
 
 
 
 
 
 

 
 STUDY OF MINERAL AND MATRIX MATURATION  

 IN DENTIN 
 
 
 
 

        Kostas Verdelis 
 
 
 

 
A dissertation submitted to the faculty of North Carolina at Chapel Hill in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Oral Biology 

 
 
 
 
 

   
    Chapel Hill 
         2005 

 
 
 
 
 
 
 
 
 

       Approved by   
               Advisor: J. Timothy Wright 
                Advisor: Adele L. Boskey  
        Reader: Patrick Flood 
        Reader: Roland Arnold 
        Reader: Wagner Duarte 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          ©2005 
                Kostas Verdelis 
      ALL RIGHTS RESERVED 

ii



 

 

 

ABSTRACT 

KOSTAS VERDELIS: Study Of Mineral And Matrix Maturation In Dentin 
(Under the direction of Adele L. Boskey and J. Timothy Wright) 

 

Spectroscopic analysis was used to study the patterns of changes in the mineral 

and matrix properties of dentin during maturation of the tissue. Fourier Transform 

Infrared Imaging (FTIRI) analyses on undecalcified semi-thin sections from fetal 

bovine incisors and developing mouse molars were performed. In addition, fetal 

bovine microdissected mantle and circumpulpal dentin specimens of successive 

tissue age were analyzed by Fourier Transform Infrared (FTIR) analysis and by 

amino acid and matrix phosphate assays.  

In the initial studies, the formation of mantle and circumpulpal dentin as two 

distinct dentin compartments in the developing fetal incisors was established through 

analysis of distribution of mineral:matrix and mineral crystallinity values. Changes in 

the mineral:matrix, mineral crystallinity, acidic phosphate substitution and carbonate 

substitution in the mineral of mantle and circumpulpal dentin during maturation were 

subsequently quantitatively analyzed from FTIRI results. In this study, separate 

patterns of changes in mineral properties were found for mantle and circumpulpal 

dentin, in terms of initial and final levels and rates of increase or decrease of mineral 

properties values. Spectroscopic analysis of different maturation stages 
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microdissected mantle and circumpulpal dentin specimens showed a great decrease 

in the dentin relative water content, affecting the dentin matrix conformation. 

Chemical analyses of similar microdissected specimens showed a significant 

increase in the organic phosphate of dentin matrix occurring during maturation. This 

increase was associated with continuing phosphorylation of existing 

phosphoproteins without further changes in the protein density. Finally, the study of 

dentin maturation using 6 day-old mouse molars by FTIRI was validated. 

Reproducibility in the pattern of changes in the mineral properties examined was 

found to be highly dependent on the sectioning orienation of molars. It is likely that 

higher resolution analytical methods and/or slightly older animal age would enhance 

the analytical outcome in such studies. 
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 CHAPTER I 

 

                INTRODUCTION 

Mechanical strength is a characteristic of hard tissues in organs like teeth and 

bones. This strength is a requisite for their main function in the body (mastication for 

teeth and bearing the body weight for bones) and is imparted to these tissues by the 

mineral. The deposition of mineral crystals by living organisms (biomineralization) 

that occurs in dentin, cementum and bone is mediated by the organic matrix in a 

controlled manner, resulting in crystals with a well defined orientation relative to the 

matrix, narrow size ranges and a unique composition (Lowenstam, 1981; 

Lowenstam and Weiner, 1989). The organic matrix consists of collagen, 

noncollagenous proteins and also some non-protein components synthesized and 

secreted by the tissue-forming cells, such as odontoblasts, cementoblasts and 

osteoblasts. The first stage of mineral deposition is nucleation of mineral crystals 

which occurs after the secretion and organization of the matrix components, followed 

by crystal growth and proliferation (Veis, 1993; Boskey, 2001). Concurrently, 

changes occur in the organic matrix, including degradation of the matrix (Masters 

PM, 1985) or changes in the collagen cross-linking (Mechanic et al, 1987). These 

changes could be related to the mineralization process. The process of mineral 

formation coupled with concomitant changes in the matrix for a particular hard tissue 

is called maturation. The study of maturation can contribute to a better 



understanding of hard tissue pathology mechanisms and to developing induction of 

mineralization as a therapeutic modality. Bone maturation has been described in a 

few studies (reviewed in Glimcher, 1998). While studies on an organogenesis and 

matrix formation level have been conducted on dentin (Suzuki et al, 1996; Fanchon 

et al, 2004; Hao et al, 2004; Yamamoto et al, 2004), there are fewer similar studies 

of dentin maturation (Magne et al, 2001) on a mineral formation and matrix changes 

after the initial mineralization stage level. Unfortunately, in the latter studies, 

important factors such as the selection of proper age group samples, the spatial 

resolution needed for analysis or the histological variation present in dentin were not 

adequately addressed. 

Dentin presents an excellent model for the study of maturation of a hard tissue, 

as samples for experimental studies are abundant and remodeling does not take 

place, contrary to what happens in bone (Linde and Goldberg, 1994; Butler et al, 

1997). At the same time, histology and composition of the matrix (especially the 

noncollagenous part of it) are known to vary substantially within dentin. As will be 

discussed in detail later, the main elements involved in dentinogenesis also appear 

to vary within dentin. It follows that for dentin maturation to be studied, a 

methodology should be established that enables the analysis and comparison of 

mineral and matrix properties between equivalent dentin regions, differing only in 

maturation stage, throughout development. A relatively high spatial resolution 

method is desirable, as zones of different histological, matrix/mineral properties and 

maturational stage in developing dentin are relatively narrow and close to each 

other. 
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In this thesis, a high spatial resolution method (Fourier Transform Infrared 

Spectroscopic Imaging-FTIRI) for analysis of mineral and matrix properties was 

employed using a fetal bovine dentin model to examine whether histologically and 

developmentally different dentin zones are represented by different spectroscopic 

properties throughout maturation (Chapter II). Such differences in mineral properties 

were next described for various maturational stages (Chapter III) on a quantitative 

basis, to compare these changes between mantle and circumpulpal dentin and 

establish a pattern in which they occur in normal dentin. Mineral changes were 

analyzed using FTIRI on fetal bovine incisor sections, while matrix changes were 

analyzed using microdissected dentin samples that represent discrete maturation 

stages localized on the fetal teeth, as defined in Chapter II. Similar microdissected 

dentin samples were analyzed for the profile of their matrix protein amino acid and 

matrix phosphorylation levels (Chapter IV), to investigate the changes in 

phosphorylated proteins of the matrix and in the phosphorylation of these proteins 

that occur during maturation. Finally, in Chapter V mouse molar dentin was 

examined by FTIRI to establish whether the maturation model derived from bovine 

teeth is applicable to normal mouse dentin and compare changes in the mineral 

properties during dentin maturation described in Chapter II to similar changes in 

mouse molar dentin.       

 

         HISTOLOGY OF DEVELOPING AND MATURE DENTIN 

The structure of a fetal bovine incisor is presented from a microcomputed 

tomography analysis in Figure 1-1. Histology of dentin development has been 

3



reviewed systematically elsewhere (Ten Cate, 1994). Dentin is formed by 

odontoblasts that differentiate from ectomesenchymal cells of the dental papilla (the 

formative organ of dentin that eventually becomes the pulp of the tooth) under the 

organizing influence of cells of the internal dental epithelium (from which the enamel-

producing ameloblasts are derived). Dentin formation starts at the tip of the cusps of 

the tooth in molars, or at the incisal edge of incisors, and spreads down the cusp 

slope as far as the cervical loop of the dental organ. At the same time enamel starts 

forming outwards from the dentino-enamel junction (DEJ). The initial dentin thickens 

until all the dentin of the crown of the tooth is formed. The initial soft matrix in dentin 

and enamel hardens with the mineral apposition, the latter consisting of two discrete 

stages: formation of the initial mineral crystals and crystal growth by expansion of 

these crystals and formation of secondary nuclei. In the case of enamel this process 

occurs with a dramatic concurrent removal of the matrix. Formation of dentin and 

cementum (hard tissue layer at the periphery of the root, adjacent to dentin) starts at 

a later stage of development. Dentin and enamel formation continues (in humans at 

an average rate of 4μm a day) until the external form of the tooth is completed and 

dentin formed up to this point is called primary dentin. The dentin that is formed, at a 

reduced rate, after the tooth erupts and becomes functional is called secondary. 

Dentin that forms after full eruption of the tooth and as a response to external stimuli, 

such as chemicals, caries, restorative procedures or attrition is called tertiary dentin.  

Initial dentin formation-mantle dentin: After the differentiation of odontoblasts 

from undifferentiated ectomesenchymal cells, large (0.1-0.2μm in diameter) collagen 

fibrils are produced that, together with the noncollagenous proteins, constitute the 
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organic matrix of the mantle dentin (first-formed dentin, Figure 1-2 a). The 

orientation of collagen fibrils is parallel to that of dentinal tubules in the mantle 

dentin. Membrane-bound vesicles called extracellular matrix vesicles (ECMVs) are 

the site of initial mineral deposition in mantle dentin. ECMVs bud off from the 

odontoblasts exclusively in mantle dentin, as in the rest of dentin (circumpulpal) 

initial mineral deposition occurs directly on collagen fibers. Hydroxyapatite first 

appears within matrix vesicles as individual crystals that grow rapidly, rupture the 

vesicle’s membrane and spread as a cluster of crystallites fusing with adjacent 

clusters and aligning with the collagen fibrils to form the fully mineralized matrix.  

The deposition of mineral always lags behind the formation of the organic matrix 

so that there is always a layer of organic matrix called predentin (10-40μm wide in 

human teeth, depending how active odontoblasts are) between the odontoblasts and 

the mineralization front. Odontoblasts later begin to move toward the center of the 

pulp, leaving the principal extension of the cell, the odontoblast process, inside the 

dentinal tubule.  

Circumpulpal dentin: After mantle dentin, the rest of dentin, which is called 

circumpulpal dentin (Figure 1-2 a), is subsequently formed. Circumpulpal dentin 

exhibits different characteristics from mantle dentin (discussed also in section 

“Spatial variation in dentin properties”), such as: 1.collagen fibrils of smaller size, 

more closely packed and oriented at right angles to the dentinal tubules 2. absence 

of matrix vesicles and direct deposition of initial mineral on collagen fibrils 3.  

different synthesis of the organic matrix and especially the noncollagenous 

component of the matrix. Mineralization in circumpulpal dentin occurs directly on 
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collagen fibrils, unlike mantle dentin. Mineralization follows a globular (calcospheric) 

calcification pattern, in which continuously enlarging globular masses that finally fuse 

are formed. On occasion these globular masses fail to fuse fully, leaving small areas 

of uncalcified dentin matrix known as interglobular dentin.   

Peritubular dentin formation: As new dentin is formed, the odontoblast shrinks by 

about a third of its length into the dentin and a collar or sheath of highly mineralized 

dentin, called peritubular dentin, is deposited in the dentinal tubule wall. The rest of 

the dentin, which is formed between dentinal tubules, is then called intertubular 

dentin. Figure 1-2 b presents empty dentinal tubules on a fetal bovine incisor 

examined by SEM with the peritubular dentin around the dentinal lumens and 

intertubular dentin between the tubules clearly appearing. Peritubular dentin is 

hypermineralized with respect to intertubular and, as will be discussed in detail later, 

these two kinds of dentin also present differences in their mineral composition, 

matrix properties and mechanical properties. With age, there is a progressive 

deposition of peritubular dentin and obliteration of the tubule is observed. Peritubular 

dentin that obliterates the tubule space is called sclerotic.  

 

          COMPOSITION OF DENTIN 

On a weight basis, mature dentin is approximately 70% inorganic material 

(mineral phase), 20% organic material and 10% water (adsorbed on the surface of 

the mineral or in interstices between crystals). On a volume basis, the same 

fractions are 45%, 33% and 22%, respectively (ten Cate, 1994). The mineral and 

organic phases of dentin are going to be examined separately. 
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a)Mineral 

The mineral phase in mature dentin represents the major part of its dry weight. 

The mineral in dentin is very similar to the bone mineral and it is an analog of the 

naturally occurring mineral hydroxyapatite, whose unit cell can be represented as 

Ca10(PO4)6(OH)2 (reviewed in Boskey, 2001 and Glimcher, 1998). The unit cell of the 

hydroxyapatite crystal constitutes the smallest building unit of the parallelepiped 

shape which includes the Ca++, PO4
3- and OH- ions. The crystal belongs to the 

hexagonal system. The unit cell can generate a large crystal by an indefinite 

repetition in the direction of the 3 axis of the crystal. All the ions in the unit cell are 

arranged consistently, with OH groups located at the corner of the unit cell or along 

the c-axis and PO4
3- groups surrounding the OH- groups at the corners of the unit 

cell. Ca++ atoms are occupying the so called columnar Ca or the screw axis Ca 

position (Ca II position) forming triangles around the central OH- group located along 

the c-axis. Using electron diffraction on high magnification transmission electron 

microscopy, this arrangement has also been confirmed for dentin crystals located 

either within or between collagen fibers (Ichijo et al, 1993). 

The first studies of the mineral crystal structure in hard tissues were performed 

on bone by DeJong (DeJong, 1926), where bone mineral was identified as 

hydroxyapatite based on x-ray diffraction data. Although the progress in identifying 

the exact chemical composition and specific spatial arrangements of its constituents 

during development has been slow mainly because of technical challenges 

(Glimcher MJ, 1998), some facts, such as the role of ionic substitutions, have been 

well established about mineral in biological systems. It is recognized that because 
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mineral crystals are so small (~20 x 40 x 200 Å) much of the unit cell is on the 

surface. This provides an opportunity for substitution by similarly sized cations (Mg2+, 

Sr2+, Fe2+, Pb2+, Na+, K+) and anions (CO3
2- ,F-, HPO4

2- and H2PO4
-). Substitutions 

are found within the mineral lattice and on the surface of the apatite crystals. Dentin 

mineral (like bone) is a calcium-deficient apatite, with crystals slightly larger than the 

bone mineral crystals. The Ca deficiency is either due to a substitution of Na or Mg 

for Ca, or a true deficiency of Ca ions not substituted for by another cation, with 

electrical neutrality accomplished by the addition of protons to form HPO4
= groups 

accompanied by the creation of crystal vacancies. The bone and dentin crystals 

contain both HPO4
2- and CO3

2- in various lattice sites and on the surface of crystals. 

These substituents change as a function of time. Major sites in the lattice where 

carbonate ions can be introduced are the OH- sites (type A carbonate apatite) and 

PO4
3- sites (type B carbonate apatite). The type and extent of substitution varies for 

different mineralized tissues, e.g for mature dentin and bone apatite is predominantly 

type B, whereas in enamel it is almost entirely type A. The HPO4
2-  groups, present 

as substitutions in the apatite of mineralized tissues, were shown by 31P NMR 

analysis to be unique and unlike those naturally present in other mineral phases 

such as octocalcium phosphate, amorphous calcium phosphate or synthetic apatites 

precipitated from solution. 

It has long been recognized that collagen serves as the template for the mineral 

formation in bones and teeth. The ultrastructural interaction between collagen and 

mineral crystals was studied by high voltage electron microscopic tomography on 

bone or mineralizing tendon (Landis and Song, 1991; Landis et al, 1996). The 
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longest dimension of the apatite crystal, corresponding to the c-axis 

crystallographically, was found to be parallel to the collagen fibril long axis. Crystals 

were periodically (~67nm repeat distance) arranged along the fibrils and their 

location appeared to correspond to collagen hole and overlap zones. Platelet-

shaped crystals were arranged in channels or grooves formed by collagen hole 

zones in register, while crystal sizes sometimes exceed the dimensions of the hole 

zones. It was concluded that crystals grow in part by removing water and ions 

present in the extracellular tissue volume and, possibly, at the expense of collagen, 

causing changes in its higher order organization. In addition, the organic structures 

may be enveloped by the growing crystals. In the same studies, mineral deposits 

were imaged and color-coded in back-scattered mode, a method which is based on 

intrinsic electron scattering power of the sample components, i.e. density in the case 

of the mineral. In the bone it was observed that: 1. there is a general correlation 

between density and mineral deposit size (increasing mineral density is indicative of 

more mature deposits)  2. high voxel density regions of many individual larger 

deposits appear to be surrounded by low voxel density ones (newly deposited 

crystal mass along and on the surfaces of pre-existing particles). Images from 

mineralizing fibrils in contact  with a dense mineral phase showed distribution of 

mineral associated with the collagen tapered, narrow at locations along the fibril 

farther from the dense mineral, gradually thickening when approaching the large 

mineral mass. Crystals form generally in planar fashion and extend in the direction of 

the long axis of collagen. This longest dimension of individual mineral particles 
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corresponds to the crystallographic c-axis of the mineral, defined by electron 

diffraction. 

In dentin, mineral has been reported to form ribbon-like crystallites (Arnold et al, 

1999).By conventional electron microscopy, apatite crystals in other mineralized 

tissues have been described either platelet-shaped or needle-like; using a sensitive 

method, small angle x-ray scattering, it was suggested that bone had platelet-

shaped crystals (Fratzl et al, 1992). 

b)Matrix 

There is presently some confusion surrounding the taxonomy and terminology of 

dentin extracellular matrix components, which partly arose from an earlier 

characterization of the matrix components based on biochemical purification from 

tissues and from the possible discrepancies in characterization of the matrix  

components between different species. Today, these components have been mainly 

identified based on odontoblastic cDNA libraries and are generally classified as 

follows:  

1.Collagen: type I, typeIII&V (predentin and some species-not normally found in 

mature dentin) 

2.Proteoglycans 

3. SIBLING (Small Integrin-Binding Ligand, N-Linked Glycoprotein) proteins  

4. Glutamic acid (Gla) proteins (Osteocalcin, MGP, S100) 

5. Other components: (many not found in mature dentin) 

 Proteinases: -procollagen peptidases  

    -Cathepsin D 
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    -Matrix metalloproteases 

 Other enzymes:     -Alkaline phosphatase 

    -Lysyl oxidase 

    -PC-1 

  Lipids 

It has to be noted that a great part of information about dentin ECM has come 

from studies on bone, as dentin and bone are thought to be similar in composition 

and mechanism of formation, in many respects. Organic matrices, predominantly 

collagenous, are formed in both tissues and eventually mineralize. Forming cells, 

osteoblasts and odontoblasts respectively, secrete type I collagen-rich 

unmineralized extracellular matrices, osteoid and predentin, which form the template 

for deposition of apatite crystals. Formation and mineralization of these matrices are 

highly regulated processes. Whereas the main (approx. 90%) constituent of dentin 

matrix is collagen, it is the noncollagenous macromolecules (noncollagenous 

proteins- NCPs) which are believed to promote both initial deposition of mineral on 

collagen fibers and crystal growth. Dentin matrix NCPs have diverse functions, such 

as cell attachment and collagen fibrillogenesis (Xu et al, 1998; Keen et al, 2000; 

Jadlowiec et al, 2004). Regarding dentin mineralization, they have been the centre 

of focus (Linde and Goldberg, 1993; Veis, 1993; Qin et al, 2004). This importance of 

noncollagenous proteins is supported by dramatic phenotypic abnormalities in the 

mineralization process of bone and dentin observed in animals with deficiency of 

these NCPs or mutation in their genes (Xu et al, 1998; Xiao et al, 2001; Feng et al, 
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2002; Sreenath et al, 2003). A short description of the major dentin matrix 

components, with emphasis on the SIBLING proteins follows: 

 

1. Collagen: Dentin collagen is primarily type I. Evidence also exists for 

synthesis of small amounts of collagen type III and V in rodent dentin that appear to 

be present in predentin. 

Collagen is secreted by odontoblasts as procollagen, converted by the action of 

peptidases to collagen in predentin, where it is gradually packed and organized 

(Linde and Goldberg, 1994). Collagen type I is a bio-polymer made up of three α 

chains, two of which are identical, giving the composition [α1(I)]2α2. Each chain 

comprises approximately 1000 amino acid residues and the central portion (95% of 

the total molecule) is triple helical in structure. In the helix, the individual α chains 

have an amino acid sequence with glycine in every third position, which is a requisite 

for triple helix formation. The amino acids proline and hydroxyproline (proline 

hydroxylation predominantly takes place in collagen) together account for 

approximately one fourth of the residues. Collagen molecules in the dentinal tissue 

are longitudinally staggered in register to form fibrils. This arrangement creates 

alternating spatial areas of the fibril with overlapping molecules (overlap zones) and 

with gaps (hole zones), creating a cross-striation appearance under electron 

microscopy examination. It is in the hole zones of collagen fibrils that initial formation 

of mineral crystals has been shown to occur in mineralized tissues. Formed fibrils 

become stabilized by subsequent formation of covalent cross-links between the 

collagen molecules (reviewed in Eyre, 1987). It is collagen that provides the 

12



template for the initial mineralization and subsequent mineral crystal growth (see 

previous section on mineral).  

2. Proteoglycans: Proteoglycans (PGs) are macromolecules with a number of 

carbohydrate side chains, glycosaminoglycans (GAGs), covalently bound to a 

protein core. Side chains are made up of repeating disaccharide units, each 

consisting of one uronic acid and one N-acetyl-hexosamine, mainly of the 

chondroitin, dermatan or keratin sulfate type. The PG distribution in mineralized 

dentin was found to be very heterogeneous using histochemistry. An intense 

reaction for glycosaminoglycan within the dentinal tubules and in mantle dentin 

compared to circumpulpal dentin was seen (Embery et al, 2003). Some of the 

proteoglycans which are also found in dentin are involved in collagen fibrillation 

(Keene et al, 2000;  Neame et al, 2000) and one possible function for PGs in 

dentinogenesis could be to affect or control the organization of the predentin 

collagenous matrix. The most important group of PGs in dentin, small leucine-rich 

proteoglycans (SLRPs) play other biological roles such as in binding of TGF β (a 

cytokine family very important in dentinogenesis and osteogenesis) members and 

acting as a ligand for Epidermal Growth Factor receptor. They are involved in cell 

migration and calcium binding, which may be related to both the development and 

mineralization processes (Hunter et al, 1992; Xu et al, 1998). They have also been 

suggested to be directly involved in biomineralization from in vitro experiments 

where they functioned as inhibitors of hydroxyapatite formation (Boskey et al, 1997). 

3. Small Integrin-Binding Ligand, N-Linked Glycoprotein (SILINGs) family: this 

matrix group has been the focus of attention regarding regulation of 
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biomineralization in hard tissues (Fisher et al, 2001; Butler et al, 2004). It includes 

proteins that are abundant in the bone matrix, but scarce in dentin, such as 

osteopontin (OPN) and bone sialoprotein (BSP) and the characteristic for dentin 

matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix 

phosphoglycoprotein (MEPE). The last three SIBLING proteins in dentin are highly 

phosphorylated and their relative content and  phosphorylation in the dentin matrix 

during maturation is examined in Chapter IV. 

The different members of the SIBLING family share some common features, 

such as hard tissues in which they are found, common cell attachment-mediating 

and signaling motif and localization on the same chromosome regions. They 

undergo similar post-translational modifications, mainly phosphorylation (which has 

been found to determine the function in many) and glycosylation. Characteristic 

properties and potential relation to biomineralization of the SIBLING proteins are 

discussed below: 

Osteopontin: a 301 amino acids long protein (rat OPN). It is expressed in large 

quantities in bone, but is also expressed in many other tissues and cells, implying a 

multiplicity of functions (Sodek et al, 2000). OPN appears to be an effective inhibitor 

of apatite formation and growth by in vitro studies and studies of  the OPN deficient 

mice skeletal phenotype (Hunter and Goldberg, 1993; Boskey et al, 1993; Boskey et 

al, 2002). Although the OPN deficient mice studies indicate that osteopontin is not 

necessary for normal bone development, they show an involvement of osteopontin 

in bone remodeling. Phoshorylation of OPN occurs on serine residues and the 
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phosphate groups are considered critical to the inhibitory role of OPN in 

mineralization (Pampena et al, 2004). 

Bone Sialoprotein: 303 amino acids long (rat BSP). Found exclusively in 

mineralized tissues, with a much higher expression in bone than in dentin. Some 

data suggest that BSP acts as a nucleator of the initial apatite formation and later as 

a regulator for the direction of crystal growth (Hunter and Goldberg, 1994).  Serine 

and threonine residues on BSP are phosphorylated by caseine kinases, although the 

role that phosphorylation plays in BSP is unclear. Tyrosine residues are sulfated 

(Chenu et al, 1994). Phosphate groups on BSP could affect the apatite crystal 

growth in dentin and bone (Hunter and Goldberg, 1994).  

DMP-1: Dmp-1 and the protein products of dspp gene (dentin sialoprotein and 

dentin phosphoprotein) are the 2 most abundant SIBLING members in dentin. They 

present a very similar amino acid composition and after secretion both need to be 

processed into N-terminal and C-terminal fragments. DMP-1 is a 473  amino acid 

long protein with an unusually large number of acidic domains. Aspartic acid (Asp) 

and glutamic acid (Glu) residues and also the phosphorylated fraction of the more 

than 100 serine residues that are potential protein kinase substrates make this 

protein highly acidic. Although it has not been proven, the numerous phosphate 

groups on DMP1 have been speculated to function in sequestering Ca++ and DMP1 

function is dependent on its phosphorylation status (Tartaix et al, 2003). Dmp-1 is 

highly expressed in odontoblasts and also transiently expressed in pre-ameloblasts 

(the enamel-forming cells in a predifferentiated state). Transgenic cells 

overexpressing DMP-1 show earlier onset, more extensive production and larger 
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mineralized nodules compared to the normal cells (Narayanan et al, 2001). Having 

been first assumed to be dentin-specific, DMP1 has also been found in bone, 

hypertrophic chondrocytes and kidney.  

Dmp-1 null mice develop a severe tooth phenotype characterized by partial 

failure of predentin to mature into dentin and increased width of predentin zone (rate 

of formation of unmineralized precursor layer higher than that of mineralization). 

Peritubular structure is poorly organized, presenting a coarse and irregular surface. 

These studies suggest that DMP1 is directly related to biomineralization and its 

absence is associated with hypomineralization of dentin (Ye et al, 2004).  

Other matrix proteins are affected by DMP-1 deficiency, such a DSPP 

(regulation of one SIBLING member expression by another) and biglycan (a principal 

dentin PG).  

dspp: this gene expresses a precursor protein from which two important dentin 

matrix proteins are derived after proteolytic processing A. dentin sialoprotein (DSP) 

from the 5' end and B. dentin phosphoprotein (DPP) from the 3' end. Both proteins 

were earlier identified independently as components of the dentin ECM. Some 

authors (Hao et al, 2004) believe that expression of DSP and DPP as one protein by 

the same gene is not a universal effect and is species-dependent.   

A. DPP: it is the most abundant noncollagenous protein in dentin with DSP being 

the second most abundant such protein (18:1 ratio). It contains large amounts of 

aspartic acid (Asp) and phopshoserine (Pse) in repeating sequences of (Asp-Pse-

Pse)n and (Asp-Pse)n. DPP has been shown to be an important initiator and 

modulator of dentin apatite crystal formation (Boskey et al, 1990; George et al, 1996; 
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Saito et al, 1997). It is subject to extensive degradation after expression and the 

molecular mass reported has varied according to species –and, apparently, age of 

animal- from 72kDa for mouse DPP to 90-95kDa for rat DPP or 155kDa for bovine 

DPP. Approximately 45% of the DPP sequence are serine residues and most of 

them are phosphorylated. From the 3 isoforms of DPP, the most highly 

phosphorylated (HP-DPP) is the major one in DPP with 209 phosphates/mol. The 

predicted structure of DPP contains long ridges of alternating carboxyl and 

phosphate groups on opposite sides of the polypeptide chain, a conformation that 

would permit calcium phosphate crystals to grow on this lattice (Butler et al, 2004). 

After removal of the phosphate groups  DPP was shown to lose the ability to 

nucleate apatite onto collagen (Saito et al, 1997).  

 There is a body of evidence suggesting that DPP is involved in the initiation of 

apatite formation in the collagen fibrillar lattice of dentin. DPP is strongly associated 

with calcium by forming an insoluble aggregate with it (Kuboki et al, 1979), binding 

high levels of Ca2+ with relatively high affinity (Marsh, 1989) forming extended β-

sheets in the presence of calcium. Localization of DPP also indicates a function in 

mineralization: after synthesis by odontoblasts, DPP reaches the mineralization front 

(bypassing unmineralized collagen forming in predentin) relatively quickly 

(Weinstock and Leblond, 1974). At the mineralization front, limited numbers of DPP 

molecules bind to collagen at the gap region, where initial formation of apatite is 

known to occur.  

In addition to promoting initiation of mineralization, DPP could also be involved 

in the control of crystal growth (Boskey et al, 1990; Addadi et al, 1992). When it 
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binds to the (100) face of growing crystals in high concentration, phosphoseryl and 

aspartyl groups interact with calcium ions in the lattice, resulting in a reduced rate of 

apposition of additional calcium and phosphate ions, thus making its role in 

biomineralization diverse. 

B. DSP: it is only moderately phosphorylated (6.2 phosphates/mol with half of 

the potential Ser/Thr casein kinase substrate sites phosphorylated). Phosphate 

groups of DSP seem to have a minor role in mineralization (Boskey AL-personal 

communication). 

Experiments showing the association of mutations in the dSPP gene with 

dentinogenesis imperfecta in humans (Xiao et al, 2001) and with defective 

mineralization of dentin in DSPP deficient mice (Sreenath et al, 2003) support the 

role of the dspp gene in dentinogenesis. DSPP is also expressed in bone, but at a 

much lower level than that in teeth. DSPP deficient mice showed also a role for it in 

regulation of proteoglycan distribution. Increased biglycan levels (both protein and 

mRNA levels) are observed in dspp null mice, as in DMP-1 null mice. The dspp null 

mice also show an increased production and accumulation of decorin are increased.  

4. Glutamic acid containing proteins: The most prominent protein in this group is 

osteocalcin, a small (apparent MW=14,000 Da) protein which is found at relatively 

low levels in dentin, although it constitutes up to 15% of the bone noncollagenous 

matrix. Osteocalcin is an established marker of osteoblastic function for cells and is 

involved in osteoclast recruitment in bone. The specific functions of osteocalcin in 

dentin are unknown. Studies in osteocalcin-null animals (Boskey et al, 1998) and 
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osteocalcin-depleted bone implants (Glowacki and Lian, 1987) suggest a role for 

osteocalcin in osteoclast recruitment and bone remodeling. 

Role of dentin phosphoproteins in biomineralization: The NCPs described above 

were found to be common in many mineralized tissues with possibly different 

functions. In dentin, the matrix proteins believed to be most relevant to 

biomineralization are the phosphorylated SIBLINGs. In many of the relevant studies, 

a protein called phosphophoryn was used, which may be coinciding with dentin 

phosphoprotein in some species, while it has been called DMP2 by others. 

There are several lines of evidence that implicate phosphoproteins in dentin in 

one of more of the proposed functions in mineralization, some of which were already 

discussed. These are:  1.Synthesis and localization of phosphoproteins: Numerous 

studies (Dimuzio and Veis, 1978 a,b; Maier et al, 1983; Weinstock and Leblond, 

1973; Rabie and Veis, 1991) have indicated that phosphoproteins and collagen are 

secreted independently in the odontoblast, the collagen is released into the 

predentin, while phosphoprotein-containing vesicles move through the odontoblastic 

processes directly to the mineralization front. 2. Association of phosphoproteins with 

collagen: At the mineralization front, phosphoproteins are directly associated with 

the mineralizing collagen fibrils. Phosphophoryn has in vitro been shown to bind to 

type I collagen fibers, specifically at the e-band of the fibril (Stetler-Stevenson and 

Veis, 1986; Traub et al, 1992). This is a region near the middle of the collagen gap 

zone, which has been demonstrated to be the site of initial mineral deposition along 

collagen fibrils (White et al, 1977). 3. Interaction of phosphoproteins with Ca++: 

Phosphoproteins are secreted onto the collagen surface could have a function, in 
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dentin, of sequestering calcium ions in the vicinity of the gap region of the collagen 

and help the nucleation of mineral. There is also proof for a phosphophoryn 

interaction with mineral components, as it changes conformation into a β-sheet-like 

one when associated with Ca++ ions (Veis, 1993). 4. Regulation of crystal growth: 

Adsorption of acidic matrix molecules onto the surface of growing calcium sulfate, 

calcium carbonate and apatite crystals has been described to regulate crystal 

growth, by recognition of a specific stereochemical motif on the interacting crystal 

plane (Moradian-Oldak et al, 1992). Other studies (Adadi et al, 1992) have also 

shown binding of native phoshpophoryn to specific faces of the hydroxyapatite or 

octacalcium phosphate (another mineral phase that is occurring in some 

mineralizing systems). 5. Phenotypic alterations of mice deficient in phosphoprotein 

in mineralized tissues: discussed above. 

In a recent study (He et al, 2005), many of the properties of the phosphoproteins 

described were specifically compared between native phosphophoryn and the active 

domain from rat phosphophoryn cloned and expressed recombinantly in E. coli, 

where it is not phosphorylated. Contrary to the native phosphophoryn, the 

recombinant unphosphorylated phosphophoryn failed to exhibit all the basic 

properties of phosphophoryn described -calcium binding, change of conformation 

upon calcium binding, mediation in transformation of amorphous calcium phosphate 

to apatite in nucleation experiments and formation of collagen aggregates. 
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MINERAL AND MATRIX IN DEVELOPING MINERALIZED TISSUES- DENTIN                    

MATURATION 

Dentinogenesis starts with formation of non-mineralized mantle dentin matrix. 

The young newly differentiated odontoblasts secrete collagen and noncollagenous 

components and, as discussed, the rate of mineralization is slower than that of 

matrix formation, so that a layer of unmineralized matrix –predentin- is always 

present. Bundles of collagen fibers are grouped in globular structures and, with the 

addition of new fibers in predentin, collagen is packed more tightly. In predentin, 

drastic changes also occur in proteoglycans, as a concentration gradient 

(hypothesized to represent gradual removal of mineralization inhibitor groups) is 

present for the predentin matrix from next to the pulp to the mineralization front 

(Embery et al, 2003). As described, highly phosphorylated proteins are not secreted 

in predentin, but rather transported through the odontoblastic processes of 

odontoblasts directly on the mineralization front, where they are finally secreted 

(Weinstock and Leblond, 1973). There, they are hypothesized to play a major role in 

initial mineral formation. In mantle dentin initial formation of mineral takes place 

inside the membrane-bound matrix vesicles. No vesicles are seen later during 

circumpulpal dentin formation, and the site of the initial mineral deposition is the 

collagen hole zones.  

In mineralized tissues the events associated with crystal formation are generally 

nucleation, crystal growth and crystal proliferation (reviewed in Boskey, 2001). In 

nucleation, the crystal formation starts with the collision of the component lattice ions 

(calcium, phosphate, hydroxide) or clusters of these ions and a crystal nucleus is 
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formed when the colliding ions or ion clusters remain together in the orientation they 

will have in the final crystal lattice. After a stable nucleus is formed, ions or ion 

clusters add to the existing nuclei during the crystal growth process. They proliferate 

by the formation of additional nuclei and often they aggregate, resulting in an 

apparent increase in crystal size. Calcification of the collagen fibrils occurs by the 

heterogeneous nucleation of apatite crystals within the collagen fibrils in selected, 

spatially and physicochemically independent nucleation sites.  

Changes in the physicochemical properties of the mineral, as mineralized 

tissues mature, have been described –mainly for bone- in a number of studies 

(reviewed in Glimcher, 1998). The composition, short-range order, local 

environments of the crystals change significantly with the age of the crystals in vitro 

and in vivo and these changes are reflected in changes of the crystallinity of the 

mineral phase, as defined by x-ray diffraction. Crystallinity as an index depends on 

the size of the small crystals and the degree of order of the ions or atom constituents 

of the crystals, as many of these atoms are located on the surface of the crystals, in 

a labile environment. It has been established from bone studies that the earliest 

crystals formed have a high concentration of HPO4
2- ions and a low concentration of 

CO3
2-  ions and a high proportion of each is located in very labile, highly reactive 

environments, mostly on the surface of the crystals. With tissue age, there is a 

progressive increase in the CO3
2- concentration, occurring first on the surface as 

labile ions, later displacing labile HPO4
2- ions. During later stages, CO3

2-  ions are 

further incorporated into stable positions in the apatite lattice, as HPO4
2-  groups in 

the lattice are displaced. Thus, the stable CO3
2- groups in the crystal lattice increase 
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during maturation and those on the surface present as labile CO3
2- ions decrease, 

while both the surface labile HPO4
2-  groups and the stable HPO4

2-  groups in the 

lattice decrease during maturation. Apatite crystals that contain only a few labile 

phosphate ions have little capacity to mature and incorporate CO3
2-  ions into lattice 

positions and undergo few of the normal maturational changes in the composition 

and environment of both the HPO4
2-  and CO3

2-  ions. This also includes failure of 

the CO3
2- ions to incorporate into the interior of the crystals in stable CO3

2- sites 

(substituting for OH- /A type and PO43- positions/B type substitution).  

As was already stated above, whereas there have been studies on 

organogenesis and matrix protein gene expression during dentin development, few 

studies have described dentin mineral and matrix maturation. In one of the latter 

studies (Engel and Hilding, 1984), electron probe analysis was used on dentin from 

developing mouse molars from different age groups and a mapping of dentin for 

relative densities of Ca and  P and for Ca/P (as a measure of apatite maturity) was 

performed. Results from this study are difficult to interpret, as the location of dentin 

examined was not specified and only elemental analysis results were provided for 

the maturing mineral. Another study was based on a FTIR microspectroscopic 

analysis of adult human premolars and young 3rd molars, (Magne et al, 2001). It was 

concluded that –in contrast to what had already been reported for bone mineral- the 

total amount or the type (A vs B) of carbonate substitution did not change during 

dentin maturation, whereas crystallinity increased and HPO42- ion concentration in 

the mineral decreased. The same study also focused on dentin matrix maturation, 

where the main conclusion was that collagen is progressively dehydrated as a result 
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of being calcified. However, this study’s conclusions are questionable as the teeth 

analyzed were mostly mature, the inherent significant histologic variation in dentin as 

examined from predentin to enamel was interpreted only as variation in tissue 

maturation and a mantle dentin area was not identified (also discussed in Chapter 

II). A few studies, using whole fetal bovine teeth or human dentin, have been 

published on aspects of matrix changes during dentin development (Lee et al, 1983; 

Masters, 1985; Walters and Eyre, 1983). Among the findings, breakdown of 

noncollagenous proteins (mainly highly phosphorylated proteins), a prominent loss 

of phosphorylated and non-phosphorylated amino acids and a significant change in 

the collagen cross-linking pattern, with mature trivalent cross-links increasing and 

immature divalent cross-links decreasing, were reported. It must be noted that a 

similar breakdown of matrix proteins that occurs with maturation of the tissue has 

been observed in bone (Nagata et al, 1991 a-b). Similar to the dentin mineral data 

discussed, results from these studies of dentin matrix maturation can only be seen 

as comparing wide tissue age spans for dentin and as results for mantle and 

circumpulpal dentin averaged together (discussed in Chapter II). Matrix degradation 

and the phosphorylation profile of dentin matrix merit further investigation using 

samples of distinct tissue ages and carrying out separate analyses for circumpulpal 

and mantle dentin. There is an equal need for mineral-matrix interaction studies as it 

has been shown, for instance, that phosphoprotein conformation is altered in the 

presence of apatite (Fujisawa and Kuboki, 1998). The current lack of relevant data 

based on a convenient maturation model makes an appropriately designed mineral 

and matrix maturation study important in understanding biomineralization in dentin. 
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    SPATIAL VARIATION IN DENTIN PROPERTIES 

Histology of dentin shows a high degree of variability. In mature dentin, most of 

this variability is due to the presence of mantle dentin on the periphery of 

circumpulpal dentin and the presence of peritubular dentin inside the dentinal 

tubules. The relative density ratio of these two kinds of dentin is not constant, as the 

diameter of the dentinal tubules and the relative tubule density in the dentin mass is 

much higher close to predentin than close to the DEJ (Figure 1-2 a). Additional 

sources of variability in dentin are the presence of interglobular dentin and the 

interfaces existing around the mineralization front and on the DEJ, due to 

progressive transition between the unmineralized and mineralized matrix in dentin 

and between dentin and enamel. (Goldberg et al, 1992; Marshall et al, 2001; White 

et al, 2000). 

The presence of mantle and circumpulpal dentin as two morphologically and 

developmentally distinct zones is one reason why dentin presents variability in 

histology and properties. Mantle and circumpulpal dentin are different in density and 

composition of both mineral and matrix. Concerning mineral density, mantle dentin 

has traditionally been thought to be slightly hypomineralized with respect to 

circumpulpal dentin (Mjor, 1966; Herr et al, 1986). Some studies showed that the 

overall mineral content in mantle dentin is very similar to that of the rest of dentin in 

both rats and humans (Sanchez-Quevedo et al, 1989- Stratmann et al, 1997). At the 

same time, the Ca/P ratio (correlated to a certain extent to apatite stoichiometry) has 

been shown to be lowest (compared to other dentin areas) in mantle dentin of rat 
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molars by electron probe microanalysis (Tjarerhane et al, 1995). In at least the part 

of mantle dentin lying adjacent to enamel, highly phosphorylated proteins are 

absent, as shown in human, calf and  rat teeth using either histochemical or 

immunohistochemical staining (Nakamura et al, 1985; Tagaki and Sasaki, 1986; 

Rahima et al, 1988). Collagen fibers are organized in a different direction than in the 

rest of dentin, seemingly packed more tightly than in circumpulpal dentin, as it is 

evident by the collagen content assayed on samples dissected from the dentin bulk 

(Levine, 1972). Collagen type V, known to regulate type I collagen fiber growth, 

appears at an early stage (Bronckers et al,1986). The orientation of the collagen 

fibrils is also distinct, with collagen bundles running parallel to the odontoblastic 

processes and giving the appearance of the so called von Korff fibers, the true 

nature of which has been disputed (Moss, 1974). Matrix constituents that are minor 

in circumpulpal dentin seem to be substantial in mantle dentin: bone sialoprotein, 

osteopontin, phospholipids and γ-carboxy glutamic acid (gla) proteins of the 

osteocalcin type are all prominent in the mantle dentin matrix (Mc Kee et al, 1996; 

de Vries, 1987; Camarda et al, 1987). As discussed already, a distinct characteristic 

of mineral formation in mantle dentin is the key role of extracellular matrix vesicles 

(ECMVs), where initial formation of mineral takes place. This was shown 

dramatically in a study (Takano et al, 1998) where the inhibitory effect of a 

bisphosphonate –HEBP- was examined on rodent incisors: HEBP interfered 

significantly with initial mineralization in circumpulpal dentin but not in mantle dentin, 

although it did interfere with crystal growth in the latter. Mantle dentin also shows a 

special affinity for cationic dyes -suggesting an increased concentration of 
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proteoglycans- and phospholipid staining reagents (Lormée et al, 1989). 

Glycosaminoglycan levels have been shown, instead, to be only significant in the 

peritubular part of the circumpulpal dentin (Takagi et al, 1990). Proteoglycans in high 

concentration in the mantle dentin zone could function as mineral inhibitors, 

comparable to their presumed function in predentin.   

Another factor contributing to dentin variability is related to the presence of 

peritubular in addition to intertubular dentin. Peritubular dentin is hypermineralized 

with respect to intertubular dentin, with differences in the estimated mineral content 

reported ranging from  9% to 40% (Miller et al, 1971; Johnson and Boyde, 1984). In 

addition to the mineral density difference, peritubular dentin is apparently scarce in 

collagen and results from the mineralization of a noncollagenous extracellular matrix 

(Johnson and Boyde, 1984). In humans, peritubular dentin starts to develop inside 

dentinal tubules at some distance away from the dentin-predentin border, that is, at 

a different site than intertubular dentin starts developing. As already discussed, the 

peritubular dentin matrix is primarily noncollagenous in nature and, also, the 

concentration of the NCPs in it is different than in intertubular dentin. Osteonectin, 

bone sialoprotein, osteocalcin, α2Hsglycoprotein and lipids are more abundant, as 

opposed to the highly phosphorylated matrix proteins that are the most prominent 

matrix noncollagenous group in intertubular dentin (M Goldberg, 1995). The mineral 

phase of peritubular dentin also is different, as it is also rich in Mg and contains high 

amounts of carbonate, accounting for its high solubility. The diameter and relative 

density of dentinal tubules is not the same throughout the coronal dentin (Pashley, 

1986). In human teeth dentinal tubules measuring approximately 2.5μm near the 
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pulp, 1.2μm in the middle of the distance between pulp and dentinoenamel junction 

(DEJ) and 900μm near DEJ with a concomitant increase in their density towards the 

pulp (59,000 to 76,000 tubules/mm2 at the pulpal surface decreasing to half that 

density close to the DEJ). This creates a respective increase of the 

peritubular/intertubular relative density ratio from the DEJ towards the pulp, reported 

for human teeth to range from 5 close to the predentin border to .03 close to DEJ. 

Given that, as discussed, the mineral and matrix composition of the peritubular and 

intertubular dentin differ, this relative density ratio change should be reflected in a 

parallel variability in mineral and matrix properties.  

There are other factors as well that may be contributing to a spatial variability in 

dentin, such as the already discussed distinct spatial-temporal pattern of expression 

for major SIBLING matrix proteins. DMP1 expression has been shown to peak at the 

initial mineral nucleation and gradually decrease during subsequent mineralization of 

the organic matrix, whereas DSPP components are expressed later (D’Souza et al, 

1997; George et al, 2004), with unknown effects on the mineral that is formed when 

these proteins are expressed. Another such factor is the globular (known also as 

calcospheric) mineralization pattern of dentin. With continued crystal growth, 

globular masses are formed, that continue to enlarge and eventually fuse to form a 

single calcified mass. This pattern is best seen in circumpulpal dentin just below 

mantle dentin. Failure of these globular masses fail to fuse leaves small areas of 

uncalcified matrix known as interglobular dentin, that have an altered distribution of 

elements, such as calcium and phosphorus at various ages within coronal dentin 

(Lefèvre et al, 1976).  
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In addition to the histologic variability present in dentin at the time of formation, 

dentin changes continuously with age. There is a progressive deposition of 

peritubular dentin and obliteration of the tubule is observed. This obliteration of the 

dentinal tubules in human teeth most frequently occurs at the apical (tip of the root) 

third of root dentin and in the crown halfway between the DEJ and the surface of the 

pulp. Secondary dentin also keeps forming with age, continuously obliterating the 

pulp space. Although these effects are very important for the pulp-dentin complex 

physiology –in aspects like sensory transduction to the pulp, caries progression and 

immunology of the pulp- they are not directly linked to primary dentin maturation and 

will not be examined here.  

 

METHODS USED FOR ANALYSIS OF MINERAL AND MATRIX AND FOR 

TISSUE MATURATION STUDIES IN HARD TISSUES 

Mineral can be determined using classic analytic techniques or more modern 

methods (reviewed in Boskey et al, 2001). Classic analytic techniques include 

gravimetry, calorimetry and atomic absorption spectrophotometry. As an example, 

gravimetric analyses have been used to measure the water content, mineral content 

and the carbonate content of bone. These analyses are based on the loss of water 

at 110°, the loss of organic matrix at 600° and the loss of carbonate at 900°. 

Gravimetric measures provide reproducible quantitative information, but no 

information on the quality of the mineral. Similar limitations hold for the rest of the 

classic analysis techniques, in addition to the need for homogenized samples and 

the resulting lack of data on spatial distribution. 
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More modern methods are spectroscopy-based and the most widely used 

among them have been energy dispersive X-ray microanalysis (EDAX), X-ray 

diffraction, nuclear magnetic resonance (NMR), backscattered electron imaging 

(BSE), tomographic methods, infrared and Raman spectroscopy. Some of these 

techniques look at site-to-site variations of the analyzed parameters: EDAX analysis 

of unmineralized osteoid and mineralized bone has provided information on 

geographic distribution of calcium to phosphorus (Ca:P) ratios and the presence of 

trace elements. BSE (in a similar way to microradiography) has provided detailed 

information on the distribution of mineral with a high spatial resolution. BSE provides 

a two-dimensional image, which is reported to be highly correlated with ash weight 

but independent of compositional and crystal size variations. Thus, neither of these 

techniques provides sufficient information on the mineral quality.  

X-ray diffraction has been the most widely used method in characterization of 

the bone mineral and studies of mineral maturation in calcifying tissues, with 

relevant data has been provided by 31P NMR (Burnell et al, 1980; Bonar et al, 1983; 

Wu et al, 1994). Through these techniques, it was shown that mineral phases such 

as amorphous tricalcium phosphate or octacalcium phosphate [OCP- 

Ca8(HPO4)2(PO4)4], which were earlier postulated to be apatite precursors, are not 

present during mineral formation, or are transiently present. X-ray diffraction is 

based on characteristic X-ray patterns that crystalline materials produce, wherein the 

angular locations of the peaks are directly related to the spacing between planes of 

atoms. This method was used to identify bone mineral as an analogue of 

hydroxyapatite (DeJong, 1926). The peaks in the bone and dentin X-ray diffraction 
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are broadened, as is characteristic of poorly crystalline materials in which the lattice 

planes are not perfectly in register and where there are impurities (holes, 

substitutions, kinks) in the lattice positions. According to the Debye-Scherrer 

equation, the line broadening β, of any unique peak measured at half maximum, is 

inversely related to the size and crystal perfection in that lattice plane. The 

broadening associated with the plane that cuts halfway through the c-axis of the 

apatite structure (the 002 plane) is often used to calculate the approximate c-axis 

size/perfection in bone samples. Although X-ray diffraction is the method of choice 

for assessing mineral quality, it has major limitations for use in tissue maturation 

studies, for example there is no capability for spatial variation analysis and there is a 

need for a relatively large amount of sample. Despite the substantial amount of data 

from these techniques on developing bone, there have not been any similar studies 

on developing dentin.  

Numerous studies have been published on matrix components in dentin of 

different species. Most of these studies have used immunolocalization (referenced in 

section “Spatial Variation in Dentin Properties”) to identify associations of particular 

matrix proteins with the different dentin compartments and structures or with 

particular mineral formation locations and stages. Some studies addressed similar 

questions about the dentin matrix employing histochemical staining or aminoacid 

analysis of whole crown and root dentin (Takagi and Sasaki 1986; Takagi et al, 

1988; Mc Curdy et al, 1988). Although immunohistochemistry or histochemistry are 

powerful localization techniques, they suffer serious limitations regarding quantitative 

analysis, as the intrinsic density of hard tissues makes fixation and affinity of 
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proteins for stains or antibodies unstable and the alternative of prior mineral 

extraction may be removing many of the target proteins (Mc Kee and Nancy, 1994).  

 

     VIBRATIONAL SPECTROSCOPIC ANALYSIS IN MINERALIZED TISSUES 

Vibrational spectroscopy (Raman and infrared) has been extensively used to 

study mineralized tissues. These tissues may have formed as a result of physiologic 

(Mendelsohn et al, 1989; Rey et al, 1991; Tarnowski et al, 2002; About et al, 2000; 

Atti et al, 2002) or pathologic processes (Boskey, 1990; Tomazic et al, 1994; 

Camacho et al, 1996; Paschalis et al, 1997; Miller et al, 2004). Examples of tissues 

formed by physiologic processes are bones, teeth, calcified cartilage and for tissues 

formed through pathologic processes are atherosclerotic plaques, kidney and 

salivary stones and other pathologic deposits.  In the relevant studies, vibrational 

spectroscopy provided information on the nature of the mineral phases present, the 

changes in the mineral and matrix composition as mineralization occurs and the 

nature and amounts of substituents in the mineral (reviewed in Boskey et al, 2005). 

All the relevant analyses were based on studies of synthetic or purified similar 

compounds (Rey et al, 1991; Paschalis et al, 1996; Bohic et al, 1998).   

Fourier Transform Infrared (FTIR) analysis is based on the interaction of 

chemical structural fragments within molecules, known as functional groups, with 

infrared radiation (Smith, 2001). Functional groups tend to absorb infrared radiation 

in the same wavenumber (a different unit system for radiation wavelength) range 

regardless of the structure of the rest of the molecule that the functional group is in. 

For instance, the C=O stretch of a carbonyl group occurs at ~1700 cm-1 in ketones, 
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aldehydes and carboxylic acids. This correlation between the wavenumbers at which 

a molecule absorbs infrared radiation and its structure allows the structure of 

unknown molecules to be identified from the molecule’s infrared spectrum. Small 

shifts from the characteristic wavenumber at which a particular group vibrates occur 

depending on the chemical environment of this group in the molecule and this allows 

for identification of this environment. For instance, well crystalline hydroxyapatites 

absorb infrared radiation at slightly different wavenumbers than less crystalline 

hydroxyapatites (see also Chapter II-Methods and Materials). In this way, broad 

spectral envelopes can be created from the existence of one functional group in 

different chemical environments within a molecule (qualitative analysis). This 

spectral envelopes are prominent in spectra from tissues, as the environment of 

groups analyzed within the tissues molecules is always more complex than in pure 

chemical compounds. Infrared analysis can also be quantitative for an already 

identified functional group through the intensity of radiation absorbed at the spectral 

region where it is active. This happens because IR spectroscopy obeys Beer’s Law, 

according to which the intensity of the absorbed radiation is also dependent and 

linearly related to concentrations of the analyte. Figure 1-3  presents a characteristic 

spectrum of dentin. The spectral regions of interest are marked on the spectrum. 

The bands marked are associated with vibrational modes of the mineral (ν1ν3 PO43-, 

ν2 carbonate) and the matrix (Amide I and II) of the tissue. The information that is 

provided from analysis of these bands is discussed in Chapters II and III. 
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      FOURIER TRANSFORM INFRARED IMAGING 

There is a need, in hard tissue studies, to investigate spatial variations of the 

mineral and extracellular matrix properties in quantitative and qualitative terms. 

Recently, Fourier transform infrared imaging (FTIRI) and microspectroscopy 

(FTIRM), techniques where an array detector (FTIRI) or a single detector (FTIRM) is 

coupled with an infrared spectrometer through an optical microscope, have been 

used to obtain this type of information. FTIRI and FTIRM have also been used to 

investigate the development of hard tissues. Through their use mineralization in the 

developing tooth (Magne et al, 2000; Verdelis et al, 2003), conversion of calcified 

cartilage into bone (Mendelsohn et al, 1989) and calcification of turkey tendon 

(Gadaleta et al, 1996) have been studied. FTIRI was the main method that was used 

for analysis of developing dentin throughout this thesis. 

FTIRI has been used to obtain qualitative and quantitative information on both 

mineral and matrix of bone (Mendelsohn et al, 1999; Marcott et al, 1999; Boskey et 

al, 2002), calcifying cartilage cultures (Boskey et al, 2002), cartilage (Bhargava and 

Levin, 2001; Camacho et al, 2001) and dentin (Verdelis et al, 2003). Its main 

advantage lies in  providing molecular information on a large sample of a tissue, 

while retaining a relatively high spatial resolution of ~ 7μm x 7μm. The principle of 

operation and the layout of the imaging system for the FTIRI analysis are shown in 

Figure 1-4 a and b. 
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          SCOPE AND RATIONALE FOR THIS DISSERTATION  

As already discussed, in a dentin maturation study it is desirable to analyze the 

whole of dentin, from predentin to dentinoenamel junction, in many stages of 

development and interpret results accordingly. Imaging analysis techniques applied 

on a suitable developing dentin model have the potential to gather important 

information on the subject. The objective of this dissertation is to validate a fetal 

bovine model for the study of changes in dentin mineral and matrix during 

maturation using spectroscopic imaging analysis, describe these changes in quantity 

and quality terms and apply the same approach to evaluate developing murine 

dentin. Four topics are presented: topographical  representation of mantle and 

circumpulpal dentin mineral properties of the developing bovine incisor, studies of 

mineral changes during dentin maturation of the bovine incisor, studies of matrix 

changes during dentin maturation of the bovine incisor and studies of mineral 

properties changes of the developing mouse molar. The specific aims in this thesis 

and the chapters in which the relevant experiments are described are listed below: 

Specific Aim I: To test the hypothesis that spatial variation in dentin mineral and 

matrix properties during maturation is a function of both tissue age and the tissue’s 

histological variation  and  that a fetal bovine incisor incisor model can be used for 

the study of dentin maturation. This specific aim is addressed in Chapter II, which 

describes the evaluation of two mineral properties, mineral: matrix ratio and -on a 

semi- quantitative basis- crystallinity, through images of spatial distribution for the 

two properties. Analysis of the two main dentin compartments, mantle and 

circumpulpal dentin, from the cervical through the incisal end in fetal bovine incisors 
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and in control 1-1.5yr-old bovine incisors was conducted. Preparation of the 

samples, the FTIRI system, spectroscopic parameters and the imaging techniques 

used are described in the Methods section. Patterns of spatial variation that mineral 

properties present in this section are examined and whether they represent different 

tissue ages or an inherent variation in the dentin tissue properties is discussed.  

Specific Aim II: To describe the changes in mineral properties during mantle and 

circumpulpal dentin maturation and compare them between the two dentin regions. 

This was accomplished in the study described in Chapter III,  where quantitative 

results for dentin mineral during maturation in mantle and in circumpulpal dentin are 

presented. A different FTIRI system and processing techniques were used in this 

part and are described. Groups of spectra, from a particular development stage of 

mantle or circumpulpal dentin, were extracted from the imaging files and processed 

for analysis. Changes in the apatite crystallinity, the carbonate and the acid 

phosphate substitution in the dentin apatite are described for each maturation stage. 

The type of carbonate substitutions is also evaluated and the results from this part 

are compared to existing dentin data and similar data reported for developing bone. 

In the second part of Chapter III, localized by microdissection mantle and 

circumpulpal dentin samples of consecutive tissue ages were acquired for FTIR 

spectroscopical analysis of the maturing matrix.  

Specific Aim III:  To test the hypothesis that there is a substantial change in 

relative content of highly phosphorylated proteins or decrease in the level of 

phosphorylation of phosphorylated proteins in dentin matrix during maturation and 

that this change is different in mantle and circumpulpal dentin, as reflected in their 
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relative content of phosphoproteins. The experiment addressing this specific aim is 

described in Chapter IV. A whole matrix amino acid and matrix phosphorylation 

analysis was performed on, similar to the ones analyzed in Chapter III, 

microdissected dentin specimens. Phosphorylation was examined because, as 

discussed above, it is believed to be the most relevant to biomineralization post-

translational modification of matrix proteins and because it has been reported to vary 

with dentin maturation. Amino acid analysis was performed to investigate possible 

changes in the relative noncollagenous protein concentration. As in Chapter III, 

these specimens came from either mantle or circumpulpal dentin, covering a range 

of tissue development stages. 

Specific Aim IV: To test the hypothesis that the model of mineral maturation 

used holds within species. In Chapter V, the feasibility of analyzing developing 

mouse molars with a similar approach to that used on bovine teeth in Chapters II 

and III was investigated. The patterns of spatial variation in mineral properties that 

developing mouse molars exhibit were analyzed and association of these patterns 

with dentin maturation and histological variability within the crown dentin is 

discussed. This study was undertaken to establish a methodology for prospective 

studies of the effects of deletion or mutation of dentin matrix proteins on forming 

mineral at different developmental stages of dentin. These studies will be studies of 

dentin mineral from early formation phases through maturity on mice transgenic for 

one or more of the proteins postulated to have a function in dentin formation and 

mineralization.  
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Fig. 1-1: Structure of a tooth.  (a): 3D rendering of a microcomputed
tomography analysis of a fetal bovine I4 incisor. Cervical and incisal parts 
are marked. (b): view on the sagittal plane as shown in a. p=pulp, 
d=dentin, e=enamel. 
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Fig. 1-2: Scanning electron image from a sectioned surface of a 
PMMA embedded fetal bovine incisor –backscattered electron imaging 
mode. The surface of the incisor was etched with .5N HCL to expose 
dentinal tubules.  (a): lower magnification. e=enamel, md=mantle 
dentin, cd=circumpulpal dentin, pd=predentin. Note the decrease in 
density and diameter of the dentinal tubules from the predentin to the 
mantle dentin.   (b): higher magnification of insert area  in a. The 
peritubular dentin and intertubular dentin are marked.
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Fig. 1-3: Representative IR spectrum of dentin. The bands representing 
main vibrational modes of interest are marked.
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Fig. 1-4: Fourier Transform Infrared Imaging analysis. (a):principle of 
operation  (b):the imaging system.

a.

b.
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    CHAPTER II 

 

CHARACTERIZATION OF MINERAL AND MATRIX CHANGES IN A BOVINE                     

DEVELOPING DENTIN MODEL BY FOURIER TRANSFORM INFRARED 

IMAGING 

                 

           INTRODUCTION 

Dentin presents an excellent substrate for analysis in biomineralization studies, 

as samples for experimental studies are abundant, it has previously been 

characterized as homogenate (Butler, 1984; Linde, 1984) and it is not subject to 

remodeling (Veis, 1993; Rey et al, 1995). There are two distinct dentin tissue 

compartments: mantle dentin, which lies adjacent to the enamel and is the first of the 

two formed, and circumpulpal dentin, which is the remainder. These two 

compartments have distinct matrix composition, physical and biomechanical 

properties (Ten Cate, 1994) and would be expected to present different patterns of 

biomineralization and mineral maturation. The existing anatomical variation within 

dentin (Pashley, 1989) mandates a comprehensive analysis of both mantle and 

circumpulpal dentin throughout their width (mineralization front to DEJ) so that 

developmental variation can be differentiated from the inherent anatomical 

variations. 



In this experiment, Fourier Transform Infrared Imaging (FTIRI), which is an 

infrared spectroscopic imaging method, was used to evaluate a fetal bovine model 

for the developmental investigation of mineral maturation. The distribution of mineral 

properties was examined for the whole width of dentin from early to late maturational 

stages, present in cervical and incisal regions, respectively, of bovine fetal incisors. 

The results of the imaging analysis in fetal incisors were compared with results from 

fully developed, mature 1 yr-old incisors.  

 

        MATERIALS AND METHODS 

Specimen Preparation: Dentin samples from 6 developing unerupted incisors of 

third trimester calves and from 3 mature bovine incisors (1 year-old animals) were 

analyzed in this study. Bovine jaws were obtained from a commercial source (Aries 

Scientific, Dallas, TX) and stored  at -70°C until they were used, at which time teeth 

were extracted from the jaws. The specimens were partially fixed in absolute 

methanol, dehydrated through a series of ethanol gradients and acetone and 

embedded in polymethylmethacrylate (PMMA). All teeth embedded in PMMA  were 

bisected longitudinally with a diamond wafer wheel saw and nondecalcified 2μm-

thick sections of the incisor crowns produced from one half using a Jung Polycut E 

microtome (Reichert-Jung, Heildeberg, Germany). The sections were mounted 

between two barium fluoride (BaF2) windows for Fourier Transform Infrared Imaging 

(FTIRI). 

The incisors from 1 year-old animals and not older were selected as the mature 

control because with age attrition of the incisors introduces pathology in the dental 

43



tissues, making older samples impractical for the study, and also because primary 

teeth, as the bovine fetal teeth are, are subsequently replaced by the permanent 

dentition. 

FTIRI analysis/ general methodology: In FTIRI spectra from the imaging files are 

processed for several spectroscopic parameters, calculated from different spectral 

areas. Each one of these parameters represents a property of the mineral or the 

matrix of the analyzed tissue. Calculated values all parameters can be shown as 

images, through the use of a color scale. The main spectral areas for dentin from 

which information is provided are shown in Figure 1-3 (Chapter I). All these areas 

are associated with a specific functional group (molecule or part of it) and some are 

wide spectral envelopes, consisting of underlying bands that are generated from 

different chemical environments of the functional group under analysis. Figure 2-1a 

shows the ν1ν3 PO4
3- spectral area from a dentin spectrum. This is the major area 

that is associated with the mineral and represents vibrational modes of the mineral 

phosphate. Underlying bands (defined through a process called curve-fitting), which 

compose the final wide ν1ν3 PO4
3- contour, are shown in that area. Integration of 

spectral areas and areas of sub-bands or calculation of relative peak heights of sub-

bands provide the information for mineral and matrix components. Based on these 

integrated areas or on peak heights, spectroscopic parameters for the mineral and 

the matrix properties have been defined and validated by independent methods. The 

ratio of the area of the phosphate vibration (900-1200 cm-1) to that of the Amide I 

vibration (1585-1720 cm-1) is directly related to the chemically determined mineral 

content, based on ash weight (Pienkowski et al, 1997, Faibish et al, 2005). The 
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relative areas of sub-band at 1123 cm-1 (Rey et al, 1991; Paschalis et al, 1996) or 

the ratio of the 1030 and 1020 cm-1 sub-bands (Paschalis et al, 1996) correlate 

linearly with the relative content of HA in acid phosphate or HA crystal size and 

perfection in the c-axis direction as determined by X-ray diffraction analyses. 

Carbonate to phosphate ratios indicate the extent of carbonate incorporation into the 

hydroxyapatite lattice. Analysis of relative areas of sub-bands within the carbonate 

spectral area indicates whether the carbonate has replaced hydroxide (A-type) or 

phosphate (B-type) or is a labile, located on the periphery of the HA crystal form 

(Rey et al, 1989). This is shown on a ν2 carbonate spectral area from a dentin 

spectrum in Figure 2-2.  In FTIRI relative areas of sub-bands are often expressed 

ratios of peak height intensities (Boskey et al, 2003), as will be done for calculation 

of parameters throughout this thesis (Figure 2-1 b). Analysis of carbonate 

substitution was not done in this experiment, as the high wavenumber cut off (900 

cm-1) of the system used did not permit collection of data for the carbonate band 

(855-890 cm-1). 

FTIRI analysis/ data collection and processing: FTIRI images were obtained 

from 20-40 fields (one 400μm x 400μm field was scanned at a time) per section, as 

described in detail elsewhere (Mendelsohn et al, 1999). This FTIR microscope is 

also coupled to an optical microscope for visually selecting the fields for analysis and 

acquisition of optical micrographs for reference. The average signal to noise ratio of 

the detector in the spectral region examined is approx. 50:1.  All 4096 spectra from 

each field were processed for calculation of mineral and matrix parameters and 

creation of images using BioRad WinIR-Pro (BioRad Laboratories, Cambridge, MA) 
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program for processing of spectra as follows: Before parameter calculation the 

PMMA contribution was spectrally subtracted  based on its 1729cm-1 component 

and the spectra in the file were baselined.  In some cases individual spectra were 

extracted from selected areas for more detailed analysis. Parameters examined 

were: 1) mineral:matrix ratio (the ratio of the integrated areas of the phosphate ν1,ν3 

contour (900-1200 cm-1) to the  Amide I band (1585-1700 cm-1)  2) crystallinity 

determined as the 1030 cm-1 to 1020 cm-1 peak height ratio.  Calculation was not 

performed for enamel pixels, as parameters were out of scale. A Microcal Origin 

(Microcal Software Inc., Northhampton, MA) program was used for plotting 

numerical results from the spectral processing program and create spectral images. 

Images were combined by superimposing overlapping regions of each 400μm x 

400μm data set.  

 

  RESULTS  

Typical sections of bovine teeth used for FTIR analyses are shown in Figure 2-3 

a and b. FTIR images and spectroscopic information are shown from these 

specimens, but they are representative of all results obtained. The cervical (young 

tissue), mid-crown and incisal (mature tissue) areas that were analyzed are 

indicated in the Figure. Only cervical and incisal areas were analyzed for the 1 yr-old 

incisor to compare mineral and matrix properties and to validate the assumption that 

variation in dentin properties as a function of cervical/incisal location on the mature 

incisor is essentially negligible.  
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Figure 2-3c shows selected superimposed spectra acquired from the fetal incisor 

section of Figure 2-3a. These spectra  were extracted from images of the mantle 

dentin area ~50μm from the DEJ at different distances from the cervix (as indicated). 

As tissue age progresses, a continuous increase in the total area of ν1,ν3  phosphate 

band of the successive in age tissue parts is obvious. Apart from the relative 

increase in area, a significant change of the ν1,ν3  phosphate band contour is also 

visible. This change is characteristic of a transition from an  apatite with low 

crystallinity and high acidic phosphate content mineral to a more crystalline one with 

a lower acidic phosphate content (Bailey and Holt, 1989). 

Results from FTIRI analysis of the indicated cervical, mid-crown and incisal 

areas of the fetal calf incisor are presented in Figure 2-4 as composites of 

micrographs and images from the 400μm x 400μm fields analyzed. Micrographs of 

fields are presented in 2-4a and respective color-coded images of mineral:matrix in 

2-4b and crystallinity in 2-4c. Dentin (D), enamel (E) and pulp space (P) are noted 

on the micrograph from the cervical part. Similar composites of micrographs, 

mineral:matrix and crystallinity images are shown in Figure 2-5 from fields analyzed 

in control cervical and incisal areas of the 1 yr-old incisor. For the very young tissue 

(Figure 2-4-cervical region) both mineral:matrix and crystallinity values are higher 

adjacent to the DEJ, in the region that coincides with mantle dentin. At more mature 

stages mineral:matrix values in this area are lower while crystallinity values are not 

different for most of the circumpulpal dentin (Figure 2-4-middle and incisal regions). 

Mineral:matrix values reach a plateau for the narrow strip of mantle dentin tissue, 

while the rest of dentin matrix still shows increases in mineral:matrix  (Figure2-4-
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incisal and Figure 2-5). At later stages of development (Figure 2-4-incisal), 

mineral:matrix values and crystallinity values in circumpulpal dentin show a wide 

variability for locations at different distances from the mineralization front. This 

variability remains through late maturity (Figure 2-5-incisal). Overall values for the 

parameters examined are almost equal in cervical and incisal areas of the mature 

incisor. Crystallinity values are still increasing after complete mineralization 

(evidenced by the constant mineral:matrix ratio) of both mantle and circumpulpal 

dentin.   

Figure 2-6 shows the distribution of values for mineral:matrix ratio and 

crystallinity along the predentin-enamel line represented by the white arrows on the 

cervical field from the fetal bovine incisor (2-6a) and the adjacent to the pulp cervical 

field of the 1 yr-old incisor (2-6b) that are noted with an asterisk in Figures 2-4a and 

2-5a, respectively. The whole range of dentin (predentin through enamel) is covered 

in the distribution shown in 2-6a, whereas only the mineralization front and part of 

circumpulpal dentin is covered in 2-6b. In the mineralization front region for the fetal 

and 1 yr-old incisor, there is no sharp line demarcating the soft (predentin) from the 

mineralized matrix, but rather a zone of transition between the two (taking place 

within approximately 30 μm in young teeth). This transition is obvious in the 

mineral:matrix value distributions and partly evidenced in the crystallinity values 

distribution along the line analyzed. Adjacent to the DEJ in the fetal incisor, another 

transition from dentin mineral:matrix values to values characteristic for enamel 

occurs. Enamel crystallinity is not shown as the parameter cannot be calculated, as 

there is no “non-stoichiometric apatite” component and crystallinity values for these 
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pixels have been omitted. In mature teeth, the same distributions cannot be 

analyzed for the DEJ area, as enamel fractures away during sectioning.  

 

DISCUSSION 

Results from this experiment demonstrate the usefulness of the fetal bovine 

tooth model for characterizing changes in mineral properties of dentin during tooth 

development through the use of molecular spectroscopy imaging analysis. They also 

form the basis for acquisition of data in the Chapters III and IV.  In the present 

section, age and site dependent changes in relative mineral content and relative 

crystal maturity in the mineral are analyzed on whole incisors. Quantitative 

information on these and additional mineral properties –such as acidic phosphate 

presence in the mineral, relative amount of carbonate and type of carbonate 

substitution in the apatite- were obtained from another set of data –using a newer 

FTIRI system for analysis- in Chapter III. In the latter section, localization on the 

incisors of mantle or circumpulpal dentin areas of distinct tissue age, but 

histologically equivalent, is performed and the resulting groups of spectra, each 

representing one dentin type and one time point in tissue maturation, were analyzed. 

Localization of samples acquired for the analysis of the fetal bovine developing 

dentin matrix properties in Chapter IV was also based on this experiment (Chapter 

II).  

The spectroscopic parameters used here, mineral:matrix and crystallinity of the 

mineral, were selected for dentin analysis because they are independent of 

sectioning artifacts (being ratios) and they represent important properties for any 
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mineralized tissue.  Control-fully formed incisors were also analyzed and results 

compared. Similar tooth groups ,namely lateral incisors  II, III and IV (I2, I3 and I4), 

were used throughout Chapters III-V in order to have a relatively homogeneous 

crown anatomy, stage of eruption and formation between samples. These incisors 

from fetal 3rd trimester bovine animals were also a convenient tooth group to use for 

the present studies’ purposes as teeth are still unerupted, while the cervical part of 

the crown  has started forming, thus providing very early and relatively late stages of 

dentin formation within the same tooth. A notable point from the results shown is that 

enamel of the 3rd trimester incisors used in many cases could be sectioned intact, 

precluding study of the DEJ and developing enamel in the same sections. 

 The presence of the two distinct dentin compartments is obvious from the 

FTIRI data. The spectroscopic results demonstrate an earlier initiation of 

mineralization and crystal growth in mantle dentin and a more prolonged crystal 

growth period in circumpulpal dentin that finally reaches overall higher mineral:matrix 

values. Finally, mantle dentin evolves as a separate entity from the rest of dentin. 

The extent of mantle dentin (whether it’s hypo- or hypermineralized with respect to 

the rest of dentin), as well as relative matrix content have been a subject of 

controversy (Moss, 1974; Herr et al, 1986). The distribution  of mineral content and 

crystallinity, with respect to that in the circumpulpal dentin, seems to be clearly 

defined using FTIRI analysis. The distinct pattern of mineral maturation that appears 

in mantle dentin (final mineral:matrix and crystallinity levels, faster rate of changes in 

mantle dentin) may be part of a separate  mechanism of biomineralization in this 

area. In mantle dentin mineralization is believed to be initiated in matrix vesicles 
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(Katchburian, 1973). The highly phosphorylated proteins, which are generally 

thought to regulate biomineralization in circumpulpal dentin (Butler, 1998), are less 

abundant  here (Rahima et al, 1988) and minor circumpulpal dentin constituents, 

such as osteopontin and osteocalcin, are prominent (Mc Kee et al, 1996).  It is also 

interesting to note that crystallinity values continue to increase after complete 

mineralization (evidenced by the constant mineral:matrix) of both mantle and 

circumpulpal dentin. As crystal growth would also increase the mineral:matrix, that 

increase in crystallinity can rather signify a decrease in ionic substitutions (mainly, 

acid phosphate and carbonate substitution) in the hydroxyapatite crystal.  A 

continuing increase in mineral crystallinity after the relative mineral density has 

stopped increasing has also been observed in bone maturation (Bonnar et al, 1983). 

Spatial variation in mineral properties is caused both by the presence of mantle and 

circumpulpal dentin, and by the other factors discussed in Chapter I.  This is more 

evident in the distribution of mineral:matrix values within circumpulpal dentin of the 1 

yr-old incisor. While the mineralization is essentially completed (no difference 

between cervical and incisal region), the mineral:matrix is highly variable, with a 

maximum occurring  around the middle of circumpulpal dentin. Previous studies 

have also shown mineral  variation as a function of location in mature teeth (Kinney 

et al, 2001; Kinney et al, 1996). The study of Tesch et al, 2001, also showed 

variations in the structural and mechanical properties of the mineral as a function of 

location in the mature human tooth by various methods, including FTIR 

microspectroscopy. This variation is in part due to the decrease of the dentinal 

tubule density and a respective decrease in the peritubular dentin density in areas 
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farther away from the mineralization front (Pashley, 1989). As the mineral 

concentration and most likely the nature of the organic matrix in peritubular dentin 

differ from that in intertubular dentin (Weiner et al, 1999) a spatial variation is 

anticipated.  

In the present results, linear gradients of increasing mineral:matrix  at the 

mineralization front and the DEJ and an increasing crystallinity at the mineralization 

front for fetal and 1 yr-old bovine incisors were shown. These results agree with 

observations made by other techniques. The extensive predentin to dentin transition 

was observed in the rat both morphologically and by histochemical methods 

(Goldberg et al, 1992). The existence of a DEJ mineral gradient was  hypothesized 

based on observations of biomechanical properties  (Marshall et al, 2001; White et 

al, 2000). An important function of the DEJ gradient, such as being a barrier to crack 

propagation, was speculated in these studies. Moreover, as a conclusion from a 

similar observed continuum in mineral crystal properties of the DEJ (Cuisinier et al, 

2001) a protein continuum was also hypothesized for DEJ. In our study, a 

compatible to this hypothesis progressive decrease in the Amide I (total matrix 

protein content) area was present in the DEJ. Although thickness is not always 

uniform within sections and relative integrated areas of bands (not area ratios) are 

therefore not entirely reliable, these findings most likely hold true as they came from 

a few adjacent pixels, between which section thickness would not vary substantially.  

 The fetal bovine model presented covers a maturation span for the tissue 

from very early stages to near full maturity. With tissue maturation, mineral 

proliferates through secondary nucleation, growth and perfection of individual 
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crystals and crystal agglomeration (Boskey et al, 1990; Heywood et al, 1990), while 

there is no further apposition of matrix proteins in the tissue after they are laid down 

either in the predentin or at the mineralization front. In this way, each mineral:matrix 

value within dentin represents a single time point in the development of the particular 

tissue. As the results from the 1-yr-old bovine incisor show, in the mature incisors 

values for mineral content and mineral maturation from cervical dentin are at 

comparable levels with these of the incisal area and the two areas are most likely 

eventually equivalent in properties. This validates the assumption that in the 3rd 

trimester fetal incisors differences in tissue properties between cervical and incisal 

areas for comparable locations with respect to the pulp or the DEJ are solely due to 

tissue age difference.  

The fetal bovine model analyzed by FTIRI, as presented here, provides the 

ability for temporal and spatial analysis of tissue maturation, with ~7μm spatial 

resolution. Discrete stages of formation can be isolated and analysis can be 

conducted separately for mantle and circumpulpal dentin. The temporal resolution 

that the methodology used here provides is also a critical issue in order to 

understand how tissue matrices regulate the physicochemical mechanism of apatite 

formation, as different proteins may function at different tissue development stages 

(D’Souza et al, 1997; Papagerakis et al, 2002). Maturation of the mineral in hard 

tissues has been the subject of many studies (Roberts et al, 1992; Sodek et al, 

2000; Bonnar et al, 1991; Aoba et al, 1990; Sydney-Zax et al, 1991). Changes in 

mineral properties reported in these studies can be compared to those observed 

during in vitro maturation of synthetically produced apatite (Rey et al, 1995). In 
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tissue studies, samples of various tissue ages have been analyzed, following 

isolation through the use of methods such as density fractionation (Grynpas and 

Hunter, 1988; Roberts et al, 1992; Sodek et al, 2000; Bonnar et al, 1991) or 

microdissection (Aoba and Moreno, 1990; Sydney-Zax et al, 1991). Although these 

isolation methods provide separation of tissue parts with dissimilar properties, they 

may introduce a certain range in the tissue age of the samples examined, depending 

on the efficiency of the separation method used, and the need for isolating  discrete 

tissue age specimens for analysis has been stressed (Rey et al, 1995). For 

developing dentin, there has been a reports from a study (Magne et al, 2001) in 

which FTIR microspectroscopy was used to study mineral and matrix maturation as 

a function of tissue location on the crown  of fully formed human molar dentin. 

Spectroscopic parameters for the mineral and the matrix similar to the ones 

examined here, in this and the next chapter, was examined in this study. Anatomical 

variation, as already explained however, is a concern in the interpretation of the 

results of this study, since the mineral and matrix properties distribution between the 

mineralization front and DEJ was assumed to only represent variation due to tissue 

maturation. This concern is even bigger for analysis on teeth from other species, 

such as human, where the intertubular to peritubular dentin relative density ratio 

varies significantly from the mineralization front to the DEJ.  

In situ studies of dentin mineral and matrix maturation provide the opportunity to 

analyze the complex interactions between mineral and matrix of tissues during the 

biomineralization process. The fetal bovine model and FTIRI as a technique 

evaluated here show the development of mantle and circumpulpal dentin as 
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separate entities, the contribution of histological variation in the properties of each 

and the creation of histological structures with characteristic properties such as 

tissue interfaces in the mineralization front and DEJ area. Based on this model and 

FTIRI as a technique, analysis of the sequence of events that define dentin 

biomineralization  can be made.  

  

55



900 960 1020 1080 1140 1200
0.00

0.10

0.20

0.30

0.40

0.50

1030

1020

1045

1060

1076

1092

1123

1145

1160

960

979

999

crystallinit
y

acid 
phosphate

A
bs

or
ba

nc
e

cm-1

900 960 1020 1080 1140 1200
0.00

0.10

0.20

0.30

0.40

0.50

cm-1

A
bs

or
ba

nc
e

crystallinity

acid 
phosphate

Fig. 2-1 : Representative  ν1ν3 phosphate band from dentin spectrum. 
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(Next page) Fig.2-3: Areas analyzed by FTIRI in fetal and mature bovine 
incisors and superimposed spectra extracted from fetal bovine incisor. 
(a): Areas analyzed from 3rd trimester I2 developing incisor (b): Areas 
analyzed from 1 yr-old I4 incisor Young dentin –cervical- and older dentin 
–mid-crown and incisal- areas are noted.  Rectangles indicate areas 
analyzed. Cervical and incisal areas analyzed as controls also indicated 
on 1yr-old incisor. (c) Spectra extracted from mantle dentin area of fields 
analyzed in incisor 1a at various distances from cervix of the tooth (as 
indicated in 1a). ν1,ν3 PO43+ and Amide I bands noted. 
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(Next page) Fig. 2-4: FTIR Imaging analysis of 400x400 μm consecutive 
fields from cervical, mid-crown and incisal parts of fetal calf incisor in 
Figure 2-3. Composites of (a) actual field optical micrographs (b)  
mineral:matrix ratio FTIR images (c) crystallinity FTIR images. 
Distribution of mineral:matrix and crystallinity values along a predentin to 
enamel line for the field marked with an asterisk is shown in fig. 2-6 a. 
P=Pulp, D=Dentin, E=Enamel. Bar=1mm.
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(Next page) Fig. 2-5: FTIR Imaging analysis of 400x400 μm 
consecutive fields from cervical and incisal parts of 1 year-old bovine 
incisor in Figure 2-3. (a) optical micrographs (b) mineral:matrix ratio 
FTIR images (c) crystallinity FTIR images. Distribution of mineral:matrix
and crystallinity values along a predentin to dentin line for the field 
marked with an asterisk is shown in fig. 2-6 b. P=Pulp, D=Dentin.  
Bar=1mm.
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Fig.2-5

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

a.

b.

c.

cervical

incisal

*

1.0
1.08
1.16
1.24
1.32
1.40
1.48
1.56
1.64
1.72
1.80

1.0
1.08
1.16
1.24
1.32
1.40
1.48
1.56
1.64
1.72
1.80

1mm

P D

63



(Next page) Fig. 2-6: Micrographs of the fields marked with an asterisk 
in Figures 2-4 a (fetal incisor) and 2-5 a(1 yr-old incisor). Graphs of 
mineral:matrix and crystallinity values taken from along the lines 
indicated by the white arrows on these fields are presented next to the 
respective micrographs.
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Fig.2-6
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CHAPTER III 

CHARACTERIZATION OF MINERAL AND MATRIX CHANGES IN DENTIN : 

SPECTRAL ANALYSIS         

    INTRODUCTION  

In this chapter, changes in the properties of mantle and circumpulpal dentin 

compartments are examined in the mineral, through FTIRI results on developing 

incisor sections, and in the matrix, through FTIR analysis of microdissected 

mantle and circumpulpal dentin specimens. The basis for use of the developing 

calf incisors as a model for studying the dentin mineral and matrix maturation 

was established in Chapter II. In that study, it was shown that dentin mineral 

properties present a large spatial variability, mostly as a result of a respective 

histological variability at all developmental stages, when examined from the 

mineralization front through the DEJ. Mantle and circumpulpal dentin, on the 

other hand, present distinct  mineral, at least, properties at any developmental 

stage, from the newly laid tissue through final maturation. Also presented was the 

extensive transition in mineral properties present at the dentinoenamel junction 

(DEJ), which calls for precise localization of dentin adjacent to DEJ. The results 

from Chapter II were used for reproducible localization of mantle and 

circumpulpal dentin immediately adjacent to mantle dentin, to make dentin areas 

of successive tissue age compared as histologically equivalent as possible. 

 



The purpose of this study was to examine and compare the change in the 

mineral and matrix properties within the developing mantle and circumpulpal 

bovine dentin. Mineral density (expressed as mineral:matrix), overall mineral 

maturity (expressed as crystallinity) , the two major ionic substitutions in the 

apatite, acidic phosphate and carbonate substitution, and type of carbonate 

substitution are examined. In the part of spectral analysis of microdissected 

dentin samples, the relative water content of the developing tissue and 

conformation of the dentin matrix are also examined.  

 

        METHODS AND MATERIALS 

Specimen preparation: In this study, twelve (left and right) lateral incisors 3 

(I3) from six 3rd trimester fetal calves were used for FTIRI analysis. The samples 

were processed for histology, embedded in PMMA and 2μm sections cut as 

described in Chapter II.  

FTIRI-data analysis: FTIRI analysis data were obtained using a different 

FTIR Imaging system (Spectrum Spotlight Imaging System, Perkin-Elmer 

Instruments, Shelton, CT) than that described previously, with capability for 

scanning of continuous areas and shorter scanning times. A different from the 

one used in Chapter II data processing software, with capability of spatial and 

spectral masking, was also used here. The FTIRI instrument consists of a 

continuous scan interferometer interfaced to a MCT (Mercury-Cadmium-

Telluride) focal plane 2x8 array detector, yielding 16 spectra at a time. There is a 

one-to-one optical mapping correspondence between each detector element and 
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a ~ 7 x 7μm spot within the tissue which is located at the focal plane of an IR 

microscope. Cervical, middle-crown and incisal areas (see below) were analyzed 

with a 4cm-1 spectral resolution. A continuous segment of dentin from the cervical 

4,000μm of the crown was analyzed and the rest of the crowns were scanned in 

non-continuous segments (middle and incisal). At all locations, the whole DEJ 

and at least 300μm of dentin adjacent to DEJ were scanned. Spectra were 

transferred to yield images corresponding to infrared band areas, peak height 

ratios and integrated area ratios by a combination of instrument software and 

ISYS chemical imaging software (v 3.1, Spectral Dimensions Inc., Olney, MD, 

USA). Background spectra were collected under identical conditions from the 

same BaF2 windows. After acquisition, spectra were truncated to allow analysis 

of the region of interest (2000-700 cm-1), zero-corrected for the baseline and the 

spectral contribution of PMMA embedding media was subtracted using ISYS 

software. 

FTIRI- data processing: The FTIRI data  processing general methodology 

has been described in Chapter II. Successive maturation stage areas for mantle 

and circumpulpal dentin were identified, from each one of which pooled spectra 

were extracted (shown schematically on an analyzed incisor micrograph in figure 

3-2). Identification of these areas was done as follows: after processing of the 

FTIRI files as described in Chapter II, the DEJ was defined as the point of 

transition to progressively higher mineral: matrix values based on the 

mineral:matrix images already masked (non-tissue pixels in each analyzed field 

excluded from the image). The DEJ in the mineral: matrix images was typically 
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represented by a ~35μm, or ~5 pixels (see also discussion in Chapter II,) wide 

transition from the low mineral:matrix values characteristic for the developing and 

mature mantle dentin to the very high values characteristic for enamel. For 

analysis of mantle dentin, spectra were pooled and extracted in the selected 

maturation stages from the approximately 30μm of mantle dentin closest to the 

beginning of the DEJ. For circumpulpal dentin analysis, the equivalent area was 

dentin located from 100μm to135μm (35μm wide areas) from the beginning of 

DEJ in the same maturation stages (cervical to incisal locations). The length of 

these mantle and circumpulpal areas for analysis was approximately 130μm in a 

cervical to incisal direction for each maturation point, thus making a total of  ~100 

pixels at each mantle or circumpulpal dentin observation. The selection of the 

above analyzed dentin locations for every maturation stage was based on the 

imaging results from all the incisors. These results indicated an average 

approximately 100μm width for mantle dentin in lateral incisors I3, based on 

distribution of values in mineral: matrix and mineral crystallinity with respect to 

the rest of dentin and that was approximately the same width found for mantle 

dentin from the results of Chapter II. The area analyzed for circumpulpal dentin 

was that immediately adjacent to mantle dentin. This area was selected so that it 

histologically corresponded to the mantle dentin analyzed as close as possible, 

while including many maturation time points (starting the analysis as close to the 

cervix of the crown as possible). Twelve to fifteen points in a cervical to incisal 

direction on the crown were typically chosen for each incisor, starting at the most 

cervical point where enamel was present and proceeding to the incisal end, 
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collecting data every 200-400μm for the 1,000μm of the cervical end of the 

crown, then every 500-1,000μm towards the incisal edge for the rest of the 

analyzed cervical field. Relatively more areas were selected for spectral analysis 

in the cervical region, as in a pilot study it was found that the biggest changes in 

mineral properties occur during the initial stages in maturation. If the 

predetermined locations were not available, the closest locations for which data 

was available were used. In case of local section defects, the closest intact areas 

also substituted for designated mantle and circumpulpal areas. The final results 

for each analyzed parameter were grouped at 200μm regular intervals for the 

cervical 1,000μm and at 500μm after that and were plotted as means and 

standard deviations of values for every parameter at the designated distances 

from the cervix of the tooth.  

In most of the sections, on the cervical ends of the crown mineralization had 

just started for dentin and enamel was still in the secretory or early maturation 

stage, where matrix produced is substantial and has not been yet degraded and 

mineral density is low. As a result, the DEJ was not readily identifiable on the 

mineral: matrix images in these areas and, to address this, a different 

spectroscopic parameter was developed from the ratio of the 1650 and 1660cm-1 

relative peak heights in the Amide I band for locating the DEJ. That parameter is 

based on the fact that the 1660cm-1 represents a collagen triple helix peak, while 

amelogenins, a main group (90% of the matrix) of similar proteins formed during 

enamel development, form a characteristic α-helix (Krishnaraju and Scheyer, 

2003) which generate a different peak occurring at 1650cm-1. Identification of 
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early enamel using the 1650:1660 cm-1 spectroscopic ratio was validated by 

SEM backscattered imaging on blocks from analyzed sections in a pilot part. For 

the SEM analysis, the PMMA blocks were platinum-coated and a Quanta 6000 

SEM unit (FEI, Peabody, MA) was used. Images of this ratio and mineral: matrix 

images from cervical areas of one incisor section were compared to scanning 

electron microscopy images of the selected incisors embedded in PMMA. After 

they were identified, an outline of dentin areas to be analyzed was generated on 

the mineral: matrix and 1650:1660 cm-1 images through a spatial masking 

function. A single spectrum was then produced as a product of addition of all the 

spectra from the ~100 pixels in the area and was exported for processing into a 

second spectroscopic analysis software (Win IR-Pro 3.1, Digilab, MA). The 

spectroscopic parameters examined were: mineral:matrix ratios, crystallinity 

(acquired as described in Chapter II) and relative acidic phosphate content of the 

mineral defined as relative peak height at 1123cm-1: peak height of ν1ν3 PO4
3- 

band at ~1040cm-1 (Paschalis et al, 1996; Rey et al, 1991). A separate set of 

thicker (5μm) sections from the same left incisors were used for analysis of the 

carbonate band, as the latter is relatively weaker than the ν1ν3 PO4
3- band and 

the S/N had to be enhanced in the young parts of the mineral. The  ν2 carbonate 

band consists of 3 sub-bands, corresponding to different types of carbonate 

substitution. These sub-bands within the broader carbonate spectral envelope 

were shown in Figure 2-2. Analysis of carbonate data was conducted as 

described by Rey et al (Rey et al, 1989). Parameters analyzed were as follows: 

relative carbonate mineral content defined as integrated area of ν2CO3
2-: 
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integrated ν1ν3 PO4
3- area ratio, relative type A carbonate substitution defined as 

the 879/871cm-1 relative peak heights ratio, relative labile carbonate substitution 

defined as the 866/871cm-1 relative peak height ratio, where the 871 cm-1 band 

corresponds to B type carbonate substitution.  

Results for each parameter analyzed as described above were transferred 

into a Microsoft Excel datasheet and expressed as means and standard 

deviations from all left or right incisors of the animals analyzed. One of the right 

incisor samples was lost during processing, as a result of which a left incisor 

analyzed was unpaired. Results from a second right incisor were also discarded, 

after analysis indicated contamination with organic matter probably during 

processing. Results are shown only for left incisors analyzed and the correlation 

of those to the results from their right counterparts is discussed. 

Microdissected dentin specimens/ spectral analysis: In a second part of this 

study, nondecalcified mantle and circumpulpal dentin samples of progressive 

tissue age were microdissected from four left and right  I3 incisors from 2 fetal  

(3rd trimester of gestation) calves. The microdissected specimens were analyzed 

by diffuse reflectance  (single transmission spectrum of the sample ground made 

into a pellet with infrared inactive KBr) FTIR. Each one of the animals provided 

the samples for either mantle or circumpulpal dentin. The incisors were again 

kept at -80°C until dissected. The microdissected dentin pieces of either mantle 

or circumpulpal dentin from a right incisor were combined with the respective 

microdissected pieces from the left incisor of the same animal, again to provide 

adequate S/N levels in young dentin specimens, where mineral was less dense. 

 73



Dissection was performed as follows: Incisors were mounted to a holder using a 

dental thermoplastic materialand sectioned by a diamond wafer disc on an 

automated sectioning device (Isomet 5000, Buehler, Germany), under copious 

irrigation with water. Approximately 800μm thick sections were acquired by serial 

sectioning of incisors perpendicularly to the long axis of the crown (shown on a 

3D reconstruction of a microcomputing tomography analysis of an incisor in 

Figure 3-9 a), starting by the most cervical part of the crown and proceeding to 

the incisal. A total of 9 sections were acquired per incisor. The microdissection of 

dentin specimens was subsequently performed on the sections under the 

dissection microscope using scalpel blades. After removal of the enamel layer on 

every section, the borders of dentin to be dissected were marked by pencil on the 

section surface. Mantle dentin specimens were acquired from the ~ 80μm next to 

the DEJ, while circumpulpal specimens came from a ~80μm zone located 20-

40μm away from mantle dentin (Figure 3-9 b). These locations for mantle and 

circumpulpal dentin on I3 incisors were defined by the FTIRI results in the 

present study and Chapter II. Every microdissected specimen provided 0.2-0.7 

mgs of tissue. Immediately after dissection, the dentin specimens were 

homogenized with 200mg of KBr in a Spex-Mill  microchamber cooled by liquid 

N2 and pressed into pellets which were analyzed by FTIR. A Nicolet FT-IR 4700 

(Thermo Corporation, Madison, WI) spectrometer was used for analysis in the 

4000 cm-1 to 400 cm-1 region, with a 4 cm-1 resolution and 256 co-additions. The 

pellets containing the specimens were subsequently stored in a dessicator at 4°C 

overnight, after which spectra were acquired again. A third FTIR analysis of the 
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same specimen pellets was performed after overnight heating at 105°C for 

complete dehydration of the samples. The spectra were analyzed using 

spectroscopic software (Win IR-Pro 3.1, Digilab, MA), after spectral subtraction of 

water vapor and baselining. The integrated area and spectral contour for a broad 

band in the 2500-3500 cm-1 region and the spectral contour of the amide I band 

(1580-1725cm-1) were compared after normalization for the amide I band, which 

represents the total amount of matrix. 

 

  RESULTS 

Figure 3-1 shows one of the incisors used in a pilot part for validation of the 

1650:1660 cm-1 relative peak heights ratio to differentiate between young enamel 

and dentin in the cervical area. The mineral:matrix images are shown (a), as 

image of the whole cervical area and of the most cervical part (insert) that was 

also analyzed by SEM (in c). While enamel in the rest of the crown presents 

characteristically high mineral:matrix values, young enamel (the approximately 

500μm most cervical part) cannot be differentiated well from the adjacent dentin. 

On the 1650:1660 cm-1 ratio image (b) enamel is readily identifiable, extending 

down to the cervical loop. Higher magnification of the small area pointed by the 

arrow on c is shown on d, with dentin and enamel marked. 

The distribution of mineral: matrix values in the developing crown of the left 

incisors, from mantle and circumpulpal dentin data points, is shown in Figure 3-3. 

Means and standard deviations are shown for respective distances from the 

incisor cervix of areas (where standard deviation values are not visible, they are 
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smaller than the data points plotted). The total number of observations was 

n=221 for the 6 left incisors analyzed and n=109 for the 4 right incisors analyzed. 

Similar distributions are shown for crystallinity (Figure 3-4), relative acidic 

phosphate content (Figure 3-5), relative carbonate in apatite content (Figure 3-6), 

type A/type B carbonate substitution (Figure 3-7) and relative amount of labile 

carbonate (Figure 3-8). All the results are reported as ratios. 

The pattern of spectral changes observed from the microdissected dentin 

specimens analysis did not present a difference between mantle and 

circumpulpal dentin, at least from the one series of specimens, which was 

examined for each. Spectral results from only mantle dentin specimens is shown 

here.  Representative spectra from microdissected mantle dentin specimens 

located at the distances from the cervix noted are shown in Figure 3-10a. The 

scale for each spectrum is adjusted so that the Amide I areas in all 3 spectra are 

equal. The mineral:matrix ratio increases from dentin located at the tooth cervix 

to the most incisally located (7200 μm) dentin, in a way parallel to that observed 

in the FTIRI analysis described above. The broad band between 2500 and 3500 

cm-1 area decreases in area from the dentin dissected at 0μm to dentin dissected 

after 3600 μm, after which it remains constant. The scale of the spectra has been 

adjusted so that all 3 spectra present a similar peak height, to facilitate 

comparison. Amide I areas from the spectra shown in Figure 3-10 a are 

superimposed and shown in Figure 3-10 b. In the spectra from dentin located 

close to the cervix, in addition to the 1660 cm-1 characteristic peak of carbonyl 

groups in a collagen triple helical structure, there is a prominent peak around 
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1640 cm-1, which forms an overall less sharp contour to the Amide I band. This 

1640m cm-1 peak is gradually eliminated in spectra from the more incisally 

located dentin specimens, until the Amide I peak becomes very well defined 

around 1660 cm-1 in the most incisally located specimens. Spectra from the 

dentin specimen dissected at 800μm (most cervical section) before and after 

heating at 105° C are shown in Figure 3-11. The area of the 2,500-3,500 cm-1 

band greatly decreases after dehydration, indicating that the difference observed 

in this band between cervical and more mature dentin spectra is due mainly to a 

decrease in water content.  

 

DISCUSSION 

The results for all the mineral properties studied here were examined 

separately as obtained from the left I3 incisors and from their right counterparts. 

Similar patterns in the distribution of the respective values (as means and 

standard deviations) were found between left and right incisors as a group for 

each one of these spectroscopic parameters corresponding to the mineral 

properties. On the other hand, comparative analysis of the mineral:matrix 

distribution in left and right incisors of the same animal did not show a high 

correlation in the respective patterns between counterparts. In most cases, the 

correlation in distribution of any spectroscopic parameter between a left and a 

right incisor of the same animal was not higher than the correlation between two 

random samples. This suggests that factors other than developmental variability 

between animals are equally responsible for variability observed in the results 
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from different samples. Differences in orientation of the sectioning plane on the 

developing crown can be expected to be a factor contributing to variability in 

distribution within dentin for the spectroscopic parameters examined. Sectioning 

orientation-related variability would affect similar analyses equally on mature 

teeth. In mature mouse molars, it has been observed by microcomputed 

tomography (unpublished results) that very different levels and patterns of 

distribution of mineral density could be acquired at different planes of analysis. 

Another reason for variability in the results is also the lack of precise formation 

and eruption stage of the crown among the different animals examined. Although 

all the animals analyzed were from the early third trimester of gestation, selected 

according to their crowns being formed to the same extent and one tooth type 

was analyzed, the developmental stage of dentin on their crown or their final 

crown length could not be exactly standardized. The length of teeth of the same 

type differs between animals and distance from cervix was selected by 

convention to represent tissue age in this study, although it cannot be exactly 

reproducible from one incisor to the other. Representation of dentin tissue age by 

mineral:matrix value within mantle or circumpulpal dentin of the same tooth, as 

was attempted in a pilot study, showed a poorer correlation with changes in the 

properties examined. This was possibly due to the fact that overall ranges of 

mineral density between different teeth can be different and/or the ambiguity 

involved in selection of image pixels next to the DEJ that make up mantle dentin.  

The results for mineral:matrix show that while mineral density values in 

mantle dentin are initially similar to, or even a little greater than, those in the 
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circumpulpal dentin that is immediately adjacent to it, they steadily become 15-

20% lower. These mineral density values in mantle and circumpulpal dentin 

continue increasing always on parallel levels, presenting at the same time some 

fluctuation along the crown, that seems to affect both dentin compartments the 

same. Finally these values reach a plateau where there is very little or no 

increase close to the incisal edge. As shown on the graphs, data points for 

circumpulpal dentin start higher up from the cervix of the incisor, at approximately 

800µm, as in the very young dentin areas a strip of circumpulpal dentin wide 

enough for analysis has not been yet formed. As discussed already in Chapter II, 

it is possible that close to the DEJ a terminal branching of the dentinal tubules 

creates a higher relative amount of matrix, further adding to the lower 

mineral:matrix due to the inherent lower extent of mineralization in mantle dentin. 

Also contributing to the lower mineral density observed in mantle dentin may be a 

decrease in the relative density of the hypermineralized peritubular dentin, 

although the mineral density decrease observed is much steeper than could be 

explained by the difference in the relative density of peritubular dentin alone. The 

fluctuations in the increase in mineral density along the crown may be explained 

by the wavy distribution of dentinal tubules within the crown, which in a single 

sectioning plane might create alternating areas of higher and lower density of 

dentinal tubules and consequently peritubular:intertubular dentin ratio, as just 

discussed. Alternatively, masses of  hypomineralized interglobular dentin 

presenting periodically on the analyzed plane within the crown could also 

contribute to these fluctuations observed. To the best of the author’s knowledge, 
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no similar mineral density data in dentin to which the results of the present study 

could be compared exists in the literature. Similar quantitative reports on mineral 

density changes have been published on human cortical, trabecular and osteonal 

bone mineral maturation using FTIR microspectroscopy (Paschalis et al, 1996; 

Paschalis et al, 1997). For the osteonal bone, a much lower range  of changes in 

the mineral:matrix values (approximately 25%)was described from the center of 

the osteon (youngest bone) to its periphery (most mature part), probably as a 

result of bone remodeling that does not allow for a tissue age range as wide as in 

dentin. Data from lamellar cortical and trabecular bone cannot be directly 

compared to the present data, due to its anatomical complexity. 

Whereas  mineral density expressed as mineral:matrix is analyzed from the 

integrated areas of the and the Amide I bands of the FTIRI results, crystallinity of 

the mineral and relative acidic phosphate content of the hydroxyapatite are 

spectral parameters represented by subbands within the broad ν1,ν3 PO4
3- band. 

For quantitative determination of variations in the broad contour of poorly 

crystalline hydroxyapatite (as dentin hydroxyapatite is) data reduction techniques 

have been used, such as Fourier self-deconvolution (Rey et al, 1991; Rey et al, 

1990) and curve fitting (Pleshko et al, 1991). Nevertheless, there is a certain 

amount of subjectivity involved with each one. Fourier self deconvolution requires 

a subjective choice of line narrowing parameters such as the full width at half 

height of the underlying bands. Curve fitting is tedious and requires the input of 

several parameters subjective such as the position, number and shape of the 

underlying bands. In this study, crystallinity was calculated as the ratio of  the 
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relative peak heights at 1030 and 1020 cm-1, which arise from stoichiometric and 

non-stoichiometric, HPO4
2- and CO3

2- containing apatite environments, 

respectively (Rey et al, 1991; Paschalis et al, 1996; Paschalis et al, 1997). This 

relative peak height ratio has also been shown to be correlated with results using 

a curve fitting process in bone (Boskey et al, 2003). In a similar way, the relative 

HPO4
2- content in hydroxyapatite was calculated as the ratio of relative peak 

heights at 1123 cm-1 (Rey et al, 1991; Gadaleta et al, 1996; Paschalis et al, 

1996) and the overall ν1,ν3 PO4
3-  band peak height. It has to be noted that the 

relative peak heights analysis is semi-quantitative. During maturation there is an 

increase in crystallinity up to some point (approximately 5,000 µm from the cervix 

in our samples), after which the crystallinity values decrease again (Figure 3-4). 

A very similar to that described for mineral:matrix pattern of changes was 

observed between mantle and circumpulpal dentin, with circumpulpal dentin 

values being initially lower than the respective in mantle dentin, but soon 

becoming steadily higher. The final decrease in the crystallinity values can be 

explained by a great amount of peritubular dentin forming late in dentin 

maturation, if indeed peritubular dentin mineral is less stoichiometric than 

intertubular dentin mineral. While these changes in the semi-quantitative 

1030/1020 cm-1 ratio analysis are relatively small (approximately 10%), the real 

changes in crystallinity values may be much greater. A consistent trend of 

decrease in acidic phosphate content during maturation was noted, although in 

this case the difference between mantle and circumpulpal dentin levels was 

much smaller (Figure 3-5). As with crystallinity, these changes in the relative 
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acidic phosphate content happen over a wide time span (a long distance from the 

cervix) and after a plateau the acidic phosphate values slightly raise again 

towards the incisal edge, probably because of late formation of peritubular 

dentin, as just discussed. In the Magne et al FTIR microscopy study of dentin 

maturation (Magne et al, 2001), crystallinity was analyzed using the same 

1030/1020 relative peak heights ratio that was used here. It was reported that 

dentin at the mineralization front, which was considered to constitute the earliest 

formed dentin, is poorly crystalline but very soon mineral crystals reach their final 

crystallinity values and do not evolve more. The present results did not corrobate 

those observations, as crystallinity seems to be increasing during a wide tissue 

age span. There are a number of differences in methodology between the 

present and the Magne et al study, as no distinction between mantle and 

circumpulpal dentin was made in the latter, the dentin areas compared were not 

histologically equivalent and no numerical data was given. Additionally, the 

observations in the Magne et al study were made on mature samples, in which 

hydroxyapatite crystals even adjacent to the mineralization front had probably 

matured enough to present crystallinity levels similar to those of dentin that had 

been laid down earlier. The same study reported decrease of the HPO4
2- during 

maturation in dentin, although the rate at which this decrease occurs was not 

defined. Several studies of maturation in synthetic apatites (Gadaleta et al, 1996) 

or bone (Bonar et al, 1983; Rey et al, 1991; Paschalis et al 1996; Paschalis et al, 

1997) also showed mineral crystallinity analyzed by either X-ray diffraction or 

spectroscopically increasing with tissue age. The existing quantitative data in 
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osteonal and lamellar bone (Paschalis at al, 1996; Paschalis et al, 1997) suggest 

that the overall increase in mineral crystallinity is much higher than the one 

observed here. The decrease in HPO4
2- relative content has also been reported 

in bone (Bonar et al 1983; Roufosse et al, 1984; Rey et al, 1995). Ionic 

substitutions, such as the HPO4
2-, are very important in determining the reactivity 

and physical properties of hydroxyapatite. In a study where infrared spectroscopy 

and X-ray diffraction were used to analyze hydroxyapatite heated at different 

temperatures (Young and Holcomb, 1984) it was concluded that HPO4
2- expands 

the a axis at a rate of ~0.0015Å/ wt%, along with structural H2O. Carbonate 

substitution  for phosphate, which is the other major ionic substitution in 

biological apatites, has been shown to induce crystal disorder, even in well-

crystallized hydroxyapatites (Le Geros et al, 1968). Findings of the present study 

on carbonate substitution are discussed below. 

Because the main carbonate band (ν2CO3
2-) is relatively weak in the early 

mineral, study of the carbonate substitution was conducted on thick (5μm) 

sections, which are unsuitable for study of the ν1ν3 PO4
3- band, the main band 

from which results for mineral were acquired. While the spectral contour of the 

ν1ν3 PO4
3- band  on the thick sections is disrupted in the mature parts of the 

dentin sections, because the high intensities supersaturate the detector, the 

integrated area of the band can be still used for normalization of the carbonate 

content results, as found in a pilot study. From our findings, no significant change 

was found in the relative carbonate amount (carbonate:mineral) in either mantle 

or circumpulpal dentin during maturation of the tissue. The levels of carbonate 
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substitution between mantle and circumpulpal dentin are very similar, showing a 

slight trend for higher carbonate substitution during later stages of maturation in 

mantle dentin (Figure 3-6). Type of substitution also does not show to change 

between A and B types during dentin maturation (Figure 3-7). A type substitution 

was, nevertheless, somewhat higher in circumpulpal dentin compared to mantle 

dentin. No significant changes were observed, as well, in the relative presence of 

labile carbonate (Figure 3-8). The spectral assignments previously described 

(Rey et al, 1989) were used for study of the type of substitution: a band at 

871cm-1 has been assigned to carbonate ions located in PO4
3- sites (type A 

substitution), at 878cm-1 in OH- sites (type B) and a component at 866 cm-1 has 

been assigned to a labile carbonate environment. The relative peak height ratios 

879cm-1/871cm-1 and  866cm-1/871cm-1 were used here for analysis of relative 

changes in type of substitution. Changes in the relative amount of carbonate and 

the type of carbonate substitution in the nonstoichiometric apatite during 

maturation has been a controversial issue. The average content for carbonate in 

dentin has been estimated by gravimetry (expressed as carbonate) to be on very 

similar levels to that of bone, of the order of 3-4% (Posner AS and Tannenbaum 

PJ, 1984). In a study of mineral properties in density fractionated dentin (Coklica 

V et al, 1969), a slight increase of CO2  (ranging from 2.99% to 3.21%), which 

was produced by the existing mineral carbonate and measured by microdiffusion 

as percent of dentin dry weight was reported. In the one existing study on dentin 

maturation, Magne et al (Magne et al, 2001) reported no change in the relative 

amount of carbonate and no indications of rearrangement of carbonate ions in A 
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or B sites, from spectral analysis. For the reasons discussed above, these results 

cannot be directly compared to the present results. More relevant studies have 

been conducted on bone. Paschalis et al, using FTIR microspectroscopy, 

reported a decrease of carbonate relative mineral content with maturation of 

human osteonal bone from the center to the periphery of the osteon, which 

represented a similar change with tissue maturation. The overall drop in the 

CO3
2-/PO4

3- ratio was estimated to be 20-30% from the youngest to the most 

mature mineral in the osteon. In the same study, changes of the carbonate 

environment with advancing tissue age were shown to be a decrease of the labile 

carbonate, slight decrease in Type A and slight increase in Type B carbonate. In 

contrast to those results, in another study of bone mineral maturation (Rey et al, 

1991), an increase of the total carbonate content with increasing bone age was 

found. In this last study, bones samples of different tissue age were acquired by 

density fractionation of embryonic bone and were analyzed by spectroscopy.  

In the second part of this study, spectral analysis of microdissected dentin 

specimens was undertaken in an effort to characterize matrix proteins in a native 

state and other than proteins matrix groups that are likely to be partially or 

completely lost during processing for embedding and sectioning of the tissue. It 

has been previously observed that chemical processing of tissues for microscopy 

incurs the risk of artifacts, such as extraction, displacement, condensation or 

denaturation of matrix components (reviewed in McKee and Nanci, 1995). The 

organic solvents applied and the dehydration that has to occur in order for the 

specimens to be infiltrated by the resin result in loss of chemical groups, such as 
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water and lipids, that are part of the analysis. Also, because only partial fixation 

of tissues was used here in order to avoid spectral artifacts from standard 

methods of fixation (Aparicio et al, 2002), the native state of matrix proteins 

under analysis might have been compromised. While determination of the 

relative matrix content, as performed in the last and the present chapters, is not 

likely to be affected by tissue processing, spectral analysis of microdissected 

mantle and circumpulpal dentin specimens was needed for analysis of proteins 

and the non-proteinaceous matrix components of dentin. Water was analyzed 

from the broad band between 2500 cm-1 and 3500cm-1. The OH- stretching  in 

water is a major component of this band, centered at 3420cm-1, while two other 

components of the same broad band are amide A and B (at 3325 and 3095 cm-1, 

respectively), 2 bands that arise from molecular vibrations within the matrix 

proteins (Doyle et al, 1975). The latter bands are thought to originate in a, so 

called, Fermi resonance between the NH-stretching frequency and an overtone 

of the amide II (see below) band. As it can be seen in Figure 3-10 a, the 2500– 

3500cm-1 area decreases with the progress of maturation, mainly within the first 

~3 of total 9 sections. This agrees with the hypothesis that water is being lost 

with the apposition of mineral crystals onto the collagen gap zones and, later, 

between the collagen fibrils. This decrease can be interpreted to loss of water 

mainly, as the great decrease in area of the same band is observed after 

dehydration of the matrix. The water associated with proteins is generally thought 

to be consisting of a structural (cannot be removed without destruction of the 

protein), strongly bound and free fraction. On an average, water has been 
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calculated to account for 8% to 16% of dentin, on an air-dried basis, and can be 

removed by heating to 120ºC (Wetherell and Robinson, 1973). Under the present 

conditions, with acquisition of spectra from freshly dissected specimens all the 

structural and strongly bound and part of the free water must have been 

preserved. In the Magne et al study on dentin maturation (Magne et al, 2001), the 

same conclusion was reached, although the dentin analyzed had previously been 

dehydrated and the total amount of water may have been underestimated. The 

main protein bands that are used for conformational analysis of the matrix are 

amide I (mainly C=O stretching, 1580-1725 cm-1) and amide II (mixed C-N 

stretching and N-H bending, 1500-1600cm-1) (Doyle et al, 1975). In the amide I 

region, which is most useful for peptide structural analysis (Haris and Chapman, 

1995), collagen, as well as synthetic triple helical polypeptides, has a 

characteristic peak around 1660cm-1. Collagen, as discussed in Chapter I, makes 

up approx. 90% of the matrix weight on an average and can be expected to be 

predominantly represented in the C=O stretch vibrational mode. Hydrogen 

bonding and the coupling between transition dipoles are the most important 

factors in conformational sensitivity of the amide I band (Haris and Chapman, 

1995). In our results, the amide I peak from early dentin (up to the 2nd or 3rd 

section out of 9) presents a pronounced broadening towards much lower 

wavelengths, to 1635-1640cm-1 region. This is an area characteristic for a non-

collagen secondary structure, namely the β-sheet structure (Haris and Chapman, 

1995). That must mean that either a non-collagen matrix group is present early in 

mineralization, that is degraded later or the collagen itself has a very different 
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conformation at different stages of dentin maturity. A part of this significant 

conformational change might be due to elevated hydration of collagen during the 

initial maturation stages, as it has been shown to happen with synthetic collagen-

like polypeptides (Doyle et al, 1975). From our study, indeed, the broadening of 

Amide I areas from cervical dentin spectra in question was partly eliminated after 

heat-dehydration of the matrix (not shown here). Still, it is debatable whether this 

was not a result of the intense denaturation of matrix proteins through prolonged 

heating at 110°C. There is not much available information existing on 

conformational changes of the mineralized tissue matrices during maturation. 

The major (at least in some species) dentin noncollagenous protein 

phosphophoryn (discussed more extensively in Chapter IV) has been shown to 

present an extensive β-sheet structure in the presence of apatite (Fujisawa and 

Kuboki, 1998). However, as it will be shown in Chapter IV, data in the relevant 

study of this dissertation did not support the possibility of significant changes in 

phosphophoryn concentration during dentin maturation. No other report exists, in 

our knowledge, on matrix conformational changes during maturation of 

mineralized tissues.  
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Fig.3-1 : Validation of the 1650:1660 cm-1 (noncollagenous:collagen relative peak 
heights ratio) spectroscopic ratio for identification of enamel in early stages of 
maturation on the cervical part of an analyzed incisor. (a) mineral: matrix FTIRI 
image  (b)1650:1660cm-1 FTIRI images  (c) : SEM image of area indicated in a and 
b (SEM analysis performed on the embedded incisor block). Arrow points at area 
shown in higher magnification in d. E=enamel, D=dentin.
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200µm

1mm

Mantle Circum.

Fig. 3-2 : Schematic on identification of mantle and circumpulpal dentin 
areas for acquisition of spectral results from analyzed incisor sections. 
Increasing in distance from cervix mantle and circumpulpal dentin areas 
from which co-added spectra (to one spectrum for the total area) were 
extracted are shown. These areas were based on mineral:matrix images, 
here shown on an optical micrograph of an analyzed I3 incisor. 
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Fig. 3-3: Distribution of mineral:matrix values of mantle and circumpulpal
dentin as a function of distance from the cervix of the incisor. Means and 
standard deviations of data points from all animals at same distance from 
cervix. Where bar is missing, standard deviation is too small to be shown.

Fig. 3-4: Distribution of mineral crystallinity in the incisors crown as a function 
of distance from the cervix of the incisor. Means and standard deviations as in 
fig. 3-2.
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Fig. 3-5: Distribution of relative amount of acidic phosphate in 
the mineral as a function of distance from the cervix of the 
incisor. Means and standard deviations as in fig. 3-3.

Fig. 3-6: Distribution of relative amount of carbonate in mineral as a 
function of distance from the cervix of the incisor. Data from the 5µm 
sections. Means and standard deviations of data points from all animals at 
same distance from cervix. Where bar is missing, data point comes from a 
single observation.
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Fig. 3-7: A:B type of carbonate substitution in the mineral as a 
function of distance from the incisor cervix. Data from the 5µm 
sections. Means and standard deviations as in fig. 3-6.

Fig. 3-8: Relative labile carbonate amount in the mineral as a 
function of distance from the incisor cervix. Data from the 5µm 
sections. Means and standard deviations as in fig. 3-6.
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1 mm

s. 800μm

section 7200μm

Lateral Incisor I4
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Circum.
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a.

b.

Fig. 3-9 : Schematic of method used for dentin specimens microdissection on 
a microCT image of an I4 lateral incisor.  (a): Plane of vertical sectioning 
indicated on 3D image of the incisor. 800 μm vertical crown sections obtained 
sequentially (b): Location of dentin specimens microdissected in mantle (80 
μm strip adjacent to DEJ) and circumpulpal dentin (80 μm strip 80-100μm 
away from DEJ) regions.
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Fig. 3-10: Superimposed spectra from mantle dentin specimens 
dissected at distances from the cervix indicated. Scale for every 
spectrum adjusted for normalization of the total marix (Amide I) 
areas. (a): Total spectral range  (b): Amide I areas of spectra shown 
in A.  Peak heights have been normalized to enable comparison. 

cm-1

0

.5

1

3500 3000 2500 2000 1500 1000 

0

.5

1

3500 3000 2500 2000 1500 1000 

7,200 
µm

3,600 
µm

0 µmA
bs

a.

b.

0

.05

.1

.15

.2

1720 1700 1680 1660 1640 1620 1600 
0

.05

.1

.15

.2

1720 1700 1680 1660 1640 1620 1600 

7,200 
µm 3,600 

µm
0 µm

cm-1

A
bs

95



Fig. 3-11: Spectra from mantle dentin specimen at 0um shown in fig. 4-8a 
undehydrated and after dehydration. Thick line=unprocessed specimen. Dotted 
line=specimen after dehydration by heating at 105° C.
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CHAPTER IV 

ANALYSIS OF MATRIX PHOSPHOPROTEIN TURNOVER AND OF MATRIX 

PHOSPHORYLATION DURING DENTIN DEVELOPMENT 

 

       INTRODUCTION 

As discussed already in Chapter I, noncollagenous proteins are believed to play 

a critical role in the mineralization of hard tissue matrices. The dentin organic matrix 

is rich in characteristic highly acidic phosphorylated proteins, the function of which 

depends on phosphorylation. Contradictory reports on changes in the concentration 

and/or extent of phosphorylation of highly acidic phosphorylated proteins in dentin 

have been published (Veis et al, 1979; Masters PM, 1985; Lee et al, 1983; Fujisawa 

and Kuboki, 1988). As the issue of dentin matrix phosphorylation appears to be of 

great importance to dentin biomineralization, changes in the relative content of 

dentin matrix phosphorylated protein content and in the relative matrix phosphate 

content during maturation of the tissue was examined in this section.  The analysis 

was carried out separately for mantle and circumpulpal dentin specimens. 

A description for each of the highly phosphorylated dentin matrix proteins was 

provided in Chapter I. As there still appears to be some confusion in the literature 

about whether these particular proteins are expressed in the same way in different 

species (such as mice, rats and humans), for the purposes of the present part we 

will be referring to this group as phosphoproteins. 



 

         MATERIALS AND METHODS 

Specimen preparation: I3 and I4 lateral incisors from 6 different 3rd trimester fetal 

bovine animals were used in these studies. I3 and I4 incisors were chosen for 

sampling because of their similar stage of eruption, in the same animal, and their 

similar lengths. The methodology used for preparation of the teeth and serial 

sectioning was that described in Chapter III (preparation of samples for 

microdissection section). Briefly, thick transverse to the long axis of the teeth 

sections from these incisors were cut and the mantle and circumpulpal dentin areas 

were marked for microdissection on these thick sections. The transverse sections 

were 1mm thick for the samples that were amino acid analyzed (conducted earlier in 

the experiment) and 800μm apart for samples analyzed for organic phosphate. For 

both amino acid and organic phosphate analyses, approximately 80μm-wide strips of 

fetal bovine dentin were dissected out of mantle and the part of circumpulpal dentin 

immediately adjacent to mantle dentin, with a typical yield of 8-10 mantle and 6-8 

circumpulpal dentin  samples of progressive tissue age from cervical and incisal 

locations. Four incisors were used for total amino acid analysis and seven for 

determination of total matrix phosphate and  hydroxyproline content (for 

normalization of matrix phosphate content). Mantle and circumpulpal dentin 

specimens were microdissected out of the mesial and distal, respectively, halves of 

the same incisors. The final number of sample series analyzed was 7 for mantle 

dentin and 6 for circumpulpal dentin. Additionally, one I1 (central) and one I2 (first 

lateral) incisors were analyzed for matrix phosphate and hydroxyproline, in order to 
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examine the effect of tooth type on the changes in matrix phosphorylation under 

analysis. 

Amino acid analysis: Specimens for amino acid analysis were desiccated and 

weighed. Each sample was transferred with 200μL of 6N HCL in a glass tube sealed 

in vacuum with nitrogen purging and hydrolyzed at 110°C for 20 hs, after which 

tubes were opened and residual HCL dried by a Speed-Vac system. Complete 

amino acid analysis was performed by a custom-built cation exchange HPLC, 

configured as an amino acid analyzer, as described elsewhere (Yamauchi et al, 

1986).  

Organic Phosphate and hydroxyproline determination: Samples were initially 

demineralized individually in 6 well-tissue culture plates by continuous stirring in 

several changes of 3mL of 0.5N HCL for 48 hs. In a preliminary part, the removal of 

PO4
3- ions was monitored and the number of changes/amount of time needed for 

complete decalcification determined. Serial extracts and demineralized dentin pieces 

were stored. Extracts from each specimen were combined at the end of 

decalcification, neutralized with the theoretically required amount of 6N NaOH and 

lyophilized to reduce their volume. After lyophilization, 2mL of distilled water was 

added to each extract, transferred into a 3.5KDa molecular weight cut-off dialysis 

cassettes (Slide-A-Lyzer, Pierce, Rockford, IL) and dialyzed against several changes 

of 4L volumes of .05N HCL (to prevent reprecipitation of dissolved in extract solution 

PO4
3- ions from hydroxyapatite) to remove all inorganic phosphate from mineral. 

Again, this part was monitored in a pilot study for complete removal of PO4
3- ions 

and the conditions described were found to be adequate for our purposes. After the 
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completion of dialysis, extracts were relyophilized, dialyzed in 500μL 1M NaOH, 

transferred into 2mL heat -resistant, screw-capped Teflon tubes and combined with 

the demineralized dentin samples from which they originated. NaOH dialyzed 

extracts and demineralized pieces in the tubes were subsequently subjected to 

alkaline hydrolysis at 110°C for release of organic phosphate from phosphorylated 

proteins and of hydroxyproline from collagen. A 300μL aliquot was taken from each 

tube at 12 hs for the organic phosphate analysis and a 150μL aliquot at 18hs for 

hydroxyproline determination. These time spans were found  to be optimal for 

organic phosphate release (determined phosphate levels are lower after that time 

point, due to β-elimination) and complete (for Hyp release) collagen hydrolysis, in 

pilot experiments. Aliquots for both the organic phosphate and the Hyp analysis 

were first neutralized by addition of the required amount of 6N HCl. 

Colorimetric determination of phosphate from phosphorylated protein residues 

was performed using a modified malachite green method, as  described by Baykov 

et al (Baykov et al, 1988). For normalization of phosphate results, the total collagen 

content in samples was estimated through hydroxyproline determination, for which a 

colorimetric method (Neuman and Logan, 1949). The particular analytical method for 

phosphate determination was chosen because of the very high sensitivity that it 

provides, as the organic phosphate levels in our samples were relatively low. The 

colorimetric method for Hyp analysis was chosen because its sensitivity is well within 

the range of Hyp concentration in our samples and is also essentially not affected by 

small variations of the sample pH, as other methods based on complexation of the 
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analyte with p-aminobenzaldehyde are. Results in this part were reported as nmols 

phosphate/nmol collagen. 

Pilot experiment for determination of inorganic phosphate reprecipitation: To 

exclude the possibility of re-precipitation of inorganic phosphate from the HCl 

solution on the decalcifying collagen, during the decalcification part, the following 

experiment was performed: dentin was dissected clean of enamel and predentin 

from a 3rd trimester fetal I3 incisor and pulverized using a Spex-Mill apparatus, 

yielding a total of 16 mgs. 8 aliquots of approximately 2mgs of  pulverized dentin 

were decalcified as described above for analysis of matrix phosphorylation and 

decalcified aliquots were divided in two groups of 4 aliquots each, D11-4 and D21-4. 

After decalcification D1 samples were stored at 4°C, while D2 samples were further 

stirred for 4 hours in 3ml of .5N HCl into which 8 mgs of synthetically produced 

apatite were added, to simulate a maximum concentration of mineral that could be 

dissolved in the decalcifying solution of a developing mantle or circumpulpal dentin 

piece. The D2 samples were then washed off twice by stirring in 3ml .5N HCl for 4 

hours. All D1 and D2 aliquots were analyzed for phosphate and hydroxyproline. 

 

   RESULTS 

The results for aspartic acid (Asp), serine (Ser) and tyrosine (Tyr) from 

microdissected mantle and circumpulpal dentin specimens of the four developing 

incisors examined are given on Figure 4-1 a-b for Asp, c-d for Thr and e-f for Ser 

(separate charts for mantle and circumpulpal dentin). Results are expressed as mM 

of each amino acid per mM of collagen (assuming 300 mmols Hyp/mol collagen). 
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Despite some fluctuations around the baseline value, there are no changes 

observed in the relative content of these 3 amino acids in the dentin matrix. Bivariate 

correlation statistical tests performed separately for each of the examined amino 

acids, as well as partial correlation tests with correction for the tooth of origin, failed 

to show any statistical trend of correlation between location of dentin specimen and 

relative amount of Asp, Thr or Ser. Similar statistical results were repeated when the 

mantle and circumpulpal dentin specimens were analyzed in common in order to 

increase the number of observations each time. 

Figure 4-2 presents the results for assessment of possible re-precipitation of 

dissolved apatite phosphate on the dentin matrix experiment. Comparable levels of 

organic phosphate/ hydroxyproline were found for all but one  samples in the D1 

control group and the D2, re-precipitation of apatite phosphate on matrix group. From 

these results, no significant likelihood is demonstrated for such a re-precipitation of 

phosphate from dissolved apatite on proteins of the matrix, as also assessed by an 

independent samples t-test performed.           

The results for microdissected mantle dentin specimens from the I3 and I4 fetal 

incisors analyzed in the matrix phosphorylation analysis part are presented in 

Figures 4-3 a and b, respectively. I3 and I4 mantle dentin results are combined in 

Figure 4-4 c, where a linear regression based on least squares has been added. 

Figures 4-4 a- b-c present similar results for circumpulpal dentin from the same 

teeth. All the graphs show a gradual increase of the relative amount of the matrix 

phosphate which is still present at the maximum distance of dentin specimens from 

the cervix (late stages of maturation). The overall levels of matrix phosphate vary 
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considerably (up to twofold) between different teeth, even of the same type, but 

within any given incisor these levels steadily show a gradient from the cervix to the 

incisal edge. Figures 4-5 and 4-6 present mantle and circumpulpal dentin, 

respectively, results for the I1 and I2 fetal incisors analyzed. These results also show 

an increase of the matrix phosphate with distance of dentin specimen from tooth 

cervix and, hence, tissue age. As there is not enough data from the two teeth, it 

cannot be stated with certainty how the organic phosphate levels in these incisors 

compare to the levels from I3 and I4 incisors. The statistical analysis for the I3 and I4 

incisor data is displayed on tables 4-1 a-b and 4-2 a-b. Both simple and partial 

correlation tests showed a statistically significant (p<0.01) positive correlation of 

matrix phosphorylation with specimen location considered as distance from the 

incisor cervix. The Pearson’s correlation coefficient, on the other hand, shows an 

only fair correlation (R=.348 for mantle and R=.471 in circumpulpal specimens), 

most likely because of the scattering that data points show within a certain series (a 

certain tooth of origin) and between different incisor series, as well as between I3 

and I4 incisors. That last fact also becomes obvious from the increase in Pearson’s 

coefficients in partial correlation, after correction for tooth of origin (Tables 4-2 a-b). 

These results indicated a substantial increase of matrix protein residues that are 

phosphorylated occurring during dentin maturation. This increase occurs to a similar 

extent in mantle and circumpulpal dentin (as estimated by the linear regression).  
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           DISCUSSION  

.Depending on the species, aspartic acid and serine or phosphoserine have 

been reported to constitute from 75% up to 90% of all the amino acid residues of 

dentin highly phosphorylated proteins (Qin et al, 2004), which is the reason for their 

highly anionic character. The levels of the same amino acids in dentin collagen are 

up to ten times lower (Linde, 1984). Since hydroxyproline is an essentially unique 

amino acid to collagen (hydroxylation of proline residues in the dentin matrix only 

occurs in collagen) accounting for approximately 100 amino acid residues per 1,000, 

any changes in the concentration of phosphoproteins relative to that of collagen in 

the matrix is likely to be reflected in a similar change in the ratio of Asp or Ser/ Hyp 

residues of the total matrix amino acid composition. In the present results, the 

relative Asp, Ser and Thr (being the other amino acid that is most commonly 

phosphorylated) to Hyp concentration did not show significant changes from the 

mantle or circumpulpal dentin specimens of newly formed tissue to the more mature 

counterparts (cervical to incisal regions). These values rather fluctuated around an 

average, perhaps as a result of some variability in localization of the specimens 

during specimen acquisition. This amino acid analysis data indicate that there are no 

significant changes in the amount of phosphoproteins in the developing bovine 

dentin. That fact allowed interpretation of the changes in the levels of organic 

phosphate of the matrix.  

The increase in organic phosphate, observed with dentin development, was 

statistically highly significant. Exactly, though, how big this increase is cannot be 

estimated with certainty from the present results. That is probably because the many 
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steps in the analytical procedure and the very different levels between different types 

of teeth introduce some variability. The increase in matrix phosphate seems to be 

extensive, about threefold between youngest and oldest specimens in most of the 

samples analyzed. For the same maturation point (defined by the distance of 

specimen location from the cervix), the organic phosphate/collagen values seem to 

also depended on the particular tooth of origin. This was indicated by the higher 

significance of partial correlation after controlling for tooth of origin and  this might 

reflect differences in maturation stage for these teeth between different animals. 

Although the analysis was focused on two tooth groups, lateral incisors I3 and I4, 

this increase was also observed in the I1 and I2 incisors examined (Figure 4-4 a-b). 

Some outlier data points present in the distribution of organic phosphate with tissue 

age are most likely a result of some contamination in one of the steps of the 

analytical procedure, or some accidental inclusion of enamel during microdissection 

of dentin specimens. Both amino acid analysis and matrix phosphate results were 

reported as a function of distance of specimens from the incisor apex, as the latter 

was shown to correlate well with tissue maturity from the results described in 

Chapter II. Relative mineral density of the specimen, that would have been an 

alternative, was difficult to determine in the same samples due to the limited amount 

that could be obtained for each sample. Whereas an age-dependent degradation 

(evident as multiple protein fragments of lower molecular weights) of phosphorylated 

proteins in the dentin matrix has been well documented (Butler et al, 1981; Jontell , 

1982; Lee et al, 1983), there are few existing reports on changes in the extent of 

matrix phosphorylation with maturation. In one study where human teeth (3-45 
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years-old) were used (Masters PM, 1985), an up to fourfold decrease was observed 

in the levels of organic phosphate of the dentin matrix –in contrast with the present 

data. In the same study, serine was also found to be partially eliminated (by  ~60%) 

as a result of dehydration and aldol cleavage. However, these changes were 

described to be chemically, not enzymatically, induced and the starting point for the 

observations used was at 3 years after beginning of formation, at which point dentin 

is likely to be fully mineralized. Therefore, the observed changes were unlikely to be 

associated with a tightly controlled process such as mineralization. In another study, 

EDTA soluble and insoluble matrix protein fractions from fetal calf and young adult 

bovine dentin were analyzed  by chromatography and amino acid analysis (Lee et al, 

1983). The levels of aspartic acid, serine and phosphoserine were found to be 30-

50% lower in the soluble phosphoprotein pool for older dentin and comparable 

between the two groups in the respective insoluble pool. On the other hand, as 

demonstrated in the results of Chapter II, there is a wide range in mineral, and 

possibly matrix, properties within the crown dentin, independent of tissue age. An 

additional concern is the use of partial collagen hydrolysis method for phosphoserine 

determination in both the studies in question. Partial hydrolysis of the matrix is 

sensitive to the particular conditions used and the extent of hydrolysis needed for a 

complete release of phosphoserine is arguably dependent on the association  of 

phosphoproteins examined with the mineral and the rest of the matrix. Two other 

reports on changes of phosphorylated proteins or phosphoserine concentration in 

the dentin matrix related to dentin age have been made using chromatography and 

amino acid analysis methodology. In these reports, dentin tissue from the whole 
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crown of deciduous and permanent bovine molars (Veis et al, 1979) or crowns and 

root at different stage of formation from 2 year-old cows (Fujisawa and Kuboki, 

1988) were compared. While the conclusions reached are generally similar to the 

present study’s, variability in histology of dentin examined (a wide range of locations 

in the crown, different tooth types, crown vs. root dentin, mantle and circumpulpal 

dentin examined together) in both of the studies does not allow a direct comparison 

with our data. Also, in both studies the protein amount is not examined separately 

from protein phosphorylation in the dentin matrix, as done here, and phosphoserine 

content is instead assumed to fully reflect phosphoprotein concentration. In the 

Fujisawa and Kuboki study, the difference in phosphoserine levels observed ( an 

approximately threefold increase from early to later formation stages) was attributed 

to mantle dentin making a bigger part of the earlier formation stage crowns and roots 

at 2 years of age. Given, though, the small fraction of the total dentin volume 

relatively that mantle dentin represents (see Chapter II-mature 1yr-old calf results), 

this explanation is unlikely to hold true. Additionally to the bovine dentin, in the 

Fujisawa and Kuboki study, rabbit incisor (continuously erupting) dentin from 

different eruption stages was examined. An approximately twofold increase in 

phosphoserine and organic phosphate content was found, giving evidence for an 

increase in matrix phosphorylation with maturation of dentin across species. 

The results in this section did not show any significant differences in the matrix 

phosphate levels between mantle and circumpulpal dentin specimens for any given 

stage of maturation. From the early to the latest stages, these levels were found to 

be very similar between the two dentin compartments. This finding is in contrast with 
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existing reports on phosphoprotein distribution in dentin, made on fetal bovine 

molars (Nakamura et al, 1985), rat incisors (Rahima et al, 1988) and human 

premolars (Takagi and Sasaki, 1986).  In these reports, phosphophoryn, as the 

major dentin phosphoprotein, or highly phosphorylated proteins as a group were 

described to be absent from mantle dentin. Nevertheless, the lack of sound criteria 

for defining mantle dentin in the studies mentioned makes the direct comparison 

between the present and the existing data difficult. Indeed, from this study’s FTIR 

imaging results (described in Chapter II), mantle dentin as a zone that presents 

different mineral properties from the rest of dentin occupies 80-100μm next to DEJ. 

In the report on fetal calf molars (Nakamura et al, 1985), where a monoclonal 

antibody raised against bovine phosphophoryn was used for immunolocalization, the 

results indicate absence of immunostaining in the ~10μm next to the DEJ, a fraction 

of the mantle dentin identified in the present study. Other unique properties of 

mantle dentin, such as the presence of matrix vesicles (Katchburian, 1973) have 

been described to characterize only the most proximal to the DEJ part of mantle 

dentin. On the other hand, in a study of phosphophoryn distribution in rat incisor 

(Rahima et al, 1988) using a polyclonal antibody, the dentin part next to DEJ 

described as mantle dentin that was shown to be scarce in phosphophoryn was also 

10μm wide, which is a very wide zone in a rat incisor and  would correspond to an 

area largely consisting of circumpulpal dentin in a fetal bovine incisor. Technical 

issues, such as limited accessibility of the epitopes on the nondecalcified sections 

used in the immunohistochemistry studies or lack of specificity through use of a stain 

that has an affinity also for other anionic matrix proteins (Takagi and Sasaki, 1986), 
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are also a concern when it comes to comparing the present and existing data. Under 

the present study’s conditions, virtually all the matrix phosphate from the 

microdissected specimens was recovered after demineralization and analyzed 

without interference from the mineral or other matrix groups. The total matrix 

phosphate was analyzed, while only one protein was targeted in the studies that 

used immunolocalization. A certain part of the mantle dentin matrix phosphate 

described in this section may have also originated in phospholipids that are present 

in matrix vesicles (and released by the alkaline hydrolysis performed) and that would 

not be detected in the immunohistochemical and histochemical studies of 

phosphoprotein distribution discussed. 

As discussed in Chapter I (see “Composition of Dentin- b)Matrix”), there has 

been speculation that acidic matrix proteins –especially phosphoproteins in dentin- 

determine where initial deposition of mineral takes place and regulate mineral 

nucleation. Furthermore, it has been proposed that the same proteins may regulate 

crystal growth and determine crystal size and shape. The possibility of a dual role 

has been shown in vitro for PP through experiments of mineral nucleation in different 

states and concentrations (Boskey et al, 1990) and the importance of 

phosphorylation for their function has been demonstrated, as well (Saito et al, 1997; 

Tartaix et al, 2004; Gericke et al, 2005; He et al, 2005). In the present study, the 

present amino acid analysis results the indicated no significant changes in the 

relative amount of dentin phosphoprotein during maturation. On the other hand, a 3 

to 4-fold increase (from very early to latest stages of maturation) in the relative 

amount of organic phosphate of the phosphoproteins was found. Taken together, 
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these results indicate a continued in vivo phosphorylation of the dentin 

phosphoproteins, after their apposition at the mineralization front. The mechanism of 

dentin matrix phosphorylation has been discussed elsewhere. The enzymes 

responsible for phosphorylation of noncollagenous proteins were identified as casein 

kinase I (CKI) and casein kinase II (CKII)-like kinases (Veis et al, 1997; Mikuni-

Takagaki and Glimcher, 1990). Most of the phosphorylation takes place at Ser or Thr 

residues located within acidic sequences of the target protein. ATP and GTP are 

phosphate donors for the phosphorylation reactions, which appear to be tightly 

regulated in mineralized tissues, as shown by studies of activity of CKI and CKII and 

by the fact that residues that are phosphorylated are specifically determined by the 

proteins’ conformation (Veis et al, 1998; He et al, 2005). In the present study, we 

were able to report an increase with tissue age of the dentin matrix phosphorylation 

for both mantle and circumpulpal dentin. For the particular formation stages of the 

teeth that were studied (mainly the I3 and I4 lateral incisors), this increase is still 

present at late maturation, when the dentin mineral density (for the mantle and the 

proximal to the DEJ circumpulpal dentin part examined) has almost reached its final 

levels. It follows that this increase indicates a significance of phosphoproteins in 

dentin in the later parts of mineralization, rather than a function only in initial mineral 

nucleation. A likely function for the newly –after initial mineral deposition- introduced 

matrix phosphate groups would be in the mineral crystal growth regulation. It has 

been determined that “At the less specific end of recognition, a charged protein 

polyelectrolyte can be adsorbed on crystal surfaces by virtue of multiple electrostatic 

interactions” (Adadi et al, 1992), which would result in modification of the direction or 
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altogether inhibition of crystal growth. Something that remains difficult to interpret is 

the activity of serine kinases I and II in the fully mineralized tissue and the origin of 

the ATP or GTP that has been described to be the donor of phosphate groups in 

phosphorylation of  dentin phosphoproteins. Extracellular casein kinase activity has 

to be taking place in dentin, in a way similar to bone as it has been described 

(Mikuni-Takagaki and Glimcher, 1990) in a study where periosteal bone strips were 

isolated from homogenized bone through centrifugation and presented protein 

kinase activity levels equal to these of  cytosolic proteins. The ATP or GTP that 

provides the phosphate groups for the phosphorylation reaction can only reach the 

tissue through the cytoplasmic process of the odontoblast. One other possible factor 

creating variation of the matrix during maturation could be the relative amount of 

peritubular dentin. It has been described (Weiner et al, 1999) that there are many 

more anionic phosphoproteins in peritubular dentin than intertubular dentin, so that 

with accumulation of more peritubular dentin in the aging dentin a higher overall 

level of matrix phosphorylation would be the final result. This possibility, though, is 

not supported by the present study’s amino acid analysis results which showed no 

changes in the amount of dentin matrix phosphoproteins themselves during 

maturation.  
In conclusion, the results of the present section supported a significant increase 

in phosphorylation of bovine dentin matrix phosphoproteins during maturation of the 

tissue, which was continuous through later stages of dentin maturation. This 

increase was observed for both mantle and circumpulpal dentin. The hypothesis is 

therefore proposed that a significant in vivo function of dentin matrix 
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phosphoproteins is regulation of crystal growth and that this function is mediated by 

protein domains that are highly phosphorylated.. 
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Amino acid analysis:Asp/collagen-mantle dentin 
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Amino acid analysis:Asp/collagen-circumpulpal dentin 
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Amino acid analysis:Thr/collagen-mantle dentin 
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Amino acid analysis:Thr/collagen-circumpulpal dentin 
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Amino acid analysis:Ser/collagen-mantle dentin 
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Amino acid analysis:Ser/collagen-circumpulpal dentin
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Fig 4-1: Amino acid analysis of microdissected mantle and circumpulpal dentin 
specimens of successive tissue ages.  Mmols of amino acids/ mmol collagen.  (a): 
Mantle dentin-Aspartic acid (b): Circum. dentin-Aspartic acid (c):Mantle dentin-Serine 
(d): Circum. dentin-Serine (e): Mantle dentin-Threonine (f): Circum. dentin-Threonine. 
Specimens from same incisor indicated by same color markers.
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Fig. 4-2: Evaluation of dissolved hydroxyapatite re-precipitation on demineralizing
dentin specimens.  mM PO4/mM collagen of homogenized dentin samples, 
untreated (D1) and treated with an excess of hydroxyapatite (D2).
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Fig. 4-3. Analysis of matrix phosphate from microdissected mantle dentin 
specimens as a function of location. (a): I3 incisors  (b): I4 incisors (c): I3 
and I4 incisors with linear regression. 
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Circumpulpal dentin-I3 incisors
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Fig. 4-4. Analysis of matrix phosphate from microdissected circumpulpal
dentin specimens as a function of location. (a): I3 incisors  (b): I4 incisors 
(c): I3 and I4 incisors with linear regression. 
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Circumpulpal dentin-I1,2 incisors
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Fig. 4-5. Analysis of matrix phosphate from microdissected mantle dentin 
specimens as a function of location in I1 and I2 incisors. 

Fig. 4-6. Analysis of matrix phosphate from microdissected circumpulpal dentin 
specimens as a function of location in I1 and I2 incisors. 
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Table 4-1 Bivariate correlation between mmols phosphate/mmol collagen 
test results. (a): Mantle dentin specimens from I3-I4 incisors  (b): 
Circumpulpal dentin from I3-I4 incisors.  

1 .348**
.007

64 59
.348** 1
.007

59 59

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

mm from cervix

mmol PO4/mmol
collagen

mm from
cervix

mmol
PO4/mmol
collagen

Correlation is significant at the 0.01 level (2-tailed).**. 

1 .471**
.004

46 35
.471** 1
.004

35 35

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

mm from cervix

mmol PO4/mmol
collagen

mm from
cervix

mmol
PO4/mmol
collagen

Correlation is significant at the 0.01 level (2-tailed).**. 

4-1 b

4-1 a
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Table 4-2: Partial correlation between mmols phosphate/mmol collagen 
contolling for incisor of origin test results.  (a): Mantle dentin specimens from I3-
I4 incisors  (b): Circumpulpal dentin from I3-I4 incisors.

4-2 b

4-2 a

Correlations

1.000 .425
. .001

0 56
.425 1.000
.001 .

56 0

Correlation
Significance (2-tailed)
df
Correlation
Significance (2-tailed)
df

mm from cervix

mmol PO4/mmol
collagen

Control Variables
1=#1I4m,2=#2I4m,3=#3
I4m,4=#4I4m,5=#5
I3m,6=#6I3,7=#7I3,8=#1
I4c,9=#2I4c,10=#3
I3c,11=#5I3c,12=#6
I3c,13=#7I3c

mm from
cervix

mmol
PO4/mmol
collagen

Correlations

1.000 .495
. .003

0 32
.495 1.000
.003 .

32 0

Correlation
Significance (2-tailed)
df
Correlation
Significance (2-tailed)
df

mm from cervix

mmol PO4/mmol
collagen

Control Variables
1=#1I4m,2=#2I4m,3=#3
I4m,4=#4I4m,5=#5
I3m,6=#6I3,7=#7I3,8=#1
I4c,9=#2I4c,10=#3
I3c,11=#5I3c,12=#6
I3c,13=#7I3c

mm from
cervix

mmol
PO4/mmol
collagen

122



 
 
 
 
 
 
     CHAPTER V 
 

FTIRI ANALYSIS ON DEVELOPING DENTIN IN MOUSE MOLARS 
 

          

       INTRODUCTION 

The feasibility of using developing postnatal murine molars for developing dentin 

studies, along with limitations existing in the particular application and patterns of 

mineral properties changes in normal animals is investigated in the present study. 

The basis for performing a study of dentin maturation on fetal bovine incisors was 

described and spectroscopic imaging results on developing dentin were provided in 

Chapter II. Results from spectral analysis of fetal bovine incisor sections and of 

microdissected mantle and circumpulpal dentin from the same teeth were reported in 

Chapter III.  

There has been an increasing interest in dentin studies on mouse models 

concerning organogenesis and dental tissue formation (D’Souza et al, 1997; Ouyang 

et al, 2000; Yamashiro et al, 2003; Ye et al, 2004; Hao et al, 2004), that makes an 

application of the methodology used in Chapters II and III to mice particularly 

interesting. The purpose of this study was to examine the changes in mineral 

properties of developing mouse molars, using a methodology similar to that used in 

Chapters II and III. Aspects of the same methodology have been used on developing 

rat and mouse molar dentin in other studies (Engel and Hilding, 1984; Stratmann et 

 



al, 1991; Stratmann et al, 1996; Stratmann et al, 1997; Arnold et al, 1998) although 

not for quantitative analysis of several dentin mineral properties at the same time, as 

in the present study.  

  METHODS AND MATERIALS 

Preparation of the samples: Mandibles from eleven 6 postnatal day-old male 

C3H mice provided by a commercial source (Charles River Laboratories, 

Wilmington, MA) were used for analysis of dentin on the developing mouse molars. 

The mandibles were stored at -80° C until the molars were collected. Only second 

molars, which at this age are unerupted and have approximately ¾ of their crowns 

formed, were used for the present study. Soft tissue covering the unerupted molars 

was carefully removed, molars exposed and removed by means of a dental micro-

spoon excavator. The samples were subsequently processed for dehydration and 

PMMA embedding, as described in Chapter II, with the following modification: after 

the samples were PMMA embedded and PMMA was polymerized, a small PMMA 

block containing the sample was cut out, using grit 800 silicon carbide paper under 

water irrigation on a rotating polisher machine (Ecomet 3, Buehler, Germany). This 

was done to trim one side of the small PMMA blocks as close as possible to the 

distal surface of the molars that would be sectioned and parallel to the intended 

sectioning plane. The trimmed block was then re-embedded in PMMA with the 

oriented side on the surface and polymerized, then sectioned at 4-5 μm using a 

sliding microtome as described previously. The final plane of sectioning was through 

the tip of the distal cusps and parallel to the long axis of the crown, as shown in 
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figure6-1 on the crown of a second permanent molar 3D reconstruction from a 

microcomputed tomography analysis (a developing molar was not used for the 

figure, due to the low contrast between the low density-mineralized young molar and 

background). The molar sections were placed on a BaF2 window for FTIRI analysis 

immediately after sectioning.  

FTIRI analysis: The experimental conditions for the FTIRI analysis were identical 

to those described for the fetal bovine dentin spectral analysis in Chapter III. Due to 

the smaller size of the mouse molars, the whole molar crown was scanned and 

analyzed. The spectroscopic parameters examined were the same as in Chapter III, 

namely mineral: matrix, mineral crystallinity, relative acidic phosphate content, 

carbonate: mineral, typeA:typeB of carbonate substitution  in mineral, labile 

carbonate:typeB carbonate substitution in mineral. Again, the spectroscopic ratio 

1660:1650 cm-1 in the Amide I (matrix) band, which reflects collagenous vs 

noncollagen matrix relative density (see Chapter III for details), was used to 

differentiate between dentin and young enamel pixels, as the mineral: matrix values 

for dentin and enamel in most of the 6 day-old mouse molars are very similar. In 

addition to analysis of images for the spectral parameters, areas of dentin next to 

DEJ were identified and  spectra of pixels in these areas were co-added to a single 

spectrum, in a similar manner to the spectral processing in Chapter III. The areas in 

question were typically 20-28μm (3-4 pixels) wide and were spanning  approximately 

35μm (5 pixels) along a cervical-incisal direction. As mantle dentin in the mouse is 

less than 1μm –that is, a fraction of a pixel- wide, no attempt was made to 

differentiate between mantle and circumpulpal dentin using FTIRI in mouse molars. 
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  RESULTS 

As there were losses of one of the two molars (mostly from excessive trimming 

during the orientation of the preliminarily embedded molar for final embedding or 

during the final sectioning) in most of the jaws used, the final total number of second 

molars analyzed was 15. From those, 7 molars were unpaired and 4 were paired 

with the contralateral counterparts. As the analysis of the images and the extracted 

spectra results for all the parameters examined showed, there was no real 

correlation between the paired molars, at least not a higher one than between any 

two random samples. Therefore, results from the left and right molars were pooled 

for the purposes of this experiment. 

Figure 5-2 a shows the micrograph of a second molar section. FTIRI images of 

the 1650:1660 cm-1 (noncollagenous:collagenous matrix) ratio and mineral: matrix 

from this section are presented respectively in figures 5-2 b and c. The low mineral 

density of enamel in the 6 day-old mice second molars is notable, as it appears that 

even the most occlusal (equivalent to cervical for the incisors) enamel parts show a 

lower density than dentin formed in adjacent areas. The range of mineral: matrix 

ratios  observed in developing dentin is lower than the respective one from the fetal 

bovine dentin analysis. Individual spectra from pixels of analyzed young dentin 

seemed to have a low signal/noise (S/N), even in the 4-5 μm-thick sections 

analyzed, while older parts of dentin gave satisfactory S/N spectra. While young 

dentin spectra S/N was not high enough from individual pixels, though, it was 

satisfactory even in the extracted spectra from the youngest areas (figure 5-4 a).  
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Figures 5-3 a-f present the mineral data for the same spectroscopic parameters 

examined in Chapter III. The total number of observations (spectra extracted across 

the developing crown of all the molars analyzed) was 79. With the possible 

exception of mineral: matrix and crystallinity, no reproducible pattern of changes was 

found for these spectroscopic parameters based on results from all the molars 

analyzed. Mineral: matrix (5-3 a) presents a gradual increase, with a final plateau, or 

even a slight decrease in the occlusal parts of the crown (>300μm from the cervix). 

Crystallinity (5-3 b) paradoxically shows a small decrease with maturation, while the 

acidic phosphate content of the mineral (5-3 c) shows an increase after an initial 

decrease. Carbonate substitution in the mineral (5-3 d), as well as relative type A or 

labile carbonate substitution, did not give a reproducible patterns of change. 

Nevertheless, higher such reproducibility in the pattern of  mineral changes was 

observed in molars that were actually cut at a sectioning plane close to the one 

intended and at a greater (4-5μm) thickness. One such molar was the one shown in 

figure 5-2 a. Spectra extracted from successive locations on the crown of the molar 

are shown in figure 5-4 a. A gradual decrease in the acidic phosphate content of the 

mineral was observed (5-3 b), as well as for other molars that were sectioned at a 

close to optimal orientation and thickness. Similarly, a decrease during maturation in 

type A: type B carbonate substitution (879:871 cm-1 relative peak height ratio) and 

the presence of labile carbonate (shoulder in the 866 cm-1 area) could be observed 

(figure 5-4 c) in the molars that were optimally cut. 

 

DISCUSSION 
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In this study, the feasibility of applying the methodology used in Chapters II and 

III to analysis of dentin from mouse molars was investigated. Molars were used 

rather than incisors, as they have been studied more extensively from an 

organogenesis and development point of view also because incisors in rodents have 

a complex anatomy (a crown-analogue and a root-analogue aspects of crown) and 

are continuously erupting, making post natal  comparisons difficult. The present 

results did not conclusively support specific patterns in changes of mineral 

properties that could be shown from all of the molars analyzed. Contrary to what was 

shown in Chapter III, in this study patterns of changes in mineral properties varied 

widely between the samples analyzed. From analysis of the imaging results, it was 

concluded that spatial variability within the mouse molar dentin is an especially 

critical factor in similar dentin studies. As cusps develop from a growth center 

outwards and down the cusp slope, a concentric pattern of development arises. This 

renders the exact positioning of sectioning plane through the centers of the cusps 

and parallel to the long axis of the crown central to the outcome of the analysis. It 

has also been described (Gaunt, 1955) that the posterior aspect of the crown 

develops at a greater rate than the anterior, making precise orientation even more 

important. Another limiting factor in the present methodology was the resolution 

provided by FTIRI as the analytical method. This level of resolution appears to be 

too low to analyze the thin young dentin areas, the width of which in most of the 

samples was a total of approx. 20μm (3 pixel rows). This probably did not represent 

adequate tissue for acquiring reproducible results from this particular area.  Finally, 

the failure to recognize in the results patterns of mineral properties changes similar 
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to the ones described for fetal bovine dentin in Chapters II and III might be due to 

different maturation mechanisms between the two species. In enamel, such 

differences have been reported to exist between human and porcine teeth (Kirkham 

et al, 1988), as porcine mature enamel has a much lower mineral density and a 

much higher matrix content than human enamel. Optimizing the methodology for 

future studies on developing mouse molar dentin would involve using samples from 

an older stage, probably 10 day-old animals, and using 2 different thicknesses of 

section to carry out analysis on strong and weak IR bands. Also, modifying the 

embedding and sectioning technique for consistently orienting and sectioning the 

specimens along the intended plane on the crown appear essential. Raman 

microprobe analysis might also prove a valuable alternative, as it provides adequate 

spatial resolution (down to 1μm) and does not require sectioning of the samples. 

Dentin studies have been conducted using Raman vibrational spectroscopy (Tsuda 

et al, 1996) and successful applications of the Raman microprobe method have 

been described in biological samples (Diem et al, 2004).  

The concept of a line analysis along the tooth crown for study of the dentin 

mineral ultrastructure (Plate et al, 1994), histologic (Kagayama et al, 1997) and 

elemental composition (Steinfort et al, 1991) changes has been applied on rat 

incisors and molars. All of the above studies employed high resolution analytical 

methods. In the study on rat molars (Kagayama et al, 1997), the development of 

interglobular dentin (which was the subject of the study) on the molar was concluded 

to be “time- and position- specific”, implying that some inherent spatial variability of 

dentin histology is involved on mouse molars. Elemental composition changes in 
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developing enamel (Lundgren et al, 1998) have been studied using a line analysis 

along the crown principle. Elemental analysis data on developing dentin and enamel 

from mouse molars has also been reported in one study (Engel and Hilding, 1984). 

In that study, analysis for Ca and P was conducted on molars from 5, 8 and 14 day-

old animals, at predetermined points at different distances from DEJ in dentin and 

enamel. While a substantial increase (up to 20fold) was shown for enamel for 

equidistant from the DEJ locations between 5 and 14 day-molars, from both Ca and 

P concentrations, the equivalent concentrations in dentin did not differ more than 

50% in dentin. It is possible that this study focused on a location in the developing 

crown, where dentin was already close to maturity even from day 5. Enamel mineral, 

at the same location, was relatively immature at day 5 and attained much higher 

density levels through day 14. The same pattern was shown in our results, where 

enamel presented on an average much lower mineral density for the same location 

on the crown molar than dentin at day 6. 

In conclusion, studies on the developing mineral of mouse molar dentin appear 

to require thicker sections or a denser tissue for successful analysis. For denser 

tissue, 1st molars from the same age (6 day-old) or older 2nd molar samples should 

be used and the mineral change results they provide should be evaluated. Use of 

different techniques providing similar information, such as Raman microprobe 

analysis, may be needed.  
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Fig. 5-1 : Plane of sectioning used on 6 day- developing second 
molars demonstrated on a mature second molar from a 3D 
microcomputed tomography reconstruction. 
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Fig. 5-2 : FTIRI analyzed 6 day-old 2nd mouse molar.   (a): Optical 
micrograph   (b):1650:1660cm-1 (noncollagenous:collagenous matrix) 
image   (c):Mineral:matrix image
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(Next 2 pages) Fig. 5-3: Spectral data from FTIRI of all mouse 
molars.   (a): Mineral/matrix    (b): Crystallinity of the mineral   
(c): Relative acidic phosphate content of the mineral   (d): 
Relative carbonate content in the mineral   (e): Relative type A
carbonate subsitution in the mineral  (f): Relative labile 
carbonate content in the mineral.

133



0 100 200 300 400 500

µm from cervix

0.60

0.78

0.96

1.14

1.32

1.50

R
el

at
iv

e 
sc

al
e

Crystallinity

0 100 200 300 400 500

µm from cervix

0

1

2

3

4

5

6

7

R
el

at
iv

e 
sc

al
e

Mineral/matrix

5-3 a

5-3 b

134



5-3 d
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(Next 2 pages) Fig. 5-4: Superimposed spectra extracted from 
FTIRI analysis of molar shown in 5-2a.   (a): The whole spectral 
range. Scale for every spectrum adjusted after normalization of the 
total marix (Amide I) areas    (b) ν1ν3 PO43- bands of spectra shown 
in a. Peak heights have been normalized to enable comparison.   
(c):ν2 carbonate bands. Peak heights have been normalized to 
enable comparison.
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           CHAPTER VI 
 

     SUMMARY AND CONCLUSIONS 

In the studies of this dissertation, the use of a fetal bovine incisor model 

analyzed by FTIRI for the study of mineral changes during dentin maturation was 

evaluated, the evolution in maturation of mantle and circumpulpal dentin as two 

dentin compartments distinct in mineral properties was established and changes in 

these mineral properties during maturation  in mantle and circumpulpal dentin were 

described. Changes in properties of the dentin matrix during maturation were also 

analyzed by FTIR spectroscopy, organic phosphate and amino acid analyses. 

Finally, the application of the same analytical method in 6 day-mouse molars was 

evaluated. 

In Chapters II and III, imaging analysis for mineral properties and spectral 

analysis of mantle and circumpulpal dentin areas of successive tissue ages for the 

same mineral properties was performed on dentin of fetal bovine incisors. It was 

shown that during dentin maturation there is an increase in mineral:matrix and 

crystallinity of the mineral, while the relative content of mineral in acidic phosphate 

decreases. This pattern holds true for both mantle and circumpulpal dentin and the 

biggest part of the changes described mainly occurs in early stages of maturation, 

while in later stages the levels for the same mineral properties reach a plateau or 

continue changing very gradually. Based its lower levels of mineral:matrix and 



crystallinity, a mantle dentin zone could be differentiated from circumpulpal dentin 

early in maturation and continued to represent an approximately 80-100μm wide 

dentin strip next to DEJ (for lateral I3 and I4 incisors) through final maturation 

stages, as also evidenced in analyzed 1 year-old incisors. No significant changes 

were found to occur in the levels of carbonate substitution in dentin, with the 

exception of a small increase in mantle dentin at later maturation stages. The 

relative type of carbonate substitution (substitution for phosphate or hydroxyl ions or 

presence of labile carbonate) was also not found to vary significantly during 

maturation, again with the exception of a decrease in the relative A type carbonate 

(substitution for hydroxyl ions) in mantle dentin at later stages. When compared to 

the existing data on bone maturation, these results show a higher and steeper 

mineral:matrix increase, but lower crystallinity increase and no changes in carbonate 

substitution, whereas in bone the carbonate content has been described to increase 

or decrease, depending on the model used. While the same tissue age-dependent 

variations in mineral properties were observed on the left and right incisors as 

groups of samples, there was not a 1:1 correspondence in the distribution of these 

properties values between  individual left incisors and their right counterparts. This 

suggested that factors such as reproducibility in the sectioning plane orientation may 

contribute to similar studies’ outcomes. Additionally, the presence of functional 

interfaces around the mineralization front and the dentinoenamel junction was 

shown by the distribution of mineral:matrix and crystallinity at the respective sites for 

all maturational stages.  
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Based on the FTIR imaging results approximately 80μm wide dentin areas of 

mantle dentin  and of circumpulpal dentin immediately adjacent to mantle at 

successive maturational stages were identified on fetal bovine incisors and 

specimens from these areas were microdissected. Matrix properties (Chapter III), 

matrix relative content in phosphoproteins and overall phosphorylation (Chapter IV) 

were subsequently analyzed in these dentin specimens.  The relative water content 

of the matrix was found to be greatly decreased during dentin maturation, again 

mainly during the initial maturational stages, by roughly the same amount for mantle 

and for circumpulpal dentin. A significant shift of the peak of the matrix main 

vibrational mode  (Amide I)  from early to later maturational stages that was 

identified suggested a change in  the matrix secondary structure that is probably 

associated with the changes in the matrix hydration. The relative total matrix 

phosphate content of similar microdissected specimens presented a significant 

increase, while the amino acid analysis of the same specimens did not support any 

significant difference in phosphoprotein content of the matrix during dentin 

maturation. These results gave evidence for a continued phosphorylation of 

phosphoproteins in mineralizing dentin, which implied an involvement of 

phosphoproteins in later maturational stages. 

When the same FTIRI analysis was applied to developing dentin of 6 day-old 

mouse molars (Chapter V), a continuous change in the mineral:matrix was shown 

occuring in a range much lower than in fetal bovine incisors. Crystallinity did not 

show a steady increase as in the fetal bovine incisors. Reproducibility in the mineral 
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changes results was found to be highly dependent on the specimen orientation 

during sectioning.  

These studies provided a refined model for analysis and a description of mineral 

and matrix changes separately for mantle and circumpulpal dentin at true successive 

maturational stages and without any superimposed histological variability. It also 

provided a baseline for studying changes in developing dentin in other species 

(human, rodents) and in the presence of disease, where the relevant studies would 

provide a better understanding of pathogenesis in dental tissues. The present data 

will equally complement data on mineralization in reparative dentin, with a view to 

maximizing the reparative dentin mineral and biomechanical properties in future 

studies. The described matrix properties findings supported a pronounced decrease 

in the dentin water content that had not been clearly described for mantle and 

circumpulpal dentin, which can be quantitatively estimated by weight determination 

in future studies. These studies also provided evidence of a continued matrix 

phosphorylation in mineralizing dentin, a fact that merits further investigation by 

analysis of casein kinase activity in dentin or  of post-translational modifications of 

matrix proteins from different tissue age dentin specimens. The possibilities and 

limitations of general methodology based on FTIRI analysis application on 

developing mouse dentin were also investigated for the first time. If that 

methodology is optimized, probably by using higher resolution analytic techniques 

and a highly reproducible specimen preparation method, for the purpose, the 

transfer of all the mentioned kinds of studies to animals genetically targeted for one 

or more matrix proteins will be possible. 
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	        MATERIALS AND METHODS 
	FTIRI analysis/ general methodology: In FTIRI spectra from the imaging files are processed for several spectroscopic parameters, calculated from different spectral areas. Each one of these parameters represents a property of the mineral or the matrix of the analyzed tissue. Calculated values all parameters can be shown as images, through the use of a color scale. The main spectral areas for dentin from which information is provided are shown in Figure 1-3 (Chapter I). All these areas are associated with a specific functional group (molecule or part of it) and some are wide spectral envelopes, consisting of underlying bands that are generated from different chemical environments of the functional group under analysis. Figure 2-1a shows the ν1ν3 PO43- spectral area from a dentin spectrum. This is the major area that is associated with the mineral and represents vibrational modes of the mineral phosphate. Underlying bands (defined through a process called curve-fitting), which compose the final wide ν1ν3 PO43- contour, are shown in that area. Integration of spectral areas and areas of sub-bands or calculation of relative peak heights of sub-bands provide the information for mineral and matrix components. Based on these integrated areas or on peak heights, spectroscopic parameters for the mineral and the matrix properties have been defined and validated by independent methods. The ratio of the area of the phosphate vibration (900-1200 cm-1) to that of the Amide I vibration (1585-1720 cm-1) is directly related to the chemically determined mineral content, based on ash weight (Pienkowski et al, 1997, Faibish et al, 2005). The relative areas of sub-band at 1123 cm-1 (Rey et al, 1991; Paschalis et al, 1996) or the ratio of the 1030 and 1020 cm-1 sub-bands (Paschalis et al, 1996) correlate linearly with the relative content of HA in acid phosphate or HA crystal size and perfection in the c-axis direction as determined by X-ray diffraction analyses. Carbonate to phosphate ratios indicate the extent of carbonate incorporation into the hydroxyapatite lattice. Analysis of relative areas of sub-bands within the carbonate spectral area indicates whether the carbonate has replaced hydroxide (A-type) or phosphate (B-type) or is a labile, located on the periphery of the HA crystal form (Rey et al, 1989). This is shown on a ν2 carbonate spectral area from a dentin spectrum in Figure 2-2.  In FTIRI relative areas of sub-bands are often expressed ratios of peak height intensities (Boskey et al, 2003), as will be done for calculation of parameters throughout this thesis (Figure 2-1 b). Analysis of carbonate substitution was not done in this experiment, as the high wavenumber cut off (900 cm-1) of the system used did not permit collection of data for the carbonate band (855-890 cm-1). 
	FTIRI analysis/ data collection and processing: FTIRI images were obtained from 20-40 fields (one 400μm x 400μm field was scanned at a time) per section, as described in detail elsewhere (Mendelsohn et al, 1999). This FTIR microscope is also coupled to an optical microscope for visually selecting the fields for analysis and acquisition of optical micrographs for reference. The average signal to noise ratio of the detector in the spectral region examined is approx. 50:1.  All 4096 spectra from each field were processed for calculation of mineral and matrix parameters and creation of images using BioRad WinIR-Pro (BioRad Laboratories, Cambridge, MA) program for processing of spectra as follows: Before parameter calculation the PMMA contribution was spectrally subtracted  based on its 1729cm-1 component and the spectra in the file were baselined.  In some cases individual spectra were extracted from selected areas for more detailed analysis. Parameters examined were: 1) mineral:matrix ratio (the ratio of the integrated areas of the phosphate (1,(3 contour (900-1200 cm-1) to the  Amide I band (1585-1700 cm-1)  2) crystallinity determined as the 1030 cm-1 to 1020 cm-1 peak height ratio.  Calculation was not performed for enamel pixels, as parameters were out of scale. A Microcal Origin (Microcal Software Inc., Northhampton, MA) program was used for plotting numerical results from the spectral processing program and create spectral images. Images were combined by superimposing overlapping regions of each 400μm x 400μm data set.  
	  RESULTS  
	Figure 2-3c shows selected superimposed spectra acquired from the fetal incisor section of Figure 2-3a. These spectra  were extracted from images of the mantle dentin area ~50(m from the DEJ at different distances from the cervix (as indicated). As tissue age progresses, a continuous increase in the total area of (1,(3  phosphate band of the successive in age tissue parts is obvious. Apart from the relative increase in area, a significant change of the (1,(3  phosphate band contour is also visible. This change is characteristic of a transition from an  apatite with low crystallinity and high acidic phosphate content mineral to a more crystalline one with a lower acidic phosphate content (Bailey and Holt, 1989). 
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