

Dong Liang. Predicting Stock Price Changes with Earnings Call Transcripts. A Master’s

Paper for the M.S. in I.S degree. April, 2016. 43 pages. Advisor: Arcot Rajasekar

This paper adopts sentiment analysis approaches to predict stock price changes of 14

major U.S. airlines, using 325 earnings call transcripts from year 2007 to 2015. We

combined machine learning classification techniques with Loughran and McDonald

Sentiment Word Lists (Master Dictionary), and built the Python program from scratch.

Text transcripts as well as stock prices were captured online. Transcripts were labeled

according to sentiment scores defined by us. After a three-way data split, all six

algorithms failed to result in an ideal accuracy. The results suggest that earnings call

transcripts are not informative enough to predict stock price changes.

Headings:

Sentiment Analysis

Text Mining

Machine Learning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210609276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PREDICTING STOCK PRICE CHANGES WITH EARNINGS CALL TRANSCRIPTS

by

Dong Liang

A Master’s paper submitted to the faculty

of the School of Information and Library Science

of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements

for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

April 2016

Approved by

Arcot Rajasekar

 1

Table of Contents

1. Introduction ... 2
2. Research Question .. 6
3. Literature review .. 7

3.1 Sentiment Analysis ... 7

3.2 Financial Documents and Stock Market ... 8

3.3 Lexicons .. 9

4. Earnings Call Transcripts .. 12
5. Methodology .. 14

5.1 Overview ... 14

5.2 Data Collection ... 15

5.2.1 Earnings Call Transcripts ... 15

5.2.2 Stock Prices .. 16

5.3 Data Preprocessing.. 18

5.3.1 Data Cleaning... 18

5.3.2 Transcript Representations... 19

5.4 Data Analysis .. 20

5.4.1 Sentiment Score ... 20

5.4.2 Three-Way Data Split .. 22

5.4.3 Classifiers ... 23

5.4.4 Cross Validation... 23

6. Results and Discussion .. 25
7. Conclusion ... 27
References .. 29
Appendix A: Python Codes .. 31

Appendix B: Best Accuracy ... 41

2

1. Introduction

The stock market has long been a fascinating topic for people from diverse

backgrounds all over the world. The prediction of stock price is also quite hot in the past

years. The accuracy of the prediction varies significantly due to the complexity and

variability of the stock market. In recent years, many researchers have got good results

with the help of sentiment analysis techniques and social media services like Twitter

(Bollen et al., 2010; Ruiz et al., 2012; Souza et al., 2015). As there already exist quite a

few excellent findings on social media sources, in this paper, we switch to another data

source, the earnings call transcripts, but still use the sentiment analysis techniques.

Sentiment analysis or opinion mining refers to the application of natural language

processing, computational linguistics and text analytics to identify and extract subjective

information in source materials1. It consists of four major elements: the holder, target,

polarity and types of attitude2.

In general, there are several types of sentiment analysis. A basic one is to

understand whether a text represents an objective or a subjective idea. A deeper approach

is based on the analysis of the polarity of the text (i.e., positive, negative or neutral).

Going further, another problem is to find out the intensity (also called strength) of an

emotional state underlying a text. A more complex problem is finding the exact emotions

conveyed by a textual expression, such as “happiness”, “sadness”, “anger” and so on.

3

Finally, the most challenging problem is represented by the extraction of users’

intentions, arguments and speculations (Robaldo and Caro, 2013).

Applications of sentiment analysis are quite hot in various contexts including

hotels, movies, restaurants, advertising, politics and the stock market in recent years. As

we all know, financial markets are considered to be complex and to be changing rapidly.

For example, financial research shows that stock prices adjust quickly on new

information such as dividend announcements or other company-related news (Fama,

1970). So the sentiment expressed in related financial articles or activities is of great

importance as well. Different studies provide evidence that it has an impact on the

following stock price reactions. For instance, the prevalence of negative sentiment can

lead to a decline in stock prices (Loughran and McDonald, 2011).

Accurately identifying sentiment is not easy. This is not only because it is not

unusual for humans to disagree about the sentiment of the same text, but also because of

the complex ways in which humans express sentiment, using irony, sarcasm, humor and

so on. What’s more, the order in which different opinions are presented can result in a

completely opposite overall sentiment polarity. For example, “This film should be

brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is

good as well, and Stallone is attempting to deliver a good performance. However, it can’t

hold up.” Interestingly, neutral comments in feedback systems are perceived by users as

negative ones rather than lying at the exact mid-point between positive and negative

comments. (Pang and Lee, 2008)

Since there are many outstanding studies on social media sentiment analysis, we

decided to try to use another type of data source. All public companies have to hold

4

earnings call and the transcripts are publicly accessible. The importance, length and

number of those transcripts are also quite appropriate for our analysis.

Prior to our study, I did some analysis on the movie review corpus of Python

NLTK package. The corpus consist of a thousand positive reviews and a thousand

negative reviews. Since the reviews are quite simple and short, classification algorithms

alone are sufficient for sentiment polarity prediction, yielding an average accuracy of

over 80%. Inspired by previous studies and my experiments, we treat the analysis as a

classification problem in the field of machine learning and take advantage of the

Loughran and McDonald Sentiment Word List created from 10-K reports. We also

designed a sentiment score serving as the label or target value of the transcripts.

Prediction is evaluated by accuracy, which is calculated based on how well the

classification algorithms predict the sentiment scores.

One of the innovation points of our study is that our data source is earnings call

transcripts instead of social media posts. Although many studies have shown that social

media data is sufficient enough to yield good results, we want to explore other sources

that may result in meaningful outcomes in a different way.

Another innovation point is that this paper combines classification techniques

with a sentiment score metric defined by us. In some prior studies, sentiment score is

calculated based on occurrences of words in texts or the intersection of some lexicon and

texts. In this paper, we define our own sentiment score metric according to the trends of

stock prices. However, the results we got are not ideal, suggesting that earnings call

transcripts alone are not informative enough for predicting stock price changes. We will

continue to explore this combination in future work.

5

1 https://en.wikipedia.org/wiki/Sentiment_analysis
2 https://www.coursera.org/course/nlp

6

2. Research Question

Since we’ve done some research related to airlines before, and there are few

studies focusing on earnings call transcripts, we form our research questions: (1) To what

extent are stock price changes of major U.S. airlines associated with earnings call

transcripts? (2) Can we use transcripts of an airline to predict its stock price changes?

This kind of research may provide some insights for intelligent investment. For

this purpose, we study whether sentiment analysis is useful in predicting stock price

changes after the release of some articles on finance. In our paper, they are the earnings

call transcripts. We adopted a novel approach: combine machine learning classification

techniques with a lexicon and sentiment score. First, we created a representation for each

transcript in order to get rid of meaningless words. Second, we computed a sentiment

score for each representation based on the trends of stock price changes within 31 days of

the release date. Third, several classification algorithms are trained according to

sentiment scores. Finally, we employed a three-way data split and accuracy is calculated

and used to evaluate the results.

7

3. Literature review

3.1 Sentiment Analysis

There exist two main approaches to the problem of extracting sentiment

automatically (Taboada et al., 2011): Text classification (supervised) and lexicon-based

approach (unsupervised).

 Pang et al. (2002) build a sentiment lexicon for movie reviews to indicate

positive and negative opinion. They also experiment with n-grams and three machine

learning algorithms: Naive Bayes classification, maximum entropy classification, and

support vector machines, though the most successful features seem to be basic unigrams

with an accuracy of 82.9%. Given the results, we mainly focus on study of unigrams and

their cleaning.

Pang & Lee (2008) provide an excellent recent survey of opinion mining or

sentiment analysis problems and approaches used to tackle them. They mention that

building a lexicon takes a great amount of time because researches are required in order

to determine which words have strong enough sentiment consistently across domains to

be included and care must be given to maintain the list so that it excludes superfluous

terms. This leads to another issue of sentiment analysis – domain context, rather than just

textual context. Since we are unable to afford to build our own lexicon, we take

advantage of an existing lexicon generated by 10-K reports.

8

Turney (2002) takes a lexicon-based approach, and PMI-IR (Pointwise Mutual

Information and Information Retrieval) algorithm is employed to estimate semantic

orientation. Lin et al. (2014) construct a microblog-oriented sentiment lexicon using the

Semantic Orientation from Pointwise Mutual Information (SO-PMI). These papers

remind us of the importance of feature extraction and elimination of low information

features.

The majority of the statistical text classification researches build Support Vector

Machine classifiers, trained on a particular data set using features such as unigrams or

bigrams, and with or without part-of-speech labels (Pang, Lee and Vaithyanathan, 2002;

Salvetti, Reichenbach and Lewis, 2006).

3.2 Financial Documents and Stock Market

A supervised approach is conducted by Antweiler & Frank (2004) who collect

messages posted on two finance message boards. They manually determine the sentiment

of a sub-sample of 1,000 messages and use these messages to train a classifier. Then this

classifier is used to assess the sentiment of the remaining messages. In this paper, we

defined our own sentiment score metric derived from 8 kinds of stock price changes.

Tetlock (2007) analyzes the sentiment of a daily wall street journal column. He

uses the General Inquirer’s Harvard-IV-4 classification dictionary to classify each word

of the column according to its sentiment. Afterwards, he uses these classified words to

calculate a pessimism factor.

Loughran & McDonald (2011) evaluate the sentiment of 10-K company reports.

They develop different word lists containing positive and negative terms. They calculate

the number of negative words per report to determine a negativity measure. This

9

dictionary, which is also called Master Dictionary, is well-built and extremely useful to

our study. We chose this lexicon for creating the representations of transcripts.

Siering (2012) adopts Support Vector Machine for the prediction of stock price

reactions following a financial news message. He uses both Harvard-IV-4 lexicon and

FIN provided by (Loughran & McDonald, 2011). Every document is represented by top

500 features in terms of corresponding information gain. Moreover, his document-level

sentiment measure is an inspiring idea to our study. We computed a sentiment score for

the representation of each transcript based on the intersection of the texts and the Master

Dictionary.

3.3 Lexicons

Several lexicons are publicly available online such as Hu and Liu's Opinion

Lexicon, MPQA Opinion Corpus, General Inquirer, SentiWordNet, LIWC and Loughran

and McDonald Sentiment Word Lists.

The Hu and Liu’s Opinion Lexicon is compiled over many years starting from

Professor Bing Liu and Dr. Minqing Hu’s first paper at University of Illinois at Chicago.

It consists of about 6800 positive and negative English sentiment words3.

The MPQA Opinion Corpus contains news articles from a wide variety of news

sources manually annotated for opinions and other private states (i.e., beliefs, emotions,

sentiments, speculations, etc.)4.

The General Inquirer contains several dictionaries: (1) the Harvard IV-4

dictionary, (2) the Lasswell value dictionary, (3) several categories recently constructed,

and (4) "marker" categories primarily developed as a resource for disambiguation. It also

10

has a positive word list with 1915 words and a negative word list with 2291 words. The

category and strength of words are labelled as well5.

SentiWordNet is a lexical resource for opinion mining. It assigns to each synset of

WordNet (Esuli & Sebastiani, 2006, p. 417) three sentiment scores: positivity, negativity,

objectivity. A synset is a set of terms that are held together by a common definition. The

current version of SentiWordNet is 3.0 (Baccianella et al., 2010)6.

LIWC stands for Linguistic Inquiry and Word Count. It’s a program that reads a

given text and counts the percentage of words that reflect different emotions, thinking

styles, social concerns, and even parts of speech. LIWC was developed by researchers

with interests in social, clinical, health, and cognitive psychology, the language

categories were created to capture people’s social and psychological states. The latest

LIWC2015 Dictionary is composed of almost 6,400 words, word stems, and select

emoticons7.

Loughran and McDonald Sentiment Word Lists (Master Dictionary) has about

85,131 words. It is created by Professor Tim Loughran and Bill McDonald at University

of Notre Dame. The dictionary includes statistics for word frequencies in all 10-K

documents from 1994-2014 (including 10-X variants). It reports counts, proportion of

total, average proportion per document, standard deviation of proportion per document,

document count (i.e., number of documents containing at least one occurrence of the

word), nine sentiment category identifiers (e.g., negative, positive, uncertainty, litigious,

modal, constraining), Harvard Word List identifier, number of syllables, and source for

each word8.

11

Besides lexicons of general sentiment analysis purposes, some lexicons have lists

of different categories. For example, 570 words in the General Inquirer are of an

economic orientation. We selected Master Dictionary as the lexicon for our analysis since

it’s well tailored to financial domain and has both positive and negative terms.

3 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
4 http://mpqa.cs.pitt.edu
5 http://www.wjh.harvard.edu/~inquirer/homecat.htm
6 http://sentiwordnet.isti.cnr.it
7 http://liwc.wpengine.com
8 http://www3.nd.edu/~mcdonald/Word_Lists.html

12

4. Earnings Call Transcripts

An earnings call is a teleconference, or increasingly a webcast, in which a public

company discusses the financial results of a reporting period via an 800 number and on

the internet. The name comes from earnings per share (EPS), the bottom line number in

the income statement divided by the number of shares outstanding9.

Holding earnings calls once a quarter is a requirement for all public companies.

The transcripts will be available online shortly after the event. Attendees include

executives of a company as well as some analysts. The management team would first talk

about their financial performance over the last quarter, followed by a Q&A section with

the analysts. Sometimes, future plans would also be revealed during an earnings call.

Figure 1. Earnings call transcript snippet

13

The transcripts are accessible for free on websites such as Seeking Alpha10.

In this paper, we collected transcripts of 14 major U.S. airlines from year 2007 to

2015. Among these quarters, some transcripts are missing or some stock prices are

unavailable due to merger. So we got 325 transcripts in total and the average size is about

49 kilobytes.

9 https://en.wikipedia.org/wiki/Earnings_call
10 http://seekingalpha.com/earnings/earnings-call-transcripts

14

5. Methodology

The goal of our study is to find out the relationship between stock price changes

and the sentiments conveyed in earnings call transcripts, and potential predictability of

the changes.

Our research questions are:

(1) To what extent are stock price changes of major U.S. airlines associated with

earnings call transcripts?

(2) Can we use transcripts of an airline to predict its stock price changes?

5.1 Overview

In order to achieve our goal, we adopted a novel approach: combining machine

learning techniques with a sentiment lexicon, and using sentiment score as the indicator

of stock price changes. Our program is written in Python from scratch. In short, there are

four steps. Firstly, since on average, each transcript has around 10,000 words, which

includes a lot of meaningless words. To eliminate those low information words, in

addition to stopwords removal, we compare every transcript with the Master Dictionary

and take the intersection as the representation of that transcript, assuming words appear in

the lexicon are more informative than those do not. In this way, a representation may

only contain tens or hundreds of “good” words. Secondly, after getting stock prices, we

compute 8 types of sentiment score for each representation of transcript according to

15

different stock price changes. This price serves as the label or target value of every

transcript. Thirdly, six machine learning classifiers are trained and tested via a three-way

data split. The proportion of training set to test set and nested training set to validation set

are both 8:2. Finally, accuracy is calculated and used to evaluate the results. Codes are in

Appendix A.

5.2 Data Collection

5.2.1 Earnings Call Transcripts

The data for our study is earnings call transcripts of 14 major airlines of United

States: American Airlines, Atlas Air, Allegiant Air, Alaska Airlines, Delta Air Lines,

Hawaiian Airlines, JetBlue Airways, US Airways, Southwest Airlines, Republic Airlines,

Spirit Airlines, SkyWest Airlines, United Airlines and UPS Airlines. US Airways merged

with American Airlines but have transcripts from year 2007 to 2013. UPS is the world’s

largest package delivery company and it has a large fleet so it’s on our list.

We can have access to the texts online on Seeking Alpha. As there are so many

transcripts, getting them manually is very inefficient. With the help of Python library

Requests and Beautiful Soup, and regular expressions, we captured all transcripts

automatically. The release dates were also recorded in order to get stock price afterwards.

Texts are saved as .doc files in UTF-8 encoding. The folder names are stock symbols.

The file name is made up of quarter, stock symbol or airline name and release date. For

example: “2014 Q2 American Airlines-Jul 24, 2014.doc”. Transcripts are stored locally

in a hard drive instead of a database since they are not complex in terms of variety.

16

Figure 2. Examples of transcript files

In some cases, the websites would block our program because it detected unusual

large amount of data flow. One workaround is to fake an operating system and browser

header to make the websites believe that our program is a person surfing the Internet.

5.2.2 Stock Prices

Historical stock prices are available on websites such as Google Finance11 and

Yahoo Finance12. For this study, we chose Google Finance as our data source. To reflect

stock price changes, we collected close prices on 6 dates related to the release date of a

transcript: 31 days before and after the date, 7 days before and after the date and 1 day

before and after the date. If a price is missing (i.e., that day is a holiday or weekend), the

program would iteratively check for the previous or next available price, making sure that

every transcript is associated with 6 close prices. Table 1 shows a part of transcripts and

close prices.

17

Table 1. Stock symbol, release date and close price

Table 2 shows the 14 airlines and their stock symbols in NASDAQ. If an airline

does not have a stock symbol, we use the stock symbol of its parent organization.

Airline Name Stock Symbol

American Airlines AAR / AAL

Atlas Air AAWW

Allegiant Air ALGT

Alaska Airlines ALK

Delta Air Lines DAL

Hawaiian Airlines HA

JetBlue Airways JBLU

US Airways LCC

Southwest Airlines LUV

Republic Airlines RJET

Spirit Airlines SAVE

SkyWest Airlines SKYW

United Airlines UAL

UPS Airlines UPS

Table 2. Airline names and stock symbols

18

5.3 Data Preprocessing

5.3.1 Data Cleaning

The earnings call transcripts we captured from Seeking Alpha are quite noisy.

Each transcript contains about 10,000 words, among which there are a large number of

meaningless words. So the first step of data preprocessing is to remove the stopwords.

Stopwords are words that are generally considered useless since they are so common in

the corpus that including them would greatly increase computational complexity without

improving accuracy. The Python NLTK package has a stopword list that includes a list of

127 English stopwords, which is the basis of our customized list. Whereas, these words

are far from enough, we manually added more words to the list according to the

characteristics of our corpus. For example, airline names, weekday names, English

numbers and so on.

Figure 3. NLTK stopword list

As there are a lot of proper nouns in the transcripts such as human names, city

names and organization names, which are also considered as stopwords, we created a list

for the removal of these words. For example, “Jerry”, “Alexandre”, “Vancouver”,

“Goldman Sachs”, etc.

19

In addition, regarding our transcripts, airport names, country names and U.S. city

names are also meaningless. So we constructed 3 lists called “airport_names.txt”,

“country_names.txt” and “US_city_names.txt” for the elimination of these words.

After removing those stopwords, regular expressions are employed to remove

characters that are not English words, and abbreviations, symbols and digits. If the length

of a word is less than or equal to 3, we removed it as well because this kind of word tends

to contain less information.

The “clean” texts are saved as a .pickle file. Pickling is used for serializing and

de-serializing a Python object structure so that an object can be saved and loaded for

future usage.

5.3.2 Transcript Representations

The texts are relatively clean after stopword removal, but they are not clean

enough and not that informative. In order to clean the texts more thoroughly, reduce

computational complexity and improve the accuracy of prediction, we created a

representation for each transcript, that is, took the intersection of a transcript and the

Master Dictionary. If a word appears both in the transcript and the lexicon, it’s added to

the representation. In this way, we significantly reduced the number of words in each

transcript and at the same time, kept the informative ones in the representation. We only

need to handle tens or hundreds of words per representation rather than 10,000 words per

transcript. These words are considered to be rich in information in determining the

sentiment of a transcript as well as stock price changes.

20

Every representation is a Python dictionary and each element in the dictionary is

formatted as “word: True”, meaning it contains this word. Figure 4 shows an example of

the representation. Letter ‘u’ indicates Unicode encoding.

Figure 4. An example of the representation of a transcript

5.4 Data Analysis

5.4.1 Sentiment Score

Inspired by Siering (2012), we developed our own measurement called sentiment

score, which is the label for every representation to reflect the fluctuation of stock prices.

As each representation is associated with 6 close prices, we define them as P-31, P-7, P-1,

P+1, P+7 and P+31.

21

Stock Price

-31 days -7 days -1 day +1 day +7 day +31 day

P-31 P-7 P-1 P+1 P+7 P+31

Table 3. Six stock prices

Accordingly, there are 3 changes:

V1 = P+31 - P-31

V2 = P+7 - P-7

V3 = P+1 - P-1

The idea behind using 6 prices and 3 changes is that we want to have more

comprehensive measurement of the stock price changes and monitor whether the changes

are caused mainly by the transcripts or other factors.

Sentiment score is defined in Table 4.

V1 V2 V3 Sentiment Score

> 0 > 0 > 0 1

> 0 > 0 ≤ 0 -3

> 0 ≤ 0 > 0 2

> 0 ≤ 0 ≤ 0 -1

≤ 0 > 0 > 0 1

≤ 0 > 0 ≤ 0 -2

≤ 0 ≤ 0 > 0 3

≤ 0 ≤ 0 ≤ 0 -1

Table 4. Calculation of sentiment score

22

A sentiment score is assigned to every representation and is set as the label. It’s

also added to the Python dictionary of representations. The structure is: ({dictionary},

sentiment score).

Table 5. Sentiment score and representation of transcript

5.4.2 Three-Way Data Split

In order to get more accurate, not biased and better results, we performed a three-

way data split on the corpus. We divided all the representations into 3 sets: training set,

validation set and test set. The training set is used for fitting a classifier, the validation set

is used to tune the classifier, and the test set is used only for assessing the performance of

a trained classifier.

Figure 5. Three-way data split

23

We held out 20% of our data as the test set and in the remaining 80% of data,

20% is used as the validation set. So the size of training set to validation set to test set

equals 64: 16: 20.

5.4.3 Classifiers

We treat our analysis as a classification problem so appropriate classifiers are

needed. Naïve Bayes, linear models, SVM are commonly used in classification.

Naive Bayes methods are a set of supervised learning algorithms based on

applying Bayes’ theorem with the “naïve” assumption of independence between every

pair of features. The different naive Bayes classifiers differ mainly by the assumptions

they make. They are simple to implement and efficient.

Logistic Regression is generally used for predicting a categorical outcome. SGD

estimator implements regularized linear models with stochastic gradient descent learning.

Given our problem, we picked six classifiers for our study: Naïve Bayes,

Multinomial Naïve Bayes, Bernoulli Naïve Bayes, Logistic Regression, Stochastic

Gradient Descent (SGD) and Linear Support Vector. These classifiers are available in

Python scikit-learn package13.

5.4.4 Cross Validation

We followed the idea of k-fold cross validation. Since we took 20% of the data as

the test set, it’s a 5-fold cross validation. For each experiment:

(1) Shuffle the whole data set (representations and sentiment scores)

(2) Divide the whole set into training set, validation set and test set

(3) Train the six classifiers using the training set

24

(4) Evaluate the classifiers using the validation set

(5) Perform 5-fold cross validation on the training set and validation set

(6) Select the model that yields highest accuracy

(7) Assess this model using the test set

The definition of accuracy is the percentage of correct prediction of sentiment

score made by a classifier. As different sentiment scores indicate different types of stock

price changes, accuracy is the key metric in determining to what extent are stock price

changes associated with earnings call transcripts and whether can we use them to predict

stock price changes.

11 https://www.google.com/finance
12 http://finance.yahoo.com
13 http://scikit-learn.org

25

6. Results and Discussion

Results of our experiments were written to a text file called “Accuracy.txt”. All

six classifiers failed to get an accuracy over 50%, which was not what we expected. After

running experiments for more times, the best accuracy we could get was 49% achieved

by the Multinomial Naïve Bayes classifier. The Bernoulli Naïve Bayes classifier got a

similar accuracy and the Naïve Bayes did the worst. The output file is in Appendix B.

Figure 6. Best accuracy

The failure may be caused by multiple factors since prediction of stock price

changes is very complicated. The low accuracy may due to inappropriate data source,

representation of texts or inaccurate models, etc.

Earnings call transcripts are relatively less used in predicting stock price changes,

though it’s a “new” perspective of solving the problem of prediction, transcripts alone do

not suffice to affect the stock prices.

26

In addition, problems may lie in data processing. Due to limitations, it’s likely

that we got rid of words rich in sentiment but kept some useless words. Moreover,

building representation of transcripts is also very important yet difficult. A lexicon that is

manually created and customized is key to the success of filtering useful words. Polarity

as well as sentiment strength in different context must be taken into account. Text mining

techniques such as stemming and bi-grams may also be beneficial in some circumstances.

Last but not least, classifiers also have much room for improvement. The training

and test strategy, selection of algorithms and tuning of parameters all contribute to an

ideal accuracy.

Nevertheless, the results suggest that earnings call transcripts alone are not

informative enough to predict stock price changes. There may be little causation between

the two. Stock market is way too complex and numerous factors need to be considered

when predicting stock prices. Admittedly, earnings call transcripts can only account for

little part of it. We can’t solely rely on these transcripts when making predictions.

27

7. Conclusion

We explored whether we can predict stock price changes of 14 major U.S. airlines

using their earnings call transcripts. We combined text mining techniques and a sentiment

lexicon (Master Dictionary) with machine learning classification, and defined a sentiment

score as the label of this supervised learning approach. A three-way data split was also

introduced. Then we took advantage of six classifiers and run 5-fold cross validation. We

wrote our program in Python from scratch instead of using other software.

The accuracy of our prediction was not ideal at all. None of the classifiers reached

more than 50%, which is like flipping a coin. The results suggest that earning call

transcripts have little influence on the stock price changes and they are not suitable for

predicting the stock market.

Future improvement includes:

 Variety of data sources. Stock prices are too complicated to be analyzed

based on few kinds of data sources.

 Text mining techniques. Text preprocessing and analysis skills need

further exploration.

 A tailored Lexicon. A more domain-specific and comprehensive lexicon

that is created manually is ideal for sentiment analysis.

 Choice of label. Sentiment score is a good concept but the definition and

formula may need modification.

28

 Model selection and tuning. More classifiers and parameters should be

considered.

We still have a long way to go in predicting stock price changes as the stock

market is changing every millisecond and we don’t have access to all the information,

and even we do, we can’t afford to process it. Although our study shows negative results,

we should keep exploring new sources and methods towards understanding or even

solving this mystery problem.

With the rising of machine learning techniques, sentiment analysis will be hotter

and hotter in the following years. It will definitely play a vital role in every part of

business and making the world a better place.

29

References

Antweiler, Werner, and Murray Z. Frank. "Is all that talk just noise? The information

content of internet stock message boards." The Journal of Finance 59.3 (2004):

1259-1294.

Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani. "SentiWordNet 3.0: An

Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining." LREC.

Vol. 10. 2010.

Bollen, Johan, Huina Mao, and Xiaojun Zeng. "Twitter mood predicts the stock market."

Journal of Computational Science 2.1 (2011): 1-8.

Dasgupta, Sajib, and Vincent Ng. "Mine the easy, classify the hard: a semi-supervised

approach to automatic sentiment classification." Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2.

Association for Computational Linguistics, 2009.

Esuli, Andrea, and Fabrizio Sebastiani. "Sentiwordnet: A publicly available lexical

resource for opinion mining." Proceedings of LREC. Vol. 6. 2006.

Fama, Eugene F. "Efficient capital markets: A review of theory and empirical work*."

The journal of Finance 25.2 (1970): 383-417.

Kaur, Amandeep, and Vishal Gupta. "A survey on sentiment analysis and opinion

mining techniques." Journal of Emerging Technologies in Web Intelligence 5.4

(2013): 367-371.

Lin, Lu, et al. "Opinion Mining and Sentiment Analysis in Social Networks: A

Retweeting Structure-Aware Approach." Utility and Cloud Computing (UCC),

2014 IEEE/ACM 7th International Conference on. IEEE, 2014.

Loughran, Tim, and Bill McDonald. "When is a liability not a liability? Textual analysis,

dictionaries, and 10‐Ks." The Journal of Finance 66.1 (2011): 35-65.

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment

classification using machine learning techniques." Proceedings of the ACL-02

conference on Empirical methods in natural language processing-Volume 10.

Association for Computational Linguistics, 2002.

30

Pang, Bo, and Lillian Lee. "Opinion mining and sentiment analysis." Foundations and

trends in information retrieval 2.1-2 (2008): 1-135.

Robaldo, Livio, and Luigi Di Caro. "Opinionmining-ml." Computer Standards &

Interfaces 35.5 (2013): 454-469.

Ruiz, Eduardo J., et al. "Correlating financial time series with micro-blogging activity."

Proceedings of the fifth ACM international conference on Web search and data

mining. ACM, 2012.

Siering, Michael. "" Boom" or" Ruin"--Does It Make a Difference? Using Text Mining

and Sentiment Analysis to Support Intraday Investment Decisions." System

Science (HICSS), 2012 45th Hawaii International Conference on. IEEE, 2012.

Souza, Thársis Tuani Pinto, et al. "Twitter sentiment analysis applied to finance: A case

study in the retail industry." arXiv preprint arXiv:1507.00784 (2015).

Taboada, Maite, et al. "Lexicon-based methods for sentiment analysis." Computational

linguistics 37.2 (2011): 267-307.

Tetlock, Paul C. "Giving content to investor sentiment: The role of media in the stock

market." The Journal of Finance 62.3 (2007): 1139-1168.

Turney, Peter D. "Thumbs up or thumbs down?: semantic orientation applied to

unsupervised classification of reviews." Proceedings of the 40th annual meeting

on association for computational linguistics. Association for Computational

Linguistics, 2002.

31

Appendix A: Python Codes

Get_Stock_Price.py

import requests, glob, time, pickle

from bs4 import BeautifulSoup

from datetime import datetime, timedelta

import requests.packages.urllib3
requests.packages.urllib3.disable_warnings()

import csv

get html files

def get_soup(params):

 headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95

Safari/537.36'}

 r = requests.get("https://www.google.com/finance/historical", params=params,

headers=headers)

 soup = BeautifulSoup(r.text, 'html.parser')

 return soup

get file paths

def file_paths():

 return glob.glob('Domestic/*/*')

get release dates of transcripts

def get_dates(filepaths):

 dates = []

 for path in filepaths:

 date = path.split('-')[1]

 date = date.replace('.doc', '')

 dates.append(date)

 return dates

get stock symbols

def get_symbols(filepaths):

 symbols = []

 for i in range(27):
 symbols.append('AAR')

32

 for path in filepaths[27:]:

 symbol = path.split('\\')[1]

 symbols.append(symbol)

 return symbols

convert weekends to Fridays

def tweak_date(date):

 interval = timedelta(days=1)

 if date.weekday() == 5:

 date -= interval

 elif date.weekday() == 6:

 date -= 2 * interval

 return date

get the date after release date

def get_six_dates(symbol, date):
 intervals = []

 intervals.append(timedelta(days=-31))

 intervals.append(timedelta(days=-7))

 intervals.append(timedelta(days=-1))

 intervals.append(timedelta(days=1))

 intervals.append(timedelta(days=7))

 intervals.append(timedelta(days=31))

 date = datetime.strptime(date, '%b %d, %Y')

 six_dates = []

 for interval in intervals:

 new_date = date + interval

 new_date = tweak_date(new_date)

 new_date = new_date.strftime('%Y %b %d')

 six_dates.append(new_date)

 # deal with weekends

 #if date_after.weekday() == 5:

 # date_after += 2 * interval

 #date_after = date_after.strftime('%Y %b %d')

 return six_dates

get price data

def get_data(symbol, date):

 data = []

 # parameters of URL

 params = {'q': symbol, 'startdate': date, 'enddate': date}

 soup = get_soup(params)

 # get a line of prices

 for s in soup('td'):

33

 try:

 if s.get('class')[0] == 'rgt':

 s = str(s.text)

 data = s.split('\n')

 break

 except: continue

 if data == []:

 data = ['-'] * 4

 return data

 for d in data:

 if d == '':

 data.remove(d)

 # Open, High, Low, Close, Volume

 if len(data) == 5:

 data.pop()

 return data

def get_stock_price(symbols, dates):

 if not len(dates) == len(symbols):

 print 'ERROR'

 prices = []

 for i in range(len(symbols)):

 six_dates = get_six_dates(symbols[i], dates[i])

 close_prices = []

 # get the close prices

 for date in six_dates:

 close_prices.append(get_data(symbols[i], date)[3])

 # symbol + prices

 prices.append((symbols[i], dates[i], close_prices))

 return prices

 #prices = collections.OrderedDict(sorted(prices.items()))

def write_csv(prices):

 global symbols, dates

 # if 'w' mode, every line follows by an extra new line

 with open('Stock_Prices.csv', 'wb') as f:

 w = csv.writer(f)

 w.writerow(['Stock Symbol', 'Release Date', 'Close Price'])

 for p in prices:

 w.writerow([p[0], p[1], p[2][0], p[2][1], p[2][2], p[2][3], p[2][4], p[2][5]])

print '--starting...--'

start = time.time()

dates = get_dates(file_paths())

symbols = get_symbols(file_paths())

prices = get_stock_price(symbols, dates)

34

write_csv(prices)

save = open("Pickled/stock_price.pickle","wb")

pickle.dump(prices, save)

save.close()

print '--stock price saved--'

print "run time:", time.time() - start

Get_Missing_Stock_Price.py

import requests, time, pickle

from bs4 import BeautifulSoup

from datetime import datetime, timedelta

import requests.packages.urllib3

requests.packages.urllib3.disable_warnings()

import csv

def get_soup(params):

 headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95

Safari/537.36'}

 r = requests.get("https://www.google.com/finance/historical", params=params,
headers=headers)

 soup = BeautifulSoup(r.text, 'html.parser')

 return soup

def get_price(symbol, date, index):

 price = get_data(symbol, date)[3]

 if index < 3:

 interval = timedelta(days=-1)

 else: interval = timedelta(days=1)

 counter = 1

 # keep checking the price and date for at most 10 times

 while price == '-' and counter <= 10:

 date = date + interval

 price = get_data(symbol, date)[3]

 counter += 1

 return price

def get_data(symbol, date):

 data = []

 date = date.strftime('%Y %b %d')

 # parameters of URL

 params = {'q': symbol, 'startdate': date, 'enddate': date}

 soup = get_soup(params)

35

 # get a line of prices

 for s in soup('td'):

 try:

 if s.get('class')[0] == 'rgt':

 s = str(s.text)

 data = s.split('\n')

 break

 except: continue

 if data == []:

 data = ['-'] * 4

 return data

 for d in data:

 if d == '':

 data.remove(d)

 # Open, High, Low, Close, Volume

 if len(data) == 5:
 data.pop()

 return data

def write_csv(full_stock_prices):

 with open('Full_Stock_Prices.csv', 'wb') as f:

 w = csv.writer(f)

 w.writerow(['Stock Symbol', 'Release Date', 'Close Price'])

 for p in full_stock_prices:

 w.writerow([p[0], p[1], p[2][0], p[2][1], p[2][2], p[2][3], p[2][4], p[2][5]])

start = time.time()

with open("Pickled/stock_price.pickle") as prices:

 stock_prices = pickle.load(prices)

The price of the date is already missing, so check the day before or after

table = [-32, -8, -2, 2, 8, 32]

full_stock_prices = []

for element in stock_prices:

 index = 0

 prices = []

 for p in element[2]:

 if p == '-':

 date = element[1]

 date = datetime.strptime(date, '%b %d, %Y')

 date = date + timedelta(days=table[index])

 price = get_price(element[0], date, index)

 prices.append(price)

 #print price

 else: prices.append(p)

36

 index += 1

 full_stock_prices.append((element[0], element[1], prices))

write_csv(full_stock_prices)

save = open("Pickled/full_stock_price.pickle","wb")

pickle.dump(full_stock_prices, save)

save.close()

print "run time:", time.time() - start

Save_All_Words.py

import glob, re, pickle, random, time

from nltk.tokenize import word_tokenize

get file paths

def file_paths():

 return glob.glob('Domestic/*/*')

get all the "clean" words in corpus

def save_words(filepaths):

 stop_words = []

 with open('TXT/stop_words.txt', 'r') as stop:

 for s in stop:

 stop_words.append(s.decode('utf-8').strip())

 extra_words = []

 with open('TXT/extra_words.txt', 'r') as extra:

 for e in extra:

 extra_words.append(e.decode('utf-8').strip())

 country_names = []

 with open('TXT/country_names.txt', 'r') as country:

 for c in country:

 country_names.append(c.decode('utf-8').strip())

 city_names = []

 with open('TXT/US_city_names.txt', 'r') as city:

 for c in city:

 names = c.decode('utf-8').split(' ')

 for name in names:

 city_names.append(name)

 airport_names = []

 with open('TXT/airport_names.txt', 'r') as airport:

 for a in airport:

 names = a.decode('utf-8').split(' ')

 for name in names:

 airport_names.append(name)

37

 remove_list = set(extra_words + country_names + city_names + airport_names)

 all_words = []

 for path in filepaths:

 with open(path, 'r') as f:

 sub_words = []

 for lines in f:

 words = word_tokenize(lines.decode('utf-8'))

 for w in words:

 # remove abbreviation like 's / 've / 'm

 w = re.sub(r'\W\w*', '', w)

 # remove abbreviation like J. / D. / L.

 w = re.sub(r'\w\W', '', w)

 # remove phrases like 1q08 2Q15

 w = re.sub(r'\dQ\d\d|\dq\d\d', '', w)

 w = re.sub(r'FY\d\d|fy\d\d', '', w)
 w = re.sub(r'\W+', '', w)

 w = re.sub(r'\d+', '', w)

 # remove punctuation

 if len(w) > 3 and w not in remove_list:

 w = w.lower()

 if w not in stop_words:

 sub_words.append(w)

 all_words.append(sub_words)

 save = open("Pickled/all_words.pickle","wb")

 pickle.dump(all_words, save)

 save.close()

 print '--all_words saved--'

start = time.time()

save_words(file_paths())

print "run time:", time.time() - start

Save_Rep_of_Transcripts.py

import pickle, time

get intersection of transcripts and lexicon

def save_rep():

 with open("Pickled/all_words.pickle", "rb") as word:

 all_words = pickle.load(word)

 with open("Pickled/stock_price_senti_score.pickle", "rb") as score:
 scores = pickle.load(score)

 with open("Pickled/L_McDonald_Dict_POS.pickle","rb") as pos:

38

 pos_lexicon = pickle.load(pos)

 with open("Pickled/L_McDonald_Dict_NEG.pickle","rb") as neg:

 neg_lexicon = pickle.load(neg)

 rep_of_trans = []

 for i, item in enumerate(all_words):

 word_rep = []

 for word in item:

 if word in (pos_lexicon + neg_lexicon):

 word_rep.append(word)

 word_score_dict = (dict([(word, True) for word in word_rep]), scores[i][2])

 rep_of_trans.append(word_score_dict)

 save = open("Pickled/rep_of_trans.pickle","wb")

 pickle.dump(rep_of_trans, save)

 save.close()
 print '--rep_of_trans saved--'

start = time.time()

save_rep()

print "run time:", time.time() - start

Calculate_Sentiment_Score.py

import pickle, csv

with open("Pickled/full_stock_price.pickle") as prices:

 stock_prices = pickle.load(prices)

stock_price_senti_score = []

with open('Stock_Prices_Senti_Score.csv', 'wb') as f:

 w = csv.writer(f)

 w.writerow(['Stock Symbol', 'Release Date'])

 for e in stock_prices:

 v1 = float(e[2][5]) - float(e[2][0])

 v2 = float(e[2][4]) - float(e[2][1])

 v3 = float(e[2][3]) - float(e[2][2])

 if v1 > 0:

 s1 = "> 0"

 if v2 > 0:

 s2 = "> 0"

 if v3 > 0:

 s3 = "> 0"

 senti_score = 1

39

 else:

 s3 = "<= 0"

 senti_score = -3

 else:

 s2 = "<= 0"

 if v3 > 0:

 s3 = "> 0"

 senti_score = 2

 else:

 s3 = "<= 0"

 senti_score = -1

 else:

 s1 = "<= 0"

 if v2 > 0:

 s2 = "> 0"

 if v3 > 0:
 s3 = "> 0"

 senti_score = 1

 else:

 s3 = "<= 0"

 senti_score = -2

 else:

 s2 = "<= 0"

 if v3 > 0:

 s3 = "> 0"

 senti_score = 3

 else:

 s3 = "<= 0"

 senti_score = -1

 w.writerow([e[0], e[1], s1, s2, s3, senti_score])

 stock_price_senti_score.append([e[0], e[1], senti_score])

save = open("Pickled/stock_price_senti_score.pickle","wb")

pickle.dump(stock_price_senti_score, save)

save.close()

Three_Way_Split.py

import pickle, random, time, nltk

from nltk.classify.scikitlearn import SklearnClassifier

from sklearn.naive_bayes import MultinomialNB, BernoulliNB

from sklearn.linear_model import LogisticRegression, SGDClassifier

from sklearn.svm import LinearSVC

def train_test(train_set, validation_set):

40

 NB_cl = nltk.NaiveBayesClassifier.train(train_set)

 MNB_cl = SklearnClassifier(MultinomialNB()).train(train_set)

 BNB_cl = SklearnClassifier(BernoulliNB()).train(train_set)

 LR_cl = SklearnClassifier(LogisticRegression()).train(train_set)

 SGD_cl = SklearnClassifier(SGDClassifier()).train(train_set)

 LSVC_cl = SklearnClassifier(LinearSVC()).train(train_set)

 nb_test = nltk.classify.accuracy(NB_cl, test_set)

 mnb_test = nltk.classify.accuracy(MNB_cl, test_set)

 bnb_test = nltk.classify.accuracy(BNB_cl, test_set)

 lr_test = nltk.classify.accuracy(LR_cl, test_set)

 sgd_test = nltk.classify.accuracy(SGD_cl, test_set)

 lsvc_test = nltk.classify.accuracy(LSVC_cl, test_set)

 f.write("NaiveBayes Test Accuracy: " + str(nb_test) + "\n")

 f.write("MultinomialNB Test Accuracy: " + str(mnb_test) + "\n")

 f.write("BernoulliNB Test Accuracy: " + str(bnb_test) + "\n")
 f.write("LogisticRegression Test Accuracy: " + str(lr_test) + "\n")

 f.write("SGDClassifier Test Accuracy: " + str(sgd_test) + "\n")

 f.write("LinearSVC Test Accuracy: " + str(lsvc_test) + "\n\n")

with open("Pickled/rep_of_trans.pickle", "rb") as rep:

 rep_of_trans = pickle.load(rep)

random.seed(time.time())

random.shuffle(rep_of_trans)

rep_of_trans_size = len(rep_of_trans) # 325

cut_off = 0.2

test_cut_off = int(rep_of_trans_size * cut_off)

test_set = rep_of_trans[:test_cut_off]

rep_of_trans = rep_of_trans[test_cut_off:]

training_size = int(rep_of_trans_size * (1 - cut_off))

validation_size = int(rep_of_trans_size * (1 - cut_off) * cut_off)

counter = 1 / cut_off

f = open('Accuracy.txt', 'w')

for i in range(0, training_size, validation_size):

 validation_set = rep_of_trans[i:i+validation_size]

 train_set = [item for item in rep_of_trans if item not in validation_set]

 train_test(train_set, validation_set)

41

Appendix B: Best Accuracy

NaiveBayes Test Accuracy: 0.123076923077

MultinomialNB Test Accuracy: 0.492307692308

BernoulliNB Test Accuracy: 0.476923076923

LogisticRegression Test Accuracy: 0.415384615385

SGDClassifier Test Accuracy: 0.276923076923

LinearSVC Test Accuracy: 0.384615384615

NaiveBayes Test Accuracy: 0.107692307692

MultinomialNB Test Accuracy: 0.461538461538

BernoulliNB Test Accuracy: 0.430769230769

LogisticRegression Test Accuracy: 0.430769230769

SGDClassifier Test Accuracy: 0.338461538462

LinearSVC Test Accuracy: 0.4

NaiveBayes Test Accuracy: 0.107692307692

MultinomialNB Test Accuracy: 0.415384615385

BernoulliNB Test Accuracy: 0.415384615385

LogisticRegression Test Accuracy: 0.476923076923

SGDClassifier Test Accuracy: 0.384615384615

LinearSVC Test Accuracy: 0.446153846154

NaiveBayes Test Accuracy: 0.107692307692

MultinomialNB Test Accuracy: 0.446153846154

BernoulliNB Test Accuracy: 0.446153846154

LogisticRegression Test Accuracy: 0.384615384615

SGDClassifier Test Accuracy: 0.415384615385

LinearSVC Test Accuracy: 0.430769230769

NaiveBayes Test Accuracy: 0.0769230769231

MultinomialNB Test Accuracy: 0.461538461538

BernoulliNB Test Accuracy: 0.476923076923

LogisticRegression Test Accuracy: 0.4

SGDClassifier Test Accuracy: 0.338461538462

LinearSVC Test Accuracy: 0.384615384615

