

Yiwen Jiang. Implementation of a High Recall Interactive Literature Retrieval System. A
Master’s Paper for the M.S. in IS degree. April, 2019. 43 pages. Advisor: Yue Wang

This project-based study implements a high recall and high precision interactive literature
retrieval system based on the ReQuery-ReClassify (ReQ-ReC) framework proposed by
Wang et al. in 2014. The study summarizes the challenges and difficulties of current
methods of literature retrieval and review in achieving high recall in addition to high
precision. Following the double-loop mechanism of the ReQ-ReC framework, the project
applies the methodology of system design, database design and user interface design to
turn the framework into a real-world web application. Heuristic evaluation for the user
interface design indicates that the system is user-friendly and can be integrated with
literature retrieval systems like PubMed.

Headings:

High-recall search

Literature retrieval

Human-in-the-loop machine learning

System design

Full-stack web development

IMPLEMENTATION OF A HIGH RECALL INTERACTIVE LITERATURE
RETRIEVAL SYSTEM

by
Yiwen Jiang

A Master’s paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements
for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

April 2019

Approved by

Yue Wang

1

Table of Contents

1 Introduction .. 2

1.1 Motivation ... 2

1.2 Objective ... 3

2 Prior Works .. 7

2.1 “Human-in-the-loop” mechanisms ... 7

2.2 HRR (High Recall Retrieval) problem ... 8

2.3 Technology-assisted review .. 10

3 System Design of High Recall Interactive Literature Retrieval System 11

3.1 Modular Design .. 12

3.1.1 Search Engine Module ... 12

3.1.2 Data Storage Module ... 14

3.1.3 Document Classifier module .. 15

3.1.4 Document Selector Module ... 17

3.1.5 Query Generator Module ... 17

3.2 Database Design .. 18

3.2.1 Data Entities ... 18

3.2.2 Database Tables ... 20

3.3 Use Case Design ... 21

3.3.1 Use Case ... 22

3.3.2 User Workflow... 23

4 User Interface Design .. 26

5 Heuristic Evaluation for User Interface Design ... 29

6 Conclusions and Limitations.. 32

7 Reference ... 34

Appendix ... 36

2

1 Introduction

1.1 Motivation
Information retrieval is ubiquitous in our lives. We search for articles through online

literature retrieval systems to view recent studies, we search for interested posts in Twitter,

and we search for suggested routes when we have a trip, etc. People perform different tasks

on retrieval systems and gather information from the search results. The precision and

recall of the system will influence the user experience and the efficiency and effectiveness

of completing the tasks, where precision and recall are two measures of relevance.

Precision stands for the fraction of relevant instances among the retrieved instances while

recall stands for the fraction of relevant instances that have been retrieved over the total

amount of relevant instances1. In some scenarios, we need high precision, while in others

we require high recall. Commonly, we are facing more precision-oriented scenarios, like

most search engines typically return a limited number of results that are the most relevant

to the user’s typed query based on some ranking functions, which satisfies high precision.

However, scenarios also exist in which the searcher requires both high precision and high

recall. Such scenarios are not uncommon in real life, exemplified by social searches,

medical searches, legal searches, market research, and literature review searches.

To address this issue, one recent research study introduced a ReQuery-ReClassify

framework2 which aims to achieve both high precision and high recall. The basic idea of

3

the framework is to distribute the burden of maximizing both the precision and recall to a

set of queries and a classifier, where the queries are responsible for increasing the recall of

relevant documents retrieved and the classifier is responsible for maximizing the precision

of documents retrieved collectively by all of the queries in the set. The framework features

a double-loop mechanism: the inner-loop classifies the retrieved documents, actively

collects user feedback, and improves the classifier (ReClassify); the outer-loop generates

new queries (ReQuery) and iteratively adds newly retrieved documents into the work set.

The research conducted empirical experiments to evaluate the effectiveness of the

framework and its instantiations. Their experiments show that some instantiations would

achieve a 20%-30% improvement of mean average precision and R-precision on most data

sets, with the largest improvement up to 150% over classical iterative relevance feedback.

The proposed framework would be a solution to those retrieval scenarios which require

both high precision and high recall.

Inspired by this research, this project-based study aims to build an interactive

retrieval and learning system which would implement a “human-in-the-loop” interactive

text search and classification system based on the ReQuery-ReClassify framework

mentioned above. “Human-in-the-loop” here refers to an adaptive system that incorporates

user feedback.

1.2 Objective

This project aims at developing a high precision and high recall literature retrieval system

which serves the following key functions:

• Retrieve relevant documents for user based on their typed queries.

4

• Allow the user to explicitly label search results based on their own understanding

and judgments.

• Get user labels and use them to build the classifier and reclassify retrieved

documents.

• Give user suggested query terms based on relevance judgments.

• Let user view/edit the suggested query and compose new queries.

The system consists of six key components: user interface, search engine, data

storage, document classifier, document selector and query generator. The users interact

with the system through a web-based user interface. The search engine gathers user’s

queries and returns search results. The data storage stores data transferred in the system

and support other components. The document classifier learns from users’ relevance

feedback on search results and improves precision. The document selector selects which

document to let user label on. And the query generator constructs new queries in order to

improve recall. As shown in Figure 1, the process of the system follows the double-loop

mechanism mentioned above.

5

Figure 1 System Workflow

The development of the system follows the pattern of software development life

cycle (SDLC). The produced high precision and high recall retrieval system can be

integrated with online search engines to improve their search results and save user’s time

and efforts. Specifically, we consider integrating with biomedical literature retrieval

systems such as PubMed, which are used by health science librarians to perform systematic

literature review.

This study aims to answer the following research questions:

RQ1: Did previous literature retrieval methods/systems bring both high precision

and high recall results and are easy to apply to real world applications?

RQ2: Does the built-up system implement the ReQ-ReC framework successfully?

6

RQ3: Is the system practicable enough to be embedded into real retrieval systems

like PubMed?

The following chapters will first look at previous studies on methods of systematic

review, will then introduce the system design and user interface design of the

implementation of the high recall and high precision interactive literature retrieval system,

and will next evaluate the user interface design and make conclusions accompanied by

limitations at the end.

NOTES

1 Precision and recall, Wikipedia, https://en.wikipedia.org/wiki/Precision_and_recall

2 Li, C., Wang, Y., Resnick, P., & Mei, Q. (2014, July). Req-rec: High recall retrieval with

query pooling and interactive classification. In Proceedings of the 37th international ACM

SIGIR conference on Research & development in information retrieval (pp. 163-172).

ACM.

7

2 Prior Work
This chapter introduces and summarizes prior researches working on “human-in-the-loop”

mechanisms implemented in information retrieval, previous workflow of systematic

review, and studies on technology-assisted review.

2.1 “Human-in-the-loop” mechanisms

Recent researches have been paying much attention to “interactive systems” and “human-

in-the-loop” in all kinds of retrieval systems, including literature retrieval system, image

retrieval system, etc. The concept “human-in-the-loop” leverages both human and machine

intelligence to create machine learning models [1]. In this mechanism, humans are directly

involved in training, tuning and testing data for a specific machine learning algorithm. Such

mechanism would let the machine learning model behind the system keep improving

continuously and provide better results through the whole process. Applications which

involve human-in-the-loop mechanism necessitate greater transparency in machine

learning models for experts to understand and trust their decisions [2].

Relevance feedback-based approaches are commonly used methods in such

mechanism. Relevance feedback is an automatic process, introduced over 20 years ago,

designed to produce improved query formulations following an initial retrieval operation

[3]. Several studies proposed relevance feedback architectures and frameworks in image

retrieval, where human and computer can interact with each other to improve the retrieval

8

performance [4,5,6]. We can observe that relevance feedback, human in the loop

mechanism have already successfully been applied in image retrieval systems [7], while

there still exists limitation on their application in literature retrieval system, which also has

high demand on reaching high retrieval performance.

2.2 HRR (High Recall Retrieval) problem
Systematic/literature review plays an important role in any academic research, which

provides an overview of what’s been studied and written about a specific topic. From the

perspective of librarians working on reviews, they are aiming at finding the full set of

relevant documents(achieve high recall in addition to high precision) in order to be as

comprehensive as possible to cover all the previous work, find out state-of-the-art evidence

to guide their further work directions, which is definitely a hard and time-consuming

task[8,9,10,11]. The existing HRR methods have been far from satisfactory to make them

enumerate all relevant documents, which is because not only the sheer volume of

documents inevitably including noises (non-relevant documents) but also the threshold

measurements have been inadequately adopted [8]. Prior researches proposed several

methods and models in order to solve such problems. [9] demonstrated how to optimize

performance at high recall levels systematic review in public health field when using linear

SVMs for ranking. Specific techniques included feature engineering that exploits facets

used in the human querying process; iterative retraining of models using sampled

annotations, and processing documents with missing fields using separately trained

classifiers, etc. [13] also mentioned the demand to apply query expansion to enhance

further the search strategy and pointed.

9

Prior works proposed many strategies on increasing precision or recall. However,

traditional systematic reviews find it hard to balance between precision and recall. We can

observe that due to the HRR problem, current systematic review workflows (Figure 2, 3)

are complex and time-consuming to some extent [11, 12]. Researchers need to modify their

queries for many times in order to reach the high recall goal, and sometimes the query

would be very long and redundant. Solutions which combine strategies to both increase

high precision and high recall still need to be explored.

Figure 2
Overview of the traditional process to

produce a systematic review modified by
the inclusion of automatic text classification

to the citation screening phase from [11].

Figure 3
Existing methods for systematic reviews
follow these steps with some variations
from [12]. Not all systematic reviews
follow all steps. This process typically

takes between 12 and 24 months.

10

2.3 Technology-assisted review
With the help of internet and technology, online IR portals have been useful tools for

researchers to retrieve information and literatures. Currently, common online IR systems

like Google Scholar does not provide necessary elements for systematic scientific literature

retrieval such as tools for incremental query optimization, export of many references, a

visual search builder or a history function [14]. [13] also pointed out that an automatic

query expansion based on the users’ interests is a desirable feature of search engine, but

most search engines do not support this feature beyond mapping selective query terms to

ontology or thesaural headings (e.g., PubMed).

In conclusion, “human-in-the-loop” mechanism could be used to help address

systematic/literature review with HRR problem. We could use technology to assist review

to facilitate manual works. A user-friendly literature retrieval system which could reach

both high precision and high recall using relevance feedback and query expansion is needed.

11

3 System Design of High Recall Interactive Literature
Retrieval System
This chapter introduces modular design, database design, and use case design of the high

recall and high precision literature retrieval system. In order to better understand the design,

some explanations on concepts appear in this chapter, assumptions and technology stack

used in the system are needed:

Concepts and Definitions

• Inner-loop: The inner-loop refers to one part of a complete search process. It starts

from type query, view results, then label results, train classifier, and end at get

prediction scores from classifier. Inner-loop will reclassify and re-rank search

results based on prediction scores given by the classifier in order to get higher

precision.

• Outer-loop: The outer-loop refers to the other part of a complete search process. It

uses suggested query terms returned by the feature selection function and then

collects more documents in order to increase recall.

• Task: A task refers a complete search process in the system. In another word, a task

consists of several iterations of inner-loop and outer-loop (see Figure 13 Activity

Diagram for details) to achieve the goal of getting high precision and recall.

Assumptions

• In order to reduce complexity, assume that there’s only one user in one search task;

12

• User uses the system to achieve high precision and high recall retrieval;

• User will not be willing to view and label more than 1000 articles;

• User could determine whether a document is related or not based on only the

abstract of the document.

Technology Stack

• Client Side: JavaScript, jQuery, HTML, CSS

• Server Side: PHP, MySQL Database, Python (document classifier) scikit learn

library

3.1 Modular Design
Based on the process of the framework, I used modular design to subdivide my system into

five modules: search engine module, data storage module, document classifier module,

document selector module, and query generator module. The following subsections will

introduce each module’s responsibility to the whole system and briefly explain how those

modules are implemented by technical skills/framework.

3.1.1 Search Engine Module

The search engine module is designed to return a set of documents from the full document

set based on user input query. The Entrez Programming Utilities (E-utilities) provided by

NCBI (National Center for Biotechnology Information) are the public API to the NCBI

Entrez system. Developers can use the API to access Entrez databases including PubMed,

PMC, etc. In this system, I chose the PubMed database as the full document set.

13

Figure 4 Search Engine Module

To implement search engine module, I used Ajax method, which could change

content dynamically without the need to reload the entire page. In the front-end interface,

when user click on the search button, a XMLHttpRequest object will be created by

JavaScript. The XMLHttpRequest object will then send a request to the PubMed server.

The PubMed server will process the request and will send a response back which contains

a list of document data including document id (PMID), title and abstract. The response will

be processed by JavaScript and then displayed on the result page.

14

Figure 5 Using Ajax to update web page with document data dynamically

3.1.2 Data Storage Module

The data storage module is designed to store data needed in the workflow (see Figure 13

in section 3.3.2) in order to support the operation of the system. There are four cases which

need the support of data storage module:

• Start inner-loop: insert 1000 document data, update query

• Update label: update user labels

• Train data: update prediction results

15

• Outer-loop: insert new retrieved documents into table exclude duplicates

Figure 6 Data Storage Module

The data storage module is implemented by PHP and MySQL on the server side.

When the front end needs to insert data or query data, it will send an Ajax request to the

PHP script on the server side. The PHP script will connect to the database and execute data

insert or query. Database design will be introduced in section 3.2.

3.1.3 Document Classifier Module

The document classifier module is designed to re-classify all the retrieved documents into

relevant or non-relevant category based on user labels in order to increase the precision.

The classifier would learn from the labeled document set and train itself.

Yue Wang
My Database -> MySQL Database

16

Figure 7 Document Classifier Module

The system currently uses the Naive Bayes model as the document classifier. The

classifier is implemented by Python function using scikit-learn library [17]. The Python

function will first preprocess the labeled documents, transform them into TF-IDF vectors

and then build the classifier. When the re-classification completes, it will output predicted

label, prediction score and uncertainty score for each unlabeled document.

Outputs Explanation

Predicted label The predicted category of each document
Values: relevant or non-relevant

Prediction score The posterior probability of “relevant” category of each document
Value: Score(prediction) = P(relevant|doc)

Uncertainty
score

The uncertainty of the classifier for a specific classification.
Value: Score(uncertainty) =

1 - max{P(relevant|doc), P(non-relevant|doc)}
Table 1: Outputs of Document Classifier and Explanations

Yue Wang
You can add a data box named “Unlabeled Doc Set”, which has an arrow to the “Improved Classifier” box.

Yue Wang
Add a citation (or link) for scikit-learn

17

3.1.4 Document Selector Module

The document selector module is designed to select documents from retrieved document

set that are yet unlabeled to let user to label based on their own judgement. For each

document retrieved by the search engine module, uncertainty score would be calculated

after one iteration of inner-loop. The document selector, which aims to maximize the

learning rate of the classifier, should return the most uncertain documents for user to label

in every iteration of the inner-loop. At the beginning of each search task, since there are no

judged documents, the document selector could return the top documents ranked by the

retrieval function, which are ranked by document IDs.

Figure 8 Document Selector Module

3.1.5 Query Generator Module

The query generator module is designed to expand the query in order to increase the recall

in the outer-loop. It will generate 20 best features which are correlated with “relevant”

category and are most useful to the classification based on labeled document set. User may

consider using these most useful features to make up a new query in the next iteration of

the loop to retrieve more related documents and increase recall.

18

Figure 9 Query Generator Module

The query generator module is implemented by feature_selection module of scikit

learn library. The feature_selection module provides the SelectKBest class which can be

used with a suite of statistical tests to select a specific number of best features. Mutual

Information is a common statistical test method usually used in classification tasks. A

feature with higher mutual information in one target class means that the feature makes

more contribution to the classifier in making the correct classification decision on that

target class and is more useful in that class. Thus, I chose mutual information as the

statistical test to select 20 best features which are most useful to the classification. Then, I

used a filter function to filter out those features which are correlated with the “non-relevant”

class since we only want features correlated with “relevant” class to be considered as

suggested query to user.

3.2 Database Design
3.2.1 Data Entities

Data transferring in system are stored in MySQL database. There are four types of data

entities in the workflow of the system which needed to store in order to support the

operation of the system:

19

• Search Task: A search task entity stands for a finished searching task performed by

a user. It records all the queries executed during one search task in order to raise

the recall.

• Query_Document: A query_document entity stands for a retrieved document

returned from the search engine based on a specific query.

• User_Document: A user_document entity stands for user’s label for a document

returned from the document selector in the inner-loop.

• Document_Classifier: A document_classifier entity stands for a set of attributes of

a document returned from the document classifier. In each iteration of inner-loop,

the classifier would learn from the user label and reclassify all the retrieved

documents. Returned attributes include the predicted label of the document, the

prediction score and uncertainty score of the prediction.

Figure 10 Entity Relationship Diagram

20

3.2.2 Database Tables

Those four types of entities are mapped into two database tables: queries and articles.

• Queries: The “queries” table records all the queries executed during search tasks in

order to raise the recall. One could retrieve all queries within one search task using

task ID. One could also retrieve a specific query in one outer-loop of a task by using

query ID and task ID.

• Articles: The “articles” table stores all search results of multiple search tasks. It

stores all attributes of an article needed by the system, including article title, article

abstract, user label, predicted label, prediction score and uncertainty score. An

article could be uniquely identified by task ID and article ID.

Figure 11 Database Schema Diagram

21

Columns (Field Name) Explanation
Task ID (taskid) Identifier of a search task

Query ID (queryid) Identifier of a query
Query String (querystr) The string of a query
Primary Key: Task ID E.g. (0,0, “cancer”)

Table 2: Fields in table “Queries”

Columns Explanation
Task ID (taskid) Identifier of a search task

Query ID
(queryid)

Identifier of a query

Document ID
(artid)

The document id of a retrieved document returned by PubMed
search API.

Document Title
(title)

The title of a retrieved document.

Document
Content

(abstract)

The abstract of a retrieved document.

User Label
(label)

The label of a retrieved document labeled by user. Using numbers
to represent the label. 1 refers to “Yes”, means the user thought

this article is relevant, while 3 refers to “No” means the user
thought this article is non-relevant. 0 means the user did not label

this document.
Prediction Score

(score)
The posterior probability of “related” category of a retrieved

document returned by the document classifier.
Predicted Label

(pred_label)
The predicted label of a retrieved document returned by the

document classifier.
Uncertainty

Score
(uncert_score)

The uncertainty of the classification result returned by the
document classifier.

Primary Key:
(taskid, artid)

E.g. (2, 0, 340828, “How I do it--plastic surgery: practical
suggestions on facial plastic surgery. The use of upper eyelid skin

grafts in the head and neck.”,“Recognition of the allergic
individual…”, 0, 0.585784, Related, 0.414216)

Table 3: Fields in table “Articles”

3.3 Use Case Design
This section will introduce how the user is expected to interact with the system and user’s

workflow within the system.

22

3.3.1 Use Case

User is the operator of the system, he/she needs to perform several cases in order to finish

the search task and get high precision and high recall. The use case design of the system is

shown in Figure 12.

Figure 12 Use Case Diagram

23

Below table gives detailed explanation of activities behind each use case.

Case Activities
Search Type query into input box and then get search results from PubMed

database.
Browse

Documents
Browse search results, view document titles and abstracts.

Examine
Documents

Determine whether a document is relevant or non-relevant and then
label documents.

Train Data Send labels to the document classifier and then reclassify all the
results.

Sort Results Get predicted results from the document classifier and sort results by
prediction score, uncertainty score or other fields.

Modify Query Get suggested query terms from the document classifier, modify the
query and search again.

Table 4: Activities behind each use case

3.3.2 User Workflow

In order to run the system, user (front-end user interface), controller (back-end functions)

and database need to work together. These three components need to transfer parameters

and data to each other to support each use case. Figure 13 shows the activity diagram of

the system.

24

Figure 13 Activity Diagram

The workflow starts from a user types query into the system and triggers search

event. The PubMed search API will respond a list of document data based on the query. In

this session, no data will be inserted into the database. All the results shown to user will be

Yue Wang
Updata task ID and query ID -> Update
Ajax requestm task ID, article ID, labels -> Ajax request

Is it possible to prevent the arrow lines on the left overlap on each other? Now the reader cannot tell which line has label “yes”, which line has No”, and so on.

25

extracted from the response from PubMed search API. When user wants to start one

iteration of the inner-loop, first 1000 (or less than 1000, depending on the total number of

results) document data would be inserted into the database. All the data needed in the rest

of the task would be extracted from the database. User then could label the documents and

upload the labels into the database. After submitting labels into the database, user could

trigger classifier to reclassify all the documents. Once the reclassification finished, the

classifier will update prediction score, predicted label and uncertainty score fields in the

database and display to user. User could also sort results based on those fields and label

documents with high uncertainty score to maximize the learning rate of the classifier. When

user is satisfied of the precision or does not want to label anymore, she/he could stop

labeling and training. The classifier will also generate suggested query terms based on

feature selection. User could copy suggested query terms and paste to the input box to start

one iteration of outer-loop to increase recall. User could trigger end task to stop the search

task and export results.

26

4 User Interface Design

Based on the use case design section in 3.3, the user interface is divided into six widgets

as shown in the below Figure 14.

Figure 14 User Interface of the system

1: Query Form

Query Form is linked to the search engine module, which consists of a input box to

let user type in queries and a search button which triggers PubMed search API, get response

and extracts data from the response.

2: Page Control

Yue Wang
Can you take another screenshot?
The current screenshot shows that the query is “cancer”, but the document titles do not seem to be related to cancer.

Also, you can mock-up user input in the “New Label” column by selecting “Related”, “Not Related” for a few results.

27

Since there are many search results to display, the results need to be paged. The

Page Control is designed to let user view results in different pages. Four buttons are given:

“First”, “Last”, “Next”, “Prev” which let user jump into the first, last, next or previous page.

3: Query Suggestion

Query Suggestion consists of a text area and a copy button. It will gather suggested

query terms from the query generator module and display in the text area. When user click

on the copy button, it will automatically copy the query terms into user’s clipboard so that

user can paste them into the input box in Query Form.

4: Operation Menu

Operation Menu provides five buttons to user in order to proceed the search process:

start innerloop, submit labels, start training, stop innerloop and start outerloop, stop and

export. Table 5 shows detailed explanation about functions of each button.

Button Triggered Events

Start innerloop Insert first 1000 retrieved document data into table “articles” to
prepare for the inner-loop. Insert current query into “queries” table.
New task ID and query ID will be created and maintained until user

triggers stop task.
Submit Labels Collect labels from user’s selection of each dropdown menu in 5 and

update into the table “articles”.
Start Training Use user labels to train the classifier and then re-classify all selected

documents. When the re-classify completes, the classify results will
be displayed on 5 and suggested query terms will be displayed on 3.

Stop innerloop
and start
outerloop

Indicate that the user does not want to label any more currently and
wants to use suggested query in 3 to start outer-loop.

Stop Task and
Export

Indicate that the user wants to stop current search task. Search
results will be automatically exported as csv format and download

to user.
Table 5: Buttons and Triggered Events

28

5: Result Panel

Result Panel displays retrieval results in a table format. Columns in the table

include document id (the id in PubMed database), document title and other attributes of the

documents needed by current sub-task (prediction score, uncertainty score, predicted label,

etc.). The document title contains a link which will redirect user to the PubMed page of the

document to get more information. The last column contains a list of drop-down menus

which let user to label the results. When user hovers mouse on the row of a specific

document, the row would be highlighted and be changed back to original when user moves

out the mouse. The document classifier will update the prediction score, uncertainty score,

predicted label of each result after reclassification. By clicking on the heading of the table,

user can sort the results by the selected fields.

6: Text Panel

Text Panel shows the abstract of a specific document when user hovers mouse on

a row of results displayed in the Result Panel. User would label the document as related or

non-related after viewing the abstract of the document.

29

5 Heuristic Evaluation for User Interface Design
The user interface design could be evaluated by 10 usability heuristics raised by Jakob

Nielsen in 1994. This chapter analyses how the user interface design of the system meets

the 10 heuristics and thus proofs the usability of the system.

• Visibility of system status

The system will block the UI during the process of interacting with the database,

including inserting data and training data to avoid inappropriate actions from user which

would influence the process of transferring data. After each sub-task finished, the pop-up

alert window will tell user about the status of the task. Thus, it would always keep user

informed about what is going on and would provide appropriate feedbacks when needed.

• Match between system and the real world

The system uses understandable and simple language which make it easier for user

to use if the user understands the double-loop mechanism the system follows. The order

and layout of widgets also follow natural and logical order.

• User control and freedom

The system is controlled and operated by user. User has the freedom of determining

when to start the search task and when to stop. User can use the system as a simple PubMed

30

search engine with basic operations like type queries, click on search button, change pages

of the results and view results. User could also proceed addition tasks within the system in

order to achieve a high recall and high precision search. User can click on “stop and export”

button whenever he/she wants to quit from the current search task. The results of current

search task will be downloaded automatically right after user clicks on the button which

will reduce the concern about losing the results.

• Consistency and standards

Every widget appears on the user interface has its own use and uses different words.

User does not need to worry about different words or actions mean the same thing.

• Error prevention

The user interface guides user to follow the workflow using the disabled attribute

of each widget in order to prevent errors. User cannot click on any other buttons in the

Operation Menu like “Submit”, “Start Training” before he/she clicks on “Start Innerloop”

since those actions must be performed after the document data are inserted into database.

User cannot click on “Start Innerloop” before he/she performs a search action. Once user

has already started an iteration of inner-loop, the Query Form widget would be disabled

which means user could not modify the query during the inner-loop. After user clicks the

“Stop innerloop and start outerloop”, the Query Form will be activated to let user modify

queries to increase recall in outer-loop.

• Recognition rather than recall

The system provides various instructions for user. When user hovers mouse on each

button, a tooltip will show up in order to remind user about the function of each button.

31

Thus, user does not need to remember information from one action to another since the

instructions are visible and are easy to retrieve.

• Flexibility and efficiency of use

Techniques including Ajax and accelerated storage of SQL increase the speed of

responding, which allow user to take frequent actions.

• Aesthetic and minimalist design

The design of the user interface follows the principle of simple design, which does

not contain any irrelevant or rarely needed information.

• Help users recognize, diagnose, and recover from errors

Error messages will be expressed in understandable plain language in the pop-up

windows when user proceeds inappropriate actions. For example, when user types in a page

number which exceed the page rage, a pop-up alert window will show up indicating that

the user inputs an invalid page number.

• Help and documentation

Since user may not familiar with the double-loop mechanism, a user guidance is

necessary. User can view the guidance page by clicking on the link under title of the main

page. The guidance page also uses language which are easy to understand.

32

6 Conclusions and Limitations
The summary of prior works proofs that challenges and difficulties remain on performing

systematic/literature review on online retrieval systems which aims at achieving high recall

in addition to high precision, which addresses RQ1. In answer to RQ2, the produced system

followed the ReQ-ReC framework using modular design, database design and interface

design and implemented the double-loop mechanism and key functions required in chapter

1 successfully. Since the core search function of the system uses PubMed search API, it is

reasonable to believe that the system could be embedded to PubMed, which answers RQ3.

However, there still exists some limitations caused by time and effort limitations:

• Real demand analysis and usability evaluation test were not proceeded. In order to

provide better search services to end users, I was supposed to take real demand

analysis from end users, for example, a real interview with health science librarians

whose main works are systematic reviews. In this way, I could design my system

better based on their real demands. In addition, usability test should be executed in

order to test if the user could use the system fluently with a professional

documentation/guidance and whether they are satisfied with the search results after

several iterations of the double-loop mechanism.

• The assumptions need to be further verified. When implementing the system, I

made several assumptions which are mentioned in chapter 3. However, user might

not be able to determine whether a document is relevant or not only using the

33

abstract and title of the document. User may need more information like methods,

findings, and full-text of the article to make the judgement. In addition, the 1000

documents may or may not enough to constitute a document pool. We need to find

such information through real interviews with end users.

• The choice of classification model in the document classifier module may not

strong enough. Tentatively, I chose Naive Bayes as the classification model and

TF-IDF vectors as feature representation for simplicity. However, better choices

could be selected such as Linear Classifier, Support Vector Machine, Bagging

Models, etc. Further test is needed in order to choose the model which performs the

best.

34

7 Reference
[1] Holzinger, A. (2016). Interactive machine learning for health informatics: when do we

need the human-in-the-loop?. Brain Informatics, 3(2), 119-131.

[2] Krause, J., Dasgupta, A., Swartz, J., Aphinyanaphongs, Y., & Bertini, E. (2017). A

workflow for visual diagnostics of binary classifiers using instance-level explanations.

arXiv preprint arXiv:1705.01968.

[3] Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance

feedback. Journal of the American society for information science, 41(4), 288-297.

[4] Rui, Y., Huang, T. S., & Mehrotra, S. (1997, October). Content-based image retrieval

with relevance feedback in MARS. In Image Processing, 1997. Proceedings., International

Conference on (Vol. 2, pp. 815-818). IEEE.

[5] Cox, I. J., Miller, M. L., Omohundro, S. M., & Yianilos, P. N. (1996). Bayesian

Relevance Feedback for Image Retrieval.

[6] Lu, Y., Hu, C., Zhu, X., Zhang, H., & Yang, Q. (2000, October). A unified framework

for semantics and feature based relevance feedback in image retrieval systems. In

Proceedings of the eighth ACM international conference on Multimedia (pp. 31-37). ACM.

[7] Rui, Y., Huang, T. S., & Chang, S. F. (1999). Image retrieval: Current techniques,

promising directions, and open issues. Journal of visual communication and image

representation, 10(1), 39-62.

[8] Song, J. J., Lee, W., & Afshar, J. (2017). An effective High Recall Retrieval method.

Data & Knowledge Engineering.

35

[9] McNamee, P., Mayfield, J., Rowe, S. Y., Rowe, A. K., Jackson, H. L., & Baker, M.

(2017, May). High Recall Text Classification for Public Health Systematic Review. In The

Thirtieth International Flairs Conference.

[10] Song, J. J., & Lee, W. (2017). Relevance maximization for high-recall retrieval

problem: finding all needles in a haystack. The Journal of Supercomputing, 1-24.

[11] Adeva, J. G., Atxa, J. P., Carrillo, M. U., & Zengotitabengoa, E. A. (2014). Automatic

text classification to support systematic reviews in medicine. Expert Systems with

Applications, 41(4), 1498-1508.

[12] Tsafnat, G., Glasziou, P., Choong, M. K., Dunn, A., Galgani, F., & Coiera, E. (2014).

Systematic review automation technologies. Systematic reviews, 3(1), 74.

[13] Ananiadou, S., Rea, B., Okazaki, N., Procter, R., & Thomas, J. (2009). Supporting

systematic reviews using text mining. Social Science Computer Review, 27(4), 509-523.

[14] Boeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as replacement for

systematic literature searches: good relative recall and precision are not enough. BMC

medical research methodology, 13(1), 131.

[15] Li, C., Wang, Y., Resnick, P., & Mei, Q. (2014, July). Req-rec: High recall retrieval

with query pooling and interactive classification. In Proceedings of the 37th international

ACM SIGIR conference on Research & development in information retrieval (pp. 163-

172). ACM.

[16] https://www.ncbi.nlm.nih.gov/home/develop/api/

[17] https://scikit-learn.org/stable/

[18] https://www.analyticsvidhya.com/blog/2018/04/a-comprehensive-guide-to-

understand-and-implement-text-classification-in-python/

https://www.ncbi.nlm.nih.gov/home/develop/api/
https://scikit-learn.org/stable/
https://www.analyticsvidhya.com/blog/2018/04/a-comprehensive-guide-to-understand-and-implement-text-classification-in-python/
https://www.analyticsvidhya.com/blog/2018/04/a-comprehensive-guide-to-understand-and-implement-text-classification-in-python/

36

Appendix

1. Development Environment

• Windows 10

• XAMPP (Apache + MySQL)

• Python 3.7

 2. Technology Stack

• Client Side: JavaScript, JQuery, HTML, CSS

• Server Side: PHP, MySQL Database, Python (document classifier) scikit learn

library

3. A list of program files

File Name Use

dbconnect.php Connect to MySQL database for further
use.

get_abstracts.php Retrieve abstract of an article from
database and return to front-end.

get_update_after_train.php Retrieve data from database after training
finished and return to front-end.

getmax_taskid.php Get latest task ID in order to create new
task ID.

index.html The front-end main web page of the
system.

37

index-script.js
Perform actions for each widget on the

main web page (index.html) using jQuery
and Ajax.

insert_data.php Insert first 1000 (or less than 1000)
document data into database.

insert_query.php Insert current query into database.

show_after_insert.php Retrieve data from database after inserting
finished and return to the front-end.

start_train.php Call training.py to train data using exec().

stop_and_export.php Stop current task and export results of
current task.

styles.css The style sheet of the front-end page.

training.py Train data in current inner-loop and
update data in the database.

update_labels.php Update user labels into database.

Table 6: A list of program files and the use of them

4. SQL Scripts for creating table

Figure 15 SQL Script for creating table “articles”

38

Figure 16 SQL Script for creating table “queries”

5. User Interface Screenshots

Figure 17 Block UI when inserting data

39

Figure 18 Drop down menus for user to label

Figure 19 Block UI when training data

40

Figure 20 Show abstract when hover on a row

Figure 21 Use suggested query to start outer-loop

41

Figure 22 Sample of exported file

6. Github Link

https://github.com/yiwen9586/master-project

	Table of Contents
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Objective

	2 Prior Work
	2.1 “Human-in-the-loop” mechanisms
	2.2 HRR (High Recall Retrieval) problem
	2.3 Technology-assisted review

	3 System Design of High Recall Interactive Literature Retrieval System
	3.1 Modular Design
	3.1.1 Search Engine Module
	3.1.2 Data Storage Module
	3.1.3 Document Classifier Module
	3.1.4 Document Selector Module
	3.1.5 Query Generator Module

	3.2 Database Design
	3.2.1 Data Entities
	3.2.2 Database Tables

	3.3 Use Case Design
	3.3.1 Use Case
	3.3.2 User Workflow

	5 Heuristic Evaluation for User Interface Design
	6 Conclusions and Limitations
	7 Reference

