving
good results over a wide range of concentrations. The effects of AdResS were
also listed for this set of mixtures, specially in the most concentrated case.
There, the interface-correction and the Thermodynamic Force were also applied
successfully to the most concentrated mixture, requiring a slightly more delicate
treatment than in the pure component systems.
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Finally, it was shown that the sole interpolation of forces of the AdResS can
be applied to two-body bonded interactions. The distributions that characterize
the model polymer treated are not affected in the hybrid zone, showing good
agreement with purely atomistic simulations. Further application of the Ther-
modynamic Force on this system did in practice not affect the basic structure
of the polymer.

Concerning the technical issues, a reference implementation of AdResS was
incorporated to the ESPResSo simulation package, allowing its parallelization
and implementation in a more standard way.
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Appendix: Technical Details
and Interface of the
Implementation of AdResS in

ESPResSo.

A deeper and more technical description of the AdResS implementation in the
ESPResSo package [?,7] is presented below. The integrator and parallelization
scheme are described with more detail in a systematic way, while the com-
mands developed for the TCL [?] interface of ESPResSo are also included. The
appendix is structured in the same way as Chapter 7, where the conceptual
aspects were explained.

General setup

The AdResS feature is enabled in ESPResSo by adding the line
#define ADRESSO

to the configuration file myconfig.h. Later on, the AdResS has to initialized at
the tcl level through the line

adress set topo $kind width $width $hybrid_width \
center x $R_x wf $wf

where kind defines the general setup of the AdResS simulation. They can be

0 disabled

1 constant weight function

2 one dimensional geometry

3 spherical geometry
and wf the weighting function type:

0 conventional cosine-squared function

1 defined by the user

hybrid_width and width, on the other hand, are the widths of the hybrid

and atomistic region respectively.
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Integrator

The integrator used by ESPResSo corresponds to a standard velocity Verlet
algorithm [?,7], that can be summarized in four steps as

1. v(t+ At/2) =v(t) + At/2- f(t)/m
2. p(t+ At) =p(t) + Atv(t + At/2)
3. Calculate f(t + At) from p(t + At), v(t + At/2)
4. v(t+ At) =v(t+ At/2) + At/2- f(t + At)/m
However, when the virtual sites are present, this has to be slightly modified to
1. v(t + At/2) = v(t) + At/2 f(t)/m
2. p(t+ At) = p(t) + Ato(t + At/2)

2b. Recalculate and update the positions, velocities and weighting functions
w(R) of the virtual sites.

3. Calculate f(t+ At) from p(t + At), v(t + At/2)
3b. Distribute the force of the virtual sites to its corresponding atoms.
4. v(t+ At) = vt + At/2) + At/2 f(t + At)

Therefore, the integrator works only on the atomistic particles, while the virtual
sites are merely dummy points employed in the force calculation.

Parallelization scheme and cut-offs

As mentioned in Chapter 7, the parallelization scheme used by ESPResSo con-
sists in a partition of the simulation domain into several boxes of fixed volume.
Each of these sub-volumes is surrounded by a ghost layer that contains a copy
of the particles of the adjacent sub-volumes required for the calculation of the
forces. Evidently, the thickness of this layer will depend of the cut-off range of
the interactions.

The parallelization scheme requires two additional features in the presence of
the virtual sites. The first concerns to the communication of the ghost particles,
which positions must be known by each processor for the calculation of the
virtual sites. Therefore, the properties of these particles must be updated,
which requires a second communication.

The second issue consists on the redefinition of the ghost layer thickness.
The implementation has to guarantee that every molecule that contains at least
one non-ghost atom must be fully included in the processor. This is required
for the calculation of the virtual sites and for the distribution of the forces.
Consequently, the maximum cut-off between the non-bonded interactions has
to be increased by approximately the size of a molecule. In practice, this is
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performed by increasing the maximal cutoff by twice the maximal cut-off of the
bonded interactions.

The molecular cut-off between particles type typel and type2 can be set to
cut-off through the sentence

inter $typel $type2 molcut 1 $cut-off

This is a versatile implementation that allows the definition of an arbitrary cut-
off between molecules. However, a more simple implementation requires only
the inclusion of the line

#define MOL_CUT

in the configuration file myconfig.h.

Thermostat

The thermostat, as explained in Chapter 4, acts only on the atomistic repre-
sentation of the molecules. The Langevin thermostat is initialized with the
sentence

thermostat langevin $temperature $friction
while the DPD variant requires
thermostat dpd $temperature $friction $cutoff

where, in both cases, temperature is the temperature and friction is the
friction coefficient required by the forces [?,7,7]. cutoff is the cut-off of the
DPD pair interaction.

Molecule definition

The molecules can be defined in the standard way provided by ESPResSo. A
simple tetrahedral molecule, for example, can be declared with

set molecule_topology $molecule_type

part 1 pos $posix $posly $poslz virtual O
lappend molecule_topology 1

part 2 pos $pos2x $pos2y $pos2z virtual O
lappend molecule_topology 2

part 3 pos $pos3x $pos3y $pos3z virtual O
lappend molecule_topology 3

part 4 pos $posdx $posdy $posdz virtual O
lappend molecule_topology 4

part 5 pos $posbx $posby $posbz virtual 1
lappend molecule_topology 5

eval analyze set $molecule_topology
analyze set topo_part_sync
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The position of the virtual site can be initialized by calling
integrate 0
while the usual command
integrate $nsteps

integrates nsteps steps of the equations of motion, properly updating the posi-
tions of the centers of mass.

Interface pressure correction

The interface pressure correction supports only tabulated force fields. There-
fore, coarse-grained and interface-corrected coarse-grained force fields must be
defined in this way, included in the file filename. The command

inter $typel $type2 adress_tab_ic $filename

initializes the coarse-grained force between the virtual particles of kind typel
and type2. The file must be written in the same format as the tabulated
interactions of ESPResSo: the first four lines are the special character #, the
number of points N and the minimum and maximum separation distances r,;»
and 7,,42. Below, the two potentials are introduced in five columns as r, FCG/T7
UCG FIC UIC The number of points and the cut-off radius are assumed to
be the same for both potentials, while the values of r are equally distributed
between 7y, and 7,4, with a fixed distance (7m0 —7min)/(IN—1). The position
and the potential columns are ignored in the calculations; their inclusion is only
for the sake of readability.

Thermodynamic force
thermodynamic_force $type $filename $prefactor

where type is the type of the particle on which the force specified in filename

will be exerted. prefactor is a coefficient defined by the user that multiplies

the force. The format is consistent with the usual tabulated potential format

in ESPResSo: the initial four consist in the special character #, followed by

the minimum and maximum distances 7,,;, and 7,,4.- Then, three columns
du

are entered: s, — 4= and U. s corresponds to the dimensionless position in the

x

hybrid region o with dp, its width, ranging from 0 to 1. The derivative of
the potential has to be expressed in terms of this variable. The third column
is the potential associated with this field; it has no effect on the equations of
motion and is included only for readability.
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