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Abstract

The current early stage in the investigation of the stabditthe Kerr metric is
characterized by the study of appropriate model problenastidalarly interesting is
the problem of the stability of the solutions of the Kleini@on equation, describing
the propagation of a scalar field in the background of a mgatKerr-) black hole.
Results suggest that the stability of the field depends allyan its mass:.. Among
others, the paper provides an improved bounduf@bove which the solutions of the
reduced, by separation in the azimuth angle in Boyer-Lirgtquoordinates, Klein-
Gordon equation are stable. Finally, it gives new formoladiof the reduced equation,
in particular, in form of a time-dependent wave equatior ihgoverned by a family
of unitarily equivalent positive self-adjoint operator$he latter formulation might
turn out useful for further investigation. On the other haibds proved that from the
abstract properties of this family alone it cannot be cotietuithat the corresponding
solutions are stable.

Introduction

Kerr space-time is the only possible vacuum exterior soiutif Einstein’s field equations
describing a stationary, rotating, uncharged black hote won-degenerate event horizon
[31] and is expected to be the unique, stationary, asymptbtittat, vacuum space-time
containing a non-degenerate Killing horizd}.[Also, it is expected to be the asymptotic
limit of the evolution of asymptotically flat vacuum data iargeral relativity.
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An important step towards establishing the validity of thegpectations is the proof of the
stability of Kerr space-time. In comparison to Schwarzistépace-time, where linearized
stability has been proved, this problem is complicated bywel dimensional symmetry
group and the absence of a Killing field that is everywheretlike outside the horizon.
For instance, the latter is reflected in the fact that enemgsities corresponding to the
Klein-Gordon field in a Kerr gravitational field have no definsign. This absence com-
plicates the application of methods from operator theodyafrso called “energy methods”
that are both employed in estimating the decay of solutidiyperbolic partial differen-
tial equations.

On the other hand, two facts are worth noting. For this, nié in the following any
reference to coordinates implicitly assumes use of Boyeddjuist coordinatesg].

First, in addition to its Killing vector fields that generaiae-parameter groups of sym-
metries (isometries), Kerr space-time admits a Killingsten[33] that is unrelated to its
symmetries. Initiated by his groundbreaking wofkj on the complete separability of
the Hamilton-Jacobi equation in a Kerr background, Cariscavered that an operator
that is induced by this Killing tensor commutes with the waygerator. On the other
hand, Carter’'s operator contains a second order time diegvid 1]. An analogous op-
erator has been found for the operator governing lineagzaditational perturbations of
the Kerr geometry40]. A recent study finds another such ‘symmetry operator’ Wwhic
only contains a first order time derivative and commutes wittescaled wave operator
[7]. Differently to Carter’'s operator, this operator is arggdas to symmetry operators
induced by one-parameter group of isometries of the metrithat it induces a map-
ping in the data space that is compatible with time evolytemd therefore describes a
true symmetry of the solutions. It is likely that an analogoperator can be found for a
rescaling of the linearized operator governing gravitaigerturbations of the Kerr ge-
ometry. In case of existence, it should facilitate the galieation to a Kerr background of
the Regge-Wheeler-Zerilli-Moncrief (RWZM) decompositiof fields on a Schwarzschild
background 30, 35, 26, 32, 28, 15] which in turn should greatly simplify the analysis of
the stability of Kerr space-time.

Second, there is a Killing field that is time-like in an openghdorhood of the event
horizon given by

a

whered,, 0,, are coordinate vector fields of Boyer-Lindquist coordisaterresponding to
the coordinate time and the azimuthal angular coordingteM > 0 is the mass of the

£:=0,+

1 For the first, see, for instances]| For the second, see, for instance, Chaptef [27].



black hole and: € [0, M] its rotational parameter. Moreover, if

a 3
— < 1.0.2
M 3 ( )
£ is time-like in the ergoregion, see Lemrdd@. On the other handy; itself is space-
like in the ergoregion, null on the stationary limit surfaared time-like outside. For these
reasons, at least far satisfying (L.0.2), it might be possible to “join” energy inequalities

belonging to the Killing fields by andd,.

The discussion of the stability of the Kerr black hole is m d@arly stages. The first in-
termediate goal is the proof or disproof of its stability endsmall” perturbations. As
mentioned before, the linearized stability of the Schwelnitd metric has already been
proved. In that case, by using the RWZM decomposition of $iefda Schwarzschild
background, the question of the stability can be completetjuced to the question of
the stability of the solutions of the wave equation on Sclraetnild space-time. For Kerr
space-time, a similar reduction is not known. If such remogxists, there is no guarantee
that the relevant equation is the scalar wave equation.qiie possible that such equa-
tion contains an additional (even positive) potential ténat, similar to the potential term
introduced by a mass of the field, could result in instabibifthe solutions. Second, an
instability of a massive scalar field in a Kerr backgroundldandicate instability of the
metric against perturbations by matter which genericadly mass. If this were the case,
even a proof of the stability of Kerr space-time could turh asi a purely mathematical
exercise with little relevance for general relativity. @mtly, the main focus is the study of
the stability of the solutions of the Klein-Gordon field on arkKbackground with the hope
that the results lead to insight into the problem of lineadistability. Although the results
of this paper also apply to the case that 0, its main focus is the case of Klein-Gordon
fields of masg: > 0.

Quite differently from the case of a Schwarzschild backgdhuhe results for these test
cases suggest an asymmetry between the gase8 andu # 0. In the case of the wave
equation, i.e.;x = 0, results point to the stability of the solution®4] 16, 12, 1, 23, 24],
whereas fop # 0, there are a number of results pointing in the direction sfahility of
the solutions under certain conditiods3[ 14, 36,17, 22,9, 19].

In particular, unstable modes were found by the numericatstigations by Furuhashi
and Nambu fouM ~ 1 and(a/M) = 0.98, by Strafuss and Khanna fard/ ~ 1 and
(a/M) = 0.9999 and by Cardoso and Yoshida fed/ < 1and0.98 < (a/M) < 1. The
analytical study by Hod and Hod finds unstable modes:fof ~ 1 with a growth rate
which is four orders of magnitude larger than previous eatz®. On the other hand][
proves that the restrictions of the solutions of the sepdrah the azimuthal coordinate,



Klein-Gordon field (RKG) are stable for

mla | 2M  a?
o= 2|M|T‘+ 1+ Z + o (1.0.3)

Herem € Z is the ‘azimuthal separation parameter’ and:= M + v/ M? — a?. So far,
this has been the only mathematically rigorous result osthigility of the solutions of the
RKG for i > 0. This result contradicts the result of Zouros and Eardlayjdconsistent
with the other results above. In addition, there is the nugaéresult by Konoplya and
Zhidenko, P9 which confirms the result of Beydout also finds no unstable modes of the
RKG foruM < 1andpuM ~ 1.

Among others, this paper improves the estimdt®.Q. It is proved that the solutions
of the RKG are stable fqu satisfying

< |m|a 1+ 2M
= 2]\/[7°+ [ '

Further, it gives new formulations for RKG, in particulan, form of a time-dependent
wave equation that is governed by a family of unitarily eqléwt positive self-adjoint op-
erators. The latter might turn out useful in future investigns. On the other hand, it is
proved that from the abstract properties of this family al@ncannot be concluded that
the corresponding solutions are stable.

The remainder of the paper is organized as follows. Seétgnes the geometrical setting

of the discussion of the solutions of the RKG and a proof ofaiheve mentioned property
of the Killing field £. Section3 gives basic properties of operators read off from the equa-
tion, including some new results. These properties prothidebasis for a formulation of
the initial-value problem for the equation in Sectibwhich is less dependent on methods
from semigroups of operators than that 8f. [Section4 also contains the improved result
on the stability of the solutions of RKG, a formulation of tR&G in terms of a time-
dependent wave equation and the above mentioned countgpexaFinally, the paper
concludes with a discussion of the results @appendices that contain proof of results
that were omitted in the main text to improve the readabditthe paper.

2 The Geometrical Setting

In Boyer-Lindquist coordinatés(t, r, 6, ¢) : Q — R*, the Kerr metrig is given by
9= gt dt @ dt + gi,(dt @ dp + dp @ dt) + gpr dr @ dr + goo df @ dO + gy, dp @ dip

1 If not otherwise indicated, the symbals-, 6, ¢ denote coordinate projections whose domains will be olsviou
from the context. In addtion, we assume the composition gianevhich includes addition, multiplication



where

2Mr 2Mar sin’6 by
gttizl—T s gt«p::T s grr::_z , Goo 1= —2
AY
Gop = —T Sin29 )

M is the mass of the black hole e [0, M] is the rotational parameter and

A =72 —2Mr +a? , 2= r? + a? cos*f ,
T . (r? +a?)% +A2Ma27’ sin?0 _ (r? —|—Aa2)2 220 — X 4 M+ 4]\/[:7’2 7

roi=M+M2—a?, r_:=M—+/M?—a?,

Q:=Rx (ry,00) x (0,7) x (—m,m) .

In these coordinates, the reduced Klein-Gordon equatiomsponding tan € Z, gov-
erning solutions) : Q — C of the form

W(t,r, 0, ) = exp(ime) u(t,r,0) ,

whereu : Q3 — C,
Qg 1= (rg,00) x (0,7) ,

forallt e R, ¢ € (—m,7), (r,0) € Q,, is given by

9%u ou

. 2 o
W‘i‘lbg-l—DT@U,—O, (2.0.4)
where
b dmMar dmMar - dmMar
TOAY (124422 —a2Asin®0 (12 +a2)Y + 2Ma2rsin®
1 a9 0 m2a® 1 0 0 m?
2 p_ - (_Y ANY _ _ ZoGinh — 2
Dref'_i( oo T A snd aosm939+51n29+“2>f

for every f € C?(Q,C) andp > 0 is the mass of the field. In particular, note tihat
defines a real-valued bounded functionfenwhich positive form > 0 and negative for
m < 0. For this reason, it induces a bounded self-adjoint (malkmuatiplication) opera-
tor B on the weighted.2-spaceX, see below, which is positive forn. > 0 and negative

and so forth, always to be maximally defined. For instance stim of two complex-valued maps is defined
on the intersection of their domains. Finally, we use Plamgits where the reduced Planck constanthe
speed of light in vacuum, and the gravitational constamt all have the numerical value



for m < 0. Further,D?, is singular since the continuous extensions of the coeffsief
its highest (second) order radial derivative vanish on tmzbn{r } x [0, 7].

In particular, the following proves that the Killing field

a
§= 0+ 30

is time-like in an open neighborhood of the event horizon tameé-like in the ergoregion
if
a

— <
M

I

Proofs are given in Appendik

Lemma 2.1. Let M > 0,a > 0. For everys € R, the function
9(0r + 504,0; + 50,)

has a continuous extension{. This extension is positive ad2, if and only if

a

T oM,

Further, u
=0y + —— 0,
§=0t oMr, ¥

is time-like precisely on

2 02 1/2 2M o
Qeo := |2Mry —a“sin“d —a A/ “sinf [ 14+ ((0,00)) .

rT—r_—
Proof. See Appendix. O
Lemma 2.2. Let M > 0,a > 0 andf).;, defined by

Qe1 = (a®sin?0 — A)71((0,00)) ,

denote the ergoregion. If
a
— < .0.
7S , (2.0.5)

<%

then
Qel C QeQ .

Proof. See Appendix. O



3 Basic Properties of Operators in the Equation

In a first step, we represeri?.0.4 as a differential equation for an unknown function
with values in a Hilbert space. For this reason, we reprefsental operators present
in (2.0.9 as operators with well-defined domains in an appropriateddi space and,
subsequently, study basic properties of the resultingaipes. Theorem3.5, 3.6 provide
new results.

Definition 3.1. In the following, X denotes the weighteb?-spaceX defined by
X :=1% (QS , Y sin 9) . (3.0.6)
Further,B is the bounded linear self-adjoint operator&rgiven by
Bf :=bf (3.0.7)
foreveryf € X. Note thatB is positive form > 0 and negative fom < 0.

Remark 3.2. We note that, as consequence of the fact at L(X, X) is self-adjoint,

the operator
exp((it/2)B) ,

whereexp denotes the exponential function éX, X), see, e.g., Section 3.3 iB][ is
unitary for everyt € R and coincides with the maximal multiplication operator bg t
functionexp((it/2)b).

Definition 3.3. (Definition of Ag)
(i) We defineD(A4y) to consist of allf € C2(Q2,,C) N X satisfying the conditions a),

b) and c):
a) D2,f € X,
b) there isk > 0 such thatf(r, ) = 0 forall » > R andf € Iy := (0, m),
<)
. of
T1i>r£1+ _o(r’ 9) o 0
forall 8 € Iy.

(i) Foreveryf € D(Ay), we define
Aof = D?ef :
Lemma 3.4. A, is a densely-defined, linear, symmetric and essentialfyagbint oper-
ator in X. In addition, the closurel, of A is semibounded with lower bound

m2a2

X = .
2,2
AM22



Proof. See Lemma& and Theorem in [7]. O

Theorem 3.5. The span, of all products
f® (B ocos)

wheref € C3((ry,00),C) andP/™ : (—1,1) — R is the generalized Legendre polyno-
mial corresponding tex € Z andl € {|m/|,|m|+ 1, ...}, is a core ford,.

Proof. For this, we use the notation of]f According to the proof of Theorem 4 of], the
underlying sets of{ and X := L?(Qs, (r*/A)sin6)) are equal; and the norms induced
on the common set are equivalent, the maximal multiplimdperatoﬁr4/(A§) by the

functionr*/(AY) is a bijective bounded linear operator ghthat has a bounded linear
inverse; the operatdt, related toA, by

AO = TT4/(A§)H 5 (3.0.8)

is a densely-defined, linear, symmetric, semibounded asehéally self-adjoint operator
in X, andD is contained in the (coinciding) domains 4f and H. Further, it has been
shown tha{ H — A\)D is dense inX for A < 3, wheres := —m?2a®/r% is a lower bound
for H. From this follows thatD is a core for the closuré of H. For the proof, let
f € D(H). Since(H — \)D is dense inX, there is a sequeng®, f», ... in D such that

lim (H - \)f, = (H—-\f.
V—00
SinceH — \ is bijective with a bounded inverse, the latter implies thatf, . .. is con-
vergent tof and also that B
lim Hf, =Hf .
V—r00
Hence, we conclude that coincides with 'Ehe closure df |p. Sincel’. ¥, T;}(Ai) €
L(X, X), from the latter also follows that, coincides with the closure ofy|p. O

Theorem 3.6. The operatord, coincides with the Friedrichs extension of the restriction
of Ay to C§° (92, C).

Proof. As a consequence of Theorem 3 &, [it follows that D is contained in the domain
of the Friedrichs extensiaAr of the restriction of4, to C3° (€2, C) and thatd p f = Ao f
for every f € D. In this connection, note that the addition of a multiple fod identity
operator ‘does not affect’ the Friedrichs extension of aarafr’ SinceD is a core for
Ay, from this follows thatdr > A, and hence, sincdr is in particular symmetric and
Ay is self-adjoint, thatdp = Aj. O

1 le, if Ais a densely-defined, linear, symmetric and semiboundecatipein some Hilbert spac& and
~ € R, then the Friedrichs extension df+ v, (A + ) ¢, and the sum of the Friedrichs extensionofA ,
and~ coincide,(A +v)r = Ap + 7.



Lemma 3.7. B
A=A+ (1/4) B?
is a densely-defined, linear and positive self-adjoint afmsrin X .
Proof. ThatA is a densely-defined, linear and self-adjoint operatod iis a consequence

of Theorem3.4 and the Rellich-Kato theorem. For the latter, see e.g. Témaok.12 in
[29], Vol. 11. The positivity of A is a simple consequence of the fact that

1 m2a® m? 1, o [A—a?sin?0  4M3a?r?
= |- —+ 5, + - b =m = . o + —
b A sin” 0 4 AY sin” 0 (AX)?
2
= (Afmﬁ [(A —a®sin® 0) AX + 4M?a”r® sin®0]
S
2
- (@Tﬁ {(A = a®sin?0) [A(S + 2M7) + AM?r?] + 4M 20?12 sin®0 }
S1n
m2
==, [(A —a®sin®0) (S + 2Mr) + AM3r?]
> sin
2 2 22
= [(Z = 2Mr) (B4 2Mr) + AM*?] = — = >0
AY " sin? 0 AYsin? 0

4 Formulation of an Initial Value Problem

In the following, we give an initial value formulation for egtions of the type 0f4.0.9
whose possibility is indicated by Theorefrl1 in [4], see also TheoreM.4.11 in [5].
Here, we give the details of such formulation, includingtedot energy estimates that
provide an independent basis for the estimat8.@ and also for its improvement (0.13
below. Specialization of the abstract formulation¥ogiven by 8.0.9, A := A, — C, B
given by 8.0.7 andC' := —(« + ¢) for somes > 0, provides an initial-value formulation
for (2.0.9 on every open interval of R along with quantities that are conserved under
time evolution. Note that in this casé + C = A,. For convenience, the proofs of the
following statements are given in the Appendix

Assumption 4.1. In the following, let(X, (| )) be a non-trivial complex Hilbert space and
A be a densely-defined, linear and strictly positive selbadjoperator inX.

Definition 4.2. We denote byV'} the complex Hilbert spa¢eiven by D(A'/?) equipped
with the scalar produd| ),, defined by

(€Y, = (AM2E| AV ) + (€]n)

1 W,}x may be regarded as a generalized Sobolev space.




for every¢, n € D(A'Y/?), and induced nornfj |[|;.

Remark 4.3. Note that, as a consequence of

€l = (1AM2€)1% + €)M > €]l
for every¢ € D(A'/?), the imbeddingV} — X is continuous.

Assumption 4.4. Let B : D(A'/?) — X be a symmetric linear operator i for which
there arex € [0, 1) andb € [0, c0) such that

| BEN? < o[ AY2¢||* + b?||¢||

for every¢ € D(A'Y/2). Note that this implies thaB € L(W}, X). Further, letC ¢
L(W}, X) be a symmetric linear operator ¥ and/ be a non-empty open interval &f

Definition 4.5. We define a solution spac® to consist of all differentiable : 7 — W}
with Ran(u) C D(A), suchthat’ : I — X is differentiable and

(W) (t) +iBu'(t) + (A+ C)u(t) =0 (4.0.9)
foreveryt € 1.1

Note that ¢.0.9 contains two types of derivatives. Every first derivatife @ to be under-
stood in the sense of derivativesidf; -valued functions, whereas every further derivative
is to be understood in the sense of derivativesefalued functions. Unless otherwise
indicated, this convention is also adopted in the subsdcqueat of this section. On the
other hand, since the imbeddiftj; — X is continuous, differentiability in the sense
of W} -valued functions also implies differentiability in thense of X -valued functions,
including agreement of the corresponding derivatives. drtipular, everyu € Sy also
satisfies the equation

u"(t) +iBu'(t) + (A+ C)u(t) =0 (4.0.10)

for everyt € I, where here all derivatives are to be understood in the serderivatives
of X-valued functions. Further, note that the assumption§'pim general, do not imply
thatA + C' is self-adjoint.

Remark 4.6. According to Theorem.11 in [4], see also Theorem4.11 in [5], for every

to € I, £ € D(A) andn € W}, there is a uniquely determined corresponding S; such
thatu(tg) = £ andu’(ty) = n. The proof uses methods from the theory of semigroups of
operators. Independently, the uniqueness of sufdilows more elementary from energy
estimates in part (iii) of the subsequent Lemina

1 Note that the differentiability of. implies that Ran’ C W}x-

10



Parts (i) and (ii) of the subsequent Lemsdgive a “conserved current” and a “conserved
energy”, respectively, that are associated with solut@f(¢.0.9. Part (iii) gives associ-
ated energy estimates, that, in particular, imply the ueigss of the initial value problem
for (4.0.9 stated in (iv).

Lemma 4.7. Letu € Sy andty € I. Then the following holds.
@) If v € Sy, theny, , : I — C, defined by
Juw(t) = (uB)]V' () = (u'(#)[v(t)) + i (u(t)| Bu(t))
for everyt € I, is constant.
(i) The functionF,, : I — R, defined by
Eu(t) = [[u'()II” + (w()|(A + Chu(t))
for everyt € I, is constant.
(iii) In addition, let A + C be semibounded with lower bounde R. Then
(eIl + 1Bl 2 (22 = 1) Jeh 1" (2=1) ity <0,
lu(ta) | <  lult)| + Bu'? (t2 = t1) ity =0,
(2B /7)/? (1= e ) (el iy >0,
for ¢1,to € I suchthat; < t».
(iv) In addition, letA 4+ C be semibounded. if € Sy is such that
u(to) = v(to) , u'(to) = v'(to) ,
thenv = w.
Proof. See Appendix. O

The following example proves that it is possible that thergmassumes strictly negative
values, but that the solutions 04.0.9 are stable, i.e., that there are no exponentially
growing solutions. This is different from the case of vamgh3, where there are unstable
solutions of ¢.0.9 if and only if the energy assumes strictly negative values.

Example 4.8. The example uses for the Hilbert spatethe spaceC? equipped with
the Euclidean scalar product, := A + C and B are the linear operators ¥ whose
representations with respect to the canonical basis aea &y the matrices

((1) —01> and <i) :1),) ’ (4.0.11)

11
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Fig. 1: Graph of R — L(X, X), A — A — AB — \2) for A and B from Example4.8.

respectively. An analysis shows th&endB are bounded linear and self-adjoint operators
in X, Ais semiboundeds is positive andd + (1/4) B2 is strictly positive. Furtherd and

B do not commute. Finally, the operator polynonfiél— L(X, X), A\ +— A— AB — \?)
has4 distinct real eigenvalues. Therefore, in this case, thex@a exponentially growing
solutions of the corresponding equatiehQ.9. Fig 1 gives the graph op := (R —
L(X, X), X+ det(A — AB — A?)) = A* + 6A% 4+ 8)\? — 1 which suggests that there are
precisely4 distinct real roots. Indeed, we notice that

p(=5)>0, p(—4) <0, p(-1) >0, p(0) <0, p(1)>0

and hence that has real roots in the intervals-5, —4), (=4, —1), (—1,0) and(0, 1). In
addition, the value of the conserved enefgycorrresponding to the solutianof (4.0.9
with initial datau(0) = (0, 1) andu’(0) = (0, 0) is < 0.

There are other possible definitions for the energy that se@ated with solutions of
(4.0.9. In cases of vanishing, such are usually not of further use. In the case of a
nonvanishingB, they can be useful as is the case for the RKG. In this cas@asbitvity

of £ ,, for sufficiently large masses of the field and

ma

5= 2M’I°+

(4.0.12)

provides a basis forl(0.3 and its improvement(.0.13 below.

12



Corollary 4.9. Lets € R andu € S;. Then, the functior; ,, : I — R, defined by
Eyu(t) = ||/ (t) + isu(t)[|* + (u(®)|(A + C + (B = s))u(t))

for everyt € I, is constant. IfA + C + s(B — s) is additionally semibounded with lower
boundy € R, then
[l + | Ba /2 (82 — ) Jelt V" (2700 ity <0,
lu(t2)ll < § llult)]| + Bl (82 — t1) ify =0,
(2B40/7)V2 (1= 7710200 o fu(a) e 0200 if 4 >0,

for¢1,to € I suchthat; < t».

Proof. See Appendix. O

Theorem 4.10. If there iss € R such thatd + C + s(B — s) is positive, then there are
no exponentially growing solutions o 0.9.

Proof. The statement is a direct consequence of Corofla@yor Theoremt.17 (i) in [ 4],
see also Theorem4.17 (ii) in [ 5]).
O

Assumption 4.11. In the following, we assume tha¥ is given by 8.0.9, A := A, — C,
Bis given by 8.0.7) andC := —(« + ¢) for somezs > 0.

Theorem4.10leads to an improvement of the estimatel(3.

Theorem 4.12. If
|m|a 2M
> I+ —,
2M’I°+ ’f'+

(4.0.13)

then there are no exponentially growing solutions/f(9.

Proof. Let s € R. In the following, we estimately + sB — s2. For this, letf € D(Ap).
Then

1/ 0 0 1 9 o m?
Ag+sB—s*)f == (505 — —— =osinf — + —o— + Vi
(Ao + 5B —s7)f z( or"or sing o9 ae+sin29+v>f’

where

2,2
Vs:z—mAa +M22+84mMar_32_
(2sMr — ma)?

=5 W =T -2 My

13



First, we note that
2

m 2
sin?6 —

In the following, we assume that= ma/(2Mr). Then

. 2 2 2 2 _ 2
(23M7°A ma) _ (@) n (@) 2VM? —q > —m? .

Vi1 = —

T4+ T4+ rT—r_—

Further, we define
Vio = (p? = %)% — 28 Mr = (u® — s2)r? — 252 Mr + a*(u* — 5?) cos? 0 .

If o> |s|-[14 (2M/ry)]"/2, then
9 2M 5 2 20,2 2Y o2 20,2 2) 002
Vig > 8° —— 1% — 28" Mr + a*(p” — s°) cos” 0 > a*(pu° — s7) cos“ 0 >0 .
T+

As a consequence,

Further, we conclude that

(f @ (P" o cos) | (Ao + 5B = s*)(f @ (B © cos))

g, 0 1 0 0
> : m L A i
_/SssmH(f@(Pl o €o8)) ( aTAaT g 8981n989>

(f® (P™ ocos))drdd >0

foreveryf € C2((ry,00),C) andl € {|m|,|m|+ 1,...}. SinceD is a core forAy, this
implies that B
Ag+sB—s>>0.

Hence the statement follows from TheorémQ O

The following gives a connection of the operathy + sB — s2, s € R, and the Killing
field 0, 4+ s0,. The corresponding proof is given in Appendix This connection sheds
light on the previous proof of the positivity ofy + sB — s for s = ma/(2Mr, ) for
sufficiently largep. Differently to g;., the termg(9; + s0,, 0; + s0,,) is positive in a
neighbourhood of the event horizon, but gradually turnsatieg away from the horizon.
The latter is compensated by the mass tgfm for sufficiently large.

Lemma 4.13. Lets € R and¢ := 0 + s0,. Then

[Ap + msB — (ms)2 1/
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1 1 . 1 m2g(&,€) + p?
= Al o Tl e 0+ — By /Tl g%0 | £+ IS

T T
9" | V=l —lg —Jpep

foreveryf € D(Ap), where

f

p = —9idee — (91)°] = Lsin®0 .
Proof. See Appendix. O

Subsequently, we rewritel(0.10 into an equivalent time-dependent wave equation that
is governed by a family of unitarily equivalent positivefsatljoint operators. The latter
equation might turn out useful for further investigatiomcs only self-adjoint operators are
involved. On the other hand, a subsequent example provigfsdhathe abstract properties
of this family alone it cannot be concluded that the solugiohthe equation are stable.

Lemma 4.14. Let B be additionally bounded ande S;. Thenw : I — X defined by
v(t) := exp((it/2) B)u(t)

for everyt € I is twice differentiable in the sense of derivativesXfvalued functions
and satisfies

V() + A(t)v(t) =0 (4.0.14)
for everyt € I, where
A(t) := exp((it/2)B) (A +C+ % Bz) exp(—(it/2)B) (4.0.15)
for everyt € R.
Proof. See Appendix. O

The previous can be used to prove the stability of the salstid ¢.0.9 in particular cases
where the operatord + C' and B commute. Note that in these cases, there is a further
conserved “energy” associated to the solutiongidd.Q.

Theorem 4.15. If, in addition, A + C is self-adjoint and semibounded, is bounded,
A+ C andB commute, i.e.,

Bo(A+C)D(A+C)oB,

and )
A+C+ZB%

is positive, then there are no exponentially growing sohsiof @.0.9.

15



Fig. 2: Graph of R — L(X, X), A — A — AB — X\2) for A and B from Example4.16

Proof. The statement is a simple consequence of Lerirhdand Lemmat.7 (iii). O

Coming back to the statement of Lemrhd 4 for everyt € I, the correspondingl(t)

is a densely-defined, linear and self-adjoint operataKinsee, e.g., Lemma.l, in the
Appendix. In particular, ifA + C + (1/4) B? is positive, A(t) is positive, too. For
instance, according to Lemnfa7, this is true in the special case of the Klein-Gordon
equation 2.0.9. Hence in such case it might be expected thal.(4 for « € S; implies
that||u|| is not exponentially growing since this is the casel{t) = A for everyt € I,
whereA is a densely-defined, linear, positive self-adjoint oparat X . In that casey is
given by

sin((t — to).A'/?)
A1/2

forallto,t € I, wherecos((t — to).A'/?) andsin((t — ty).A"/? /. A*/?) denote the bounded
linear operators that are associated by the functionaliteddor 4'/2 to the restriction of
cos((t — to).idg) and the restriction of the continuous extensioriaf (¢ — t().idr)/idr
to [0, 00), respectively, to the spectrum gf'/2 [5]. Note that the solutions#(0.19 are
in particular bounded if4 is strictly positive. Unfortunately, this expectationsgeneral
not true. A counterexample can be found already on the Iéfilite dimensional Hilbert
spaces.

u(t) = cos((t — to)AY?)u(to) + ' (to) (4.0.16)

16



Example 4.16. The example uses for the Hilbert spakethe spaceC? equipped with
the Euclidean scalar product, := A + C and B are the linear operators d&¥ whose
representations with respect to the canonical basis aea &y the matrices

((1) _01) and (23{10 23}10) , (4.0.17)

respectively. An analysis shows th&andB are bounded linear and self-adjoint operators
in X, Ais semibounded3 is positive andd+ (1/4) B2 is evenstrictly positive Further,A
andB do not commute. Finally, the operator polynonfiél— L(X, X), A\ +— A —\B —

A?) has an eigenvalue with real part0. Therefore, in this case, there is an exponentially
growing solution of the corresponding equatign0(10 and hence also of}(0.14. Note
thatin this case, the corresponding family of operatér8.(L5 consists of strictly positive
bounded self-adjoint linear operators whose spectra anedsd from below by a common
strictly positive real number. Figgives the graph of := (R — L(X, X), A — det(A —

AB —\%)) = M + 4.6\ +4.29\2 — 1 which suggests that there are precisely two distinct
simple roots. Indeed, this is true. The proof proceeds byseudision of the graph of
using the facts that

p(=4)>0, p(=3) <0, p(0) <0, p(1)>0,
that the zeros g’ are given by
(—69 — v/1329)/40 , (—69 +v/1329)/40 , 0
and that

p((—69 + v/1329)/40) < 0 .

Thus,(C — L(X, X), X — det(A — AB — A\?)) has two distinct simple real roots and a
pair of simple complex conjugate roots.

5 Discussion

The mathematical investigation of the stability of Kerr spdime has started, but is still
in the phase of the study of relevant model equations in a ls@ckground. The study of
the solutions of the Klein-Gordon equation is expected @ gnportant insight into the
problem.

In the case of the wave equation, i.e., for the case of vamgsimiass: of the scalar field,
results point to the stability of the solutions. On the otha&nd, inspection of the reduced
Klein-Gordon equation?.0.4 reveals that the case @f > 0 originates from the case
w = 0 by the addition of a positive bounded potential term

>

>
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to the equation. If there were no first order time derivativespnt in the equation, from
this alone it would be easy to prove that the stability of thieions of the wave equation
implies the stability of the solutions of the Klein-Gordaguation for non-vanishing mass.

Even in the presence of such a derivative, it is hard to belteat the addition of such
term causes instability. In particular, the energy estaman Lemmat.7, indicate a sta-
bilizing influence of such a term. On the other hand, so farehs no result that would
allow to draw such conclusion.

The numerical results that indicate instability in the case 0 make quite special as-
sumptions on the values of the rotational parameter of thekbhole that do not make
them look very trustworthy. They could very well be numeradefacts. Moreover, the
numerical investigation by Konoplya et al2q], does not find any unstable modes and
contradicts all these investigations. Also the analytieallts in this area are not accom-
panied by error estimates and therefore ultimately inagiek. Still, apart from3e], all
these results are consistent with the estimatg on[3] and the improved estimate of this
paper, above which the solutions of the reduced, by separatithe azimuth angle in
Boyer-Lindquist coordinates, Klein-Gordon equation debke.

It seems that the proof of the stability of the solutions @fWave equation in a Kerr back-
ground will soon be established. The question of the stghifithe massive scalar field

in a Kerr background is still an open problem, with only fegaious results available,

and displays surprising mathematical subtlety. In paldicun this case standard tools of
theoretical physical investigation, including numericalestigations, seem too imprecise
for analysis. Hence a rigorous mathematical investigatika the one performed in this

paper, seems to be enforced.

6 Appendix 1
In the following, we give the proofs of the Lemmatad and2.2 from Section2.

Proof of Lemma2. 1.
Proof. For this, lets € R. Then

9O+ 505,00 + 50) = gut + 25 Grp + 5° G
2Mr Mar sin?6 9 AY

=1- > + 4s S S sin?0
A sin®f
=5 + Sl; [—a® 4+ 4sMar — s*(r* + a®)* + s*a*Asin®0)]
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A sin?d

=5+ [—(a —2sM71)? +4s*M?*r* — s%(r? + a®)® + a*s? Asin0 |
. 9

- % n Sl; 0 [—(a —2sMr)? — $*A(A +4M7) + a®s*Asin®0 |
. 9

_ % _ Sl; 0 [(a - 2$M1")2 + SQA(A +4Mr — o> sinzﬁ)}

Hencey (0, + s 0,, 0; + s 0,,) has a positive extension to the boundaryXfif and only if

- a
C2Mry

In this case,

(a —25sM7)? + s> A(A 4 4Mr — a® sin?0)

2 2
- 3—2 (r—ry)*+ 4]\/([17%2 A(A + 4Mr — a® sin®6)
T +
2
- 4]\;7272 [4M?(r —ry)* + A(A + AMr — a” sin®0)]
+
2A
:4;/[7272 {4M2: " P LA+ AMr —a? sm29}
+ - —

and hence

(0 + 504,0: + 50,)

A
YVEEDS 4M2T+_a s1n9<M2T * L A+4AMr —a? 51n29>]

e .
= A _ 2 «in2p9)2 2 . 92 4M?
_M_(QM’FJF—CL sin“0)” — a*(r — r4) sin“6 T—r_+r_7’*+4M
oA ] s e ol \2
= 0y (2Mry — a®sin“0)” —a”A sin“f | 1 + —

Proof of Lemma2.2.
Proof. For this, let(r, ) € Q1. Then

A(r,0) < a®sin?@
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and

2
(2Mr, — a*sin?0)? — a®>A(r, 0) sin?0 (1 + 2M )

r—r—

2M

2
= a*sinf — l4M7‘+ + A(r, 0) (1 + ) 1 a®sin®@ + 4M>r%

2
> (A(r,0))* — l4MT+ + A(r,0) (1 + 2]\{ )

a’ + 4M27°3r

oM \°
= (A(1,0)* — a®A(r,0) (1 + ) +4Mr (Mry — a?)
T—Tr_—
2
a? oM \? a oM \* 9
= A(r,@)—?<1+r_r> _Z(1+T—7’ ) +4MT+(MT+—CL)
2
a? oM \? a*rd
> |A(r0) - — (1 4| ——t e My (Mry —d%)| .
=z (A0 =5 ( +7’—T> N { e —r )i+ 4 (Mr a)}
Hence it follows thatr, ) € Q. if
a'ri 2 2,2
m +a MT+ - M Ty
4 _ 4 2 _ 4
_ T+ a4+M(T+ r-) az_M (ry —r-) <0.
(ry —r_)* i 3
The latter is the case if and only if
a2 < 2MT+
1
+ T o=
Further,
2Mry - Mry - M? ~ M2(M? —a?)
= r2 = M2 2 _ 42
L1t g ltwe M -a
(ry—r-)
1 2 2
> 5 (M*—a”).
2
Hence if )
a2 < E(MQ_G‘Q) )
or, equivalently, if conditionZ.0.5 is satisfied, it follows thafr, ) € Q.. O
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7 Appendix 2
In the following, we give the omitted proofs from Sectidhand4.

Proof of Lemmat.7.
Proof. ‘(i): For this, lett € I andh € R such that + h € I. Then
ju,v (t + h) B juyv (t)
h
=h [(u(t + h)W'(t + h)) — (W (t+ h)|v(t + h)) + i (u(t + h)|Bu(t + h))
— () (1)) + (W' (O)|v(t)) — i (u(t)| Bu(t))]
= hH [{u(t + h) — w(®) ' (t + ) + (w(®)V' (¢ + h) =o' (1))
—(t+ h)|v(t +h) —o(t)) — (W
+i (u(t+ h) —u(t)|Bv(t + h)

('(t + h) —u'()o(t))
+i(Bu(®)[o(t + h) —v(t))] -

Hence it follows thay,, , is differentiable int with derivative
()| (1)) = (W) (O)|u(t)) + i (W' (¢)| Bo(t)) + i (Bu(t)[v' (1))

= (u(®)|(")(t) +iBv' (1)) — (') (t) + iBu/ ()]v(1))
= = (u®)|(A+ C)o(t)) + (A + Clu(®)|v(t)) =0 .

From the latter, we conclude that the derivativejpf, vanishes and hence that, is a
constant function.

(ii)’: For this, again, lett € I andh € R such that + h € I. Further, letd := A + C.
Then

E, (t+h) — Eyu(t)
h

= h™M (W (t+ )| (¢ 4+ h) + (u(t+ k)| Au(t + h)) — (/' ()] (1)) — <U(t)IAU(t)>}
T (4 h) = (O (4 h) + (@ (E+ h) = (1)
+ (u(t + h) = u(t)| Au(t + h)) + (u(®)| A(u(t + h) = u(t)))
Tt h) = (O] (8 4+ R)) + (W ()] (4 h) = (1))
+ (AY2 (u(t + h) — u®)|AY2u(t + ) + (u(t + h) — u(t)|Cu(t + h))
+ (Au(t)|u(t + h) —u(t)| -

Juo()

Hence it follows thatt,, is differentiable int with derivative

(') (@) (£)) + (W' (@) (') (1)) + (A2 ()] AV 2u(t)) + (' ()] Cult))
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— (iBu'(t) + (A + C)u(t)|u/(t)) — (' (t)|iBu'(t) + (A + C)u(t))
(t

+{(A+ Cu(®)lu'(1)
' (2)
- 0.

(
+ (W ()|(A+ C)u(t)) + (A+ C)u
— (iBu' ()| (1)) — (u'(t)|iBu'(t)) =

From the latter, we conclude that the derivativeRf vanishes and hence that, is a
constant function.
‘(iii): Since A 4+ C'is semibounded with lower bounde R,

{El(A+O)E) = )€l
for every¢ € D(A). Hence it follows by (ii) that
[/ @I +vu®)]]* = Eu = (u(t)|(A+ C)u(®)) = ~[u@)|]’) < B, (7.0.18)
for everyt € R. If v = 0, the latter implies that
v ()] < B,/

for everyt € I. Hence it follows by weak integration i, e.g., see Theoref?2.5 in [5],
that

lu(ts) — u(t)]| = < / ()]l de < EY2(ts — 1) ,
(t1,t2)

/ oL
(t1,t2)

wheretq,t, € I are such that; < t5, and hence that

Ju(t)|| < [Ju(tr)]| + By (ta — t1) -

For the weak integration, note that the inclusiori}, into X is continuous. Ify > 0, it
follows from (7.0.1§ along with the parallelogram identity for elementsi6fthat

_1/2 1/2
le™ "4 (e ) ()* = o' (8) + 4 Pu(@)|* < 2]l O] + 2 Pu@)]?) < 2E,

and hence that e 12
(e ) (1)) < (2B,)M2e7

fort € I. Hence it follows by weak integration i that

/(t t )(871/2“]{-“)/(15) dt
1,02

= / (& ) (1) de < (2B, /)12 (72 = 1)
(t1,t2)

H6V1/2t2u(t2) _ 871/2t1u(t1)” — |
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forall t1,t € I such that; < t5. The latter implies that

e )]l < et + (2Bu /)12 (70 — e 1)
Hence

()]l < @Bu/3)M2 (1= 77 "0amt) o emnamtjugey))
If v <0, it follows from (7.0.19 that

lu' )17 < Bu = Au®)]* < |Eu] + allu®)]
for everyt € I, wherea := —v > 0. The latter implies that
[ ()] < 1Bul'/? + a2 Ju(t)]]

for everyt € I. Hence it follows by weak integration i that

||u<t2>—u<t1>|\:/ u'(t) dt| < / u/(8)]] dt
(tl,tz) (t1)t2)
< |B"2(ty — t1) + a2 / lu(t)] dt ,

(t1,t2)

wheretq,t, € I are such that; < t,, and

lu(t2)| < Nut)l + | Bl /2 (k2 — 1) + al/z/ lu(t)|| dt .

(t1,t2)

By help of the generalized Gronwall inequality from Lemma B [18], from the latter
we conclude that

a2 (o —
u(t2) ]| < [lult)]| + |Bul2(t2 — t1) Je " (2=t

for¢; € I andt, € I suchthat; < t».
‘(iv): For this, we definew := v — u. Thenw is an element of5; such thatw(ty) =
w'(tp) = 0. This implies that

Ey(t) = o' (O] + (w(t)|(A + Cu(t))

for everyt € I is constant of valu®. Hence we conclude from (iii) that(¢) = 0x for
all t € I and therefore that = w.
O

Proof of Corollary4.9.
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Proof. We definev : I — W} by
v(t) == e"tu(t)

for everyt € I. Thenv is differentiable with Ram C D(A) and alsov’ : I — X is
differentiable such that

V' (t) = e (t) +asu(t)], () (1) = e [(W) (1) + 2isu (t) — s*u(t)]
for everyt € I. Further,
(0")'(t) +i(B = 25)0'(t) + (A + C + 5B — 5°)u(t)
= e (u') (t) + 2isu’ (t) — s2u(t) +i(B — 2s)(u'(t) + isu(t))
+ (A4 C + sB — s*)u(t)]
=" (u') (t) + 2isu/(t) — s*u(t) +iBu/(t) — 2isu'(t) — sBu(t) + 2s%u(t)
+ (A4 C + sB — s*)u(t)]
= e"'[(u)/(t) + iBu/(t) + (A + Chu(t)] = 0

for everyt € I. Note that(X, A, B — 2s,C + sB — s?) satisfy Assumptiong.1, 4.4
Hence it follows by Lemma.7 that the function¥,, : I — R, defined by

Ey(t) == |[v'(1)]|? + (v(®)|(A + C + sB — s?)v(t))
= [[u'(t) + isu(®)]|* + (w(t)|(A + C + sB — s*)u(t))

for everyt € I, is constant. If, in additiond + C' + s(B — s) is semibounded with lower
boundy € R, then

Lo + | By V2 (82 — tr) Je"? (2=t0) if v <0,
lo(t)ll < 4 llo(t)ll + Bo" (t2 — 1) if v =0,
(2B0/7)!/2 (1= =000 ) (i) e M) i 9> 0,
forty,to € I suchthat; < t,. O
Proof of Lemma4.13

Proof. First, we notice that the only non-vanishing componen(@fﬁ)(a)b)e{tmg,g,}z are
given by

gtcp_ gat_2Ma’r rr:_%7999:_

= =AY g
1 2Mr

v — 1— .

g A sin0 ( by )
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Further, we notice that

t_ Jee gtp _Ite gpp It
p p p
where
p = —[91t90p — (915)7] = Nsin®0 .
Hence

gtt

1 1 o 1
— | === 0/ =19l 9”0 + ——= 0o/ ~1g| 9"° 0o
9" [ V-ldl —lgl

—? 2T gp, - I o2

“Yep e
1 1 . 1
+ — | == 0/ ~lglg""0r + ——= 0o/ gl 9”05

g —g| —g|

As a consequence,

1 1

Aof = = | ——
9" |/l

1 typ pp
m=63+29973ta¢+997a§

—lg]

foreveryf € D(Ay). Finally, it follows that ,

ty

[A0+msB—(ms)Q]f:Aof+ms2mgg—ttf—(ms)Qf

r 1 m2 + 2
O/ =191 9" 0 + ——— D/ —[g| "0 | f+ I TH Ly

“Yep

1 1 . 1
= O/ —lglg""0r + 9o/ —gl 9”06 | [
9" | V~lyl —lgl
m? 1p
+ (gtt +25g1p + 529%@) f+—
Yo Yoo
1 1 r 1 m?g(&,€) + pPp
= — | ——==0-\V/—l9lg" 0 + ——= 99/~ 19| 9" 0s f+(—)f-
9" | V~lyl —lg | Yoo

foreveryf € D(Ay).
Proof of Lemmad.14

O

Proof. First, if D € L(X,X)andf : I — X is differentiable int € I andh € R* such

thatt + h € I, it follows that

% [exp((t + h)D)f(t + h) — exp(tD) f(t)] = exp(tD) % [exp(hD)f(t + h) — f(t)]
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= exp(tD) [exp(hD) 1 F(¢-+1) = F(0)] + Fexp(hD) (1) ~ £(0)

—exp(tD) [exp(nD) (F17(e+ ) = 1(0] - 1'0)) +expnD) ()

> =

+ Lexp(nD) £(1) - f(t))]

and hence that := (I — X, s — exp(sD)f(s)) is differentiable int with derivative

exp(tD)[f'(t) + Df(1)] -

In particular, this implies, iff is twice differentiable irt € I, thatg is twice differentiable
in ¢t with second derivative

exp(tD)[f"(t) + 2D f'(t) + D*f(t)] .

Applying the previous auxiliary result t® = (:/2) B proves that is twice differentiable.
Further, from the definition of, it follows that

u(t) = exp(~(it/2)B)(t)

for everyt € I. Application of the auxilary results above o= —(i/2) B leads to
() = expl—(it/28) () -  Bolt))
u” (t) = exp(—(it/2)B) (v”(t) —iBv'(t) — iB%(t)) .

Hence it follows from 4.0.10 that

0 = (t) + iBu/(t) + Au(t)

= exp(—(it/2)B) (U”(t) —iBv'(t) — i B2u(t) +iBv'(t) — z’B% Bu(t)

+ exp((it/z)B)Aexp(—(it/z)B)u(t))
— exp(—(it/2)B) (Mt) + % Bu(t) + exp((it/2)B)Aexp(_(it/2)B)v(t))
— exp(—(it/2)B) [v”(t) +exp((it/2)B) (A + i BQ> exp(—(it/Z)B)v(t)] :

whered .= A + C. 0
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In the following, we give some abstract lemmatas that ardieghjin the text. For the
convenience of the reader, corresponding proofs are added.

Lemma7.1. Let (X, (|)) be aHilbert space ovét € {R, C}, A adensely-defined, linear
and self-adjoint operator i andU € L(X, X) be unitary. ThenAdy :=Uo Ao U~!

is a densely-defined, linear and self-adjoint operato¥ irFurther, if D < D(A) is a core
for A, thenU (D) is a core forl/ o Ao U~1. Also, if A is positive, therl/ o Ao U1 is
positive, too.

Proof. First, we note thaD(U o Ao U~!) = U(D(A)). SinceD(A) is dense inX, for
¢ € X, there is a sequence &f, &, . .. of elements ofD(A) such that

lim & =U"'¢.
vV—0Q
Hence also
lim U¢, =€ .
vV— 00
As a consequencé o A o U~ ! is densely-defined. Also, as composition of linear maps,
U o AoU™lislinear. In addition, fog,n € D(A), it follows that
(UEIU 0 Ao U™'Un) = (€| An) = (A€n) = (U 0 Ao UT'UE|UN)
and hence that o A o U~! is symmetric. Further, if € D((U o Ao U~1)*), then
(UoAoUT)e|Un) = (E[(U o Ao U™HUn) = (U~"¢|An)
for everyn € D(A). Hence € U(D(A)), and
(U™l An) = (AU '¢|n) = (UAU¢|Un)

for everyn € D(A). SinceU(D(A)) is dense inX, this implies tha{U o Ao U~1)*¢ =
UAU'€. As a consequence,

UAU' D (UoAoU H*.
Hence it follows that/ o A o U~ is self-adjoint. Further, leb < D(A) be a core forA.

As a consequence, for evefye D(A) there is a sequendg, &, ... in D such that
lim & =&, lim A, = A€ .
V—r00 vV—r 00

HenceU¢&, U&,, . .. is a sequence ity (D) such that
lim Ug, =U¢, lim UAUUE, =UAUUE .
ThereforelU (D) is a core forl7 AU ~L. Finally, if A is positive, it follows foré € D(A)

that
(UE|(U 0 Ao UNUE) = (UEU AE) = (£]AE) > 0

and hence also the positivity 6fAU ~1. O

27



References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

Andersson L, Blue P 200%idden symmetries and decay for the wave equation on
the Kerr spacetimearXiv:0908.2265v2.

S. Alexakis, S, lonescu, A D, Klainerman S 20@iqueness of smooth stationary
black holes in vacuum: Small perturbations of the Kerr sgaé@mmun. Math.
Phys.,299 89-127.

Beyer H R 2001,0n the stability of the Kerr metrjcCommun. Math. Phys221,
659-676.

Beyer H R 2002A framework for perturbations and stability of differerlyjarotating
stars Proc. R. Soc. Lond. A458 359-380.

Beyer H R 2007Beyond partial differential equations: A course on lineadajuasi-
linear abstract hyperbolic evolution equatigr&pringer Lecture Notes in Mathemat-
ics 1898, Berlin: Springer.

Beyer H R, Craciun | 2008)n a new symmetry of the solutions of the wave equation
in the background of a Kerr black hgl€lass. Quantum Graw5, 135014.

Beyer H R 2009A note on the Klein-Gordon equation in the background of ating
black hole J. Math. Phys 50, 012502.

Boyer R H, Lindquist R W 1967Maximal analytic extension of the Kerr metrig.
Math. Phys.8, 265-281.

Cardoso V, Dias O J C, Lemos J P S, Yoshida S 2@)4ck-hole bomb and super-
radiant instabilities Phys. Rev. D70, 44039.

Carter B 1968Global structure of the Kerr family of gravitational field8hys. Rev.
D, 174, 1559-1571Hamilton-Jacobi and Schroedinger separable solutionsiof E
stein’s equationsgCommun. Math. Phys1,0, 280-310.

Carter B 1977Killing tensor quantum numbers and conserved currents nved
space Phys. Rev. D16, 3395-3414.

Dafermos M, Rodnianski | 2008, proof of the uniform boundedness of solutions to
the wave equation on slowly rotating Kerr backgroupaiiv:0805.4309.

Damour T, Deruelle N, Ruffini R 1976)n quantum resonances in stationary ge-
ometries Lett. Nuovo Cimentol5, 257.

Detweiler S L 1980Klein-Gordon equation and rotating black hoJézhys. Rev. D,
22,2323-2326.

28



[15] Cohen J M, Kegeles L S 1978onstructive procedure for perturbations of space-
times Phys. Rev. D19, 1641.

[16] Finster F, Kamran N, Smoller J, Yau S-T 20@&cay of Solutions of the Wave Equa-
tion in the Kerr GeometryCommun. Math. Phys264, 465-503.

[17] Furuhashi H, Nambu Y 2004nstability of Massive Scalar Fields in Kerr-Newman
SpacetimgProg. Theor. Phyd.12 983-995.

[18] Hale J 1977Theory of functional differential equationdew York: Springer.

[19] Hod S, Hod O 2010Analytic treatment of the black-hole bonrhys. Rev. D81,
061502.

[20] Kalnins E G, Miller W, Williams G C 1996Intrinsic characterization of the sepa-
ration constant for spin one and gravitational perturbatsin Kerr geometryProc.
R. Soc. Lond. A452, 997-1006.

[21] Kay B S and Wald R M 198,inear stability of Schwarzschild under perturbations
which are non-vanishing on the bifurcation 2-sphegéass. Quantum Grav.,4, 893-
898.

[22] Strafuss M J, Khanna G 200%assive scalar field instability in Kerr spacetime
Phys. Rev. D71, 24034.

[23] Krivan W, Laguna P, Papadopoulos P 198§namics of scalar fields in the back-
ground of rotating black hole$hys. Rev. D54, 4728-4734.

[24] Krivan W, Laguna P, Papadopoulos P, Andersson, N. 1B§Aamics of perturba-
tions of rotating black holefhys. Rev. D56, 3395-3404, (1997).

[25] Konoplya R A, Zhidenko A 2006Stability and quasinormal modes of the massive
scalar field around Kerr black hole®hys. Rev. D73, 124040.

[26] Moncrief V 1974,Gravitational perturbations of spherically symmetric t&yss. I.
The exterior problemAnnals of Physics38, 323-342.

[27] Morawetz C S, Notes on Time Decay and Scattering for Sétygerbolic Prob-
lems, CBMS-NSF Regional Conference Series in Applied Mattecs, Society for
Industrial Mathematics 1975.

[28] Press W H, Teukolsky S 197Berturbations of a rotating black hole. Il Dynamical
stability of the Kerr metricApJ, 185 649-673.

[29] Reed M and Simon B 1980, 197Blethods of Mathematical Physics Volume |, Il
New York: Academic.

29



[30] Regge T, Wheeler J A 195Btability of a Schwarzschild SingularjtiPhys. Rev.,
108, 1063-1069.

[31] Robinson D C, 1973Jniqueness of the Kerr Black HglBhys. Rev. Lett.34, 905-
906.

[32] Teukolsky S A 1973Perturbations of a rotating black hole. I. Fundamental equa
tions for gravitational, electromagnetic, and neutrineldi perturbationsApJ, 185
635-647.

[33] Walker M, Penrose R 1970n quadratic first integrals of the geodesic equations for
type [22] spacetimesCommun. Math. Phys18, 265-274.

[34] Whiting B F 1989,Mode stability of the Kerr black holel. Math. Phys.30, 1301-
1305.

[35] zerilli FJ 1970,Tensor harmonics in canonical form for gravitational ratian and
other applicationsJ. Math. Physl11, 2203.

[36] Zouros T J M, Eardley D M 1979nstabilities of massive scalar perturbations of a
rotating black hole Ann. Phys. (N. Y.),118 139-155.

30



	1 Introduction
	2 The Geometrical Setting
	3 Basic Properties of Operators in the Equation
	4 Formulation of an Initial Value Problem
	5 Discussion
	6 Appendix 1
	7 Appendix 2
	References

