
 
 
 
 
 
 
 
 
 
 

DEVELOPMENT OF AN ELECTRONIC RESOURCES WEB/DATABASE SYSTEM  
FOR  

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL LIBRARIES 
 
 
 
 

 
by  

Janet A. McLaughlin  
 
 
 
 
 

A Master's paper submitted to the faculty 
 of the School of Information and Library Science 
 of the University of North Carolina at Chapel Hill 

 in partial fulfillment of the requirements 
 for the degree of Master of Science in Information Science.  

 
 
 

Chapel Hill, North Carolina 
 

April, 2000 
 
 
 
 
 

Approved by: 

___________________________ 

Advisor 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210609076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  1  

Table of Contents 
 
INTRODUCTION.....................................................................................................................................  2 
PROJECT DESCRIPTION......................................................................................................................  3 

Background ..................................................................................................................................  3 
Statement of Need.........................................................................................................................  4 
Prototype Development................................................................................................................  5 
Project Scope................................................................................................................................  6 
Resources......................................................................................................................................  6 
Assumptions.................................................................................................................................  7 
Critical Success Factors................................................................................................................  7 
Deliverables..................................................................................................................................  8 
 

DESIGN DEVELOPMENT....................................................................................................................  9 
Database Design..........................................................................................................................  9 
Interface Designs.........................................................................................................................12 
 

SYSTEM DESCRIPTION......................................................................................................................14 
Public Interface...........................................................................................................................14 

Alphabetical Searching.................................................................................................15 
Subject Searching..........................................................................................................16 
Ejournal Subjects..........................................................................................................17 
Display Variables..........................................................................................................19 

Complications/Challenges...........................................................................................................20 
EIDs – Cross References..............................................................................................20 
Ejournal Formats..........................................................................................................22 

Administrative Module................................................................................................................25 
 Add, Edit, Delete Functions..........................................................................................25 

Referential Integrity......................................................................................................28 
Error Checking.............................................................................................................29 

 
INTERNAL REVIEW AND TESTING................................................................................................30 
 
IMPLEMENTATION AND MAINTENANCE....................................................................................31 
 
FINAL COMMENTS..............................................................................................................................33 
 
APPENDICES 
 
Appendix A Entity Relationship Diagram.........................................................................................36 
Appendix B Data Dictionary.............................................................................................................37 
Appendix C Ejournal Home Page.....................................................................................................41 
Appendix D File Inventory................................................................................................................42 
Appendix E  SQL statements.............................................................................................................43 
Appendix F Subject.cfm Code...........................................................................................................44 
Appendix G  Sample Code from <CFLoop> function (EJlist.cfm) ...................................................45 
Appendix H Server Output Code - CFLoops.....................................................................................46 
Appendix I Server-Side Error Checking (<CFABORT> Code) ......................................................47



  2  

 

Introduction 
 
The Electronic Resources Collection at the University of North Carolina, Chapel 

Hill Libraries consists of electronic indexes and database (EIDs) and electronic journals  

(ejournals).  No central repository exists through which information pertaining to these 

resources is maintained. Presentation of these resources to the public is accomplished 

through various tools including simple static html pages and a flat file database. This 

thesis project, begun in the summer of 1999 and continuing through the spring of 2000, 

was developed in response to the needs of the Public Access Services Committee Task 

Force on Access to the Libraries' Electronic Resources (the "Task Force").  The Task 

Force was charged with improving access to this collection, streamlining its 

administration, and introducing the ability to search the collection alphabetically and by 

subject category. 

The objectives of this project are: 

1. To design and develop a relational database for all electronic resources. 

2. To design and implement a public access web interface that allows both 

alphabetic and subject searching. 

3. To design a web-based administrative module for use in maintaining the 

database, adding new resources, and improving work flow for those 

responsible for maintenance of the electronic resources collection.



  3  

Project Description 
 

Background 
The University of North Carolina at Chapel Hill Libraries have an extensive 

collection of electronic resources, consisting of over 215 electronic indexes and databases 

and over 500 electronic journals.   The EID pages are produced using the bibliographic 

database tool "ProCite"1.  ProCite can store information about each resource and also has 

the ability to generate its stored data in html format.  It is, however, a "flat" database: no 

relationships between fields exist and information collected for each record is unrelated 

to other records or fields. 

While the ProCite solution is a significant improvement over the previous system 

of manually created html pages, it is limited in its ability to meet staff needs and is 

difficult to maintain and administer.  The library holds a limited number of site licenses 

for ProCite, meaning a limited number of users can add, edit or delete records as 

required. A lack of staff expertise in using the ProCite software compounds the problem; 

the burden of maintaining this collection falls to the two staff members with adequate 

database training who have the skill required to manipulate the database when needed.   

 At the time this project was initiated, ejournals were manually maintained via 

separate alphabetical html pages.  When ejournals are added or deleted, the ejournal is 

added or removed from the html page along with the corresponding html code.  This is a 

time consuming process with a great capacity for error, and is especially inadequate given 

the increasing size of the ejournal collection.   

                                                
1   ProCite for Windows, Version 4.0.3; Research Information Systems 



  4  

Ejournal records were to be added to the ProCite database in the Spring of 2000 

as an interim step until the solution described in this paper is implemented.  The 

drawbacks cited above for EIDs will continue to apply. 

Statement of Need 
 

To improve access to and maintenance of the electronic resources collection, the 

following is needed: 

1. A relational database designed to minimize the administrative burden on 

library staff and to act as the backend through which information about 

electronic resources is stored and accessed for public display. 

2. A public interface through which users may search the collection either 

alphabetically or by subject. 

3. An administrative interface through which records may be easily added, 

edited and deleted by appropriate library personnel. 

 
 A relational database is the most efficient means to store, manipulate and process 

the resources in the collection.  While requiring significant effort during the design phase, 

these efforts will ultimately minimize the effort needed to add and maintain the records in 

the collection.  Relational databases prevent or limit the redundancy of data.  In the 

ProCite database, redundancy of data and work effort is an issue. For example, many 

resources are provided by the "NCLive" service.  Data about "NCLive" (name, URL, 

description) is repeated in every NCLive resource entry.  In a relational database, 

information about providers will be maintained in one table.  Basic information about the 

resource is maintained in another table.  These two tables will be "related" by a single 



  5  

value or "foreign key" through which the two are linked. Specific details about the 

database design are discussed below. 

 The second need is to improve upon the public interface through which users 

access the resources by adding subject searching.   The ability to search the collection by 

subject is critical for users, especially given the size of the collection.  Alphabetic 

searching is helpful for patrons who are familiar with the resources within a particular 

discipline, however those who are unfamiliar with the collection need a means to 

discover what resources are available to assist them. 

 Finally, an internal interface must be created so as to allow library staff to 

maintain the database via the web—and limit the need to manipulate the actual database.  

A web-based interface will eliminate the problem of site licensing and can be created so 

users with minimal web and database knowledge can edit collection records. 

Prototype Development 
 

Early in the project, it was decided the initial phase of implementation—

specifically my involvement—would be deemed a prototype or pilot project.  It was 

understood that a project of this nature impacts many different library departments, all of 

whom would require input into the design and structure of the database.  The need to 

make decisions quickly to keep the project moving forward necessitated limiting such 

involvement.  As a student who intended to graduate within a year, I did not wish to get 

mired in the committee decision-making process that is known to slow the progress of 

numerous large-scale library projects.  It was therefore decided that as a pilot project,  the 

prototype could be created with input from a minimal team of library staff ("the project 

team"), made up of people from within the Task Force.   



  6  

Prior to the project being introduced to the public, the project team will solicit 

comments about the proposed system from other library personnel.  Suggestions will be 

appropriately addressed through modification, where necessary.  The ability of staff 

members to comment on a working prototype is expected to promote understanding of 

the functionality of the proposed system and facilitate effective feedback.  

Project Scope 
 

This project will involve designing a relational database to house electronic 

resources and creating the web pages through which the public will access the data stored 

within it.  The final element of the project is the creation of an administrative web 

module through which library staff can maintain the database, without touching the 

database system.  This element was added to allow ease of maintenance by library staff 

unfamiliar with database theory or technology. 

Resources 
 

I developed the prototype using the tools available at the School of Information 

and Library Science.  I selected Microsoft Access as the initial database product for its 

relatively straightforward user interface and the ease with which tables, fields and data 

could be added or deleted.  The project team acknowledged that such a "backend 

database" would be insufficient once the system was implemented due to speed and 

processing limitations, but for purposes of producing a working prototype, its flexibility 

would be beneficial.  Later efforts outside the scope of this project would involve the 

migration from Access to the Library's MySQL database server. 



  7  

 I selected Cold Fusion as the middleware used to bridge the web and database 

servers.  The public web pages and the internal administration site were created using the 

Cold Fusion markup language, or "cfml".  An important advantage to Cold Fusion is its 

portability.  The pages created for the prototype can be used with other ODBC 

compatible database systems. Assuming the MySQL system is based on the same 

database schema, only minimal changes should be required to access the data via the web 

interfaces. 

Assumptions 
 
 The library will purchase the software needed to implement the prototype 

developed here.  Software will include the Cold Fusion application server,  Cold Fusion 

Studio to maintain the Cold Fusion files, a web server and a database server.   

 During prototype development, the project team will initially meet weekly to 

discuss the database design and confirm its required functionality.  Once the database 

schema is finalized, minimal or no changes will be made to the design of this prototype.  

Any such changes would endanger the ability to complete the project prior to the April 

2000 deadline. 

 The team will continue to meet biweekly or on an as-needed basis to discuss the 

design and functionality of the web interfaces, and to address developer questions as they 

arise. 

Critical Success Factors 
 

The Associate University Librarians (upper management in library 

administration) must support the development of the prototype and ultimate 



  8  

implementation of the Electronic Resources Database System. They must be willing to 

commit the resources necessary to implement and maintain the new system.  Staffing 

issues will undoubtedly arise given the expected redistribution of collection maintenance 

duties.  The AULs must be prepared to support the Task Force during the politically 

sensitive introduction of this new system. Adequate training must be approved for all 

affected staff.   

This project can only succeed if the Task Force and project team fully cooperate 

during the design phase, and support the ultimate goals described above.  Members must 

be willing to make themselves available for questions concerning design issues, and must 

acknowledge the need to respond quickly when questions arise. 

The developer must create an intuitive interface for both the administrative and 

public sites.  The administrative interface must meet the needs of those responsible for 

data entry and should provide the searching and editing features needed to easily 

maintain resource information; minimal training of library staff should be required. The 

public interface must provide alphabetical and subject searching in a concise format 

requiring little or no instruction. 

Deliverables 
 

Upon completion of this project, deliverables will include the following:  a 

relational database using Microsoft Access; documentation including an entity 

relationship diagram, database schema and data dictionary for use in migrating to the 

MySQL database option;  and Cold Fusion files for both the public pages and the 

administrative interface.  



  9  

Data is not included as a deliverable; electronic resources data will be regenerated 

from the ProCite database prior to migration to MySQL.  The project team determined it 

was more efficient to generate a new data set than attempt to update the prototype data 

during the development process.  Also, evaluation of the administrative interface during 

development and staff testing will be easier if users are not concerned with maintaining 

the integrity of the prototype data set. 

Design Development 

Database Design 
 

I developed the database using Microsoft Access97.  The database contains all 

pertinent information about electronic resources.  Information about resource providers, 

vendors, subjects, access restrictions, and library staff selector are stored in separate 

tables with appropriate relationships built into the schema.  

11 tables were needed to include the various different types of data, and insure 

normalization of data wherever possible.  Because much of the data recorded for 

ejournals and EIDs is the same, one of the more difficult choices the team had to make 

was whether to create two or three tables with data for each type.  One design suggested 

creation of one table ("RESOURCE") with both EID and ejournal data included; the table 

would hold the fields both types of resources had in common (name, URL, provider, 

vendor, etc.). Separate EID and EJOURNAL tables were to contain the additional data 

exclusive to that type of resource.  After much discussion, the team decided that it would 

be a disadvantage to have to link 2 tables to retrieve the basic data about a particular 

resource—especially given that the ultimate design of the database necessitated linking 

many tables to display all relevant information about a single source.  I created two 



  10  

distinct tables: one for EIDs and one for ejournals from which most of the other tables are 

related through foreign keys.  Each table contains many of the same field names, 

reflecting the common data. 

The resulting entity relationship diagram and data dictionary are included in 

Appendices A & B. A brief description of each table, the data included, and the 

relationship to the two resource tables follows. 

The ACCESS table contains information about the various types of access 

restrictions placed on each resource, as determined by the licensing agreement between 

the library and the resource vendor or provider.  For example, certain resources can only 

be accessed from locations within the UNC-Chapel Hill campus: "On campus only (any 

location)".  Other resources are unrestricted on campus, but require a UNC personal 

identification number for off campus access: "Unrestricted access on-campus; Off 

campus w/ 9 digit PID." 

There are presently 26 different types of access restrictions.  Information about 

each type includes a description, an instruction URL, a URL for an access icon (for future 

use), a staff note, and a field to indicate if the resource requires use of the library proxy 

server.  It has a one-to-many relationship with the EID and EJOURNAL tables; the 

primary key (accessID) is a foreign key within the two resource tables. 

The FORMAT table contains data about the various types of formats in which an 

ejournal may be produced.  Examples are html, ASCII, PostScript and SGML.  This table 

has a many-to-many relationship to the EJOURNAL table, and as such an additional table 

EJOURNAL_FORMAT is required to link the two together.  The primary key from the 



  11  

EJOURNAL table (EJID) and the primary key from the FORMAT table (formatID) make 

up its compound primary key, and are the only two fields within this table. 

The PROVIDER table contains relevant data about the service that provides the 

resources.  Currently, this table is only applicable to EIDs, although the database was 

designed so that similar information could be recorded for ejournals, if it becomes 

necessary to do so.   The PROVIDER table has a one-to-many relationship to the EID 

table. Its primary key (providerID) is a foreign key within the EID table.  The two 

providers associated with the library at present are NCLive and UNC Literature 

Exchange (UNCLE). 

The VENDOR table contains information about the company that produces and/or 

sells the database or ejournal.  Examples are OCLC FirstSearch, Academic Universe, and 

EBSCO for EIDs, and JSTOR, WILEY, and Project Muse for ejournals. The VENDOR 

table has a one-to-many relationship with both resource tables, hence its primary key 

(vendorID) is a foreign key within each. 

The SELECTOR table contains information about the library staff member who 

chose the resource.  Name and library department affiliation are recorded. The 

SELECTOR table has a one-to-many relationship with both resource tables, and again, its 

primary key (selectorID) is a foreign key within each. 

The SUBJECT table contains a list of both broad subject headings and narrow 

discipline subject headings.  The expectation is that at present, EIDs will only be assigned 

broad categories, while ejournals will be assigned only narrow headings.  The isBroad 

field indicates if the subject is broad or narrow (through a yes/no option).  A description 

of each subject is also available to assist users understand the subject's scope. 



  12  

The mechanism behind retrieving the subject data is the same for both resources.  

Since SUBJECT has a many-to-many relationship with the EID and EJOURNAL tables, 

an additional table was created to represent the relationship RESOURCE_SUBJECT.  A 

compound primary key is used, whereby the primary key from the resource table(either 

an EIDID or an EJID) and the primary key from SUBJECT (subjectID) create a unique 

identifier.  The field core was added to specify if this resource is a principal index within 

this subject heading, as specified by library personnel. 

I added an additional table to the database to represent the relationship between a 

narrow subject heading and a broad subject heading.  SUBJECT_HEADINGS takes as its 

primary key the combination of two distinct subjectIDs from the SUBJECT table.  

subjectID holds the ID number of a narrow subject from the SUBJECT table and 

broadID holds the ID number of one of 12 possible broad subjects.  To date, this table is 

not being used within the pages created, but the ability to produce a report listing what 

"narrow" subjects are considered to be within the scope of a "broad" subject might be 

beneficial for future web page designs featuring different search parameters or for 

addressing departmental library subject requests.  For example, certain departments 

would like to nest some subjects within other subject pages.  While no plans exist to add 

this feature, this table provides the means to address such requests in the future. 

Interface Designs 
 

I designed a simple public interface based on the look and format of current 

library web pages.  Library users have the option to view a list of resources either 

alphabetically or via subject.  The index page for EIDs is reproduced below.  

 



  13  

 

The index page for ejournals differs only in its subject heading selections (Appendix C).  

A drop down box is provided listing the 75 narrow subjects by which ejournals may be 

searched.  

The administrative interface is built with frames to allow quick linking to its 

different functions.  These functions include adding, editing and deleting records within 

each table in the electronic resources database. Web accessibility is a significant 

advantage to this interface design; with a web-based interface, library personnel in 

various departments and campus locations can maintain the records for which they are 

responsible. This will become increasingly important when the Academic Affairs Library 

begins to incorporate the Health Sciences Library collection into the database.  Current 

plans are for the Health Sciences Library staff to maintain their own records, despite their 

physical location across campus—something that would not be possible under the current 

ProCite system.  



  14  

Few members of the library staff have database administration experience.  

Another advantage of the web interface is the ability of staff to manipulate the data 

without touching the actual database. This will become especially significant when the 

database is transferred to MySQL from Access as MySQL uses a command line interface 

which requires detailed database knowledge. 

 

System Description 

Public Interface 
 

The file structure for both EIDs and ejournals is the same.  An index page allows 

library patrons to choose to see an alphabetical list or a subject list of resources.  From 

there a user can choose to view a more detailed description page (for EIDs), launch the 

URL, or select another letter to search.  The basic three tier file structure is diagrammed 

below.  Arrows indicate the presence of links within each page the user may elect to 

follow. 



  15  

 

index.cfm 
 

EIDlist.cfm (EJList.cfm)   subject.cfm (EJsubject.cfm) 
 

description.cfm   desc-subject.cfm 
 
 
Ejournals do not have descriptions, so the ejournal structure does not include the third tier 

(description.cfm and desc-subject.cfm).  The public interface consists of a total of five 

pages for EIDs and 3 for ejournals.  This compares to the present system which consists 

of hundreds of html files; one for each letter of the alphabet (for ejournals and EIDs) and 

one for each EID resource description.  I included a complete inventory of the Cold 

Fusion files created for this project as Appendix D. 

Alphabetical Searching: The URL for each letter of the alphabet points to 

"EIDlist.cfm" or "EJlist.cfm".  The letter is passed as a variable within the URL.  For 

example, if a user wishes to view the list of databases beginning with the letter "Z", the 

URL passed when he clicks on the letter Z is 

http://dbserv.ils.unc.edu/projects/EResources/eid/EIDlist.cfm?letter=Z 

The #letter# variable is used within the WHERE clause of the SQL statement to retrieve 

only those resources beginning with the letter requested. 2  The query logic is exhibited in 

the following sample SQL statement. 

 SELECT * 
 FROM EID 
 WHERE EIDName like '#letter#%' 
 
The percentage sign acts as a wild card. The above query would retrieve all information 

from the EID table where the EIDName begins with the letter Z. 

                                                
2   Cold Fusion variables are enclosed within pound signs (#). 



  16  

The actual query used is substantially more complicated, due to the complex 

relationships between the tables within the database.  Four tables (EID, PROVIDER, 

VENDOR, ACCESS) are linked to display complete user-friendly information, such as 

provider name, vendor name, access information and appropriate URLs. Views were 

created to facilitate processing; further information about views is provided during the 

discussion of cross referencing.  The actual query used can be found in Appendix E. The 

query result is displayed below. 

 

 Subject Searching: Retrieving EIDs by subject category employs the same 

method of passing variables within the URL.  EIDs are presently categorized by the 12 

broad subject categories created by the task force: Arts & Humanities, Business & 

Economics, Ethnic & Gender Studies, General & Multidisciplinary, Government 

Information, Health & Medicine, International & Area Studies, Law, News, Reference, 

Science & Technology, Social Sciences. Each broad subject is displayed as a hot link.  

The URL for each subject points to "subject.cfm" and the subject is passed as variable 

subjectName within the URL. For example, the URL for Law resources is 



  17  

          http://dbserv.ils.unc.edu/projects/EResources/eid/subject.cfm?subjectName=Law 

EID resources are further delineated as either "principal indexes" or "other 

indexes" within certain subject headings, as determined by library staff.  As mentioned in 

the database schema, the RESOURCE_SUBJECT table field "core" is used to indicate 

those resources that are considered to be "principal" within some subjects (not all 

subjects require this distinction). 

SELECT * 
FROM RESOURCE_SUBJECT, SUBJECT, vAllInfo 
WHERE RESOURCE_SUBJECT.subjectID=SUBJECT.subjectID 
AND vAllInfo.EIDID=RESOURCE_SUBJECT.resourceID 
AND subjectName='#subjectName#'  AND RESOURCE_SUBJECT.core='yes' 
ORDER BY EIDName 
 

A similar query is created for "other" or "non-core" resources adjusting the "where" 

clause to "RESOURCE_SUBJECT.core='no'".  The subject.cfm page employs a series of 

<cfif> statements to properly format the page based on the results of the "core" and non-

core" queries.   Sample code from "subject.cfm" is included in Appendix F.  

Ejournal Subjects: Ejournals are searched by 75 narrow subjects, adapted from 

UNC-Chapel Hill curriculum disciplines.  Narrow subjects are necessary as the collection 

has over 500 ejournals and the broad categories do little to refine the search.  A drop 

down box is provided listing all the narrow subjects in the database.  The box is 

populated by an SQL query to the database selecting resources that are not "broad".  

SELECT * 
FROM SUBJECT 
WHERE isBroad='no' OR isBroad IS NULL 
ORDER BY subjectName 

 



  18  

Using the html form "post" method, the subject name is passed to the "EJsubject.cfm" 

page when the user clicks the "submit" button.  From here, the logic follows as with the 

EID "subject.cfm" page,  returning all resources corresponding to that subject name. 

SELECT * 
FROM RESOURCE_SUBJECT, SUBJECT, ejAllInfo 
WHERE RESOURCE_SUBJECT.subjectID=SUBJECT.subjectID 
AND ejAllInfo.EJID=RESOURCE_SUBJECT.resourceID 
AND subjectName='#subjectName#'  
ORDER BY EJName 
 
 
EIDs also have two detailed description pages available -- description.cfm and 

desc-subject.cfm.  Both are formatted like the EIDlist.cfm page, but also include the 

description and a hot linked list of subject headings which lead the user directly to the 

appropriate subject.cfm page of related resources.  The only difference between 

description.cfm and desc-subject.cfm is the referring page (either an alphabetical listing 

or a subject listing of resources) and the corresponding links at the bottom of the page 

that direct the user back to the previous (or referring) page.  An example of the 

description.cfm page for the EID Zoological Record follows. 



  19  

 

Display Variables:  The trialCheck field, subscription end date, and display flags 

were created to control the display in the public interface pages described above. 

 It is common for the library to own a database on a trial basis. The "Trial Check" 

feature was added to allow easy monitoring of trial or temporary databases. The 

administrative interface module allows the staff member to indicate that the database is 

owned on a temporary basis by checking a box on the input form.  This field acts as an 

indicator within the EIDlist.cfm file.  When the field trialCheck is "yes", red text saying 

"This is a trial database" will be displayed next to the name of the resource.   

<cfif #trialCheck# eq "yes"> 
<font color="red">This is a test database</font> 
</cfif> 
 

Presently, ejournals are not obtained on a trial basis, but I included the functionality for 

future use when necessary. 

The trialCheck field works in tandem with the subscriptEndDate field. The EID is 

displayed as long as the subscription has not expired. The entire resource entry is within a 

conditional statement which insures only data with NULL or valid subscription dates are 

displayed (most resources have no such "end date" specified so NULL values must be 

accepted). 

 In response to the collection's volatility--especially ejournals--the team asked for 

a means to control whether or not a record was displayed to the public. Staff did not want 

to delete a resource from the collection database if it was likely to be renewed at a later 

date.  I created a variable called displayFlag to meet this requirement.  The EID and 

EJOURNAL tables have the displayFlag field.  The default is "yes" but can be changed 



  20  

to "no" through the administration pages.  A defining WHERE clause was added to the 

pertinent SQL to insure output of only those resources where "displayflag = 'yes'" 

(Appendix E). 

Complications/Challenges 

 While the database functionality was largely the same for both ejournals and 

EIDs, as evidenced in the schema described above, each had a peculiarity which 

necessitated customization of certain features within the SQL needed to display the 

public pages.  EIDs required cross references, a means by which one EID refers to 

another.  Ejournals had many different format types, which needed to be displayed within 

a single field.  Solutions are discussed in detail below. 

 
EIDs - Cross References 

Electronic indexes and database titles are somewhat volatile.  An index is often 

known by many names, and names may be changed when ownership changes.  It was 

necessary to include a means to cross reference a previous title to the current titles under 

which all information is recorded so users could easily locate the resource even if they 

were aware of the former name only.  I added a field to the EID tables called crossRefID.  

This field contains the ID number (from the EID table) of the resource to which the user 

should be referred. The vast majority of the records within the database have NULL 

values in this field, although the number of cross references will increase as resource 

names, product ownership, and vendor relationships change over time. 

The display format in place on the library pages necessitated linking four tables 

(EID, PROVIDER, VENDOR, ACCESS) to retrieve all the needed data. The difficulty 



  21  

arose when trying to make a copy of the EID table through which we could appropriately 

implement the crossRefID field so as to have an active link to the appropriate resource. 

Upon consultation with various advisors and the project team, I decided to use the 

"create view" option.  A "view" is a SELECT statement that becomes part of the 

database.  It acts as a virtual table and can be used like a normal table for retrieving data.   

I created the view "vAllInfo" to retrieve all relevant data for each record, including 

appropriate cross references. 

CREATE VIEW vAllInfo AS 
SELECT EID.EIDID, EID.EID Name, ACCESS.accessDesc,  
PROVIDER.providerName, VENDOR.vendorName, EID.EID_URL, 
ACCESS.instructURL, EID.medium, EID.coverage, EID.updated, 
EID.instructions, PROVIDER.providerURL, EID.description, 
PROVIDER.providerIcon, EID.target, EID.crossRefID, EID.trialCheck, 
EID.subscriptEndDate 
 
FROM ((ACCESS RIGHT JOIN EID ON ACCESS.accessID = EID.accessID) 
LEFT JOIN PROVIDER ON EID.providerID = PROVIDER.providerID) LEFT 
JOIN VENDOR ON EID.vendorID = VENDOR.vendorID 
WHERE EID.displayFlag='yes'; 

 

This view, which is the product of four tables, was then called upon in the SQL within 

the Cold Fusion file "EIDlist.cfm" in which it was linked with the main EID table.  

<cfquery datasource="EResources" name="list" dbtype="ODBC"> 
SELECT vAllInfo.EIDID, vAllInfo.EIDName,vAllInfo.accessDesc, 
vAllInfo.providerName, vAllInfo.vendorName, vAllInfo.EID_URL, 
vAllInfo.instructURL, vAllInfo.medium, vAllInfo.coverage, vAllInfo.updated, 
vAllInfo.instructions, vAllInfo.providerURL, vAllInfo.providerIcon, 
vAllInfo.description, vAllInfo.target, vAllInfo.trialCheck, 
vAllInfo.subscriptEndDate, EID.EIDName as RefName, EID.EID_URL as 
RefURL, EID.target as RefTarget 
FROM EID RIGHT JOIN vAllInfo ON EID.EIDID=vAllInfo.crossRefID 
<cfif #letter# neq "ALL"> 
WHERE vAllInfo.EIDName like '#letter#%'</cfif> 
ORDER BY vAllInfo.EIDName, vAllInfo.vendorName, vAllInfo.providerName; 
</cfquery> 

 



  22  

The cross reference information (reference name, URL and target) is retrieved 

from the EID table; the tables are linked via a right join where the EIDID in the EID table 

equals the crossRefID in the vAllinfo virtual table.  I used a right join to insure all the 

information is returned from the vAllInfo table - even if the crossRefID field is NULL 

(which is the case for most resources).   

 A conditional statement based on RefName determines what is displayed. If the 

value for RefName is not NULL, the record will include an appropriate "see" reference.   

<cfif #RefName# neq ""> 
<cfset newletter = Left(#RefName#, 1)> 
<B>See </B><A 
HREF="EIDlist.cfm?letter=#newletter####RefTarget#">#RefName#</A></cfif> 

 
The variable letter is the means by which we retrieve a resource list of only the 

appropriate alphabetical letter (EIDS are presented one page per letter).  This code 

reassigns the variable #letter# to the first letter of the resource name to which we are 

referring.  The RefTarget assures that the resource being requested is displayed at the top 

of the page.  

Ejournals - Formats 

 A "format" describes the medium through which the ejournal is provided.  The 

most common types are html, PostScript, and PDF (portable document format).  Many 

ejournals are provided in more than one format, creating a many to many relationship 

between the EJOURNAL and FORMAT tables.  This relationship is specified within the 

EJOURNAL_FORMAT table.  Initially, I thought simply linking the 

EJOURNAL_FORMAT table to the main SQL statement on the EJList.cfm page would 

suffice, however it simply created multiple entries for each ejournal with multiple 

formats.  I realized I needed to find a way to concatenate the ejournals format data into 



  23  

one field.  Loops proved to be the best solution, specifically the <cfloop> function in 

Cold Fusion. 

 One of the drawbacks of Cold Fusion is the inability to nest query outputs.  Only 

certain Cold Fusion specialty functions will allow you to output the result of multiple 

queries at the same time.  CFLOOP is one such function.  By splitting my large SQL 

query into three separate queries, I was able to use CFLoops to nest them and produce the 

desired output. 

 I began by getting a list of all the ejournals that should be returned (based on the 

letter or subject selected).   

<cfquery datasource="EResources" name="list" dbtype="ODBC"> 
SELECT EJOURNAL.EJID, EJOURNAL.EJName 
FROM EJOURNAL 
WHERE EJOURNAL.EJName like '#letter#%' 
ORDER BY EJOURNAL.EJName 

 </cfquery> 

I then set up my cfloop function and set the EJID number equal to a new variable 

"idNum" which would act as the loop control. 

<cfloop query="list"> 
<cfset idNum = #EJID#> 
 

From here I created another query (within the loop structure) calling the main SQL  

statement that retrieves the majority of data. 

<cfquery datasource="EResources" name="fullList" dbtype="ODBC"> 
SELECT ejAllInfo.EJID, ejAllInfo.EJName,ejAllInfo.accessDesc, 
ejAllInfo.providerName, ejAllInfo.vendorName, ejAllInfo.EJ_URL, 
ejAllInfo.instructURL, ejAllInfo.medium, ejAllInfo.holdings, ejAllInfo.ISSN, 
ejAllInfo.language, ejAllInfo.frequency, ejAllInfo.userInstruct, ejAllInfo.providerURL, 
ejAllInfo.providerIcon, ejAllInfo.target, ejAllInfo.trialCheck 
FROM ejAllInfo 
WHERE ejAllInfo.EJID=#idNum# 
ORDER BY ejAllInfo.EJName, ejAllInfo.vendorName, ejAllInfo.providerName ; 
</cfquery> 



  24  

 
Note the WHERE clause refers to the new variable created.  This query will execute for 

each resource returned from the initial "list" query. 

I needed to get the format data next.  I started by retrieving the format types for 

each resource: 

<cfquery datasource="EResources" name="format" dbtype="ODBC"> 
SELECT * 
FROM EJOURNAL_FORMAT, FORMAT 
where EJOURNAL_FORMAT.EJID=#idNum# and 
(EJOURNAL_FORMAT.formatID=FORMAT.formatID) 
</cfquery> 
 

Note again the WHERE clause refers to the new variable created, and the query will 

execute for each record in the initial "list" query.  These two queries will execute 

consecutively within the loop structure. 

I then created a variable called "formats" into which I concatenate the results from 

the "format" query above, using the Cold Fusion function "ListAppend". 

<cfset formats=""> 
<cfoutput query="format2"> 
<cfset formats=ListAppend(formats, #formatName#)> 
</cfoutput> 
 
From here it was a simple matter of outputting the results of the "fullList" query 

with the added variable "formats" included to provide the format type information.  

Sample code from this process is included in Appendix G. 

To reiterate the loop functionality, each of the two queries within the loop runs 

independently for each id number returned from the initial "list" query.  For example, as 

there are two ejournals beginning with the letter "Z", the "fullList" query and the 

"format" query shown above run two times; the loop executes two times as there are two 

records returned by our initial list query. 



  25  

Sample output produced by the Cold Fusion server is included as Appendix H.   

 
Administrative Module 

The administrative module was created to allow library staff without database 

expertise to maintain the collection.  Through this interface, the user can add new 

records, modify existing records, or delete records from the database.   

 

Adding Records:   Authorized users may add records to all tables or may assign 

subject headings to existing records.  The interface guides the user through the data entry 

process through a series of forms which pass data on to "action" pages—which in turn 

pass data back to form pages in a somewhat circular fashion. 

Two Cold Fusion pages are needed to add records to tables: a form page and an 

"action" page.  The form page contains various types of form fields (text, textarea, radio 

buttons and drop down boxes) for entering data.  Drop down or "select" boxes are 

populated by fixed choices (such as "Web" or "CD_ROM" for the EID field medium) or 



  26  

by SQL queries to the database (for fields such as access restriction, provider, vendor, 

and selector ID keys).  For example, the following query populates the access restriction 

drop down menu:  

<CFQUERY name="accessquery" datasource="EResources" dbtype="ODBC"> 
SELECT accessID, briefDesc 
FROM ACCESS 
ORDER By briefDesc 
</CFQUERY> 
 
The name of the "action" page is specified within the <form> tag. This page 

inserts the passed variables into the database and displays confirmation of the input via 

html output.  If a new EID or Ejournal is added, the confirmation page will include two 

buttons directing the user to enter subject headings or format information (ejournals 

only).  In this instance, the confirmation page becomes a form page passing a variable 

(either EIDID or EJID depending on the resource) to yet another form page which will 

then permit the user to select either the subject or format.   

This action page (below) will insert the EJID  for the journal "Test Journal" and 

the formatID for the format type "Postscript" into the EJOURNAL_FORMAT table. 



  27  

 

The confirmation page, shown below, gives the user the option to add another 

format or add subject headings. 

 

Editing Files:  To edit existing records, the interface employs a series of forms in 

a three file progression.  The first file is a simple form with a drop down menu through 

which the user chooses the record to be edited.  That record's ID key is passed to the 

second file which queries the database (through a simple SELECT query) and populates a 

form with the returned data. Authorized users then make changes to individual fields 

which are passed to the third file—an action page which  processes the SQL "UPDATE" 

and displays confirmation in html.  For consistency, the Cold Fusion editing files were 

numbered to reflect this three step process. For example, three files used for editing EID 

records are updateEID1.cfm, updateEID2.cfm and updateEID3.cfm (see the 

administration section of the file inventory Appendix D.)  

 Deleting Files:  The delete function files mirror the editing files in structure.  The 

first file allows authorized users to select which record to delete.  The second file displays 



  28  

the data about that record and asks for confirmation that this record should be deleted.  

When the user presses the "Confirm Delete" button, the third file is called which deletes 

the record from the database and displays confirmation to the user. 

Referential integrity:  Because the ultimate home for this database will be 

MySQL, and MySQL does not support referential integrity updates or deletes, it was 

necessary to build integrity constraints into the interface files.  To enforce integrity when 

adding or editing data, I used input control methods such as select boxes and mandatory 

fields.  As discussed above, the select boxes require the user to select from valid data 

options.  By deeming certain fields as "required", we ensure valid relationships exist 

between tables when necessary. Required fields are enforced via Cold Fusion's JavaScript 

validation functions (see error checking below).    

When deleting data, I entered multiple DELETE queries to the third delete file 

where appropriate.  For example, when an ejournal is selected, the record is deleted from 

the EJOURNAL,  RESOURCE_FORMAT and RESOURCE_SUBJECT tables. The third 

file executes the following three queries to delete a single ejournal: 

DELETE * 
FROM RESOURCE_SUBJECT 
WHERE  ResourceID=#EJID# 
 
DELETE  * 
FROM EJOURNAL_FORMAT 
WHERE  EJID=#EJID# 
 
DELETE  * 
FROM  EJOURNAL 
WHERE  EJID=#EJID# 

 

#EJID# is the variable passed from the second delete file (deleteEJ2.cfm). 



  29  

Error checking:   I used both server-side and client-side error checking 

throughout the administrative interface.  Client-side error checking verifies that required 

fields are completed and that values entered are of valid data types. For example, when a 

user adds a new ejournal record to the database, an EJName must be provided—the field 

is "required".  If the user submits the form without a name, a message will appear 

informing her that the field is required prior to form submission. Date field validation is 

another example.  In my interface, dates must be in the form mm/dd/yyyy.  If a user 

attempts to enter "May 5, 2002" as a subscription end date, a message will appear asking 

for the appropriate date format.  The Cold Fusion <cfform> tag is very useful here as its 

input field options will generate the JavaScript code needed when certain attributes are 

included.  For example, the form field which creates the validation code for an ejournal 

name is 

<CFINPUT type="text" name="EJName" size="25" required="yes" 
message="Please enter the name of the journal."> 

 
The "required" and "message" attributes trigger the JavaScript function. 

I used server-side validation to prevent errors in data entry involving primary keys 

and to check for input errors on fields which should be unique. Primary keys are 

generated by a JavaScript code each time a person begins to enter a record . The code 

queries the database, returns the highest value, and then adds one.  An error can only 

occur if the user uses the browser's "Back" button and fails to reload the entry form page 

after submitting a new record.  The following query checks the database to see if the 

number already exists. 

<CFquery name="EJIDcheck" datasource="EResources"> 
SELECT * 
FROM EJOURNAL 



  30  

WHERE EJID=#EJID# 
</cfquery> 
 

If the query returns a record (<cfif EJIDcheck.RecordCount gt 0>) an error message is 

displayed and the page is aborted using the <CFABORT> function.  I included the code 

for this process as Appendix J. 

 The EJOURNAL and EID table have two fields which should contain unique 

values: target and DRADBCN.   As described above, the code queries the database and, if 

the value exists, terminates processing and returns a message to the user. 

 <cfquery name="controlnumbercheck" datasource="EResources"> 
SELECT * 
FROM EJOURNAL 
WHERE DRADBCN='#DRADBCN#' 
</cfquery> 
 
<cfif controlnumbercheck.RecordCount gt 0> 
<b>Error:</b> the DRADBCN number you entered already exists, please try 
again. 
<CFABORT> 
</cfif> 

  

Internal Review and Testing 

The project team presented the prototype to the Associate University Librarians in 

March, 2000.  The AULs agreed to support its implementation and approved its 

introduction to library staff as soon as possible. The project team plans to begin 

demonstrating the new system in mid April to the staff most affected by its 

introduction—specifically those staff members in the Technical Services and Serials 

departments who are to assume a large part of the responsibility for collection 

maintenance after implementation.  Staff will be asked to test and comment on both the 

public and administrative portions of the prototype.  As the alphabetical searching within 



  31  

the public interface section mirrors the current library web page format, comments are 

expected to focus on the introduction of subject searching and the selection of subject 

categories.  Functionality of the public system is not expected to generate much 

discussion. 

 An important aspect of this initial testing phase is the staff's reaction to the 

administrative interface.  During the development process, comments about interface 

design and functionality were solicited from members of the project team.  During the 

staff testing phase, it will be important to determine if user needs were adequately 

addressed.  It is hoped staff members will address issues of data entry process flow, ease 

of use of the web pages, and completeness and value of the data collected. 

 The final phase of testing will be to introduce the prototype to the entire library 

staff.  Only the public interface will be presented, as the administrative interface will be 

accessible by only a few authorized users.  Comments about the intuitiveness of the 

design and value of the alphabetical and subject searching structure will be considered; 

reference department staff will be asked to specifically assess the patron's ability to 

successfully navigate the new interface. Modifications based on comments received will 

be addressed as needed prior to inplementation of the final MySQL product. 

 
Implementation and Maintenance 

 This prototype will not be implemented in its current form, but will be used as the 

basis from which the Library MySQL database system is built.  Implementation of this 

system began in March, 2000.  The initial step involves the migration of the database 

from Access to MySQL.  To date, the database schema has been imported to MySQL and 

the data types of all fields have been reviewed and adjusted as needed.   



  32  

The next step will be to import the data from the ProCite database.  As discussed 

above, the data within the prototype is out of date.  The project team decided early in the 

development process that it would be difficult and time consuming to attempt to maintain 

information about the collection in both the ProCite database and the prototype Access 

database.  Therefore to insure a complete and accurate data set, data files will be 

generated from the ProCite database and imported into the MySQL database.  

Testing the interaction between the Cold Fusion files and the MySQL database is 

the last step prior to implementation. It is expected that some of the Cold Fusion code 

will need to be adjusted to work with the new database system.  That MySQL does not 

presently support views is one known problem.  As views are used to support cross 

referencing, an alternate solution is needed. At the time of this writing, I have identified 

Cold Fusion's <CFLoop> function as a potential alternative to views.  I am also 

concerned about case sensitivity.  The prototype uses Microsoft Access and Cold Fusion 

on an NT server; NT is case insensitive, meaning variable, table and field names may be 

written in Cold Fusion without concern for case.  MySQL on a Unix machine is case 

sensitive. For example, error messages will result if the SQL in a Cold Fusion file refers 

to table "Ejournal" when the actual name is "EJOURNAL".  I attempted to be sensitive to 

this issue during development, however it is certainly possible that such errors may be 

found, as no error messages would have been generated during development under an NT 

system.  The project team plans to test the functionality of all the Cold Fusion files as 

soon as the data is imported into MySQL and the Cold Fusion files are transferred to the 

library's web server. 



  33  

The Assistant Head of Library Systems has accepted responsibility for the 

maintenance of the Cold Fusion files and the MySQL database once the system is 

implemented.  Maintenance efforts should be limited in scope; the collection records will 

largely be updated through use of the administrative interface, thus requiring minimal 

interaction with the database.  However, periodic evaluation of query processing speeds 

and verification that the system continues to meet user needs will be required as the 

collection size increases.   

The MySQL database is of adequate size and functionality to handle the 

anticipated growth of the collection, but it is expected that a new online catalog system 

capable of providing similar access to electronic resources will remove the need for this 

separate system within the next 10 years.  Short term enhancements under consideration 

include introduction of keyword searching and interaction with the Health Sciences 

Library's UNCLE database.  Such plans are in early development and are not expected to 

be addressed until the new system is operational. 

 

Final Comments 

 Lessons learned during this process include the need to insure the project team 

had the required expertise to complete the project, to insure full commitment of those 

selected, to understand the political environment under which the project is directed, and 

to schedule regular meetings between the project team and other parties (including the 

Task Force) with a strong interest in the ultimate success of the project and who might be 

able to provide needed insight.  I ran into several problems during development of this 

project which I may have avoided had I understood certain competing obligations of 



  34  

those involved and insisted on greater participation of all concerned before the project 

began. 

A persistent problem was an inability to finalize the database design.  Despite my 

requests that all parties review the database schema and verify that all issues were 

addressed, project team members requested database table and field modifications 

months into the interface development phase.  Similarly, certain parties who were not on 

the project team provided crucial information about the database needs after we had 

finished the design work.  For example, one month prior to completion of the prototype, 

the "displayFlag" issue was mentioned by a Task Force member.  No one had mentioned 

the need to control whether or not a record was displayed until this point.  Luckily, it was 

not a significant change to add the displayFlag field and add an additional "where" 

conditional to certain SQL statements to meet this need, but the fact that this important 

function was not discovered until the virtual completion of the prototype indicates the 

absence of consistent participation and review by critical decision makers. 

Complicating the process was the fact that the Task Force had many varied and 

sometimes competing responsibilities.  Task Force members are generally overextended 

and could not allocate sufficient time to review the prototype design.  During the 

development of this project, I met with the entire Task Force only once.  I received only 

minimal feedback about the functionality of the database and the design of the interfaces. 

The project team had no choice but to move forward without significant Task Force 

input.  To date, the Task Force has been satisfied with the prototype design and 

functionality, but the project may have been completed sooner and had fewer last minute 

alterations had feedback been provided throughout the process. 



  35  

Despite some frustrations, this proved to be a very rewarding project.  I was 

allowed to take a project from conception to prototype completion, and am continuing to 

work on its ultimate implementation.  I employed database design skills and relational 

database theory to create an electronic resources database, practiced interface design 

skills to create public and administrative web pages, and used web-database 

programming skills to create the required functionality between the interfaces and the 

collection database. When implementation is complete, this project will enhance library 

services provided to students and staff while significantly reducing the effort needed to 

maintain the electronic resources collection. 



  36  

Appendix A  Entity Relationship Diagram of EResources Database 

 



  37  

 

 

Appendix B  Data Dictionary 

 

Table: EID    
Field name Data Type Size Description 

EIDID Number - Primary key; foreign key to RESOURCE_SUBJECT table 

EIDName Text 150 Name of the resource 

EID_URL Text 250 URL of the resource 

language Text 50 Language in which the index/database is published 

subscriptEndDate Text 10 Date when the subscription ends (if any, may be null) 

iconURL Text 250 URL of the resource icon (if any) 

dateAdded Text 10 Date the resource was added to the database 

innopacID Text 50 ID assigned for the innopac system 

frame Text 3 Yes/No; does this resource require frame setting? 

crossRefID Number - Reference to the EIDID of another resource within this table 
(EID).  Used to refer patron to the current resource. 

DRADBCN Text 50 DRA Database Control Number - assigned by cataloging 
department.   

coverage Text 200 Dates covered by this resource. 

updated Memo - Description of how often the information within the resource 
is updated. 

instructions Text 250 Description of user instructions relating specifically to this 
resource. 

description Memo - Description of the resource. 

medium Text 20 Medium of the resource; ex. web, cd-rom, email. 

accessID Number - Foreign key; primary key from ACCESS table; provides link 
to type of access restriction. 

providerID Number - Foreign Key; primary key from PROVIDER table; provides 
link to provider data 

selectorID Number - Foreign key; primary key from SELECTOR table; provides 
link to selector information 

vendorID Number - Foreign key; primary key from VENDOR table; provides link 
to vendor information 

target Text 50 Manually created shorthand for resource, used for html 
anchor tag notation. 

trialCheck Text 3 Yes/No field; is this resource provided on a trial basis? 

displayFlag Text 3 Yes/No field; should this resource be displayed?  Included 
to provide means to maintain resource data without deleting 
it from the database. 

 



  38  

 
Table: 
EJOURNAL 

   

Field name Data Type Size Description 

EJID Number - Primary key; foreign key to RESOURCE_SUBJECT and 
EJOURNAL_FORMAT table 

EJName Text 150 Name of the resource 

EJ_URL Text 250 URL of the resource 

language Text 50 Language in which the ejournal is published 

subscriptEndDate Text 10 Date when the subscription ends (if any, may be null) 

iconURL Text 250 URL of the resource icon (if any) 

dateAdded Text 10 Date the resource was added to the database 

innopacID Text 50 ID assigned for the innopac system 

frame Text 3 Yes/No; does this resource require a frame setting 

DRADBCN Text 50 DRA Database Control Number - assigned by cataloging 
department.   

ISSN Text 50 ISSN number of the ejournal 

frequency Text 200 How often the ejournal is published 

holdings Memo - Which volumes or dates of coverage are included in the 
collection 

userInstruct Memo - Description of user instructions relating specifically to this 
resource. 

medium Text 20 Medium of the resource; ex. web, cd-rom, email. 

accessID Number - Foreign key; primary key from ACCESS table; provides link 
to type of access restriction. 

providerID Number - Foreign Key; primary key from PROVIDER table; provides 
link to provider data (CURRENTLY NONE) 

selectorID Number - Foreign key; primary key from SELECTOR table; provides 
link to selector information 

vendorID Number - Foreign key; primary key from VENDOR table; provides link 
to vendor information 

target Text 50 Manually created shorthand for resource, used for html 
anchor tag notation. (DRADBCN to be used instead) 

trialCheck Text 3 Yes/No field; is this resource provided on a trial basis? 

displayFlag Text 3 Yes/No field; should this resource be displayed?  Included 
to provide means to maintain resource data without deleting 
it from the database. 

 

Table: ACCESS    
Field name Data Type Size Description 

accessID Number - Primary key; foreign key to EID and EJOURNAL tables. 

accessDesc Memo - Long description of the access restriction; displayed to the 
user through public html pages. 

briefDesc Text 100 Short description of the restriction; for use only in internal 
administration pages. 

staffNote Memo - Internal note for staff with information about this restriction 
(not currently used). 

accessIcon Text 100 URL of an icon to be used as shorthand for the type of 
restriction; not currently used. 

instructURL Text 50 URL of the instructions for user as to how access is 
provided (internal URL). 

proxy Text 3 Yes/No; to be used to identify proxy server resources (not 
currently used). 



  39  

 

Table: 
EJOURNAL_FORMAT 

  

Field name Data Type Size Description 

EJID Number - Primary key; ejournal ID (from EJOURNAL table) 

formatID Number - Primary key; format ID (from FORMAT table) 

 

Table: FORMAT    
Field name Data Type Size Description 

formatID Number - Primary key; foreign key to EJOURNAL_FORMAT table; 
number assigned to each type of format 

formatName Text 50 Name of the format type (ex. postscript, html, ASCII) 

formatDesc Text 100 Description of the format type 

appURL Text 200 URL where user can download needed application 

 

Table: 
PROVIDER 

   

Field name Data Type Size Description 

providerID Number - Primary key; foreign key to EID and EJOURNAL tables; 
number assigned to each provider 

providerName Text 50 Name of the provider (ex. NCLive, UNCLE) 

providerURL Text 100 Provider's web site 

providerIcon Text 50 URL of provider icon (for display) 

 

Table: RESOURCE_SUBJECT  
Field name Data Type Size Description 

resourceID Number - Primary key; either EIDID from the EID table, or EJID from 
the ejournal table 

subjectID Number - Primary key; from the SUBJECT table 

core Text 3 Yes/No field; is this resource to be considered a "principle"  
resource 

 

Table: 
SELECTOR 

   

Field name Data Type Size Description 

selectorID Number - Primary key; foreign key to EID and EJOURNAL tables. 

firstName Text 50 First name of the person who selected the resource. 

lastName Text 50 Last name of the person who selected the resource. 

affiliation Text 50 Library or department with which the selector is affiliated. 

 



  40  

Table: SUBJECT    
Field name Data Type Size Description 

subjectID Number - Primary key; foreign key to RESOURCE_SUBJECT table. 

subjectName Text 50 Name of the subject 

subDesc Memo - Description of the subject matter included under this 
heading. 

isBroad Text 3 Yes/No field; is this subject a broad (not narrow) subject 
heading? 

 

Table: 
SUBJECT_HEADINGS 

  

Field name Data Type Size Description 

subjectID Number - Primary key; from SUBJECT table. 

broadID Number - Primary key; subject ID from SUBJECT table; links all 
narrow subjects with appropriate broad subjects. 

 

Table: VENDOR    
Field name Data Type Size Description 

vendorID Number - Primary key; foreign key to EID and EJOURNAL tables; 
number assigned to each vendor 

vendorName Text 100 Name of the vendor (ex. OCLC FirstSearch, OVID, JSTOR). 

vendorURL Text 100 Vendor's web site 

vendorIcon Text 50 URL of vendor icon (for display) 



  41  

 

Appendix C   Ejournal Home Page 

 

 

 



  42  

 

Appendix D  File Inventory 

EID 
 desc_subject.cfm 
 description.cfm 
 EIDlist.cfm 
 index.html 
 subject.cfm 
 

Ejournal 
 EJlist.cfm 
 EJSubject.cfm 
 index.cfm 
 
 

 
Admin 
 add.html 
 addEID.cfm 
 addEIDform.cfm 
 addEIDsub.cfm 
 addEJ.cfm 
 addEJform.cfm 
 addEJformat.cfm 
 addEJsub.cfm 
 addprovider.cfm 
 addproviderform.cfm 
 addselector.cfm 
 addselectorform.cfm 
 addsubject.cfm 
 addsubjectform.cfm 
 addvendor.cfm 
 addvendorform.cfm 
 adminhome.html 
 delete.html 
 deleteEID1.cfm 
 deleteEID2.cfm 
 deleteEID3.cfm 
 deleteEIDsubject1.cfm 
 deleteEIDsubject2.cfm 
 deleteEIDsubjectform.cfm 
 deleteEJ1.cfm 
 deleteEJ2.cfm 
 deleteEJ3.cfm 
 deleteEJformat1.cfm 
 deleteEIDformat2.cfm 
 deleteEIDformatform.cfm 
 deleteEJsubject1.cfm 
 deleteEJsubject2.cfm 
 deleteEJsubjectform.cfm 
 deleteProvider1.cfm 
 deleteProvider2.cfm 
 deleteProvider3.cfm 
 deleteSelector1.cfm 

 deleteSelector2.cfm 
 deleteSelector3.cfm 
 deleteSubject1.cfm 
 deleteSubject2.cfm 
 deleteSubject3.cfm 
 deleteVendor1.cfm 
 deleteVendor2.cfm 
 deleteVendor3.cfm 
 edit.html 
 EIDbroadform.cfm 
 EIDnarrowform.cfm 
 EIDsubsform.cfm 
 EJbroadform.cfm 
 EJsubsform.cfm 
 EJnarrowform.cfm 
 EJsubsform.cfm 
 index.html 
 toc.html 
 updateEID1.cfm 
 updateEID2.cfm 
 updateEID3.cfm 
 updateEJ1.cfm 
 updateEJ2.cfm 
 updateEJ3.cfm 
 updateProvider1.cfm 
 updateProvider2.cfm 
 updateProvider3.cfm 
 updateSelector1.cfm 
 updateSelector2.cfm 
 updateSelector3.cfm 
  
 updateSubject1.cfm 
 updateSubject2.cfm 
 updateSubject3.cfm 
 updateVendor1.cfm 
 updateVendor2.cfm 
 updateVendor3.cfm



  43  

Appendix E  SQL Statements 
 
1) Views created within MS Access: 
 
a) EID View vAllInfo: 
 
SELECT EID.EIDID, EID.EIDName, ACCESS.accessDesc, PROVIDER.providerName, 
VENDOR.vendorName, EID.EID_URL, ACCESS.instructURL, EID.medium, EID.coverage, 
EID.updated, EID.instructions, PROVIDER.providerURL, EID.description, PROVIDER.providerIcon, 
EID.target, EID.crossRefID, EID.trialCheck, EID.subscriptEndDate 
 
FROM ((ACCESS RIGHT JOIN EID ON ACCESS.accessID = EID.accessID) LEFT JOIN PROVIDER 
ON EID.providerID = PROVIDER.providerID) LEFT JOIN VENDOR ON EID.vendorID = 
VENDOR.vendorID 
 
WHERE EID.displayFlag='yes'; 
 
b) Ejournal View ajAllInfo: 
 
SELECT EJOURNAL.EJID, EJOURNAL.EJName, ACCESS.accessDesc,PROVIDER.providerName, 
VENDOR.vendorName, EJOURNAL.EJ_URL, ACCESS.instructURL, EJOURNAL.holdings, 
EJOURNAL.medium, EJOURNAL.ISSN, EJOURNAL.language, EJOURNAL.frequency, 
EJOURNAL.userInstruct, PROVIDER.providerURL, PROVIDER.providerIcon, EJOURNAL.target, 
EJOURNAL.DRADBCN, EJOURNAL.trialCheck 
 
FROM ((ACCESS RIGHT JOIN EJOURNAL ON ACCESS.accessID = EJOURNAL.accessID) LEFT 
JOIN PROVIDER ON EJOURNAL.providerID = PROVIDER.providerID) LEFT JOIN VENDOR ON 
EJOURNAL.vendorID = VENDOR.vendorID 
 
WHERE EJOURNAL.displayFlag='yes'; 
 
 
2) Main SQL Query within  EIDList.cfm: 
 
<cfquery datasource="EResources" name="list" dbtype="ODBC"> 
 
SELECT vAllInfo.EIDID, vAllInfo.EIDName,vAllInfo.accessDesc, vAllInfo.providerName, 
vAllInfo.vendorName, vAllInfo.EID_URL, vAllInfo.instructURL, vAllInfo.medium, vAllInfo.coverage, 
vAllInfo.updated, vAllInfo.instructions, vAllInfo.providerURL, vAllInfo.providerIcon, 
vAllInfo.description, vAllInfo.target, vAllInfo.trialCheck, vAllInfo.subscriptEndDate, EID.EIDName as 
RefName, EID.EID_URL as RefURL, EID.target as RefTarget 
 
FROM EID RIGHT JOIN vAllInfo ON EID.EIDID=vAllInfo.crossRefID 
<cfif #letter# neq "ALL"> 
 
WHERE vAllInfo.EIDName like '#letter#%'</cfif> 
 
ORDER BY vAllInfo.EIDName, vAllInfo.vendorName, vAllInfo.providerName ; 
</cfquery> 
 
 



  44  

 
Appendix F  Code Sample  from Subject.cfm  
 
<!-- new row, with table, holds Principal Indexes gray bar/header ** if there are principal indexes--> 
<cfif corequery.recordcount gt 0> 
<BR><TR><td>  
 <TABLE cellspacing="0" BORDER="0" WIDTH="680"  BGCOLOR="#cccccc">  
         <TR><TD><A NAME="principal"><B><SPAN CLASS="subhead">Principal Indexes </SPAN> 
</B></A></TD><TD ALIGN="RIGHT"> 
<cfif noncorequery.recordcount gt 0> 
<SPAN CLASS="smaller"><A HREF="#other">Other Resources</A></SPAN><cfelse>&nbsp;</cfif> 
         </TD></TR></TABLE> 
<br></TD></TR>   </cfif> 
 
<!-- new row, another table, holds principal indexes data - if any --><TR><TD> 
<cfif corequery.recordcount gt 0> 
<cfoutput query="corequery"> 
<table width="680"> 
<tr><td><a name='#target#'></a> 
<cfif #EID_URL# eq ""> 
<b>#EIDName#</b> 
<cfelse> 
<a href="#EID_URL#"><b>#EIDName#</b></a></cfif> 
 
...............................code for other EID fields here......................................................... 
 
</td></tr> 
</table></cfoutput> <!-- close table and output with principal data --> 
</cfif><br> 
</TD></TR><!-- end row containing data and end if statement regarding principal indexes --> 
 
<!--start new row, with if statement regarding other indexes, this statement prevents gray header bars from 
showing for certain subjects, like News and reference where there are no principal vs. other indices --> 
<TR><TD><cfif noncorequery.recordcount gt 0 and corequery.recordcount gt 0> 
 
<!-- table with Other Indexes gray bar/header --> 
 <TABLE cellspacing="0" BORDER="0" WIDTH="680" BGCOLOR="#cccccc"> 
         <TR><TD><A NAME="other"><B><SPAN CLASS="subhead">Other 
<cfoutput>#subjectName#</cfoutput> Resources</SPAN></B></A></TD> 
         <TD ALIGN="RIGHT"><SPAN CLASS="smaller"><A HREF="#principal">Principal 
Indexes</A></SPAN></TD></TR></TABLE> 
</cfif> 
</TD></TR> 
 
<TR><TD><!-- new row, another table, holds other indexes data - if any --> 
<br><cfoutput query="noncorequery"> 
<!-- table with resource name, provider, vendor info --> 
<table width="680"> 
<tr><td><a name='#target#'></a> 
<cfif #EID_URL# eq ""><b>#EIDName#</b> 
<cfelse><a href="#EID_URL#"><b>#EIDName#</b></a></cfif> 
 
...............................code for other EID fields here......................................................... 
 
</td></tr></table></cfoutput> <!-- close table & output with "other indices" data --> 



  45  

 
Appendix G  Sample Code from <CFLoop> function (EJlist.cfm) 
 
 
<cfquery datasource="EResources" name="list" dbtype="ODBC"> 
SELECT ejAllInfo.EJID, ejAllInfo.EJName 
FROM ejAllInfo 
<cfif #letter# neq "ALL"> 
WHERE ejAllInfo.EJName like '#letter#%'</cfif> 
ORDER BY ejAllInfo.EJName 
</cfquery> 
 
<cfloop query="list"> 
<cfset idNum = #EJID#> 
 
<cfquery datasource="EResources" name="fullList" dbtype="ODBC"> 
SELECT ejAllInfo.EJID, ejAllInfo.EJName,ejAllInfo.accessDesc, ejAllInfo.providerName, 
ejAllInfo.vendorName, ejAllInfo.EJ_URL, ejAllInfo.instructURL, ejAllInfo.medium, ejAllInfo.holdings, 
ejAllInfo.ISSN, ejAllInfo.language, ejAllInfo.frequency, ejAllInfo.userInstruct, ejAllInfo.providerURL, 
ejAllInfo.providerIcon, ejAllInfo.target, ejAllInfo.trialCheck 
FROM ejAllInfo 
WHERE ejAllInfo.EJID=#idNum# 
ORDER BY ejAllInfo.EJName, ejAllInfo.vendorName, ejAllInfo.providerName ; 
</cfquery> 
 
<cfquery datasource="EResources" name="format2" dbtype="ODBC"> 
SELECT * 
FROM EJOURNAL_FORMAT, FORMAT 
where EJOURNAL_FORMAT.EJID=#idNum# and 
(EJOURNAL_FORMAT.formatID=FORMAT.formatID) 
</cfquery> 
 
<cfset formats=""> 
<cfoutput query="format2"> 
<cfset formats=ListAppend(formats, #formatName#)> 
</cfoutput> 
 
<cfoutput query="fullList"> 
<tr><td><a name='#target#'></a> 
<cfif #EJ_URL# eq ""> 
<b>#EJName#</b> 
<cfelse> 
<a href="#EJ_URL#"><b>#EJName#</b></a></cfif> 
 
...............................code for other ejournal fields here......................................................... 
 
 
<cfif #formats# neq ""><br><b>Format(s):</b> #formats#</cfif> 
 
<br></td></tr></table> 
</cfoutput> 
</cfloop> 
 



  46  

Appendix H  Server Output Code - CFLoop Function 
 
http://dbserv.ils.unc.edu/projects/EResources/ejournal/EJlist.cfm?letter=Z 

Queries  
list (Records=2, Time=1368ms) 
SQL =  
SELECT ejAllInfo.EJID, ejAllInfo.EJName 
FROM ejAllInfo 
 
WHERE ejAllInfo.EJName like 'Z%' 
ORDER BY ejAllInfo.EJName 
 
fullList (Records=1, Time=442ms) 
SQL =  
SELECT ejAllInfo.EJID, ejAllInfo.EJName,ejAllInfo.accessDesc, 
ejAllInfo.providerName, ejAllInfo.vendorName, ejAllInfo.EJ_URL, 
ejAllInfo.instructURL, ejAllInfo.medium, ejAllInfo.holdings, 
ejAllInfo.ISSN, ejAllInfo.language, ejAllInfo.frequency, 
ejAllInfo.userInstruct, ejAllInfo.providerURL, ejAllInfo.providerIcon, 
ejAllInfo.target, ejAllInfo.trialCheck 
FROM ejAllInfo 
WHERE ejAllInfo.EJID=10497 
ORDER BY ejAllInfo.EJName, ejAllInfo.vendorName, ejAllInfo.providerName 
; 
 
format2 (Records=1, Time=245ms) 
SQL =  
SELECT * 
FROM EJOURNAL_FORMAT, FORMAT 
where EJOURNAL_FORMAT.EJID=10497 and 
(EJOURNAL_FORMAT.formatID=FORMAT.formatID) 
 
fullList (Records=1, Time=74ms) 
SQL =  
SELECT ejAllInfo.EJID, ejAllInfo.EJName,ejAllInfo.accessDesc, 
ejAllInfo.providerName, ejAllInfo.vendorName, ejAllInfo.EJ_URL, 
ejAllInfo.instructURL, ejAllInfo.medium, ejAllInfo.holdings, 
ejAllInfo.ISSN, ejAllInfo.language, ejAllInfo.frequency, 
ejAllInfo.userInstruct, ejAllInfo.providerURL, ejAllInfo.providerIcon, 
ejAllInfo.target, ejAllInfo.trialCheck 
FROM ejAllInfo 
WHERE ejAllInfo.EJID=10498 
ORDER BY ejAllInfo.EJName, ejAllInfo.vendorName, ejAllInfo.providerName 
; 
 
format2 (Records=1, Time=19ms) 
SQL =  
SELECT * 
FROM EJOURNAL_FORMAT, FORMAT 
where EJOURNAL_FORMAT.EJID=10498 and 
(EJOURNAL_FORMAT.formatID=FORMAT.formatID) 
 



  47  

Appendix I  Server Side Error Checking (<CFAbort> Function) 
 
 
 
 
<CFquery name="EIDIDcheck" datasource="EResources"> 
SELECT * 
FROM EID 
WHERE EIDID=#EIDID# 
</cfquery> 
 
<cfif EIDIDcheck.RecordCount gt 0> 
<br><br> 
<h3>Administrative Error!</h3><HR color="blue"> 
<br> 
<b>Oops.</b> The ID number calculated already exists. This occurs if you did not reload the 
page before entering another record. Please return to the form and reload the page or click on the 
button below.  A new EIDID will be automatically generated. 
<P> 
<form action="addEIDform.cfm" method="post"> 
<input type="submit" value="Add an Index or Database"> 
</form> 
<P> 
Thank you. 
<CFABORT> 
</cfif> 
 


