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Abstract 
Protein kinase AMP-activated catalytic subunit 

alpha 1 (PRKAA1), also known as AMPK α1, is an 

energy sensor that plays a key role in the regulation 

of cellular energy metabolism. AMPK α1 is the 

catalytic subunit of the heterotrimeric AMPK protein 

with a length of 548 amino acids. A key switch to 

activate this protein is an alteration in the AMP/ATP 

ratio.  

The protein is dysregulated in several human 

diseases including diabetes and metabolic syndrome, 

cardiovascular diseases, neurodegenerative diseases 

and many cancer types (Steinberg and Kemp, 2009). 

Two isoforms of AMPK exist including AMPK α1 

and AMPK α2; however, discrimination between 

these isoforms for their involvement in certain 

diseases is currently not possible. 
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Identity 
Other names: AMPK, AMPKa1, AMPK1, AMPK 

Alpha 1 

HGNC (Hugo): PRKAA1 

Location: 5p13.1 

Local order 

Starts at 40759379 and ends at 40798195 bp from 

pter (according to hg38-Dec_2013) 

DNA/RNA 
Detailed genomic configuration of human PRKAA1 

gene can be found in 

https://www.ncbi.nlm.nih.gov/gene/5562. 

Description 

The human AMPK α1 gene is located on 5p13.1 and 

spans about 39 kb. It contains 12 exons and 2 

promoters named as PRKAA1_1 and PRKAA1_2. 

The gene has 3 isoforms named as PRKAA1_001, 

PRKAA1_002 and PRKAA1_003. 

Transcription 

The human AMPK α1 gene has 9 transcripts: 

PRKAA1-201 (1134 bp), PRKAA1-202 (1918 bp), 

PRKAA1-204 (5088 bp) that code for a protein. 

PRKAA1-203 (425 bp), PRKAA1-205 (919 bp), 

PRKAA1-206 (1082 bp), PRKAA1-207 (692 bp), 

PRKAA1-208 (668 bp) and PRKAA1-209 (436 bp) 

have retained introns. It also has 7 paralogues and 97 

orthologues. 

Pseudogene 

PRKAA1 has one hypothetical pseudogene titled as 

LOC363815 from Rattus norvegius and is located in 

11q23. 

Protein 

Description 

AMPK α1 is the catalytic subunit of the 

heterotrimeric AMPK protein with a length of 548 

amino acids.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by I-Revues

https://core.ac.uk/display/210612026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PRKAA1 (protein kinase AMP-activated catalytic subunit 
alpha 1) 

Seza EG, et al. 

 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2019; 23(5) 106 
 

 

Figure 1.  Domains of AMPK-α1. (AID: UBA-like Autoinhibitory Domain) 
 

In response to an increase in the AMP/ATP ratio, 

AMPK gets activated. AMP binds to the non-

catalytic gamma subunit of the AMPK protein and 

induces phosphorylation of Thr-183 (Lizcano et al., 

2004). This residue is present in the T-loop region of 

the catalytic subunit, AMPK α1 (Bright et al., 2009).  

There are several known AMPK kinases 

(AMPKKs). STK11 (LKB1), complexed with 

STRADA and CAB39 (MO25), is the major 

upstream regulator of the AMPK, which 

phosphorylates the AMP bound protein (Shackelford 

and Shaw, 2009). Ca2+/calmodulin-dependent 

protein kinase kinase β (CAMKK2 or CaMKKβ) is 

also known to be an upstream kinase of AMPK 

(Sundararaman et al., 2016). TGF-beta-activated 

kinase-1 (MAP3K7 or TAK1) may also 

phosphorylate AMPK α or at least play a role in its 

activation as loss of TAK1 leads to impaired AMPK 

activation (Xie et al., 2006).  

The AMPK α1 protein consists of several domains 

(Figure 1). The N-terminal kinase domain carries out 

the serine/threonine kinase function. The C-terminus 

regulatory domain contains an α-RIM sensor loop 

and a β-subunit interaction domain (Crute et al., 

1998). A UBA-like auto-inhibitory domain (AID) is 

present between the α-RIM sensor loop and the 

kinase domain. AID is required for allosteric 

regulation via AMP. Absence of this inhibitory 

region renders the protein independent of AMP but 

still requires phosphorylation of the activation loop 

(Crute et al., 1998). 

Expression 

AMPK α1 is widely expressed across many tissues 

such as brain, heart, kidney, liver and lung (Stapleton 

et al., 1996). 

Localisation 

It is primarily localized in the cytoplasm, and with 

HUVEC cells it was shown that AMPK α1 localizes 

exclusively in the cytoskeleton (Pinter et al., 2012). 

Function 

AMPK α1, in its active form, phosphorylates many 

downstream proteins. These phosphorylated target 

proteins of AMPK regulate metabolism, autophagy, 

cell growth and proliferation, and cell polarity 

(Hardie, 2011). AMPK exists as an obligate 

heterotrimer in cells (Mihaylova and Shaw, 2011), 

and all the functions that will be mentioned in this 

section are carried out by the α1 subunit in this 

obligate heterotrimer complex. 

Cellular Metabolism 

AMPK is activated when there is energy stress in the 

cell manifested by an increase in the AMP/ATP 

ratio. In response to this stress, AMPK activates 

catabolic pathways while inhibiting anabolic 

pathways. 

Glycolysis 

One of the key catabolic pathways for energy 

generation, glycolysis, is upregulated through 

AMPK signalling. In order increase glucose uptake 

to the cell, AMPK activates (induces translocation, 

short term response) and increases protein 

expression (longer term response) of SLC2A1 

(GLUT1) and SLC2A4 (GLUT4) (Fryer et al., 

2002). Also, 6-phosphofructo-2-kinase (PFKFB3 or 

PFK-2) gets phosphorylated and activated by AMPK 

which enhances glycolysis (Marsin et al., 2000). 

Glycogen synthesis (anabolic pathway) is inhibited 

by the phosphorylation of glycogen synthase. 

Gluconeogenesis 

Anabolic pathways such as gluconeogenesis that 

enhance glucose levels are inhibited by repression of 

transcripts that encode for gluconeogenesis 

enzymes. CRTC2, coactivator of the cyclic AMP 

response element-binding protein CREB, gets 

phosphorylated and inhibited (excluded from the 

nucleus) by AMPK. This leads to disruption of 

CREB-CRTC2 complex and inhibition of CREB-

dependent gluconeogenesis (Lee et al., 2010). 

Transcription of mRNAs encoding glucose-6-

phosphatase and phosphoenolpyruvate 

carboxykinase are inhibited via this mechanism. 

Also, class IIA histones, which can activate the 

FOXO family of transcription factors via HDAC3 

recruitment, gets phosphorylated and excluded from 

the nucleus. This decrease in activity of FOXO 

family of transcription factors leads to reduced 

expression of gluconeogenesis genes (Mihaylova et 

al., 2011). 

Lipid Metabolism 

In AMPK activated cells, fatty acid uptake is 

increased by translocation of fatty acid translocase, 

CD36 (FAT), to the cellular membrane (Bonen et al., 

2007). Meanwhile, acetyl-CoA carboxylase 

(ACACA ACC1), which catalyses the rate-limiting 

step of fatty acid synthesis (Hofbauer et al., 2014), 

gets phosphorylated and this phosphorylation 

inhibits the enzymatic activity of ACC1.  



PRKAA1 (protein kinase AMP-activated catalytic subunit 
alpha 1) 

Seza EG, et al. 

 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2019; 23(5) 107 
 

 
Figure 2.  Functions of AMPK 

 

Along with CD36 (FAT) translocation to the 

membrane, ACACB (ACC2) is also inhibited which 

leads to increased fatty acid uptake into 

mitochondria due to decreased amounts of malonyl-

CoA in the cell (Merrill et al., 1997). 

Protein Synthesis 
Synthesis of proteins is an enormous energy 

consuming process for the cells. MTOR, in its active 

form, promotes cell proliferation and protein 

synthesis. Activated AMPK inhibits mTOR via 

phosphorylation of upstream regulator TSC2 (Huang 

and Manning, 2008) and its subunit RPTOR (Raptor) 

(Gwinn et al., 2008). Also, eukaryotic elongation 

factor 2 ( EEF2) is required for the elongation of 

translation in eukaryotes. EEF2 kinase gets activated 

by AMPK which inhibits EEF2 via phosphorylation, 

resulting in inhibition of protein synthesis (Horman 

et al., 2002).  

Autophagy  
Excess or dysfunctional organelles get "eaten up" by 

the cell over time, this process is called autophagy 

and it can give cells the advantage of recycling 

important nutrients, especially during starvation. It is 

known that mTORc1 inhibits autophagy via 

inhibition of ULK1 (Chan, 2009), and AMPK 

downregulates mTORc1 via phosphorylation of 

TSC2 and Raptor. This was thought to be the main 

mechanism by which AMPK activates autophagy. 

Recently, it was found that initiator of autophagy, the 

ULK1 protein kinase, directly interacts with AMPK, 

and gets phosphorylated and activated by AMPK 

(Roach, 2011). 

Cell Growth and Proliferation 
AMPK can act as a metabolic checkpoint via 

inhibition of cellular growth when energy status in 

the cell is compromised (Mihaylova and Shaw, 

2011).  

Processes of cellular growth and proliferation 

require many events to take place in the cell such as 

protein and lipid synthesis. As mentioned above, 

AMPK can decrease the synthesis of proteins and 

subsequently cell proliferation through the inhibition 

of mTORc1. mTORc1 also controls lipid 

biosynthesis via a transcription factor named as 

sterol regulatory element-binding protein-1, 

SREBF1 (SREBP-1) (Laplante and Sabatini, 2009). 

SREBP-1 targets lipogenic genes such as ACC 

(Brown et al., 2007); fatty acid synthase, FASN 

(Jung et al., 2012); and stearoyl-CoA desaturase 1, 

SCD (Mauvoisin et al., 2007). mTORc1 inhibition 

by AMPK along with the previously mentioned 

inhibition of ACC1 leads to decreased lipid synthesis 

in the cell. Other than metabolic effects, AMPK also 

activates checkpoint regulators such as TP53 via 

inactivation of SIRT1 (Sirtuin 1) (Lee et al., 2012) 

and phosphorylation at Ser-15 (Jones et al., 2005), as 

well as CDKN1B (cyclin-dependent kinase inhibitor 

p27(Kip1)) via phosphorylation at Thr198 (Liang et 

al., 2007). 

Cell Polarity 
LKB1-null and AMPK-null Drosophila models 

show lethal phenotypes with severe defects in cell 

polarity and mitosis (Lee at al., 2007). AMPK 

activation was reported to rescue LKB1-null 

phenotype while non-muscle myosin regulatory light 

chain (MRLC) phopshomimetic mutants rescued 

AMPK-null models (Lee at al., 2007). However, 

another study reported that in mammalian MDCK 

cells, AMPK activation did not change 

phosphorylation of MRLC, rather AFDN (afadin) 

was identified as AMPK substrate for 

phosphorylation (Zhang et al., 2011). Activation via 

AMPK leads to deposition of junction components 

in the cellular membrane.  
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The microtubule plus-end-tracking protein CLIP1 

(CLIP-170) is activated via phosphorylation by 

AMPK. CLIP-170 phosphorylation is required for 

microtubule dynamics and the regulation of 

directional cell migration (Nakano et al., 2010).  The 

same study reported that inhibition of AMPK leads 

to accumulation of CLIP-170 at microtubule tips and 

slower tubulin polymerization (Nakano et al., 2010). 

Thus, AMPK also controls microtubule dynamics 

through CLIP-170 phosphorylation.  

Homology 

AMPK α1, with its kinase and regulatory domains, 

is a very well conserved protein.  

Implicated in 

Top note 

AMPK, a central switch determining the AMP/ATP 

ratio, is dysregulated in several human diseases 

including diabetes and metabolic syndrome, 

cardiovascular diseases, neurodegenerative diseases 

and several different cancer types (Steinberg and 

Kemp, 2009). Both isoforms of AMPK: AMPK α1 

and AMPK α2 may be involved in these diseases. 

AMPK was shown to negatively regulate the 

Warburg effect in genetically ablated AMPK- α1 

cancer models in vivo (Faubert et al., 2013); 

therefore, AMPK can be classified as tumour 

suppressor although there is also evidence of 

negative regulation of AMPK by tumour suppressors 

or proto-oncogenes (Li et al., 2017; Yan et al., 2014). 

Huntington's Disease 

Huntington's disease (HD) is a neurodegenerative 

disease where the AMPKα1 isoform is known to be 

activated in the caudate nucleus and frontal cortex of 

humans.  

Activated AMPKα1 was reported to accumulate in 

the nuclei in these specific regions of the brain of HD 

patients. Brain atrophy, facilitated neuronal loss and 

increased aggregation of huntingtin (HTT) protein 

was observed in a transgenic mouse model with 

Huntington's disease, which had overactivated 

AMPKα1. Ameliorated cell death and down-

regulation of BCL2 (by mutant Htt) was achieved by 

prevention of nuclear translocation or inactivation of 

AMPK- α1 (Ju et al., 2011). 

Prostate Cancer 

In prostate cancer, the androgen receptor (AR) plays 

a critical role in the regulation of cell proliferation 

and death. There is evidence that AR related 

progression of prostate cancer correlates with 

activated AMPK levels.  

Androgen-mediated AMPK activity was reported to 

increase the levels of intracellular ATP and 

PPARGC1A (peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC-1α))-

mediated mitochondrial biogenesis.  
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siRNA-mediated knockdown of AMPKα1, the 

predominant isoform correlated with poor prognosis 

in prostate cancer patients, in LNCaP and YCaP 

human prostate cancer cells reduced the levels of 

PGC-1α, which is overexpressed in clinical cancer 

samples (Tennakoon et al., 2015).  

5- ATIC (Aminoimidazole-4-carboxamide 

ribonucleotide (AICAR)), is an AMPK agonist that 

enhances phosphorylation of AMPK- α1 at Thr-172 

and its downstream target ACC at Ser-79. Prostate 

cancer cell lines infected with lentiviral shRNA 

against AMPK- α1 were shown to almost block 

AICAR-induced AMPK phosphorylation. AICAR-

induced cytotoxicity in prostate cancer cells was 

slightly more potent than other AMPK activators 

such as A-769662 and Compound 13. It has been 

suggested that AICAR-induced cytotoxicity was not 

dependent of AMPK activation but might play a pro-

survival role in prostate cancer cells (Guo et al., 

2016). 

Colorectal Cancer 

The current literature suggests that activation of 

AMPK through natural compounds such as 

berberine, epigallocatechin gallate or quercetin can 

enhance apoptosis through the upregulation and 

phosphorylation of TP53 at Ser15, inhibition of 

COX-2 and mitigation of inflammation as well as 

delay in cell cycle progression (Sun and Xhu, 2017). 

AMPKα1 is expressed in almost all colorectal cancer 

cell lines; however, AMPKα2 expression is limited 

to some cell lines. Although siRNA-mediated 

AMPKα1 knock down has no effect on cell death, 

AMPKα2 depletion was shown to induce cell death 

in both HCT116 and SW480 cell lines. A 

competitive inhibitor of AMPK, 5'-hydroxy-

staurosporine, was identified by FUSION 

(Functional Signature Ontology), a method to screen 

natural compounds for the identification of AMPK 

inhibitors. Colorectal cancer cell lines were reported 

to be more sensitive to 5'-hydroxy-staurosporine 

compared to non-transformed human colon 

epithelial cells (Das et al., 2018).  

Another study suggests that Icaritin (a flavonoid 

with anti-tumorigenic activity) was reported to 

induce AMPK signaling in colorectal cancer (CRC) 

and it also activates autophagy. AMPK-α1 

knockdown (shRNA or siRNA mediated) inhibited 

icaritin-activated autophagy but increased cell death 

in CRC both in vitro and in vivo (Zhou et al., 2017). 

Type 2 Diabetes 

AMPK is known to be dysregulated in patients with 

metabolic syndrome or type 2 Diabetes. Activation 

of AMPK either through the alteration of the 

AMP/ATP ratio of by pharmacological agonists can 

improve insulin sensitivity and metabolic health. In 

the primary metabolic tissues such as skeletal 

muscles, cardiac muscle, liver and adipose tissue, 

activation of AMPK was reported to stimulate 

glucose uptake, fatty acid oxidation, glucose 

transporter type (GLUT)4 translocation (in skeletal 

muscles), mitochondrial biogenesis, while inhibiting 

gluconeogenesis (in the liver) as well as protein, 

fatty acid, cholesterol and glycogen synthesis. 

AMPK is also known to inhibit insulin secretion 

from pancreatic β-cells and can signals to enhance 

food intake in the hypothalamus. All of these are 

beneficial for Type 2 diabetes (Coughlan et al., 

2014). In an animal model of type 2 diabetes 

established by the Otsuka Long-Evans Tokushima 

Fatty (OLETF) rat, which had chronic and slowly 

progressive hyperglycemia and hyperlipidemia, 

overexpression of adenoviral-mediated AMPK-α1 

showed a modest decrease in blood glucose level 

although glucose tolerance was not recovered 

completely.  

Moreover, plasma triglyceride level and hepatic 

triglyceride contents were also slightly decreased 

(Seo et al., 2009). 

Aging 

Dietary restriction (DR), a process of reduced food 

intake without inducing malnutrition, elicits a low-

energy state in the organism, which in turn delays 

ageing in species ranging from yeast to primates 

through the activation of nutrient-sensing pathways 

such as AMPK (Burkewitz et al, 2014). For example, 

feeding C. elegans 2-deoxy-D glucose leading to the 

inhibition of glycolysis and glucose metabolism 

increased the lifespan of the worms in an aak-2 

(catalytic subunit of AMPK in C. elegans) dependent 

manner (Schulz et al., 2007). In rat EDL (extensor 

digitorum longus) muscle, AMPK-α1 protein level 

was reported to be higher in older rats compared to 

younger rats. On the other hand, young rats showed 

higher expression of AMPK-α2 proteins than the 

older group. EDL cells treated with AICAR showed 

increased AMPK-α2 activity in both age groups, 

while AMPK-α1 activity was increased only in the 

young group. AMPK-α1 activity was not changed in 

the EDL muscles that were stimulated by high 

frequency electrical in the young group (Thompson 

et al., 2009). 

References 
Bright NJ, Thornton C, Carling D. The regulation and 
function of mammalian AMPK-related kinases. Acta Physiol 
(Oxf). 2009 May;196(1):15-26 

Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G. The 
mammalian target of rapamycin regulates lipid metabolism 
in primary cultures of rat hepatocytes. Metabolism. 2007 
Nov;56(11):1500-7 

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of 
energetics and aging. Cell Metab. 2014 Jul 1;20(1):10-25 

Chan EY. mTORC1 phosphorylates the ULK1-mAtg13-
FIP200 autophagy regulatory complex. Sci Signal. 2009 
Aug 18;2(84):pe51 



PRKAA1 (protein kinase AMP-activated catalytic subunit 
alpha 1) 

Seza EG, et al. 

 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2019; 23(5) 110 
 

Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. 
AMPK activation: a therapeutic target for type 2 diabetes? 
Diabetes Metab Syndr Obes. 2014;7:241-53 

Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA. 
Functional domains of the alpha1 catalytic subunit of the 
AMP-activated protein kinase. J Biol Chem. 1998 Dec 
25;273(52):35347-54 

Das B, Neilsen BK, Fisher KW, Gehring D, Hu Y, Volle DJ, 
Kim HS, McCall JL, Kelly DL, MacMillan JB, White MA, 
Lewis RE.. A Functional Signature Ontology (FUSION) 
screen detects an AMPK inhibitor with selective toxicity 
toward human colon tumor cells. Sci Rep. 2018; 8(1):3770. 

Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong 
Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, 
Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG.. AMPK 
is a negative regulator of the Warburg effect and 
suppresses tumor growth in vivo. Cell Metab 2013; 17(1): 
113-24. 

Fryer LG, Foufelle F, Barnes K, Baldwin SA, Woods A, 
Carling D.. Characterization of the role of the AMP-activated 
protein kinase in the stimulation of glucose transport in 
skeletal muscle cells. Biochem J 2002; 363(Pt 1): 167-74. 

Guo F, Liu SQ, Gao XH, Zhang LY.. AICAR induces AMPK-
independent programmed necrosis in prostate cancer cells. 
Biochem Biophys Res Commun. 2016; 474(2): 277-283. 

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery 
A, Vasquez DS, Turk BE, Shaw RJ.. AMPK phosphorylation 
of raptor mediates a metabolic checkpoint. Mol Cell 2008; 
30(2): 214-226 

Hardie DG.. AMP-activated protein kinase: an energy 
sensor that regulates all aspects of cell function. Genes Dev 
2011; 25(18): 1895-908 

Hofbauer HF, Schopf FH, Schleifer H, Knittelfelder OL, 
Pieber B, Rechberger GN, Wolinski H, Gaspar ML, Kappe 
CO, Stadlmann J, Mechtler K, Zenz A, Lohner K, Tehlivets 
O, Henry SA, Kohlwein SD.. Regulation of gene expression 
through a transcriptional repressor that senses acyl-chain 
length in membrane phospholipids. Dev Cell 2014; 29(6): 
729-39. 

Horman S, Browne G, Krause U, Patel J, Vertommen D, 
Bertrand L, Lavoinne A, Hue L, Proud C, Rider M.. 
Activation of AMP-activated protein kinase leads to the 
phosphorylation of elongation factor 2 and an inhibition of 
protein synthesis. Curr Biol 2002; 12(16): 1419-23. 

Huang J, Manning BD.. The TSC1-TSC2 complex: a 
molecular switchboard controlling cell growth. Biochem J 
2008; 412(2): 179-190. 

Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, 
Birnbaum MJ, Thompson CB.. AMP-activated protein 
kinase induces a p53-dependent metabolic checkpoint. Mol 
Cell 2005; 18(3): 283-93. 

Ju TC, Chen HM, Lin JT, Chang CP, Chang WC, Kang JJ, 
Sun CP, Tao MH, Tu PH, Chang C, Dickson DW, Chern Y.. 
Nuclear translocation of AMPK?-1 potentiates striatal 
neurodegeneration in Huntington's disease. J Cell Biol 
2011; 194(2): 209-27. 

Jung SY, Jeon HK, Choi JS, Kim YJ.. Reduced expression 
of FASN through SREBP-1 down-regulation is responsible 
for hypoxic cell death in HepG2 cells. J Cell Biochem 2012; 
113(12): 3730-9. 

Laplante M, Sabatini DM.. An emerging role of mTOR in 
lipid biosynthesis. Curr Biol 2009; 19(22): R1046-52. 

Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, 
Hardie DG, Ng IO, Ching YP.. AMPK promotes p53 

acetylation via phosphorylation and inactivation of SIRT1 in 
liver cancer cells. Cancer Res 2012; 72(17): 4394-404. 

Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, Lee SH, 
Shong M, Kim JM, Kim J, Chung J.. Energy-dependent 
regulation of cell structure by AMP-activated protein kinase. 
Nature 2007; 447(7147): 1017-20. 

Lee JM, Seo WY, Song KH, Chanda D, Kim YD, Kim DK, 
Lee MW, Ryu D, Kim YH, Noh JR, Lee CH, Chiang JY, Koo 
SH, Choi HS.. AMPK-dependent repression of hepatic 
gluconeogenesis via disruption of CREB.CRTC2 complex 
by orphan nuclear receptor small heterodimer partner. J Biol 
Chem 2010; 285(42): 32182-91. 

Li J, Zhong L, Wang F, Zhu H.. Dissecting the role of AMP-
activated protein kinase in human diseases. Acta Pharm Sin 
B 2017; 7(3): 249-259. 

Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, 
Kondo S, Dumont DJ, Gutterman JU, Walker CL, 
Slingerland JM, Mills GB.. The energy sensing LKB1-AMPK 
pathway regulates p27(kip1) phosphorylation mediating the 
decision to enter autophagy or apoptosis. Nat Cell Biol 
2007; 9(2): 218-24. 

Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, 
Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG, 
Alessi DR.. LKB1 is a master kinase that activates 13 
kinases of the AMPK subfamily, including MARK/PAR-1. 
EMBO J 2004; 23(4): 833-843. 

Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, 
Vincent MF, Van den Berghe G, Carling D, Hue L.. 
Phosphorylation and activation of heart PFK-2 by AMPK 
has a role in the stimulation of glycolysis during ischaemia. 
Curr Biol 2000; 10(20): 1247-55. 

Mauvoisin D, Rocque G, Arfa O, Radenne A, Boissier P, 
Mounier C.. Role of the PI3-kinase/mTor pathway in the 
regulation of the stearoyl CoA desaturase (SCD1) gene 
expression by insulin in liver. J Cell Commun Signal 2007; 
1(2): 113-25. 

Merrill GF, Kurth EJ, Hardie DG, Winder WW.. AICA 
riboside increases AMP-activated protein kinase, fatty acid 
oxidation, and glucose uptake in rat muscle. Am J Physiol 
1997; 273(6 Pt 1): E1107-12 

Mihaylova MM, Shaw RJ.. The AMPK signalling pathway 
coordinates cell growth, autophagy and metabolism. Nat 
Cell Biol 2011; 13(9): 1016-23. 

Nakano A, Kato H, Watanabe T, Min KD, Yamazaki S, 
Asano Y, Seguchi O, Higo S, Shintani Y, Asanuma H, 
Asakura M, Minamino T, Kaibuchi K, Mochizuki N, Kitakaze 
M, Takashima S.. AMPK controls the speed of microtubule 
polymerization and directional cell migration through CLIP-
170 phosphorylation. Nat Cell Biol 2010; 12(6): 583-90. 

Pinter K, Jefferson A, Czibik G, Watkins H, Redwood C.. 
Subunit composition of AMPK trimers present in the 
cytokinetic apparatus: Implications for drug target 
identification. Cell Cycle 2012; 11(5): 917-921. 

Pinter Shackelford DB, Shaw RJ.. The LKB1-AMPK 
pathway: metabolism and growth control in tumor 
suppression. Nat Rev Cancer 2009; 9(8): 563-575. 

Roach PJ.. AMPK -> ULK1 -> autophagy. Mol Cell Biol 
2011; 31(15): 3082-4. 

Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow 
M.. Glucose restriction extends Caenorhabditis elegans life 
span by inducing mitochondrial respiration and increasing 
oxidative stress. Cell Metab. 2007; 6(4):280-93. 

Seo E, Park EJ, Joe Y, Kang S ,Kim MS, Hong SH, Park 
MK, Kim DK, Koh H, Lee HJ.. Overexpression of AMPK?1 



PRKAA1 (protein kinase AMP-activated catalytic subunit 
alpha 1) 

Seza EG, et al. 

Atlas Genet Cytogenet Oncol Haematol. 2019; 23(5) 111 

Ameliorates Fatty Liver in Hyperlipidemic Diabetic Rats. 
Korean J Physiol Pharmacol 2009; 13(6): 449-454. 

Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, 
Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp 
BE.. Mammalian AMP-activated protein kinase subfamily. J 
Biol Chem 1996; 271: 611-614. 

Steinberg GR, Kemp BE.. AMPK in health and disease. 
Physiol Rev 2009; 89: 1025-1078. 

Sun X, Zhu MJ.. AMP-activated protein kinase: a 
therapeutic target in intestinal diseases Open Biol. 2017; 
7(8): 170104. 

Sundararaman A, Amirtham U, Rangarajan A.. Calcium-
Oxidant Signaling Network Regulates AMP-activated 
Protein Kinase (AMPK) Activation upon Matrix Deprivation. 
J Biol Chem 2016; 103(46): 17378-83. 

Tennakon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns 
AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittman MM, Rick 
FG, Schally AV, Frigo DE.. Androgen regulate prostate 
cancer cell growth via an AMPK-PGC-1?-mediated 
metabolic switch. Oncogene 2014; 33(45): 5251-5261. 

Thomson DM, Brown JD, Fillmore N, Ellsworth SK, Jacobs 
DL, Winder WW, Fick CA, Gordon SE.. AMP-activated 
protein kinase response to contractions and treatment with 
the AMPK activator AICAR in young adult and old skeletal 
muscle. J Physiol 2009; 587(Pt 9): 2077-86 

Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, 

Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD.. 
A pivotal role for endogenous TGF-beta-activated kinase-1 
in the LKB1/AMP-activated protein kinase energy-sensor 
pathway. Proc Natl Acad Sci U S A 2006; 291(28): 14410-
29. 

Yan M, Gingras MC, Dunlop EA, Nouüt Y, Dupuy F, Jalali 
Z, Possik E, Coull BJ, Kharitidi D, Dydensborg AB, Faubert 
B, Kamps M, Sabourin S, Preston RS, Davies DM, 
Roughead T, Chotard L, van Steensel MA, Jones R, Tee 
AR, Pause A.. The tumor suppressor folliculin regulates 
AMPK-dependent metabolic transformation. J Clin Invest 
2014; 124(6): 2640-50. 

Zhang L, Jouret F, Rinehart J, Sfakianos J, Mellman I, Lifton 
RP, Young LH, Caplan MJ.. AMP-activated protein kinase 
(AMPK) activation and glycogen synthase kinase-3? (GSK-
3?) inhibition induce Ca2+-independent deposition of tight 
junction components at the plasma membrane. J Biol Chem 
2011; 286(19): 16879-90. 

Zhou C, Gu J, Zhang G, Dong D, Yang Q, Chen MB, Xu D.. 
AMPK-autophagy inhibition sensitizes icaritin-induced anti-
colorectal cancer cell activity. Oncotarget 2017; 8(9): 
14736-14747 

This article should be referenced as such: 

Seza EG, Güderer I, Ermis C, Banerjee S. PRKAA1 
(protein kinase AMP-activated catalytic subunit alpha 1). 
Atlas Genet Cytogenet Oncol Haematol. 2019; 
23(5):105-111. 




