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PREFACE 

The master’s paper research reported on in this document was conducted during 

the spring 2011 semester.  A flaw in the document training for Kea++ was detected on 

April 3, a day before the final copy was due for submission, and as final edits were being 

made.  It was determined that the training of HIVE via the 50 documents, as reported on 

in this paper, does not appear to have been fully processed.  Given practical research 

constraints, the overall purpose of the master’s paper, and the due date of April 4, my 

master’s paper is being submitted with this noted flaw.  This decision is supported by my 

advisor, Professor Jane Greenberg, noting that I fulfilled the requirements of the master’s 

paper.  It is my hope that I will be able to re-run the evaluation with the correct training, 

to more accurately assess the difference between regular HIVE and Smart HIVE.  New 

results will be appended to this master’s paper, or uploaded with the offprint for this work 

in the UNC repository. 

INTRODUCTION             

The digital age is having a profound effect on scientific research. Networked, 

collaborative, data-driven science has led to new ways of doing and communicating 

science (Wright, Sumner, Moore, & Koch, 2007). Data used to be collected, analyzed, 

published in research articles and then essentially forgotten. Data now takes a more 

central role as a valuable, citable, scholarly work whose life can be extended by re-use 

(Davis & Vickery, 2007). By encouraging the preservation and sharing of data sets, data 

can be available for verification, further analysis, or completely new research
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opportunities within and across disciplines. Data that is archived in an appropriate public 

repository or data center will be preserved in a usable form for future use.   

An excellent example of a public, international data repository is Dryad.  Dryad 

was specifically developed for the preservation, discovery, and sharing of data underlying 

published research articles in the field of evolutionary biology and ecology 

(http://datadryad.org/) and has recently broadened to include data in the basic and applied 

biosciences.  The repository was launched as the result of collaboration between the 

National Evolutionary Synthesis Center (NESCent) and the University of North Carolina 

Metadata Research Center, in coordination with a core group of societies and journals 

including The American Naturalist, Evolution, the Journal of Evolutionary Biology, 

Molecular Ecology, and Heredity.  Starting in January 2011, authors publishing in these 

journals are required to deposit their data in an appropriate public repository such as 

Dryad upon publication of the research article (Rieseberg, Vines, & Kane, 2010; 

Whitlock, McPeek, Rausher, Rieseberg, & Moore, 2010). An important goal for Dryad is 

that the data submission process be easy, user-friendly, and place minimal burden on the 

author.  To support this, Dryad partner journals provide Dryad with bibliographic 

information for each article (Vision, 2010). This bibliographic data in turn provides 

source metadata for each Dryad data package which can include one or more data files 

(Greenberg, 2009). 

Another goal of Dryad is to allow end-users to perform specific searches of data 

by not only publication, but also by taxon, geography, geological age, biological concept, 

etc. Currently, the author-assigned keywords for the published article are used as subject 

metadata to describe the content of the data files. The Dryad curator will often enrich the 

http://datadryad.org/
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metadata by adding taxon name keywords. To further enhance data discoverability and 

reusability, keywords from controlled vocabularies will be added to the metadata records 

(Vision, 2010).  Unfortunately, there is no one controlled vocabulary that will cover the 

wide range of interdisciplinary topics that represent research content in Dryad.  In 

addition, controlled vocabularies have serious cost, interoperability, and usability 

constraints (HIVE, 2008).  This in turn was the motivation for the creation of HIVE, or 

Helping Interdisciplinary Vocabulary Engineering.  

HIVE is an automatic metadata generation approach that uses the Simple 

Knowledge Organization System (SKOS) to dynamically integrate discipline-specific 

controlled vocabularies.  Dryad is considering utilizing HIVE to help support both 

authors and the repository curator in assigning subject metadata to the datasets.  

Candidate keywords extracted from document abstracts and potentially, the full-text of a 

document will be mapped to existing SKOS-encoded, discipline-specific controlled 

vocabularies resulting in a list of potential keywords that the author and/or Dryad curator 

can use to better represent the data set(s).  In addition, HIVE can use machine learning 

techniques to be ―trained‖ to better understand concept relationships.  The integration of 

machine learning into HIVE is referred to as SmartHIVE. 

Two early studies have provided some initial insight into HIVE system.   Sherman 

(2010) demonstrated that the machine learning underlying HIVE produced higher quality 

results than basic term matching techniques used in NCBO’s Bioportal and thus may 

potentially improve the quality of automatic indexing by HIVE.  In addition, the 

standalone HIVE vocabulary server has been evaluated by a pilot usability testing study.  

Huang (2010) investigated what information professionals and scientists thought about 
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the pilot HIVE.  Evaluative studies assessing the performance of HIVE within Dryad in 

automatically indexing data sets have yet to be conducted.  Therefore, the research 

problem I will be addressing in this study is: To what extent can HIVE be used to 

generate controlled vocabulary terms that effectively describe the content of Dryad 

datasets? 

To begin to approach this research problem, this study seeks to provide insight 

into three research questions:  

Question one: How effective is HIVE for automatically generating controlled vocabulary 

terms from full-text articles?  

Question two: How effective are HIVE-generated controlled vocabulary terms in 

describing the content of Dryad dataset(s)? 

 Question three: To what extent will training HIVE in a specific sub-discipline of 

evolutionary biology/ecology increase its ability to generate controlled vocabulary terms 

for that specific topic? 

 The literature review that follows intends to review current knowledge of the 

automatic indexing techniques utilized by HIVE for use in the Dryad digital data 

repository and is organized as follows. First, I will begin with a discussion about the 

metadata behind scientific datasets such as those in Dryad with an emphasis on subject 

descriptors. After reviewing the differences between keywords and subject descriptors, 

the main body of the review focuses on the automatic keyword generation techniques 

(KEA and KEA++) that power HIVE. Of particular importance for this study will be the 

ability of KEA++ to allow for sub-domain specific improvement in performance through 

training. Dryad’s need for multiple vocabularies is then discussed. The review ends by 
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determining how the literature has assessed the quality of automatically-generated 

keywords. 

LITERATURE REVIEW 

Science Repository Datasets, Metadata, and Indexing 

 Data stored in scientific repositories can only be utilized if users can find and 

retrieve it. Quality descriptive metadata are essential for this process with subject 

metadata being particularly important for discovery and access. The gold standard for 

subject indexing is generally observed as the manual assignment of terms from a 

controlled vocabulary by an information professional. However, human generation of 

metadata is costly in terms of both money and time (Greenberg et. al., 2002).  Data 

repositories generally require the author to submit supplemental information about the 

datasets (metadata) upon deposition thus contributing to metadata creation. Because all 

datasets submitted to Dryad are linked to published journal articles, the bibliographic 

information provided by the journal is automatically captured and utilized as source 

metadata for each Dryad data package (Greenberg, 2009). This process of automatic 

metadata creation supports Dryad’s goal to make the data submission process as easy, 

user-friendly, and as burden-free as possible (http://datadryad.org/factSheet).  So for 

example, author metadata is automatically applied to the author field for the data object 

metadata records. Likewise, the keywords assigned by the author for the article are used 

as the subject terms in Dryads metadata scheme.   

 Whereas automatic metadata propagation is obviously useful and saves time, how 

do we know that a metadata record for a published research article can legitimately serve 

as a metadata source for the data object(s)? Though this question has not been empirically 

http://datadryad.org/factSheet


8 

 

 

 

addressed, Greenberg (2009) effectively makes the case that a metadata record for a 

published research article can serve as a source of metadata for data objects represented 

in the article based on the logic that published research is in effect an artifact generated 

by the data.  

Does this logic hold true for author-assigned keywords which are used as subject 

descriptors for Dryad datasets? Is the content of data packages within Dryad accurately 

described by subject keywords assigned by the authors to represent the intellectual 

content of the research article?  Based on the premise argued by Greenberg that published 

research (the output) is closely linked to its underlying data (the input), one can agree to 

this logic. One might consider however, the possibility of improving the metadata record 

by adding additional keywords from controlled vocabularies.   

Keywords versus Subject Descriptors  

Keywords (often called keyphrases) are used to provide a concise description of 

an information resource such as a document, image, or in Dryad’s case, a dataset. 

Whereas keywords are often free-text, natural-language terms drawn from the document 

and assigned by the author, descriptors are terms that are drawn from a controlled 

vocabulary and typically assigned by an indexer. The debate concerning the effectiveness 

and usefulness of both controlled and natural indexing languages began in the 1960’s 

with the Cranfield experiments evaluating 1) the performance of various indexing 

languages in retrieval and 2) the effectiveness of vocabulary control (Cleverdon, 1968; 

Cleverdon & Mills, 1963; and Cleverdon, Mills, & Keen, 1966). These studies suggested 

that under certain circumstances, natural language systems can perform as well as or 
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better than controlled vocabulary systems.  Over time, many follow-up studies 

corroborated these views (Rowley, 1994) though in the 1970’s, Carrow and Nugent 

(1977) first proposed the idea of complementarity; that the two approaches were 

complementary and that optimal performance would be obtained by using both methods.    

More recently, studies in the literature have compared documents assigned 

descriptors by indexers with documents assigned keywords by authors. One study by Gil-

Leiva and Alonso-Arroya (2007) found that nearly 25% of keywords matched exactly 

with descriptors and an additional 21% of keywords either partially matched or were a 

variant form of the descriptor. The authors suggested that both human indexers and 

automatic indexing programs could be guided by author-assigned keywords. On the 

contrary, the fact that approximately 54% of the keywords did not match the descriptors 

suggested that keywords might be used as additional points of entry for users.  A similar 

finding was reported by Strader (2009) who looked at the overlap between author-

assigned keywords and cataloger-assigned Library of Congress Headings (LCSH) for a 

set of electronic theses and dissertations in an online catalog. The author goes on to say 

that the use of LCSH complements the use of author-assigned keywords by offering 

unique terms for discoverability.   

Automatic Indexing Techniques 

Likewise, Dryad plans to enhance the discoverability of its datasets by enriching 

the author-assigned keywords currently used as dataset subject descriptors with 

controlled vocabulary terms (Vision, 2010).   In general, the manual creation of subject 

metadata is cost-prohibitive and time consuming: to minimize a metadata bottleneck as 
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described by Liddy et al. (2002), Dryad’s metadata plan emphasizes the use of automated 

techniques as much as possible.  Automated indexing techniques have improved 

markedly over the years. The concept of automatic indexing goes back many decades. In 

fact, Lancaster (2003) discusses the first examples of automatic indexing based on word 

frequency published in the 1950’s (Baxendale, 1958; Luhn, 1957).  

Automatic Keyphrase Extraction versus Keyphrase Assignment 

There are two classic approaches to automatic indexing as explained in Lancaster 

(2003).  Automatic keyphrase extraction is based on extraction indexing where words or 

phrases in the text are extracted and used to represent the aboutness of the text. Extracted 

phrases are then chosen based on statistical algorithms that analyze the properties of the 

candidate’s keyphrases such as frequency of occurrence and length. Keyphrase extraction 

can be criticized because it often generates terms that are non-sensical or inappropriate.  

In contrast, keyphrase assignment (also known index term assignment) is based 

on the same premise as human indexing: terms are selected from a controlled vocabulary.  

While this approach provides more consistency than keyphrase extraction, it also requires 

a large set of training documents that have been manually indexed in order to provide 

positive and negative examples (Medelyan & Witten, 2008).  This type of inductive 

learning scheme is known as machine-learning and is used to build rules that can predict 

the classification of new documents.  The literature is replete with various algorithms that 

incorporate various statistical and machine learning techniques to both term assignment 

and keyphrase extraction approaches.  Because Dryad’s automatic metadata extractor 
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utilizes the KEA++ algorithm, this literature review will focus on the main studies 

describing its use and performance.  

KEA  

The original KEA algorithm was published by Frank, Paynter, Witten, Gutwin, 

and Nevill-Manning in 1999.  The KEA algorithm automatically extracts keyphrases 

from text by choosing candidate keyphrases using lexical methods, determining values 

for each candidate’s features, and then predicting which candidates are ―good‖ key 

phrases using a machine-learning algorithm (Witten, Paynter, & Frank, 1999). Training 

involves a set of training documents that must include the author’s keyphrases or 

manually-assigned descriptors so numerical values can be assigned to calculated features 

that are either positive (―is a keyphrase‖) or negative (―is not a keyphrase‖).  This model 

built during training is then applied to new ―test‖ documents.  

Witten et al. (1999) assessed the quality of KEA-extracted keyphrases and found 

that one to two of KEA-assigned keyphrases matched the five author-assigned 

keyphrases. A later study by Jones and Paynter (2002) further evaluated KEA using 

human phrase assessment.  Twenty–eight subjects were given a technical document to 

read and asked to rate the suitability of approximately 60 candidate phrases to represent 

the document. Overall, subjects found that the majority (80%) of KEA-generated 

keyphrases were viewed positively and considered relevant to the document.  

KEA++  

Medelyan and Witten (2006) then improved upon the original KEA algorithm by 

creating KEA++ which enhanced the keyphrase extraction process by using a controlled 
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vocabulary.     KEA++ can utilize any controlled vocabulary (or thesaurus) that is 

encoded in the Simple Knowledge Organization System (SKOS).  SKOS is a semantic 

web language used for representing and applying controlled vocabularies such as 

thesauri, classifications schemes, subject headings, or taxonomies (Miles & Perez-

Aguera, 2007).  Candidates are identified and then matched against terms in the 

vocabulary.  Terms that are considered non-descriptors are replaced with the 

corresponding descriptor thus allowing terms that are not in the document to become 

generated keyphrases.  The final set of keyphrases are determined from this candidate list 

using machine-learning based on four term attributes including TFxIDF, position of the 

first appearance, length, and node degree (Medelyan & Witten, 2006). The machine-

learning model used to predict the best keyphrases is the same as used in the original 

KEA algorithm.  

 Medelyan and Witten (2008) evaluated KEA++ extensively on agricultural 

documents from the United Nations Food and Agriculture Organization which are 

manually indexed with terms from the Agrovoc thesaurus. The study used 780 randomly-

selected, full-text documents as both the training and evaluation corpus.  A separate 

corpus of 30 different documents was manually indexed by six professional indexers at 

FAO so that the consistency of KEA++ could be compared with the consistency of 

human indexers. Overall, the authors found that KEA++ (automatic controlled-

vocabulary indexing) outperformed KEA (automatic free-text indexing) and that most 

KEA++-assigned terms either matched or were similar to terms assigned by human 

indexers.  KEA++ indexing was approximately 30% consistent with human indexers 

compared with human indexers who were 39% consistent with each other.  KEA++ did 
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have problems assigning some keyphrases that were identified as relevant by human 

indexers but not by KEA++; these were terms that did not appear (or appear often) in the 

text.  

Subject Area of Training Documents 

There are two different aspects of KEA and KEA++ training that need to be 

addressed. The first is in reference to the subject area of the training documents. Frank et 

al. (1999) studied the extent to which models formed by KEA ―transfer‖ from one subject 

domain to another by training KEA on one collection of journals articles and then testing 

a different subject collection.  The authors concluded there was a ―trend‖ towards 

improved results when testing and training documents were from the same population 

(i.e., same domain); however, the differences were not statistically significant.  This 

result lead the authors to exploit the domain-specific information by including a new 

attribute into the machine learning algorithm: the keyphrase frequency.  This new 

attribute keeps track of the number of times an author-assigned keyphrase occurs in the 

training set. Results of the studies showed that utilizing domain-specific information 

increased the number of correctly extracted keyphrases. In addition, performance 

improved as more documents were included in the training set.  The authors suggest that 

the quality of KEA-generated keyphrases can be improved when domain-specific 

information is utilized.  

Second, the number of training sets required to produce quality keyphrases is of 

interest to catalogers wanting to utilize KEA++ as their automated indexing approach.   

Witten et al. (1999) found that performance of the original KEA (keyphrase extraction 
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with no controlled vocabulary) did not improve after the training set reached 50 

documents in contrast to the performance of KEA++ in which precision and recall 

increased when the training set increased from 50 to 100 documents and then leveled off 

(Medelyan & Witten, 2008).  Interestingly, when domain-specific information was 

incorporated into the machine-learning model as described by Witten et al. (1999) 

marked improvement was observed when the training corpus was increased from 100 to 

1000 documents.   

Dryad’s Controlled Vocabulary Requirements 

The previous studies provide evidence to support the idea that thesaurus-based 

automatic keyphrase indexing (KEA++) is superior in performance to free text keyphrase 

indexing (KEA). But what about documents whose discipline either does not have a 

controlled vocabulary, or is multi-disciplinary in nature and therefore would benefit from 

more than one controlled vocabulary? This is the difficulty encountered by the creators of 

the Dryad repository.  As previously mentioned, Dryad initially contained the underlying 

datasets of research published in the area of evolutionary biology and ecology [note: 

Dryad recently expanded to accept data from all the basic and applied biosciences].  This 

is a highly interdisciplinary field that integrates a vast range of different scientific fields 

including ecology, developmental biology, genetics, molecular biology, systematics, and 

paleontology.  

A team study reported by Greenberg (2009) determined which controlled 

vocabulary systems would best fit the needs of Dryad. The study evaluated a sample of 

approximately 600 author-assigned keywords obtained from 104 articles in Dryad’s 
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partner journals. Keywords were assigned to nine different facets including topic, 

research method, geographic location, taxon, personal name, agency name, anatomical 

aspect, discipline, and habitat. Terms in each facet were then mapped to terms in 

appropriate controlled vocabularies and ontological sources (e.g., Education Resources 

Information Center (ERIC) Thesaurus, National Biological Information Infrastructure’s 

Biocomplexity Thesaurus (NBII Thesaurus), Medical Subject Headings (MeSH), Library 

of Congress Subject Headings (LCSH), Getty Thesaurus of Geographic Names (TGN), 

Gene Ontology (GO), Integrated Taxonomic Information System (ITIS) are examples).  

Matches were categorized as either ―exact‖ meaning that the keyword exactly matched to 

either the preferred or non-preferred term OR as a ―partial and non-match‖ meaning the 

author-assigned keyword either partially matched the preferred or non-preferred term or 

did not match any term. Overall, 22% of the keywords mapped exactly to the NBII 

Thesaurus; 23% mapped to MeSH; and 33% mapped to LCSH.  These results indicate 

that a single controlled vocabulary will not sufficiently represent the range of concepts 

present in a Dryad dataset and that instead multiple vocabularies could provide better 

representation.   

Evaluating Automatically-generated Keyphrase Quality 

The final section of the literature review will focus on the various techniques used 

to evaluate performance of automatic indexing algorithms.  Two basic methods for 

evaluating automatically generated keyphrases are apparent in the literature.  The first 

approach utilizes precision and recall to determine how well either extracted or generated 

keyphrases match a set of ―relevant‖ phrases.  The second approach uses human 
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evaluation to rate extracted or generated keyphrases.  Both methods have their 

advantages and disadvantages.   

The majority of studies reviewed evaluated the quality of keyphrases generated by 

automatic indexing algorithms by calculating precision and recall (e.g., Frank et al., 

1999; Jones & Paynter, 2002; Medelyan & Witten, 2008; Witten et al., 1999).  This 

approach compares the algorithm-generated phrases with a set of ―relevant‖ phrases (e.g., 

author-assigned keywords). The precision of a set of automatically-generated phrases is 

usually defined as the proportion of the set that match the author-assigned keywords 

whereas recall is the proportion of the total number of author-assigned keywords that 

appear in the set of automatically-generated keywords (Jones & Paynter, 2002). A 

potential problem with this method arises if the documents being tested do not have 

author-assigned keywords.  In addition, Jones and Paynter (2002) questioned whether 

author-assigned keyphrases were an acceptable standard against which to measure 

performance.  Their results suggest that authors do provide quality keyphrases and that 

keyphrases are an acceptable standard in which to compare automatically-generated 

descriptors against.   

Many studies have also determined phrase quality using human assessment 

(Barker & Cornacchia, 2000; Jones & Paynter, 2002; Tolle & Chen, 2000).  Usually, 

subjects are given a document to read and a phrase list comprised of automatically 

generated keyphrases. Subjects then rate the relevance of individual phrases (or phrase 

sets) to the document. In addition, Jones and Paynter (2002) demonstrated how precision 

and recall metrics can be applied to subjective evaluation. Based on a method used by 

Tolle and Chen (2000), Jones and Paynter used subject precision (SP) and subject recall 
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(SR) to determine the proportion of extracted phrases chosen as relevant by a rater.  In 

this way, one does not have to have the set of ―relevant‖ keyword phrases identified 

beforehand. Instead, relevance is a subjective factor determined by the users in the 

experiment.  

Of course, the main disadvantage of using humans to evaluate keyphrases is the 

subjectivity of the assessment; this can lead to inconsistent scores between raters. On the 

other hand, gaining people’s actual opinion of generated-keywords may provide a more 

true-to-life assessment of keyword quality.  It is important to note that it may be possible 

to reduce inter-assessor inconsistency by using human raters whose domain knowledge 

matches that of the documents being tested (Jones & Paynter, 2002; Tolle & Chen, 2000).   

Summary 

 Data sets deposited in digital data repositories such as Dryad require rich 

metadata to ensure data accessibility and usability.  Neither data creators nor data 

curators have the time to manually assign subject metadata to datasets and therefore the 

utilization of automatic metadata generation techniques such as automatic keyphrase 

indexing is required.  The literature reveals a long history of automatic keyphrase 

indexing techniques that are continually improving. KEA++’s new approach to 

thesaurus-based indexing using machine learning combines the best attributes of both 

keyphrase indexing and keyphrase assignment techniques.  HIVE uses KEA++ and thus 

can utilize any thesaurus that is SKOS-encoded. This is most beneficial to the Dryad 

repository which due to its interdisciplinary nature requires multiple controlled 

vocabularies to sufficiently represent those concepts found in Dryad datasets.  Therefore, 
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HIVE is potentially a very useful automatic metadata generation tool to the Dryad data 

repository but one that needs to be tested. In addition, the literature reveals conflicting 

evidence to whether or not domain-specific training sets will improve performance of 

KEA++.  Thus, the purpose of this research paper is to begin to answer the following 

questions: 

Question one: How effective is HIVE for automatically generating controlled vocabulary 

terms from full-text articles?  

Question two: How effective are HIVE-generated controlled vocabulary terms in 

describing the content of Dryad dataset(s)? 

Question three: To what extent will training HIVE in a specific sub-discipline of 

evolutionary biology/ecology increase its ability to generate controlled vocabulary terms 

for that specific topic? 

METHODS 

 A quasi-experiment, supported by human evaluation, was used to answer the 

questions posited above. This study is divided into two parts. The first part seeks to 

determine if HIVE can be ―trained‖ in a specific sub-domain of ecology/evolutionary 

biology using machine-learning techniques.  Performance of this trained HIVE (or 

SmartHIVE) will be based on the modified recall and precision metrics previously 

described in the literature review (Frank et al., 1999; Jones & Paynter, 2002; Medelyan & 

Witten, 2008; Witten et al., 1999).  The second part of the study seeks to determine how 

domain experts in ecology and/or evolutionary biology rate the ability of HIVE-generated 

subject descriptors to describe both the journal article and its underlying data.  Ideally, 

both HIVE and SmartHIVE would have been evaluated by domain experts; however, in 
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order to assess evaluator’s opinions of the relevancy of HIVE-generated keywords to 

both the article and the underlying data set within the small scale of a master’s paper, I 

chose to look at only the SmartHIVE-generated keywords.   

RESEARCH DESIGN 

Conversion of MeSH to SKOS 

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary used for the 

indexing of journals in MEDLINE and is maintained by the National Library of 

Medicine. The MeSH thesaurus contains over 26,000 subject descriptors. An XML 

version of the MeSH vocabulary was converted to SKOS RDF/XML for indexing in 

HIVE because an official MeSH SKOS is not currently available. For more information 

on the conversion of the MeSH vocabulary to SKOS, please refer to the HIVE wiki 

(http://code.google.com/p/hive-mrc/wiki/MeshToSKOS).  

HIVE’s Keyphrase Indexing Algorithm 

 As previously mentioned, the HIVE Automatic Concept Indexer relies on SKOS-

encoded vocabularies and KEA++ machine learning to automatically generate subject 

metadata.  KEA++ works in two stages:  candidate identification and keyphrase selection 

(Medelyan & Witten, 2008). In the first stage, candidate terms and phrases are extracted 

from the full-text document and matched against terms in the SKOS-encoded 

vocabularies.  Candidate terms that are non-descriptors in the controlled vocabulary are 

replaced by their corresponding descriptors. The second phase uses a model to identify 

the most significant terms based on certain features of the terms. This model has to be 

http://code.google.com/p/hive-mrc/wiki/MeshToSKOS
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first learned by KEA++ through training data which can be defined as manually indexed 

full-text documents. For each training document, four different features are calculated:  

 Term frequency X inverse document frequency weight (TFxIDF) which 

assesses how specific a phrase is to a document by comparing the frequency of 

the phrase in the document with the frequency of that phrase in the training set 

(Salton & MacGill, 1983).  

 Position of the first occurrence of a keyphrase determines the proportion of the 

document that precedes the phrase’s first appearance; terms that have very low or 

very high values are more likely to be index terms because they are positioned in 

the beginning (i.e., title, abstract,  or introduction) or end of an article (i.e., 

conclusion).  

 Length of candidate phrase (# of words) allows the algorithm to choose best 

phrase length. 

 Node degree reflects how many links exist between the candidate keyphrase and 

terms in the thesaurus, between the keyphrases and other candidate phrases, or as 

a ratio of the two.   

Using the manually assigned index terms as a positive example, each candidate phrase is 

identified as an index term or not an index term. Based on the calculated feature values 

for each of these positive and negative examples, KEA++ creates a model that can then 

be applied to candidate keyphrases extracted from new documents. Candidate phrases 

from new documents are identified, feature values calculated, and overall probability for 

being an index term determined.  



21 

 

 

 

Training Documents 

 The first goal of this study was to determine if HIVE’s automatic indexing ability 

could be improved by training in a specific sub-domain using the machine learning 

methods just described. The basic HIVE indexing algorithm used in this study is one 

based on KEA++ which is ―pre-trained‖ on the AGROVOC training set as described in 

Medelyan and Whitten, 2008.  As previously mentioned, to build a model for HIVE using 

KEA++, documents in the training set must have been manually indexed, preferentially 

with the controlled vocabularies that will be utilized during automatic indexing (NBII, 

MeSH, and LCSH). In this study, I chose to train HIVE using articles indexed with 

MeSH because the majority of data archived in Dryad were published in journals indexed 

by MEDLINE thus providing a convenient source of training documents.  

 To build a sub-domain-specific model for HIVE, a training set of 50 articles 

indexed in MEDLINE related to reproduction within the field of ecology and 

evolutionary biology were selected. Articles were identified in PubMed using the 

following MeSH [mh] descriptors as search terms: reproduction, ―mating preference, 

general‖, ―sexual behavior, animal‖, ―maternal behavior‖, ―paternal behavior‖, courtship, 

fertilization, and pregnancy in conjunction with Boolean AND (biological evolution [mh] 

OR ecology [mh]).  To build the keyphrase extraction model, KEA was provided with 

training documents (full-text documents in a .txt format) accompanied by the ―key‖ files 

(text files with containing manually assigned MeSH terms in which subheadings and the 

main descriptor indicators [*] were removed).  The Apache Tika toolkit was used to 

convert PDFs to text. For detailed information relating to the training of KEA++, please 

refer to the HIVE wiki (http://code.google.com/p/hive-mrc/wiki/TrainingKEA).  The 

http://code.google.com/p/hive-mrc/wiki/TrainingKEA
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―training‖ of KEA was performed by Craig Willis, research assistant for the Metadata 

Research Center. 

Test Documents 

 To test the ability of the HIVE Automatic Concept Indexer to create subject 

metadata for the Dryad data repository, a test set of eighteen domain-specific articles 

retrieved from Dryad relating to reproduction were purposely selected. Articles were 

obtained by searching the Dryad repository using the following search string: 

reproduction OR reproductive OR breeding OR mate OR mating OR courtship OR 

pregnancy OR fertility OR fecundity OR monogamy OR polyandry OR hermaphrodit*.  

Articles and datasets were limited to studies using animals. In addition, articles must have 

been indexed in MEDLINE.   

 A control set of eight domain-neutral articles was also created in order to 

determine if improvement in automatic subject indexing was limited to the domain in 

which HIVE was trained. To obtain a random selection of domain-neutral test articles, 

data packages in Dryad (as identified by their unique DOIs) were consecutively labeled 

1- 367. A random sequence of numbers (from 1-367) was generated using a random 

number generator at http://www.random.org/ and the first eight Dryad data sets that were 

indexed in MEDLINE were selected.  

Automatic Subject Metadata Generation 

 Selected documents were converted from PDF to text using the Apache Tika 

toolkit.  The eight domain-neutral and eighteen domain-specific documents were run 

http://www.random.org/
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through both the standard HIVE (untrained) and ―SmartHIVE‖ (trained).  Generated 

output was obtained for evaluation.  

Evaluation of HIVE versus SmartHIVE 

 As previously discussed in the literature review, the majority of studies evaluating 

the quality of automatically generated keyphrases calculated a version of precision and 

recall. This approach compares automatically generated keyphrases with a set of 

―relevant‖ keyphrases, often author-assigned keywords.  In this study, the MeSH 

descriptors assigned by the professional indexers at the National Library of Medicine are 

the ―relevant‖ keywords.  To determine precision and recall, the number of ―correct‖ or 

identically matching MeSH terms between the automatically generated HIVE subject 

descriptors and those assigned the article in MEDLINE was calculated.  

 Precision was determined using the formula: # of matching MeSH terms (i.e., # 

of ―correct‖ HIVE generated terms)/ # of generated HIVE terms.  

 Recall was determined using the formula: # of matching MeSH terms (i.e., # of 

―correct‖ HIVE generated terms)/the # of manually assigned MeSH terms.  

Excel was used to determine the mean number of matching (or ―correct‖) SmartHIVE-

generated terms, precision, and recall.  The standard error of the mean (SEM) was 

calculated by dividing the standard deviation by the square root of the sample size (n). 

Means were compared using an unpaired T test with Excel.  

Domain Expert Evaluation of SmartHIVE-generated Subject Descriptors 

The quality of SmartHIVE-generated subject descriptors was further evaluated 

using human assessment. Six evaluators were recruited from the biology departments at 
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the University of North Carolina at Chapel Hill and Duke University in Durham, NC and 

NESCent (National Evolutionary Synthesis Center), a nonprofit science center in 

Durham, NC dedicated to cross-disciplinary research in evolution.  The evaluators were 

graduate students in the fields of ecology and evolutionary biology (with a special 

emphasis on reproductive biology) because inter-evaluator inconsistency has been 

reported to be reduced by using human raters whose domain knowledge matches that of 

the documents being tested (Jones & Paynter, 2002; Tolle & Chen, 2000). Evaluators 

were each provided a $100.00 honorarium upon completion of the work.   

Human Assessment Procedure  

 The human evaluation portion of this research study is based on the work of Jones 

and Paynter (2002) and Tolle and Chen (2000).   Each of the 6 participants evaluated the 

automatically-generated subject keywords from nine different Dryad data packages 

which were randomly assigned.   After students agreed to participate as evaluators, they 

were sent an email that contained a brief introduction, nine PDFs, and an Excel 

spreadsheet containing the study description and rationale, detailed instructions for 

completing the evaluations, and nine worksheets, one for each article/data package. Each 

worksheet contained the article title, the name of the file containing the article PDF, the 

link to the Dryad data package, and two identical lists of the twenty SmartHIVE-

generated keywords. Each evaluator was instructed to read/scan the article and the 

dataset(s) and then rate each of the twenty SmartHIVE-generated keywords for their 

relevancy to both the article AND the data set(s). They could choose between the 

following choices: relevant, partially-relevant, and not relevant.   Space was also 



25 

 

 

 

provided for evaluators to write in comments on each keyword.  Evaluators were 

provided with the following definitions to guide the rating process:  

 Relevant phrases best ―represent‖ the topic covered in document or data set. 

 Partially-relevant phrases somewhat ―represent‖ the topic covered in the 

document or data set and can be considered related to the topic.  

 Phrases that are not relevant are not considered ―representative‖ of the document 

or data set topic.   

The set of SmartHIVE-generated descriptors for each of the eighteen domain specific 

article/data packages was evaluated by three different people.  

Evaluation of SmartHIVE-generated Keywords by Domain Experts 

This study sought to determine how scientists rate the relevance of HIVE-

generated subject keyphrases to both the original full-text article and to its underlying 

data sets.  The set of eighteen domain-specific articles was run through SmartHIVE and 

the output collected. Evaluators rated each of the twenty keywords as relevant, partially-

relevant, and non-relevant to both the full-text article and to its associated data set(s).  

The number of relevant, partially-relevant, and non-relevant keywords was tabulated and 

the means for each paper (n=3) calculated. The mean number ±standard error of the mean 

(standard deviation/square root of n) of relevant, partially-relevant, and non-relevant 

keywords for both the article and the data set(s) were calculated using Excel. Means were 

compared using an unpaired T test in Excel.  In addition, the mean number of manually-

assigned MeSH terms was identified for each category.  
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RESULTS 

Matching, Precision, and Recall 

Both the domain-specific (n=18) and domain-neutral (n=8) test sets were 

converted to text and run through both the minimally trained HIVE and the sub-domain 

trained SmartHIVE algorithms. Generated-output was limited to twenty keywords. This 

evaluation was designed to address the question of whether training HIVE in a sub-

domain improves its ability to assign subject descriptors to articles in that specific 

domain.  The first measurement of keyword quality was the extent to which HIVE 

produced the same subject descriptors as manually assigned by indexers at the National 

Library of Medicine (or number ―correct‖). For each article, HIVE-generated keywords 

were compared with manually assigned MeSH index terms. Table 1 summarizes the 

results and includes the number of HIVE keywords that match exactly manually assigned 

MeSH index terms.  Precision and recall are also included because previous evaluations 

of KEA, KEA++, and other keyphrase extraction tools have utilized these measures to 

determine performance.   

Overall, performance results were similar for keywords generated from domain-

specific articles and domain-neutral articles run through both minimally-trained HIVE 

and sub-domain trained SmartHIVE (Table 1). The mean number of correctly identified 

MeSH terms produced by HIVE and SmartHIVE was not statistically different for 

domain-specific test documents (3.6±.40 vs. 3.0±.40, respectively; p=.33) or domain-

neutral test documents (3.4±1.3 vs. 3.3±1.2, respectively; p=.84).  Likewise, Table 1 

shows that there was no statistical difference between mean precision and recall for 
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keywords generated by HIVE or SmartHIVE for domain-specific documents or domain-

neutral documents.  

Table 1: Performance of HIVE versus SmartHIVE 

 

 # Exactly 

Matching 

MeSH Terms 

±SEM 

Precision (%) Recall (%) 

Domain specific test set: 

n=18 

   

HIVE (untrained) 3.6±.40 17.8 31.2 

SmartHIVE (domain-

trained) 

3.0±.40 15.0 25.8 

p= .33 .33 .18 

Domain neutral test set: 

n=8  

   

HIVE (untrained) 3.4±.45 16.9 28.6 

SmartHIVE (trained) 3.3±.41 16.3 27.9 

p= .84 .84 .86 

 

Table 1 strictly reports whether or not HIVE-generated terms match exactly manually 

assigned MeSH index terms.  In some instances, there were HIVE-generated terms that 

were very close to those assigned by indexers but were not exact. For example, the 

HIVE-generated keyword ―Photoreceptor Cells‖ is very close to the assigned 

―Photoreceptor Cells, invertebrate‖. Another common example is that the indexers 

assigned the descriptor ―Animals‖ and HIVE would assign the more specific ―Insects‖.  

To account for these semantically related terms, Table 2 reports the number and 

percentages of exact matches, terms that are non-matching but similar within the 

immediate hierarchy including broader, narrower, or related, and terms that are unrelated.  

 The percentages of exact matches between HIVE and SmartHIVE were similar 

for both domain-specific and domain-neutral test sets (18% vs. 15%) and (17% and 
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16%), respectively. Overall, HIVE and SmartHIVE do a rather poor job selecting 

keywords that correctly match the terms assigned by indexers. When terms that are 

similar but not perfectly matched are factored in, the percentage of agreement between 

HIVE and human indexers increased to 20%-22% of generated terms. Still, between 

78%-80% of HIVE-generated terms are of no relation to MeSH terms manually assigned 

by humans.  

Table 2: Distribution of exact matches, similar, and unrelated terms. 

 

 Total terms Exact 

match 

Similar 

within the 

immediate 

hierarchy 

(broader, 

narrower, 

related) 

Unrelated 

Domain specific test set:     

HIVE (untrained) 360 64 (18%) 15 (4%) 281 (78%) 

SmartHIVE (domain-

trained) 

360 54 (15%) 17 (5%) 289 (80%) 

Domain neutral test set:      

HIVE (untrained) 160 27 (17%) 7 (4%) 126 (79%) 

SmartHIVE (trained) 160 26 (16%) 10 (6%) 124 (78%) 

Subject Evaluation of SmartHIVE 

The eighteen domain-specific articles were run through SmartHIVE (HIVE 

trained on articles indexed with MeSH that were related to reproduction) and output 

collected. Evaluators rated nine sets of SmartHIVE-generated keywords (twenty 

keywords/set) resulting in each of the eighteen articles being evaluated three times. The 

mean number of relevant, partially-relevant, and non-relevant keywords was calculated 

for each set of SmartHIVE-generated keywords. Figure 1 shows the mean number of 

―relevant‖ keywords for each of the eighteen articles and underlying datasets.  It is 
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obvious that there was wide variation in the ability of SmartHIVE to generate keywords 

viewed as relevant by human evaluators. The mean number of ―relevant‖ keywords per 

article ranged from 1.3 – 7.7 and 0.3 – 6.7 per data set. In general, the trend was for 

evaluators to assign more keywords as ―relevant‖ in reference to the article than for data 

sets however this was not always the case. 

Figure 1. Number of relevant keywords for articles vs. data set(s).  

 

 

Figure 2 shows the number of ―partially-relevant‖ keywords for articles versus 

data sets as assessed by study participants. A similar amount of variation was observed 

for keywords described as ―partially-relevant‖ by evaluators: the mean number of 

keywords rated as ―partially-relevant‖ in regards to their ability to describe the article 

ranged from 1.0-8.7 and 0.3-6.7 for data sets. As observed with keywords rated as 

―relevant‖, there were more keywords rated as ―partially-relevant‖ as applied to the 

article than as applied to the data sets. 

  



30 

 

 

 

Figure 2. Number of partially-relevant keywords for articles vs. data set(s). 

 

 

Table 3 presents the mean number of ―relevant‖ and ―partially-relevant‖ ratings 

assigned by evaluators to article and to data set(s). Evaluators rated an average of 4.0±.45 

keywords/document as relevant compared with 3.3±.41 keywords/data package and did 

not differ statistically (p=.25). Evaluators assigned significantly (p=.002) fewer keywords 

as ―partially-relevant‖ for data packages than compared with articles (1.9±.33 vs. 

3.8±.47, respectively).  Accordingly, significantly (p=.0008) more terms were considered 

―non-relevant‖ for data packages than compared with articles (14.7±1.0 vs. 11.2±.68). If 

one considers the ratings ―relevant‖ and ―partially-relevant‖ as useful keywords, then the 

combined subject precision is 39% for articles and 26% for data. Subject precision was 

calculated by dividing the # of keywords designated as ―relevant‖ by the subject by the 

total # of keywords generated. 
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Table 3.  Evaluator’s ratings of SmartHIVE-generated keywords: relevance to 

article and to data set(s). 

 

 Mean # of 

relevant 

keywords

±SEM 

Mean # of 

relevant 

keywords 

that were 

also 

manually-

assigned  

Mean # of 

partially-

relevant 

keywords

±SEM 

Mean # of 

partially-

relevant 

keywords 

that were 

also 

manually-

assigned 

Mean # of 

non-

relevant 

keywords

±SEM 

Mean # of 

non-

relevant 

keywords 

that were 

also 

manually-

assigned 

Relevant 

to 

Article 

4.0±.45 1.8 3.8±.47 0.7 11.2±.68 0.5 

Relevant 

to Data 

set(s) 

3.3±.41 1.5 1.9±.33 0.5 14.7±1.0 0.8 

 

It is also of interest to determine how many of the keywords deemed ―relevant‖ or 

―partially-relevant‖ by our evaluators were also assigned MeSH terms in MEDLINE. 

Table 3 shows that more keywords in the ―relevant‖ category were manually-assigned 

MeSH keywords than in either the ―partially-relevant‖ or ―non-relevant‖ categories.  

Specifically, for every 4 article-relevant keywords, 1.8 were also manually-assigned 

MeSH keywords. Likewise, for every 3.3 data-relevant keywords, 1.5 were manually-

assigned keywords. When counting the number of keywords that were also manually 

assigned MeSH descriptors, I only included exact matches, not semantically similar 

keywords such as broader, narrower, or related terms. 

  There are some instances when a manually-assigned MeSH term was viewed as 

―non-relevant‖ by the evaluators. This appeared to occur more often when applying 

keywords to data sets (occurred 21/54 times) compared with articles (occurred 6/54 

times). This may be due to the fact that only certain data sets are deposited in Dryad 

possibly representing only specific aspects of the article’s findings. Therefore, general 
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keywords that may apply to the article in general would not apply to a specific data set. In 

addition, some MeSH descriptors are just too broad to apply to datasets (e.g., Disorders 

of Sex Development).  

DISCUSSION   

The two main goals of this study were to determine: 

1. To what extent will training HIVE in a specific sub-discipline of evolutionary 

biology/ecology increase its ability to generate controlled vocabulary terms 

(specifically, MeSH) for that specific topic? 

2. HIVE’s effectiveness in automatically generating controlled vocabulary terms 

(specifically, MeSH) from full-text articles that can be used to describe the 

content of the article and that of its underlying data set(s) archived in Dryad. 

The results of the first part of this small study indicate that training HIVE in a specific 

sub-domain of ecology/evolutionary biology was unsuccessful in improving the 

automatic generation of keywords for articles in that sub-domain. Specifically, articles 

related to the topic of reproduction that were automatically indexed using the HIVE 

algorithm trained specifically on reproductive-related articles (SmartHIVE) performed no 

better than articles automatically indexed using the minimally-trained HIVE based on 

matching, precision, and recall.   Indeed, though not statistically significant, the trend was 

for HIVE to produce slightly more ―correct‖ keywords than SmartHIVE.  It is interesting 

to note the differences in keywords assigned by HIVE and SmartHIVE.  Table 4 

demonstrates the differences in keyword production in one example document. The most 

notable difference is that the HIVE algorithm produced five ―correct‖ keywords but only 

two remained in the keyword list generated by SmartHIVE.  In addition, note the various 
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keywords unique to each algorithm. Table 4 also provides an example of how training 

HIVE resulted in less total number of ―correct‖ keywords but also produced a unique 

keyword that was not assigned as an index term by MEDLINE that evaluators deemed as 

―relevant‖ to the data set. There appears to be no definitive positive or negative effect of 

training HIVE; for some articles indexing improved with SmartHIVE and for others, 

performance declined.  

Table 4.  An example of keyword sets assigned an article run through HIVE and 

SmartHIVE  

 

HIVE Keywords SmartHIVE Keywords Assigned MeSH Index Terms 

Seasons Salmonidae MH  - Animals 

Sexuality Individuation MH  - Bayes Theorem 

Trout Sex Characteristics MH  - Biological Evolution 

Salmon Mental Competency MH  - Body Size 

Ecology Oncorhynchus kisutch MH  - Female 

Probability Crassostrea MH  - Genotype 

Reproduction Trout MH  - Male 

Genotype Salmon MH  - Models, Statistical 

Rivers Seasons MH  - Norway 

Viverridae Elastomers MH  - Pedigree 

Parenting Sharks MH  - Reproduction/*genetics 

Ficus Pedigree MH  - Sequence Analysis, DNA 

Salmo salar Ambystoma MH  - *Sexual Behavior, Animal 

Salmonidae Pliability MH  - Trout/*genetics 

Body Size Salmo salar 

 Individuation Cesarean Section  

Population Normal Distribution  

Breeding Microsatellite Repeats
$
  

Pedigree Principle-Based Ethics  

Egg Shell Rivers 

 *Terms shaded in green were also manually assigned in MEDLINE 

* The term shaded in yellow is a narrower MeSH term for Animal. 

$ Term was not assigned manually but was selected as a ―relevant‖ keyword to represent the data by 2/3 

evaluators. 

*(Serbezov, D. Bernatchex, L, Olsen, E.M. & Vollestad, L.A. (2010). Mating patterns and determinants of 

individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire 

stream living population. Molecular Ecology. 19. 3193-3205.) 
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One odd outcome of training HIVE in the sub-domain of reproduction was that 

articles indexed with SmartHIVE no longer were assigned the MeSH term ―reproduction‖ 

or ―breeding‖. These two terms were both produced in 9/18 keyword lists when run 

through HIVE but never appeared as a keyword from SmartHIVE.  Similarly, the term 

―mating preference, animal‖ was never assigned by either HIVE or SmartHIVE despite 

that heading being prevalent in the training set used to create SmartHIVE.  Likewise, the 

keywords ―sexuality‖ or ―sex characteristics‖ were produced as keywords but never the 

term ―sexual behavior, animal‖, which was commonly assigned manually as an index 

term in MEDLINE.  The reasons for these occurrences are unknown and will require 

further exploration.  

Human evaluation of SmartHIVE-generated keywords was conducted to provide 

more ―ecological validity‖ to the performance indicators of precision and recall. I wanted 

to know not only if HIVE could generate the same keywords as those assigned by the 

indexers of NLM, but also to determine what scientists thought of those assigned 

keywords.  The results of the second part of this study suggest that the term sets produced 

by HIVE are moderately useful in describing the subject content of both the article and its 

underlying data set(s). On average, evaluators rated 4.0/20 keywords as 

relevant/document and 3.3/20 keywords as relevant/data package. There was however, 

great variation in the evaluator’s scoring of keywords within the same document/data 

package. However, there was no trend observed for any one specific evaluator (i.e., no 

one evaluator consistently chose more or less terms as relevant).  This made it impossible 

to remove any one evaluator’s scores in order to improve consistency. Evaluator 5 tended 
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to choose less terms as relevant, especially in respect to relevancy to the data packages, 

however, it was not consistent enough to remove that evaluator from the study.  

An important goal of this study was to determine if the HIVE-generated keywords 

assigned to an article were also considered useful in describing the article’s data thus 

providing a beneficial tool to assist in the indexing of archived datasets. Overall, it 

appeared that MeSH index terms automatically generated by SmartHIVE that were 

considered by the evaluators as relevant to the article were not statistically different from 

that of the data package (4.0 relevant terms to 3.3 relevant terms, respectively). 

Coincidentally, there was statistically more ―non-relevant‖ index terms assigned to the 

data than compared with those assigned the article.  Still, these results suggest that 

keywords assigned to an article can potentially be used as index terms for data sets and is 

rather encouraging considering that HIVE is basing its term selection on the full-text 

article and not the actual data set(s). Additionally, these findings support Greenberg 

(2009) who suggested that a metadata record for a published research article can serve as 

a source of metadata for data objects represented in the article based on the logic that 

published research is in effect an artifact generated by the data. 

On the other hand, one must consider that the inability of SmartHIVE to 

consistently generate high quality keywords (based both on % matching with manually 

assigned MeSH terms and evaluator opinion) is disappointing. For example, 8/18 

keyword sets contained two or less matches with manually-assigned MeSH terms. What 

are some possible explanations for these poorly indexed documents?  First of all, in 

general, terms assigned from the MeSH thesauri are very complex and difficult to match. 

Second, the MeSH model does not map cleanly to SKOS resulting in a loss of 
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information.  Finally, past studies of KEA have mentioned possible problems with the 

conversion of the document from PDF to plain text. For example, errors in conversion 

could possibly result in erroneous keywords. Careful examination of the converted text 

may reveal possible explanations for non-matching and non-relevant keywords.  

An interesting finding was that HIVE-generated index terms did not have to 

actually be a ―correct‖ match with a manually-assigned term in order to be rated 

positively by evaluators.  Specifically, slightly less than half of keywords considered 

relevant to both the article and the data package by evaluators (45% and 46%, 

respectively) were also designated MeSH index terms for MEDLINE as well.  One 

observed reason for this is that sometimes evaluators chose keywords that appeared 

―relevant‖ to the study or data but were not actually the ―proper‖ use of the subject 

descriptor. For example, SmartHIVE-generated the term ―color‖ but the human indexer 

used the term ―pigmentation‖ resulting in a SmartHIVE-generated term that is close but 

not technically correct. However, the term ―color‖ may work just as well as a keyword as 

the term ―pigmentation‖.   

LIMITATIONS 

There are two main limitations present in this study. The first limitation to 

consider is that this study only looked at MeSH, one of the several thesauri available in 

HIVE. One of the main advantages of utilizing HIVE is that it dynamically integrates 

multiple discipline-specific controlled vocabularies so that it overcomes the difficulty in 

providing access to multiple vocabularies for metadata descriptions for interdisciplinary 

resources. For the purposes of this study, it was necessary to choose one controlled 

vocabulary in order to train HIVE in a specific subject. Training documents need to be 
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indexed with the controlled vocabulary that will be used to produce keywords. Most 

articles whose data are archived in Dryad are indexed using MeSH descriptors in 

MEDLINE and thus provided a convenient source of training information. Thus, only 

looking at the ability of HIVE to assign keywords from the MeSH thesauri while suitable 

for a research study, does not utilize the full power of HIVE’s multiple vocabularies. 

This is especially important when considering the interdisciplinary nature of the 

articles indexed in this study.  Greenberg (2009) showed that a single controlled 

vocabulary does not sufficiently represent the wide range of concepts present in a Dryad 

dataset. Specifically, out of 600 author-assigned keywords from a set of 104 articles in 

Dryad partner journals, only 23% of keywords mapped to MeSH.  Another difficulty with 

only using MeSH to index datasets that focus on ecology and evolutionary biology is that 

MeSH is a biomedical thesauri and there are concepts in Dryad datasets that are not 

present in MeSH. For example, the subject of one of the test articles was migration. 

―Seasonal migration‖ is an author-assigned keyword but ―migration‖ is not a MeSH term. 

Future studies should focus on user’s ratings of keywords assigned from multiple 

vocabularies.  

The second major limitation to this study was the subjective nature of the 

evaluations. It is apparent from the wide variations in subject assigned relevancy ratings 

that the evaluation of keywords for relevancy is an extremely subjective process. The 

author of this study was aware of the potential difficulties involved with human 

evaluators and attempted to minimize inter-evaluator inconsistency by utilizing subject 

evaluators who were knowledgeable in the domain of ecology and evolutionary biology.  

In fact, the author went as far as to recruit evaluators whose research focus was related to 
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reproduction. Unfortunately, efforts in this regard were not successful and there existed 

high inter-evaluator inconsistency.   

CONCLUSION 

 The study presented in this paper addressed two major questions. One, can HIVE 

be subject-trained (SmartHIVE) in order to improve its automatic indexing performance 

and two, are the keywords produced by SmartHIVE effective in describing the content of 

both the journal article, and its underlying data? To address the first question, HIVE was 

first trained in the sub-discipline of reproduction with a set of 50 training documents—

articles with the topic of reproduction and ecology/evolutionary biology and indexed by 

MEDLINE with MeSH subject descriptors. Eighteen documents in the sub-domain of 

reproduction and whose data were archived in Dryad were used as a test set that was run 

through both the minimally-trained HIVE algorithm and the subject-trained SmartHIVE. 

Overall, the results of Part One of the study suggest that subject training HIVE did not 

improve its ability to assign subject descriptors to articles in that subject domain.  To 

address the second question, keyword sets generated from the eighteen subject-specific 

test sets run through SmartHIVE were evaluated by human evaluators knowledgeable in 

the domain of ecology and evolutionary biology for relevancy to both the article and to 

the underlying data. Results of Part Two showed that 39% of keywords were rated 

positively by human evaluators (either rated ―relevant‖ or ―partially-relevant‖) in 

reference to the article whereas 26% of keywords were rated positively in describing the 

data.  

 The finding that training HIVE in a specific sub-discipline was ineffective in 

increasing the number of correctly-indexed keywords was surprising.  Previous studies by 
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Frank et. al. (1999) showed that the quality of Kea-generated keyphrases was improved 

when domain-specific information was utilized.  It is possible that HIVE’s training set 

needs to be increased from 50 papers to 100 papers because Medelyan and Witten (1990) 

demonstrated that the performance of KEA++ (precision and recall) improved when the 

training set was increased from 50 to 100 documents. The specific content of the training 

documents should also be evaluated more closely. Perhaps the content of the training 

papers needs to be more directly related to the content of the documents in the test set. It 

might be useful to systematically compare the article content of the test set in relation to 

training set in order to identify any relationships to SmartHIVE’s indexing performance. 

Results of the human relevance assessment indicated that MeSH keywords generated by 

HIVE were almost as effective in describing the content of the data set(s) as the article 

itself. This encouraging result suggests that HIVE could be useful for assisting both 

scientists and Dryad’s curator in creating useful subject metadata for datasets in Dryad 

from the full-text journal article. Future work must focus on improving the quality of 

HIVE’s output by both optimizing its machine learning algorithms and its ability to be 

subject-trained. The results of this future research will not only apply to the specific 

needs of the Dryad data repository but to all repositories that contain interdisciplinary 

collections and could benefit from the use of an interdisciplinary vocabulary system such 

as HIVE.  
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