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1. Introduction 

The stock market has long been a fascinating topic for people from diverse 

backgrounds all over the world. The prediction of stock price is also quite hot in the past 

years. The accuracy of the prediction varies significantly due to the complexity and 

variability of the stock market. In recent years, many researchers have got good results 

with the help of sentiment analysis techniques and social media services like Twitter 

(Bollen et al., 2010; Ruiz et al., 2012; Souza et al., 2015). As there already exist quite a 

few excellent findings on social media sources, in this paper, we switch to another data 

source, the earnings call transcripts, but still use the sentiment analysis techniques. 

Sentiment analysis or opinion mining refers to the application of natural language 

processing, computational linguistics and text analytics to identify and extract subjective 

information in source materials1. It consists of four major elements: the holder, target, 

polarity and types of attitude2. 

In general, there are several types of sentiment analysis. A basic one is to 

understand whether a text represents an objective or a subjective idea. A deeper approach 

is based on the analysis of the polarity of the text (i.e., positive, negative or neutral). 

Going further, another problem is to find out the intensity (also called strength) of an 

emotional state underlying a text. A more complex problem is finding the exact emotions 

conveyed by a textual expression, such as “happiness”, “sadness”, “anger” and so on. 
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Finally, the most challenging problem is represented by the extraction of users’ 

intentions, arguments and speculations (Robaldo and Caro, 2013). 

Applications of sentiment analysis are quite hot in various contexts including 

hotels, movies, restaurants, advertising, politics and the stock market in recent years. As 

we all know, financial markets are considered to be complex and to be changing rapidly. 

For example, financial research shows that stock prices adjust quickly on new 

information such as dividend announcements or other company-related news (Fama, 

1970). So the sentiment expressed in related financial articles or activities is of great 

importance as well. Different studies provide evidence that it has an impact on the 

following stock price reactions. For instance, the prevalence of negative sentiment can 

lead to a decline in stock prices (Loughran and McDonald, 2011). 

Accurately identifying sentiment is not easy. This is not only because it is not 

unusual for humans to disagree about the sentiment of the same text, but also because of 

the complex ways in which humans express sentiment, using irony, sarcasm, humor and 

so on. What’s more, the order in which different opinions are presented can result in a 

completely opposite overall sentiment polarity. For example, “This film should be 

brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is 

good as well, and Stallone is attempting to deliver a good performance. However, it can’t 

hold up.” Interestingly, neutral comments in feedback systems are perceived by users as 

negative ones rather than lying at the exact mid-point between positive and negative 

comments. (Pang and Lee, 2008) 

Since there are many outstanding studies on social media sentiment analysis, we 

decided to try to use another type of data source. All public companies have to hold 
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earnings call and the transcripts are publicly accessible. The importance, length and 

number of those transcripts are also quite appropriate for our analysis. 

Prior to our study, I did some analysis on the movie review corpus of Python 

NLTK package. The corpus consist of a thousand positive reviews and a thousand 

negative reviews. Since the reviews are quite simple and short, classification algorithms 

alone are sufficient for sentiment polarity prediction, yielding an average accuracy of 

over 80%. Inspired by previous studies and my experiments, we treat the analysis as a 

classification problem in the field of machine learning and take advantage of the 

Loughran and McDonald Sentiment Word List created from 10-K reports. We also 

designed a sentiment score serving as the label or target value of the transcripts.  

Prediction is evaluated by accuracy, which is calculated based on how well the 

classification algorithms predict the sentiment scores. 

One of the innovation points of our study is that our data source is earnings call 

transcripts instead of social media posts. Although many studies have shown that social 

media data is sufficient enough to yield good results, we want to explore other sources 

that may result in meaningful outcomes in a different way. 

Another innovation point is that this paper combines classification techniques 

with a sentiment score metric defined by us. In some prior studies, sentiment score is 

calculated based on occurrences of words in texts or the intersection of some lexicon and 

texts. In this paper, we define our own sentiment score metric according to the trends of 

stock prices. However, the results we got are not ideal, suggesting that earnings call 

transcripts alone are not informative enough for predicting stock price changes. We will 

continue to explore this combination in future work. 
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1 https://en.wikipedia.org/wiki/Sentiment_analysis 
2 https://www.coursera.org/course/nlp 
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2. Research Question 

Since we’ve done some research related to airlines before, and there are few 

studies focusing on earnings call transcripts, we form our research questions: (1) To what 

extent are stock price changes of major U.S. airlines associated with earnings call 

transcripts? (2) Can we use transcripts of an airline to predict its stock price changes? 

This kind of research may provide some insights for intelligent investment. For 

this purpose, we study whether sentiment analysis is useful in predicting stock price 

changes after the release of some articles on finance. In our paper, they are the earnings 

call transcripts. We adopted a novel approach: combine machine learning classification 

techniques with a lexicon and sentiment score. First, we created a representation for each 

transcript in order to get rid of meaningless words. Second, we computed a sentiment 

score for each representation based on the trends of stock price changes within 31 days of 

the release date. Third, several classification algorithms are trained according to 

sentiment scores. Finally, we employed a three-way data split and accuracy is calculated 

and used to evaluate the results. 
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3. Literature review 

3.1 Sentiment Analysis 

There exist two main approaches to the problem of extracting sentiment 

automatically (Taboada et al., 2011): Text classification (supervised) and lexicon-based 

approach (unsupervised).  

 Pang et al. (2002) build a sentiment lexicon for movie reviews to indicate 

positive and negative opinion. They also experiment with n-grams and three machine 

learning algorithms: Naive Bayes classification, maximum entropy classification, and 

support vector machines, though the most successful features seem to be basic unigrams 

with an accuracy of 82.9%. Given the results, we mainly focus on study of unigrams and 

their cleaning. 

Pang & Lee (2008) provide an excellent recent survey of opinion mining or 

sentiment analysis problems and approaches used to tackle them. They mention that 

building a lexicon takes a great amount of time because researches are required in order 

to determine which words have strong enough sentiment consistently across domains to 

be included and care must be given to maintain the list so that it excludes superfluous 

terms. This leads to another issue of sentiment analysis – domain context, rather than just 

textual context. Since we are unable to afford to build our own lexicon, we take 

advantage of an existing lexicon generated by 10-K reports.
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Turney (2002) takes a lexicon-based approach, and PMI-IR (Pointwise Mutual 

Information and Information Retrieval) algorithm is employed to estimate semantic 

orientation. Lin et al. (2014) construct a microblog-oriented sentiment lexicon using the 

Semantic Orientation from Pointwise Mutual Information (SO-PMI). These papers 

remind us of the importance of feature extraction and elimination of low information 

features. 

The majority of the statistical text classification researches build Support Vector 

Machine classifiers, trained on a particular data set using features such as unigrams or 

bigrams, and with or without part-of-speech labels (Pang, Lee and Vaithyanathan, 2002; 

Salvetti, Reichenbach and Lewis, 2006). 

3.2 Financial Documents and Stock Market 

A supervised approach is conducted by Antweiler & Frank (2004) who collect 

messages posted on two finance message boards. They manually determine the sentiment 

of a sub-sample of 1,000 messages and use these messages to train a classifier. Then this 

classifier is used to assess the sentiment of the remaining messages. In this paper, we 

defined our own sentiment score metric derived from 8 kinds of stock price changes. 

Tetlock (2007) analyzes the sentiment of a daily wall street journal column. He 

uses the General Inquirer’s Harvard-IV-4 classification dictionary to classify each word 

of the column according to its sentiment. Afterwards, he uses these classified words to 

calculate a pessimism factor. 

Loughran & McDonald (2011) evaluate the sentiment of 10-K company reports. 

They develop different word lists containing positive and negative terms. They calculate 

the number of negative words per report to determine a negativity measure. This 
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dictionary, which is also called Master Dictionary, is well-built and extremely useful to 

our study. We chose this lexicon for creating the representations of transcripts. 

Siering (2012) adopts Support Vector Machine for the prediction of stock price 

reactions following a financial news message. He uses both Harvard-IV-4 lexicon and 

FIN provided by (Loughran & McDonald, 2011). Every document is represented by top 

500 features in terms of corresponding information gain. Moreover, his document-level 

sentiment measure is an inspiring idea to our study. We computed a sentiment score for 

the representation of each transcript based on the intersection of the texts and the Master 

Dictionary. 

3.3 Lexicons 

Several lexicons are publicly available online such as Hu and Liu's Opinion 

Lexicon, MPQA Opinion Corpus, General Inquirer, SentiWordNet, LIWC and Loughran 

and McDonald Sentiment Word Lists. 

The Hu and Liu’s Opinion Lexicon is compiled over many years starting from 

Professor Bing Liu and Dr. Minqing Hu’s first paper at University of Illinois at Chicago. 

It consists of about 6800 positive and negative English sentiment words3. 

The MPQA Opinion Corpus contains news articles from a wide variety of news 

sources manually annotated for opinions and other private states (i.e., beliefs, emotions, 

sentiments, speculations, etc.)4. 

The General Inquirer contains several dictionaries: (1) the Harvard IV-4 

dictionary, (2) the Lasswell value dictionary, (3) several categories recently constructed, 

and (4) "marker" categories primarily developed as a resource for disambiguation. It also 
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has a positive word list with 1915 words and a negative word list with 2291 words. The 

category and strength of words are labelled as well5. 

SentiWordNet is a lexical resource for opinion mining. It assigns to each synset of 

WordNet (Esuli & Sebastiani, 2006, p. 417) three sentiment scores: positivity, negativity, 

objectivity. A synset is a set of terms that are held together by a common definition. The 

current version of SentiWordNet is 3.0 (Baccianella et al., 2010)6. 

LIWC stands for Linguistic Inquiry and Word Count. It’s a program that reads a 

given text and counts the percentage of words that reflect different emotions, thinking 

styles, social concerns, and even parts of speech. LIWC was developed by researchers 

with interests in social, clinical, health, and cognitive psychology, the language 

categories were created to capture people’s social and psychological states. The latest 

LIWC2015 Dictionary is composed of almost 6,400 words, word stems, and select 

emoticons7. 

Loughran and McDonald Sentiment Word Lists (Master Dictionary) has about 

85,131 words. It is created by Professor Tim Loughran and Bill McDonald at University 

of Notre Dame. The dictionary includes statistics for word frequencies in all 10-K 

documents from 1994-2014 (including 10-X variants). It reports counts, proportion of 

total, average proportion per document, standard deviation of proportion per document, 

document count (i.e., number of documents containing at least one occurrence of the 

word), nine sentiment category identifiers (e.g., negative, positive, uncertainty, litigious, 

modal, constraining), Harvard Word List identifier, number of syllables, and source for 

each word8. 
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Besides lexicons of general sentiment analysis purposes, some lexicons have lists 

of different categories. For example, 570 words in the General Inquirer are of an 

economic orientation. We selected Master Dictionary as the lexicon for our analysis since 

it’s well tailored to financial domain and has both positive and negative terms. 

 

 
3 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 
4 http://mpqa.cs.pitt.edu 
5 http://www.wjh.harvard.edu/~inquirer/homecat.htm 
6 http://sentiwordnet.isti.cnr.it 
7 http://liwc.wpengine.com 
8 http://www3.nd.edu/~mcdonald/Word_Lists.html 
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4. Earnings Call Transcripts 

An earnings call is a teleconference, or increasingly a webcast, in which a public 

company discusses the financial results of a reporting period via an 800 number and on 

the internet. The name comes from earnings per share (EPS), the bottom line number in 

the income statement divided by the number of shares outstanding9. 

Holding earnings calls once a quarter is a requirement for all public companies. 

The transcripts will be available online shortly after the event. Attendees include 

executives of a company as well as some analysts. The management team would first talk 

about their financial performance over the last quarter, followed by a Q&A section with 

the analysts. Sometimes, future plans would also be revealed during an earnings call. 

 
Figure 1. Earnings call transcript snippet
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The transcripts are accessible for free on websites such as Seeking Alpha10. 

In this paper, we collected transcripts of 14 major U.S. airlines from year 2007 to 

2015. Among these quarters, some transcripts are missing or some stock prices are 

unavailable due to merger. So we got 325 transcripts in total and the average size is about 

49 kilobytes. 

 

 
9 https://en.wikipedia.org/wiki/Earnings_call 
10 http://seekingalpha.com/earnings/earnings-call-transcripts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

14 

5. Methodology 

The goal of our study is to find out the relationship between stock price changes 

and the sentiments conveyed in earnings call transcripts, and potential predictability of 

the changes. 

Our research questions are:  

(1) To what extent are stock price changes of major U.S. airlines associated with 

earnings call transcripts? 

(2) Can we use transcripts of an airline to predict its stock price changes? 

5.1 Overview 

In order to achieve our goal, we adopted a novel approach: combining machine 

learning techniques with a sentiment lexicon, and using sentiment score as the indicator 

of stock price changes. Our program is written in Python from scratch. In short, there are 

four steps. Firstly, since on average, each transcript has around 10,000 words, which 

includes a lot of meaningless words. To eliminate those low information words, in 

addition to stopwords removal, we compare every transcript with the Master Dictionary 

and take the intersection as the representation of that transcript, assuming words appear in 

the lexicon are more informative than those do not. In this way, a representation may 

only contain tens or hundreds of “good” words. Secondly, after getting stock prices, we 

compute 8 types of sentiment score for each representation of transcript according to 
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different stock price changes. This price serves as the label or target value of every 

transcript. Thirdly, six machine learning classifiers are trained and tested via a three-way 

data split. The proportion of training set to test set and nested training set to validation set 

are both 8:2. Finally, accuracy is calculated and used to evaluate the results. Codes are in 

Appendix A. 

5.2 Data Collection 

5.2.1 Earnings Call Transcripts 

The data for our study is earnings call transcripts of 14 major airlines of United 

States: American Airlines, Atlas Air, Allegiant Air, Alaska Airlines, Delta Air Lines, 

Hawaiian Airlines, JetBlue Airways, US Airways, Southwest Airlines, Republic Airlines, 

Spirit Airlines, SkyWest Airlines, United Airlines and UPS Airlines. US Airways merged 

with American Airlines but have transcripts from year 2007 to 2013. UPS is the world’s 

largest package delivery company and it has a large fleet so it’s on our list.  

We can have access to the texts online on Seeking Alpha. As there are so many 

transcripts, getting them manually is very inefficient. With the help of Python library 

Requests and Beautiful Soup, and regular expressions, we captured all transcripts 

automatically. The release dates were also recorded in order to get stock price afterwards. 

Texts are saved as .doc files in UTF-8 encoding. The folder names are stock symbols. 

The file name is made up of quarter, stock symbol or airline name and release date. For 

example: “2014 Q2 American Airlines-Jul 24, 2014.doc”. Transcripts are stored locally 

in a hard drive instead of a database since they are not complex in terms of variety. 
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Figure 2. Examples of transcript files 

In some cases, the websites would block our program because it detected unusual 

large amount of data flow. One workaround is to fake an operating system and browser 

header to make the websites believe that our program is a person surfing the Internet. 

5.2.2 Stock Prices 

Historical stock prices are available on websites such as Google Finance11 and 

Yahoo Finance12. For this study, we chose Google Finance as our data source. To reflect 

stock price changes, we collected close prices on 6 dates related to the release date of a 

transcript: 31 days before and after the date, 7 days before and after the date and 1 day 

before and after the date. If a price is missing (i.e., that day is a holiday or weekend), the 

program would iteratively check for the previous or next available price, making sure that 

every transcript is associated with 6 close prices. Table 1 shows a part of transcripts and 

close prices. 
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Table 1. Stock symbol, release date and close price 

Table 2 shows the 14 airlines and their stock symbols in NASDAQ. If an airline 

does not have a stock symbol, we use the stock symbol of its parent organization. 

Airline Name Stock Symbol 

American Airlines AAR / AAL 

Atlas Air AAWW 

Allegiant Air ALGT 

Alaska Airlines ALK 

Delta Air Lines DAL 

Hawaiian Airlines HA 

JetBlue Airways JBLU 

US Airways LCC 

Southwest Airlines LUV 

Republic Airlines RJET 

Spirit Airlines SAVE 

SkyWest Airlines SKYW 

United Airlines UAL 

UPS Airlines UPS 

Table 2. Airline names and stock symbols 



 

 

18 

5.3 Data Preprocessing 

5.3.1 Data Cleaning 

The earnings call transcripts we captured from Seeking Alpha are quite noisy. 

Each transcript contains about 10,000 words, among which there are a large number of 

meaningless words. So the first step of data preprocessing is to remove the stopwords. 

Stopwords are words that are generally considered useless since they are so common in 

the corpus that including them would greatly increase computational complexity without 

improving accuracy. The Python NLTK package has a stopword list that includes a list of 

127 English stopwords, which is the basis of our customized list. Whereas, these words 

are far from enough, we manually added more words to the list according to the 

characteristics of our corpus. For example, airline names, weekday names, English 

numbers and so on. 

 

Figure 3. NLTK stopword list 

As there are a lot of proper nouns in the transcripts such as human names, city 

names and organization names, which are also considered as stopwords, we created a list 

for the removal of these words. For example, “Jerry”, “Alexandre”, “Vancouver”, 

“Goldman Sachs”, etc. 
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In addition, regarding our transcripts, airport names, country names and U.S. city 

names are also meaningless. So we constructed 3 lists called “airport_names.txt”, 

“country_names.txt” and “US_city_names.txt” for the elimination of these words. 

After removing those stopwords, regular expressions are employed to remove 

characters that are not English words, and abbreviations, symbols and digits. If the length 

of a word is less than or equal to 3, we removed it as well because this kind of word tends 

to contain less information.  

The “clean” texts are saved as a .pickle file. Pickling is used for serializing and 

de-serializing a Python object structure so that an object can be saved and loaded for 

future usage. 

5.3.2 Transcript Representations 

The texts are relatively clean after stopword removal, but they are not clean 

enough and not that informative. In order to clean the texts more thoroughly, reduce 

computational complexity and improve the accuracy of prediction, we created a 

representation for each transcript, that is, took the intersection of a transcript and the 

Master Dictionary. If a word appears both in the transcript and the lexicon, it’s added to 

the representation. In this way, we significantly reduced the number of words in each 

transcript and at the same time, kept the informative ones in the representation. We only 

need to handle tens or hundreds of words per representation rather than 10,000 words per 

transcript. These words are considered to be rich in information in determining the 

sentiment of a transcript as well as stock price changes. 
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Every representation is a Python dictionary and each element in the dictionary is 

formatted as “word: True”, meaning it contains this word. Figure 4 shows an example of 

the representation. Letter ‘u’ indicates Unicode encoding. 

 

Figure 4. An example of the representation of a transcript 

5.4 Data Analysis 

5.4.1 Sentiment Score 

Inspired by Siering (2012), we developed our own measurement called sentiment 

score, which is the label for every representation to reflect the fluctuation of stock prices. 

As each representation is associated with 6 close prices, we define them as P-31, P-7, P-1, 

P+1, P+7 and P+31.  
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Stock Price 

-31 days -7 days -1 day +1 day +7 day +31 day 

P-31 P-7 P-1 P+1 P+7 P+31 

Table 3. Six stock prices 

Accordingly, there are 3 changes:  

V1 = P+31 - P-31 

V2 = P+7 - P-7 

V3 = P+1 - P-1  

The idea behind using 6 prices and 3 changes is that we want to have more 

comprehensive measurement of the stock price changes and monitor whether the changes 

are caused mainly by the transcripts or other factors. 

Sentiment score is defined in Table 4. 

V1 V2 V3 Sentiment Score 

> 0 > 0 > 0 1 

> 0 > 0 ≤ 0 -3 

> 0 ≤ 0 > 0 2 

> 0 ≤ 0 ≤ 0 -1 

≤ 0 > 0 > 0 1 

≤ 0 > 0 ≤ 0 -2 

≤ 0 ≤ 0 > 0 3 

≤ 0 ≤ 0 ≤ 0 -1 

Table 4. Calculation of sentiment score 
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A sentiment score is assigned to every representation and is set as the label. It’s 

also added to the Python dictionary of representations. The structure is: ({dictionary}, 

sentiment score). 

 

Table 5. Sentiment score and representation of transcript 

5.4.2 Three-Way Data Split 

In order to get more accurate, not biased and better results, we performed a three-

way data split on the corpus. We divided all the representations into 3 sets: training set, 

validation set and test set. The training set is used for fitting a classifier, the validation set 

is used to tune the classifier, and the test set is used only for assessing the performance of 

a trained classifier. 

 

Figure 5. Three-way data split 



 

 

23 

We held out 20% of our data as the test set and in the remaining 80% of data, 

20% is used as the validation set. So the size of training set to validation set to test set 

equals 64: 16: 20. 

5.4.3 Classifiers 

We treat our analysis as a classification problem so appropriate classifiers are 

needed. Naïve Bayes, linear models, SVM are commonly used in classification. 

Naive Bayes methods are a set of supervised learning algorithms based on 

applying Bayes’ theorem with the “naïve” assumption of independence between every 

pair of features. The different naive Bayes classifiers differ mainly by the assumptions 

they make. They are simple to implement and efficient. 

Logistic Regression is generally used for predicting a categorical outcome. SGD 

estimator implements regularized linear models with stochastic gradient descent learning.  

Given our problem, we picked six classifiers for our study: Naïve Bayes, 

Multinomial Naïve Bayes, Bernoulli Naïve Bayes, Logistic Regression, Stochastic 

Gradient Descent (SGD) and Linear Support Vector. These classifiers are available in 

Python scikit-learn package13. 

5.4.4 Cross Validation 

We followed the idea of k-fold cross validation. Since we took 20% of the data as 

the test set, it’s a 5-fold cross validation. For each experiment:  

(1) Shuffle the whole data set (representations and sentiment scores) 

(2) Divide the whole set into training set, validation set and test set 

(3) Train the six classifiers using the training set 
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(4) Evaluate the classifiers using the validation set 

(5) Perform 5-fold cross validation on the training set and validation set 

(6) Select the model that yields highest accuracy 

(7) Assess this model using the test set 

The definition of accuracy is the percentage of correct prediction of sentiment 

score made by a classifier. As different sentiment scores indicate different types of stock 

price changes, accuracy is the key metric in determining to what extent are stock price 

changes associated with earnings call transcripts and whether can we use them to predict 

stock price changes. 

 

 
11 https://www.google.com/finance 
12 http://finance.yahoo.com 
13 http://scikit-learn.org 
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6. Results and Discussion 

Results of our experiments were written to a text file called “Accuracy.txt”. All 

six classifiers failed to get an accuracy over 50%, which was not what we expected. After 

running experiments for more times, the best accuracy we could get was 49% achieved 

by the Multinomial Naïve Bayes classifier. The Bernoulli Naïve Bayes classifier got a 

similar accuracy and the Naïve Bayes did the worst. The output file is in Appendix B. 

 

Figure 6. Best accuracy 

The failure may be caused by multiple factors since prediction of stock price 

changes is very complicated. The low accuracy may due to inappropriate data source, 

representation of texts or inaccurate models, etc. 

Earnings call transcripts are relatively less used in predicting stock price changes, 

though it’s a “new” perspective of solving the problem of prediction, transcripts alone do 

not suffice to affect the stock prices.
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In addition, problems may lie in data processing. Due to limitations, it’s likely 

that we got rid of words rich in sentiment but kept some useless words. Moreover, 

building representation of transcripts is also very important yet difficult. A lexicon that is 

manually created and customized is key to the success of filtering useful words. Polarity 

as well as sentiment strength in different context must be taken into account. Text mining 

techniques such as stemming and bi-grams may also be beneficial in some circumstances. 

Last but not least, classifiers also have much room for improvement. The training 

and test strategy, selection of algorithms and tuning of parameters all contribute to an 

ideal accuracy. 

Nevertheless, the results suggest that earnings call transcripts alone are not 

informative enough to predict stock price changes. There may be little causation between 

the two. Stock market is way too complex and numerous factors need to be considered 

when predicting stock prices. Admittedly, earnings call transcripts can only account for 

little part of it. We can’t solely rely on these transcripts when making predictions. 
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7. Conclusion 

We explored whether we can predict stock price changes of 14 major U.S. airlines 

using their earnings call transcripts. We combined text mining techniques and a sentiment 

lexicon (Master Dictionary) with machine learning classification, and defined a sentiment 

score as the label of this supervised learning approach. A three-way data split was also 

introduced. Then we took advantage of six classifiers and run 5-fold cross validation. We 

wrote our program in Python from scratch instead of using other software.  

The accuracy of our prediction was not ideal at all. None of the classifiers reached 

more than 50%, which is like flipping a coin. The results suggest that earning call 

transcripts have little influence on the stock price changes and they are not suitable for 

predicting the stock market. 

Future improvement includes: 

 Variety of data sources. Stock prices are too complicated to be analyzed 

based on few kinds of data sources. 

 Text mining techniques. Text preprocessing and analysis skills need 

further exploration. 

 A tailored Lexicon. A more domain-specific and comprehensive lexicon 

that is created manually is ideal for sentiment analysis. 

 Choice of label. Sentiment score is a good concept but the definition and 

formula may need modification.



 

 

28 

 Model selection and tuning. More classifiers and parameters should be 

considered. 

We still have a long way to go in predicting stock price changes as the stock 

market is changing every millisecond and we don’t have access to all the information, 

and even we do, we can’t afford to process it. Although our study shows negative results, 

we should keep exploring new sources and methods towards understanding or even 

solving this mystery problem.  

With the rising of machine learning techniques, sentiment analysis will be hotter 

and hotter in the following years. It will definitely play a vital role in every part of 

business and making the world a better place. 
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Appendix A: Python Codes 

 

Get_Stock_Price.py 

import requests, glob, time, pickle 

from bs4 import BeautifulSoup 

from datetime import datetime, timedelta 

import requests.packages.urllib3 
requests.packages.urllib3.disable_warnings() 

import csv 

 

# get html files 

def get_soup(params): 

    headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) 

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 

Safari/537.36'} 

    r = requests.get("https://www.google.com/finance/historical", params=params, 

headers=headers) 

    soup = BeautifulSoup(r.text, 'html.parser') 

    return soup 

 

# get file paths 

def file_paths(): 

    return glob.glob('Domestic/*/*') 

 

# get release dates of transcripts 

def get_dates(filepaths): 

    dates = [] 

    for path in filepaths: 

        date = path.split('-')[1] 

        date = date.replace('.doc', '') 

        dates.append(date) 

    return dates 

 

# get stock symbols 

def get_symbols(filepaths): 

    symbols = [] 

    for i in range(27): 
        symbols.append('AAR')
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    for path in filepaths[27:]: 

        symbol = path.split('\\')[1] 

        symbols.append(symbol) 

    return symbols 

 

# convert weekends to Fridays 

def tweak_date(date): 

    interval = timedelta(days=1) 

    if date.weekday() == 5: 

        date -= interval 

    elif date.weekday() == 6: 

        date -= 2 * interval 

    return date 

 

# get the date after release date 

def get_six_dates(symbol, date): 
    intervals = [] 

    intervals.append(timedelta(days=-31)) 

    intervals.append(timedelta(days=-7)) 

    intervals.append(timedelta(days=-1)) 

    intervals.append(timedelta(days=1)) 

    intervals.append(timedelta(days=7)) 

    intervals.append(timedelta(days=31)) 

 

    date = datetime.strptime(date, '%b %d, %Y') 

    six_dates = [] 

    for interval in intervals: 

        new_date = date + interval 

        new_date = tweak_date(new_date) 

        new_date = new_date.strftime('%Y %b %d') 

        six_dates.append(new_date) 

     

    # deal with weekends 

    #if date_after.weekday() == 5: 

    #   date_after += 2 * interval 

    #date_after = date_after.strftime('%Y %b %d') 

    return six_dates 

 

# get price data 

def get_data(symbol, date): 

    data = [] 

    # parameters of URL 

    params = {'q': symbol, 'startdate': date, 'enddate': date} 

    soup = get_soup(params) 

    # get a line of prices 

    for s in soup('td'): 
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        try: 

            if s.get('class')[0] == 'rgt': 

                s = str(s.text) 

                data = s.split('\n') 

                break 

        except: continue 

    if data == []: 

        data = ['-'] * 4 

        return data 

    for d in data: 

        if d == '': 

            data.remove(d) 

    # Open, High, Low, Close, Volume 

    if len(data) == 5: 

        data.pop() 

    return data 
 

def get_stock_price(symbols, dates): 

    if not len(dates) == len(symbols): 

        print 'ERROR' 

    prices = [] 

    for i in range(len(symbols)): 

        six_dates = get_six_dates(symbols[i], dates[i]) 

        close_prices = [] 

        # get the close prices 

        for date in six_dates: 

            close_prices.append(get_data(symbols[i], date)[3]) 

        # symbol + prices 

        prices.append((symbols[i], dates[i], close_prices)) 

    return prices 

    #prices = collections.OrderedDict(sorted(prices.items())) 

 

def write_csv(prices): 

    global symbols, dates 

    # if 'w' mode, every line follows by an extra new line 

    with open('Stock_Prices.csv', 'wb') as f: 

        w = csv.writer(f) 

        w.writerow(['Stock Symbol', 'Release Date', 'Close Price']) 

        for p in prices: 

            w.writerow([p[0], p[1], p[2][0], p[2][1], p[2][2], p[2][3], p[2][4], p[2][5]]) 

 

print '--starting...--' 

start = time.time() 

dates = get_dates(file_paths()) 

symbols = get_symbols(file_paths()) 

prices = get_stock_price(symbols, dates) 
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write_csv(prices) 

 

save = open("Pickled/stock_price.pickle","wb") 

pickle.dump(prices, save) 

save.close() 

print '--stock price saved--' 

print "run time:", time.time() - start 

 

 

Get_Missing_Stock_Price.py 
 
import requests, time, pickle 

from bs4 import BeautifulSoup 

from datetime import datetime, timedelta 

import requests.packages.urllib3 

requests.packages.urllib3.disable_warnings() 

import csv 

 

def get_soup(params): 

    headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) 

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 

Safari/537.36'} 

    r = requests.get("https://www.google.com/finance/historical", params=params, 
headers=headers) 

    soup = BeautifulSoup(r.text, 'html.parser') 

    return soup 

 

def get_price(symbol, date, index): 

    price = get_data(symbol, date)[3] 

    if index < 3: 

            interval = timedelta(days=-1) 

    else: interval = timedelta(days=1) 

    counter = 1 

    # keep checking the price and date for at most 10 times 

    while price == '-' and counter <= 10: 

        date = date + interval 

        price = get_data(symbol, date)[3] 

        counter += 1 

    return price 

 

def get_data(symbol, date): 

    data = [] 

    date = date.strftime('%Y %b %d') 

    # parameters of URL 

    params = {'q': symbol, 'startdate': date, 'enddate': date} 

    soup = get_soup(params) 
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    # get a line of prices 

    for s in soup('td'): 

        try: 

            if s.get('class')[0] == 'rgt': 

                s = str(s.text) 

                data = s.split('\n') 

                break 

        except: continue 

    if data == []: 

        data = ['-'] * 4 

        return data 

    for d in data: 

        if d == '': 

            data.remove(d) 

    # Open, High, Low, Close, Volume 

    if len(data) == 5: 
        data.pop() 

    return data 

 

def write_csv(full_stock_prices): 

    with open('Full_Stock_Prices.csv', 'wb') as f: 

        w = csv.writer(f) 

        w.writerow(['Stock Symbol', 'Release Date', 'Close Price']) 

        for p in full_stock_prices: 

            w.writerow([p[0], p[1], p[2][0], p[2][1], p[2][2], p[2][3], p[2][4], p[2][5]]) 

 

 

start = time.time() 

with open("Pickled/stock_price.pickle") as prices: 

        stock_prices = pickle.load(prices) 

# The price of the date is already missing, so check the day before or after 

table = [-32, -8, -2, 2, 8, 32] 

 

full_stock_prices = [] 

for element in stock_prices: 

    index = 0 

    prices = [] 

    for p in element[2]: 

        if p == '-': 

            date = element[1] 

            date = datetime.strptime(date, '%b %d, %Y') 

            date = date + timedelta(days=table[index]) 

            price = get_price(element[0], date, index) 

            prices.append(price) 

            #print price 

        else: prices.append(p) 
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        index += 1 

    full_stock_prices.append((element[0], element[1], prices)) 

 

write_csv(full_stock_prices) 

save = open("Pickled/full_stock_price.pickle","wb") 

pickle.dump(full_stock_prices, save) 

save.close() 

print "run time:", time.time() - start 

 

 

Save_All_Words.py 
 
import glob, re, pickle, random, time 

from nltk.tokenize import word_tokenize 

 

# get file paths 

def file_paths(): 

    return glob.glob('Domestic/*/*') 

 
# get all the "clean" words in corpus 

def save_words(filepaths): 

    stop_words = [] 

    with open('TXT/stop_words.txt', 'r') as stop: 

        for s in stop: 

            stop_words.append(s.decode('utf-8').strip()) 

    extra_words = [] 

    with open('TXT/extra_words.txt', 'r') as extra: 

        for e in extra: 

            extra_words.append(e.decode('utf-8').strip()) 

    country_names = [] 

    with open('TXT/country_names.txt', 'r') as country: 

        for c in country: 

            country_names.append(c.decode('utf-8').strip()) 

    city_names = [] 

    with open('TXT/US_city_names.txt', 'r') as city: 

        for c in city: 

            names = c.decode('utf-8').split(' ') 

            for name in names: 

                city_names.append(name) 

    airport_names = [] 

    with open('TXT/airport_names.txt', 'r') as airport: 

        for a in airport: 

            names = a.decode('utf-8').split(' ') 

            for name in names: 

                airport_names.append(name) 
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    remove_list = set(extra_words + country_names + city_names + airport_names) 

     

    all_words = [] 

    for path in filepaths: 

        with open(path, 'r') as f: 

            sub_words = [] 

            for lines in f: 

                words = word_tokenize(lines.decode('utf-8')) 

                for w in words: 

                    # remove abbreviation like 's / 've / 'm 

                    w = re.sub(r'\W\w*', '', w) 

                    # remove abbreviation like J. / D. / L. 

                    w = re.sub(r'\w\W', '', w) 

                    # remove phrases like 1q08 2Q15 

                    w = re.sub(r'\dQ\d\d|\dq\d\d', '', w) 

                    w = re.sub(r'FY\d\d|fy\d\d', '', w) 
                    w = re.sub(r'\W+', '', w) 

                    w = re.sub(r'\d+', '', w) 

                    # remove punctuation 

                    if len(w) > 3 and w not in remove_list: 

                        w = w.lower() 

                        if w not in stop_words: 

                            sub_words.append(w) 

            all_words.append(sub_words) 

    save = open("Pickled/all_words.pickle","wb") 

    pickle.dump(all_words, save) 

    save.close() 

    print '--all_words saved--' 

 

start = time.time() 

save_words(file_paths()) 

print "run time:", time.time() - start 

 

 

 

Save_Rep_of_Transcripts.py 
 
import pickle, time 

 

# get intersection of transcripts and lexicon 

def save_rep(): 

    with open("Pickled/all_words.pickle", "rb") as word: 

        all_words = pickle.load(word) 

    with open("Pickled/stock_price_senti_score.pickle", "rb") as score: 
        scores = pickle.load(score) 

    with open("Pickled/L_McDonald_Dict_POS.pickle","rb") as pos: 
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        pos_lexicon  = pickle.load(pos) 

    with open("Pickled/L_McDonald_Dict_NEG.pickle","rb") as neg: 

        neg_lexicon = pickle.load(neg) 

    rep_of_trans = [] 

    for i, item in enumerate(all_words): 

        word_rep = [] 

        for word in item: 

            if word in (pos_lexicon + neg_lexicon): 

                word_rep.append(word) 

 

        word_score_dict = (dict([(word, True) for word in word_rep]), scores[i][2]) 

        rep_of_trans.append(word_score_dict) 

 

    save = open("Pickled/rep_of_trans.pickle","wb") 

    pickle.dump(rep_of_trans, save) 

    save.close() 
    print '--rep_of_trans saved--' 

 

start = time.time() 

save_rep() 

print "run time:", time.time() - start 

 

 

Calculate_Sentiment_Score.py 
 
import pickle, csv 

 

with open("Pickled/full_stock_price.pickle") as prices: 

        stock_prices = pickle.load(prices) 

 

stock_price_senti_score = [] 

with open('Stock_Prices_Senti_Score.csv', 'wb') as f: 

    w = csv.writer(f) 

    w.writerow(['Stock Symbol', 'Release Date']) 

    for e in stock_prices: 

        v1 = float(e[2][5]) - float(e[2][0]) 

        v2 = float(e[2][4]) - float(e[2][1]) 

        v3 = float(e[2][3]) - float(e[2][2]) 

        if v1 > 0: 

            s1 = "> 0" 

            if v2 > 0: 

                s2 = "> 0" 

                if v3 > 0: 

                    s3 = "> 0" 

                    senti_score = 1 
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                else: 

                    s3 = "<= 0" 

                    senti_score = -3 

            else: 

                s2 = "<= 0" 

                if v3 > 0: 

                    s3 = "> 0" 

                    senti_score = 2 

                else: 

                    s3 = "<= 0" 

                    senti_score = -1 

        else: 

            s1 = "<= 0" 

            if v2 > 0: 

                s2 = "> 0" 

                if v3 > 0: 
                    s3 = "> 0" 

                    senti_score = 1 

                else: 

                    s3 = "<= 0" 

                    senti_score = -2 

            else: 

                s2 = "<= 0" 

                if v3 > 0: 

                    s3 = "> 0" 

                    senti_score = 3 

                else: 

                    s3 = "<= 0" 

                    senti_score = -1 

        w.writerow([e[0], e[1], s1, s2, s3, senti_score]) 

        stock_price_senti_score.append([e[0], e[1], senti_score]) 

 

save = open("Pickled/stock_price_senti_score.pickle","wb") 

pickle.dump(stock_price_senti_score, save) 

save.close() 
 

 

 

Three_Way_Split.py 
 

import pickle, random, time, nltk 

from nltk.classify.scikitlearn import SklearnClassifier 

from sklearn.naive_bayes import MultinomialNB, BernoulliNB 

from sklearn.linear_model import LogisticRegression, SGDClassifier 

from sklearn.svm import LinearSVC 

 

def train_test(train_set, validation_set): 
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    NB_cl = nltk.NaiveBayesClassifier.train(train_set) 

    MNB_cl = SklearnClassifier(MultinomialNB()).train(train_set) 

    BNB_cl = SklearnClassifier(BernoulliNB()).train(train_set) 

    LR_cl = SklearnClassifier(LogisticRegression()).train(train_set) 

    SGD_cl = SklearnClassifier(SGDClassifier()).train(train_set) 

    LSVC_cl = SklearnClassifier(LinearSVC()).train(train_set) 

 

    nb_test = nltk.classify.accuracy(NB_cl, test_set) 

    mnb_test = nltk.classify.accuracy(MNB_cl, test_set) 

    bnb_test = nltk.classify.accuracy(BNB_cl, test_set) 

    lr_test = nltk.classify.accuracy(LR_cl, test_set) 

    sgd_test = nltk.classify.accuracy(SGD_cl, test_set) 

    lsvc_test = nltk.classify.accuracy(LSVC_cl, test_set) 

    f.write("NaiveBayes Test Accuracy: " + str(nb_test) + "\n") 

    f.write("MultinomialNB Test Accuracy: " + str(mnb_test) + "\n") 

    f.write("BernoulliNB Test Accuracy: " + str(bnb_test) + "\n") 
    f.write("LogisticRegression Test Accuracy: " + str(lr_test) + "\n") 

    f.write("SGDClassifier Test Accuracy: " + str(sgd_test) + "\n") 

    f.write("LinearSVC Test Accuracy: " + str(lsvc_test) + "\n\n") 

 

with open("Pickled/rep_of_trans.pickle", "rb") as rep: 

        rep_of_trans = pickle.load(rep) 

random.seed(time.time()) 

random.shuffle(rep_of_trans) 

rep_of_trans_size = len(rep_of_trans)    # 325 

cut_off = 0.2 

test_cut_off = int(rep_of_trans_size * cut_off) 

test_set = rep_of_trans[:test_cut_off] 

rep_of_trans = rep_of_trans[test_cut_off:] 

training_size = int(rep_of_trans_size * (1 - cut_off)) 

validation_size = int(rep_of_trans_size * (1 - cut_off) * cut_off) 

 

counter = 1 / cut_off 

f = open('Accuracy.txt', 'w') 

for i in range(0, training_size, validation_size): 

    validation_set = rep_of_trans[i:i+validation_size] 

    train_set = [item for item in rep_of_trans if item not in validation_set] 

    train_test(train_set, validation_set) 
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Appendix B: Best Accuracy 

NaiveBayes Test Accuracy: 0.123076923077 

MultinomialNB Test Accuracy: 0.492307692308 

BernoulliNB Test Accuracy: 0.476923076923 

LogisticRegression Test Accuracy: 0.415384615385 

SGDClassifier Test Accuracy: 0.276923076923 

LinearSVC Test Accuracy: 0.384615384615 

 

NaiveBayes Test Accuracy: 0.107692307692 

MultinomialNB Test Accuracy: 0.461538461538 

BernoulliNB Test Accuracy: 0.430769230769 

LogisticRegression Test Accuracy: 0.430769230769 

SGDClassifier Test Accuracy: 0.338461538462 

LinearSVC Test Accuracy: 0.4 

 

NaiveBayes Test Accuracy: 0.107692307692 

MultinomialNB Test Accuracy: 0.415384615385 

BernoulliNB Test Accuracy: 0.415384615385 

LogisticRegression Test Accuracy: 0.476923076923 

SGDClassifier Test Accuracy: 0.384615384615 

LinearSVC Test Accuracy: 0.446153846154 

 

NaiveBayes Test Accuracy: 0.107692307692 

MultinomialNB Test Accuracy: 0.446153846154 

BernoulliNB Test Accuracy: 0.446153846154 

LogisticRegression Test Accuracy: 0.384615384615 

SGDClassifier Test Accuracy: 0.415384615385 

LinearSVC Test Accuracy: 0.430769230769 

 

NaiveBayes Test Accuracy: 0.0769230769231 

MultinomialNB Test Accuracy: 0.461538461538 

BernoulliNB Test Accuracy: 0.476923076923 

LogisticRegression Test Accuracy: 0.4 

SGDClassifier Test Accuracy: 0.338461538462 

LinearSVC Test Accuracy: 0.384615384615 


