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The Precision Medicine Initiative states that treatments for a patient should take into 
account not only the patient’s disease, but his/her specific genetic variation as well. The 
vast biomedical literature holds the potential for physicians to identify effective treatment 
options for a cancer patient. However, the complexity and ambiguity of medical terms 
can result in vocabulary mismatch between the physician’s query and the literature. The 
physician’s search intent (finding treatments instead of other types of studies) is difficult 
to explicitly formulate in a query. Therefore, simple ad hoc retrieval approach will suffer 
from low recall and precision. 

In this paper, we propose a new retrieval system that helps physicians identify effective 
treatments in precision medicine. Given a cancer patient with a specific disease, genetic 
variation, and demographic information, the system aims to identify biomedical 
publications that report effective treatments. We approach this goal from two directions. 
First, we expand the original disease and gene terms using biomedical knowledge bases 
to improve recall of the initial retrieval. We then improve precision by promoting 
treatment-related publications to the top using a machine learning reranker trained on 
2017 Text Retrieval Conference Precision Medicine (PM) track corpus. Batch evaluation 
results on 2018 PM track corpus show that the proposed approach effectively improves 
both recall and precision, achieving performance comparable to the top entries on the 
leaderboard of 2018 PM track.  
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INTRODUCTION 

Mr. H is a 35-year-old man who has had a cough for a couple of months. After 

having an x-ray and CT scan, he was diagnosed as having non–small cell lung cancer. 

However, he has always kept a healthy lifestyle and never smoked. One possible answer 

could be that his disease is caused by some gene mutations. Had his cancer been 

diagnosed in the past, his physician might have treated him just like other patients with 

lung cancers caused by smoking. But if his disease is diagnosed recently, his biopsy 

tissue could be analyzed for a panel of genetic variants that can reliably predict what 

treatment would be most effective for him (Mirnezami, Nicholson, & Darzi, 2012).  

This scenario reveals the core idea of precision medicine: based on genetic, 

biomarker and demographic data, finding a personalized treatment which is different 

from treatments for other patients with similar clinical symptoms for a specific patient. 

According to the Precision Medicine Initiative launched by the former President Barack 

Obama in 2015, precision medicine is an approach for disease treatment and prevention 

that takes into account individual variability in genes, environment, and lifestyle for each 

person. This approach will allow physicians to conduct treatments more accurately. It is 

in contrast to the one-size-fits-all approach, in which treatments are developed for all the 

people with the same disease, with less consideration for the differences between 

individuals (Collins & Varmus, 2015). One example of precision medicine is finding 

treatments according to the genes of that patient, as genomic sequencing can be used as a 

molecular microscope to classify disease according to their specific abnormal biology. A 
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study supports that in 96% of undiagnosed primary tumors, a genomic alteration could be 

identified and that in 85% of these cases, it is potentially treatable by a known drug 

(Ashley, 2015).  

The origin of precision medicine could date back to the fact that a person who 

needs a blood transfusion is not given blood from a randomly selected donor, but it was 

impossible to fulfill this goal in the past. The reduced cost of sequencing a human 

genome ($22 million ten years ago versus $1,000 to $5,000 now) and time of sequencing 

(2 years ten years ago versus 1 day now) has made the precision medicine idea more 

possible today (Hudson, Lifton, & Patrick-Lake, 2015). Also, the adoption of Electronic 

Health Record (EHR) systems in hospitals has grown from below 30% to over 90%. 

These systems can help physicians to find relevant and useful information about a patient 

to inspire and support their decisions. Such information is helpful in evidence-based 

analysis. In early days, physicians would input patient’s demographic data and 

symptoms, searching for information in a EHR system to conduct disease diagnosis. They 

analyze the data to determine the pathophysiologic explanation, or to find potential 

treatment by referring to previous treatments for patients with similar symptoms (Musen, 

Middleton, & Greenes, 2014).  

Although such kind of analysis which is based on previous evidence and records 

may still work today, in most cases however, academic literature could provide more 

comprehensive knowledge and scientific support for decision-making with more 

reliability, and physicians can learn about the latest research of and treatments for a 

disease as well. The ability to personalize treatment in a scientifically rigorous manner is 

thus the hallmark of the emerging precision medicine paradigm. However, due to the 
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huge volume of academic articles which keeps growing rapidly, it is not easy to build an 

effective Information Retrieval (IR) system for searching medical literature. Clinicians 

can easily be overwhelmed by the great number and be inhibited to determine the best 

possible treatment because hardly do they have enough time to go through each paper 

they find. It would be much more difficult if a clinician wants to find some papers which 

exactly match the genetic, disease and demographic information of his patient. This is 

one of the biggest obstacles on our way towards precision medicine. If physicians could 

be provided with an effective IR system to easily retrieve relevant medical literature 

when making decisions, the gap between theoretical setting and real-world clinical setting 

could be fixed. 

For many years, people have been studying how to make medical literature 

retrieval systems more effective. In the Interactive Information Retrieval research area, 

according to a survey by Lu (2011), some approaches have been proposed to improve the 

retrieval system for better usability, e.g., changing the searching interface which helps 

users to discover and identify potentially relevant documents. Steinbrook (2006) uses the 

information seeking and information behavior theory to propose better literature 

searching skills for physicians. But these studies do not make great contributions to 

retrieval systems on the technical level. To promote research for better IR systems in 

medical literature searching, the National Institute of Standards and Technology (NIST) 

has organized the Precision Medicine (PM) track since 2017 in the Text Retrieval 

Conference (TREC). The biomedical abstract task in the PM track uses a real-world 

setting as discussed above. Suppose a physician is given a patient’s disease, gene and 
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demographic information, how could the IR system help him to retrieve relevant medical 

literature for conducting treatments? 

The problem is rather straightforward, but why is it difficult to build an effective 

IR system for medical literature searching? The first answer is the great volume of 

articles in the corpus. PubMed1, which is a free search engine accessing the MEDLINE 

database of biomedical topics, has more than 29.1 million records with about 500,000 

new records being added each year, according to its Wikipedia page2. Besides, the 

vocabulary problem has been found to be a big hurdle, and the vocabulary mismatch 

between queries and documents is recognized as a common failure in many IR systems. 

This problem has also been well noted in the health domain (Poikonen, & Vakkari, 

2009). The vocabulary problem could be interpreted from two aspects. The first aspect 

comes from obscure medical terminologies and a variety of abbreviations and variations. 

For example, BRAF3 is a human gene which is also referred to as proto-oncogene B-Raf, 

and it has some aliases like B-RAF1, BRAF1 and etc. When a document only includes 

these aliases instead of the original term, it will not be retrieved if a simple Boolean 

retrieval strategy is used. The second aspect is that physicians may have varying domain 

knowledge, which affects how they pose the query. User queries have been found to be 

very short with only two to three words, and query terms are significant different from 

terms in professional thesauri (Goeuriot et al., 2017). If the physician is not very familiar 

with the domain thesauri, he may have difficulties in formulating a well-structured query. 

In other words, a physician may input a disease or gene term into the query purely based 

on his understanding and preferred usage of medical terms, which is probably due to the 

lack of a unified form for a single concept. Using different terms to describe the same 
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concept could even happen among researchers with comparable level of knowledge on 

the subject. It is almost impossible for a physician to input all the relevant terms into the 

query by looking up the term in a thesaurus or an ontology when he attempts to do 

retrieval. Apart from previous difficulties, even if a physician could formulate a well-

structure query and retrieve more relevant documents than he used to, a powerful ranking 

algorithm is also necessary, considering a physician’s limited time to read only several 

documents appearing at the top. 

In this paper, we propose a new retrieval architecture. We use query expansion to 

tackle the vocabulary problem by automatically looking up the original disease and gene 

terms in knowledge bases and adding expansion terms into the query. We aim to retrieve 

more potentially relevant documents which do not explicitly mention the target disease or 

gene terms to optimize recall. After this step, we train a Logistic Regression classifier and 

apply it to the retrieved result to predict the probability of how relevant a document is to 

the PM track, and we aim to use the probability to re-rank the result to optimize 

precision. It should be noted that the term classifier and reranker are used 

interchangeably in this paper. The dataset provided by the PM track which consists of 

26.8 million MEDLINE articles and 70,026 ASCO/AACR conference articles serves as 

our corpus. For training the classifier and tuning parameters, we use the 30 topics from 

the 2017 track as our training set, and all the retrieval tasks for testing use the 50 topics 

from the 2018 track. 

The paper proceeds as follows. The literature review section provides some 

preliminary knowledge of the techniques used in this paper and current research in 

medical literature IR systems as well. The method section introduces how the query is 
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expanded and how the classifier is trained to re-rank the retrieved results. The experiment 

section shows technical details in implementing the architecture, the comparison between 

several retrievals with different strategies and several case studies to support why our 

architecture works. Finally, the conclusion section summarizes all the work in this paper 

and provides an outlook for the further work. 
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LITERATURE REVIEW 

In this section, we review relevant literature to provide an overview of the 

research background and related works mainly from three aspects: query expansion and 

learning-to-rank in IR systems, applications of knowledge bases in IR systems, and 

different approaches to improve medical literature IR systems so far. 

Query Expansion 

Different people may use quite different words to describe a same object. 

Therefore, traditional IR systems which only use keywords in the query to match terms in 

documents are not effective in some cases because the information about a same issue 

can be expressed in different words that may not be exactly the same. A document could 

still be relevant without the exact terms from the query, as long as it has other words with 

the same meaning.  

When a query contains multiple terms regarding to a user’s desired information, 

the result could be satisfying with a relatively high recall. However, if a user has poor 

domain knowledge and the query is short with ambiguous or misspelled words, there 

might be few relevant documents retrieved. For instance, the example of BRAF in the 

previous section is common in the medical domain, because many medical terms have 

aliases and variations and are written in full name or in abbreviation interchangeably. 

This is the vocabulary mismatch problem which leads to the ineffectiveness of traditional 

information retrieval systems. It is also where the motivation of query expansion comes.
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Query expansion enhances the original query with other words which are most 

likely to capture user’s desired information. The core idea is to generate an alternative or 

expanded query for the user. One intuitive way is to add into the query some synonyms 

or relevant terms of each keyword by looking up in a thesaurus or discovering term 

relations like their co-occurrences in documents (Manning, Raghavan, & Schütze, 2010). 

Basically, there are two approaches of query expansion: the corpus-based approach which 

generates expansion terms from documents ranking at the top with the assumption that 

the most frequent terms appearing in these documents are highly correlated to the original 

query, and the resource-based approach which leverages external resources like domain-

specific dictionaries, ontologies, or knowledge bases to add expansion terms into the 

original query. In other words, the first approach depends on the searching process and 

uses relevance feedback in iteration of searching to identify expansion terms, while the 

second approach is independent of the searching process and additional expansion terms 

are derived from a knowledge structure. 

In the corpus-based expansion approach, relevance feedback is a representative 

technique that is widely used to improve retrieval performances. The relevance feedback 

process usually happens after a retrieval is done, and the original query is reformulated 

according to the retrieval result. Relevance feedback could further be split into two 

methods which are implicit and explicit. The explicit method asks users to mark 

documents in the retrieval result as relevant or irrelevant. Then based on the feedback, the 

algorithm computes a better representation of the information, from which a revised 

query is formulated and a new retrieval is run. A classical method is the Rocchio 

algorithm (Rocchio, 1971), which adds an arbitrary percentage of relevant and minuses 
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that of non-relevant documents to the original query in a vector space model. Apart from 

the explicit method with manual input, Pseudo Relevance Feedback (PRF), also known as 

blind relevance feedback, is also widely used. It automates the manual part so that the 

user gets improved retrieval performance without an extended interaction. This approach 

runs a query to find an initial set of most relevant documents, then makes the assumption 

that the top K documents are all relevant and revise the query under this assumption. 

In the resource-based expansion approach, there are well-structured knowledge 

resources developed by domain experts in some specific domains, which provide 

expansion terms based on relations between entries. Expansion terms with certain 

relations to the original query terms are generated from these knowledge bases. 

However, although query expansion helps to capture user’s real information 

needs, the additional terms may cause the drift of the focus of a search topic caused by 

improper expansion and may hurt the retrieval performance in both precision and recall 

(Mitra, Singhal, & Buckley, 1998). Therefore, apart from generating expansion terms 

arbitrarily, a lot of studies show that the quality of added terms and weights assigned to 

these expansion terms could largely affect the result of retrieval. In the medical IR area, 

Xu et al. used PRF to generate expansion terms which are mapped into MeSH, and 

refined the candidate expansion terms by training term-ranking models to select the most 

relevant ones for query expansion (Xu, Lin, & Lin, 2018). 

Learning-to-rank 

The goal of ranking in IR is to generate a ranked list of retrieval results according 

to their relevance to the original query. Usually a ranking model computes a score 

between the document and the query to measure their relevance, and the results are 
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ranked in a descending order by the score. Basic IR models like Boolean retrieval could 

only tell whether a document is relevant or not, but could not tell how relevant a 

document is. Therefore, the vector space model, language model and other models are 

introduced to compute the relevance scores. For example, in the vector space model, 

documents and queries are represented by vectors with TF-IDF weights. Then the 

relevance score is computed by the cosine similarity between two vectors. In the 

language model, a maximum likelihood method is used to compute the probability to 

measure the relevance. These ranking models have been widely used in a lot of studies as 

well as some industry-level applications. 

However, one drawback of these traditional ranking models is that there are some 

parameters which need to be tuned in a heuristic way to get a reasonable result. Apart 

from the fact that parameter tuning is a time-consuming and trivial task, a model tuned on 

the validation set sometimes performs very poorly on unseen test queries (Liu, 2009). 

Recently years, machine learning has been demonstrating its power in various areas on a 

lot of tasks. In IR, we could also leverage machine learning techniques on ranking models 

to do automatically parameter tuning and avoid the overfitting problem. 

Adopting the idea of supervised learning, learning-to-rank methods construct the 

loss function by incorporating the ranking-based information. Same as other supervised 

learning methods, data are split into training data and test data. Suppose that there is a 

corpus of documents, and the ranking model is thus trained by a number of queries and 

each query is associated with a set of retrieved documents with relevance judgments. In 

testing, given a new query, the ranking function is supposed to create a precise ranked list 

for retrieval results (Qin, Liu, Xu, & Li, 2010). There are three different types of 
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learning-to-rank methods, which are the pointwise approach, the pairwise approach and 

the listwise approach. And these three methods model takes a single document, a pair of 

documents and a list of documents as instances for learning respectively (Liu, 2009). In 

training the model, since the document-query are represented in multi-dimensional 

feature vectors, the selection of features plays an important role regarding to the ranking 

performance. 

Medical Information Retrieval 

The quantity of medical articles keeps increasing rapidly, which puts much 

pressure on medical specialists who need to be aware of up-to-date studies, and 

physicians who need academic papers as references to diagnose diseases and find 

treatments. The current retrieval systems for medical literatures, however, are not 

efficient and the searching task is still time-consuming. 

There are a lot of studies proposing different methods to improve medical 

literature searching systems. Lu (2011) did a survey of 28 medical literature searching 

systems which were built between 1999 to 2010, and sixteen of them were implemented 

based on the PubMed system with minor adjustments. These improvements are 

summarized into four development themes: (1) a new ranking of searching results from 

the default reverse chronological order to relevance, (2) clustering results into topics for 

quicker navigation, (3) extracting and displaying semantic relations from results, and (4) 

improving searching interfaces and retrieval procedures to make the system more user-

friendly. However, these improvements were made on the usability level, few changes 

have been made on the technical level. 
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In recent years, with the development of technologies and the devotion of human 

efforts, there are more and more knowledge bases in the medical domain, and these 

resources are becoming well-structured and comprehensive with a large size. There are 

some remarkable knowledge bases in the medical domain, e.g., the Medical Subject 

Headings (MeSH), the Unified Medical Language System (UMLS), Orphanet and etc. 

Many studies have successfully incorporated these knowledge bases into IR systems to 

improve retrieval performances, or to solve the mismatch problem. Martinez et al. 

presented an automatic query expansion method based on random walks over the UMLS 

graph with applications in the EHR record searching, and showed that query expansion 

improved the robustness of the system (Martinez, Otegi, Soroa, & Agirre, 2014). Otegi et 

al. explored semantic relatedness techniques to propose a generic method using structured 

knowledge for both query and document expansion to improve results, and showed that 

their methods are complementary with PRF (Otegi, Arregi, Ansa, & Agirre, 2015). 

Koopman et al. proposed a medical IR system that integrates structured knowledge 

resources, statistical methods, and semantic inference in a Graph Inference retrieval 

model to tackle the semantic gap problem (Koopman, Zuccon, Bruza, Sitbon, & Lawley, 

2016). Mao et al. proposed a new medical IR system which assigns MeSH terms to 

documents and then quantifies associations between documents and assigned concepts to 

construct conceptual representations, thus uses the generative concept models match 

queries and documents (Mao, Lu, Mu, & Li, 2015). Moreover, several studies add 

knowledge bases into the system to extract latent concepts and relations for query 

expansion. Griffon et al. proposed that terms in documents could be mapped into UMLS 

to find synonyms to be added into the original queries (Griffon et al., 2012). Jalali and 
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Borujerdi used the MeSH knowledge base and proposed a query expansion method to 

match concept pairs between queries and documents. They also pointed out that gene 

knowledge bases are another source for expansion (Jalali, & Borujerdi, 2008). 

Since 2017, the precision medicine track has been added to the Text Retrieval 

Conference (TREC), and a lot of approaches to improve IR systems for medical literature 

searching have been proposed by teams participating in the track. Wang et al. explored 

the simplest approach that the NCI thesaurus and COSMIC are used to expand disease 

and gene terms with synonyms, and the retrieval result proved that the simplest method 

already significantly improved the retrieval performance (Wang, Wen, Liu, & Liu, 2018). 

Liu et al. explored an iterative approach to construct the query which starts from the 

strictest situation with exact matching of diseases and genes, i.e., terms must match, to 

relaxed matching, i.e., some terms may and some terms may not match, and finally to 

lenient match, i.e., terms may or may not match. The ranked retrieval list is then 

produced based on the iteration of these queries (Liu et al., 2018). Zheng et al. explored 

assigning different weights for different parts in the query and proposed that the weight 

for disease, gene, gene mutation and general disease term should be in a descending order 

(Zheng, Li, He, & Xu, 2018). Zhou et al. construct a knowledge graph which contains the 

relations between gene, cancer and drug pairs from several knowledge bases via 

knowledge extraction and identifier normalization. Then this knowledge graph serves for 

both query expansion and re-ranking. A classifier which combines Recurrent Neural 

Network and Convolutional Neural Network is also trained for re-ranking to retrieved 

documents (Zhou, Chen, Song, Zhao, & Wu, 2018).  
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METHOD 

In this section, we first give an overview of our proposed retrieval architecture 

with two parts of indexing and searching. We then introduce the core techniques to 

improve retrieval which consists of two consecutive steps: the query expansion step 

which aims at improving recall and the re-ranking step which aims at improving 

precision. In the re-ranking section, we discuss how the classifier is trained and how 

features are generated. Our goal is to retrieve as many relevant documents as possible at 

the first step, and then re-rank the retrieved results using the reranker to push the most 

relevant documents to the top. In other words, in the final retrieval result, we expect a 

higher-precision and higher-recall performance than the baseline strategy. 

Retrieval Architecture  

As shown in Figure I, our novel retrieval architecture consists of three parts: the 

processing and indexing part which converts the corpus into Lucene indexes, the 

parameter tuning and classifier training part which uses the 30 topics in 2017 to get 

optimized weights for expansion terms and a linear classifier for re-ranking, and the final 

retrieval part to test our proposed strategies which uses the 50 topics in 2018. All the 

2017 and 2018 query topics are expanded from the same knowledge bases. We tune and 

train the model using topics from 2017 and treat the 2018 topics as a black box to ensure 

the robustness of the model. Finally, we simply apply the same pipeline to the 2018 

topics to get a ranked list of documents for relevance judgement.
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FIGURE I 

An overview of the retrieval architecture 

 

Indexing 

We use Apache Lucene4 6.0.0, which is an open-source, high-performance and 

publicly-available searching engine toolkit in Java as our main system framework for 

indexing and searching. 
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TABLE I 

Five fields indexed for each scientific paper 

Fields Analyzed Stored 

Title True True 

Abstract True True 

ID False True 

Publication Type False True 

MeSH heading False True 

 

For each paper in the corpus, we index five fields which are document ID, title, 

content, publication type and MeSH headings (see Table I). It is important to note that the 

corpus only contain the abstract part of a paper instead of its full text, which is referred as 

the content in this paper. Only the title and content field are analyzed with the built-in 

standard analyzer, which mean that these two fields are tokenized and used to match the 

query for relevance measurement. Also, there are 599 documents with slightly different 

abstract but the same document ID, for a paper is added into the corpus every time after it 

is revised. We simply index a document at the first hit and ignore the later versions to 

prevent duplicate document IDs in the retrieved result. Throughout the whole 

architecture, we use the Okapi BM255 scoring algorithm which has been widely used in 

various industry-level applications. Compared to the traditional TF-IDF scoring function, 

BM25 has more reasonable scoring functions and more flexible parameters to be tuned. 

In this paper, we use the default parameter settings of 1.25 and 0.75 for all the retrieval 

task. 

Given a query Q, containing keywords q1,...,qn, the BM25 score of a document D 

is calculated as: 
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where the 𝑓 𝑞.	, 𝐷  is query term 𝑞.’s term frequency in the document D, |𝐷| is the 

length of document D (total count of words), 𝑎𝑣𝑔𝑑𝑙 is the average document length in 

the corpus, 𝑘8 and 𝑏 are free parameters.	𝐼𝐷𝐹 𝑞.  is the inverse document frequency 

(IDF) weight of query term 𝑞. , which is usually computed as: 

                                     𝐼𝐷𝐹 𝑞. = 	 log O:C 12 7P.R
C 12 7P.R

                                               (2) 

where 𝑁 is the total number of documents in the collection and 𝑛 𝑞.  is the number of 

documents which contain the query term 𝑞.. 

Training and testing 

All the training and parameter tuning tasks are done on the 2017 topics, with the 

released relevance judgement file which contains the true relevance scores of some 

documents in the corpus. In both training and testing processes, the queries are first 

expanded using the same knowledge bases which are introduced in the query expansion 

section, and the initial weight for each expansion term is set to 0.3 to ensure the 

expansion terms do not shift the focus of the original query too much. 

Since the standard number of retrieved documents for each topic is 1000, we use 

the metric of Recall@1000 to evaluate the retrieval after query expansion, which is 

calculated as the number of relevant documents in the retrieved 1000 results divided by 

the total number of relevant documents in the corpus. Then we tune the weight 

parameters for expansion terms to optimize R@1000, which desires to retrieve as many 

relevant documents as possible. The results of optimal weight parameters are shown in 

detail in the experiment section. Another significant contribution of the 2017 topics is to 
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train a linear classifier which predicts the probability of a document’s being relevant to 

the PM track. After generating high-level features from the text, we train a Logistic 

Regression model for binary classification in which labels are only relevant or non-

relevant. This process is introduced in detail in the re-ranking section. After getting a set 

of weight parameters optimizing R@1000 and a trained Logistic Regression classifier, 

we apply the same process on the 2018 topics for testing. 

Query Expansion 

The goal of query expansion is to use external knowledge bases to expand the 

original term which helps the query to match more documents which do not contain that 

term. Since both disease and gene information are given regarding to a patient, we 

expand both two fields in knowledge bases separately. 

Diseases 

There are a lot of knowledge bases, e.g., Wikipedia6 and DBpedia7 in the general 

domain, and Medical Subject Headings (MeSH)8 from NCBI in the medical domain. 

Most research in medical IR systems use the MeSH knowledge base because of its 

coverage and authority. However, in this paper we use another knowledge base called 

Lexigram9 which is a publicly-available API. It contains not only the MeSH ontology, 

but also other knowledge bases like the Systematic Nomenclature of Medicine Clinical 

Terms (SNOMED CT) and the International Classification of Diseases (ICD). By 

integrating three professional knowledge bases together, this knowledge base provides 

broader and more accurate terms for disease expansion. Both MeSH and Lexigram 

support finding the preferred term, synonyms, as well as parent disease and children 

disease of a given disease term in a hierarchical structure. 
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In selecting an appropriate query expansion structure, at first we include all these 

expansion terms, but we find the parent and children expansion terms bring too many 

noises into the original query. It makes the retrieved documents either too broad or too 

specific, and the result is low in both recall and precision. Therefore, in the final query 

expansion for diseases, parent and children disease terms are discarded. The table below 

illustrates how expansion terms for a disease term are different in two medical knowledge 

bases (see Table II). 

Another edge of using the Lexigram knowledge base is that it can recognize 

disease terms from input text and automatically generate expansion terms. However, if 

using the MeSH knowledge base, we need to look up the disease in MeSH first to get a 

unique identifier, and then retrieve expansion terms according to that identifier. This 

brings a problem that when the disease in the query topic is a rare disease or do not match 

the standard disease name in MeSH, the identifier is hard to be found and no results could 

be retrieved from the ontology. 

TABLE II 

Example of disease expansion terms in two different knowledge bases 

Knowledge Bases Lexigram MeSH 

Original disease term cholangiocarcinoma cholangiocarcinoma 

Preferred term cholangiocarcinoma of biliary tract cholangiocarcinomas 

Synonyms bile duct carcinoma 

bile duct adenocarcinoma 

cholangiocellular carcinoma 

Intrahepatic Cholangiocarcinoma 

Extrahepatic Cholangiocarcinoma 
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Apart from the preferred term and synonyms, acronyms are also used as 

expansion terms in this paper. Consider such a snippet in a paper’s abstract which is 

relevant to lung cancer: 

“Microarray analyses have revealed significantly elevated expression of the proto-
oncogene ROS1 receptor tyrosine kinase in 20-30% of non-small cell lung 
carcinomas (NSCLC). Selective and potent ROS1 kinase inhibitors have recently 
been developed and oncogenic rearrangement of ROS1 in NSCLC identified. We 
performed immunohistochemical evaluation of expression of ROS1 kinase and its 
downstream molecules in 399 NSCLC cases. ROS1 expression in primary and 
recurring lesions of 92 recurrent NSCLC cases was additionally analyzed.” 
In this text, we can clearly see that the disease non-small cell lung carcinomas is 

only written in its full name when it appears in the paragraph for the first time. Then it is 

written in its acronym form NSCLC afterwards for simplicity. This is very common in 

biomedical scientific papers that people use short acronyms instead of full names because 

of the length. Therefore, if the query does not include the acronym of a disease, some 

relevant papers could not be matched or not rank in the top because of the low term 

frequency of the original disease terms. However, to best of our knowledge, there does 

not exist a publicly available acronym dictionary or API which automatically maps a 

disease term to its acronym. For this paper, we simply use such a regular expression 

“Disease Name \([A-Z]+\)” in the corpus to match a pattern that a disease name is 

followed by a capitalized term in parentheses to retrieve acronyms for each disease. 

Genes 

For query expansion of the gene field, we enrich the original gene term with the 

genetic dataset provided by the National Center for Biotechnology Information (NCBI)10. 

We simply include the aliases for each gene term by looking it up in the dataset (see 

Table III). 
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TABLE III 

Example of gene expansion terms in the NCBI gene list 

Knowledge Base NCBI gene list 

Original gene term KRAS 

Aliases C-K-RAS|CFC2|K-RAS2A|K-RAS2B|K-RAS4A|K-RAS4B|K-Ras 

KI-RAS|KRAS1|KRAS2|NS|NS3|RALD|RASK2|c-Ki-ras2 

 
To summarize, for each query topic the disease term is expanded to its preferred 

term, acronym and synonyms, and the gene term is expanded to its aliases. This process 

assists to enrich the information in the original query and thus match those potentially 

relevant documents which do not mention the original disease or gene term but terms 

referring to the same disease or gene. In common practice, the expansion terms usually 

have a lower weight than the original term, in case they introduce too many noises and 

shift the focus of the original query. Following a heuristic approach, we give the highest 

priority to the original disease and gene term with a weight of 1, and give a weight 

between 0 and 1 to decrease the importance of expansion terms. This is supposed to help 

to improve R@1000 and not to hurt precision at the same time. We then tune these 

weight parameters on the 2017 topics and the result is in the experiment section. 

Re-ranking 

Although with query expansion we may optimize R@1000 to retrieve more 

relevant documents than before, we are still in need of an effective ranking method which 

pushes the most relevant documents to the top. In the real-world setting, it is impossible 

for physicians to go through all the 1000 papers retrieved, and their focus should only be 

on the documents ranking at the top. Therefore, the PM track evaluate the retrieved result 
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by P@10 and R-precision, which calls for a high precision of the retrieval. In this section, 

we discuss our work of re-ranking to optimize P@10, which is calculated as the number 

of relevant documents in the top 10 results divided by 10. We present a heuristic 

approach first, followed by the learning-to-rank approach. 

A Heuristic Approach 

Before starting training the reranker which helps to judge how relevant a 

document is relevant or how much a document is relevant to the PM topics, we explore a 

heuristic approach to re-ranking the retrieved results. 

First we print out the title and content of retrieved results after the query 

expansion and examine the top 10 articles for each topic to investigate the most intuitive 

characteristics of relevant and non-relevant documents. We notice that on the average of 

30 topics, almost all the relevant articles have the disease term in the title and most of the 

non-relevant articles do not. Therefore, we hypothesize that a relevant article should have 

the disease term in the title and it is an important characteristic, otherwise it shall be 

penalized to a lower relevance score. Based on this idea, we explore a heuristic approach 

of punishing those articles without the disease term by multiplying their original scores 

with a penalty factor between 0 to 1.  

To select an approximate penalty factor, we investigate how to push a relevant 

document which has the disease term in its title and the highest ranking outside the top 

10, i.e., ranking at 11, 12, etc., to the top 10. Thus, our goal is to find the gap between 

such a relevant article and a non-relevant document which does not have the disease term 

in its title and the highest ranking in the top 10. In other words, we push relevant 

documents upwards by giving the positions of non-relevant documents. 
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Finally, we find scores of such relevant documents are around 0.6 of scores of 

such non-relevant documents on the average of 30 topics. We thus set the penalty factor 

to 0.6, and the performance of this retrieval shown in the experiment section proves that 

simple as this heuristic approach is, it does help to push relevant documents upwards and 

to improve Precision@10. 

Learning to Rank 

The heuristic approach is the starting point of re-ranking the retrieved result to 

enhance P@10. However, this approach is based on human efforts of reading and 

examining the results, and such method may not be robust. Therefore, apart from this 

approach, we aim to leverage the pointwise learning-to-rank idea and machine learning 

techniques to learn a ranker which can automatically tell whether a paper is relevant to 

the PM track or not. The feature of whether the disease term appears in the article title 

shows its usefulness above. Table IV lists query-document features and document-

specific features used in the ranker. We choose high-level features instead of pure word 

features from the bag-of-words model because such features would be too sparse to have 

a good performance. 

First, we hypothesize that an article which is relevant to the topic or in accord 

with the precision medicine track should focus on treatments and diagnosis of patients, 

and should not talk about laboratory experiments or some general topics. Second, since 

each article has the information of its publication types, e.g., journal article, review, case 

study, clinical trial and etc., we hypothesize that an article with the type of clinical trial 

should have a higher probability of being relevant. Third, each article has the information 

of its MeSH headings to imply what its content is mainly about, e.g., Humans, Mutation, 
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genetics, and etc. It is similar to keywords in other scientific papers but uses the MeSH 

thesaurus. We hypothesize that an article with certain headings should be more likely to 

be a relevant one. 

The features of whether the disease term appears in the title and whether the 

publication type is clinical trial are categorical, i.e., 0 or 1, and all the other features are 

numerical because we simply count the term frequency of each keywords. 

TABLE IV 

Features in the classifier 

Feature Description Data Type 

Whether the disease name appears in the title Categorical 

How many positive keywords appear in the title Numerical 

How many positive keywords appear in the abstract Numerical 

How many negative keywords appear in the title Numerical 

How many negative keywords appear in the abstract Numerical 

Whether the publication type is about Clinical Trial Categorical 

How many heading keywords appear in the heading Numerical 

 

TABLE V 

Positive, negative and heading keywords 

Positive keywords treatment, survival, prognostic, clinical, prognosis, therapy, 

outcome, resistance, targets, therapeutic, immunotherapy 

Negative keywords pathogenesis, tumor, development, model, tissue, mouse, specific, 

staining, dna, case, combinations 
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Heading keywords Humans, Mutation, genetics, drug therapy, metabolism, drug 

therapy, pharmacology, antagonists & inhibitors, drug effects, 

therapeutic use, immunology 

 

The next step is to generate the positive keywords, negative keywords and 

heading keywords for counting. Oleynik et al. use the Latent Dirichlet Allocation (LDA) 

model to do Topic Modeling (TM) among the relevant articles and non-relevant articles 

to find positive and negative keywords which are strongly correlated to these two 

corpuses (Oleynik et al., 2018). Besides the LDA model, we also explore the simple TF-

IDF weights of keywords in these two types of corpuses, and the heading keywords are 

generated in this way as well. These keywords are supposed to have the biggest 

correlations to the certain corpus. The lists of positive, negative and heading keywords 

are shown in Table V above. 

Ranker Construction 

We train a Logistic Regression model to predict the probability that a document is 

relevant to the PM track. All the hyperparameter settings are as default in the Python 

scikit-learn11 library. For each retrieved article, the feature vector is generated based on 

the feature table above and the probability of a positive (relevant) label is predicted using 

the logistic regression model. 

We use both the predicted probability of how relevant an article is to the PM track 

and the original BM25 score for re-ranking, as the experiment result confirms our 

hypothesis that purely using the probability and ignoring the ranking from original scores 

do not work very well. However, since the probability is a number between 0 to 1 and the 



 27 

original BM25 score could be as large as 70, we should keep them at the same scale. 

Therefore, we do the min-max transformation on the original BM25 score and it is thus 

scaled to a number between 0 to 1, which makes it more reasonable to add the probability 

to the original score. Then for each article, a new score is generated by adding up the raw 

BM25 score and the probability from the classifier, finally the re-ranking is based on new 

scores. 

However, in experiments we find that applying the reranker to all the 1000 results 

do not improve the precision, but hurt the performance instead. We suppose that it is 

because the positive instances in the training set merely come from past teams’ top 

retrieved results, which are much fewer than the negative instances. In other words, since 

there are 26.8 million articles in the corpus, it is impossible for people to manually label 

each document as relevant or non-relevant. Thus, the ad-hoc relevance judgement by 

experts are only applied on documents which rank at top in each team’s submitted results, 

which leads to a different distribution of instances in the training and testing set. 

Therefore, instead of applying the reranker on all the 1000 retrieved documents to do re-

ranking, we only re-rank the top 50 documents, after testing different top K documents to 

re-rank by optimizing P@10 on the 2017 topics. 

In summary, we train the reranker on the 2017 topics and find that the optimal 

number to re-rank is 50. When we run queries on the 2018 topics, we follow the heuristic 

approach first, i.e., we punish a document which does not mention the disease term in its 

title by multiplying its raw score by a penalty factor of 0.6, based on which the results are 

re-ranked for the first time. We then transform the raw BM25 scores using a min-max 

scaler to a number between 0 and 1. Afterwards, we only input the top 50 documents into 
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the reranker and add up BM25 scores with the probability, and keep scores of the other 

950 documents unchanged. Based on new scores, the re-ranking is done for the second 

time and a final ranked list is returned for relevance judgement. 
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EXPERIMENT 

In this section, we discuss the performances of different retrieval strategies and 

methods. We first introduce the dataset which is used in this paper, and then show how a 

query is generated for each topic. We then compare retrieval performances in the result 

section followed by three case studies and some other approaches which fail to show 

improvements but may work in the future. 

Dataset Overview 

As is discussed in previous sections, we use the dataset which consists of 26.8 

million MEDLINE articles and 70,026 ASCO/AACR conference articles as corpus, and 

all these articles only contain the abstract part instead of the full text which is referred to 

as the content field in this paper. The indexing process takes about 8 hours on a research 

computing node with 16 core CPU and 100 gigabytes RAM, and the file size of indexes 

is about 18 gigabytes. 

FIGURE II 

A query topic example 
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There are 30 topics in the 2017 track and 50 topics in the 2018 track, both are in 

the XML format and each node represents a patient with disease, gene and demographic 

information (see Figure II). 

Query Structure 

For each topic, we generate the query using the disease and gene information, and 

the demographic information is not used in this paper. After these two fields are 

expanded in knowledge bases, weights are assigned to each term. We use the OR 

operator between all the terms, because it is impossible for a paper to contain all the 

query terms after expansion. We use the SHOULD operator for the title field and the 

MUST operator for the content field, which means it is not required for a document to 

match the query in its title but required to match the query in its content. 

Result and Implications 

Our final query structure and weights for each expansion part are shown in Table 

VI. We keep weights of the original disease and gene terms always as 1, and we set 

weights of all the expansion terms to 0.3 initially. To optimize Recall@1000, we control 

the weight of other expansion terms in the query as the same and tune one part to an 

optimized recall.  

The final weights are in accord with our expectations. A disease has 3 or 4 

preferred terms and synonyms in total, and these terms usually contain several words (see 

Table II). Also, when we examine the output, we find that some expansion terms may not 

appear in the whole corpus because they are too rare, or not be relevant to the original 

disease. Therefore, the weight of these expansion terms should not be too high to shift the 

focus of the original query and it is thus set to 0.1. However, the weight of disease 
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acronyms is 0.5 because it is highly related or even equivalent to the original disease. The 

weight for gene aliases is fairly 0.3. 

TABLE VI 

Weights for each term which optimizes R@1000 

 Query Term Weight Operator In Title In Content 

Diseases 

Original Disease Term 1 

OR 

SHOULD 

 (may or  

may not match) 

MUST 

(must match) 

Disease Preferred Term 0.1 

Disease Synonyms 0.1 

Disease Acronyms 0.5 

Genes 
Original Gene Term 1 

Gene Aliases 0.3 

 

TABLE VII 

Comparison between retrieval strategies 

Retrieval Strategy R@1000 P@10 R-precision 

Baseline 0.686 0.544 0.317 

Retrieval I 0.695 0.554 0.299 

Retrieval II 0.702 0.568 0.320 

Retrieval III 0.702 0.618 0.322 

Retrieval IV 0.702 0.646 0.336 

hpi-dhc - 0.7060 0.3658 

Cat Garfield - 0.6680 0.3257 

SIBTextMining - 0.6320 0.3574 
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The comparison between different retrieval strategies is shown in Table VII. We 

run five retrievals in total and we describe the settings for each retrieval below. To be 

more specific, Retrieval I & II are used to test the hypothesis that query expansion is 

useful, and these two retrievals are different in the structure of expansion terms. And 

based on Retrieval II which optimizes Recall@1000, Retrieval III & IV are used to test 

the hypothesis that re-ranking is effective, and these two retrievals are different in the re-

ranking method, with the heuristic and learning-to-rank approach separately. In Baseline 

and Retrieval I & II & III & IV strategies, a same setting is used that terms are 

connected using the OR operator, and the operators for the title and content field are 

SHOULD and MUST separately. 

Baseline: This serves as the most basic strategy in our approaches. In this 

retrieval, we use only the original disease and gene terms in the topic without query 

expansion and re-ranking.  

Retrieval I: In this retrieval, the disease term is expanded to its preferred term 

and synonyms, and the gene term is expanded to its aliases, with weights assigned shown 

in Table VI. 

Retrieval II: Compared to previous retrieval, acronyms of diseases are added into 

the expansion terms, with weights assigned shown in Table VI. 

Retrieval III: Compared to Retrieval II, the re-ranking step is added after the 

first retrieval with the heuristic approach. 

Retrieval IV: Compared to Retrieval II, the re-ranking step is added after the 

first retrieval with the trained reranker. 
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In summary, Retrieval I & II prove that adding expansion terms into the original 

query for diseases and genes is helpful, as they improve Recall@1000 from 0.686 to 

0.695 and 0.702 separately, which means more potentially relevant documents are being 

matched because of these expansion terms. The higher recall in Retrieval II over that in 

Retrieval I illustrates that acronyms are important in expansion. Also, with a wise 

selection of weight parameters in the query expansion step, P@10 is not hurt and, instead, 

improved from 0.544 to 0.554 and 0.568 separately. This result supports that high-quality 

expansion terms could help to improve both recall and precision. 

Based on Retrieval II which optimized Recall@1000, Retrieval III & IV prove 

that the re-ranking step improves precision by pushing the most relevant documents to 

the top. Retrieval III shows that the heuristic approach which penalizes documents 

without disease term in the title already works well, as P@10 increases from 0.568 to 

0.618, considering its simplicity. Retrieval IV proves that a Logistic Regression reranker 

further helps to improve the precision, as the precision is 0.1 higher than the baseline 

approach and 0.026 higher than the heuristic approach. 

In Table VII, we include retrieval performances from three top-ranking teams in 

the 2018 PM track as well. Team hpi-dhc, Cat Garfield and SIBTextMining have the 

highest P@10 among all the teams. The extreme high precision of team hpi-dhc and Cat 

Garfield benefits from their domain knowledge. Team hpi-dhc make hand-crafted rules 

for documents matching in retrieval, and they pre-process the corpus in their own 

framework, which is an edge over our practice of indexing the raw text (Oleynik et al., 

2018). Team Cat Garfield construct their own knowledge graph by integrating several 

knowledge bases together, and this high-quality knowledge graph proves its power in 
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both query expansion and re-ranking. Also, they train a CNN classifier for re-ranking, 

which is more complicated but has a better performance than our linear classifier (Zhou, 

Chen, Song, Zhao, & Wu, 2018). Unfortunately, team SIBTextMinining does not provide 

a report of their work. It is highlighted that with query expansion in a publicly available 

knowledge base and a linear classifier for re-ranking, the Precision@10 in this paper 

already ranks at the third place among all the teams. 

Case Studies 

To further demonstrate how query expansion and re-ranking help to improve the 

retrieval performance clearly, in this section we present case studies with examples to 

illustrate how these two steps enhance retrieval in Case I & II. We also give an error 

analysis case to discuss why our retrieval architecture fails to handle some tough and 

ambiguous situations in Case III. Considering the length of full texts, we only provide 

snippets in this section and full abstracts could be found at Appendix A. 

Case I: The contribution of query expansion. 

As is discussed in previous sections, the motivation of query expansion is to 

enrich query information by adding into the query alternative or relevant terms of the 

original keywords, and it is expected to match some potentially relevant documents 

which do not contain those original keywords. Hereby we show the contribution of query 

expansion with an article which is not retrieved in the baseline model but is retrieved 

after the query expansion technique is used. 

As is shown below (see Figure III), topic No.36 aims to find relevant articles 

about lung cancer and the ERBB2 gene. And below is the snippet of one paper’s content 
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(PubMed ID: 14981584) which is relevant to this topic. It demonstrates how expanding 

disease and gene terms helps to retrieve more relevant documents. 

FIGURE III 

A query topic example 

 

  
“Title: The role of HER2/neu expression and trastuzumab in non-small cell lung 
cancer. 
 
Abstract: … The HER2/neu receptor… HER2/neu is overexpressed in 16% to 
57% of patients with non-small cell lung cancer (NSCLC) and studies have 
shown that HER2/neu overexpression imparts a poor prognosis in both resected 
and advanced NSCLC, as it does in … the HER2/neu protein receptor, has 
been … with HER2/neu-positive metastatic breast cancer. In NSCLC preclinical 
studies, marked synergistic … in HER2/neu-expressing cell lines. However, to 
date, clinical studies with trastuzumab in patients with NSCLC have not shown a 
demonstrable advantage ... ” 

 
As we can see from this example, this paper does not talk about the ERBB2 gene 

at all, but it mentions HER-2/neu which is an alias of ERBB2 throughout the abstract. 

This paper is not retrieved in the baseline strategy because of the mismatch between the 

original gene term and gene terms in the content. However, it is retrieved after the gene 

term is expanded to its aliases, i.e., the expansion term HER-2/neu is included into the 

query. Also, this paper does not talk about the original disease term lung cancer, but one 

of its synonyms which is non-small cell lung cancer and its acronym NSCLC are used 

five times in total merely in the snippet above. If the disease is not expanded to its 

preferred term, synonyms and acronym, this paper would not be retrieved because of the 
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low term frequency of the disease term lung cancer. By query expansion, recall@1000 

for this topic is thus improved from 0.19 in the baseline approach to 0.48.  

Case II: The contribution of re-ranking. 

As is discussed in previous sections, the motivation of re-ranking is to push a 

relevant document with a low raw score and low ranking to the top, and also to lower the 

rankings of non-relevant documents. It is expected to increase precision at the top, e.g., 

Precision@10 used in this paper. In this case, we show the contribution of the re-ranking 

step with one example that is not in the top 10 results initially but does appear in the top 

10 list after re-ranking, and with another example which is punished to a rank after 10. 

We use the same topic as in the previous case, i.e., lung cancer and the ERBB2 gene. It 

shall be highlighted that the original Precision@10 for topic No.36 is 0.2, and the new 

Precision@10 for this topic is increased to 0.5 after re-ranking. 

In the re-ranking section, we propose two methods which are a heuristic approach 

and a learning-to-rank approach, and examples are given for both methods.  We first 

show how the heuristic approach decreases scores of non-relevant documents which do 

not mention the disease term in the title. There are 8 non-relevant documents in the initial 

top 10 list, and none of them appears in the new list after re-ranking. For the sake of 

simplicity, we give only one example below (see table VIII).  

TABLE VIII 

An example of punishing non-relevant documents 

Document Title  

(without the disease term lung cancer) 

Initial 

Score 

New 

Score 

Initial 

Ranking 

New 

Ranking 

HER-2/neu and topoisomerase IIalpha in 

breast cancer  

61.8 

 

37.08 4 47 
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As is shown in the table, a top-ranking article (PubMed ID: 12755489) is now 

going down to 47 although it ranks as high as 4 initially, because the topic disease lung 

cancer does not appear in its title. 

It is not hard to tell from the title that this article is not about lung cancer at all, it 

should all about breast cancer instead. But why could this obviously non-relevant article 

be retrieved? From the snippet of its abstract below, it is revealed that the high-ranking 

raw score purely comes from the extremely high term frequency of the gene HER-2/neu. 

Simple as the heuristic approach is, it still helps to refine the top results.  

“Abstract:  … The HER-2 (also known as ErbB2/c-erbB2/HER-2/neu) 
oncogene is the most frequently … HER-2 is also a target for … HER-2 receptor. 
HER-2 has also been implicated … by the HER-2 … of the HER-2 amplified 
primary breast tumors … of HER-2 amplification also ... HER-2 is an oncogene 
that … other than HER-2, such as … HER-2 status still … importance of HER-
2 … ” 

 

The heuristic approach proves its usefulness in punishing non-relevant documents 

above, and we give another example of how a relevant document (PubMed ID: 

15312350) is boosted to top 10 after re-ranking using the learning-to-rank approach. As is 

shown below, this document is not punished because it mentions the topic disease lung 

cancer in its title. Also, from the snippet of its abstract, we could see that it is boosted 

because of the high term frequency of positive keywords prognostic and survival in both 

its title and content, which indicates that this paper focus on treatments and is in accord 

with the PM track. Its actual rankings go with our expectations: its raw score ranks at 16; 

its probability ranks at 6 and its final score after adding two up ranks at 7. 

“ Title: Prognostic value of expression of FASE, HER-2/neu, bcl-2 and p53 in 
stage I non-small cell lung cancer 
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Abstract: To evaluate the prognostic value of expression of fatty acid synthase 
(FASE), …. The 5-year survival rate was lower in HER-2/neu and FASE positive 
patients than in negative patients, which showed that HER-2/neu and FASE 
expression were associated with significantly poor survival … with a 5-year 
survival rate of 78.2% … prognostic factors for survival. HER-2/neu and FASE 
are independent prognostic factor in stage I non-small cell lung cancer …” 

 

Case III: Error analysis 

Although retrieval results in two previous sections have proven that both query 

expansion and re-ranking are useful in improving the retrieval performance, there are two 

situations that our proposed retrieval architecture fail to handle. One is that a non-relevant 

document is retrieved and ranked among the top 10 list, and another is that a relevant 

document is not retrieved or does not rank in the top 10 list, which could be recognized as 

cases of false positive and false negative, respectively. Hereby we do an error analysis of 

these two situations with two examples, from which we investigate the flaw of our 

retrieval architecture for future improvements. And we still use topic No.36 which is 

about lung cancer and the ERBB2 gene as above.  

We first take a look at one example of the false positive cases, which means that 

the document below (PubMed ID: 22730705) is non-relevant to the topic but still ranks 

among the final top 10 results. It ranks at 39 if sorted by the raw score because of its 

fairly high term frequency of both disease and gene terms. However, it ranks at 5 if sorted 

by the probability from the reranker, for there are 8 positive keywords in total and no 

negative keywords at all, which could be seen from the snippet below. Also, the disease 

term appearing in the title ensures that it is not punished. Since the raw is transformed in 

a min-max scale, the raw score gap between this document and other documents is 

shortened, and it finally ranks at 8 in the final result. A close look at this article reveals 
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that it focuses on predicting cancer patients’ survival rather than developing or evaluating 

cancer treatments. This makes it non-relevant to the central goal of PM track. 

“ Title: HER-2/neu oncogene and estrogen receptor expression in non small cell 
lung cancer patients 
 
Abstract: ... The prognosis is usually … parameters and clinical stage, but 
additional prognostic survival factors … of HER-2/neu and estrogen receptors 
in nonsmall cell lung cancers and their relation to survival of patients with non-
small cell lung cancers and to traditional prognostic factors … resected patient 
tissues of non-small cell lung cancers, and the following parameters were 
examined: HER-2/neu and estrogen receptor expression, as well as the related 
clinical and pathological features … Our findings indicate that the expression of 
HER-2/neu … the survival of patients with non-small cell lung cancers. 

 

Apart from the false positive situation, we give another example of the false 

negative cases, which means that the document below (PubMed ID: 11153605) is 

relevant to the topic but does not rank among the final top 10 results. Its raw score ranks 

at 9, which is much higher than the non-relevant document above. It is not only because 

the high term frequency of disease and gene terms, but more importantly, the gene 

mentioned in this paper is the original term ERBB2, which has a higher weight than the 

expansion term HER-2/neu, i.e., the weight 1 comparing to the weight 0.3. However, it 

ranks at 14 if sorted by the probability from the reranker, for there are only 3 positive 

keywords and also two negative keywords case. Therefore, after adding the raw score 

and the probability up, this article ranks at 13 in the final result. We hypothesize that the 

selection of negative keywords. 

“ Title: Ploidy, expression of erbB1, erbB2, P53 and amplification of erbB1, 
erbB2 and erbB3 in non-small cell lung cancer. 
 
Abstract: … assess the prognostic value of … erbB2 … in non-small cell lung 
cancer (NSCLC). Consecutive patients with NSCLC who underwent 
treatment… In 108 cases, … In another 108 cases, … determined in the tumours 
of 53 patients …18% for erbB2 … 94% for erbB2 … erbB2 and P53 
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expression … stage … erbB2 … not prognostic parameters in non-small cell 
lung cancer ..” 
 
From these two errors, together with the retrieval compassion in Table VII, we 

can see that although adding the probability helps to improve precision, it could still 

make mistakes, especially when a non-relevant document has more positive keywords, or 

a relevant document has more negative keywords. This implies that the features of simply 

counting positive or negative keywords in title or abstract are not robust or may not work 

in some cases. Also, these two errors also suggest that simply adding the raw BM25 score 

and the probability may not work, as we can see the non-relevant document ranks higher 

largely because of its high probability, and the relevant document ranks lower because of 

low probability. Therefore, a more reasonable weighting should be investigated. 

Other Trails 

Apart from the retrievals discussed above which give the expected performances, 

we also try other approaches both in the query expansion step and the re-ranking step. 

Unfortunately, all these approaches do not show improvements of the retrieval result, 

some of which even lead to a worse performance than the baseline approach. Hereby we 

present these trials with the intuition behind and error analysis, which could be used for 

future work references. 

Trail I: We use other knowledge bases like MeSH, Orphanet12, Disease 

Ontology13, and Wikidata14 for disease query expansion. However, diseases terms 

expanded by these knowledge bases either are too far from the original disease to be 

relevant, i.e., some rare diseases or terms which are abandoned and not used anymore, or 

have only minor changes in the order of words or simply to the plural form, e.g., Colonic 

Neoplasms in MeSH has the preferred term of Neoplasm, Colonic. The result of adding 
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these low-quality expansion terms shows that R@1000 is slightly improved and P@10 is 

hurt because all the disease expansion terms contain almost same words, which lead to an 

implicit boost of these duplicate words and shift the focus of the original query. Even 

though we remove duplicate words in the expanded query by using unique terms, the 

result still shows that R@1000 is still slightly improved. Therefore, we choose the 

Lexigram knowledge base for query expansion. 

Trail II: We add parent, children and siblings of a disease as expansion terms 

when using the MeSH knowledge base, for MeSH is an ontology in a tree structure. We 

hypothesize that some relevant articles may not talk about the disease, but about the 

parent of the disease in the tree which are broader or the children which are more 

specific. We even consider the siblings of a disease in the tree structure. However, even 

we do a lot of work on parameter tuning, the results show that adding these expansion 

terms hurts both R@1000 and P@10. It is probably because these expansion terms are 

too broad or specific to be relevant, which adds noises to the query. We then hypothesize 

that the presence of parent, children or sibling diseases could be feature in re-ranking, and 

we generate the feature by counting how many these terms occur in the text. However, 

the result proves that the reranker without this feature works better. After reading about 

30 relevant articles, we found only 2 of them contain these parent or children disease 

terms. 

Trail III: We change the operator for the title field from SHOULD to MUST. We 

hypothesize that setting a strict matching criterion that the title field must contain the 

terms in the query would improve the precision at one-time retrieval and skip the re-
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ranking part. However, the results show that both P@10 are not improved, and because of 

the strict criterion, there are much fewer results retrieved.  

Trail IV: We boost the title field with weight 2, comparing to the content field 

having weight 1 without boosting. We hypothesize that the title field should be more 

important than the content filed, with the intuition that if an article mentions the disease 

or gene terms in the title, it might be more relevant to the topic. However, the results 

show that it hurts both R@1000 and P@10. When reading some articles in the corpus, we 

find some irrelevant articles also contain the disease or gene terms in the title, and these 

irrelevant articles are pushed to the top after we boost the title field. 

Trail V: We return the abstract text in the retrieved result and then use the 

Pubtator15 application to do Named Entity Recognition in text to recognize disease and 

gene terms. Inspired by the bag-of-words model, we use the bag-of-concepts model along 

with the PRF method to do re-ranking by running a query in the retrieved articles. The 

vector space model and the TF-IDF weighting representation of concepts are used in this 

step.  

We first construct the corpus of all the diseases and genes, then each article is 

represented by a vector containing disease and gene terms. We then generate the query 

vector for re-ranking by adding the average vector of top K articles to the vector of the 

original disease and gene terms. We compute the cosine similarity between the query 

vector and other article vectors, and the articles are ranked according to their similarities 

to the query. However, it is a time-consuming step because there are several parameters 

to be tuned, which are how many top ranked documents should be used for averaging, 

what weights of the original query vector and the averaged query vector should be when 
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adding them up. Although we spend a lot of time tuning these parameters, the optimal 

results in this strategy are still not as good as expected, which shows only a slight 

improvement of P@10. 

Trail VI: We add positive and negative keywords in the query and give these 

terms a boost or a penalty. We hypothesize that articles which focus on treatment, clinical 

study and patients should be more relevant that articles which focus on laboratory 

experiments. Therefore, we added some keywords suggest by Oleynik et al. (2018) into 

the query to boost documents with positive keywords and penalize documents with 

negative keywords. However, Lucene does not support negative boost for a query term. 

Therefore, we use these keywords as our features to train the Logistic Regression 

classifier in the re-ranking step. 

Trail VII: We leverage the disease-gene connections for query expansion and add 

other variations of a gene. Although the Lexigram knowledge base and the gene database 

has proved that it works well in the query expansion step and provide comprehensive 

expansion terms, the expansion is still based on the disease or gene itself. In other words, 

we are still starting from a disease or a gene and investigating what relevant terms are, 

e.g., preferred terms and synonyms.  

However, we hypothesize that some totally different diseases could be relevant if 

they are caused by similar genes, and some totally different genes could be relevant if 

they cause similar diseases, which means we are digging into the latent relations. Many 

teams have successfully incorporated the knowledge bases of disease-gene-drug relations 

into the query expansion. Inspired by this idea, we use the DisGeNet16 knowledge base 

which contains relations between diseases and genes and transform the knowledge graph 
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to a matrix of diseases and genes with each element in the matrix representing the 

probability that a gene and a disease are correlated. Thus, each disease and gene could be 

represented by a vector and pairwise cosine similarities between vectors could be 

calculated.  

Given a disease or a gene, the relevant terms are generated by sorting the 

similarities in a descending order. Then we add the top K relevant terms in the query as 

expansion terms. However, the results show that it does not help to improve R@1000. 

After examining the expansion terms, we find most expansion terms generated which 

even rank at the top 5 still have poor similarities, which means they share few diseases or 

genes information in common. We view this as a potential approach to generate 

expansion terms, or could be used in the re-ranking step in the future work.
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CONCLUSION 

Medical literature search has long been suffering from the problems of vocabulary 

mismatch between queries and documents and ineffective ranking methods as well, 

which makes the traditional Boolean retrieval deliver both low recall and precision. In 

this paper, we use external knowledge bases in the medical domain to expand the query 

automatically, which enriches the information in the original query without manual input. 

This helps the query to match documents without terms from the original query. After the 

first retrieval, we use a ranker which is trained on the 2017 track topics to predict the 

probability of how relevant the retrieved document is. Then the retrieved results are 

ranked by the probability. The experiment results prove that both these two steps help to 

improve the retrieval performance, and the final model outperforms the baseline model in 

both recall and precision. The future work could be in the directions discussed below.  

First of all, although the Lexigram knowledge base provides well rounded 

expansion terms for diseases and outperforms the MeSH ontology, it is possible there 

exists a knowledge base which provides higher-quality expansion terms. And as is 

discussed in the literature review section, there has been some studies which focus on the 

selection of expansion terms instead of adding all of them. The refinement of query 

expansion terms could be further studied in the future.
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Secondly, since the reranker is trained on the 2017 topics, it could be trained 

again on both 2017 and 2018 topics together when it is applied to the 2019 PM track. 

With more training data and better feature generation and selection, we expect the 

reranker to have a better performance and avoid mistakes in the case study section, which 

is expected to improve the precision further. Also, in training the reranker we are on the 

level of the whole corpus, and predicting whether an article is relevant to the general PM 

track rather than to the topic. We hypothesize that there are some features representing 

the connection between the article and the topic, which makes the classification more 

specific to each topic. And the case study of error analysis reminds us that the new 

scoring schema is also a direction of improvement, which could be changed from simply 

adding the probability and the raw BM25 score to a weighted sum because either the raw 

score or the probability may be more important than another, or merging two ranks could 

also work.  

Third, as there are both gene and disease information in the topics, we could 

leverage the connections between diseases and genes (e.g. how strongly a disease and a 

gene are connected to each other) for relevance judgement by using a knowledge graph. 

This is a failed trial in this paper, but it still gives us some inspirations. 

Last but not least, we use high-level features with a linear model in training the 

reranker, and it is possible that the deep learning approach could also work. For example, 

we could train word vectors for a deep Neural Network classifier. 
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NOTES 

1. https://www.ncbi.nlm.nih.gov/pubmed/ 
2. https://en.wikipedia.org/wiki/PubMed 
3. https://en.wikipedia.org/wiki/BRAF_(gene) 
4. http://lucene.apache.org/ 
5. https://en.wikipedia.org/wiki/Okapi_BM25 
6. https://www.wikipedia.org/ 
7. https://wiki.dbpedia.org/ 
8. https://www.ncbi.nlm.nih.gov/mesh 
9. https://www.lexigram.io/ 
10. ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ 
11. https://scikit-learn.org/ 
12. https://www.orpha.net/consor/cgi-bin/index.php 
13. http://disease-ontology.org/ 
14. https://www.wikidata.org/wiki/Wikidata:Main_Page 
15. https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/ 
16. http://www.disgenet.org/home/ 
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APPENDIX A: Full Text of Articles 

Case I: A paper which is retrieved after query expansion 
 
PubMed ID: 14981584 
 
Title: The role of HER2/neu expression and trastuzumab in non-small cell lung cancer 
 
Abstract: Research over the past decade has led to an increased understanding of the 
pathophysiology of lung cancer. The HER2/neu receptor is a member of the ErbB family 
of signaling-transduction receptors and appears to play a major role in the development 
of lung cancer as well as many other solid tumors. HER2/neu is overexpressed in 16% to 
57% of patients with non-small cell lung cancer (NSCLC) and studies have shown that 
HER2/neu overexpression imparts a poor prognosis in both resected and advanced 
NSCLC, as it does in breast cancer. Trastuzumab, a humanized monoclonal antibody that 
recognizes the HER2/neu protein receptor, has been approved by the US Food and Drug 
Administration for patients with HER2/neu-positive metastatic breast cancer. In NSCLC 
preclinical studies, marked synergistic growth inhibition occurred when standard 
cytotoxic chemotherapy was combined with trastuzumab in HER2/neu-expressing cell 
lines. In the clinical setting, trastuzumab has proven safe and feasible in combination 
with cytotoxic chemotherapy in both single-institution and multi-institutional cooperative 
group studies. Unlike the experience in advanced breast cancer, cardiac toxicity is a 
marginal concern in this population. However, to date, clinical studies with trastuzumab 
in patients with NSCLC have not shown a demonstrable advantage for the majority of 
patients. 
 
Case II: A non-relevant paper which is punished in re-ranking 
 
PubMed ID: 12755489 
 
Title: HER-2/neu and topoisomerase IIalpha in breast cancer 
 
Abstract: In breast cancer, the predominant genetic mechanism for oncogene activation is 
through an amplification of a gene. The HER-2 (also known as ErbB2/c-erbB2/HER-
2/neu) oncogene is the most frequently amplified oncogene in breast cancer, and its 
overexpression is associated with poor clinical outcome. In addition to its important role 
in breast cancer growth and progression, HER-2 is also a target for a new form of 
chemotherapy. Breast cancer patients have been treated with considerable success since 
1998 with trastuzumab, a recombinant antibody designed to block signaling through 
HER-2 receptor. HER-2 has also been implicated in altering the chemosensitivity of 
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breast cancer cells to different forms of conventional cytotoxic chemotherapy, 
particularly of topoII-inhibitors (e.g., anthracyclines). Topoisomerase IIalpha gene is 
located just by the HER-2 oncogene at the chromosome 17q12-q21 and is amplified or 
deleted in almost 90% of the HER-2 amplified primary breast tumors. Recent data 
suggests that amplification and deletion of topoisomerase IIalpha may account for both 
relative chemosensitivity and resistance to anthracycline therapy, depending on the 
specific genetic defect at the topoIIalpha locus. Expanding our understanding of HER-2 
amplification also changes its role in the pathogenesis of breast cancer. HER-2 is an 
oncogene that clearly can drive tumor induction and growth and is also a target for a new 
kind of chemotherapy, but its function as a marker for chemoselection may be due to 
associated genetic changes, of which topoisomerase IIalpha is a good example. 
Moreover, despite potential evidence that genes other than HER-2, such as topoisomerase 
IIalpha, may be more important predictors of therapeutic response in breast cancer, HER-
2 status still has a very significant role in therapeutic selection, mainly as the major 
criterion for administering trastuzumab in treating breast cancer. Thus, the clinical and 
therapeutic importance of the HER-2 and topoisomerase IIalpha status to breast cancer 
management should only increase in the next few years. 
 
Case II: A relevant paper which is boosted in re-ranking 
 
PubMed ID: 12755489 
 
Title: Prognostic value of expression of FASE, HER-2/neu, bcl-2 and p53 in stage I non-
small cell lung cancer 
 
Abstract: To evaluate the prognostic value of expression of fatty acid synthase (FASE), 
HER-2/neu, bcl-2 and p53 in stage I non-small cell lung cancer (NSCLC). Expression of 
FASE, HER-2/neu, bcl-2 and p53 protein was detected by immunohistochemical staining 
in 84 patients with stage I NSCLC who underwent surgery. Multiple clinical parameters 
and survival were analyzed. The expression of FASE, HER-2/neu, bcl-2 and p53 was 
29.8%, 40.5%, 33.3% and 39.3%, respectively. The local recurrence and bone-metastasis 
rate were higher in FASE positive patients than in negative patients (28.0% vs 10.2%, P 
= 0.05; 61.5% vs 23.9%, P = 0.017, respectively). The 5-year survival rate was lower in 
HER-2/neu and FASE positive patients than in negative patients (37.7% vs 67.7%, P = 
0.0083; 35.1% vs 66.1%, P = 0.0079, respectively), which showed that HER-2/neu and 
FASE expression were associated with significantly poor survival. Patients whose tumors 
were both HER-2/neu and FASE negative had better outcome, with a 5-year survival rate 
of 78.2%, compared with 36.3% in those whose tumors were positive for either one (P = 
0.002). However, bcl-2 and p53 were not independent prognostic factors for survival. 
HER-2/neu and FASE are independent prognostic factor in stage I non-small cell lung 
cancer patients who expressed one or both markers. 
 
Case III: A non-relevant paper which ranks among top 10 
 
PubMed ID: 22730705 
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Title: HER-2/neu oncogene and estrogen receptor expression in non small cell lung 
cancer patients. 
 
Abstract: Non-small cell lung cancers are among the leading causes of cancer morbidity 
and mortality worldwide. The prognosis is usually based on traditional pathohistological 
parameters and clinical stage, but additional prognostic survival factors have also been 
sought. The aim of this retrospective study was to explore the membranous expression of 
HER-2/neu and estrogen receptors in nonsmall cell lung cancers and their relation to 
survival of patients with non-small cell lung cancers and to traditional prognostic factors. 
The sample consisted of 132 consecutive, surgically resected patient tissues of non-small 
cell lung cancers, and the following parameters were examined: HER-2/neu and estrogen 
receptor expression, as well as the related clinical and pathological features: tumor, 
nodes, and metastases stage, level of tumor necrosis, histological and nuclear grade, 
lymphocytic infiltrate, and number of mitoses. HER-2/neu was positive in 28.8% of 
tumor samples, and estrogen receptor expression was positive in 29.5% of tumors, but 
neither was significantly associated with the outcome of non-small cell lung cancers. 
There was a significant association between HER-2/neu and nuclear grade (P=0.01). In 
addition, the association between estrogen receptor expression and histological type of 
tumor (P=0.04) and mitotic rate (P=0.008) was found. Kaplan-Meier analysis showed a 
significant association of patients' overall survival with the tumor node metastasis stage 
(P<0.001) and the degree of tumor necrosis (P=0.02). Cox proportional hazard regression 
analysis showed that male gender (P=0.01), histological type (P=0.03), high degree of 
necrosis (P=0.006), and higher histological grade (P=0.037) were associated with the 
patients' survival. Our findings indicate that the expression of HER-2/neu and estrogen 
receptor is less reliable than traditional histological parameters in predicting the survival 
of patients with non-small cell lung cancers. 
 
Case III: A relevant paper which does not rank among top 10 
 
PubMed ID: 11153605 
 
Title: Ploidy, expression of erbB1, erbB2, P53 and amplification of erbB1, erbB2 and 
erbB3 in non-small cell lung cancer. 
 
Abstract: The aim of this study was to assess the prognostic value of deoxyribonucleic 
acid analysis, expression oferbB1, erbB2 and P53, and amplification levels of erbB1, 
erbB2 and erbB3 in non-small cell lung cancer (NSCLC). Consecutive patients with 
NSCLC who underwent treatment with curative intention (118) were included. In 108 
cases, the cell cycle was analysed using flow cytometry and double-staining with 
propidium iodide and anticytokeratin. In another 108 cases, expression of erbB1, erbB2 
and P53 was assessed immunhistochemically. Amplification of the erbB family was 
determined in the tumours of 53 patients using double-differential polymerase chain 
reaction. Of the tumours, 81% were aneuploid and 14% showed positive staining for 
erbB1, 18% for erbB2 and 41% for P53. There were normal mean gene copy numbers in 
86% for erbB1, 94% for erbB2 and in 96% for erbB3. No significant correlations were 
noted between erbB1, erbB2 and P53 expression, ploidy status and tumour stage. In a 
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Cox regression model, only tumour stage was shown to be prognostically significant. It 
seems that ploidy and expression status of erbB1, erbB2 and P53 are not prognostic 
parameters in non-small cell lung cancer. Amplification of the erbB family does not seem 
to be a frequent event in non-small cell lung cancer.
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