

Stephen R. Barbe. UNC Departmental Profiles Project: Designing an Online Database
Retrieval and Reporting System for the UNC Department of Institutional Research and
Assessment. A Master’s Paper for the M.S. in I.S. degree. November, 2005. 71 pages.
Advisor: Brad Hemminger

This paper describes the design, development, and testing of a web application for web

reporting of institutional research data.

The project was initiated at the request of the management of the Department of

Institutional Research and Assessment. IR&A is responsible for collecting, summarizing

and statistically analyzing a vast amount of university data which is currently stored in a

large SAS database and accessed through a SAS application. The management of IR&A

felt that the current system had grown too unwieldy and sought an alternative solution for

making this data accessible to their user population.

This paper describes the phases of the project, from the initial gathering of functional

requirements and design of a project plan to the design and construction of a new

relational database to store and the design and development of a dynamic Web-based

front end for accessing and manipulating the data.

Headings:

Computers -- Electronic Data Processing

 Databases – Relational Databases

 Internet

Web Application

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210609633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNC DEPARTMENTAL PROFILES PROJECT:
DESIGNING AN ONLINE DATABASE RETRIEVAL

AND REPORTING SYSTEM FOR THE UNC DEPARTMENT
OF INSTITUTIONAL RESEARCH AND ASSESSMENT

By
Stephen R. Barbe

A Master’s paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements
for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

November 2005

Approved by

Brad Hemminger

 1

Table of Contents

I. Introduction 2

II. Envisioning 5

III. Functional Specifications 7

IV. Technology Review 11

V. Prototype Design and Development 19

VI. Beta development and Server Migrations 40

VII. Testing 48

VIII. Deployment 49

VIIII. Conclusion 50

Bibliography 58

Appendix I: E-R Diagram 60

Appendix II: Prototype User’s Guide 61

Appendix III: Beta User’s Guide 65

 2

I. Introduction

 This paper will describe the design, development, testing and deployment of a

web application for accessing, displaying, charting and converting institutional research

data into a variety of end-user formats.

 This project was initiated at the request of the management of the Department of

Institutional Research and Assessment (IR&A) at UNC Chapel Hill. IR&A is

responsible for collecting collating, summarizing and statistically analyzing a vast

amount of data related to faculty, staff, student enrollment, credit hours and departmental

budgets. This information was formerly stored in a large SAS database and accessed

through a SASweb application. The management of IR&A felt that the current system

had grown too large, complex and unwieldy and sought an alternative solution for

making this data accessible to their user population.

 The current system in place to allow users to access the data provided by IR&A

stores the information in a series of SAS OLAP cubes and provides a web front end for

accessing these cubes to retrieve planning and forecasting data. An OLAP (OnLine

Analytical Processing) cube uses a multidimensional database model to create a database

structure which combines aspects of navigational and hierarchical databases as opposed

the relational database structure used by such products as Access and Oracle.[Wikipedia,

2005] The current structure of the application begins with a very high level set of report

types to choose from, listed as a set of links in the center of the page. These links lead to

other lists of links which break down the earlier selections into more specific subsections.

 3

This continues, onion-like, through several more levels in order for the user to reach the

report data. This structure, while organized and functional, requires users of the system

to work their way from the top of the cube structure down to the level where the data they

wish to find is stored using a series of drop down selection boxes which are nested within

each other. The management of the IR&A department felt that this drilling down

approach had become too cumbersome and difficult for the end user to make efficient use

of the system. In order to address these difficulties, the Department Profiles Project was

initiated.

 This project involved several phases, from the initial envisioning stage to the

gathering of functional requirements and design of a project plan, to the design and

construction of a new relational database to store the data and the design and

development of a dynamic Web-based front end for accessing and manipulating the data

into various formats for presentation to the user. The initial development phase of this

project was conducted in the spring 2005 semester as part of the coursework for the INLS

259 class at the School of Information and Library Science at the University of North

Carolina at Chapel Hill. During this time, the project was proposed by my classmate,

Kay StewartNewman at the request of her manager in the IR&A department at the

university. Once proposed and accepted, the initial project vision was developed and

formalized, the functional specifications for the new system were collected from the

management of IR&A, several available technologies were evaluated for use in

development, and two of these technologies were selected for use. After the technology

decisions were made, we considered the approach we wished to take to the design given

the functional specifications of the project. It was decided that I would provide E-R

 4

diagrams for the proposed database structure and take responsibility for the design and

development of the application’s login, authentication and user administration systems

while Kay would build the actual database and be responsible for the design and

development of the data retrieval and presentation portions of the application.

Proceeding with this plan, we completed development of the application prototype in

May of 2005 using a small sample dataset from the SAS application and submitted it to

the management of IR&A for their approval. IR&A accepted the prototype as proof of

concept and engaged my services to develop the production version of the application

during the summer of 2005. During this time, I was given responsibility for the

continued development of all phases of the web application and was partnered with

another IR&A staff member, Jiang WeiGuo, who was responsible for the migration of the

full SAS datasets to the new database.

 Section II of the paper will discuss the initial envisioning stage of the project, in

which the problem to be solved by the project was identified, a project vision developed,

and the vision of the project reconciled with the mission statement of IR&A. Section III

of the paper will consist of a review of several of the available technologies which were

considered for use in the design and development of this project. This section will in

many ways substitute for the literature review portion which would be present in most

traditional research papers. Section IV will detail the functional specifications as initially

established and describe the evolution of those specifications throughout the prototype

phase of application development. Section V will discuss the initial project design

decision process from the standpoint of both establishing a new relational database to

contain the data migrated from the SAS application and the design of a new web-based

 5

application with which the users of the system will access this data. Section VI will

discuss the evolution of the project from the initial prototype to the Beta development

phase with emphasis on an expansion of the initial functional specifications, a required

redesign of the user administration system, and some challenges that were encountered in

the migration to a different platform than the one used for the prototype system

development. Section VII will outline the testing process for the application, including

developmental testing/troubleshooting, post development user testing, and additional

expansions of requirements after the initial application testing phase. Section VIII will

focus on some of the issues considered in the planning of application deployment and

support. This section highlights the need for a User’s Guide to be created for the

application prior to deployment and the necessity of redesigning the interface to provide

on screen documentation to guide the user. As of this time, the application is still in

development, so no actual deployment has occurred. Finally, section VIIII will provide

the conclusion to the paper with descriptions of where we feel the project succeeded,

where we feel it failed, some lessons learned from the project, and some ideas for future

work or development.

II: Envisioning

During the design and development of this project, the project team followed a

standard system for planning and developing software known as the Software

Development Life Cycle (SDLC) model. This model divides the process of software

design into four distinct phases: Envisioning, Functional Specifications, Development,

and Testing. During the envisioning phase, we made some basic conceptual decisions

 6

about what the goals of the project were and what we hoped to accomplish with the

design of this application. After considering these questions, we established a vision

statement and tied that statement to the mission of the IR&A department. This vision

was revised periodically during the life of the project, but the final vision statement is:

The aim of this project is to develop a dynamic, Web-based data reporting and
comparison tool featuring multi-tiered access and a customizable interface for the
UNC-Chapel Hill Office of Institutional Research and Assessment.

In addition to the vision of the project, a list of business requirements and constraints

were identified which impacted the functional specifications which formed the basis of

many of the design decisions made during the software development phase of the project.

The following requirements and constraints were identified during the project envisioning

phase:

• System administrators may authorize departmental administrator access

• User and Query Data may be added by departmental administrators

• Departmental reports will be designed and added by departmental administrators

• Departmental administrators may authorize department user access

• Data may be updated or loaded by system administrator, as it becomes available

to the Office of Institutional Research

• High-level administrators may authorize departmental administrator access

• Departmental administrators may authorize department user access

• System administrator may authorize access for all

• High-level administrators may authorize viewing of their departmental data for

sharing with other high-level administrators

 7

• System must be able to gather user feedback to include additional summary data

or add further drilldown capability for retrieval of more detailed information

• With the exception of the one employee of the Office of Institutional Research on

the project team, the Office of Institutional Research will not provide monetary

compensation to team members for work on this project

• College of Arts & Science Dean’s Office will have the capability of viewing

summary data for the college and division.

From these requirements and constraints, the project team then constructed a list of

functional specifications for the proposed application.

III: Functional Specifications

 Like the vision statement, the functional specifications were revised several times

during the course of the project. The first stage in establishing the functional

specifications for the application consisted of constructing a simple, prioritized list of

features desired in the finished application. This initial list was then reviewed by the

individual project team members who each made comments and suggestions for revision

of the list into its final form. The final list of functional specifications for the application

was compiled with the following results:

1 Export SAS data to unified relational database management system and

Enable single query retrieval of any amount of data from any

combination of tables.

 8

2 Provide query output in a variety of formats

a. HTML Web page: This will be the standard response to any query performed by

the system.

b. CSV file: After logging into the system and choosing the departments he needs to

query, the user will then select the query to perform (stored or create new) and then

select their query output format from a list of choices (HTML will be default). If

CSV option is selected, the query results will be converted to a list of comma

separated values which the user may then save on their local PC.

c. Excel spreadsheet: Like the CSV option above except that when this option is

selected, the user has the option to allow MS excel to be opened on their client

machine and an excel spreadsheet created.

d. Plain text (.txt): This is the same as the CSV and Excel options, but saving the

results as plain text.

e. E-mail results to x: this will email any of the above formats to a user whose email

address is entered.

3 User/login authentication

a. User login will be onyen based (this is a requirement), but once the user is logged

in, a user table in the db will be consulted to establish the user’s access level to

determine access rights and permissions within the application.

4 Design custom reports: This will allow the user to select from a list of drop

down/check boxes to decide which tables they need information from and which

information they need. These boxes will select the various components to construct a

 9

query which may then be stored in a table for later use if desired. This will be done by

departmental admin.

5 User administration capabilities:

a. Add user-will allow a user to access the application’s user table and add a new

user who will have permissions to use the application

b. Delete user-as above, but allowing a user to be removed from the application

c. View user list-a query of the user table which will show user information including

name, dept, access level, and other information. Perhaps several different iterations

of user list query

d. Assign permissions-will allow a user to modify the access level information for

users stored in the users table

6 Manage custom reports:

a. Delete reports-will allow a user to remove a custom report that is no longer useful

or necessary

b. Update reports-will allow a user to modify the components and function of an

existing saved query. By changing the options selected and re-saving, the query will

be modified and updated in the stored query management tables.

7 Annotation feature: Feedback by user, related report/saved query and date/time

stamp.

Due to time constraints and the loss of a team member prior to the beginning of the

development phase of the project, many of these features were heavily modified or not

implemented in the prototype application. Of the formats listed in functional

 10

specification two, only the basic HTML presentation and Excel spreadsheet format were

implemented in the prototype. This was mainly due to time constraints and lack of access

to some required features in the application server which was available to us at the time

of the prototype development. The requirements of specification four were also heavily

simplified for the prototype due to a perceived lack of need for the initially proposed

scheme of customization. During development, the decision was made that the

requirement of simplifying the overall operation of the application was more important

than the full set of customizable options initially envisioned. In essence, it was decided

that instead of offering users of the new system a large list of poorly implemented

options, the application function should be streamlined to limit user options and

maximize ease of use. The final option for user assigned permissions under specification

five was integrated into the Administrative role as a part of the Administrator’s core

functionality to simplify the administrative options and to limit the number of persons

capable of adding and removing users and permissions. This decision was made to

simplify the process of auditing and accountability for changes made to the user

permissions function of the application. Specifications six and seven were dropped

completely from the scope of the prototype design. The decision to drop specification six

was made for much the same reason as the decision to streamline the requirements of

specification four. Making all of the reports dynamic queries built on demand at runtime

helped to maximize the flexibility of the data that a user can retrieve while minimizing

the amount of options that they need to wade through in order to generate the reports they

desire. Specification seven was dropped solely due to lack of time available at the end of

the prototype phase, and has not since been implemented in any meaningful way.

 11

IV. Technology Review

 Given our list of functional specifications, we next needed to decide how best to

develop our application to meet the expressed requirements. Given that neither of the

project team members had had extensive experience with any type of programming or

application development, we decided to evaluate a selection of different technologies for

use in or application development framework. During this process, three database

solutions and three application server technologies were investigated and one of each was

finally chosen for use in the development of this project.

 The three database solutions investigated were Microsoft Access XP, MySQL and

Oracle 9i. Each of these systems provides a SQL-compliant relational database which

allows access by multiple networked users.

 Microsoft Access was the first database system considered for use in the

development of this application. Access had much to offer in the areas of ease of use and

team familiarity, but fared less well in the areas of scalability and performance. Both

members of the project team had used Access in the past for the creation of small-scale

databases for various purposes, which made us relatively comfortable with the idea of

using Access for the database development portion of this project. Access also provides

an easy to use graphical interface for performing all of the tasks involved in creating,

populating and querying the database. This GUI was a major point in Access’ favor due

to the fact that neither of the other systems evaluated provides any GUI functionality at

all by default. Included in this interface is a “Query Builder” function which allows the

construction of SQL queries by the use of a wizard which walks you through the process

 12

of selecting the tables, fields and conditions with which to construct your query. This

function was found to be useful in the process of designing queries due to the ability to

examine the SQL statements constructed by the wizard. Another useful feature of the

Access interface is the ability to create a visual diagram of the relationships between the

tables in the database.

 Despite Access’ strong visual interface, it suffered badly in the areas of

performance and scalability. Access is not designed to be a true client/server database

system, instead using a file-system database model. This model requires each user of the

database to access the same physical copy of the database file in order to process queries

or changes. [Chigrik, 2003] This limitation disqualifies Access from serious

consideration in situations where the database will be accessed by more than a handful of

people (perhaps 5-15). The database and table size limitations present in Access were

also unsuitable for the size of the system that we were required to build.

 The second product evaluated for use in this project was MySQL. MySQL is an

open source SQL compliant client/server database which is available as a free download

from www.mysql.com. MySQL has many advantages, but the version we tested had one

crippling disadvantage that almost immediately pushed it out of consideration.

 MySQL is a highly scalable system which has grown increasingly popular due to

its high retrieval speeds, free availability and easy integration with such as other web

technologies as the Apache web server and the PHP application server. These three

products, which are all open source and freely available, provide a very flexible, powerful

and cost effective web application framework. MySQL has the capacity to handle

extremely large databases, provides very fast retrieval and query processing and supports

 13

a wide variety of operating systems, web servers and application servers. [MySQL, 2005]

The fact that MySQL is open source and free was also a very attractive feature.

 Unfortunately, the version of MySQL that was investigated for use in this project

does not support foreign key constraints, views or auditing, which were required for the

database portion of this project. This lack of support, like Access’ scalability and

performance problems, meant that MySQL could not be used for the development of this

application.

 The third database system investigated for this project was Oracle 9i. Oracle

provides all of the functionality, capacity and scalability required by the application to be

developed for this project, but suffers due to the lack of GUI interface. Oracle’s

client/server architecture is highly scalable, providing support for multiple thousands of

users and file sizes up to 64GB, which is more than sufficient for the requirements of this

project. [Foch, 2002] Oracle also supports all of the functions, constraints and data types

required to implement the database portion of the application.

Oracle’s biggest drawback is the lack of a convenient user interface. The SQL

Plus development tool that ships with Oracle is a command line interface with very few

advanced features. It does not support multiple development windows, has almost no

advanced editing features, and does not even support cutting and pasting of text

particularly well. The command set for the interface is not very intuitive and is time-

consuming and difficult to work with. In order to alleviate this problem, third party

Oracle development tools were investigated, several of which proved to be significant

improvements over the Oracle SQL Plus environment. One of the team members decided

to use a tool called SQL worksheet, while another used a trial version of a tool called

 14

TOAD. The availability of these alternate development tools made Oracle a much more

attractive option by greatly improving ease of use for Oracle’s database system.

Another factor in Oracle’s favor was its ready availability and the high level of

support available for it in the university’s computing environment. We were provided

with a test development server for classroom assignments and were also able to secure

space on a pre-existing production Oracle server provided and supported by the

university for the eventual deployment of the finished application. This was an extremely

important consideration in the decision of which database system to use, due to the fact

that Oracle is a very expensive piece of software which the project team could not have

afforded to purchase had it not been already available under license from the university.

Given the strengths and weaknesses of each of the systems evaluated, Oracle was

the clear choice for use in this project. Oracle provided the best combination of

performance, scalability, features, support and availability for the purposes of this

project. The use of third party Oracle development tools helped to bridge the usability

gap between Oracle and Access, while the free availability of Oracle servers in the

university’s computing system nullified the cost advantages of MySQL and Access

(MySQL is free and Access comes bundled with the Microsoft Office suite).

After choosing Oracle as the database system for use in this project, we next

evaluated three dynamic web application server technologies for developing the web

interface. Due to their ready availability, popularity and usage in the Web Databases

course, the three technologies investigated were Microsoft’s Active Server Page

technology, PHP Hypertext Preprocessor, and ColdFusion Markup Language (CFML).

 15

Active Server Pages (ASP) is a dynamic technology for web applications offered

by Microsoft through their Internet Information Server (IIS) product. Active Server

Pages can use a variety of programming and scripting languages to access data and

provide dynamic access to it via the WWW. ASP embeds dynamic script into html pages

using VB Script as its default development language, but provides support for a multitude

of other languages, including java, javascript, perl, python and many others. [Microsoft,

2005] ASP proved to be relatively easy to learn and use, requiring only a basic

understanding of VB script in order to begin developing dynamic content. The flexibility

of being able to choose alternate scripting languages for use in ASP development is also a

very attractive feature which unfortunately none of the project team members (who had

very little previous programming/scripting experience) were able to exploit effectively.

Despite its ease of use and ready availability, ASP does have some serious

drawbacks. First, ASP is tied to the use of Microsoft’s IIS which eliminates the option of

choosing a different web server technology. This is problematic due to the fact that IIS is

not a free product, and can in fact be quite expensive depending on the number of servers

and licenses required to support and access the web applications hosted on it. Cost did

not play a significant role in our decision in this case due to the fact that we had access to

a departmental web server that was already installed and running IIS, however the lack of

availability of an IIS production server to host the finished application did weigh heavily

on our choice. In addition to this, ASP and IIS have had an extremely spotty history of

bugs, glitches and security holes which make them a somewhat questionable choice for

developing applications which will provide access to confidential information.

 16

The second technology examined for use was the PHP Hypertext Preprocessor

(PHP). PHP is an open source scripting language which is freely available for download

from www.php.net.

PHP uses special starting and ending tags to embed dynamic scripts directly in the

body of html documents and provides support for dynamic web content on a variety of

platforms including linux, UNIX Windows and MacOS. [Hojtsy, 2005] PHP is one of

the most popular dynamic web content technologies in existence due to its open source

nature, ease of integration with other popular technologies such as Apache and MySQL,

and free availability. These qualities make PHP an exceptionally good choice as a

dynamic web application framework for any individual or organization which needs to

develop such an application with little or no monetary investment in their web

technologies. PHP integrates particularly well with MySQL, as it includes built in

functions for the query and manipulation of data within MySQL databases.

Despite all of these advantages, PHP was not very attractive for use in this project

due to the relatively high learning curve required to begin effective development using it.

As has been stated before, neither of the project team members had much programming

experience prior to beginning this project, and of the three technologies surveyed for the

web development, PHP was by far the most difficult to learn. The very flexibility and

power which makes PHP so popular lends it a much greater complexity than that found in

either ASP (VB Script) or ColdFusion. Given the time constraints on the development

phase of this project, it was felt that there was simply not enough time for the

development team to become sufficiently comfortable and proficient with PHP to select it

as the web development language for this application. Additionally, the fact that Oracle

http://www.php.net/

 17

was selected for the database portion of the application instead of MySQL made PHP

somewhat less attractive given that we could not take advantage of PHP’s built in

MySQL functions.

Finally, we investigated Macromedia’s ColdFusion Markup Language (CFML).

CFML requires an application server to process the dynamic pages created with it. The

two application servers currently available for processing CFML are Macromedia’s

ColdFusion MX and New Atlanta’s Blue Dragon server. Blue Dragon is a freely

available product which provides most of the functionality of Macromedia’s ColdFusion

server and allows the use of the ColdFusion tag scripting language. As with IIS, a Blue

Dragon server was in place and available to us for use in the development of this project.

ColdFusion is a tag-based, customizable and extensible web scripting language

which supports dynamic retrieval and presentation of data through a web application.

[Macromedia, 2005] Blue Dragon supports a number or operating systems, including

linux, Windows, MacOs and Solaris, as well as a number of web server products

including IIS, Netscape Enterprise server, and Apache. This puts it somewhere in the

middle of the spectrum between ASP and PHP in terms of flexibility in choosing the

platform and server architecture for use in the development framework. ColdFusion is a

tag-based scripting language which is extremely similar to html in many ways. By use of

special cfml (ColdFusion Markup Language) tags and special characters (notably the #

character) you can insert code into the body of html pages to retrieve and display data

dynamically. ColdFusion is designed to be highly modular, allowing you to build small

ColdFusion pages which perform common tasks and reuse them throughout an

application by providing them with different dynamic data to be used in page processing.

 18

ColdFusion is also customizable and extensible through the use of custom tags and

ColdFusion Modules. The custom tag feature allows the creation of user-defined cfml

tags consisting of blocks of cfml code to perform specific functions. These blocks of

code can then be named by the user and called from the body of a document just like any

other cfml tag. This requires some special configuration on the server, but once enabled,

allows custom tags to be stored in a separate folder on the server and used in the

application. ColdFusion is also very easy to learn given its remarkable similarity to html,

but does have some very confusing syntax in places, especially in the use of single and

double quotation marks which are often apparently interchangeable, but sometime causes

errors when the wrong ones are used.

Blue Dragon’s major weakness is the lack of support for many of the advanced

features which the Macromedia ColdFusion server supports. Blue Dragon does not

provide support for such advanced functions as generating output in various formats

(notably Microsoft Excel and Adobe PDF) and creating charts based on query data, both

of which were desirable functions for the development of this application. This was not

as much of a problem as it could have been, however, due to the fact that custom tag

functionality allowed the use of custom-designed tags to perform some of these

functions. Macromedia’s server supports a great deal more functionality than the Blue

Dragon server, but carries a correspondingly high price tag. Once again we were

fortunate to have access to the Blue Dragon server for the prototype design of this

application and to a Macromedia server already in place within the university for the

hosting of the production application when it was completed.

 19

Weighing the advantages and disadvantages of each of the technologies, it was

decided that ColdFusion provided the best combination of features, availability and ease

of use for this project. ColdFusion supports more choices of operating systems and web

servers than ASP and was much easier to learn and develop in than PHP. The

customizability and extensibility built into ColdFusion also provided us with relatively

easy access to functions and custom tags to address most of the features lacking in the

Blue Dragon server. The choice of Oracle as the database environment also swayed the

decision significantly since it was then impossible for us to take advantage of the built-in

integration features between PHP and MySQL. Finally, the fact that we had free access

to all of these technologies in the university environment allowed us to choose the

technologies we thought best suited to the project and the team members without the need

to consider the monetary cost of the software for the development.

V. Prototype Design and Development

 Once the technologies had been evaluated and the development environment

chosen, the design and development phase of the project began. The list of functional

specifications generated during the envisioning and planning stages of the project

immediately suggested that splitting the design and development of the system into two

parts would be an effective way to manage the required tasks and avoid confusion on the

part of the team members. In order to implement this plan, we first identified the separate

tasks that needed to be performed and then assigned them to individual team members for

completion.

 20

 The first set of tasks defined for the development phase of the project were to

define the characteristics of the data that needed to be stored, create an E-R diagram for

the database, and design and create the tables used for storing the data.

 Because she was the most familiar with the system currently in use by IR&A, Kay

StewartNewman was assigned the task of defining the data to be stored. Having access to

the current SAS database, she obtained copies of the schema in use within SAS. She also

constructed sample datasets based on the data currently present in the SAS system.

Using this information, she provided a detailed explanation of the data to be stored and

the relationships between the various tables proposed for construction.

 This information allowed me to complete the second task, creating our E-R

diagram (See Appendix I). The E-R diagram turned out to be somewhat unusual

compared to other E-R diagrams I have seen given the somewhat unusual characteristics

of the data and query requirements. Because the data is statistically pre-summarized

before being entered into the database and the data is always displayed only according to

the academic year, the department summary data table seems to have its rows and

columns reversed. This structure is extremely non-intuitive, and was the subject of much

discussion during the diagramming phase of the design. Once it was clear how the actual

generation of the reports needed to function, the design proved to be very sensible. This

was only possible due to the fact that the system was not intended to provide access to

raw data, but only to data that has already been statistically analyzed and formatted to

some extent for presentation.

 After the E-R diagram was complete, the database tables were logically divided

and assigned to team members for creation, testing and sample population. I was

 21

assigned the tables which constituted the user authentication portion of the system, while

Kay was assigned the tables containing the necessary data for the reporting system.

These tables were created using text files containing standard SQL DDL table create and

insert statements to create the tables and load them with datasets for testing. Test queries

were then constructed and run against the database to verify that table relationships and

constraints were functioning properly, and that the proper data could be retrieved for the

database in the proper ways. The fields for the Oracle database were also designed to use

the same or equivalent data types as the current SAS database, allowing for simplified

export of data from SAS and import of this data into the Oracle system in accordance

with functional specification 1 (see section III).

 Once the tables were completed and populated with test data sets, Kay began

working on the design of a modular query using variable values which would later be

populated using select boxes generated by the application’s web front end. This query

basically functions as the application’s reporting engine, retrieving the requested data

based on the parameters entered by the system user. The system also required the

creation of some smaller modular queries for use in generating the lists which populate

the select and drop down boxes which feed the main reporting query. In all cases, the

queries were designed to provide high re-usability throughout the application while

requiring little or no modification when new data is added to the database. This design

principle also allows the user to customize the reports they generate from session to

session without having to learn how to use SQL.

 With the database design and creation complete, the next phase of the project was

the design and development of the user interface. When considering the design

 22

architecture of the user interface, two primary goals were identified: the application was

required to provide a user authentication and administration function, and to simplify and

allow customization of the report generation process for IR&A data. This definition was

again used to divide the design and development tasks between the project team

members. I was assigned responsibility for the user authentication and administration

subsystem, while Kay was given the data retrieval and presentation subsystem. These

subsystems were then designed in accordance with the functional specifications detailed

in section III.

 In designing the authentication and administration subsystem, functional

specifications 3 and 5 were my primary concern. In order to meet the login requirements,

we contacted the UNC onyen administrator and requested information on how to

integrate the use of the onyen authentication system into a web application. The

administrator, Todd Lewis, provided us with a link to a Perl script provided by the onyen

staff for use in web page authentication. This script was modified by both myself and

Kay and integrated into the application framework so that whenever any page in the

application is loaded, the application checks for the presence of an onyen authentication

cookie. If a cookie is found, the requested page is loaded, while if a cookie is not found,

the application calls the Perl script and requires the user to login using their onyen and

password. Successful authentication then sets the proper cookie for the user and serves

up the application main menu. This authentication method, along with the

implementation of session variables in the ColdFusion environment also ensures that the

user will be expelled from the system after a certain period of inactivity, thus helping to

limit unauthorized access by ensuring that the application does not allow a user to remain

 23

permanently logged in. ColdFusion session variables allow the application to store

dynamically generated data and preserve the state of that data from page to page,

eliminating the need to regenerate form or query data multiple times. This functionality

figures prominently in every phase of the application design.

 The user administration portion of the application was designed using a very

simple two table structure to store user information and assign system permissions. The

first table in this structure, the Users table, consists of three required fields: onyen, first

name, and last name. The users table is used to verify that the onyen used during the

authentication process is that of a valid system user, and to return the name of the user for

display within the application.

The second table, Deptusers, originally consisted of three fields as well: onyen,

department number, and access level. The original access level concept for the prototype

included three access levels: System Administrator, Department Administrator and User.

In this model, the System Administrator was allowed access to all data stored in the

system and has permissions to add, modify or delete users in the system. The

Departmental Administrator was given limited access to the user administration functions

of the system, allowing those with this role to add and remove users only for the

departments to which they had access. Departmental Administrators were also granted

the ability to create reports for these departments. The User role granted no access at all

to the user administration system, and allowed reporting only for those departments to

which the user was granted access. In order to facilitate this administrative model, the

deptusers table included records only for users whose role was not System Administrator.

Departmental Administrators and Users had a record in this table for each department to

 24

which they had access, using the combination of their onyen and the department number

as a compound primary key. This allows the application to retrieve the full list of

accessible departments during the authentication process and to store this list in a session

variable for use in constructing the drop down boxes presented to the user through the

web interface. This model also allowed for Departmental Administrators and Users to

have multiple roles within the application, i.e. User in one department and Departmental

Administrator in another. A list of all current users of the system and their authorized

departments and access levels was then easily generated by querying these two tables and

displaying the results of this query in a select box which could then be used to select

users from that list for modification. This model worked well for the prototype

development, and fulfilled all of the administration requirements listed in functional

specification 5 (see section III).

In the design of the reporting subsystem, Kay needed to consider how best to

fulfill functional specifications 2, 4 and 6 (see section III). In the initial envisioning

process for the application, it was thought that the system should allow for users to save

the individual queries which they dynamically created during their use of the system.

The reasoning behind this concept was that in any system of this nature, there would be

tasks which were performed exactly the same way each time and repeated periodically

over long periods of time, but that only the users of the system would really know what

these tasks were. Initially this lead to the belief that a system for generating and storing

“canned queries” would be beneficial to the day to day use of this system by

circumventing the query construction phase of reporting and allowing the user to simply

select a complete query from a list of pre-defined options. In the actual prototype, Kay

 25

managed to simplify the report construction dialog to such an extent that this

functionality proved to be superfluous in most ways, and this specification (6) was

dropped from the development goals of the application. By designing a simple two step

query construction dialog in which the user first selected the department from which to

generate the report, and then selected the years and data categories desired, it was found

that any possible query could be regenerated with little enough effort on the part of the

user that the idea of “canning” commonly used queries made little sense and would only

complicate the process of using the system. This design also flattened the reporting

system structure immensely and eliminated the SAS system’s need to drill down from the

very top level of the university hierarchy (the college level) through multiple

administrative levels in order to reach the data from a single department.

 26

Figure 1 - SAS system main menu

Figure 1 shows the Main menu page from the current SAS application. The categories

presented by the links in the left column of the table represent collections of metrics

dealing with various aspects of the university’s departmental structure. The links

included do present a somewhat more sophisticated list of data categories than are

available in the application developed for this project, but it was decided during our

application design process to focus on organizing the reporting structure along the lines

of the individual department instead of the type of data desired. This decision was made

due to the fact that many of the users of the system work for only one department, and

often wish to report on all data for that department instead of single categories or

measures. Selecting “Students” on this menu produces the screen seen in figure 2.

 27

Figure 2 - screen presented after selecting “students” in figure 1

This screen presents another list of data categories broken down by term. The term

separation was deemed unnecessary in the goals of our application development, and thus

this screen is superfluous in terms of our design. Selecting “Fall Enrollment Head Count

and FTE” produces figure 3.

 28

Figure 3 - Screen presented after selecting "Fall Enrollment: Head Count and FTE"

from figure 2

This page provides links for accessing the selected information in multiple ways. The top

link provides high level access to the database and allows the user to drill down to the

specific department or major they wish to view data for. The links that follow provide

the ability to pick a specific term, college, etc. and enter the database at that level through

the use of drop down boxes. It was felt during the initial design and development cycle

that multiple categories and entry points were causing confusion on the part of users and

that this confusion outweighed the flexibility offered by the interface. This opinion has

since been reviewed by the management of IR&A, and some of the rollup data

 29

calculation provided in the current SAS application is being investigated for inclusion in

the project application. Selecting the top link on this page results in the screen seen in

figure 4.

Figure 4 - Screen presented after selecting " Fall Enrollment: Headcount and FTE

for University with Drilldown" in figure 3

As we can see, this is the first screen in the application to display actual data to the user.

This table summarizes the metrics along the top for the entire university by the terms

along the left side. This level of summarization is unavailable in the application

developed by the project team, but once again is being re-evaluated for inclusion by

IR&A. Selecting Fall 1995 from this table results in the screen shown in figure 4.

 30

Figure 5 - Screen presented after selecting "1995" in figure 4

This screen provides a breakdown of the data shown in the last screen by college.

Selecting “Arts & Sciences” provides the view shown in figure 6.

 31

Figure 6 - Screen presented after selecting "Arts & Sciences" in figure 5

This screen presents a further breakdown of the data by division within the college of

Arts & Sciences. Selecting “Fine Arts and Humanities” from this screen takes us to

figure 7.

 32

Figure 7 - screen presented after selecting "Fine Arts & Humanities" in

figure 6

At this point we have finally arrived at a table containing a list of data at the individual

department level. This process continues down to the major level. Using the shortcut

links instead of the top level link shaves at most two screens of depth from this process.

While this approach allows for more levels of summarization, the excessive number of

links which must be drilled through is unwieldy and not particularly attractive or

intuitive.

 In contrast to the drill down approach presented in the current application, the

application designed for this project uses a simple, drop down box driven structure to

 33

provide access to more specific levels of information in less steps, with less choices to be

made by the user. Figure 8 shows the application’s main menu screen after the user has

logged in.

Figure 8 - Project Application Main Menu

The User Admin button is displayed since the user logged in is a System Administrator.

This button is not generated for any user who is not an administrator. Beneath the User

Admin button are two drop down boxes. The top box allows the user to select a

department, while the bottom one allows the user to select summary or detail data. The

select box structure of this page allows the user to view a complete, alphabetized list of

university departments to which they have access, which gives them a recognizable and

 34

useful place to start their process. Selecting “Art” from the department box and

“Summary Data” from the report type box produces the screen in figure 9.

Figure 9 - Screen resulting from the selection of "Art" and "Summary Data"

This screen includes two select boxes; the left one with a list of years for which data is

available and the right one listing categories of data available for this department. By

default the application selects all years and all measures. Using these boxes, the user

may select any or all years and categories of data for the creation of their report. The

report is then generated using the selections as query parameters, producing an html table

which displays the data for the selected categories separated by headers grouping the

 35

individual metrics by data category. Clicking submit with the default selections provides

us with figure 10.

Figure 10 - Report generated with default selections

As we can see, this screen provides us with data for the art department displayed by

column years and the metric in the first column of each row. This process does not

provide the higher level data summaries available at each level of the hierarchy in the

current application, but greatly reduces the amount of work needed for the user to reach

the lower level data organized by department. This flattening of the structure becomes

particularly useful when the user needs to report data from multiple departments

separately. The shortening of the query process pays great dividends in time saved when

 36

generating reports of various types for one hundred or more departments. The design

was submitted to the IR&A management in a rough form and approved for use in the

prototype application.

With specification 4 satisfied and the need for specification 6 eliminated, the last

remaining specification to be implemented for the reporting system was specification 2,

which required the system to be able to generate the query result output in a variety of

data formats. It was decided that the obvious default method for the display of query

results should be to present an html table containing these results to the user. This was a

conceptually simple idea, but it was decided that there also needed to be some process for

generating table header rows to physically segregate the different categories of report

data from each other in order to improve readability. This lead to the creation of 5 initial

categories of data to be used for testing: Admissions, Enrollment, Credit Hours, Degrees

and Personnel. These categories were used to group related metrics into easily selected

options for use in query construction. The data rows stored in the departmental summary

data table were then assigned a type ID consisting of a number and a letter. The number

designates the category to which that individual metric belongs (1 for admissions, 2 for

enrollment, etc.) while the letter is used to separate distinct metrics from each other. For

example, the metric “Applied Freshman” (a measure of the number of freshman students

who applied to a given department in a given year) has a type ID of 1a, while the metric

“Applied Transfer” (essentially the same as Applied Freshman, but applying to Transfer

students) has a type ID of 1b. The numeric portion of this type ID was then used to

generate a header row based on the change of this value. When the table is constructed, a

variable with an initial value of zero is read, and if the value of this variable does not

 37

match the numeric portion of the type ID, a header is generated and the variable is reset

to the value of the type id. Whenever the type ID of the data being displayed changes

again, another header is generated and the variable reset until all of the retrieved rows

have been displayed. In the prototype, the code used to generate these headers was hard

coded based on the value of the type ID. While this worked in the way it was supposed

to, it made the header generation design non-dynamic in some important ways and would

lead to future difficulty if new categories of data ever needed to be added. This was a

limitation that was acceptable in the prototype, but was slated for redesign in the beta and

production stage.

Upon investigating mechanisms for converting report data into other formats, it

was found that the Blue Dragon server did not support any built in mechanisms for

creating any of the formats we desired. In order to comply with specification 2, Kay

researched the possibility of using a ColdFusion custom tag to provide this functionality.

She located several tags authored by different ColdFusion developers and tested them for

integration and functionality. After several false starts, a tag was found which enabled

the creation of a Microsoft Excel spreadsheet. Installing the tag for use with the

application required us to request a configuration change on the Blue Dragon server to

enable the tag and allow the writing of a temporary file to the server’s hard drive in order

to enable the excel spreadsheet to be opened by the user without the need for them to first

save the spreadsheet to their local computer. This provided us with a temporary problem

in which we needed to conduct a periodic manual cleanup of the server in order to

eliminate the Excel files that had been generated by the tag. This problem was deemed

acceptable for the prototype phase, but was added to the list of redesign elements to be

 38

solved in the beta and production versions of the application. By the time the generation

of the Excel spreadsheet had been enabled, we were very close to the end of the prototype

design phase. It was decided at this point that the need for a CSV format for the data was

moot, given the ease with which a CSV can be generated from an Excel spreadsheet. The

need for a plain text version was deemed similarly unnecessary, and the email option,

though still desirable, was scrapped due to lack of time.

When the development of the two application subsystems was nearing

completion, the time came to integrate what until this point had been two almost totally

separate development efforts into one unified application. Fortunately, several aspects of

the ColdFusion development framework made this much easier than we had anticipated.

The ColdFusion application framework provides two special files which can be

used to help maintain a unified look and feel to the application, store variables and values

that will be true for the entire application, and apply header and footer code automatically

to all pages within the application. These two files are called Application.cfm and

OnRequestEnd.cfm. The Application.cfm allows the definition of what are called

“Application Variables” within the ColdFusion environment. The Application Variables

allow the developer to easily define such things as the default data source to query, the

path to the root folder containing the application and the timeout settings for the

application. In addition to setting the values for Application Variables, the

application.cfm file is loaded first any time any other application page is loaded. This

allows the inclusion of the page header images, user authentication code module and a

standard css style sheet for the entire application in one file instead of being forced to

include them or call them from each individual page within the application. This makes

 39

the authentication structure far easier to implement and allows us to functionally generate

a “template” for all the pages using headers and footers loaded automatically from only

one source. Similar to the application.cfm file, the OnRequestEnd.cfm is loaded

automatically after each page is loaded. This allows the definition of one set of footer

code for use by all of the pages as well a including a single logout module which displays

a button enabling the logout process from each page within the structure.

By making use of the capabilities of these two special files, the process of

integrating the two separate parts of the application was made quite simple. Prior to the

subsystem integration, Kay and I had been developing code modules completely

separately, using separate copies of the Oracle database and separate file storage areas.

Since the subsystems were built in a modular fashion, the integration was accomplished

mainly through the reconciliation of the two different sets of application variables. We

chose one copy of the database to be the actual prototype data source, chose one of the

two existing style sheets to be used, defined the application path, and consolidated all of

the separate subsystem files in this one location. After integrating the contents of the two

original application.cfm files and the original onrequestend.cfm files, the only other

integration task that was left to be performed was the creation of a unified Main Menu

page for the application. This was very easily done by simply authoring a new menu

page which included simple buttons linking to the separate subsystems. Once either the

User Administration or the Create Report function is selected from the Main Menu, the

appropriate subsystem code is executed with almost no impact at all on the code for the

other subsystem. The final step in completing the integration took the form of creating a

 40

series of modules which provided buttons to navigate back to the Main Menu from any

point in either subsystem.

During this phase of the prototype development, it was also decided that

functional specification 7 (see section III) was made almost completely superfluous due

to the elimination of specification 6. It was felt that the only necessary portion of

specification 7 in the face of the changes already made to the system architecture was the

ability for users to give feedback to the System Administrators from within the system.

In order to facilitate this, a simple html mailto tag was included in the onrequestend.cfm

file allowing users to send email to either member of the project team from any page

within the application.

Once the integration was complete, a very basic round of functionality testing was

performed to make sure that the integration had not broken any of the functions of the

separate subsystems. When the functionality of the system was verified to our

satisfaction, I went through the application documenting all of the possible user options

and their uses in order to produce a simple User’s Guide to facilitate the instruction of

system users (See Appendix II).

VI. Beta Development and Server Migration

 The design of the production system also involved several challenges that had not

been present in the prototype system. For development of the Production system, we

were required to migrate the prototype application from the free server technology we

had been using (Blue Dragon) to the Macromedia ColdFusion server, which required

some modification of the application code. We were also required to move both the

 41

database and the Web application from a Windows platform to a Unix/Linux platform.

Additional functional requirements were added for additional data output formats (PDF)

and visual charting of the report information. The User Administration system was also

redesigned and the access levels and permissions changed to conform to a new set of user

roles and definitions.

 The first significant challenge in preparing the prototype application for the beta

development phase involved migrating the entire application from the test servers we had

been using for development to the servers which would host the final production

application. This first necessitated the re-creation of the application database on a

different Oracle system installed on a server using the Unix operating system instead of

the Windows operating system. The most immediate effect of this phase of the migration

was the sudden realization that all of the table and field names contained in the database

were now case-sensitive, which they were not when stored using the Windows file

system. This required us to modify all of the existing queries used with the application to

restore their proper functionality.

 The second phase of the prototype migration involved copying all of the

application’s ColdFusion pages from a Windows Server running the Blue Dragon Server

to a Linux server running Macromedia’s ColdFusion 6.1 server. After moving the files to

the new server, the first thing that we noticed was that the application.cfm file and the

onrequestend.cfm file no longer seemed to function at all, which completely destroyed

the functionality of the authentication system, prevented access to the application data

source and severed the application’s link to the style sheets used to format it’s

appearance. Several hours of attempting to modify these two files failed to restore even a

 42

hint of functionality, but another hour or so of research on the Internet provided the

answer to the dilemma. Just as the migration of the Oracle database a Unix file system

had made the database case-sensitive, the migration of the ColdFusion pages to a Linux

server had done the same to all of the code contained within those pages. When creating

a ColdFusion application on a server whose file system is case sensitive, the

application.cfm and onrequestend.cfm files MUST be assigned names with the proper

capitalization in order for the server to recognize and process them correctly. Changing

the “application.cfm” and “onrequestend.cfm” to “Application.cfm” and

OnRequestEnd.cfm” respectively restored their proper functionality and allowed us to

proceed the with beta phase of the ColdFusion coding.

 Several other minor issues were evident in the migration from the Blue Dragon

server to the Macromedia server, including some minor syntax differences, very

confusing problems with single and double quotation marks, and the cessation of the

function of our Excel custom tag.

 Once again, the case sensitive nature of the new file system for the Macromedia

server necessitated the modification and testing of various portions of the ColdFusion

code to correct capitalization errors in modules which referenced files or variables which

were suddenly made case sensitive. Perhaps the most confusing and difficult portion of

this migration was a change in the way single and double quotation marks are read and

processed between the two systems. This seemingly simple and insignificant problem

cost us many hours of development effort to correct given the necessity of quotation

marks in almost all of the queries and a majority of the function calls used within the

system. This issue is sometimes so complex that I was never able to formulate a clear set

 43

of rules for the proper use of either type of quotation marks within ColdFusion. The non-

functionality of the Excel custom tag following the migration was an issue that required

much more extensive investigation, and will be discussed in the context of the changing

requirements included in the beta development plan.

 The next challenge in the beta development phase of the project involved the

redefinition of the system user roles and the redesign of the user administration

subsystem. The management of IR&A decided after initial testing of the prototype

system that the inclusion of two different levels of administrative privileges was both

unnecessary and confusing. They also identified the need for a role which would have

access to all of the data within the system for reporting purposes but needed no access to

the user administration subsystem. In order to meet these modified requirements, the

existing roles were redefined to include the System Administrator role, the standard User

role and a new role called Super User, which replaced the prototype Departmental

Administrator role.

 The System Administrator role remains largely unchanged in the beta

development plan, still allowing the Administrator to make full use of both the user

administration subsystem and the reporting subsystem. The User role is similarly

unchanged, still requiring that the user be granted access to each separate department and

allowing access to reporting data for only those departments. The Super User role,

however, is a clear departure from the prototype’s Departmental Administrator. The

Super User role has access to all university departments for using the reporting

subsystem, but has no access to the user administration subsystem. This change was

made for several logical business reasons. First, the IR&A management felt that limiting

 44

the System Administrator role to a select few of their staff members would significantly

reduce the administrative overhead and possible errors which might be created by

allowing multiple, independent Departmental Users to control user access to the

application. In addition to the possible administrative problems which untrained

administrators might create within an unfamiliar system, several people were identified

who have valid reasons to access and report information from any department within the

university. It was decided that it would be much easier to establish a role which was

granted this level of access by default instead of adding hundreds of entries to the

deptusers table for every person who might need this access. These role changes were

accomplished with a simple redesign to the deptusers table and a modification of the

ColdFusion code which retrieves this access level information and uses it to generate the

select boxes which present the users of the system with the reporting options available to

them.

 Following the redefinition and redesign of the user roles, it was requested that

some additional changes to the user administration subsystem be made. The university

has several divisions which form distinct organizational units in certain areas which

include multiple departments under one nominal heading which applies to the various

employees, policies and information pertaining to those divisions. A good example of

this is the UNC Chapel Hill School of Medicine. The School of Medicine include 57

individual departments which each have their own staff, equipment and data, but are also

all part of the School of Medicine. Instead of requiring a System Administrator to

manually grant access to 57 different departments whenever a User is added for the

School of Medicine, a new administrative option was created which allows an

 45

administrator to add all of these departments by selecting a single value from a drop

down box. This functionality is referred to within the application as “Granting Special

Access” and is provided for the College of Arts & Sciences, the School of Dentistry and

the School of Public Health in addition to the School of Medicine. In order to fulfill this

requirement, it was required that lists of the individual departments under each division

be acquired and that these department lists be hard coded into the insert and update

queries used to enter this data into the deptusers table. This is one of the few areas of the

application which includes non-dynamic queries and has been identified as an area to

revisit in a future round of redesigns.

 The final challenge in the beta phase was the implementation of multiple alternate

query display formats which had been abandoned or not fully implemented in the

prototype. In addition to repairing the Excel functionality, it was decided that a method

for generating reports in PDF format and the ability to graph the results of the queries

needed to be added.

 In order to restore the Excel functionality, I located a different custom tag which,

while requiring some strange modifications of the query result set in order to correctly

pass them to the custom tag, ended up performing better than the tag that had been used

in the prototype. Unlike the tag used in the prototype, this tag (called simply CF_Excel)

processes the spreadsheet without needing to write a file to the server first. This tag

allowed the system to pass the results of the report query directly to the custom tag, but

required modification of the custom tag code itself in order to properly display the table

header labels and to implement the drawing of empty data cells to preserve the proper

column alignment of the report data. I was able to decipher the code of the custom to the

 46

necessary extent to make these modifications. Upon successful testing of these

modifications, I contacted the author of the original custom tag, Anujit Ghosh, and

provided him with an annotated copy of my modifications to his code. As of this time, I

do not know whether he has performed his own round of testing on the modified tag or

whether he has made it available for download.

 Enabling the creation of PDF files from the reporting results was relatively

straightforward in most ways, but did require the creation of a file on the ColdFusion

server in much the same way as the original Excel custom tag did. In order to solve this

issue, I used one of the existing session variables of the application to generate the name

of the file to be stored on the server. In order to automate the cleanup of these files after

the User has finished with them, it was necessary to create some additional code for

inclusion in the OnRequestEnd.cfm file. This code checks for the existence of a PDF file

with a specific name on the server every time a new page is loaded, and deletes this file if

it is currently present and not in use. This turned out to be quite an elegant solution for

preventing the application server from filling up with useless PDF files. The one issue

still unresolved with respect to the PDF creation function within the application is that the

custom tag currently being used to generate this output is a free trial version of a

commercial custom tag authored by a software development company which engages in

professional ColdFusion development. This trial version of the tag does not allow the

PDF files that it generates to be printed, but does allow them to be saved to the user’s

computer with a second page included in the PDF identifying this output as “trial

version”. The management of the IR&A department has thus far put off the purchase of

this tag due to the fact the latest version of the Macromedia server includes built in tags

 47

for generating both PDF files and Excel spreadsheets. This upgrade has been requested,

but still has not been approved by the organization responsible for managing these

servers.

 The final major change in requirements for the beta phase was the implementation

of ColdFusion’s charting functionality. ColdFusion includes tags which allow query

results to be visually graphed using a variety of object formats and chart types. By

passing the results of any query to the cfchart tag (and related sub-tags) and choosing

which result values to display on each axis, simple two-dimensional charts can be created

using a standard x and y axis system.

 The formats in which charts may be created include Flash object, JPG image and

PNG image. Flash Objects use Macromedia’s Flash player technology to create dynamic

charts which offer limited interactivity to the user. Flash Charts include dynamic pop ups

which display the value of individual data points within the graph when the user hovers

the mouse over them, the ability to zoom the chart view in and out, and the ability to print

the charts. The drawbacks of Flash charts include the inability to save them outside of

the application and the fact that they expire after a certain period of time and must be

reloaded.

 The JPG and PNG image options are functionally the same, producing charts in

standard image formats. These charts can be saved to individual image files, printed, or

cut and pasted into other documents. They offer none of the dynamic features of the

flash charts, and appear to be of somewhat lower resolution overall.

 Once the Chart format has been selected, the chart type may also be chosen. The

cfchart tag offers quite a large list of chart types, but for the purposes of this application

 48

only five were chosen. The application provides a drop down box which allows the

creation of a line graph, a curve graph, an area graph, a bar chart, or a scatter graph. The

way the charting tags currently work, you must select one format and one type for all of

the data to be charted, and each result row must be graphed on a separate chart. This is a

limitation that we hope will also be solved with the eventual upgrade of the ColdFusion

server.

 VII. Testing

 At this time, the project has been through only one formal round of testing. The

system is still in development and additional specifications have been submitted to me for

integration into the system, taking us into the third round of development with expanded

requirements prior to a second round of application testing.

 Throughout the development of the prototype, the project team performed a

continuous process of normal developmental function testing to insure that the

application code was functioning properly and performing the tasks it was designed for.

This process included normal testing methods such as the creation of static queries to

provide measures of the accuracy of dynamically generated queries, and intentional

misuse of the system to test reminders and error message responses. This process

allowed us to eliminate many initial errors in query processing and report presentation

without the need of resorting to outside testers.

 After the integration phase of the initial prototype construction, the project team

members implemented two sessions in which each developer tested the function of the

other developer’s application code and reported errors which needed to be fixed. Each of

 49

these sessions led to the identification and elimination of several bugs and code

inconsistencies that were present in the prototype. Upon completion of these rounds of

prototype testing, the application code was submitted to the IR&A management, which

resulted in many of the specification changes detailed during the discussion of the beta

development phase.

 The current status of application testing is on hold pending completion of the third

round of development and integration of new functional specifications which are outside

the scope of the current paper. Formal testing will resume upon completion of the current

development phase.

VIII. Deployment

 As of the writing of this paper, the application has not yet reached the deployment

phase. During the continued development of the application, it has thus far been

distributed only to those IR&A staff who have been involved in the development and

testing of it. The Management of IR&A was involved in the first round of formal testing

and had many positive comments as well as a few negative ones.

 The most salient comment to come from the first round of formal testing was the

need for a more complete and up to date User’s Guide focusing on the use of the

reporting subsystem instead of the function of the user administration subsystem. Since

almost none of the application’s daily users will be administrators, the new User’s Guide

includes almost no discussion of the system administration role and focuses expressly on

outlining the reporting subsystem’s process flow and capabilities. This was deemed a

 50

crucial requirement to be met prior to the consideration of even limited application

deployment.

 In addition to the revision of the User’s Guide, it was suggested that there should

be more user instruction included within the application itself. This suggestion lead to the

creation of many on screen text boxes providing short summaries or instructions about

various page features. There are also several links to html version of the system User’s

Guide, including anchor links to various specific definitions or instructions related to the

currently displayed screen options. The newest revision of the User’s Guide is included

in Appendix III.

 Deployment plans are not currently proceeding, but some members of the IR&A

staff have begun the process of planning for limited beta testing deployment which will

be used as both a third round of formal testing and the statistical basis for more focused

capacity planning and resource requests. This process is unlikely to begin until the spring

of 2006.

VIIII. Conclusion:

 This project has resulted in the development of a web application intended to

provide a more flexible and intuitive system for reporting the data gather by the

Institutional Research and Assessment department of the University of North Carolina.

Throughout the envisioning, planning, design and development phases of the project, the

goals and specifications of the system have continued to change and have required

constant updates to the project plan. The planning and implementation of the project had

at all times loosely followed the four phases of the Software Development Life Cycle

 51

model. This model provided a great deal of guidance in maintaining the conceptual

integrity of the final product.

 The Envisioning phase began with the gathering of the intended end user’s goals,

requirements and expectations for the capacities of the completed system. The data

provided by the envisioning process lead directly into the formulation of the business

requirements and functional specifications used to guide the development of the final

application. Prioritization of these requirements allowed the project team members to

clearly identify the most important aspects of system function and ensure that these

requirements were met prior to work being started on several of the lower priority aspects

of the system. The loss of a team member and lack of time at the end of the development

phase made clear to the remaining team members the importance of this level of focus in

achieving final results that were deemed acceptable by all concerned parties even though

some of the specifications were not met in the initial prototype design and construction.

 The transition between the prototype phase and the beta phase clearly illustrated

the cyclical nature of the SDLC by requiring immediate re-evaluation of the project

vision and subsequent modifications to the functional specifications. The migration from

the prototype environment to the production environment also provided the project team

with valuable experience in the identification and resolution of cross-platform software

development issues.

 The near-continuous re-evaluation and modification of the project goals also

served to illustrate one of the most prevalent problems in software development, “feature

creep”. Had the team been able to adhere strictly to the initial specifications and resist

the need to expand the application’s functionality, it seems clear that the application

 52

could have been put through sufficient testing to have begun production use of the system

several months ago. As of the writing of this paper, the project team has begun to

question whether the application will ever be completed, and if it is, whether the original

vision of the project will be preserved in the final results.

 This project ended up producing a Web Application which is similar in many

ways to other web reporting and query systems in use today. The use of standard html

form elements to pass data to the dynamic portions of the code and the design concept of

using drop down and select boxes to provide limited, well-defined user input options to

tailor their report queries are widely used and accepted. Indeed, studies of other reporting

systems of this type informed many of out interface and query design decisions. Many of

the challenges faced and solved in the session continuity and query design areas have

provided the project team members with excellent solutions which have since been used

in the design and development of other web query interfaces. Perhaps the most unique

aspect of this project was the aforementioned strangeness of the main report data table,

named dept_summ_dm in the final Oracle database. The pre-summarized nature of the

data allowed us to be certain that there would need to be no mathematical functions

applied to the data stored in the system under any circumstances. The fact that the

system is meant to provide a historical reporting tool meant that we were able to use the

years in which the data was collected as database columns instead of individual cell data

within the database records. Because each metric is always collected for every year and

the metrics reported needed to be presented in a row form instead of a column form, this

table ended up having its rows and columns functionally “flipped” from what the normal

attribute design would look like. This unique arrangement actually ended up simplifying

 53

the construction of the query engine and formatting code a great deal due to the fact that a

normal table arrangement would have required that the results be pivoted in order to

present them in the desired configuration on screen.

 Another interesting difference in this project compared to others that I have

worked on is the use of the UNC onyen system to provide a unified login and

authorization model for the application. In many other systems of this sort that I have

worked with, the application is designed to use either its own login and access control

system or one provided by the network operating system. The use of a separate script to

provide authorization through a unified “third party” system was entirely new to the

project team. The benefits of this system became immediately apparent when the project

team realized that we were not responsible for the security or policies in place in the

onyen system, which decreased the prospective administrative workload for the User

Administration subsystem tremendously. It is also very convenient to have access to the

application controlled by the same user ID and password that the end user uses to gain

access to both their workstation and the UNC campus network. This portability of and

ease use made a dramatic impression on the project team members.

 Regardless of the perils revealed in the project management and envisioning

areas, there are several features of the application that we feel have been highly

successful, and some that we believe did not succeed as well as we would like.

 Perhaps the most successful feature incorporated into the design philosophy of

this project is the modularity of the code. Every effort was made to ensure that the final

application code was as dynamic as possible in nature. The use of session variables to

keep track of user information and choices greatly reduced the amount of effort required

 54

by the users to learn and operate the system. This also allowed all of the query

processing and user authentication operations to be automated in such a way that addition

and removal of data from the system has little to no effect on the functioning of the

system. There are still a few instances of non-dynamic user and system interaction which

the project team hopes to automate and modularize at the earliest opportunity, but the

overall flexibility and power of the application has been a somewhat pleasant surprise.

 Another notable success in the application design was the modification of the user

administration system in the beta phase. This restructuring helped to solve several

administration and business logic problems before they ever really had an opportunity to

materialize. The nature of the data provided by IR&A allowed an extremely high amount

of administrative streamlining by limiting manipulation of users and data to a very small

number of administrative users who are intimately familiar with the system and capable

of handling all of the maintenance and updating of the system.

 The query construction dialogs and options also allowed for far more

simplification of the user interface than was initially predicted. We believe that this will

make the final application even more attractive and usable for the eventual end users of

the system.

 Of the features that were not as successful as we hoped, the primary ones have to

do with the alternate formatting of report data. While we managed to enable the Excel,

PDF and charting functions of the application, they are not as efficient or flexible as we

would like. One of the most frustrating causes for this issue is our lack of ability to

configure and control our own server environment. Research has shown that many of the

problems encountered in the formatting arena would be significantly reduced by the

 55

simple expedient of upgrading the software version of the ColdFusion application server.

Unfortunately, this is something that the project team does not have the resources or

authority to do.

 Another feature that we feel needs further investigation and modification is the

underlying structure of the database tables and records. It is currently not possible to

identify with a sufficient degree of accuracy which metrics exist for which departments.

The create report dialog is currently filled with a massive number of non-academic

departments which have no data aside from personnel information and include no detail

data which can be retrieved with the current reporting queries. This problem is also

currently under investigation and a solution will hopefully be found.

 Finally, perhaps the most minor issue concerning the project team is the relatively

unattractive and out of place feel of the initial user authentication mechanism. Currently

the Perl script supplied by the UNC onyen group is the only known way to implement the

use of the onyen’s unified login capabilities. It is currently hoped that the team may gain

access to an experienced Perl scripter who can bring this mechanism more in line with

the presentation of the rest of the interface.

 Perhaps the most important lesson learned during the course of this project is the

problem of feature creep which has been discussed previously. As a developer, I have

begun to be more cautious about acknowledging the ability to modify the system in

certain ways merely to cut down on the amount of changes which seem to be continually

required. This is especially true in the context of this project due to my extremely limited

amount of influence over the continuing vision of what capabilities of the system are

actually necessary for its proper operation. I would recommend that developers provide

 56

as much input as possible into maintaining the structure and integrity of the functional

specifications for their projects in order to hopefully make those they are accountable to

aware of the problems that continually expanding requirements present

 Another very important lesson learned due to the length of time over which this

project has been conducted is the importance of well-commented application code.

Being forced to return over and over again to code which was thought to be complete and

frozen months previously has made the value of clear and comprehensive comments

absolutely plain. Good commenting and explanation has saved the developers countless

hours of attempting to parse and understand the code that they have already written when

changes to the system have been required. Even though I have not begun commenting

while in the actual process of coding, I have made it a policy to allow no more than two

days to pass between my completion of a code section and a revisit in order to comment

that code. I would recommend some standardized commenting practice to anyone

involved in application development.

 In addition to value of informative comments, the project team also learned the

advantages of modular code design and reuse. We recommend that one of the primary

areas to be considered in the development strategy of any application is an analysis of

process areas which will lend themselves to repetition. These sorts of tasks (providing a

constant display of who is logged in, generating the same list of options on multiple

pages, etc.) provide the basis for mapping out specific portions of the application code

which only really needs to be written once, and can then be called or referenced

whenever needed. Again, this is not realty a revelation, but the practical experience of

the project team has proved once again the value of this development ideal.

 57

 Finally, the project team has become aware of the fact that a good dynamic web

application begins with good database design. A thorough knowledge of the

characteristics and purpose of the data contained in the database makes it possible to

design a database that is easy to use for specific purposes which are defined in the

requirements of the system. This sort of knowledge convinced the project team to design

a database table for this application which would likely be totally unusable for many

other purposes. The simplicity of the database portion of the application has made

modification and tuning of queries much easier than was originally foreseen,

unfortunately, it has also made attempts to expand the variety of data stored in the

database somewhat problematic. Continued desire for enhanced system functionality has

recently been expanded to include possible redesign of the underlying database structure,

and the project team is currently unsure how the report query engine will respond to these

structural changes.

 The future of this project is currently in flux, but it will surely proceed into areas

that were not accounted for in the original vision. Whatever direction future development

takes, however, the project team believes that modular, dynamic program code will

continue to feature heavily in the goals of the project. The system also contains plenty of

opportunities for query optimization and performance enhancement. As the live data sets

for the application continue expand, performance will most likely become a driving force

in future development.

 58

Bibliography

Chigrik, Alexander. “A Comparison of SQL Server 2000 with Access 2000.” Database

Journal. 14 May 2003. Jupitermedia. 9 Nov. 2005

http://www.databasejournal.com/features/mssql/article.php/2204341.

Foch, Craig B. Oracle9i Database Administrator's Guide, Release 2 (9.2) for Windows.

Oracle. 2002. Oracle. 9 Nov. 2005 http://download-

west.oracle.com/docs/cd/B10501_01/win.920/a95491/specs.htm#1006174.

Hojtsy, Gabor. “PHP Manual”. PHP. 28 Oct. 2005. The PHP Documentation Group. 11

Nov. 2005 http://www.php.net/manual/en/introduction.php.

“ASP Overview.” Microsoft. 2005. Microsoft. 11 Nov. 2005

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/iissdk/html/526bf565-7f3e-4c60-a78b-bdac64ebb0e0.asp.

“ColdFusion MX 7 FAQ.” Macromedia. 2005. Macromedia, Inc. 11 Nov. 2005

 http://www.macromedia.com/software/coldfusion/productinfo/faq/#item-1-6.

http://www.databasejournal.com/features/mssql/article.php/2204341
http://www.php.net/manual/en/introduction.php
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iissdk/html/526bf565-7f3e-4c60-a78b-bdac64ebb0e0.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iissdk/html/526bf565-7f3e-4c60-a78b-bdac64ebb0e0.asp
http://www.macromedia.com/software/coldfusion/productinfo/faq/#item-1-6

 59

“OLAP Cube.” Wikipedia. 15 Nov. 2005. Wikipedia. 11 Nov. 2005

http://en.wikipedia.org/wiki/OLAP_cube.

“Top Ten Reasons to Use MySQL.” MySQL. 2005. MySQL AB. 11 Nov. 2005

http://www.mysql.com/why-mysql/toptenreasons.html.

http://en.wikipedia.org/wiki/OLAP_cube
http://www.mysql.com/why-mysql/toptenreasons.html

 60

Appendix I: Database E-R Diagram

 61

Appendix II: Prototype User’s Guide

Data for Planning and Evaluation
System Users Guide

Purpose:
This document is a short tutorial on the structure and usage of the Data for Planning and
Evaluation Web Reporting System. It contains an explanation of the performance of
some basic system tasks and basic information about the structure and organization of the
system.

A word about access levels:
This application supports 3 levels of user access to the system: System Administrator,
Department Administrator, and User. The Administrator access levels allow for
administration of user access to the system and the various departments for which this
application contains report data. Descriptions of the rights associated with these access
levels is as follows:

• System Admin – A system admin has complete access to user administration for
the system. System Admins can add and Remove System Admins, Department
Admins and users from the system. They also have the ability to add and remove
access to departments, and may modify the existing access levels that users have
to departments

• Department Admin – A Department Admin has limited access to user
administration for the system. A Department Admin may add and remove a
user’s access only to the department for which they are a Department Admin.
They may also change the current access level to that department.

• User – A User has access only to the reporting functions of the system. A user
may have access to data for one or more departments, but can create reports for
only one department at a time.

End Session:
The End Session button allows you to end your application session and log out of the
system. It will appear at the bottom of most pages in the application allowing you to
logout at virtually any time.

I. Starting the Application:
Click or cut and paste the following link in your browser to start the application:

http://takahe.ils.unc.edu/projects/inls259/sbarbe/Project/deptprofile.cfm

The first thing you will see is the application login page. Enter your UNC Onyen and
password, then click continue to log in to the system. This will take you to the main
menu if you have access to the system for more than one dept (see II. Main menu) or to
the task selection page if you have access for only one department (see III. Task
Selection)

http://takahe.ils.unc.edu/projects/inls259/sbarbe/Project/deptprofile.cfm

 62

II. Main Menu
The application Main Menu appears if you have system access to more than one
department. The next step in accessing the reporting system is to select the department
you wish to administer or create a report for. After selecting the department from the
drop down box, click the Go button to continue to the task selection page.

III. Task Selection Page
Based on your level of access, you will see either one or two task selection buttons on
this page, as well as buttons at the bottom of the page which allow you to return to the
Main Menu or End Session and logout of the application.

All users will have a Create Report Button which allows them to select Summary Data
for planning and evaluation from the department chosen from the main menu (or the
department they have access to if they have permissions for only one department)
Clicking the Create Report button will take you to the Create Report Page (see IV.
Create Report Page)

Administrators (both System and Department) will have a User Administration button
in addition to the Create Report button. Clicking the User Administration button will
take you to the User Administration Page (See V. User Administration Page)

IV. Create Report Page
This page allows the user to create a report to pull data for planning and evaluation from
the Summary Data Database. To create your report, do the following:

1. Select from the radio buttons to choose how you wish your data to be displayed
2. Select the years for which you wish to retrieve data from the select box on the

left. You can hold down the shift or ctrl key and click the list items to select
multiple years for display. The past five years are selected by default.

3. Select the measures you wish to include in your report from the select box on the
right. Again you may use shift or ctrl and click to select multiple measures. The
first measure in the list is selected by default.

4. Click the Submit button to run your report. This will submit your report to the
database and return the results of the report to you. Once your report has been
run, the resulting page will include buttons allowing you to Select a Department
(returning you to the Main Menu) or Create a report (which returns you to the
Create Report Page).

V. User Administration Page
This page contains 3 buttons for user administration functions which will allow the user
to perform administration tasks on a system wide or departmental level based on their
access level to the department selected from the main menu.
 V.1 System Administrator
 A system administrator may choose from the following 3 tasks:

• V.1.1 Add User – clicking this button will take you to the add user form.
This form requires you to enter the first name, last name, and onyen for a

 63

new system user in the text boxes provided. You may then select the
department for which the new user will have access, and the access level
they will have. Clicking the Add User button will add the user to the
database with the selected access level to the selected department. If you
wish to give a user access to multiple departments, you will need to
modify the user after adding them (see V.1.3 Modify User). This series of
pages also include buttons at the bottom which allow you to jump back to
earlier pages in the application.

• V.1.2 Delete User – Clicking this button will take you to the delete user
form. *CAUTION* Deleting a user from the System Admin version of
this page will remove their access to the Application entirely! If you wish
to remove access to only one department, see (V.3 Modify User). The
Delete user form at the System Administrator level provides a list of all of
the users currently authorized to use the system. To delete users from the
system, select the check boxes next to their user information and click the
Delete User button *CAUTION* there is at this time no request to
confirm deletion. When this button is clicked the records will be deleted,
so only click the button if you are sure you wish to remove the selected
users. After clicking the delete user button, the results of the deletion will
be displayed on the next page. This page also includes buttons to return to
the delete user form (Delete More Users) as well as buttons to jump back
to earlier pages in the application.

• V.1.3 Modify User – Clicking this button will take you to the Modify
User Lookup page. On this page, select the user you wish to modify from
the drop down box at the top and click Lookup User. This will retrieve
the user’s current information and take you to the Select Modify User
Task page. This page includes the following button:

o V.1.3.1 Update User Information – Clicking this button will take
you to the update user name form. On this form, you may change
the first or last name of the user by entering the new values in the
text fields provided and clicking Update User. This will commit
the changes to the system and display the new user name
information. This page also includes buttons to return to earlier
pages in the Modify User and User Administration trees.

o V.1.3.2 Change Existing Access Levels – This button takes you to
the Change Access Level Form. This form displays all
departments to which the current user has access and the access
levels to those departments. You may modify the access level to
only one department at a time by selecting the radio button next to
the department to be modified and clicking Change Existing Dept
Access Level. This will take you to the Change Access Level
Page. This page displays the current department selected and the
user’s current access level. Select the new access level from the
drop down box and click Update Dept Access Level to change the
user’s access level to the selected department. Once again these
pages include buttons that allow you to jump back to earlier pages.

 64

o V.1.3.3 Add New Department Access – Clicking this button takes
you to the Add New Department Access Form. This form displays
the name of the user currently being modified and allows you to
select a new department to provide access to and a new access
level for that department. Select the appropriate values and click
Add New Department Access to add the new access.

o Delete Department Access – Clicking this button takes you to the
Delete Department Access Form. This form displays the name of
the current user being modified and a list of all of the departments
to which they have access. Select the check boxes next to any
departments for which you wish to remove access and click
Remove Existing Department Access. *CAUTION* As with
delete user, there is currently no provision to confirm your delete
selection. Only click this button if you are sure you wish to
remove this access. Buttons on this page also allow return to
previous pages.

V.2 Department Administrator
A department administrator has access to many of the same functions as a system
administrator, but may only perform them regarding users in the department that they are
an administrator for. A department administrator may choose from the following 3 tasks:

• V.2.1 Add User – The Add User form is very similar to the form provided to
system administrators (see V.1.1) except that the department is automatically
assigned and may not be changed.

• V2.2 Delete User – Clicking this button takes you to the Department Delete User
Form. This form displays a list of all the current users with access to the
department. To remove a user’s access to the department, select the check box
next to the user and click Delete User. *CAUTION* As with delete user, there is
currently no provision to confirm your delete selection. Only click this button if
you are sure you wish to remove this access.

• V2.3 Modify User – The Modify User form for department administrators allows
only one function, changing the user’s access level to the department. Clicking
the modify user button takes you to the Modify Department Users Form. This
form allows you to choose department users from a drop down box. Selecting a
user and clicking Lookup User takes you to the Change Department Access
Page. This page displays the current user being modified, the department, and the
user’s current access level. Clicking the Change Current Access Level button
takes you to the Select New Access Page. This page allows you to choose the
new access level from a drop down box. Departmental administrators, however,
may only assign user or department administrator access, they may not add
system administrators. Selecting the new access level and clicking Update Dept
Access updates the user’s access level to the new value.

VI. Questions or Difficulties:
If you have questions about this document or difficulties with the Application, please
contact Stephen Barbe (sbarbe@email.unc.edu) or Kay Stewart-Newman
(kaysn@email.unc.edu) via email and we will attempt to address your concerns.

mailto:sbarbe@email.unc.edu
mailto:kaysn@email.unc.edu

 65

Appendix III: Beta User’s Guide

Data for Planning and Evaluation
User’s Guide

Purpose:
This document is a short tutorial on the structure and usage of the Data for Planning and
Evaluation Web Reporting System. It contains an explanation of the performance of
some basic system tasks and basic information about the structure and organization of the
system.

A word about access levels:
This application supports 3 levels of user access to the system: System Administrator,
Super User, and User. The Administrator access levels allow for administration of user
access to the system and the various departments for which this application contains
report data. Descriptions of the rights associated with these access levels is as follows:

• System Admin – A system admin has complete access to user administration for
the system. System Admins can add and Remove System Admins, Department
Admins and users from the system. They also have the ability to add and remove
access to departments, and may modify the existing access levels that users have
to departments

• A Super User has access only to the reporting functions of the system. A Super
User has access to data for all departments, but can create reports for only one
department at a time.

• User – A User has access only to the reporting functions of the system. A user
may have access to data for one or more departments, but can create reports for
only one department at a time.

Logout:
The Logout button allows you to end your application session and log out of the system.
It will appear at the bottom of most pages in the application allowing you to logout at
virtually any time.

I. Starting the Application:
Click or cut and paste the following link in your browser to start the application:

http://cf.unc.edu/oir/dev/deptprofile.cfm

The first thing you will see is the application login page. Enter your UNC Onyen and
password, then click continue to log in to the system. This will take you to the main
menu (see II. Main menu).
Throughout the application, the name of the current user (almost always you) will be
displayed at the top left side of the screen underneath the Application Header. After you
have selected a department for reporting, the name of the currently selected department
will also be displayed underneath the current user’s name.

http://cf.unc.edu/oir/dev/deptprofile.cfm

 66

II. Main Menu
The application Main Menu appears if after you successfully log in to the application.
The Main Menu Page includes two select boxes: Department and Report Type. Select
the department you wish create a report for and the type of report data desired from these
drop down boxes. The report data type drop down box allows you to select either
Summary Data or Detail Data:

• Summary Data: This selection gives you access to a number of predefined groups
of metrics which are commonly desired for certain reporting purposes. These
groups include such selections as Admissions, Enrollment, and Credit Hours
which group similar metrics together for convenience.

• Detail Data: This selection allows you to select individual metrics in order to
more easily customize your reports to include only the data that is necessary for
your purposes. Note: Detail Data is generally available only for Academic
departments. Selecting Detail Data for a department for which Detail Data does
not exist will result in a message on the Create Report Criteria page stating that
Detail Data is unavailable for this department.

After selecting the department and report data type from the drop down box, click the Go
button to continue to the Create Report Criteria page.

III. Create Report Criteria Page
The Create Report Criteria page includes two select boxes which allow you to choose
which data you wish to include in the report that you generate. The left select box is a list
of all of the academic years for which data is currently stored in the system. The right
select box is list of either data categories or individual metrics based on the report type
selected on the main menu. By default, all years and all categories or metrics are pre-
selected. If you wish to create smaller reports with a limited set of years or metrics, you
can use the CTRL key and the mouse to select the years and metrics you want from the
boxes. Simply hold down the CTRL key and left click all of your selections in each
select box. When you have completed your selections, click Submit to generate your
report. This will process your selections and generate an HTML report based on the
years and metrics selected, taking you to the Report Results page where you will also find
additional reporting options.
Also on this page you will find a button called Expenditures Report. Clicking this button
will launch a SAS web Application which displays Expenditures information for the
selected department. In order to return to Departmental Profiles from the Expenditures
Report, use your browser’s back button.

IV. Report Results Page
The Report Results page displays the data that you requested by making your selections
on the Create Report Criteria page. The report is generated as an HTML table by default.
The table displays the Metrics selected in the leftmost column of the table. The next
column, labeled “Units”, provides a code which indicates what type of statistic
([N]umber, Mean, Sum, etc.) is used to present the data for that metric. The rest of the
columns in the table present the data for the years requested in the report. If Detail Data

 67

was selected for the report, the table will include an additional column labeled “Major”
which provides data for each separate major offered by an academic department.
The Report Results Table also includes a set of headers which categorize the individual
metrics into the categories used for the Summary Data report. Each of these Headers
(Admissions, Enrollment, etc.) includes a hyperlink which leads to a definition of the
categories used to organize the reporting metrics.

Immediately below the Report Results table are two buttons: Create another Report and
Main Menu.

• Create Another Report: This button returns you to the Create Report Criteria
page, allowing you to choose a different set of years and/or metrics to generate a
different report for the department that is currently selected. As always, the
current department is displayed at the top left of the application.

• Main Menu: This button returns you to the Application Main Menu.

Beneath these two buttons, you will find a box titled Alternate Report Formats. This
box includes a set of radio buttons which allow you to either export the report results to
an alternate file format (Microsoft Excel or Adobe PDF) or to create charts based on the
data returned in the report. To use these features, select the radio button for the desired
format and click Submit.

• Download as Spreadsheet: Selecting this radio button will produce a box
allowing you to either open the report results in Excel, or to save the report results
to your computer in Excel Format. Select either: “Open with Excel” or “Save to
Disk” and then click OK.

• Download PDF: Selecting this radio button will convert the report to PDF format
and open the report in your browser. Once the PDF is displayed, you may print
the PDF report (Kay – This is currently unavailable until we buy a copy of the
CFX_PDF custom tag) or save it to your computer. After generating a PDF
report, you will need to use your browser’s Back button to return to the
Department Profiles Application.
Note: In order to use this option, you must have Adobe Acrobat Reader installed
on your computer. If you need this software, you may download it for free at:
http://www.adobe.com/products/acrobat/readstep2.html

• Create Chart: Selecting this radio button will take you to the Create Chart Criteria
page (see section V. Creating Charts).

V. Creating Charts
Selecting “Create Chart” from the Report Results page takes you to the Create Chart
Criteria page. This page includes two or three select boxes (two for Summary Reports
and three for Detail Reports) and two drop down boxes which are used to select the data
to be charted, the format of the chart, and the type of chart desired:

• Years: This is the same type of select box used for the Create Report Criteria
page (See Section III. Create Report Criteria) and functions in the same way.

• Measures: This box is the same as the one for the Create Report Criteria page and
functions in the same way.

• Major (Detail only): If Detail Data was selected for the report, a third select box
labeled “Major” will appear on this page. This box displays the majors offered by

http://www.adobe.com/products/acrobat/readstep2.html

 68

the currently selected department and allows you to select which majors you
would like to create charts for. It functions as the other two select boxes do. If
detail data was selected, you MUST select at least one major for creating charts.

• Select Chart Format: This drop down box allows you to choose which format you
wish to use for chart creation. There are three options available:

o Flash Object: This option will produce a chart using Macromedia’s Flash
technology. You must have the Macromedia Flash player plug-in installed
to use this option. Flash charts are dynamic objects which allow several
options once the chart has been generated:

 Moving your mouse pointer over a data point on the chart will
cause a supplemental information bar to be displayed, which lists
the Metric this chart displays and the value of the data point the
mouse pointer is resting on.

 Right-clicking on the chart brings up a menu which will allow you
to expand the chart view in or out or print the chart. The other
options in this menu are related to the Flash plug-in configuration,
and have no bearing on the Departmental Profiles application.

o JPG image: This option will produce the charts as JPG image files. These
images are static once generated and do not offer any of the Flash Object’s
dynamic features. Right clicking on a JPG chart will give you the
standard image menu provided by your Web Browser. This menu will
allow you to copy or save the chart to a JPG file. Once saved as an
individual image file, you may print the chart or insert it into other
documents as you would any other JPG image.

o This image is exactly like the JPG image option, except that it generates a
PNG (portable Network Graphic) image instead of a JPG.

• Select Chart Type: This drop down box allows you to select the type of chart you
wish to create. There are five Chart Type options:

o Line chart: This option will produce a standard line chart with the charted
data points connected by straight lines from one point to the next.

o Curve Graph: This option will produce a chart where the data points are
connected by a smoothed curve line joining the data points together.

o Area Graph: This option will produce a chart with the data points
connected by straight lines (similar to the line chart) and the area below
those lines shaded blue.

o Bar Chart: This option produces a standard bar chart from the data
selected.

o Scatter Graph: This option produces a Chart in which the data points are
graphed, but not joined in any manner.

After you have selected the years and measures for the data, the chart format and the
chart type, click the “Submit” button to generate your charts. This will take you to the
Chart Results page.

The Chart Results page includes three navigation buttons at the top of the page which
will allow you to return to the Create Report page, the Create Chart page or the Main
Menu. The Logout button is also present.

 69

The Charts are displayed along the left side of the page and a scrollbar will be included
on the right hand side of the Browser if the charts extend past the bottom of a single
Browser page.

VI. Questions or Difficulties:
If you have questions about this document or difficulties with the Application, please
contact Kay StewartNewman (Kay_StewartNewman@unc.edu).

mailto:Kay_StewartNewman@unc.edu?subject=Data%20for%20Planning%20and%20Evaluation

