

James O. Ebert. Migrating Publications: How do Technical Writers Bound an Uncertain
Problem Space? A Master’s paper for the M.S. in Information Science degree. April,
2000. 57 Pages. Advisor: Gary Marchionini

This paper describes writer activities to define and resolve information migration issues

that retard throughput of new information into technical publications in a production-

focused work environment. The paper also reports the results of a questionnaire

administered to a convenience sample of technical writers using ISO 8879 Standard,

Generalized Markup Language (SGML), examining their information needs and

information-seeking activities.

Headings:

SGML

ISO 8879

Information needs

End-user searching

Migrating information

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210609229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MIGRATING PUBLICATIONS: HOW DO TECHNICAL WRITERS BOUND AN

UNCERTAIN PROBLEM SPACE?

By
James O. Ebert

A Master’s paper submitted to the faculty of the School of Information and Library

Science of the University of North Carolina at Chapel Hill in partial fulfillment of the
requirements for the degree of Master of Science in Information Science.

Chapel Hill, North Carolina

April, 2000

Approved by:

Advisor

DEDICATION:

To Canela, who woke me at 5 every morning to work on this paper, and left her toys on
the floor to be sure I was awake when I sat down to write.

TABLE OF CONTENTS

Introduction . 1
Literature Review . 4
Methodology . 11
Discussion and Results . 17
Conclusion and Recommendations . 32
References . 36
Appendix A: SGML, a View from the Trenches . 39
Appendix B: An Interconnected Work Environment . 50
Appendix C: Questionnaire on Publications Migration 55

 1

INTRODUCTION
How do technical writers bound an uncertain space that contains problems and

solutions when a publication is first migrated to a new authoring system? This paper

describes writer activities that define and resolve issues1 that impede throughput of

information into technical publications. The paper also tabulates and analyzes a

questionnaire on information-seeking activities of experienced technical writers who

migrate one or more publications to a new authoring system.2

An example scenario starts when a writer opens a file in a What-You-See-Is-

What-You-Get (WYSIWIG) editing application to the first chapter migrated to a new

authoring system. The writer inserts one additional information item in a bulleted list,

and marks the item with a change bar – a vertical line | in the margin – to indicate new

material to the reader. The change bar appears in the margin.

However, the symbol representing a bullet next to the new item disappears. The

writer adds several additional items, noting each new item gains a change bar and loses

its bullet. Seeking information, the writer scans the current user’s guide for the system,

finding no solution. Subsequently, an outdated copy of a hints-and-tips file provides a

non-intuitive answer: change the list item to itself, obtaining the bullet’s appearance.

After applying the fix, the writer finds the change bar can no longer be removed from the

list item. Puzzled, the writer leaves the workstation and walks down the hall to ask

advice of a colleague who earlier migrated a publication.

Key terms defined by this paper include a user who identifies and resolves a

problem space in the migration of a technical publication to a new authoring system,

demonstrating one or more information-seeking behaviors.

1 While I have sought out problems to illustrate the gaps and solutions that occur during migration, the
authoring system described in this paper represents a valuable, extended set of improvements, not an
unusual number of problems. For more information on the authoring system, see “Using Standard Tools
and Processes” on page 50.
2 If the reader is not familiar with authoring publications that use Standard Generalized Markup Language
(SGML), read "SGML, a View from The Trenches," on page 39 before continuing with the main body of
this paper. For background on the general team and business practices context in which technical
publishing occurs, also preview "An Interconnected Work Environment," on page 50.

 2

User

A member of a population of active, experienced, critical users of

information. The users gather and publish information about computer

programs that are sold commercially.

Problem space

A collection of one or more repeatable difficulties in using some aspect of

an authoring system. A problem space temporarily slows the normal flow

of information about new or changed function into existing publications.

Migration

An interconnected series of changes to the coded structures in source files

containing the information in a publication. Significant changes can also

occur to the processes that edit these files and that transform the files to

printable or online formats.

Technical publication

An organized description of planning, installing, configuring, and using a

computer program. A technical publication, such as a user's guide, is

published either as hardcopy or as an online, viewable or printable file.

New authoring system

A collection of programs that edit, display, and enable the publication of

one or more source files containing information. At least one significant

element, such as a WYSIWIG editing interface, has an aspect of novelty

or significant change in a "new" authoring system. For a more complete

definition of the products that comprise such a system, see “Using

Standard Tools and Processes” on page 50.

Information seeking

Behavior that identifies and obtains information pertinent to a problem,

enabling one or more viable solutions. An interval of uncertainty occurs

during an information-seeking effort. A writer’s peers may also impose

norms on information-seeking behavior such as:

• Did you search the known body of information first?

• Did you attempt to solve the problem first?

• Can you repeat the error, or was it a one-time event?

 3

• Did you capture error messages, file locations, and other relevant

information about the problem?

From the perspective of structuring information with standard, generalized

markup (the ISO 8879 international standard), the significance of migrating to a new

authoring system is a pinprick of effort in an overall architecture intended to maintain the

value of a base of information. The effort described in this paper is a relatively simple

demonstration that the data (the document content) remains portable while the tools to

manipulate the data change (p. 28, Travis and Waldt).

From the point of view of a major change in government and industrial

publication activities, migration is a significant cost issue. For example, an online source

for SGML standards reports that “the US Library of Congress and several research level

institutions have been engaged in the collaborative work of the EAD (Encoded Archival

Description) initiative for several years…using the Standard Generalized Markup

Language (SGML). The documents are viewable on the Internet … or in some cases, are

translated into HTML on the fly” (Cover, at http:// www.oasis-open.org/cover/gov-

apps.html).

The economic volume of work is significant. For example, one World Wide Web

source describes the US Patent and Trademark Office (USPTO) as “…a non-commercial

federal entity and one of 14 bureaus in the Department of Commerce. The office

occupies a combined total of over 1,400,000 square feet, in numerous buildings in

Arlington, Virginia. The office employs over 5,000 full time equivalent staff to support

its major functions -- the examination and issuance of patents and the examination and

registration of trademarks. As of November 1998, a collection of USPTO Web Patent

Databases was available online” (Cover, at http:// www.oasis-open.org/cover/gov-

apps.html).

As new authoring systems continue to evolve for storing and manipulating

documents, the problem of migrating very large data volumes in technical documents will

remain important and expensive. This paper addresses the problem at the grassroots level

of the technical writer/planner, from the perspective of how the technical writer seeks and

uses information during document migration.

 4

LITERATURE REVIEW

This study describes technical writers who identify and solve problems during the

migration of publications to a new authoring system at a version 1.0 level. The study

group is expert knowledge users who encounter a knowledge deficit of their own in

solving problems. The study population “is limited to those groups or classes of people

who are active, experienced, and critical users of information. That is to say, they are

aware of their problems; they know, at least in approximate terms, where they can find

useful information; and they have a critical sensitivity to what constitutes a solution, or,

better said, a resolution of a problem in their context” (Taylor, p. 219). The study

population encounters a need to process documents in a reduced state of knowledge about

both the structure and process of a new authoring system.

Writers undergo a series of learning and discovery activities to bound the extent

of the migration problem space. Blended into other work activities, they enumerate and

partition a new range of issues, determine which previous solutions are still valid, attach

unsolved issues to valid solutions, and confirm the problem resolutions are robust. From

the user's point of view, information seeking is a “holistic experience with thoughts,

actions and feelings interwoven into a complex mosaic rather than as separate distinct

entities" (Kuhlthau, p. 348). There are significant time pressures to exit an anomalous

state of knowledge, a period of time in which the writer recognizes a need for critical

information exists and attempts to express the need (Belkin, Oddy, and Brooks, page 62).

Time pressures also typically prevent their comprehensive search for information

(Johnson, p. 93). The information needs they experience represent a gap preventing

movement toward a solution, and the technical writer as sense-maker uses whatever

bridge is available to build across the gap (Dervin and Nilan, p. 21).

One study of solution-seeking behaviors shows that persons in a state of

information need tend to seek out nearby colleagues for advice first, and somewhat later

to seek expert help (Johnson, p. 96). The migration effort occurs in a work environment

with norms and expected levels of performance in information-gathering behavior. A

technical writer works in a closely-knit team of programmers who consider the technical

writer a team member, as well as a closely-knit team of writers for similar publications.

The writer additionally belongs to a collection of more loosely-knit groups that share

information, sometimes across remote sites.

 5

Office workers in general, and technical writers also, appear to bring a production

bias to their efforts to learn and use computing applications. The learner's "paramount

goal is throughput" (Carroll and Rosson, p. 80). Their investigation asks, "How can

systems transit between stages so as to most facilitate transfer of old knowledge and

incorporation of new knowledge?" (ibid, p. 90)

Search “activities imply active search resulting from an area of doubt or more

specifically a recognized problem; useful implies ways of resolving a problem through

clarification, alteration, or actual solution as a result of information gained” (Taylor, p.

221). A problem can be separated “into three parts: questions which specify, problems

which connect, and sense making which orients…what is conjectured here is that a

problem and its resolution cannot readily be separated” (Taylor, p 225).

"Early stages of information seeking commonly are fraught with uncertainty and

confusion…a principle of uncertainty is indicated as an underlying conceptual framework

for information retrieval and provision" (Kuhlthau, p. 344).

Kuhlthau’s model of an information search process includes:

• Initiation, when a person first becomes aware of a lack of knowledge

• Selection, when the person identifies and selects a general area to be

investigated

• Exploration, a time of confusion, uncertainty, and doubt, as the person

investigates information to extend personal understanding of the general

problem

• Formulation, the turning point in the process, as a focus is formed on the

information encountered

• Collection, when information pertinent to the problem is gathered

• Presentation, when the search completes and the problem is resolved

Taylor sees the first steps in information definition as a process that starts with a

"visceral" stage, becomes a "compromised" need as the user attempts to translate the

request into system terms, and finally a "negotiated" need, often using the help of an

intermediate source, that can be understood by the system (Taylor, 1968).

Writers try to estimate in advance the time and effort needed for successful

migration. Their efforts are influenced by their perception of the situation, as Dervin and

Nilan describe:

 6

"Situations have been coded primarily in terms of how they are seen by users as
constraining movement…Categories have included the nature of the stop,
described in terms of such categories as decision (facing a road with two or more
branches ahead), problematic (being dragged down a road not of your own
choosing), or spin-out (having no road). Other situations categorizations have
focused on judgments of perceptual embeddedness (how foggy is the road),
situational embeddedness (how many intersections are on the road), social
embeddedness (how many people are also traveling), and constraint (what stands
in the way)” (Dervin and Nilan, p. 21).

Their search for information follows multiple, established “discourses,” with

some navigation behaviors preferred over others (Livonen and Sonnenwald, p. 315).

Behaviors aimed at seeking solutions may depend on the seeker’s available collection of

prior or new scenario models, which Hasdogan describes as “…user models based on

formal or informal story lines relating to users, usage, the usage environment and the

usage circumstances of the product of interest” (Hasdogan, p. 23). He enumerates a

variety of models used in design, including cognitive models “…which represent the

human being’s sensory and cerebral processing system, his characteristics and limitations

related to the elements of that system, and the outcome of such processes” (Hasdogan, p.

23). Scenario-based models include “…complex electronic interfaces, where the user has

to follow a series of actions with functions of the product to accomplish a task, the

designer has to build certain scenarios to anticipate the different ways in which people

might access those functions. This usually follows a formal or an informal ‘task analysis’

process, where the user’s tasks, goals and activities, and the product’s functions related to

those tasks, are identified, and subsequently some of those functions are prioritized or

systematically linked to each other in the design” (Hasdogan, p. 30). Scenario types are

typically based on the user’s level of experience, including the following scenarios:

• Least competent user “…is based on a user whose capabilities are at the

poorest limits in the use of a particular product.”

• Worst case “…involves all the worst possible events happening at the same

time when a product is functioning.”

• Evolutionary “…represent[s] the nature of the user’s relation to the product in

an evolutionary process where the product is designed to teach or lead the user

 7

to improve his relation with the product (e.g., transference from being a

‘naive’ user to an ‘expert’ user)” (Hasdogan, p. 32).

In an organized education effort, writers who are migrating publications attend

one or two-day classes that contain a normal task sequence designed to navigate

migration issues. Part of the class is a tutorial, an example of Kaplan’s reconstructed

logic, which is “not a description but rather an idealization of … practice” that attempts

to transfer expert knowledge to the novice (Kaplan, p. 8). “Conversations with others

who may have the information they need, conferences, workshops, and symposia are

always listed as highly important sources of information in these studies…”

(Marchionini, p. 46).

Information seeking happens. “The information-seeking process is both

systematic and opportunistic. The degree to which a search exhibits algorithms,

heuristics, and serendipity depends on the strategic decisions that the information seeker

makes and how the information-seeking factors interact as the search progresses” (ibid, p.

49). Barry describes the information-seeking activity as processes “that are dependent

upon the knowledge and perceptions of the user, and dynamic processes in which the

user’s information need is a changing and fluid situation” (Barry, p. 150).

Solutions to an array of problems employ a variety of individual behaviors, team

activities on several levels, diagnostic tools, and the writer's previous knowledge. “A

user is concerned with establishing some degree of clarity in an area of doubt (a) by

recalling previous experience for analogy; (b) through new knowledge or by confirming

knowledge that illuminates, resolves, or alters the problem; or (c) with the discovery that

there may be no resolution” (Taylor, p. 225). To put Taylor’s null outcome in everyday

words: progress is the certainty that everything you tried so far is the wrong answer.

“Most respondents first used their personal stores of technical information; then,

they asked coworkers within the organization and colleagues outside the organization”

(Pinelli, p. 300). Efforts often stop short of obtaining authoritative information from a

more formalized process. Pinelli described aircraft engineers whose initial information

search was characterized by oral communication with peers and was influenced by goals

of accessibility and technical quality (Pinelli, p. 278). In a new situation, it may not be

clear what is and what is not authoritative or of adequate quality. In the case of “bugs” in

a new system, it is very possible there is no authoritative information – only a group of

 8

people tasked to discover root causes. However, "…the classic law of ‘least effort’ has

been evoked to articulate why channels are chosen first that involve the least effort”

(Johnson, p. 96). Johnson appears to ignore possible norms of information seeking in a

group environment, which may require an individual’s localized effort occur before more

extended information sources are approachable. Information activities do appear to

change “when the nature of the task required a departure from the comfortable and

participants needed to design information and informing actions to bring order out of

chaos” (Solomon, p. 155).

Information search activities have preferred sources, although they are not

typically the first consulted. "Experts in a field of study have comprehensive

vocabularies in the domain, know what types of sources are best applicable to problems,

and are aware of alternative access points for finding information in the domain”

(Marchionini, p. 27). Formal grammars of task analysis are sometimes used in research

to determine whether, after learning one system, a user finds it difficult or easy to learn

another system (Olson, p. 260). Olson explores schemes such as skill and task

taxonomies that attempt to automate business office systems that correspond to human

strengths and weaknesses.

AN INTERCONNECTED ENVIRONMENT

Writers work in a business environment with many interconnected groups, both

loosely and closely-knit in their interactions. Basic definitions of group membership and

work in the electronic environment include the following:

Group or community

One possible definition of a group or community is that it is "a social network

whose ties are tightly bounded within a delimited set and are densely knit so that

almost all network members are directly linked with each other” (Wellman, p.

180).

Densely knit

In a densely-knit group, almost all members have frequent interactions. Every

member knows every other member well. Dense, bounded groups tend to be

viewed as the desirable form of community and work.

 9

Strong ties, weak ties

Strong ties provide more emotional aid, goods and services, and other support.

“Weak ties are not useless, because they tend to connect people who have

dissimilar social worlds, providing new information” (Wellman, p. 196). The

usefulness of advice from weakly-associated strangers can be substantial, but

rests on motivation other than expectation of an immediate return of a collegial

favor (Constant, Sproull, Liesler, 1997).

Leadership in the technical community also needs to support the new authoring

tools. Beneficial change as a characteristic of a “learning organization” is defined as a

“process in which members…detect error…and correct it by restructuring organization

theory of action” (Clayton, p. 82). Whether the innovation succeeds or fails, the

leadership in an organization is involved. New systems succeed when participatory

management incorporates democratic styles of organizational leadership, according to

studies by Kurt Lewin, Ronald Lippitt, and Ralph White, who described leadership

qualities of successful, innovative leaders.

Changes in a work environment such as new authoring systems are often

represented as innovations. The first users are classically labeled early adopters, those

"who buy because they are in love with technology…or whose needs for the newly

developed functions are so great that they are willing to put up with any other problems”

(Norman, p. 25). Norman expands on Rogers' theme with a concern for usability,

asserting that a new concentration is needed on work activities and user experience,

rather than a focus on the computer technology behind it. Norman cites Everett Rogers’

categories of a population encountering new technology: early adopters who gamble on

the new technology because the benefits greatly outweigh costs. They are followed by

the early majority, the late majority, and laggards (Rogers, p. 248). Attributes of an

innovation include relative advantage, organizational compatibility, simplicity, trialability

and reversibility, and by observability (Rogers, p. 15). Additional attributes of

innovations include:

• Originating the innovation from within the organization, making it able to be

owned by members in some manner.

 10

• Making the project divisible to implement on a limited basis, and also

reversible in its effects.

• Aligning the innovation with interrelated policies and with interests of multiple

stakeholders.

Migration to an innovative new system may be only partially voluntary if the new

system provides economic gains in converging a variety of previously unlike business

practices or enabling efficiencies in translation. Widespread usage happens over an

extended period of time. Neuman found that innovation in new electronic processes is

probably characterized by gradualism. "The shift to reliance on new means of

communication will be evolutionary rather than revolutionary" (Neuman, p. 165).

 11

METHODOLOGY

The methodology on which this paper is based entails the direct involvement of

the author in obtaining problem solutions in his work environment. I write and help

design technical publications in the area of computer applications. While working on this

paper, I participated in the beta test classes for a new authoring system, and subsequently

migrated the source files for several of my own documents to the system, as well as

helping solve critical migration problems for colleagues in my team and nearby teams. I

also referred problems to a central tools group for solution. For approximately a year

prior to using the new authoring system, I used its predecessor authoring systems and

actively monitored its state of user readiness by means of occasional discussions with one

of the authoring system designers.

To focus on information seeking and problem solving, the methodology mentions

but largely excludes issues of usability and innovation. Both topics are often associated

with using new computer systems. They are minimized to limit the scope of this paper.

While I have sought out problems to illustrate the gaps and solutions that occur during

migration, the authoring system described in this paper represents a valuable, extended

set of improvements, not an unusual number of problems.

This is not a disinterested study. Responding to a business need to migrate to the

new system, my effort represents what Everett Rogers would term an early adopter’s

focus on acquiring an innovation, a position willing to gamble on new technology on the

belief the gains outweigh the costs. A number of the findings in this paper represent a

process of introspection in defining cognitive models and scenarios that (I hope) are

sufficiently abstracted from personal efforts. The problems are impersonal and real:

given the same set of files and the new authoring system, another writer would need to

identify and solve the same problem. The effort occurred over a five-month period,

during which the documented product inserted a significant number of new function

descriptions and changes. The publication changed to meet the comments in a major edit

and completed its inspection schedule on time for production. First-time shipment to a

translation group using the same new authoring system also marked this interval.

Choice of the moment to gather information is also part of the methodology,

which gathers data from the very first implementation of version 1.0 of an application

before the existence of a significant body of community usage and major fixes. This time

 12

interval may offer the maximum opportunity to observe experienced workers bridging

gaps in their knowledge during a critical effort. The interval occurs infrequently. These

efforts are relatively brief episodes in the life of a publication or authoring system,

because intense efforts soon resolve issues. I assert that the version 1.0 interval is of

interest because it falls at least partially outside Johnson’s assumed zone of comfort; it is

a less comfortable time when problems have no authoritative answer, only persons tasked

to resolve them. The interval is also interesting because domain experts, who may be

defining or redefining major elements in the domain, are potentially stressed and access

to their advice may be more limited than normal. There are also sub-domain experts to

whom access may be restricted.

From a wider perspective, the migration occurred in a work environment capable

of enabling or retarding effective solutions. My coworkers also migrated publications to

the new authoring system. This paper provides a sample of some of their problem-

solving activities. It also reports on the demographic characteristics of a small,

convenience sample of technical writers. For an expanded view of team and operating

practices that are germane to publications, but are not directly a part of problem

identification and solution, see Appendix B: “An Interconnected Work Environment” on

page 50.

DEVELOPING THE QUESTIONNAIRE

Development of the questionnaire began as earlier class exercises on adapting

existing questions on innovation by Moore and Benbaset, and on user satisfaction by Doll

and Torkzedah3, both topics on a tangent to the final focus of the questionnaire in this

paper, which examines user activities to close an information gap. My searches of

existing literature located no existing questionnaires on publication migration and

problems. I therefore used my own experience and observations about several writers

with whom I work to generate a set of questions. Several other writers who have

experienced previous authoring system migrations reviewed the questions and suggested

changes. A preliminary version of the questionnaire was administered to two writers and

subsequently revised.

3 Studies included a survey on innovation by Gary Moore and Izak Benbaset published September, 1991, in
Information Systems Research, and a survey on user satisfaction, “The Measurement of End-User
Computing Satisfaction,” by William J. Doll and Gholamreza Torkzadeh, p. 259 in MIS Quarterly, June,
1988.

 13

Some questions were anticipated to provide common indicators of a construct

such as readiness for migration. It was also possible to anticipate relationships to other

responses, such as whether a writer who reported being ready for migration also found

the migration difficult.

Conclusions anticipated for the questionnaire were not supported by actual data

from the respondent population, using a value of .05 (a generally-accepted error level in

social science research) on a Spearman’s test of correlation. The total quantity of

questionnaire responses was also not great enough to justify calculation of Cronbach’s

alpha for the presence of the following factors:

• A factor might exist between (1) Sufficient information was available in

time… (2) I have enough time to solve migration problems. (3) My

computer and its programs were ready in time…

• A factor might exist between (4) The first thing I normally do when I cannot

solve a problem… (5) To solve problems, the most valuable information

source is… (6) Talking to or consulting with someone near me… (7) To

solve problems with someone else’s advice…

• A factor might exist between (9) I can help most writers… (10) I reported

my … significant problems…

• A factor might exist between (14) Migration for my publication was… (15) I

am confident my next migration effort will be…

 14

The following table is a summary of possible conclusions anticipated before

administering the questionnaire.

Ques
tion
Num
ber

Measured
Item

Compared to Compared to Compared to Compared to Possible
Conclusion

1, 2,
3

Preliminary
information
available,
writer had
enough
time, and
computer
was ready

Used runtime
messages as
primary
information
source (4, 5)

Used experts
as primary
information
source

Rated migration
significantly
difficult

 Examine
whether
pressured
writers use
their computer
runtime
messages, or
turn to experts
more frequently

1, 2,
3

Preliminary
information
available,
writer had
enough
time, and
computer
was ready

Reported
problems

Helped others Rated migration
significantly
difficult

Consulted
with a nearby
person

Did pressured
writers report
problems, help
others, or rate
migration
difficult?

4, 5,
6, 7

Writer may
have
preference
for
information
type

Helped others or
reported
problems to the
database

Rated
migration
significantly
difficult

Said a
particular
structure or
process
problem was
difficult

Had enough
time to
migrate

Do writers with
plentiful expert
advice also
help others, or
find migration
significantly
difficult?

8 Writer had
problems
with
particular
information
type, such
as user’s
guide

Writer rated
migration
significantly
difficult

 Is there a
publication that
is commonly
found to be
difficult to use
by writers who
have migration
problems?

9, 10 Writer helps
others,
reports
problems to
database

Rated migration
significantly
difficult

 Do persons
with significant
migration
problems help
others more, or
report
problems more
often?

11 Writer’s
effort is
persistent

Reported
problems to the
database

 Do writers stop
at a
workaround
solution?

12,
13

Selected a
particular
structure or
process
problem
type

Remigrated
publication

Asked for
expert advice

Rated migration
more difficult

 Do writers with
a specific
structure or
process
problem act
differently?

14,
15

Writer
found
migration
easy and is
confident.

Writer had
structure or
process difficulty
of certain type

Writer helps
others, reports
problems to
database

Preliminary
information
available, writer
had enough
time, and
computer was
ready

Writer may
have
preference for
information
type

For confident
writers with
very easy
migration, what
were the
significant
elements?

 15

The following table lists possible conclusions based on demographic factors that

influence a writer’s solutions to migration issues.

Ques
tion
Num
ber

Measured
Item

Compared to Compared to Compared to Compared to Possible
Conclusion

A1 Respondent
with more
than 10
years
experience
or
respondent
who worked
on a
previous
migration

Respondents
who said they
had enough
time to migrate
their
documents

Respondents
who either
attended a
class or said
information was
available before
migration

Respondents
who report
errors to the
problem
database

Respondents
who feel they
can help others

Examine
whether
migration wise
respondents
took the class in
advance, and
reported
adequate time to
migrate.

A2 Respondent
who holds a
team lead
role

Respondents
who have
greater than 10
years’
experience
writing

Respondents
who use verbal
contact with
experts as a
preferred
problem
solution

Respondents
who report
errors to the
problem
database

Respondents
who either
attended a
class or said
information was
available before
migration

Examine
whether role
plays a
difference in
helping others,
having adequate
time, or reporting
errors.

A6 Respondent
who
changed a
publication
in advance
of migration

Respondents
who either
attended a
class or said
information was
available before
migration

Respondents
who worked on
a very similar
authoring
system in
advance of
migration

 Examine
whether
exposure to the
new authoring
system causes
changes in
advance
planning for
migration.

A7 Respondent
with very
large or 4 or
more
publications
to migrate

Respondents
who said they
had enough
time to migrate
their
documents

Respondents
who did not
take the class
before
migration, or
said information
was not
available

 Is there is a
possible “work
fog” factor?

A8 Respondent
spent
significant
time

Respondent
with team
leader role

Attended
class?

 Does time spent
migrating relate
to role or class
attendance?

A9 Respondent
who re-
migrated at
least one
document

Respondents
who use verbal
contact with
experts as a
preferred
problem
solution

Respondents
who worked on
a previous
migration

Respondents
who either
attended a
class or said
information was
available before
migration

Respondents
who said they
had enough
time to migrate
their
documents

Examine
whether
experience, work
load, and
preferred contact
style are
interrelated to
early migration
planning
decisions.

A10 Respondent
who
attended
class

Respondents
who feel they
can help others

Respondents
who report
errors to the
problem
database

Respondents
who said they
had enough
time to migrate
their
documents

 Is class a factor
in helping others
or reporting
errors?

 16

The sample population is heavily drawn from the Research Triangle Park, NC

(RTP) site, which may strongly affect both years worked, contact with expert sources,

and other data in the questionnaire returns. (For example, other sites may have fewer

years worked; the expert sources reside at RTP.) The entire population of early adopters

is small, affecting levels of confidence in drawing conclusions. In descending order of

returns, the sample population was obtained from the following sources:

• Eleven persons in my group and nearby teams at RTP

• Two from a group of about 16 writers from other sites who submitted a

problem report to the central tools database for the new authoring system

• Lists of class attendees for the new authoring system. Very few class

attendees migrated publications in the timeframe in which this paper was

written, providing a zero percent return.

• Two persons known to me at other sites or referred by persons at other sites

Questionnaire returns were entered in the SPSS statistical system and the

following tests were run:

• Correlations of significance (Spearman’s)

• Central tendency, returning the mean, median, mode, and standard deviation

• Factor analysis

• Frequencies

 17

DISCUSSION AND RESULTS

Office workers in general, and technical writers also, appear to bring a production

bias to their efforts to learn and use computing applications. Their primary interest is in

throughput. Under pressure to complete their tasks, writers work in a state of partial

knowledge, using potentially flawed methods. Their efforts start with known processes

and authoring structures, and work outward toward a goal of publication, finding

problems and providing workarounds that represent a satisfactory outcome (Carroll and

Rosson, p. 80). An active view of life in publishing technical documents includes

"bumping into the environment," (Marchionini, p. 27) but most writers attempt to reduce

the pain in the collision.

The extent of the problem space at migration is unknown to the users. The writer

discovers a need to enumerate and partition a new range of issues, determine which

previous solutions are still valid, attach valid solutions to unsolved issues, and confirm

that problem solutions are robust. Some problems occur only at the instant of document

migration, while others occur in ongoing, normal use of a new authoring system. The

writer must also determine when the entire problem space is known with certainty.

The writer becomes temporarily unaware of the operational steps to produce a

desired authoring effect, and knowledge of a previous authoring system can disrupt using

the new one. Experienced users have patterns of prior behavior and understanding that

potentially interfere with new patterns (Carroll and Rosson, p. 94). Formal grammars of

task analysis are sometimes used in research to determine whether, after learning one

system, a user finds it difficult to learn another system (Olson, p. 260). While the

designers of the new authoring system spend significant time in task analysis, the end

user seldom has the leisure to abstract a collection of work activities in a similar manner.

Actively running the error checking mechanisms in the authoring system itself consumes

a very large component of the time writers spend on problem identification and

resolution. When the process starts, the writer attempts to edit a document or transform it

to a printed or online file. Subsequently, the system points at error locations in the

publication files. The writer locates the error, investigates the nature of the error, arrives

at a solution, changes the file, and re-runs the edit or transform.

To ensure the value of continued investment of effort in migrated publications,

the writer attempts to optimize chances for success in balancing a workload. New

 18

information-seeking behaviors occur to bring order to a new, sometimes chaotic problem

set (Solomon, p. 155). For example, a table representing an estimate for overall

migration project success might appear as follows:

Total
Migration
Problems

Time Until
Production

Publication Size Non-Project
Task Load

Available
Expert Help

Estimates of
Success/
Start Now?

Low Long Large Small Abundant Excellent, start now
Medium Intermediate Large Significant Uncertain Average, measure

available time carefully
High Brief Large Significant Low Low, do not migrate

until time allows

As writers make their estimates, they approximate the time and effort needed for

successful migration, which can involve a significant variety of information-seeking

situations (Dervin and Nilan, p. 21). Regardless of the amount of help and the richness of

a supportive environment, the press of delivery deadlines and the appearance of new and

complex problems at late stages in a project often generate writer behaviors commonly

called "tunnel vision." Given significant delivery pressure and imminent deadlines,

information-seeking activity can become highly focused on ensuring the viable triage of a

core set of problems, deferring a search for more efficient methods. In less pressing

circumstances, more efficient activity can include an element of gaming. For example,

when time permits the user to observe that a new authoring system has fewer complex

structures in common use, replacing existing complex structures (for example, structures

that involve pointers or recursion) may reduce the subsequent migration problem space.

The game is essentially a prediction: if I spend more time now reducing the complexity

of my library with a known authoring system, I will spend less time later solving

migration problems with a new authoring system.

Writers with an existing library of publications bring a complex inventory of

structured information that tests the new authoring process for robustness. In this study,

these structures are expressed as statements in SGML files.

 19

For example, the inventory for a typical publication such as a user's guide4 can

include:

Type of Container Publication 1 (314

pages)

Publication 2 (296

pages)

Average

(305 pages)

Simple table 22 29 25

Complex table 8 13 10

Numbered, bulleted, or definition list 142 112 127

Message list items - 147 73

Syntax structure 5 2 3

Screen capture 23 39 31

Cross reference 209 175 192

Index items (estimated) 450 900 675

Code examples 83 25 55

A typical inventory can also include running heads and running footers, special

edition notices, footnotes, bleed tabs indicating the chapter title on the page margin,

chapter numbers above a chapter head, page numbers in simple sequence or as folio by

chapter, and an assortment of front and back cover pages. The inventory for one

publication can contain special sets of text and file entities or variables commonly used to

control proliferation of terminology. There can be a collection of "write-once-use-many-

times" text containers in a separate file, as well as a document version control function

that changes the actual text represented by a variable, depending on a value the writer

selects. For more information on using these authoring constructs, see Appendix A,

“SGML, A View from the Trenches” on page 39.

Migrating a publication inventory to a new authoring system generates a

population of new problems. The inventory acquires potentially altered structures, and an

additional collection of new processes and residual problems. Previously-trusted

processes may be discarded, changed, or validated for use as-is, removing any

uncertainty value caused by migration.

The allowed number of complex information structures may shrink. For example,

complex information re-use and information linking structures such as indexes may exist

more simply and be manipulated differently in a new authoring system. Alternatively,

index functions may be fully equivalent, but the writer may choose to eliminate more

4 Values are from Tivoli® Manager for R/3 User’s Guide, Version 2.0, and Tivoli® Manager for
MQSeries® User’s Guide, Version 2.2.1, copyright 1999, by Tivoli Systems Inc., an International Business
Machines (IBM®) company.

 20

complex structures prior to migration to avoid the potential for problems. Once migrated,

more complex structures may be re-inserted in the publication’s source files. Basic

assumptions about information re-use can be woven into core entity declarations and the

overall file design of an entire library, requiring change throughout to meet a new

authoring system's entry criteria.

The length of processing time also increases. Part of the increase is caused by

sequential information search methods during the writer's newly impoverished grasp of

problems and solutions. Not all the material to be searched is cross-linked or has an

index, for example. Another part of the delay is potentially longer machine runtime

processing caused by code complexity in the authoring system.

Diagnostic clues the writer was accustomed to monitoring may change their

normal messages, change location, or become hidden. For example, log files that contain

diagnostic information change the message content, the file names, and directory

locations. Error messages cite new, unfamiliar conditions. Available runtime reporting

dialogs default to a minimized appearance on the desktop and must be opened. In an

information overload condition, the writer may not perceive the loss of essential problem

diagnostic information.

Information overload occurs during migration and the associated cleanup effort.

The writer attempts to assimilate and search for help in some or all of the following:

• An organized body of formal class materials including tutorial exercises and a

user's guide

• Online collections of issues, solutions, and processes

• Notes from other writers and project experts

• Additional compilations of hints and workarounds

• Written and verbal accounts of local team experience

• Advice from traveling migration experts

• Verbal interactions that are both formal in the classroom, informal with peers

in the hallway, and intermittent with traveling migration experts

Finding salient elements efficiently in the mass of this new information is also

part of the problem space during migration to a new authoring system. As the user

attempts to find advice and solutions within an array of information similar to the

following, the most frequent feedback on current problems is often the error messages

 21

provided by the components that edit source files or transform source to printable files or

browsable online files.

An assessment of information sources might look like the following:

Information Source Search Method Frequency of Use Completeness
Error messages from the
authoring system

Sequential, for each job High, used at every cycle
of editing, generating a
table of contents, printing,
or transform to online files

Complete, but tightly focused
on specific function

Class materials Sequential page-by-page
or by table of contents

Intermediate to low Partial, focused on overview
and first tasks

User's Guide Index and table of contents Intermediate Complete, focused on normal
operations

Hints and tips Sequential Intermediate Incomplete, focused on
special migration problems

Online requirements and
errors lists by sub-
component

Sequential, by problem
type. Heads searchable by
user-defined string.

Low Incomplete, focused on
expert problem identification
and solution

Online help Random access, indexed Low Complete, but tightly focused
on specific function

Verbal interactions, team
experiences

Conversations, memos,
meetings

Intermediate Incomplete, variable
depending on participant or
team

“Noise” levels rise temporarily in efforts to find the solution set. For example,

extraneous visual information may need to be ignored in a new authoring system. The

visual display of font size on a computer monitor during authoring work in a What-You-

See-Is-What-You-Get (WYSIWYG) editing tool may differ in similar chapters, but

printing a hardcopy of the font subsequently proves that the appearance on the monitor

has no real effect on hardcopy output.

Ostensibly correct solutions may fail to produce a desired result. For example, an

item in a bulleted list may fail to display the bullet if the migrated item was marked with

a revision bar (an attribute which puts a visible mark in the margin of the page). Simple

deletion of the offending list item and retyping the item may fail. Only “tricks” such as

changing the item to itself may be the correct solution, not obvious to the writer.

Error reports may cite problems with attributes that do not exist in new structures.

For example, the width of a definition list item may not be measured in “tsize,” but the

error message may cite the attribute, which is valid for a previous authoring system.

Graphic files known to be good may appear blurry or fuzzy in new processing.

No error actually exists in any authoring system or graphic capture process, but the writer

must discover the solution is to change the compression values in an associated program,

such as the Adobe Acrobat® Distiller®, which makes portable document format (PDF)

files.

 22

User errors may occur in migration. For example, changes in making graphics

files viewable, especially PostScript files, can damage their printed appearance.

Accidentally mixing viewable and non-viewable files in a library can cause subsequent

printing problems. Clues to the problem source may require a graphics consultant, and

regeneration of the PostScript files from other file types. If those file types happen to be

absent from the archive, and if the product environment is no longer available to provide

new screen captures, stress levels can become increasingly higher.

DEFINING PROBLEMS, APPLYING SOLUTIONS

Focusing on a specific example of real work limits the problem-solution space,

and allows mapping knowledge from known work methods or publication structures to

new ones. There are other relatively constant structures that orient such work. For

example, given the overall goal of creating valid, well-formed SGML structures that

remain unchanging in their relationships, a writer who has previous experience in an

SGML-based authoring system will mentally map structures from one appearance (an

ASCII editor’s display of SGML tagging, for example) to another (a WYSIWIG editor’s

display of SGML tagging, for example). The writer also maps a known series of normal

task sequences in one editing program to their expression with menus in another editing

product. The writer works outward from known to unknown boundaries. The cognitive

journey may be thought of as an individual who revises old tables held in personal

awareness and constructs new tables in personal awareness that contain at least two

columns and many rows.

The first table column defines a problem, and the second asserts (or invents) a

solution. For example:

Problem Valid Solution
Previously-good graphics now print with a "fuzzy"
appearance.

Change the compression settings on the portable document
format distiller.

The edition notice spans a front and back page, but
should be on only one page.

Reduce the scaling factor on the table containing the edition
notice. If the notice is still too long, move its ending to back
matter and reference the new location.

A bug exists in substituting the text "Cause" for the
normally-provided "Explanation" in message lists.
"Cause" prints OK, but the error log contains two
error reports for every message in the list.

The bug is harmless, but limiting. Investigate and report the
problem for a future fix, providing an interim workaround.

However, the writer in a work overload situation, or in one in which an incorrect

solution is pursued, could also construct a less productive problem-solution table:

 23

Problem Pressured Solution
Previously-good graphics now print with a "fuzzy"
appearance.

Recapture all the graphics and concurrently attempt to
discover why the old graphics-generation process is flawed.

The edition notice spans a front and back page, but
should be on only one page.

Ignore the problem. Focus on more critical issues, such as
fuzzy graphics.

A bug exists in substituting the text "Cause" for the
normally-provided "Explanation" in message lists.

Ignore the problem.

An anomalous state of knowledge (Belkin, p. 133) also has the simple label "bug"

when applied to the collection of computer programs in a new authoring system. An

element of triage occurs. Whether bugs get attention can depend on their significance in

blocking the production of a given publication. Some problems reported by a given

process, for example, have no available guidance and represent the true first instance of a

bug that can afflict an entire population of users. To navigate to a solution for a bug, the

writer might construct a problem-solution table that has a sequence of activities such as

the following:

Problem Solution Activity Sequence
Mapping a message item
prefix (msgiprefix) element
such as "Explanation" to
substitute text such as
"Cause" creates a recursive
set of bogus, ignorable
errors in the error file.

1) Discover the error occurs:
A cross-reference in one chapter points to a message list in an appendix. Errors
occur in the transform log for the id "Sii7" also point to the message list. Save
the error log.
2) Identify the work practice:
A developer asked the writer to change the label "Explanation" to "Cause." You
must tell the developer if this change is not made.
3) Find the coded location in a source file:
The error log points at the following tags:
<msgitemdef classname="EXPLANATION">
<title id="Sii7">Cause</title></msgitemdef>
4) Identify the real problem and explore solutions:
Remove and reinsert all valid combinations of a cross reference to the
messages appendix, discovering the cross reference is not the problem. After 3
hours' effort, refocus on the tags that substitute the text "Cause," which are also
cross reference tag types that cause "Sii7" to be automatically generated.
Remove the tags that substitute "Cause," re-run the transform of source files to
an output file type, and observe the errors do not occur in the log.
5) Apply a workaround solution:
The workaround is to use the standard label "Explanation." Advise the
developer that "Cause" cannot be mapped until a fix is provided in the authoring
system.
6) Report the problem:
Collect the code examples, write up the diagnostic attempts, and report the
problem to the appropriate source, with a severity estimate that generates a
quicker or slower response.
7) Confirm the experts agree a problem exists:
Monitor returning messages that demonstrate that experts can replicate the
problem and agree with the assigned severity estimate.
8) Track the fix and share the experience:
Talk about the problem and solution in the hall with a peer writer, and put the
issue in a local chat space to reduce other persons' length of time addressing
the wrong xref problem. Report the problem in a causal analysis meeting at the
end of the project. Over time, track the problem's fix for its appearance in a
"patch" or new point release.
9) Tally total time spent:
Tally the total time spent on this bug workaround at 6 hours.

Time spent in an anomalous state of knowledge (dealing with a "bug") is affected

by the user's search strategies. For example, the cross-reference problem in the previous

table took longer to solve because of user assumptions that the first hit of an error on a

 24

target code structure is more valuable than cascaded hits on subsequent lines. The initial

problem definition failed to recognize there were two cross-reference structures involved,

and the second one was the problem area. After significant time was consumed

eliminating all combinations that generate the first cross-reference, the search moved to

the second cross-reference and the problem was solved immediately.

Locating the error can be a very significant part of problem definition when no

specific error message points to a line of code. In some cases, trial and error, followed by

a period of reflection can resolve a problem. Additionally, a brute force method of

comparing and trying every possible combination of entries or actions can assist the

solution.

For example, a publication’s table of contents fails to show updates when headers

change in various chapters. An error message indicates the Document Type Definition

(DTD) is not found during the generate cycle of the table of contents. For more

information on the function of a DTD, see Appendix A, “SGML, a View from the

Trenches” on page 39. The only location information in the error message points to a

“sandbox” directory name that normally holds discardable “play” files. Repeated

attempts fail to insert a different table of contents or to apply the document styles to the

table. Placing the correct style files in the sandbox directory fails to solve the problem.

A period of reflection indicates that the problem exists on the outermost

“container” of the document, where the DTD is first called. The writer calls on previous

knowledge of SGML structures and their relation to a DTD, which controls coded

structures such as a table of contents. There are several types of DTDs for different

corporate groups.

Brute force methods then compare the extensive list of attributes on the outermost

container of the suspect document to an error-free document. One attribute (“doctype”)

is discovered to be complete in the good document, but not in the offending document.

The problem is resolved by entering the correct style value for the doctype attribute on

the outermost container and applying the document styles to the table of contents. The

newly-generated table of contents then correctly acquires changes in headers throughout

the document.

Depending on the previous authoring system, the writer's concepts of valid

authoring statement hierarchies can change. For example, statements that produce

 25

arbitrary levels of user-selected headlines may have been valid in a loosely-validated

proprietary authoring system. The hierarchy is modified when a document migrates to

SGML, which uses more rigorous parsing for valid and well-formed elements.

A common denominator effect occurs in the search for viable solutions if the

publication’s source files must be proofed in more than one output process. For example,

if chapter titles overrun the bleeding tabs on a printed page, an alternative short title tag

may provide workaround relief in one printing process, but appear as literal text at the

start of the chapter in another process. Failure to meet both process criteria discards the

workaround.

Changes occur to processing steps to create, modify, transfer, and archive special

files such as graphics files, in distributed and in mainframe environments. Changes occur

in steps to transform source files to print or online-viewable files.

Loss of local process control can occur. For example, an organization can request

that the actual migration processing be isolated at a central site, adding significant time

delays. If the local writer asserts the need to do the migration activity more quickly, the

writer also acquires the need to solve previously-transparent issues the central site solved.

DELIVERING SOLUTIONS

Solutions to this array of problems come from a variety of individual behaviors,

team activities on several levels, diagnostic tools, and the writer's previous knowledge

(Taylor, p. 225). If it exists in the writer’s experience, a previous knowledge of common

structures in valid and well-formed SGML provides a basis for stability in a new

authoring environment. Assuming prior exposure to SGML occurred, the writer knows

from memory whether a particular list, table, or division structure is correctly formed.

Additional visual aids that show the SGML structure of a document or a menu item that

enables validation of the document tagging may also provide assistance. From exposure

to predecessor authoring systems, experienced writers are able to describe equivalent

solutions to the same need in multiple authoring systems.

The writer also absorbs critical documentation for the new system, sometimes

after the initial migration attempts take place. A common experience is that information

that is usually easy to find cannot be located during the height of the migration effort. In

its place, verbal interaction occurs with the hallway community on a "this happened to

me" basis, which can provide verbal reinforcement and guidance. Periodic ad hoc team

 26

meetings occur to discuss the day's problems. Calls occur to persons at remote site who

have skills in diagnosis and remedies.

The writer invents and populates solution "buckets" such as an ignorable error

category, a tricks and workarounds category, a user-error-accidents category, a solved-in-

the-next-patch category, and a looks-ugly-but-working-as-designed category. A bucket is

a problem container with “fuzzy” boundaries. More generally, solutions begin to fall into

several main categories: Familiar structures, familiar processes, known bugs, and known

workarounds.

Significant time can pass before a workaround is no longer needed, based on the

problem’s severity level, which usually has a formal definition similar to the following:

Severity 1 Users are unable to proceed with work because a crucial function

is defective. A fix is provided in one working day if the site is

ready to install the fix.

Severity 2 The problem is serious, but a circumvention exists. A fix is

available in an install package within 60 days or in the next

release.

Severity 3 The problem causes only a minimal reduction in function. A

workaround exists or the problem is not serious, although no

workaround exists.

Severity 4 The problem causes no immediate impact to test or cannot be

reproduced. If the problem is accepted, a fix is provided within

365 days or in a future release.

A collection of workarounds raise long-term maintenance issues that surface, for

example, when a fix is provided and a particular workaround is no longer needed, or

conflicts in some way with the official fix.

In the process of populating the familiar process category, for example, the writer

regains control of the steps to process documents, answering low-level process questions

such as:

• Must I generate the book's table of contents and index before I transform its

source to HTML?

• Where is the runtime log display window and the log file that shows me the

error listings for the current task?

 27

• Which ASCII editor do I use to examine graphics files for hidden characters

that can prevent printing?

• Which steps shifted position in the processing sequence? For example, adding

bleed tabs to the edge of chapter pages was previously a late step before

production. The new authoring tool makes it an early step, and changes

process from the use of a separate file to changing an item on a hidden master

page in every chapter file.

Sorting out the problems into categories itself provides a significant level of

solution. For example, a set of solution categories may include:

Is a Familiar
Structure

Is a Familiar
Process

Is an Already-
Reported Bug

Has a Workaround Is a New,
Undefined Problem

SGML table tagging
looks different in
WYSIWIG editors.

Validating a document
finds all the errors in
transforms to online
formats.

Substituting text
labels in message
lists causes bogus
error messages in the
log.

Fuzzy graphics need
PDF distiller
changes.

Change bars do not
display on some list
items.

Index markers use
colons to indicate
subordination.

Bleed tabs are
manually changed on
the master page, by
chapter.

List items lose the
graphic bullet.

Change list items to
themselves to regain
the graphic bullet.

Inserting a notice
division after the
preface causes the
next division to be
read-only.

Piggybacking on a solution that has already been validated against a similar

problem is a familiar search strategy in solving problems in migrating technical

publications. Taking the path of “least effort,” the writer seeks out a colleague, whose

information may be inferior (Johnson, p. 96). There is a preference for advice from an

expert (Marchionini, p. 27), although that source may not be the first chosen.

Groups of writers attend formal classes that contain a normal sequence and

tutorial designed to navigate migration issues. Writers seek out hints and tips, informal

notes, as well as the formal documentation for the new authoring system. Typically, the

very first classes available are targeted at senior writers and consultants who are expected

to provide a level of expertise at their sites. Class content describes familiar structures

and processes, known bugs, and recommended workarounds. Class activities

occasionally demonstrate one or more new, undefined problems as the instructor or

students attempt to use the system.

BACK TO BUSINESS AS USUAL

With most of the significant migration problems solved, the writer reads the new

printed and online output for accuracy against trusted copies made with the previous

 28

authoring system, and corrects errors, if any. The information-seeking process may

evolve opportunistically as migration stress declines (Marchionini, p. 49). The

subsequent problem-solution space starts to approach a business-as-usual perspective as

the writer resolves the bulk of the migration problems. Given a smaller, familiar problem

set, the writer can more clearly estimate the time to address a solution. There may be

additional time for research into alternate solutions.

For example, smaller font sizes may change on table column headers, causing

labels that previously fit to wrap or collide with the column rule. Relieved after

migration from a state of tunnel vision, the writer may re-construct a more spacious

cognitive problem-solution table similar to the following.

Problem Negotiated Priority Trusted Solution Perspective
Font sizes cause column
headers to overrun
column rule

High Simplify the column headers Simple problem not normally
requiring help for solution

Second numbered list
has wrong starting
number

High Change the container tag to
itself

Similar to solution in hints and
tips

Index item overruns next
index column

Medium Embed spaces in index item
to allow line break

Trial and error shows embedded
spaces allow line breaks

Add missing change
bars to text containers

Low Change the tag to itself or re-
enter the paragraph

Described in hints and tips file

QUESTIONNAIRE RESULTS

The following results were obtained from a questionnaire administered to

technical writers who were currently migrating, or had recently completed migrating a

technical publication. This section describes correlations of significance between

question returns, followed by descriptions of the frequency of responses.

Correlations of Significance

Using the SPSS for Windows statistical package, questionnaire returns provide

the following information with a degree of significance (.05 or less) on a Spearman’s test

of correlation:

• Responses on sufficient information availability are positively correlated to

perceptions of the ability to help others, and also to publication size.

• Responses on an ability to help others are negatively correlated to confidence

the next migration will be easy.

 29

• Returns on having one’s computer and its programs almost completely or

completely ready are negatively correlated to responses on the total

publications worked on in the last year.

• Responses assessing the ease of a current migration are positively correlated

to the amount of time spent on the migration effort and also with confidence

the next migration will be easy. Responses assessing the ease of a current

migration correlate negatively with responses on years worked in technical

publications.

Frequencies of Interest

The study population is generally experienced and contains a large number of

team leaders. About 75 percent of the respondents reported 10 or more years of technical

writing experience. Approximately 87 percent indicated they had worked in a previous

migration effort. About half the study group held a team lead (writer) position.

Ease of migration was rated somewhat difficult by about half the population (53

percent), with another 40 percent judging migration reasonably easy. About seven

percent reported migration significantly difficult. The population most frequently

worked on multiple publications in the year before migration, often on large publications.

About 60 percent reported working on more than four publications in the previous year.

The largest group (40 percent) migrated publications greater than 350 pages in length.

The migration decision did not commonly depend on taking a class on the new

authoring system, and the choice to migrate a publication was typically made with only

partial knowledge. Two of three respondents reported they did not attend a formal class

before the migration. More than 70 percent said they worked on a similar authoring

system before migration to the new one. For 40 percent of the population surveyed, the

information needed to make a migration decision was sufficient about half of the time.

Another 20 percent believed the information was sufficient most of the time.

Computers and programs were not ready for migration for about 20 percent of the

respondents. Approximately 26 percent said their equipment and software were

somewhat ready. The largest group (40 percent) judged their computer almost

completely ready, and about 1 in 10 reported their computer and its programs completely

ready for migration activity.

 30

Migration was not necessarily a one-time activity for a publication. Two of three

respondents changed publications to fit a migration need, and the same ratio re-migrated

a publication.

The most difficult authoring system structures to understand during migration

were concentrated (60 percent) in front matter topics. The database of problem-solution

items (27 percent) and the user's guide (20 percent) were regarded as the most difficult

sources of information.

The very first problem solving efforts initially concentrated (47 percent) on

reading the processing errors, changing the publication, and re-running the process. A

person nearby was the next most frequent first source of help for about 20 percent of the

group, followed by the authoring system user’s guide for about 13 percent. Throughout

the migration effort, a nearby writer was most frequently contacted for help in about a

third of the problem cases. For 40 percent of respondents, obtaining others’ advice

solved the problem about half of the time. Another 20 percent reported that others'

advice solved the problem most of the time. The most valued information source was

expert advice (40 percent), followed by approximately equal attention to error logs and to

a collection of hints and tips.

Unsolved problems were most frequently met with a workaround (67 percent).

The next most frequent approach to unsolved problems (26 percent) was to determine if

the problem severity blocked publication.

Duration of the migration experience was most typically between 5 to 20 hours

(53 percent). Approximately equivalent numbers (13 percent) reported the activity was

very easy (1 to 5 hours) or very difficult (more than 80 hours). Nearly half of the study

group (47 percent) declared they report problems most of the time or almost always.

Feedback to the new authoring system problem base happened “some of the time” for

another 40 percent of the study population. Reports of the most significant process

change were widely distributed, with document validation holding the largest percent (19

percent). An equivalent number of respondents found no difficulty in using the new

process.

Reflecting on the Questionnaire and the Qualitative Experience

There appears to be qualitative value in an investigator's actual involvement in

migrating publications, obtaining information on process task sequences, real problem-

 31

solution instances, and other behaviors that a questionnaire of some length would find

difficult to explore. For example, the instance of problem-solution triage for a "bug"

seems an unlikely candidate for discovery by a questionnaire. The addition of a

qualitative experience also seems justified by the small sample size of this early adopter

population, which prevents extension of questionnaire findings to a more general

population. Involvement in the actual migration experience also provides the basis to

pose appropriate questions to the larger group.

Combining findings from the questionnaire with the qualitative experience also

helps define the information gap that occurs within the larger framework of an

organization using tools based on a standard such as SGML. The questionnaire provides

a perspective on gap-bridging activities and their concentration in certain work activities,

such as the frequent use of nearby writers' advice. The questionnaire exposes areas of

vulnerability reported by the study group as a whole in its effort to build new conceptual

"tables" of problems and solutions, forming the basis for recommendations that one

individual's qualitative effort cannot as firmly support.

 32

CONCLUSION AND RECOMMENDATIONS

Migrating publications to a new authoring system provides a unique window into

the problem-solution definition work done by “active, experienced, and critical users of

information” (Taylor, p. 219) who focus on expediting the normal flow of information for

new function into existing publications. The population described in this paper can be

characterized as pioneers, probably more experienced than the normal population. Their

efforts support subsequent widespread usage by a larger population that happens over an

extended period of time. Within the recent interval that saw SGML evolve as a standard,

their efforts are part of an developmental sequence characterized by gradualism, one that

is “evolutionary rather than revolutionary" (Neuman, p. 165).

Migration can cause uncertainty in both the authoring structures and the related

processing of a document. Bumping into the need to resolve a gap, or anomalous state of

knowledge, technical writers demonstrate behaviors for preferred sources of information.

They revise previous cognitive “tables” of problems and solutions and build new ones.

New problem–solution constructs occur to ensure the value of continued investment of

effort in migrated publications.

Bounded by a finite amount of time in a project, the writer becomes temporarily

unaware of the operational steps to produce a desired authoring effect. The full extent of

the "problem space" at migration expands processing for the document. The writer

discovers a need to enumerate and partition a new range of issues, determine which

previous solutions are still valid, attach unsolved issues to valid solutions, and confirm

the problem resolutions are robust. Information overload occurs when the writer

approaches a new array of documentation.

An element of triage happens to a population of migration problems. Some are

solved immediately with information at hand. Another set requires investigation and

repeated cycles of processing. A more resistant collection requires expert help, highly-

itemized delineation, and imposes possible delays to provide a “fix” for a “bug.”

Error checking mechanisms in the authoring system itself provide significant

input into problem identification and resolution. A supportive work environment also

provides migration experts, formal classes, a tools design group, and an abundance of

documentation on normal processes and problem solutions. Senior writers and

consultants who are expected to provide a level of expertise at their sites attend classes

 33

that describe familiar structures and processes, known bugs, and recommended

workarounds. Classes also occasionally demonstrate the volatility of a new system with

the actual occurrence of a new, undefined problem as the instructor or students attempt to

use the system. Behaviors in solution seeking demonstrate a preference for certain types

of information sources, including experts who possess “comprehensive vocabularies in

the domain, know what types of sources are best applicable to problems, and are aware of

alternative access points for finding information in the domain” (Marchionini, p. 27).

Teams provide norms for problem definition and resolution. Informal contacts in a

“hallway culture” and ad hoc interest group meetings provide discussion arenas to share

possible solutions. Extended access to useful contacts may be restricted by project

milestone requirements. The appearance of new and complex problems at late stages in a

project can generate tunnel vision.

The changes to structure and process can be significant. On the path to regaining

control of authoring structures and processes, the writer invents and populates solution

"buckets,” determining a new set of familiar structures, familiar processes, known bugs,

and both their workarounds and longer-term correction. “Bucket sharing” occurs both

between teams, and across sites, in attempts to improve productivity in using the new

system and decrease the stress on new users. The information-seeking process may

change after document migration, as work returns to business as usual. Look-ahead

information search strategies occur for alternate solutions that affect the next cycle of

information flow into publications.

Although heavily weighted toward one site, questionnaire results reported in this

paper are consistent with the initial premise that the study group is expert knowledge

users who encounter a knowledge deficit in solving problems. For example, a significant

number reported encountering difficult structures in the front matter of a publication.

They recognize a need for critical information exists and attempt to express the need.

Their problem-solving efforts initially concentrate on reading errors, making publication

changes, and re-running an authoring process, and on visiting a nearby person who might

solve the problem, which is reported to succeed about half the time. Expert advice is the

most valued information, typically consulted after initial error solution attempts and

nearby peers fail to provide relief.

 34

Interested in throughput to meet production deadlines, technical writers as sense-

makers use whatever bridge is available to build across the gap. Those surveyed appear

to solve the problem space in reasonable time intervals, commonly reporting that

migration takes place in between 5 to 20 hours. Responses to a questionnaire

demonstrate many in the study group have prior involvement in an available collection of

scenario models, typically in similar authoring systems and previous migration efforts.

The study group’s efforts contain a look-ahead strategy, seeking to determine whether

sufficient information is available to decide whether to migrate publications, and whether

computers are ready for the task. In an opportunistic effort, the group members

frequently change publications to fit migration needs. Problems are examined to

determine if their severity blocks publication. Difficult problems are frequently resolved

with a workaround.

RECOMMENDATIONS

Based on questionnaire data, this writer’s recommendations include the following:

• Reducing opportunities for front matter problems to exist, which may provide

significant savings in time spent by the population using the new authoring

system. Do hints and tips documents address the extent of front matter

problems with the same degree of focus that migration seems to bring to the

topic?

• Ensuring that the “someone nearby” who is a common first source of help has

a reasonable level of expertise. The person’s task load should allow

addressing problems locally and reporting unsolved issues to a central tools

group.

• Providing greater ease of use in searching the central database of problems

and requirements and understanding or participating in priorities of fixes in

the next patch to the authoring system.

• Examining whether computer readiness is really satisfactory in the general

user population, or whether the questionnaire conceals underlying issues with

its concentration on team leaders and early adopters.

• Collecting a sample of workarounds to determine whether they represent a

significant hazard to future publication maintenance.

 35

• Collecting more granular responses on publication changes (changing a

central index to a distributed index, for example) made prior to migration to

determine if they represent solutions not cited in the migration readiness

section of the authoring system’s user’s guide.

• Examining why remigration occurred with a significantly high frequency in

the first migration attempts.

 36

REFERENCES

Barry, C., “User-defined relevance criteria: an exploratory study” in Journal of the
American Society for Information Science, 45(3), 1994

Belkin, Nicholas J., “Anomalous states of knowledge as a basis for information retrieval”
in Canadian Journal of Information Science, vol. 5, 1980

Belkin, Nicholas J., Oddy, R. N., and Brooks, H. M, “Ask for Information Retrieval,” in
The Journal of Documentation, 38(2), 1982

Carroll, John, and Rosson, Mary Beth, "Paradox of the Active User," in Interfacing
Thought, John M. Carroll, ed., The MIT Press, Cambridge, Massachusetts, 1987

Clayton, Peter, Implementation of Organizational Innovation, Academic Press, San
Diego, CA, 1997

Cover, Robin, The SGML/XML Web Page: SGML/XML Applications: Government,
Military, and Heavy Industry, http://www.oasis-open.org/cover/gov-apps.html

Constant, David, Sproull, Lee, and Kiesler, Sara, "The Kindness of Strangers: On the
Usefulness of Electronic Weak Ties for Technical Advice," in Culture of the Internet,
Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 1997

Dervin, Brenda, and Nilan, Michael, "Information Needs and Use," in Annual Review of
Information Science and Technology, vol. 21, 1986, Martha Williams, ed., published for
the American Society for Information Science (ASIS) by Knowledge Industry
Publications, Inc.

Doll, William J., and Torkzadeh, Gholamreza, “The Measurement of End-User
Computing Satisfaction,” in MIS Quarterly, June, 1988

Hasdogan, Gulay, “The role of user models in product design for assessment of user
needs,” in Design Studies Vol. 17, January, 1996

Johnson, J. D., Information Seeking: An Organizational Dilemma, Quorum Books,
Westport, CT, 1996

 37

Kaplan, Abraham, The Conduct of Inquiry, Chandler Publishing company, San Francisco,
CA , 1964

Kuhlthau, Carol, "A Principle of Uncertainty for Information Seeking,” in The Journal of
Documentation, vol. 49, number 4, Dec., 1993

Livonen, Mirja, and Sonnenwald, Diane H., “From Translation to Navigation of Different
Discourses…” in Journal of the American Society for Information Science, 49, 1998,
John Wiley & Sons, Inc.

Marchionini, Gary, "Information-seeking Perspective and Framework," in Information
Seeking in Electronic Environments, Cambridge University Press, 1995

Moore, Gary, and Benbaset, Izak, “Development of an Instrument to Measure the
Perceptions of Adopting an Information Technology Innovation,” in Information Systems
Research, September, 1991

Neuman, Russell W., The Future of the Mass Audience, Cambridge University Press,
1991

Norman, Donald A., The Invisible Computer, Donald A. Norman, The MIT Press,
Cambridge, MA, 1998

Olson, Judith R., "Cognitive Analysis of People's Use of Software," in Interfacing
Thought, John M. Carroll, ed., The MIT Press, Cambridge, Massachusetts, 1987

Pinelli, Thomas E., Information-seeking and Communicating Behavior of Scientists and
Engineers, C. Steinke, ed., The Haworth Press, New York, NY

Rogers, Everett, Diffusion of Innovations, The Free Press, New York, NY, 1983

Solomon, Paul, “Information Mosaics,” (in press), from proceedings of an international
conference on research in information needs, August, 1998, Sheffield, England

Taylor, R. S. “Information Use Environments,” in Progress in Communication Sciences,
X, 1991

 38

Tivoli Manager for R/3 User’s Guide, Version 2.0, and Tivoli Manager for
MQSeries User’s Guide, Version 2.2.1, by Tivoli Systems Inc., an International
Business Machines (IBM) company, 1999

Travis, Brian E., and Waldt, Dale C., The SGML Implementation Guide, Springer-Verlag,
New York, NY, 1995

Wellman, Barry, “An Electronic Group is Virtually a Social Network," in Culture of the
Internet, Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 1997

 39

APPENDIX A: SGML, A VIEW FROM THE TRENCHES

To understand this paper, you need to have a general awareness of Standard

Generalized Markup Language (SGML), editing tools, and transform engines used to

create large-scale technical documentation. Taking a technical writer’s point of view,

this appendix focuses on understanding a document that is tagged in SGML language.

For a sample product such as a user's guide, it describes how to organize files for ease in

writing, common SGML tagging, and typical problems and solutions. After reading this

information, the reader who has a beginning knowledge of SGML should be able to

understand the reasons and the work context for use of certain tagging structures, and

manipulate file and SGML elements used in a typical technical manual.

More information on SGML, editing tools, and transform engines is available at

the following:

• http://www.pubsnet.com/adobe.html - An online resource for training in

publishing using Adobe FrameMaker®+SGML

• http://www.adobe.com/products/framemaker/prodinfosgml.html - Key

features of FrameMaker+SGML

• http://www.arbortext.com/ - Products and other information provided by

Arbortext, Inc. for their SGML and XML editors

• http://www.omnimark.com - The OmniMark® Technology Corporation home

page for free and purchased SGML tools, including transform engines to

produce HTML and other output from SGML source

TERMS AND DEFINITIONS

Terms used in this appendix include the following:

Content outline

An outline of the major elements in a publication. Typically, these include a table

of contents and a preface, an introduction, and descriptions of installation,

configuration, using, and troubleshooting a program, as well as various

appendices, such as an appendix listing log files, and back matter that contains an

automatically-generated index.

 40

Document type definition (DTD)

A part of SGML that defines the presentation of information – how text and

figures appear when printed or viewed and which elements are contained in other

elements. It is “..a collection of element, attribute definition list, entity, notation,

short reference, and comment declarations” (p. 229, Travis and Waldt). For

example, the DTD determines that a paragraph cannot contain another paragraph,

but can contain one or more notes. The availability of column rules in a table, for

example, is defined in the DTD.

Document version control

Using logical conditions to control the output of a variable or entity that

represents a text string such as a product name. For example, you can invent

several labels for the same information and use the information in separate,

closely-related products.

Side file

A file that contains information containers you intend to change once and call

many times from various locations in a publication’s files. For example, a side

file contains a paragraph with a unique ID, a paragraph block with a unique ID, or

an entire division with a unique ID.

Single sourcing

Describing a function once and re-using the information many times, an efficient

practice that prevents errors that occur when a concept is described several times

in separate text.

Transform

A transform is the action to change SGML into another viewable or displayable

coding format such as HTML.

Vocabulary control

Broadly put, the reason you create text entities and side files. Humans create

variations in vocabulary. To control (and eliminate) vocabulary variants, you

automate the coding of key terms and phrases in SGML structures called entities.

DOWN INTO THE TRENCHES

Temporarily put aside all the interesting information you may have read about

Document Type Definitions, which are admittedly important for SGML documents. I

 41

don't ask you to forget what the DTD functions are, but out of a group of 1,000 technical

writers, typically one or two specialists ever get their hands on that file. Perhaps, if

you're in a very small group, your chances of working on a DTD are better. So, come on

down in the large-group trenches for a minute, and I'll give you a short tour of a way to

think about SGML used in technical writing for computer applications.

The following code fragment at the top of your document master file is about as

close as you ever get to the DTD:

<!DOCTYPE SOMEIDDOC PUBLIC "+//ISBN 0-933186::SOME//DTD

SOMEIDDoc//EN" [

<!--ArborText, Inc., 1988-1998, v.4002-->

Your job as technical writer is not to decide the presentation of information, but

rather, its content. I repeat, content is important. Presentation is not. Page breaks don’t

matter. Font size doesn’t matter. There's a truism in the business that people who have

little or nothing to add to a document’s real content will wear you out changing the

format of the publication. SGML saves you as a writer from those difficulties. If you

describe a variable, for example, you want it tagged as a variable. So, when you tag it

<pv>sample_variable_name</pv>, your work is done. Someone else will decide whether

its final appearance is italic, boldface, or some other display convention. Your job is to

describe the function of an application or other invention, not to create fancy formats.

Content outlines are typically the major structure for your work. They are really

hard work, amounting to "think first (i.e., know the application you're going to write

about), code later." No SGML knowledge is needed at this stage. You work with

developers to describe the prerequisites for an application, its installation, configuration,

typical usage, and useful trouble-shooting activities. You debate with peer writers and

with developers who know much more than you do about the product.

Later, at a more granular level, as you flesh out the content outline, you typically

apply lower-level skills in using valid, well-formed SGML containers to label your

information. Examples are probably already available as pre-structured files that a senior

writer built to ensure similarities in library naming and file maintenance. A significant

part of your bread and butter as a writer is competent understanding of frequently-used

 42

SGML "containers." For example, you should be able to use entity declarations,

understand and implement information reuse, structure a master file and its embedded

chapter files, and provide subordinate elements within a division. You should be able to

link between content in different SGML containers.

WHAT ARE “CONTAINERS?”
"Think containers" was the first advice from an expert showing me the basics of

SGML tagging. Every SGML tag pair is a container, with a start and end tag. Like

containers do not overlap. Each container must have both a beginning and ending tag.

Only certain subordinate containers are valid inside others. The elements of valid, well-

formed SGML apply with a terrible vengeance to technical writing, if you ignore them

until the week before production.

In terms of frequency of use, there are relatively few containers. Almost all of

them can have an ID you can reference, but typically, divisions, lists, tables, and figures

have IDs. The following is not a comprehensive list:

Division A division is the typical largest container. It contains other subordinate

divisions. Within a division, you can have smaller containers adjacent

to each other, or containing each other. Smaller containers include:

• Subordinate divisions

• Paragraphs

• Lists of all kinds, such as simple bulleted lists, numbered lists,

definition lists (a term, and a definition), and a list of related notes.

Lists can contain other lists, paragraphs, and other containers.

• Figures

• Notes

• Special syntax structures used to label parameters, values, and

other command elements

• Tables, perhaps the most complex of the structures you use

CAN I USE A REALLY SIMPLE EDITOR?
Tagging information in SGML without using a parsing editor is one of the more

likely methods to wreck a good set of SGML files. The parser that proofs your SGML

tagging is strict, far more strict than any HTML browser you've ever met. Using a

 43

special edit program, such as the Adept editor sold by Arbortext, Inc. is an extremely

wise use of your time.

For example, suppose you have 10,000 lines of tags and text in a file, and

somewhere in these lines, you decide to use a simple editor such as pico to move and

change the list item to a paragraph in the following:

Install the &apprxsr; on a managed node that is a gateway
to &endpnt;s.

The result (with an error - the first <p tag is missing the closing > delimiter) looks

like:

<p Install the &apprxsr; on a managed node that is a gateway
to &endpnt;s.</p>

You later discover, after closing the file, that your SGML parser declares a code

violation. Unfortunately, until the next version of the parser (six months in the future), it

doesn't point to the offending line. You now get to read all 10,000 lines (or run a

difference utility against a backup file) to locate the problem. Most people don't believe

this advice, by the way, until they've lost several days’ work several times. Try it, and

good luck.

A partial solution to the problem is to enforce the use of source that is SGML-

enabled, but is binary rather than ASCII. The FrameMaker+SGML 5.5+ product, for

example, uses binary files. You simply cannot make some types of tagging mistakes,

such as the example. FrameMaker does provide the freedom to break a number of the

other SGML rules for well-formed code, however.

Having said all that, a person with a firm grasp on the rules of SGML parent and

child tagging can be very efficient, and dangerous, using a simple ASCII editor. The

work requires the discipline to backup files frequently and proof small segments of work

frequently with a good parser. You do find very expert technical writers taking their

chances with the utmost in simplicity in editing SGML. They get away with the practice

until their publication is translated, which creates a translation memory that is vulnerable

at subsequent releases to certain types of line break re-ordering caused by simple editors.

WHAT ARE ENTITY DECLARATIONS?

There are several basic types of entities. One type points to another file. For

example, the next code fragment points at a file that contains entities:

 44

<!ENTITY % m310uent SYSTEM "m310uent.ide">
%m310uent;

Another basic entity type declares a text string that is a likely candidate to change,

that you intend to write in one location, and reference multiple times. Another basic type

of entity names a file, such as a graphic drawing or a screen capture. The SGML parser

insists the entity names be unique.

It's handy to point to another file, for example, when you want to build a file

containing only entities. Grouping all entities in one file prevents you from creating an

entity for a particular name, such as a product, in one chapter, and another entity for the

exact same name in a different chapter.

Another common use of a text entity is to name a product that is expected to

change its name, as it frequently does before general availability. You change the actual

name in one entity declaration, and all the references are automatically changed

throughout a publication. For example, the next entity declaration names an installable

program likely to change its formal product name several times before you publish your

work:

<!ENTITY apprxsr "Application Proxy server">

Inside a given chapter, you call the &apprxsr; entity in a line such as:

Install the &apprxsr; on a managed node that is a gateway
to &endpnt;s.

Entities that represent names provide another useful function - vocabulary control.

Humans seem to love variation, and it shows in the invention of new terminology. Often,

when a group of developers first start naming the parts and functions in their new

application, several very similar variations are invented for the same function. But to the

naive user, is the collection of synonyms really one function, or different but very

closely-related functions? Text entities enforce the use of a standard vocabulary and

reduce error and misunderstanding.

Allowing choice in entity declarations can cause problems, and your selection of

an editing program can influence how you perceive the use of text entities. In

FrameMaker+SGML 5.5.3, for example, variables are used as a substitute for text

 45

entities. The problem at release 5.5.3 is that a variable can be declared local to a

particular chapter file, becoming separated from the main body of entities, which are

usually organized in the prolog (or setup) file and imported to all chapter files. Other

products solve the problem of distributed entities by providing a menu only on the main

editing panel to control all text entities, eliminating the possibility of a text entity

declaration that is local only to an individual chapter file.

WHAT IS A MASTER FILE?

A master file could contain all the lines in your publication, but typically, it doesn't

because breaking up content into chapter-level files helps organize your effort. A master

file usually contains:

• A pointer to the DTD

• A reference to an entity file (although the entities could be at the top of the master

file for simplicity sake)

• A variety of hidden information, such as the author, date, and revision levels, as

well as publication numbers and other information

• Reusable information in what is called an object library or side file. The concept

of writing information once and calling it in multiple places is the basis for such

files, which are typically simple collections of information scattered throughout a

publication.

• Container tags that mark the boundaries of the document. For example, parts,

body, appendices, glossary, and index.

• References to chapter files

• Appendices

• Glossary

• Index

WHAT IS A SIDE FILE?

A side file collects the single instances of some bounded information. Each

information container has an ID you can reference elsewhere. Suppose you have a

command or parameter you need to describe several times throughout a book, or

throughout a library of books. If you write out the meaning of the command each time it

appears, you may find later that the meaning changes as developers rethink their product.

 46

Publication errors occur if you forget to change every instance of the text in the book.

How much simpler it is to write the explanation once and call it in different locations.

For example, the ID that is named stplb3 is an example of reused information:

<li id="stplb3">In the STEPLIB statements, replace
<xph>your.product.SCSQAUTH
</xph> and <xph>your.product.SCSQLOAD</xph> with the data set names for
your
actual product libraries.

Of course, you don't have to use a side file. You can instead embed the

commonly-repeated information at the top of the master file, in the object library

(objlibbody).

WHAT ARE EMBEDDED CHAPTER FILES?

A chapter file provides the organization for some major element in your content

outline, such as event handling. A chapter file typically starts with a fragment header:

<!-- Fragment document type declaration subset:
ArborText, Inc., 1988-1998, v.4001
<!DOCTYPE SOMEIDDOC PUBLIC "+//ISBN 0-933186::SOME//DTD
SOMEIDDoc//EN" [
<!ENTITY % m310uent SYSTEM "m310uent.ide">
%m310uent;
]>
-->

The remainder of the chapter is a simple sequence of paragraphs, lists, figures,

and tables. A portion of such a chapter might look like the following:

<d id="introd" style="BKM:(topicsel=yes subjart=tivch1)">
<dprolog><titleblk>
<title>Introducing &ProductOnly;</title>
</titleblk></dprolog>
<dbody>
<p>The &ProductOnly; (&Module;) provides a centralized
system management tool for &appl; on the &company; platform.</p>

WHAT IS AN INDEX?

You've used an index many times, but when you create one for others, there are

typically two types of index organization. Simpler is better, especially if you're trading

content frequently with other writers, or suspect your writing tools might change, or you

have translation requirements.

 47

The simple type of organization puts the index declarations immediately adjacent

to the information you want to index. For example, an entry would be:

<i1 id="cfgg"><idxterm>configuration</idxterm>
<i2 id="cfgmgt" refid="cfgg"><idxterm>management
</idxterm></i2>
</i1>

The second type of indexing, central indexing, is more complex. You organize all

the index entries in a separate file, and then point to them from the actual location you

want to index. Here's a sample entry in a separate, central file:

<i1 id="cfgg"><idxterm>configuration</idxterm>
<i2 id="cfgmgt"><idxterm>management
</idxterm></i2>
</i1>

And the reference (the "iref") in a particular chapter looks like this:

<iref refids="cfgmgt">

WHAT IS A TRANSFORM?

A transform is the action to change SGML into another viewable or displayable

coding format. Very few SGML display tools exist for the general public. Technical

writers use programs that transform SGML to usable output, such as HTML that a

browser can display, or PostScript files, which can be subsequently printed, or modified

to portable document format (PDF) files that are printer independent and are immediately

displayable by a product such as the Adobe Acrobat Reader program.

Transforms are also handy to have because they provide additional syntax

checking that you may not get from an SGML editor. Sometimes, you want to run both

the print and the HTML transform to ensure you caught all the errors.

WHY USE DOCUMENT VERSION CONTROL?

Sometimes a functional unit of a program can be used interchangeably in several

different products, or with very slight changes. It turns out to be efficient to use the same

documentation too, and just change the product name or add or eliminate small changes

based on which product is produced.

Here's why document version control is very useful. You declare a text entity that

has several possible strings as its output, depending on the value of a variable, which

 48

we'll call PRODUCT. The first string is something like "Darling Dark Chocolate" and

the second string is "Creamy Milk Chocolate”.

<!ENTITY product "<ph props='DARK'>Darling Dark Chocolate</ph><ph
props='MILK'>Creamy Milk Chocolate</ph>">

Another file, usually called the VAL file, contains the value of DARK and MILK

variables. VAL files are called at run time, when you generate a book or HTML file, to

select which strings actually appear in the file. For example, to cause the value of

PRODUCT to be “Darling Dark Chocolate” the file declares the following:

DARK:=#T
MILK:=#F

VAL files typically run in pairs: one file for one combination of truth conditions,

the other for the reverse set of conditions. You don’t literally have to declare the Boolean

value of both variables, but it helps the writer see all the possible combinations, and

avoids mistakes by implying but not clearly stating all variables in the population. Being

explicit also helps translation centers, because “throwing it over the wall” is a very

typical working practice when you hand off publications to translation.

It’s common to use variable controls to work around problems in an authoring

language or its transforms to HTML and print. For example, suppose a reserved entity

called ✓ fails to show a check mark in HTML, but works OK in print. You can

declare the following:

<!ENTITY ckm "<ph props='HTML'>X</ph><ph
props='PRINT'>✓</ph>">

Another file contains the value of HTML and PRINT. For example, to cause an

X to appear in HTML, the file contains:

PRINT:=#F
HTML:=#T

FILE EXAMPLES

A set of SGML files for a publication includes the following:

mt10u.idd master file, indicated by the *.idd filetype.

 49

mt10ucpy.ide copyright file, containing the legal boilerplate

mt10upre.ide preface, providing a high-level abstract and pointers into the

publication

mt10uint.ide introductory chapter

mt10uins.ide installation and configuration chapter for the product

mt10unxt.ide the next chapter

mt10uapp.ide sample appendix file to test the back matter

mt10uapb.ide another appendix file to be sure a second appendix is generated

mt10uglo.ide sample glossary file

mt10uprt.val determines the value of a text entity in print

mt10uhtm.val determines the value of a text entity in HTML

 50

APPENDIX B: AN INTERCONNECTED WORK ENVIRONMENT

Strong expectations of business advantage often propel the adoption of a new

authoring system. The migration effort occurs in the context of existing work practices,

standard tools and processes, and a writer community composed of both closely and

loosely-knit teams.

VECTORS SUPPORTING MIGRATION

Migration may occur because a new authoring system provides real gains in

productivity, reducing the time to do a task such as indexing. The impetus may also start

when acquisition of other companies with valuable applications brings together writers at

a variety of remote sites. Their products already have documentation in a variety of

authoring packages, but may need to provide a more standard appearance. Transfer of

project development between sites causes a need to transfer the related documentation

files, which are more efficiently changed at the next release if both groups use the same

authoring tools. If the authoring system is a commercially-available product, it is easier

to assess skills and hire contractors with previous experience that can be rapidly applied

to existing tasks.

Anticipated efficiencies in translation can fuel migration to a new authoring

system. Translation requires conserving the cost of generating and re-using translation

memories from release to release. Common practices and publication tools are required

for entry into the translation process.

Converging on a common, new authoring system also makes a centralized tools

group more efficient in providing common process help and system upgrades to multiple

sites. Costs of developing and extending an authoring package can be spread across

many sites, reducing the cost per site.

USING STANDARD TOOLS AND PROCESSES

The writer community in general may have an authoring perspective that uses

Standard Generalized Markup Language (SGML), which removes many, but not all, of

the presentation aspects of a published work from the individual writer's domain. In

general, the technical writer attempts to minimize uncertainty factors, using trusted:

• Publications programs

• Processes to generate, publish documents

• File transmission and packaging utilities

 51

The technical writer applies standard tools and processes to bound the

presentation of information. For example, a writer in an International Business Machines

(IBM®) environment may use Frame+SGML®, produced by Adobe Systems

Incorporated. The product provides a WYSIWIG editor for documents that conform to

the SGML standard. The writer may alternatively use IBMIDDOC Workbench, or

combine Workbench with an additional product called Frame2000. Or, a writer may use

a legacy authoring system such as BookMaster®. In the migration described in this

paper, the “new authoring system” includes Frame2000 support for the IBMIDDoc DTD.

Frame2000 enables WYSIWIG editing of draft documents using Frame+SGML 5.5.6,

with the final production processing provided by the Workbench. “The [Frame2000]

solution will import and process valid IBMIDDoc data as well as export valid IBMIDDoc

that fully conforms to the IBMIDDoc DTD and downstream tools and processes” (p. 2,

Frame2000 User’s Guide, Release 1.0, International Business Machines Corporation,

1999). Frame2000 is licensed to IBM by Softline International, Inc.

A partial list of additional benefits associated with using Frame2000 include:

• Integrated use of a tool to analyze English statements for translation, called

the Easy English Analyzer

• An indexing wizard (Ixgen+SGML, Frank Stearns Associates) to speed

indexing efforts

• Menus that integrate the use of IBMIDDoc Workbench to provide output file

types for printing and online viewing

Similarities in conceptual treatment of material may span multiple products, using

templates for information plans that contain similar content outlines. Across the entire

organization, the template for information plans may be organized under the umbrella

guidelines of a common development process. With the possibility of a compliance

audit, teams apply standard procedures that meet ISO 9000 requirements, an industry

standard that basically examines whether established processes are, in fact, followed in

normal practice. Some publications may experience cross-site collaboration to provide

common library templates for similar publications. Most publications make use of cross-

site editing style guides.

Individual publications that are the work output typically share common content

outlines, as well as similar file and lower-level source tagging schemes in an extended

 52

library of similar publications. As part of describing a computer application, the writer

installs and uses the application. As a member of a development group of programmers,

the writer may also participate in designing user interface elements. The writer gathers

information during the development cycle and periodically reviews the increment with

test and development experts. Editor and peer reviews are also part of a normal

publications cycle. Information deliverables are examined for content accuracy in an

inspection process. Inspectors include application developers, customer service persons,

human factors team members, and a variety of test and early customer involvement

persons.

The writer typically simplifies complex language constructs to obtain a level of

ease of translation. At the time of writing, there may also be a prevailing theme within

the writing community, such as “minimalist information,” that also affects the

compactness of an information component. At the production milestone, the writer's

publications join the remainder of the application as a product.

WORKING IN LOOSELY AND CLOSELY-KNIT TEAMS

The writer is typically a member of both closely and loosely-knit groups in a

technical community with ongoing channels of communication. Closely-knit groups

have the ability to communicate to solve like problems more rapidly the second time a

group member encounters them. The group may maintain a unique team practices

document to unify solutions. Closely-knit teams are represented by one or more

programming development groups that consider the technical writer a team member.

Development teams share a core group of writers, the technical writer's other closely-knit

group. More loosely-knit groups provide expertise beyond the parochial experience of

the local group, which may fail to locate solutions to critical problems (Wellman, p. 180).

Writing teams range from one (a very small team) to perhaps ten writers. They

typically have a team leader, who may also write one or more publications and coordinate

team practices, schedules, and reporting. Teams focus on conserving their current library

and estimating available team resources as migration approaches. On a look-ahead basis,

they take steps to:

• Ensure readiness to use a new tool, typically by involving team members in

classes or pre-availability trials.

 53

• Evaluate approaching information flow from the products they support, and

associated production milestones.

• Locate information, including class manuals and other information.

• Identify expected entry criteria, possibly changing certain library-wide

authoring structures to reduce uncertainty in migration. For example,

indexing may change from central indexing schemes to chapter-by-chapter

indexing.

Teams may have a collective team outlook on new authoring systems, risking

only a part of an entire library at a time, or with significant demand, all of a library.

Pioneers who make the first attempts describe their experiences to others. Team

members whose publications follow in later migration cycles participate in significant

verbal discussions of current projects and their critical solution sets. In subsequent

publication migrations, their staged learning can recall a valid solution, or find a team

member who knows the answer without a sequential search of all available information.

The team expects to pass through an initial period of dependency on tools support,

building a stable, standalone ability to troubleshoot most system issues without outside

help. In this context, there are instances in which random browsing behavior by isolated

individuals occurs to identify problem elements and locate solutions. Just as common in

this context is a rapid, concurrent effort by several writers who set a time limit, assign a

particular branch of random behavior to each team member, and then rejoin after the time

limit to pool the results of their activities.

Team members vary widely in their range of experience. A team may have

members who participated in previous migrations with earlier authoring systems, able to

gather clues on the duration and loading effects expected in a new migration effort. From

memory, migration-wise team members may relate current issues and solutions to valued

information source types from an earlier effort.

Team members attend formal classes in using a new authoring system. An

informal web of "heard-it-the-hallway" verbal exchanges, as well as informal channels of

communication and friendships with critical information resources or experienced writers

also generates clues and solutions to team problems with an authoring system. A variety

of communication flows occur during business as usual in team settings. Members

participate in intra-team and extended team information exchanges, including

 54

communication across sites on topics of mutual interest. Special interest group meetings

occur on a monthly or weekly basis, some of which provide requirements and usage

feedback to the authoring system tools team.

Formal and informal ties may exist between some group members and

knowledgeable authoring system designers, who are capable of providing strategic and

timing advice for migration. A centralized team may design, implement, and guide the

deployment of an authoring package.

In general, the team that designs and supports the authoring tool will complete a

series of formal test exits and a series of evaluations before releasing a new authoring

tool. On a more abstract level, an active writing community can be viewed as a pool into

which the tool design team releases an agent such as a new authoring system that has a

significant, ongoing wave effect. Feedback to the design team helps it detect dissonance

on various moving objects (writing projects) in the pool, and also identify alternative and

unauthorized ripple sources in the pool, such as the use of an obsolete editing system or a

competing translation system.

Prior to general availability, beta testing and preliminary classes introduce

members of the user community to new function in the tool. The authoring system team

attempts to locate a significant sample of the existing publications for testing. As general

availability approaches, estimates of formal classes for all users provide a calendar for

education. Also generated are a variety of plans to handle anticipated user questions,

error reports, and plans to distribute periodic fixes across the user population.

Documentation is prepared, including training manuals, user's guides, instructor's guides,

and hints and tips files. An open database allows users to track reported problems, fixes,

and future requirements. Other tools-related efforts provide a communication forum for

interested parties, including translation, external companies, and vendors that provide

parts of the authoring tool package, such as an indexing wizard.

 55

APPENDIX C: QUESTIONNAIRE ON PUBLICATIONS MIGRATION

Thanks for taking the time to answer a few questions. This questionnaire asks about
your activities when you migrate a major publication, such as a user’s guide. It includes
a very short, confidential survey about yourself.
Migration: Please choose the response that best describes your activity:
1. Sufficient information was available in time to decide whether to migrate my

publication.
 Almost Never
 Some of the Time
 About Half of the Time
 Most of the Time
 Almost Always
 Other: _________________________________

2. I have enough time to solve migration problems.
 Almost Never
 Some of the Time
 About Half of the Time
 Most of the Time
 Almost Always

3. My computer and its programs were ready in time to work on migration problems.
 No
 Somewhat
 Almost completely
 Completely

4. The very first thing I normally do when I cannot solve a problem in the publication
itself is:

 Read the errors, change the publication tagging, and re-run the process
 Read the hints and tips
 Search the authoring system’s user’s guide or other documentation
 Check with a nearby person who might solve the problem
 Look online in a problems and requirements database
 Ask an expert
 Other __

5. To solve problems, the most valuable information source is:
 Reading the error log, changing the publication tagging, and re-running the process
 Reading the hints and tips
 Searching the authoring system’s user’s guide
 Checking with a nearby person who might solve the problem
 Looking online in a problems and requirements database
 Asking an expert
 Other __

6. Talking to or consulting with someone near me is the best way to solve a migration
problem.

 Almost Never
 Some of the Time
 About Half of the Time
 Most of the Time
 Almost Always

7. To solve problems with someone else’s advice, my most frequent contact is:
 Another writer in my group or nearby
 A migration expert
 The authoring system designer
 My previous class instructor
 A team leader
 Other __

8. When I searched for information, the most difficult source to use was:
 Indexes to information
 The authoring system’s user’s guide
 Lotus Notes database problem-solution items
 Online problems and requirements database
 Hints and tips documents
 Other __

(more, next page)

 56

9. I can help most writers when they migrate their publication.
 Almost Never
 Some of the Time
 About Half of the Time
 Most of the Time
 Almost Always

10. I reported my publication’s significant migration problems to the problems database.
 Almost Never
 Some of the Time
 About Half of the Time
 Most of the Time
 Almost Always

11. If a problem remains unsolved after everyone’s attempts to solve it, I usually (you
may check more than one):

 Put it in my unsolved problems bucket and use a workaround
 Determine if its severity blocks publication
 Re-document error information to expert sources
 Other: ___

12. When I migrated my publication, the most difficult structure(s) to understand was:
 Does not apply – structures were not difficult
 Index
 Lists or tables
 Figures
 Cross references and other links
 Front matter, running footers, and related problems
 Other __

13. The most significant process change in migration was:
 Does not apply – process was not difficult
 Validating the document
 Master page issues
 Locating runtime error information
 Adjusting graphics or screen captures
 Solving variable or text entities
 Other: ___

14. Migration for my publication was:
 Reasonably easy
 Somewhat difficult
 Significantly difficult
 Not possible

15. I am confident my next migration effort will be:
 Reasonably easy
 Somewhat difficult
 Significantly difficult
 Not possible

About Yourself: Please choose the response that best describes you:

A1) Years I have worked as technical writer are:

 1-5 5-10

 10-15 15-20

 more than 20

A2) My current work role is:
 writer team lead (and writer)

 team lead manager

 other ___________________________

(more, next page)

 57

A3) Total number of publications I wrote or significantly altered in the past year are:

 1-2 2-4

 more than 4

A4) I used a very similar authoring system before migrating my publication.

 Yes No

 Other: _________________________________

A5) I worked on a previous migration effort with an earlier authoring system.

 Yes No

 Other: ____________________________________

A6) Before migration, I changed my publication to fit a migration need.
 Yes No

 Other: ____________________________________

A7) The size of the publication I have migrated or plan to migrate is approximately:
 50-99 pages 100-150 pages

 151-250 pages 250-350 pages

 larger than 350 pages
A8) After migration, the approximate time I worked to obtain an error-free (or ignorable
errors) publication was approximately:

 1 to 5 hours

 5 to 20 hours

 20 to 40 hours

 40 to 80 hours

 more than 80 hours

A9) I re-migrated at least one publication.
 Yes No

 Other: __________________________________

A10) I attended a formal class before migrating my publication.
 Yes

 No

A11) Additional comments:

__

__

__

__

You have my permission to tally my responses and publish this questionnaire in an
anonymous manner.

Signed ______________________

Date ________________________

