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Introduction 

Our music listening habits have been changing dramatically in recent decades. Once 

people had to go to live shows, like concerts, to listen to their favorite music. Then 

technological innovation made it possible for audio to be recorded on a medium for 

playback, first on cylinders (Edison, 1878), then on acetate discs, cassette tapes, and CDs 

(Fields, 2011). But the number of songs recorded on a CD is still limited. Mobile 

technologies introduced MP3 devices to music listeners. Music listeners can have 

thousands of favorite songs in their devices and listen whenever and wherever they are. 

Since smartphones became widespread in the late 2000s, MP3 devices were gradually 

replaced by music player software installed in smartphones. 

Whether they use MP3 devices or music player software, users can create playlists of 

their favorite songs. A playlist is defined as a set of tracks (audio recordings). Users can 

create playlists for different artists and genres or create a playlist for all the songs they 

like. A general playlist concept also covers other types of playlists, like album tracklists. 

Album tracklists are released by artists and labels and contain new tracks for one artist or 

one genre. In this paper, I focus on playlists that are made by listeners based on their 

listening history. The order of the tracks is also not considered in this paper, because 

music is widely played in a shuffle mode now and randomness can enrich user 

experiences (Leong, Howard, & Vetere, 2008).
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Instead of creating playlists manually, music listeners increasingly want playlists to be 

created automatically. Music services provide listeners access to great numbers of 

available tracks. It is time consuming for listeners to find potential favorite ones. 

Listeners would like music services to help them make some decisions. This leads to the 

concept of playlist generation. “Given a pool of tracks, a background knowledge database 

and some target characteristics of the playlist, create a set of tracks fulfilling the target 

characteristics in the best possible way” (Bonnin & Jannach, 2015). The background 

knowledge includes all kinds of track information. Target characteristics means what 

characteristics users think the playlist should have. 

Playlist generation is challenging. It is hard to find an objective way to evaluate the 

quality of playlists. Whether listeners like the playlist or not is very subjective. Track co-

occurrence is a relatively objective and direct way to represent listeners' preferences. 

When there are tracks that frequently appear together in a collection of listening histories, 

the assumption can be made that the tracks both fulfill the preference (Baccigalupo & 

Plaza, 2006).  

It is worth asking whether there is relationship between background knowledge about 

music and track co-occurrence frequency. Finding a relationship could help music 

services use background knowledge to predict track co-occurrence frequency and thus 

create high quality playlists. 

In this paper, I investigate the following questions: 

Is there relationship between background knowledge about music and track co-

occurrence frequency? 
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What type of background knowledge about music best predicts track co-occurrence 

frequency? 
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Literature Review 

This section introduces the history of the playlist and discusses some playlist generation 

algorithms and evaluation approaches proposed in previous studies. 

2.1 Playlist 

The birth of the playlist can be traced back to the 1850s, when the selection and ordering 

of pieces for concert programs began to be decided based on the ideas of a program 

director, instead of just maximizing coverage of various tastes (Weber, 2001).  

Then radio and the phonograph were invented. These two technologies enabled the 

broadcasting of music to much larger audiences. This ended the need for the physical 

presence of the performing artists, which made the selection and ordering of pieces much 

easier. These are essential features for the playlist. The term “playlist” was first used to 

describe sets of songs when genres were promoted on the radio (Wall, 2007). 

The playlist went personal as portable audio devices that played cassette tapes became 

available. Listeners could make their own mixtapes by selecting their favorite songs and 

ordering them (Bull, 2006). It was similar to how people create their personal playlists 

now. But with the internet and digital media storage, the pool of songs available to be 

added to a playlist increased a lot. With so many songs, it has been shown that it is less 

necessary for intentional ordering, as random order can lead to serendipity (Fields, 2011).



 6 

So, in this paper, I define a playlist as a coherent but unordered set of songs, made by 

listeners based on their personal preferences. 

2.2 Playlist Generation Algorithms 

In the literature, there are some common playlist generation strategies: similarity-based 

algorithms, collaborative filtering, frequent pattern mining, case-based reasoning, 

context-awareness, and hybrid strategies. 

It is easy to think of selecting tracks based on their similarity to generate playlists. 

Pampalk, Pohle, & Widmer (2005) tried to generate playlists automatically based on 

skipping behavior and audio-based similarity. The evaluation showed that the generation 

reduced the number of tracks skipped. Flexer, Schnitzer, Gasser, & Widmer (2008) 

proposed an approach which was based on audio similarity and did not require any kind 

of meta-data. They created a smooth transition through tracks based on a start song and 

an end song. However, pure similarity-based approaches have the problem that the 

generated playlists are too homogeneous and thus not satisfying. Listeners do not want 

too many tracks from the same artist. One of the reasons they use automatic playlist 

generation is to discover new tracks. 

Collaborative Filtering (CF) is another playlist generation strategy. It is the prevalent 

approach used in the field of Recommender Systems (RS) (Jannach, Zanker, Ge, & 

Gröning, 2012). CF approaches make predictions about user’s rating for an item, based 

on the existing ratings of other users who have ratings similar to those of the active user. 

Music recommendation is a special case of the more general recommendation problem, 

so CF approaches can also be applied to playlist generation. Track rating data can be 
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obtained explicitly or inferred through analysis of listening logs. Chen, Moore, Turnbull, 

and Joachims (2012) presented a playlist prediction approach that is analogous to matrix 

decomposition methods in collaborative filtering. CF approaches have the limitation that 

they cannot be used for new users without any rating information. 

Frequent pattern mining approaches rely on the co-occurrence of items in playlists. These 

approaches try to identify global patterns in the playlist data. Patterns include association 

rules (AR) (Agrawal, Imieliński, & Swami, 1993) and sequential patterns (SP) (Agrawal 

& Srikant, 1995). The order of tracks is considered in SP, while it is not in AR. Frequent 

pattern mining is one of the most straight-forward solutions to playlist generation. 

According to Bonnin and Jannach (2013), a number of algorithms for efficient pattern 

mining work comparably well. However, they are not frequently used in the literature. 

In the Case-Based Reasoning (CBR) process, every playlist is seen as a case whose 

relevance is inferred measuring the co-occurrences of its songs in a large collection of 

past playlists. Baccigalupo and Plaza (2006) presented a CBR approach to musical 

playlist recommendation. They introduced a ‘knowledge-light’ approach to 

recommendation, based only on user-related knowledge. 

Context-aware music recommender systems can be contrasted with content-based 

systems. The context of listening can influence and be influenced by the music and the 

listener. Hariri, Mobasher, & Burke (2012) presented a context-aware music 

recommender system which inferred contextual information based on the most recent 

sequence of songs liked by the user. Their experimental evaluation showed that their 

system could give better recommendations than a conventional recommender system 
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based on collaborative or content-based filtering. Vigliensoni and Fujinaga (2014) tried to 

identify the time zone where listeners were by analyzing listening logs. They suggested 

that the location of listeners can be an important contextual dimension used in context-

aware music recommendation systems. 

Hybrid strategies combine different playlist generation techniques. Hornung et al. (2013) 

presented a weighted hybrid recommender approach that amalgamated three diverse 

recommender techniques into one comprehensive score. 

2.3 Evaluation Approaches for Playlist Generation Algorithms 

The evaluation of playlist generation is difficult, because deciding whether a playlist is 

satisfying or not is very subjective. Researchers have done some surveys on this tough 

topic (Fields, 2011; McFee & Lanckriet, 2011; Bonnin & Jannach, 2015). I divide 

evaluation approaches in two general categories: subjective evaluation and objective 

evaluation. 

Subjective Evaluation 

Since playlist generation is a music recommendation and discovery service for the user, 

user satisfaction is the ultimate goal. The most direct evaluation approach is to do user 

studies, asking users what they think about automatically generated playlists. Pauws and 

Eggen (2003) produced an automatic music playlist generator called PATS (Personalized 

Automatic Track Selection) and did a controlled user experiment to compare the quality 

of PATS-generated playlists with randomly assembled playlists. The user experiment 

included a short questionnaire and a post-experiment interview. PATS playlists beat 

randomly assembled playlists, as they contained more preferred songs and had higher 
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ratings. In order to evaluate music recommender systems and determine the factors that 

influence evaluations, Barrington, Oda, and Lanckriet (2009) built a new platform for 

people to evaluate music recommendations. However, user studies are time consuming 

and expensive, so it is hard to conduct studies of sufficient size to achieve statistically 

meaningful results. For example, in Pauws and Eggen’s study, there were only 20 

participants. Barrington and fellow researchers recruited 185 subjects to take part in their 

experiment. But another problem is that such studies are difficult to reproduce. 

Objective Evaluation 

One commonly used objective evaluation is to measure the homogeneity or diversity of a 

playlist. To measure the homogeneity of a playlist, the genre labels can be used to 

indicate the music similarity (Flexer, Schnitzer, Gasser, & Widmer, 2008). Knees, Pohle, 

Schedl, & Widmer (2006) estimated the long-term consistency of a playlist by calculating 

the Shannon entropy of the genre distribution. Another study suggested that diversity is 

an important quality criteria for playlists (Slaney & White, 2006).  

Another way to evaluate objectively is to compare the generated playlist with reference 

playlists. Reference playlists can be existing playlists extracted from music services or 

hand-crafted playlists created by music enthusiasts. Some researchers using this approach 

treat playlist evaluation as an information retrieval problem (Platt, Burges, Swenson, 

Weare, & Zheng, 2002; Maillet, Eck, Desjardins, & Lamere, 2009), while McFee and 

Lanckriet (2011) argued that playlist generation can be viewed as a language modeling 

problem, where songs constitute the vocabulary and playlists are the sentences.
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Methods 

This research analyzes users' listening histories to find out whether background 

knowledge about music can predict implicit user preferences. Track co-occurrence in 

each user's listening history is assumed to reflect user preferences. Audio signal analysis, 

track metadata, social web data and usage data are used as sources of background 

knowledge about music. 

3.1 Data Collection 

Data was collected from Last.fm and Gracenote. Last.fm is a music website. It is well-

known for its detailed profile of each user. The information is used for music 

recommendations. Listening history data, social web data, and usage data were collected 

from Last.fm. Gracenote is an entertainment data and technology company. It provides 

music metadata and music recognition technologies. Audio signal analysis data and track 

metadata were collected from Gracenote. Last.fm was chosen as a source of listening 

history data, because it records users’ listening logs on both the system itself and a wide 

range of other third-party music and media players (Vigliensoni & Fujinaga, 2014). 

Gracenote provided audio signal analysis data (not available on Last.fm) and rich 

metadata for tracks. Last.fm gives access to the music data resources through their public 

API (Last.fm Web Services, 2018). The Gracenote Web API delivers a rich set of music 

metadata to help power interactive experiences for any connected application (Web API, 

2018). There are also unofficial wrappers for the Gracenote Web API for various
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languages, including Python. The Python wrapper abstracts the XML protocol and allow 

text-based lookups of track metadata, which made the data collection work much easier. 

Listening History Data 

Collecting listening history data through the Last.fm API requires knowing listeners’ 

usernames in advance. An open data file of Last.fm user profiles (Two Million LastFM 

User Profiles, 2013) was used as a source of usernames. I looked for listeners with at 

least 200 tracks listened to between October 2016 and October 2017. The first 10,000 

valid users were selected to do the analysis. 

I used the user.getTopTracks Last.fm API method to get the 200 tracks most 

listened to by each user. In the response, tracks are ranked based on the number of times 

they occurred in the user’s listening history. With this top 200 tracks data, track co-

occurrence can be determined. 

Background Knowledge Data 

Background knowledge can be classified into categories: audio signal analysis, track 

metadata, social web data and usage data (Bonnin & Jannach, 2015). 

The Python wrapper to the Gracenote Web API takes an artist name and track name as 

input and returns track information as output. Mood and tempo are extracted from the 

audio signal. The artist name, artist era (years active), artist origin (city, country, and 

region), artist gender, album name, album release year, and genre are provided as track 

metadata. 
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For the last two categories of background knowledge, I used the track.getInfo 

Last.fm API method to get the top tags (top-5 tags and all available top tags) as social 

web data, and listener counts and play counts as usage data that can be used to as a proxy 

for track popularity. 

3.2 Data Analysis 

Data Preprocessing 

Having the top 200 track data for 10,000 users, and the methods available to retrieve 

background knowledge data for each track, several steps still needed to be done to get 

track co-occurrence counts and background information for each pair of tracks. 

The first step was to transform the dataset from a user-oriented organization into a track- 

oriented organization. I wrote Python code to go through all 10,000 users to create a list 

of all unique tracks. The number of times each track occurred and in which users’ 

listening history it occurred were recorded. 775,262 unique tracks were listened to by the 

sample users. To reduce the number of tracks and make the analysis more efficient, I 

filtered out tracks that were listened to less than 100 times, assuming that tracks not 

occurring frequently in users’ listening history will not have high co-occurrence with 

other tracks either. This reduced the number of unique tracks to 830. After having filtered 

the track list, I used the Gracenote Web API and the Last.fm API to get background 

knowledge data. 

The second step was to analyze track pairs, count co-occurrences, and calculate similarity 

values using the background knowledge. 830 tracks can make 344,035 track pairs. Track 

pairs co-occurring less than 10 times were filtered, which resulted in to 42,887 pairs. For 
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different types of background knowledge, I defined similarity in three different ways. For 

single string values, for example, artist name and album title, if tracks have the same 

string value the similarity score is 1, otherwise it is 0. For multiple string values, for 

example, top tags, genre, and mood, the similarity score is the number of common string 

values. For example, if the genre for track 1 is “Pop”, “Pop Vocal”, and “Western Pop”, 

and for track 2 it is “Pop”, “Dance Pop”, and “Western Pop”, the common string values 

for track 1 and track 2 are “Pop” and “Western Pop”, so the similarity score is 2. For 

numeric values, for example, album year, listeners, and playcount, I calculate the 

similarity score as the difference of two tracks. But we need to keep in mind that lower 

difference value reflects higher similarity score. For example, the difference of album 

year for track pair 1 is 3 years, while the difference of album year for track pair 2 is 1 

year. Track pair 2 has the higher similarity score. For album year, listeners and playcount, 

I also calculate the harmonic mean of two tracks to represent the average value of album 

release year and popularity. The harmonic mean formula is shown as follows. 

 

The reason why harmonic mean is chosen here instead of arithmetic mean is that 

harmonic mean is more sensitive to small values. For example, if one track has few 

listeners, while the other track has great number of listeners, I do not want their pair 

popularity to be overestimated. 

The third step is to do the normalization. Social web data and usage data need this extra 

step. For social web data, I get both top-5 tags and all-available-top-tags to see which one 

works better in the correlation analysis. However, the all-available-top-tags needs to be 
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normalized, because the number of tags for each track varies a lot. Track pairs with more 

tags have a higher chance to have more common tags, even when those two tracks are not 

similar. To address this, I divide the number of all-available-top-tags by the average 

length of tags for the track pair to get toptags_norm. The average length is calculated by 

harmonic mean. For usage data, the number of listeners and play count for the tracks are 

counted over years. It means that, assuming two tracks with similar popularity, a track 

released 10 years ago tends to have many more listeners and a higher play count than a 

track released last year. 

 listeners playcount 

album_year -0.811 -0.723 
Table 1. Correlation between album release year and usage data. 

Table 1 shows that the correlations between album release year and listeners and between 

album release year and playcount are -0.811 and -0.723 respectively, which is very strong. 

So, I divide the number of listeners and play count by the number of years from the 

album released (2018 minus the album release year) to normalize the values. 

Correlation and Regression Analysis 

My research questions are restated here: 

Is there relationship between background knowledge about music and track co-

occurrence frequency? 

What type of background knowledge about music best predicts track co-occurrence 

frequency? 

In order to answer the research questions, I did correlation analysis between background 

knowledge data and track co-occurrence frequency and regression analysis to predict the 
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track pair co-occurrence. The independent variables are the similarity scores for track 

pairs, calculated based on background knowledge. The dependent variable is the co-

occurrence frequency of the track pair. Since all variables are transformed into ratios, 

correlation is the appropriate method. First, I determined if the correlations were 

significant. Then, Pearson’s r (the Pearson product-moment coefficient) was compared to 

see which independent variables had stronger correlations. Finally, a multiple linear 

regression model was built to predict the track pair co-occurrence count. 

Background knowledge data was classified into four types: the audio signal analysis, 

track metadata, social web data and usage data (see the section entitled Data Collection 

for details). I expected to find significant correlations between similarity scores based on 

background knowledge and track pair co-occurrence counts. Correlations were expected 

to be positive for similarity scores. If similarity scores are reflected by difference of two 

tracks, like album year, listeners, and playcount, correlations were expected to be 

negative. The strength of correlation for scores based on different types of background 

knowledge was expected to vary, with some scores having a stronger correlation with co-

occurrence count and thus potentially more useful for generating playlists. I also expected 

to find some correlations between the scores themselves, both those based on the same 

type background knowledge and those that were not.  

Correlation is not enough to find out which variables have a larger impact on the 

dependent variable. Linear regression is a very powerful data analysis technique. It is a 

linear approach for modelling the relationship between dependent variable and one or 

more independent variables. When there is one independent variable, it is called simple 

linear regression, and the formula is for a line. When there are more than one independent 
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variables, it is called multiple linear regression. Since the independent variables of this 

study are more than one, I did multiple linear regression. Linear regression allows us to 

see which independent variables have a statistically significant impact on the dependent 

variable, compare the impact of each independent variable on the dependent variable, and 

predict the dependent variable value when independent values are known. The R square 

value of the linear regression model tells us how much variation in the dependent variable 

is explained by all of entered independent variables. However, if there is high correlation 

between two independent variables, it could cause multicollinearity problem in the 

multiple linear regression model (Stepwise Regression in SPSS – Example, 2018). When 

highly intercorrelated variables are entered in the model, the coefficient for predicting 

dependent variable can be not statistically significant. To resolve multicollinearity, I used 

stepwise regression. The stepwise method starts with zero predictors (independent 

variables) in the model, and then adds the strongest predictor if its coefficient for 

predicting dependent variable in statistically significant (p<0.05). Independent variables 

will be entered one by one based on their coefficients. During the entering process, some 

previously entered predictors may become not significant, then they will be removed. The 

process ends when none of the excluded predictors is significant.
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Results 

 
Figure 1. The correlation result for all the variables. 

The correlations between co-occur counts and other variables were all significant at the 

0.01 level. Album title had the strongest correlation of 0.648 and the difference of 

listeners has the weakest correlation of 0.02. 

Figure 1 shows the overall result for the correlation analysis in a color labeled graph. 

Blue refers to positive correlation and red refers to negative correlation. The darker the 

color, the stronger the correlation.
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4.1 Correlation 

The Audio Signal 

Mood and tempo were extracted as audio signal attributes. Example mood descriptions 

are “Excited”, “Sensual”, and “Intimate”. Example tempo values for a slow song are 

“Slow Tempo”, “40s”, and “Slow”, while a fast song could have values like “Fast 

Tempo”, “180s”, and “Very Fast”. 

The correlations between co-occurrence counts and mood and between co-occurrence 

counts and tempo are 0.088 and 0.028 respectively, which are both very weak. The 

correlation between mood and tempo is significant but is also weak (0.115). 

The result shows that track pairs with similar mood and similar tempo do not have a 

greater or lesser chance of occurring together. 

Metadata 

Rich information about the artist and album is extracted as metadata for the track. Artist 

information includes the artist name, artist era (years active), artist origin (city, country, 

and region), and artist gender. Album information includes its name, its release year, and 

its genre. 

 co-occur artist name artist era artist origin artist gender 

artist name 0.545 1 0.21 0.435 0.225 

artist era 0.202 0.21 1 0.04 -0.028 

artist origin 0.259 0.435 0.04 1 0.217 

artist gender 0.145 0.225 -0.028 0.217 1 
Table 2. Correlation between co-occurrence and artist information. 

The correlations between co-occurrence and artist information are shown in the second 

column of table 2. Artist name has the strongest correlation of 0.545. Artist era and artist 
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origin have correlations above 0.20 (0.202 and 0.259 respectively). Artist gender has the 

weakest correlation of 0.145, which is below 0.20. So, tracks from the same artist are 

more likely to occur in the same user's listening history. Tracks from artists that were 

active during nearby eras or came from nearby regions are also likely to occur together, 

but the relationship is weaker. However, the artist gender does not contribute much to co-

occurrence. Users do not listen to a pair of songs more because the singers are both male 

or both female. 

Among the correlations between different aspects of the artist information, we can 

observe that because artist name determines the artist era, origin, and gender, the third 

column for artist name does not give much useful information. In the last three columns, 

only artist origin and artist gender have a correlation above 0.20. All other correlations 

are all below 0.20. It seems that there is slight relationship between artist origin and artist 

gender, while the artist's era is independent from their origin and gender. 

 co-occur album title album year album year_d genre 

album title 0.648 1 0.035 -0.09 0.341 

album year 0.121 0.035 1 -0.641 -0.056 

album year_d -0.144 -0.09 -0.641 1 -0.029 

genre 0.301 0.341 -0.056 -0.029 1 
Table 3. Correlation between co-occurrence and album information. Album year_d refers to the 

difference of track pair’s album release year. 

The correlations between co-occurrence and the album information are shown in the 

second column of table 3. Album title has the strongest correlation of 0.648, which is 

stronger than artist name. The genre of the album has a correlation of 0.301, which is 

above 0.20. Since album year is a numeric value, the similarity score was calculated as 

the difference of the tracks’ two album years. The harmonic mean (shown as album year 

in table 3) was also calculated as the average album release year. As I expected, the 
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correlation between co-occurrence and the difference of the album year is negative. 

However, the absolute value of the correlation below 0.20. The correlation between co-

occurrence and average album release year is 0.121, which is also below 0.20. The result 

suggests that tracks from the same album are very likely to occur in the same user’s 

listening history. The genre of the album also has some positive correlation. However, 

there is no suggestion of a relationship between the co-occurrence and the release year of 

the album. 

For the correlations between different aspects of album information, I would like to 

ignore the column of album title, because album title determines all other album 

information. The correlation between average album year and genre and between the 

difference of album year and genre is -0.056 and -0.029. The absolute values are both 

below 0.10. So there is hardly any relationship between them. 

There seem to be some relationships between the artist and album information. Since the 

album title determines all other attributes, correlations with the album title are not 

considered here. Among the other attributes, the correlation between the difference of 

album years and the artist era is -0.257. It shows that tracks released in similar years are 

likely from artists that are active in similar years, which is what we would expect. The 

correlation of average album year and artist gender is -0.22, the absolute value of which 

is above 0.20. It shows that track pair released in recent years are more likely from 

different gender artists than that released years ago. And the correlation between genre of 

album and artist name and between genre of album and artist origin are 0.438 and 0.316 

respectively, which are both above 0.20. The correlation between genre and artist gender 

is below 0.20 but is very close to it (0.199). So, tracks in similar genres are likely by the 
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same artist or by artists from nearby regions. There may be a weak correlation between 

genre and artist gender as well. 

Social Web Data 

Top tags data was extracted as social web data. There are two tag-based similarity scores 

in the study. One is top-5 tags, which is based on the 5 most popular tags assigned by 

users to the track. The other one is based on all the available tags for the tracks and 

normalizes the count of common tags by the average number of tags of the track pair. 

The correlations between co-occurrence and these two tag-based similarity scores are 

0.142 (top-5 tags) and 0.188 (all-available-top-tags). The correlation for all-available-top-

tags is slightly stronger, but they are both below 0.20. Tracks having common top tags 

assigned by users are not likely to occur together more. There is a strong correlation 

(0.673) between top-5 tags and all-available-top-tags. 

Usage Data 

Listeners and playcount data were extracted as usage data reflecting track popularity. 

Listeners and playcount data are both numeric values, so scores were calculated as the 

differences in values (listeners_d, playcount_d) between the two tracks. However, the 

actual level of track popularity may be lost with this scoring strategy, so the harmonic 

mean of the two tracks’ values was calculated as an alternative. Both the difference score 

and the harmonic mean were calculated based on normalized data. 
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 co-occur listeners listeners_d playcount playcount_d 

listeners 0.167 1 0.114 0.864 0.234 

listeners_d 0.02 0.114 1 0.103 0.82 

playcount 0.145 0.864 0.103 1 0.221 

playcount_d 0.043 0.234 0.82 0.221 1 
Table 4. Correlation between co-occurrence and track popularity data. 

All correlations between co-occurrence and popularity data are shown in the second 

column of table 4. The absolute correlation values are all below 0.20, especially with the 

difference scores which are close to 0. Also, the difference in listener counts and the 

difference in play counts do not have the negative correlation that I expected. 

For the correlations between track popularity data, the correlations between the average 

listener count and average play count and between the count differences are very strong 

(are 0.864 and 0.82 respectively). So the number of listeners and the number of plays are 

correlated, which is to be expected. 

Correlation Across Types 

For correlations across types, we can look back to figure 1. 

Between metadata and social web data, the correlations between artist name and the two 

tag-based similarity scores are both above 0.20 (0.213 for top-5 tags and 0.258  for all-

available-top-tags). The correlations between genre and the two tag-based similarity 

scores are above 0.25 (0.264 for top-5 tags and 0.252 for all-available-top-tags). The 

correlations between average album year and the two tag-based similarity scores are 

negative. The absolute values are above 0.4. So, tracks from the same artist or in similar 

genres are likely to have similar top tags. Old tracks tend to have more common tags. 
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Between track metadata and usage data, the correlations between artist origin and average 

usage data are negative and the absolute values are above 0.20. The correlation between 

average album year and average number of listeners is 0.214, which is above 0.20. 

Therefore, tracks from artists coming from different areas tend to have higher average 

usage data. Tracks from recent years are likely to have more listeners. 

4.2 Multiple Linear Regression 

 
Figure 2. Model Summary for stepwise multiple linear regression. 13 variables are entered in 

the order: album title, listeners, genre, the difference of listeners, artist name, the difference of 

album year, artist gender, artist origin, artist era, toptags(norm), album year, mood, playcount 

Using stepwise linear regression training, a model using 13 variables was developed (see 

figure 2). Although mood and play count entered the model, they hardly improved the R 

square value, so the final multiple linear regression model was built on album title, 

listeners, genre, the difference of listeners, artist name, the difference of album year, artist 

gender, artist origin, artist era, toptags(norm), and album year. The value of adjusted R 

square is 0.519. Here is the formula of the model. 
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Tempo, top-5 tags, the difference of play counts, play count, and mood were excluded 

from the model. 

4.3 Evaluation 

A simple objective evaluation was done. I compared the predicted track with tracks in the 

users’ listening history. 

 
Table 5. Top 5 tracks in 3 users’ listening history. 

Three valid users, who are not included in the 10,000 training users, were found in the 

open data file of Last.fm user profiles (Two Million LastFM User Profiles, 2013) to 

extract test data. They listened at least 200 tracks in 2017. I selected the top 5 tracks in 

each of the users listening history. So 15 tracks are divided into 3 group based on the 

listening history (see Table 5). Considering the whole 15 tracks as the pool of tracks, I 

used the multiple linear model to predict which track would be most likely to occur 

together with each track (the seed track). Tracks are ranked based on the predicted co-

occurrence count. The larger the count, the higher the probability of co-occurring in the 

same listening history. Tracks having the predicted co-occurrence count less than or 
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equal to 0 will not be in the rank. If the predicted track and the seed track is in the same 

user’s listening history, it is predicted correctly. 

I introduced four measures of accuracy to evaluate the prediction result. The first two 

measures are whether the track with the highest rank (P@1) and whether one of the top 3 

rank tracks (P@3) are correct. The P@3 can be not applicable when only one track have 

the predicted co-occurrence greater than 0. The other two measures are precision and 

recall of all the tracks having the predicted co-occurrence greater than 0. Precision 

measures that from all the predicted tracks, how many of them is correct. Recall measures 

that from all the correct tracks, how many of them is predicted. 

Track Predicted Track P@1>0 P@3>0 P(co-occur>0) R(co-occur>0) 

1 5 Y N/A 1/9 1/4 

2 3 Y N/A 1/1 1/4 

3 2 Y N/A 1/1 1/4 

4 15 N N/A 0/1 0/4 

5 1 Y N/A 1/9 1/4 

Table 6. Evaluation result for user 1. 

Table 6 shows that using those 5 tracks as the seed track, only one track has the predicted 

co-occurrence greater than 0. 4 out of 5 those predicted tracks are correct. The average 

precision is 0.44, and the average recall is 0.2. 

Track Predicted Track P@1>0 P@3>0 P(count>0) R(count>0) 

6 15, 9, 10 N Y 4/10 4/4 

7 8, 10, 9 Y Y 4/10 4/4 

8 7, 9, 10 Y Y 4/10 4/4 

9 10, 15, 8 Y Y 4/10 4/4 

10 9, 15, 7 Y Y 4/10 4/4 

Table 7. Evaluation result for user 2. 
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The evaluation result for tracks listened by user 2 is in table 7. 4 out of 5 highest rank 

predicted tracks are correct, which is the same as the result of user 1. All 5 tracks find at 

least one correct track in top 3 rank predicted tracks. The average precision is 0.4, and the 

average recall is 1. 

Track Predicted Track P@1>0 P@3>0 P(count>0) R(count>0) 

11 15, 14, 9 Y Y 3/10 3/4 

12 15 Y N/A 1/1 1/4 

13 15, 9, 10 Y Y 3/10 3/4 

14 15, 9, 13 Y Y 3/8 3/4 

15 13, 9, 10 Y Y 4/12 4/4 

Table 8. Evaluation result for user 3. 

Table 8 shows the result for user 3. All highest rank predicted tracks are correct. The 

average precision is 0.46, and the average recall is 0.7.
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Discussion 

Overall, only album title, artist name, artist era, artist origin, and genre have a correlation 

with track co-occurrence over 0.20. All these variables are in the track metadata category. 

However, when building the multiple linear regression model, I found that social web 

data and usage data also contributed a lot to co-occurrence. There also seem to be some 

relationships between aspects of background knowledge about music. In this section, I 

discuss the potential reasons for these relationships and the result of the evaluation. 

The results for audio signal analysis are surprising. The literature suggests that playlist 

generation algorithms based on audio-based similarity work well. However, in our 

experiment, both mood and tempo were uncorrelated with track co-occurrence, so it 

seems that these factors do not determine the listener’s choice of whether to listen to a 

track. They do not always listen to fast songs (or slow songs). As for mood, it may be that 

the description vocabulary is too large, which makes it unlikely for track pairs to have 

common mood descriptions. Among 42,887 track pairs, only 5075 of them have common 

mood descriptions. There may be other audio signal analysis data that better predict of 

listeners’ preferences, but limited in time and resources, I did not investigate audio signal 

analysis data other than tempo and mood. 

As expected, most of the track metadata have strong correlations with the track co-

occurrence. Only artist gender and album years variables (average and difference) are 

below 0.20, but still above 0.10. As for the variables having the highest correlation values, 
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album title and artist name, it is commonly known that songs from the same album and 

songs by the same artist are more likely to be listened to by the same person. People may 

listen to both of the songs because they have bought the album or because they are fans 

of the artist. The relatively high correlation of genre with co-occurrence is also not 

surprising. As for artist origin, it is understandable that listeners tend to listen to songs 

from artists coming from nearby regions. It is interesting to find that the artist era has a 

stronger correlation than the difference in album release years. However, the difference in 

album release years actually enters earlier than artist era when building the linear 

regression model, which will be discussed later. It seems that listening habits are 

correlated with the active years of the artist. Also, it is good to see that artist gender does 

not seem to be correlated with listening habits. 

I would like to discuss the relationships between track metadata variables as well. Artist 

origin has a slight correlation with artist gender. The reason may be that some of the 

regions tend to have more male artist (or female artist). It is common knowledge that 

artists who are active in similar years are likely to release album in similar years. The 

negative correlation between artist gender and the average album release year shows that 

in recent years people care less about artist gender than old times. And all the artist 

metadata values except the artist era are related to genre. It seems to be the case that 

artists have a primary genre. It is true that artists will not necessarily release songs that all 

belong to the same genre. But generally, most of an artist's songs will be in the same 

genre. Where the artist comes from and their gender are also correlated with their main 

genre. 
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For social web data, I examined top-5 tags and all-available-top-tags (with normalization 

by average tag length). By comparing those two variables, I hoped to see if the top 5 tags 

for a track are enough to describe it or if more tag information is better. The results 

showed that the latter is more likely to be true. However, neither has a strong correlation 

with track co-occurrence, which means the tags created by listeners for tracks do not 

seem to be related to listening habits. Since all-available-top-tags includes all the 

information of top-5 tags, they are closely related to each other. 

The average usage data (average listener count and average play count) have the same 

level of correlation as top tags variables, which are between 0.14-0.20. The differences of 

usage data (the difference in listener counts and the difference in play counts) for track 

pairs have low correlations with track co-occurence and are not negative as I expected. 

Popularity data is mentioned in the literature frequently, but the correlations were not as 

strong as I expected. Yet they entered the linear regression model relatively early, which 

will be discussed later in this section. 

There are really strong correlations between listener and play counts and between the 

difference in listener counts and the difference in play counts. Listener count refers to the 

number of users who have listened the track. Each user can only be counted once. Play 

count refers to the number of times the track has been listened to. Each user can 

contribute multiple times to the play count. Thus the listener count reflects the how 

widely the track was listened to, while the play count variable reflects both how widely 

and how frequently the track was listened to. That is why those two counts (no matter 

whether treated as an average or a difference) are closely related. The difference in play 
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counts also has a slight correlation with the average listeners (0.234) and average play 

count (0.221), while the difference in listeners does not. 

Relationships among background knowledge categories can be divided into two parts: 

relationships between track metadata and social web data, and relationships between 

track metadata and usage data.  

Among the track metadata, average album year, artist name, and genre have relatively 

strong correlations with the tag-based similarity scores. 

Examples Top Tags 

1 

"pop" (genre), "british", "fallon", "airplane", "uk number one", "The X 

Factor", "talent show", "2016 single" (album year), "bbc radio1 playlist 

2016"  

2 
"pop", "2016" , "future bass" (genre), "the chainsmokers" (artist name), 

"phoebe ryan" 

3 

"punk rock", "punk" (genre), "rock", "pop punk" (genre), "Blink 182" (artist 

name), "alternative" (genre), "90s", "all the small things", "alternative rock", 

"pop", "american"...(59 tags in total) 
Table 5. Example top tags for tracks. 

Table 5 shows some examples of the top tags for tracks. Track 1 and 2 were released after 

2010, and track 3 was released in 1990s. Track 3 has much more tags than other two 

tracks. Tags are labeled if they are related to artist name, or genre. Genre tags occur in all 

three examples, and artist name tags occurs twice. These examples also suggest an 

explanation for the finding that for average album year and artist, all-available-top-tags is 

more strongly correlated than top-5 tags, while for genre, top-5 tags has the stronger 

correlation. If only top-5 tags are considered, it cannot be found out that older tracks have 

more tags than recent tracks. In table 5, genre-related tags always occur in the first five 

tags, sometimes even more than once.  
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Artist origin has a slight negative correlation with average usage data, which means that 

two tracks by artists coming from different areas are more likely to have higher average 

popularity. It is hard to explain, and may just be a chance occurrence. As for the 

relationship between album year and average number of listeners, this could be due to the 

way the listener count was normalized. As mentioned in the section on data preprocessing, 

listener count and play count were normalized by dividing the raw counts by the number 

of years since the album was released, because of the strong correlation between the 

album release year and the raw counts. Although this simple normalization method works 

well, usage data actually do not increase linearly for each year, especially the listener 

count. So, after normalization, there is still slight correlation between album year and 

average number of listeners. 

In the final multiple linear regression model, all variables having correlations with the 

track co-occurrence of more than 0.10 were included in the model, except for those 

strongly correlated with another included variable. Since toptags (norm) was included in 

the model, top-5 tags was excluded. Similarly, since the listener count and the difference 

in listener counts were included in the model, the play count and the difference in play 

counts were excluded. The order in which the variables entered the model was not the 

same as the rank of the correlation value with the track co-occurrence. Listener count and 

the difference in listener counts entered surprisingly early in the model (2nd and the 4th 

respectively). Their correlation ranks among the 11 entered variables were 7th and the 

11th. Genre, artist gender, and the difference in album years also entered relatively early 

compared to their correlation ranks. The reason may be that numeric variables (album 

year, listener count, and play count variables) work better for building the linear 
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regression model: their averages or differences vary more than the number of common 

string values for string list variables. 

The result of the simple objective evaluation is surprisingly good. Among 15 test tracks, 

only 2 of them do not find the highest ranked predicted track in the same listening history. 

It indicates that our prediction model does work in predicting co-occurred track pairs. 

The average precision of 3 users is stable at around 0.4, while the average recall varies 

from 0.2 for user 1 to higher than 0.7 for user 2 and 3. Due to limited time, the test data 

size is small. For more reliable result, similar evaluation with larger test dataset or more 

complex evaluation is encouraged to be done.
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Conclusion 

Correlation and regression analysis was conducted to investigate the relationships 

between background knowledge about and track co-occurrence frequency and predict the 

track co-occurrence frequency. The correlations were all significant at the 0.01 level. 

However, some of the relationships are too weak to enter the multiple linear regression 

model. Considering both the correlation value and the contribution to the linear 

regression model, track metadata and usage data have the strongest relationship with 

track co-occurrence frequency. 

The result also shows some relationships between genre and other track metadata and 

between top tags and track metadata. Artists have their main genre. Furthermore, their 

main genre is likely to be correlated with where they come from and their gender. Having 

a close look to each track’s top tags, I find that tracks released years ago tend to have 

more tags created by users than recent released tracks. Also artist name, and genre are 

frequently mentioned in the top tags, especially genre. Genre related tags always occur in 

the top-5 tags. 

The objective evaluation shows that the final multiple linear regression model works well 

in predicting track co-occurrence frequency. 

There are several limitations of the study.
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First, although all four categories of background knowledge are covered, the track 

information extracted for each category was not complete. For example, beside tempo 

and mood, audio signal analysis data includes danceability, energy, and speechiness.  

As mentioned in the discussion section, the normalization of usage data in the study is 

very simple, based on the assumption that usage data increases linearly for each year. 

However, this is not true in reality. More complex normalization could be applied to 

reach a more accurate result. 

Due to time and resource restriction, a simple objective evaluation was done for the 

multiple linear regression model. Only 15 tracks from 3 users’ listening history was 

extracted as test data. Similar evaluation with larger test dataset or more complex 

evaluation is encouraged to be done. For more complex evaluation, I suggest a hybrid 

evaluation method which combines subjective evaluation and objective evaluation. 
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