

Molly L O’Dwyer. What’s that building? The use of App Inventor to create an interactive

mobile application campus tour. A Master’s Paper for the M.S. in IS degree. November,

2013. 46 pages. Advisor: Dr. Brad Hemminger

Mobile applications can be created by many different methods but is nearly impossible

without extensive knowledge of a programming language such as Java or Objective-C.

New visual programming environments have been created to break down those

programming barriers. This project looks at the way applications can be built by a novice

or non-programmer and evaluates App Inventor, a visual programming environment

designed to create Android applications without knowing Java. This paper describes all

phases of the project, from the selection process for choosing a program, to the testing

and evaluation of the final mobile application.

Headings:

Computer programming -- Visual programming languages

Computer software -- Application software -- Mobile device applications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210609905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WHAT’S THAT BUILDING?

 THE USE OF APP INVENTOR TO CREATE

AN INTERACTIVE MOBILE APPLICATION CAMPUS TOUR

by

Molly L. O’Dwyer

A Master’s paper submitted to the faculty

of the School of Information and Library Science

of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements

for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

November 2013

Approved by

Dr. Brad Hemminger

 1

Table of Contents

INTRODUCTION .. 2
BACKGROUND .. 4

APPLICATION SPECIFICATIONS ... 11
TECHNOLOGY REVIEW ... 16

IMPLEMENTATION ... 20

APPLICATION DESIGN AND DEVELOPMENT .. 23
EVALUATION... 33
CONCLUSION ... 38

BIBLIOGRAPHY ... 41
NOTES .. 43
APPENDIX ... 44

 2

INTRODUCTION

The purpose of this project was to design a mobile application with specific

requirements with limited programming knowledge. The vision of the application would

be a historical tour of the University of North Carolina’s (UNC) campus that a user could

access on their smartphone while they walk around campus. Given the time constraints of

the project, the application needed to be either a modification of an existing application

or have some method in which it could be built with limited time and programming

knowledge.

The final product is a result of a combination of the above criteria. It started as a

modification of an existing campus tour application created by Ralph Morelli at Trinity

College. Snippets of code were taken from other applications and modified for this

project. All applications are open source and the code was freely available for use or

modification. The method in which the application was built was the code block method.

This is employed by App Inventor, a program managed by MIT, that lets application

builders create an application using a GUI and programming logic blocks instead of

writing out a programming language or having to worry about syntax. Since the program

was originally created by Google, programmers are only able to create applications for

Android smartphones or tablets.

This paper will describe the design, development and evaluation of this mobile

application. The main goal of this work was (1) to understand if this type of application

would work as a historical guide for this type of environment. Sub goals were (2) to

 3

understand if App Inventor could be used to store historical data and guide the

application user on a tour of UNC’s campus; (3) test the GPS and database capabilities of

the program for feasibility and function; (4) evaluate the design and user interface of the

application.

 4

BACKGROUND

Early virtual tours began with museums offering images of their holdings on their

website. The user would click on text or an image and be able to view information about

an item that they could not see in person. These images served as digital surrogates for

the physical objects that could then be curated into an exhibit to be viewed on a website.

Museums small and large have done this. One example of a small museum’s efforts at

creating a virtual tour for visitors is the Orange County Historical Museum in

Hillsborough, North Carolina.
1
 Their tour presents the user with a map of the museum

with permanent exhibits marked on the map. The user clicks on an area such as Colonial

Cooking and is taken to images and text about the exhibit. They click on thumbnail

images that bring up a larger image and information about the image.

 However, it’s not always feasible or even desirable for a large museum to create a

digital surrogate of their physical exhibits. For museums like the British Museum,

creating digital surrogates of their holdings that are not on display in the museum not

only reaches visitors that are not able to come in person but also extend the learning

experience of those visitors that physically visited the museum.
2

Google has tried to advance this idea of a virtual tour online with their Cultural

Institute which provides web users with the opportunity to explore individual artifacts,

art, or take virtual tours of an institution through a web browser.
3
 Google’s virtual

1
 http://www.orangenchistory.org/VirtualMuseum.htm

2
 http://www.britishmuseum.org/explore/online_tours.aspx

3
 http://www.google.com/culturalinstitute/home

http://www.orangenchistory.org/VirtualMuseum.htm
http://www.britishmuseum.org/explore/online_tours.aspx
http://www.google.com/culturalinstitute/home

 5

museum tour is similar to using street view in Google maps, only the user rotates their

view of a room instead of a street or zooms in to a photo on the wall instead of a building.

Often there are buttons or icons that when clicked on provide more data about the object.

The user can virtually look up at the ceiling, down at the floor or walk down the hall with

the click of a button. While this is not a true virtual environment, it is a step towards

simulating a virtual environment.

Museums are not the only ones to create virtual tours of their holdings. Cultural

tourism has also tried to enhance a tourist’s visit to a city or historic location. The

Mountain Lakes in New York has created a historic online walking tour of the area.
4
 This

tour is a hybrid of an audio tour and map tour when used with smartphones, tablets or

some other portable music device. The mobile phone accesses a web page through the

mobile’s browser, the user selects a marker on a Google map and an audio narrative

begins to play. University of New Mexico also created a web-based mobile app using

ARIS that consisted of a map with markers that when clicked on brought up a new page

with information about that location.
5

In his presentation on The Digital Humanities for Nonprofits, Kevin Dooley, VP

of Market Development at OnCell described the beginning of mobile phone tours.
6
 They

began around 2006 when users would have to dial a number on their phone, listen to

some audio then dial an extension to hear more audio narration. Usually the user was

guided by signs along the tour or a brochure map to tell them which number to select

from the audio prompt at each location. Some institutions still use a similar method but

4
 http://www.mtnlakes.org/History/Hiswalkingtour.htm

5
 https://sites.google.com/site/unmgame/home

6
 http://njch.org/wp-content/uploads/2013/05/Kevin-Dooley_OnCell.pdf

http://www.mtnlakes.org/History/Hiswalkingtour.htm
https://sites.google.com/site/unmgame/home
http://njch.org/wp-content/uploads/2013/05/Kevin-Dooley_OnCell.pdf

 6

the use and technological advancements of mobile phones has opened up more

opportunities than just an audio tour.

The use of web tours within a mobile web browser was not as feasible to

accomplish until mobile phones had web browsers as a standard component. Mobile web

applications are often easier than a native application because of its universality across

multiple device platforms and simplicity using online user interfaces.

 Using a mobile device to view a web tour started happening about three years

later in 2009. According to Dooley’s presentation over half of cell phone users have

smartphones. Twenty-five percent of cell phone users have Android devices.

Smartphones in particular had greater capability for enhanced multimedia and content

display.

 Mobile web tours are often accessed through a QR code or NFC tag. A QR code,

or quick response code, is a two-dimensional barcode that a smart phone with a QR

reader can scan using the phone’s camera. The barcode is usually encoded with a URL

that provides more information. An NFC tag, or near field communication, is a sticker

with electronic information that is transmitted to another NFC enabled device.
7
 The user

simply holds or touches their NFC enabled smartphone to the sticker and the information

is automatically transferred. In the case of virtual tours, a QR code or NFC tag might be

placed next to a display in a museum to give the user “in-depth, contextual, multilingual

and multilevel content.”
8
 Since the user has to be physically near the QR code or NFC tag

and the code is usually near the item it is providing more information about, QR codes

and NFC tags as a way to access mobile web tours only enhances the in-person

7
 Anokwa , et. al. A User Interaction Model for NFC Enabled Applications, pg. 1.

8
 Ceipidor, et. al. NFC technology applied to touristic-cultural field: a case study on an Italian museum, pg.

3.

 7

experience by providing additional information than what is in front of them. This is in

contrast to web only tours that the user might access from a PC or typing directly into

their mobile browser that do not require them to be at the physical location in order to

access the information (thus acting as a surrogate to the physical experience). While QR

codes and NFC tags are advancements in technology, it is a step away from the idea of a

virtual tour and a step towards the idea of augmented reality.

 The problem with QR codes and NFC tags is the need for proximity to the code or

tag itself. While some tours are linear and the user is led from one location to the next

with easily identifiable information plaques, some tours are not designed with

information plaques.

A better alternative would be to use a form of augmented reality native

application. Native applications are mobile applications that are programmed for a

specific mobile platform, such as iOS or Android. These applications are not viewed in

the web browser but are downloaded to and stored on the phone itself.

Augmented reality uses components already found on a mobile phone to enhance

the real-world environment of the user.
9
 This might include camera, GPS sensor, digital

compass, accelerometer, and gyroscope.
10

 The GPS sensor will locate where the phone is

geospatially while the accelerometer, compass and gyroscope will provide information on

the phone’s orientation and general movements. Most mobile tour guides, whether

historical or tourist, use the GPS and orientation sensors. Some may use the camera to

identify locations by holding the camera to a building or object and matching the object

using image recognition. However this last method is still being improved on and may

9
 Pence . Smartphones, Smart Objects, and Augmented Reality, pg. 137.

10
 Menzel, et. al. A Framework for Vision-based Mobile AR Applications, pg. 1.

 8

not be feasible for smaller organizations with less access to highly skilled application

programmers.

 Augmented reality has two types: markerless and marked.
11

 Marked uses QR

codes or NFC tags to provide location and other information. Markerless uses GPS or

image recognition to identify the phone’s location and provide information based on the

sensed data. Information can be pushed to the user’s phone based on their location or the

user can be presented with options and can then choose what information they want to

see in regards to their surroundings. This latter option is probably the most common

among native applications.

 However, GPS does not work well, if at all, inside buildings.
12

 Some museums

have tried to address this challenge with other location-aware technologies such as

WIFI
13

 or ultrasound. Bihler, et. al., tried to test the strengths and limitations of

ultrasound. While the test was small, the results were positive and most of the

smartphones picked up the signal being sent by the signal emitters that were placed

within the museum. However, more study on the types of technologies that will work for

location-aware applications is needed before the technology will see a widespread

adoption.

 Museums are not the only institutions dealing with augmented reality and

smartphones. Cultural tourism is grappling with the new technologies available and how

they can be put to use to market a city or tourist destination. Many cities have created

11

 Pence, Smartphones, pg. 138.
12

 Bihler, et. al., SmartGuide – A Smartphone Museum Guide with Ultrasound Control, pg. 587.
13

 American Museum of Natural History uses WIFI to determine user location as a way to help the user

navigate the 26 buildings and 46 halls of exhibits, including how where to find bathrooms and food:

http://www.nytimes.com/2011/03/17/arts/design/apps-give-museum-visitors-multimedia-

access.html?_r=1&.

http://www.nytimes.com/2011/03/17/arts/design/apps-give-museum-visitors-multimedia-access.html?_r=1&
http://www.nytimes.com/2011/03/17/arts/design/apps-give-museum-visitors-multimedia-access.html?_r=1&

 9

native applications that utilize the GPS sensor in smartphones.
14

 Kokomo, Indiana has

advertised their application as being a virtual tour guide that tells visitors about the area

as if they were hearing it personally from the mayor or a local insider. Information is

stored in a database that is updated regularly with lodging, food and events information.
15

The user can then get directions to their destination.

 Spokane, Washington has taken the historical approach with a database of historic

locations in the area that includes a map to access images and text narrative about major

landmarks in the town.
16

 Perhaps one of the best examples of GPS use in a native application is

Streetmuseum, created by Museum of London. The GPS sensor identifies where the user

is and when they hold their phone up to a building or street scene, a historic image is

shown on the phone’s screen.
17

 HistoryPin has a similar function however the user has to

pick a location on a map before they see the images.
18

 Software has been developed to help programmers utilize these augmented reality

components. Wikitude,
19

 Junaio
20

 and ARIS
21

 allow programmers to build mobile

applications with augmented reality. However, Wikitude and possibly Junaio require the

programmer to write code. This makes it difficult for smaller organizations such as

museums or historical sites to create applications if they don’t have a resident

14

 Snohomish County, Washington has created numerous applications related to the history of the area.

Their applications use a paper brochure, a mobile app and includes a QR code located either on the

brochure or on the building itself: http://www.heraldnet.com/article/20110625/LIVING/706259977.
15

 Magan, Mike. Smartphone serves as your virtual Kokomo guide.
16

 Project by Larry Cebula, professor of history at Eastern Washington University, and his students:

http://northwesthistory.blogspot.com/2012/04/announcing-spokane-historical-smart.html. Under his

direction, graduate students are working on similar apps for cemeteries and parks in the area.
17

 http://www.museumoflondon.org.uk/Resources/app/you-are-here-app/home.html
18

 https://play.google.com/store/apps/details?id=com.historypin.Historypin&feature=search_result
19

 http://devzone.wikitude.com/web/forum/documentation/android
20

 http://www.junaio.com/develop/
21

 http://arisgames.org/projects-and-papers/

http://www.heraldnet.com/article/20110625/LIVING/706259977
http://northwesthistory.blogspot.com/2012/04/announcing-spokane-historical-smart.html
http://www.museumoflondon.org.uk/Resources/app/you-are-here-app/home.html
https://play.google.com/store/apps/details?id=com.historypin.Historypin&feature=search_result
http://devzone.wikitude.com/web/forum/documentation/android
http://www.junaio.com/develop/
http://arisgames.org/projects-and-papers/

 10

programmer on staff or the finances to outsource the job. ARIS provides a more graphical

interface for creating an application and is designed for games or tours using augmented

reality. However its limitations are such that for this project, another alternative was

chosen. App Inventor also uses a graphical interface to design and program an application

but has more basic and augmented reality components to work compared to ARIS. It does

require some understanding of programming logic but this is easier to overcome in most

organizations than the intricacies of code syntax.

 Early discussion of App Inventor said augmented reality was not possible. While

App Inventor may not be able to do as complex things as using SDK would, according to

the components that made up augmented reality as mentioned earlier, App Inventor has

every possibility of creating a mobile application with augmented reality. This project

will test those capabilities and evaluate the effectiveness of the program to create a

mobile application with augmented reality. The program’s ability to incorporate

augmented reality without needing professional software development experience means

smaller organizations can engage their visitors in their collection, historic site or town

just as much as larger organizations.

 11

APPLICATION SPECIFICATIONS

1.1 Technical Specifications

In deciding how to design the application, the behavior of the users had to be

taken into consideration. Campus buildings are not linearly located with straight paths

that lead from one building to the next. Nor do the buildings have easily identifiable

information plaques. The most the building would have is the name, year it was built and

in a few cases, a small plaque somewhere on the building with minimal information. The

location of these pieces of information is different for each building. Visitors to campus

are likely to approach a building from different directions and would not easily find a QR

code or NFC tag to scan. The landscaping around the buildings would also prevent the

visitor from getting close enough to the building to scan the codes. The fact that visitors

would then have to find the codes, which would likely be in a different location each

time, might discourage their use, especially if the user has limited time.

Instead the application was designed with markerless augmented reality. It uses

GPS and orientation sensors and a modified map with markers on the map indicating a

location with information.

1.1.1 Data storage

Data include names, dates, text, images, geo-coordinate locations, and

links. Storage options included a key-value pair database or indexed lists. Indexed

lists ended up being the most workable for the purposes of this project. A single

list for each location was created and data for each data type was manually

 12

entered in the list. To retrieve the data, the list was referenced using an index to

identify which item in the list was needed.

1.1.2 GPS

Geo-coordinates were used in the structure of the application and in the

location data. The GPS goal of the application was to show the user on the map

with a navigation arrow and have the arrow move on the map according to where

the user moves. Geo-coordinates had to be obtained for the boundaries of the

map, user location, and building locations. The boundary coordinates were stored

in the variables TLLat, TLLong, BRLat, BRLong. TL means Top Left and BR

means Bottom Left. Lat and Long are latitude and longitude, respectively. User

location was obtained from the Location Sensor element of App Inventor.

Location was sensed every minute and stored in the variables lat and long.

Building locations were stored as items in a list for the respective building.

Latitude and longitude each had their own index in the list. The map image was

placed in a canvas element. To determine the user’s location, a formula was used

to determine the X and Y coordinates on the canvas that equated to the geo-

coordinates of the current location.

The formula for calculating the x-coordinate is as follows:

Canvas width * (|TLLong – long| / |TLLong – BRLong|)

The y-coordinate formula is as follows:

 Canvas height * (|TLLat – lat| / |TLLat – BRLat|)

 13

1.1.3 Click functions

Since the user is on a mobile all traditional click functions on a computer

would be executed using a touch function. All buttons, sprites and canvases use

the Touch function. In App Inventor the buttons use the function .Click while

sprites use the function .Touch. Both functions are activated when the user

touches the element. A similar function is .BackPressed. The .BackPressed

function means the user has touched the back button on their phone instead of a

button within the application. Tabs in the application are buttons that allow for

button like click functions.

A variation of this click function is .Flung, which is an event specific to

sprites and canvases only. This means the user has swiped across the screen. For

this project this function is used only for swiping through the images.

1.2 User Interface Specifications

Since the interface will be on a small screen, it was important to keep the

application uncluttered and clean looking. A white background with blue

elements was chosen. The blue on white provides a clean contrast and makes the

buttons and images stand out. For simplicity the orientation was locked to portrait.

1.2.1 Buttons

The buttons were kept to a minimum so as not to be overwhelming to the

user. To make the button look modern, an image was created in Microsoft

PowerPoint and stylized using the built in functions. It was then cropped in GIMP

and saved as a jpeg. In App Inventor the button element image was set to the

newly created jpeg. More than one type of button was created. The tabs in the

application were created using buttons that were stylized to look like tabs. A

 14

second type of tab was created in a lighter blue color. When a tab was clicked on,

the image for that button would change to the lighter blue so it looked like it was

the selected tab.

Back buttons and exit application buttons were also created in PowerPoint

then cropped in GIMP and saved as a jpeg image. The respective button elements

were set to the jpeg image.

Button text was programmed in the App Inventor Viewer. The text color

was white against the blue buttons for greatest contrast and best readability.

1.2.2 Images

The image element in App inventor was never used, however images were

used with other elements. When viewing information about a particular location,

small thumbnails of associated images are visible. These are buttons that display

the images from the lists for each location. The images are stored in the

application.

1.2.3 Text

Text elements included labels and buttons. Text for a button was set in the

Viewer. Text for the labels were taken from the building lists and copied to the

label depending on which building was selected.

1.2.4 Navigation Controls

Navigating the application was accomplished with buttons and the canvas

element. Buttons allowed for backward movement to previous screens or to exit

the application. Buttons also gave access to images while canvas elements

 15

allowed for swiping through the enlarged images. Buttons in the form of tabs let

the user access additional text content.

 16

TECHNOLOGY REVIEW

2.1 Java vs. Visual Programming for Android

Java is the programming language used for Android applications. It

consists of textual syntax of the Java language written in an editor such as

Eclipse. The standard among most application programmers is to use Android

SDK to create their applications. This method requires extensive knowledge of

Java and programming in general.

Visual programming, on the other hand, uses visuals in the form of blocks,

boxes, lines or icons to convey programming logic instead of textual syntax. It is

often used to teach programming to children or adults learning to program for the

first time. It is used because the visual representations make it easier to follow and

quickly create an application while writing Java may take some time before

results can be seen.

While there are many visual programming languages or environments,

there are only a few that are designed for mobile development.
22

 Since mobile

phones and tablets are based on different programming languages the visual

environment is often specific to the mobile platform: Android or Apple. Android

uses Java and Apple uses Objective-C for all iPhones and iPads.
23

 There was

easier access to Android devices for this project so a method for building an

application for Android was chosen. Given the constraints of the project, five

22

 “Visual Programming Language”. Wikipedia: The Free Encyclopedia.
23

 Handy, Grace. What language should you build your app with?

 17

programs were considered: Illumination, TouchDevelop, Hopscotch, Scratch and

App Inventor.

2.1.1 Application Building Programs

Illumination started as a visual programming environment for software

and added capabilities for Android development in version 2.0.
24

 Now it has

additional capabilities for iOS, Flash, Desktop, and HTML5.
25

 The program itself

is basic, using boxes of variables and functions with lines to connect the boxes. It

is open source which means anyone can download the program for free. However

the program is not very visually appealing for a non-programmer and does not

have the user/technical support of other programs.

TouchDevelop was created at Microsoft Research and is designed

specifically for smartphones and tablets. The program is browser based which

means programming can occur on any device with a standard browser. The

research team at Microsoft has created numerous video tutorials for developing

alone or to use in a classroom setting to teach programming. However, even

though any platform can be used to program, TouchDevelop is designed to build

Windows 8 applications.
26

 Using this program would limit the audience that could

access it since most visitors to the campus will likely have either an Android or

iPhone.

Hopscotch is also designed for iPhone or iPad and is geared towards

teaching children to program games.
27

 For this reason Hopscotch would not work

24

 “Illumination Software Creator”. Wikipedia: The Free Encyclopedia.
25

 Lunduke, Bryan. “Illumination Software Creator 6.0.”
26

 “TouchDevelop: FAQ”. Microsoft Research.
27

 Klosowski, Thorin. “Hopscotch HD Introduces Kids to Programming.”

 18

for this project as some of the tasks this project is trying to accomplish are more

advanced than what Hopscotch is capable of.

Scratch was created at MIT and focused on programming projects using

animation and sound. Its target audience was K-12 school children and was not

designed to build mobile applications. However it does have a user-friendly

graphical interface with programming blocks. It is no wonder then that MIT chose

to take over the management of Google’s visual programming project, App

Inventor.

2.1.2 App Inventor

App Inventor (AI) allows users to create Android compatible applications

using a graphical interface much like Scratch, but with functionality closer to the

Android SDK—the standard method for building Android applications. The

blocks look similar to puzzle pieces that are clicked into place to create

programming logic. Projects are accessed through a browser where the user can

design the interface then open the blocks editor to create the logic. Emulators can

be used on the computer or wirelessly on an android phone to test the application

live. The application can then be downloaded to the phone directly or prepared for

upload to Google’s application store.

App Inventor is open source and projects and code are freely shared

among users. AI also provides tutorials, a forum and ways to report bugs since the

program is currently in beta (version 2.0 should be out by the end of the year).

This program application development from inception to publication on Google’s

App Store. It also has elements and functions such as location and orientation

 19

sensing, buttons, labels, images, and swipe functions. The underlying code is

Android’s programming language, Java. AI had the best features and since it was

created by the company that manages Android apps, it was selected as the

program to use to create a mobile tour of the historic section of UNC’s campus.

 20

IMPLEMENTATION

3.1 App Inventor

3.1.1 What it is

App Inventor was created by Google and designed to allow users to

program a mobile application without having to know extensive programming

languages. It uses a graphical interface with programming blocks that allow the

user to fit programming blocks together, much like two puzzle pieces fit together.

App Inventor was handed over to MIT to maintain and build on. App Inventor 2

will be released in 2013.

3.1.2 Why use App Inventor

App Inventor is designed to let non-programmers build mobile

applications. Given the time constraints of this project and the skill level of the

project facilitator, using a GUI to build a mobile application was the best choice.

Given the ease of learning App Inventor, it is reasonable to believe that others,

either in an academic setting or on their own, would be able to achieve a mobile

application similar in nature to this project using App Inventor instead of using

the Android SDK and Java language.

3.1.3 Capabilities

The project was designed with certain purposes that it was likely App

Inventor would be able to achieve. First, the application needed to include a map

 21

of the portion of campus where the tour would take place. Ideally the map would

be interactive, but the level of interaction would be determined by the program’s

abilities. Second, images would need to be associated with the locations so the

application needed a way to view those images. Lastly, the text about the location

needed to display in a user friendly way.

App Inventor has database abilities with its TinyDB and TinyWebDB

elements and it was anticipated that storing data in one of those databases and

recalling that information within the application would be possible. AI could start

other applications, such as Google maps, but in the beginning it was uncertain

what level of interaction was possible with the mapping programs.

3.1.4 Known Limitations

While App Inventor is capable of doing many things, it does have

limitations. Some of the limitations are the functionality of the program itself and

others are limitations in that advanced programming knowledge is necessary in

order to achieve the desired result. Both limitations were encountered in building

the application.

First, the interaction with the ActivityStarter element for the purposes of

using the Google maps application was limited. Geo-coordinates could be sent

from AI to the map application or a map URL could be specified that included

markers for all the buildings on the tour but ultimately that limited the interaction

with the metadata. A user could touch on a marker on the map but the information

they could see and interact with would be severely limited.

 22

Second, the limitation of the programmer for this project affected the

creation of the application. The list elements were used in place of TinyDB or

TinyWebDB as it was more feasible for the programmer to work with. It is

possible the use of lists lessened the overall functionality of the application even

though all the requirements for the project were met.

 23

APPLICATION DESIGN AND DEVELOPMENT

App Inventor allows for multiple screens but for simplicity the app was built

using one screen and hiding or showing elements as the user interacts with the program.

Switching screens in an emulator was not possible which meant the application would

have to be downloaded each time testing was required. Keeping the design to one screen

allowed for use of the emulator on the phone and the ability to see live updates to the

application.

4.1 Wireframes

Figure 1 First “screen”: The blue arrow buttons

are hidden in the working application and are only

made visible when the screens change. They take

the user back to the previous screen. The map is

static and sprites, which are the small image icons

on the map next to the blue numbers, are not

visible to the user in the working application but

are placed directly over the number so when the

user touches the number, it appears they are

touching a marker on the map. Touching the sprite

hides this screen and shows screen two. Touching

the About button brings up an alert box with

information about the project. The top section with

the three arrows stays on every screen. The text

“Please select a location” is replaced by the

building name of the marker that is selected.

 24

Figure 2 Second “screen”: Six square buttons are filled

with images from the index according to the sprite that

was touched. The large canvas image is hidden initially

and becomes visible when an image (aka button) is

touched. The six images are hidden when the large

canvas is visible. Text boxes for the history of the

building are populated from the index just like the

button images. Only one text box is visible at a time.

Two boxes are always hidden and only made visible

when a tab is touched. Touching the view sources

button toggles the visibility of a text box with source

links.

 25

4.2 Working Prototype

Figure 3 Welcome Screen Figure 4 Screen 1

 Figure 5 Screen 2 Figure 6 Screen 2 large image view.

 26

4.3 Code Blocks

Figure 7 Orientation and GPS features. Includes variables for latitude and longitude that

define the boundaries of the map, functions for when the orientation and location change

and when the user turns the navigation on and off and procedures that calculate the (x,y)

coordinates on the canvas by converting the geo-coordinates to (x,y) and then moving the

user sprite’s location according to the new coordinates. This makes it appear that the map

is not static and the current location arrow moves with the user. Variables define the map

boundaries in latitude and longitude for the top left (TL) and bottom right (BR) corners.

 27

Figure 8 When orientation changes, the arrow will point in that direction on the map. This code specifies

the degrees that determine a particular location. Locations include north, northeast, east, southeast, south,

southwest, west, and northwest. If the azimuth is true, the heading of the user sprite (blue navigation arrow

on the map) is changed so the tip of the arrow points in the direction the user is facing.

 28

Figure 9 LocationSensor checks every 100 milliseconds if location has changed. If it has (i.e., the user has

moved), it records the new latitude and longitude and when accuracy is less than 20 meters the procedure

moveUserSprite is called. MoveUserSprite places the navigation arrow on the map using (x, y) coordinates

calculated from the calcMyX and calcMyY procedures (below).

Figure 10 Formulas convert latitude and longitude values into (x,y) values to locate the navigation arrow

on the map.

Figure 11 The user has the option to turn the GPS feature on or off. The buttons were styled to look like

text. The colors of the text change when the navigation is off or on. Users not physically present on campus

may want to turn off navigation to conserve battery power.

 29

Figure 12 When app first opens, items are added to the sprites and imageButtonList lists, and initial

element visibility is set to “screen” one. Elements of screen two are hidden.

 30

Figure 13 Sprite data list and functions. Each location (sprite) has its own variable, function and procedure.

Each sprite is defined as a list with each position containing information about the location that will be

displayed to the user. When a sprite is touched a label at the top of the screen is populated from the relevant

position in the list. All the labels in screen two are populated according to the designated position in the list.

A procedure is called to hide screen one and show screen two content. A procedure to set the images for the

thumbnail buttons is also called. This procedure checks each position in the list that should have an image

and see if it is blank. If the position is blank, no image has been assigned and that button is not displayed.

Originally the images were URL links but that took too long to load the images so the images were saved to

the application.

 31

Figure 14 When a button image is touched, the image populates in the canvas. The viewLargeImage

procedure hides the thumbnails and makes the canvas visible.

Figure 15 Procedure for when the user touches a sprite and a procedure that clears the image list when the

user returns to the map. This is necessary because when a sprite is clicked on the imgList variable is

populated according to the items in the sprite’s list. imgList is a temporary work space for that particular

sprite and the values in the list need to be cleared when the user returns to the map. When a new sprite is

clicked on, the list is then populated with new data.

 32

Figure 16 Back buttons for navigation within the app. One button will hide the large canvas image and

show the thumbnails while the other will hide screen two and show screen one with the map. There is also a

function if the user presses the back button on the phone itself instead of using the programmed back

buttons.

Figure 17 Miscellaneous buttons. Buttons were used in non-traditional ways in this application. About and

Sources buttons were traditional. About shows a message dialog where the user has to respond. The

Sources button toggles the visibility of the sources consulted list. The tabs on screen two are buttons styled

to look like tabs. They show or hide specific labels.

 33

EVALUATION

Evaluation of the application consisted of participants using a fully-packaged

version of the application on an Android device. The facilitator had the participants

perform tasks and answer questions about the application and their experience using it.

4.1 Testers

Five students and four non-students were selected to test the application

based on their response to an email sent to multiple listservs. The only

requirement to participate was the testers needed to be familiar with smart phones.

Only one tester was male. The students’ education level ranged from

undergraduate to PhD. The non-students were college graduates. Some testers

used Android for their personal phones and others used iPhone.

4.2 Devices

The Android platform is run on multiple devices and testing all of them is

beyond the scope of this project. A single device, an HTC Evo Shift was selected

for testing purposes. The application was loaded onto the phone and then given to

participants to use.

4.3 Procedures

Participants were assigned a time to meet with the facilitator. After signing

a consent form they were told about the study and shown the phone they would be

using during the test. The facilitator walked them to the testing location which

 34

used the Old Well as a central starting point. The participant was then asked to

complete a series of tasks that involved navigating to a location and viewing

information about the building including text and pictures. They were advised to

use the map to help them navigate to the next location.

The facilitator recorded the participant’s responses to the tasks and asked

questions to follow-up their responses. At the end of the test the participant was

asked to rate the experience, particularly the functionality, usability, and subject

interest of the application.

4.4 Results

This particular study brought out interesting personal preferences of the

individual tester in regards to how they interact with mobile applications. While

one tester may have liked the textual content, another would think it was too long.

This was the case for many elements. However there was one positive and one

negative aspect of the application that was consistent across testers. All testers

liked the images that were used and found the navigation arrow to be inaccurate.

In regards to the usability of the application, the testers rated the app as

very easy to use. Testers said it was logical, intuitive, did not have error messages,

and had good color contrast. There were no foreign components which meant the

application was easy to use. They also said the tabs were easy to use, interaction

with images worked as expected, buttons were clearly defined and testers were

able to “zoom in” on the images (aka view a larger version of the image; regular

zoom was not a feature in this app). Testers did not like the navigation arrow and

said it was often inaccurate. They also didn’t like that they couldn’t zoom in on

 35

the map. Many said the distance between buildings seemed farther because of the

map and where the navigation arrow was located. Some testers also said there was

no indication of which side of the building they should stand on. This eventually

lessened the enjoyment of the experience when they were looking at the images

and their view was not the same as the images.

In terms of layout, formatting and color use, testers liked the button colors

and photos. They felt it was a nice layout, the colors were applicable to the school

and the back arrow was very clear. One tester said they didn’t notice the layout

much because it didn’t detract from using the application. Another tester wanted

to see a large image indicating they could swipe to more images when they first

see the second screen instead of the thumbnail images. Other testers expressed

interest in seeing a modern image of the building to make sure they were at the

correct one. The navigation arrow was sometimes hard to see when it was located

over the blue markers and a few testers suggested changing the color of the

navigation arrow. The markers were not in numerical order and one tester thought

it would be better to have them in order, thus creating a loop, instead of having

the user backtrack to a building they had passed. Along those lines, another tester

felt they had to go in order because of the numbered markers instead of viewing

the buildings in the order they wanted.

Testers really liked the functionality of the application. One felt the

interactive map was a step beyond traditional GPS. Most commented on the swipe

function and liked that but one wanted to be able to touch the image to see the

next one and was not able to do that. Others said the app worked as expected and

 36

touching the elements was easy. The main complaint about function was the

navigation arrow. It would often spin in many directions before stopping in the

right direction. It was also inaccurate, sometimes placing the tester inside a

building when they were standing outside. One tester noted that the links to URLs

were long and were not actually linked. Shortening the URLs to bit.ly format was

suggested.

Testers said the text and images were engaging. The most positive

response was to the images. Some liked that they were old, others found them

interesting, and yet others liked that you could view a larger version of the image.

However, the personal styles of application use as mentioned earlier were most

apparent with the text and images. Some testers said they didn’t like reading a lot

of text in general and mostly skimmed the text and focused on the images. Others

loved to read text and read all the text for each building. Those that skimmed the

text often asked questions about what was going on in the images while those that

read the text did not and indicated that they understood why the images were

chosen. One tester that skimmed the text said captions would have been nice.

Other complaints included the text being too small or too much. A few testers

found some of the text confusing and were not sure how it related to the building

and yet others found the information interesting and were surprised at the kind of

information that was included. A few testers wanted to know what the building

was used for currently and some would have liked the images to be incorporated

into the text instead of separate sections.

 37

Recommendations for future applications

Give users opportunity to be spontaneous. Users on a campus tour will likely

want to wander on their own and look at buildings at their leisure. Using blank

markers on the map instead of numbers gives the user freedom to interact with

the map in the way they prefer.

Let users know they have arrived. A current image of the building/location

helps the user know they have reached their destination.

Incorporate user feedback into the design. User feedback is invaluable so

build in testing time and incorporate user feedback into the development of the

application.

Use images tell users what they are seeing. Users enjoy swiping through

images. Make sure they understand thumbnails can be clicked on or large images

can be swiped to reveal more images. Many users prefer to look at images and

read captions to paragraphs of text so captions for the images are important.

Don’t use GPS just for the sake of using it. While it is a common feature in

applications, tall buildings may block GPS signals and provide for poor location

sensing and result in frustration for users. Be aware of the tour environment and

adjust the design and function of the application accordingly.

Be consistent in design. Consistent colors and designs provide a cohesive look

to the application. The brand of the application should be consistent with the

brand of the organization building the application.

Let users decide how much text they want to see. Organize text so only

headings are visible and give users the option to expand the text that interests

them or hide the ones that don’t.

Overall, the testers had a good impression of the application. They found it

was clear and easy to use and liked the fun facts and images that were used. The

navigation arrow was a drawback in terms of functionality and one tester thought

the map had an “old school” GPS look. That same tester felt the application had a

dated look but no other testers mentioned whether or not they felt the application

was modern looking or not. One tester said they expected more UNC branding in

the application.

 38

CONCLUSION

This study was designed to create a historical tour application with App Inventor

and understand whether or not App Inventor was capable of storing historical data and

guide the user on a tour of UNC’s campus. We also wanted to look at the feasibility of

the GPS sensor and database storage in AI and evaluate the user interface and design of

the application.

Historical data was in fact stored in lists in App Inventor and accessed by the

users. The data consisted of text and images and were accurately displayed to the user for

the location that was selected.

The GPS sensor worked well in AI but for the purposes of this project and the

modifications made, there were some significant limitations. In most AI projects using

GPS, only the geo-coordinate is recorded and either displayed to the user or used to give

directions using a map application on the phone. Since our application tried to display a

map within the application and not in a separate map application, other factors affected

the accuracy of the navigation arrow. The geo-coordinates had to be converted to pixel

coordinates in order to place the navigation arrow on the map. With the tall buildings in

the area, the GPS accuracy rarely reached below 10 meters. The program was designed to

only move the location of the arrow when accuracy was below 20 meters which means

the placement of the arrow on the map could be as much as 20 meters off. When accuracy

was changed to 10 meters or less the arrow never moved and this would have created

 39

confusion for the user. Knowing the arrow was moving in the right direction most of the

time seemed to be the better option to it not moving at all.

The database features were not used, although it is possible it could be used for

such an application. The basic code to access the data was similar to the lists but the lists

were easier to work with overall and produced less confusing code logic.

The user interface design was not the easiest to work this but a good tour

application could be made with it. Placement of objects required significant forethought

for how to achieve the correct alignment of elements or text. The design of the user

interface is more time consuming than is it difficult to understand. The basic colors built

in to the program are not desirable to use at all and creating custom colors is far more

involved than simply picking a color from a list. The RGB codes are needed and have to

be programmed in the blocks editor instead of the interface design window.

Zooming in on the map or images was one thing numerous testers mentioned as

something they would like to do but could not. Zoom functions are important to users and

common in applications created by professional software developers. Being able to zoom

in to the map or an image would be useful for users with smaller screens. This is a

possibility with AI but requires extensive programming since there is not a native

function built into the AI software that allows for zooming.

While it seems a bit cumbersome with all the customizations, App Inventor is a

viable platform in which to build mobile applications. A tour, either for a campus or other

location, is quite possible as evidenced by this project and the Trinity College campus

tour app.
28

 The greater understanding of programming logic an individual has, the easier

it will be to build an application in AI, but no knowledge of a specific programming

28

 See Appendix for links to examples of variations of this type of tour.

 40

language is necessary. With the help of tutorials, one can build a simple application

within an hour. However more complex applications such as this campus tour would

require some knowledge of programming logic and creativity.

 41

BIBLIOGRAPHY

Anokwa, Yaw, et al. "A user interaction model for NFC enabled applications."Pervasive

Computing and Communications Workshops, 2007. PerCom Workshops' 07. Fifth

Annual IEEE International Conference on. IEEE, 2007.

Bihler, Pascal, Paul Imhoff, and Armin B. Cremers. "SmartGuide–A Smartphone

Museum Guide with Ultrasound Control." Procedia Computer Science 5 (2011): 586-

592.

Ceipidor, U. Biader, et al. "NFC technology applied to touristic-cultural field: a case

study on an Italian museum." Near Field Communication (NFC), 2013 5th

International Workshop on. IEEE, 2013.

Dooley, Kevin. “Self-guided Mobile Tours.” The Digital Humanities for Nonprofits.

South Jersey Center for Digital Humanities. 3 May 2013. Lecture.

<http://njch.org/wp-content/uploads/2013/05/Kevin-Dooley_OnCell.pdf>

Goffredo, Theresa. “Smartphone tour guides now available for four historical sites in

county,” HeraldNet.com, 25 Jun. 2011. Web. 13 Nov. 2013. <

http://www.heraldnet.com/article/20110625/LIVING/706259977>

Grobart, Sam. “Multimedia tour guides on your smartphone,” The New York Times, 16

Mar. 2011. Web. 13 Nov. 2013. <

http://www.nytimes.com/2011/03/17/arts/design/apps-give-museum-visitors-

multimedia-access.html?_r=1&>

Handy, Grace. “What Language Should you Build your app with?” Mashable.com, 11

Jul. 2012. Web. 4 Nov. 2013. <http://mashable.com/2012/07/11/language-app/>

“Illumination Software Creator”. Wikipedia: The Free Encyclopedia. Wikimedia

Foundation, Inc., 12 Aug. 2013. Web. 4 Nov. 2013.

<http://en.wikipedia.org/wiki/Illumination_Software_Creator>

Klosowski, Thorin. “Hopscotch HD Introduces Kids to Programming,” Lifehacker.com,

19 Apr. 2013. Web. 4 Nov. 2013. <http://lifehacker.com/hopscotch-hd-introduces-

kids-to-programming-476419325>

Lunduke, Bryan. “Illumination Software Creator 6.0,” [Bryan]lunduke.com, 6 Jun. 2012.

Web. 4 Nov. 2013. <http://lunduke.com/illumination-software-creator/>

http://njch.org/wp-content/uploads/2013/05/Kevin-Dooley_OnCell.pdf
http://www.heraldnet.com/article/20110625/LIVING/706259977
http://www.nytimes.com/2011/03/17/arts/design/apps-give-museum-visitors-multimedia-access.html?_r=1&
http://www.nytimes.com/2011/03/17/arts/design/apps-give-museum-visitors-multimedia-access.html?_r=1&
http://mashable.com/2012/07/11/language-app/
http://en.wikipedia.org/wiki/Illumination_Software_Creator
http://lifehacker.com/hopscotch-hd-introduces-kids-to-programming-476419325
http://lifehacker.com/hopscotch-hd-introduces-kids-to-programming-476419325
http://lunduke.com/illumination-software-creator/

 42

Magan, Mike. Smartphone serves as your virtual Kokomo guide. Indiana Insider Blog, 7

Feb. 2013.

Menzel, J., Michael Königs, and Leif Kobbelt. "A framework for vision-based mobile

AR applications." Proceedings of the Workshop on Mobile Vision and HCI

(MobiVis). Held in Conjunction with Mobile HCI. 2012.

Pence, Harry E. "Smartphones, smart objects, and augmented reality." The Reference

Librarian 52.1-2 (2010): 136-145.

“TouchDevelop: FAQ,” Microsoft Research. Web. 4 Nov. 2013.

<https://www.touchdevelop.com/docs/faq>

“Visual programming language,” Wikipedia: The Free Encyclopedia. Wikimedia

Foundation, Inc., 6 Nov. 2013. Web. 4 Nov. 2013.

<http://en.wikipedia.org/w/index.php?title=Visual_programming_language&action=h

istory>

https://www.touchdevelop.com/docs/faq
http://en.wikipedia.org/w/index.php?title=Visual_programming_language&action=history
http://en.wikipedia.org/w/index.php?title=Visual_programming_language&action=history

 43

NOTES

1. A list of visual programming languages can be found at

http://en.wikipedia.org/w/index.php?title=Visual_programming_language&action

=history

http://en.wikipedia.org/w/index.php?title=Visual_programming_language&action=history
http://en.wikipedia.org/w/index.php?title=Visual_programming_language&action=history

 44

APPENDIX

Examples of tours:

Original tutorial for the campus tour, basis of this project:

http://turing.cs.trincoll.edu/~ram/cpsc110/tutorials/mylocation2/

Campus tour without images: https://sites.google.com/site/donnyhuntsportfolio/creative-

projects/creative-project-3

Trinity campus tour without images, basic:

http://notes.hfoss.org/index.php/AppInventor:Trinity_Tour_App

Tutorials Consulted/Code used or modified:

Swipe images function: http://puravidaapps.com/snippets.php#flung

How to add and remove list items: https://lh6.googleusercontent.com/-

ex5le03D7xU/UTIQvjWV_2I/AAAAAAAAG3E/MTqSNsLmUn4/s1600/Capture.PNG

Original campus tour code, modified for project:

http://turing.cs.trincoll.edu/~ram/cpsc110/tutorials/mylocation2/

How to obtain GPS coordinates: http://appinventor.mit.edu/explore/content/android-

wheres-my-car.html

http://turing.cs.trincoll.edu/~ram/cpsc110/tutorials/mylocation2/
https://sites.google.com/site/donnyhuntsportfolio/creative-projects/creative-project-3
https://sites.google.com/site/donnyhuntsportfolio/creative-projects/creative-project-3
http://notes.hfoss.org/index.php/AppInventor:Trinity_Tour_App
http://puravidaapps.com/snippets.php#flung
https://lh6.googleusercontent.com/-ex5le03D7xU/UTIQvjWV_2I/AAAAAAAAG3E/MTqSNsLmUn4/s1600/Capture.PNG
https://lh6.googleusercontent.com/-ex5le03D7xU/UTIQvjWV_2I/AAAAAAAAG3E/MTqSNsLmUn4/s1600/Capture.PNG
http://turing.cs.trincoll.edu/~ram/cpsc110/tutorials/mylocation2/
http://appinventor.mit.edu/explore/content/android-wheres-my-car.html
http://appinventor.mit.edu/explore/content/android-wheres-my-car.html

