

Casey J. Emerson. Automating Disk Image Redaction. A Master’s Paper for the M.S. in
I.S. degree. April, 2014. 62 pages. Advisor: Christopher A. Lee

In order to comply with best preservation and curation practices, collecting institutions
must ensure that private and sensitive information contained in born-digital materials has
been properly redacted before the materials are made available. Institutions receiving
donor media in the form of hard disks, USB flash drives, compact disks, floppy disks,
and even entire computers, are increasingly creating bit-identical copies called disk
images. Redacting data from within a disk image currently is a manual, time-consuming
task. In this project, I demonstrate the feasibility of automating disk image redaction
using open-source, forensic software. I discuss the problems encountered when redacting
disk images using automated methods and ways to improve future disk image redaction
tools.

Headings:

Disk image redaction

Information redaction

Data sanitization

Data recovery (Computer science)

Digital forensics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210608738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATING DISK IMAGE REDACTION

by
Casey J. Emerson

A Master’s paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements
for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

April 2014

Approved by

Christopher A. Lee

 1

Table of Contents
Automating Disk Image Redaction ... 2
Introduction ... 2
Background ... 3
Related Work .. 24
Project Design ... 28
Limitations .. 40
Discussion ... 42
Implications... 45
Future Work .. 45
Conclusion .. 47
Bibliography ... 48
Appendix A: Python script code ... 53

 2

Introduction
As collecting institutions receive born-digital material from donors, they must

mitigate any private or sensitive material from within the material before making it

available. The consequences of not properly protecting donor data could ultimately result

in the institution appearing to be not trustworthy or incompetent, resulting in fewer

donations. To ensure personal or sensitive information is not disseminated in the

collection, digital material must be sanitized. When receiving donor media in the form of

hard disks, USB flash drives, compact disks, and floppy disks, collecting institutions are

increasingly creating bit-identical copies of the media called disk images. Collection

professionals are then responsible for ensuring that private or sensitive material, referred

to as target data, are not accessible on the disk image. However, redacting target data

from within a disk image currently is a manual task that can add a substantial amount to

curatorial workflows. Increasing curatorial processing time can delay processing existing

backlogs, allowing them to grow larger.

To improve the speed at which disk images can be redacted, I investigate the

feasibility of redacting sensitive material from disk images while maintaining the

provenance of the disk image using open-source, forensic software. I demonstrate that

disk image redaction can be accurately automated and discuss methods of improving

future disk image redaction systems. The rest of this paper is divided into the following

 3

sections: Background, Related Work, Project Design, Limitations, Results, Discussion,

Implications, Future Work, and finally the Conclusion.

Background
To understand how disk image redaction works, a general understanding of digital

storage media, computer file systems, and disk images is needed. I will touch on each

topic in the following subsections.

Digital Storage Media

Digital storage media are used to store digital information. Common storage

media include random access memory, hard disk, USB flash, Solid State Disk (SSD),

floppy disk, compact disk, and tape. Each medium type has advantages and

disadvantages.

The most common type of storage medium, the hard disk, is used for both short-

term and long-term storage of digital information. Hard disks are usually comprised of

several stacked, round, magnetic platters spun by a motor.1 A small read/write head

mounted to an arm passes over the top and bottom surface of each platter and detects

magnetic variations on the surface of the platter.2 Each side of each platter is divided into

concentric rings called tracks.3 Tracks are numbered, starting with zero on the outside

and increasing toward the center of the platter.4 Each circular track is divided into

sectors.5 A sector is where data is stored and is the smallest unit of storage on a hard

1 Brian Carrier, File System Forensic Analysis, Vol. 3 (Reading: Addison-Wesley, 2005).
2 Carrier, File System Forensic Analysis, 22.
3 Ibid.
4 Ibid.
5 Ibid, 23.

 4

disk.6 The typical size of a sector is 4,096 bytes on a modern hard disk and 512 bytes on

older hard disks.7 The hard disk maintains an internal map of which sectors are in each

block. If a sector goes bad, the hard disk automatically reassigns an unused sector to the

block.8 Blocks are sequentially numbered and often referred to as offsets.

9
Figure 1. Storage volatility. Source: http://en.wikipedia.org/wiki/File:ComputerMemoryHierarchy.svg

Random access memory (RAM) is typically used as a temporary storage space for

data that the central processing unit (CPU) is processing. The most common form of

memory is Dynamic Random Access Memory (DRAM) and is comprised of billions of

transistor capacitor pairs that each store a single bit of information.10 The capacitors are

either charged or discharged, thus representing the two values of a bit: one (charged) or

zero (discharged).11 The transistor acts as a switch that can either charge or discharge the

6 Ibid, 22.
7 Matthew Kirschenbaum et al., “Digital Forensics and Born-Digital Content in Cultural Heritage
Collections,” CLIR Publication No. 149 (Council on Library and Information Resources, 2010).
8 Carrier, File System Forensic Analysis, 23.
9 “ComputerMemoryHierarchy,” 2010, Wikipedia,
http://en.wikipedia.org/wiki/File:ComputerMemoryHierarchy.svg.
10 Random-Access Memory, n.d. http://en.wikipedia.org/wiki/Random-access_memory (accessed February
11, 2014).
11 Ibid.

 5

capacitor.12 However, because all capacitors leak electricity, the charge stored in each

capacitor is periodically refreshed by transferring and amplifying the existing charge into

another capacitor transistor pair.13 As a result of this process, DRAM is considered

volatile since all data will be lost shortly after power is removed. The primary advantage

of RAM is its fast read/write speed compared to hard disks.

Optical storage disks such as compact disks (CD) or digital video disks (DVD)

are also common media for distributing software and user files; however, as new

computing devices get smaller, fewer new devices include optical disk drives. This

medium is currently being supplanted by other forms of storage like flash memory or

network-based cloud storage. The optical disc is a round, thin plastic disc with one or

more layers of metallic film sandwiched between two polycarbonate discs.14 The surface

of the metallic film alternates between lands and pits.15 A narrow laser beam is directed

at the disk and the metallic film reflects the beam from the surface of the disk.16 Pits

scatter the light, whereas lands reflect light back to a detector.17 The detector is a light-

sensing diode that produces a small electrical voltage each time light is reflected back

from a land.18 The pits and hills etched into the metallic film on an optical disk are stored

in a continuous spiral path starting at the center of the disk, moving outward.19

Transitions between pits and lands or lands and pits represent an optical 1 bit, whereas

12 Ibid.
13 Ibid.
14 “Compact Disk,” n.d., Wikipedia, accessed February 11, 2014,
http://en.wikipedia.org/wiki/Compact_disc.
15 Ron White and Timothy Downs, How Computers Work (Que Corp., 2007), 186.
16 “Compact Disk.”
17 White, How Computers Work, 186.
18 Ibid.
19 “Compact Disk.”

 6

the lack of a transition represents an optical 0 bit.20 Optical bits are not the same as data

bits; the former are demodulated by grouping several optical bits together to form a data

bit.21 The exact number of optical bits that constitute a data bit depends on the type of

disc format, e.g., CD, DVD, HD-DVD, Blu-Ray.22 Optical disks also use error correction

to ensure that sectors damaged from dust, scratches, and smudges do not cause

irreversible damage.23

The now obsolete floppy disk has been superseded by the hard disk, optical disc,

the USB flash disk, and network storage systems. Floppy disks were created in three

main sizes: 8 inch, 3.5 inch (pronounced three and a half), and 5.25 inch (pronounced

five and a quarter). All three types of floppy disk were constructed with a thin circular

plastic disc, coated with magnetic oxide, and enclosed in a rectangular plastic case.24

Similar to hard disks, some floppy disks can store data on both sides of the plastic disk.

Each side can be divided into concentric rings called tracks. Tracks are numbered,

starting with zero on the outside and increasing toward the center of the disk.25 Each

circular track is divided into sectors. Sectors are where the data is stored and are the

smallest unit of storage on a floppy disk. The typical size of a floppy disk sector is 512

bytes; however, different disk manufacturers used different sector sizes.26 Both 8 inch

and 5.25 inch floppy disk drives require special controllers that are not included on

20 White, How Computers Work, 193.
21 Ibid.
22 Ibid, 192.
23 Malcolm Stitch, Laser handbook (1972), 1787-l788.
24 “Floppy Disk,” n.d., Wikipedia, accessed February 11, 2014, http://en.wikipedia.org/wiki/Floppy_disk.
25 Ibid.
26 Ibid.

 7

modern motherboards.27 Specialized equipment can be used to connect a floppy

controller to a USB floppy controller, which can then be read by a modern computer.

Magnetic tape cassettes are commonly used to back up servers because of their

low cost per gigabyte. The cassettes, sometimes referred to as cartridges, consist of a hard

plastic enclosure containing two reels with a continuous span of flexible magnetic-coated

plastic.28 Like hard disks and floppy disks, data is written to sectors contained in tracks.

However, the tracks are not circular, and instead, are written parallel to the length of tape,

perpendicular to the length of tape, or in short diagonal stripes on the tape.29 Tape drives

require special controllers to interface with the host computer.

The Solid State Disk (SSD) is a newer digital storage medium than the others

discussed above and is poised to supersede hard disks for many purposes. SSDs operate

in a similar fashion to RAM, in that data is stored in integrated circuits. However, the

storage is non-volatile and unlike RAM, can hold data long after power has been

removed. Data in an SSD is stored in sectors comprised of many logical NOT AND

(NAND) transistors, referred to as registers. The typical size of a sector is 4,096 byte, but

this varies between manufacturers. The SSD maintains an internal map of which NAND

gates are in each sector and which sectors are in each block. If a register fails, the SSD

automatically reassigns an unused register to the sector. Unlike electromechanical storage

media like hard disks, floppy disks, and tapes, SSDs have no moving parts and therefore

are not susceptible to mechanical failure. But data can only be written to each chip within

27 Ibid.
28 “Magnetic Tape Data Storage,” n.d., Wikipedia, accessed April 4, 2014,
http://en.wikipedia.org/wiki/Data_cartridge_%28tape%29#Cartridges_and_cassettes.
29 Ibid.

 8

the SSD a limited number of times.30 The SSD performs a process called wear-leveling

where it moves data to different registers throughout the drive based on the number of

times data has been written to the register. This movement of data is transparent to the

operating system. Blocks in an SSD are sequentially numbered and often referred to as

offsets. Due to wear-leveling, block location assignments are dynamic and change

without notice; however, the data in the blocks remains the same.

SSDs have a unique quality that directly affects anyone attempting to recover data

from the disk. SSDs can irrevocably erase data on the disks with unprecedented speed.

500 gigabyte SSD drives have been shown to erase all of the data on the disk in less than

six minutes when performing a disk format.31 This is important to note because it is very

easy to permanently delete data when working with SSDs.32

A cloud network storage system is simply storage to which users can connect via

a network. Typically, cloud storage refers to a system that can be reached over the

commodity Internet, but can also refer to a private enterprise networked storage system.

Cloud or network storage systems are comprised of redundant physical storage media like

hard disks, SSDs, tapes, etc., arranged in such a way that provides end users with storage

space.33 Cloud storage systems usually co-locate different users’ data within storage

nodes. They use authentication and file permissions to co-locate user data on a given

storage medium. The primary reason to reference cloud network storage in a redaction

context is that the data is usually backed up in multiple locations. Redacting information

30 Matthew Levendoski, “Solid State Drives and the Forensic Process” (Master’s thesis, Purdue University,
2013).
31 Ibid.
32 Ibid.
33 Jonathan Strickland, "How Cloud Storage Works," HowStuffWorks, accessed April 2, 2014,
http://computer.howstuffworks.com/cloud-computing/cloud-storage.htm.

 9

from cloud storage can be difficult because it involves overwriting the same data in

different locations. Complicating the matter further is that most cloud storage systems are

owned and operated by third party vendors.

File Systems

File systems organize data on a storage medium in a hierarchy of files and

directories. Every file system has a boot sector at the beginning of the disk in sector zero

that contains information about the file system and instructions for what the processor

should do to boot or start up the computer.34 The file system also contains metadata

describing each file and directory. Since redaction usually involves overwriting data, it is

necessary to understand how file systems work and the differences in how each file

system refers to data. As shown in Table 1 below, there are many different file systems

with different features and attributes.35

Table 1. File System Comparison Table. Source: http://en.wikipedia.org/wiki/Comparison_of_file_systems

In the context of data redaction, it is important to understand how each file system

refers to data and stores metadata. The metadata describing the presence of a file or

directory can sometimes be as important as the file itself. Because file systems are

designed to save and track the locations of data, many file systems duplicate the file

34 Carrier, File System Forensic Analysis, 155.
35 A comprehensive table detailing more file systems and can be found:
http://en.wikipedia.org/wiki/Comparison_of_file_systems

Maximum
volume
size

Maximum
file size

Maximum filename
length

Stores
file
owner

Create
timestamp

Last access
timestamp

Last
modification
timestamp

Supports
encryption

Original operating
system

Year
introduced

FAT12 32 MB 32 MB 255 UTF-16 no partial partial yes no QDOS, 86-DOS 1980
FAT16 4 GB 2 GB 255 UTF-16 no partial partial yes no MSDOS 1984
FAT32 2 TB 4 GB 255 UTF-16 no partial partial yes no Windows 95 1996
NTFS 3.1 16 EB 16 EB 255 bytes yes yes yes yes yes Windows XP 2001
ReFS 1 YB 16 EB 32,767 UTF yes yes yes yes yes Windows 2012 Server 2012
HFS 2 TB 2 GB 31 bytes no yes no yes no Mac OS 1985
HFS+ 8 EB 8 EB 255 UTF-16 yes yes yes yes yes Mac OS 8.1 1998
EXT2 32 TB 2 TB 255 bytes yes no yes yes no Linux 1993
EXT3 32 TB 2 TB 255 bytes yes no yes yes yes Linux 1999
EXT4 1 EB 16 TB 255 bytes yes yes yes yes yes Linux 2006

 10

tables. In the event a table is corrupted or lost, the locations of files and directories can be

recovered from the duplicate table. As a result, it is more difficult to sanitize all

descriptive metadata from within file systems. Even popular whole-disk sanitization tools

struggle with eliminating all metadata.36

When redacting data, the original file system will not likely be used to remove the

sensitive data. Instead, external programs will likely search the data on the disk and

overwrite the data directly, bypassing the file system.

The File Allocation Table (FAT) file system was originally developed in the late

1970s by Microsoft for use on floppy disks; however, it was soon adapted for use on hard

disks and became the ubiquitous file system for computers worldwide.37 FAT stores the

cluster addresses of each file and directory in a table.38 The table and root directories are

stored at a fixed location at the beginning of the volume.39,40 The table is comprised of

data structures for each file and directory on the disk. Each data structure contains the file

name, the starting cluster location of the file, the file size, and related file attributes. File

attributes are additional metadata that describe each file. The FAT file system supports

the following four file attributes: read-only, hidden, system, and archive.41

FAT stores files starting in the first available cluster. If the file size exceeds the

size of a cluster, the remainder of the file is split over remaining clusters until the entire

file has been written to the volume. As files are deleted, clusters are marked available and

36 Simson Garfinkel and David Malan, "One Big File is Not Enough: A Critical Evaluation of the Dominant
Free-Space Sanitization Technique," Privacy Enhancing Technologies (Springer Berlin Heidelberg, 2006):
135-151.
37 FAT has since been supplanted by NTFS as the default file system for Windows operating systems.
38 “Overview of FAT, HPFS, and NTFS File Systems,” 2007, Microsoft: Support
http://support.microsoft.com/kb/100108/EN-US.
39 “Overview of FAT, HPFS, and NTFS File Systems.”
40 FAT32 and FAT64 allow the root directory to be stored anywhere within the volume.
41 “Overview of FAT, HPFS, and NTFS File Systems.”

 11

new files are written to them. As a result, clusters in the first part of the storage medium

are written more often than clusters at the end of the medium. The biggest disadvantage

of the file system starting with the first available cluster is that files become fragmented

across the disk. Fragmentation decreases disk performance, because the read/write heads

have to spend time seeking to several areas of the disk to read the full contents of a file.

There are four FAT versions: FAT12, FAT16, FAT32, and FAT64 (ExFAT). The

primary difference between the versions is the maximum file and volume sizes that each

can support. FAT12 limits cluster addresses to 12 bits in length and does not support

hierarchical directories.42 It has a maximum file size of 32 megabytes and a maximum

volume size of 256 megabytes.43 FAT12 was primarily used on floppy disks and was

compatible with the MS-DOS operating system. FAT16 was an improvement over

FAT12, in that it used 16 bits for addressing clusters.44 As a result the maximum file and

volume size for FAT16 is 2 gigabytes.45 FAT16 increased the number of entries in the

root directory to 512 and enabled hierarchal directories.46 FAT32 improved several

shortcomings of the previous FAT versions. First, it increased the cluster addressing size

to 32 bits which increased the maximum file size to 4 gigabytes and the maximum

volume size to 2 terabytes.47,48 The second improvement was that the root folder could be

located anywhere on the volume and therefore was not constrained to a specific number

42 “What is FAT File System,” HDD Tool, http://www.hdd-tool.com/hdd-basic/what-is-fat-file-system.htm.
43 “Comparison of File Systems,” n.d., Wikipedia, accessed February 18, 2014,
http://en.wikipedia.org/wiki/Comparison_of_file_systems.
44 “What is FAT File System.”
45 “Comparison of File Systems.”
46 “FAT16 vs. FAT32,” n.d., Microsoft: TechNet, http://technet.microsoft.com/en-
us/library/cc940351.aspx.
47 “Comparison of File Systems.”
48 “What is FAT File System.”

 12

of entries.49 The third improvement was that the file system stored a copy of the boot

sector in sector six that could be used if the primary table became corrupted.50,51 FAT64

or Extended FAT (ExFAT) is optimized for removable media and uses 64 bits for

addressing clusters.52 As a result, the maximum file size is 127 petabytes and the

maximum volume size is 64 zeta bytes.53 ExFAT is not commonly used in user operating

systems but rather in appliances where the simplicity of a FAT structure is needed for file

sizes greater than 4 gigabytes.

 FAT is supported by Windows, Macintosh, and most flavors of Linux.54 Because

of its simplicity, FAT is commonly used on removable media such as memory cards and

portable electronic devices, e.g., cameras and voice recorders.55

The New Technology File System (NTFS) was developed by Microsoft as a

secure and scalable file system for use on large storage volumes.56 It has replaced FAT as

the standard file system for use in the majority of Microsoft Windows operating systems.

Windows NT, Windows 2000, Windows XP, Windows Server, Vista, and Windows 7 all

use the NTFS file system.57 NTFS can also be used on Mac and on many Linux operating

systems.58

The first sector of an NTFS volume is a boot sector that contains the cluster size

for the storage medium, volume information, a pointer to the start of the Master File

49 “FAT16 vs. FAT32.”
50 Ibid.
51 Carrier, File System Forensic Analysis, 156.
52 “NTFS vs FAT,” 2010, HDD Tool, http://www.hdd-tool.com/pic/FAT-NTFS.png.
53 “Comparison of File Systems.”
54 Carrier, File System Forensic Analysis, 154.
55 Ibid.
56 Ibid, 199.
57 Ibid.
58 Ibid.

 13

Table (MFT), and the size in bytes of entries in the MFT.59 NTFS stores file and

directory entries in the MFT.60 Each MFT record contains a header, several standard

attributes, and unstructured space for additional attributes.61 As shown in Figure 2 below,

the first 24 entries in the MFT are reserved for standard files that are used by the file

system. Unlike the FAT file allocation tables that simply point to the location of the data,

the MFT is a file itself and each entry within the MFT contains metadata and file data.62

Because the boot sector of the NTFS volume contains a pointer to the start of the MFT

file and no additional information about the size and layout of the MFT file, the first

entry in the MFT describes the size and layout of the rest of the MFT file.63 The

operating system must process the first entry in the MFT file simply to understand how to

read the rest of the MFT file. The only information describing the size and layout of the

MFT is in this initial entry.64 The advantage of this design is the NTFS boot sector for the

volume doesn’t need to change as the MFT increases in size.

59 “Overview of FAT, HPFS, and NTFS File Systems.”
60 Carrier, File System Forensic Analysis, 200.
61 Ibid, 206.
62 Ibid.
63 Ibid, 202.
64 Ibid, 200.

 14

The second entry in the MFT is $MFTMirr, which points to a backup copy of the

MFT.65 The third entry in the MFT is $LogFile, which contains a record for all metadata

transactions.66 The seventh entry in the MFT is $BITMAP, which contains an allocation

status for every cluster in the file system.67 In terms of digital redaction and file

sanitization, it is important to note that MFT entries are not immediately overwritten

when a file is deleted. Instead the entry is marked as unallocated in the $BITMAP

attribute and the data may be overwritten if a new file entry is written into that entry

address.68 As a result, deleted files and their file attributes can be recovered after they

have been marked as “deleted” and if another file has not been written into the address.

From a redaction perspective, there are several attributes within an MFT entry

that are important to understand. The first is the $DATA attribute because it contains raw

file content.69 Information contained within the $DATA attribute is the primary file

content data that will be targeted for redaction. Because MFT entries are typically fixed

65 Ibid, 220.
66 Ibid, 281.
67 Ibid, 203.
68 Ibid, 201.
69 Ibid, 264.

Figure 2. NTFS Master File Table. Source: http://commons.wikimedia.org/wiki/File:Ntfs_mft.svg

 15

at 1,024 bytes each, the $DATA attribute can only contain 700 bytes of file contents

within a given MFT entry.70 For files that are larger than 700 bytes, the $DATA attribute

points to external clusters on the volume that contain the file contents.71 Attributes with

data stored within the MFT entry are called resident attributes.72 Attributes with data

stored in clusters external to the MFT are called non-resident attributes. Depending on the

size of the file, target data will be located either in the MFT in a resident $DATA

attribute or elsewhere on the volume in a non-resident $DATA attribute. The second

important attribute from a redaction perspective is $FILE_NAME, because it contains the

name of the file or directory, its size and its timestamps for when it was created, written,

and last accessed.73 The metadata contained within the $STANDARD_INFORMATION

attribute is also important as it contains the security ID and owner of a file or directory.74

Both the $FILE_NAME and the $STANDARD_INFORMATION attributes could

contain additional sensitive information describing data to be redacted from the $DATA

attribute. The fourth and fifth important attributes are the $INDEX_ROOT resident

attribute and its child attribute, the $INDEX_ALLOCATION non-resident attribute.75

Both attributes are only assigned to directories and contain information about the files

and subdirectories within a given directory, which is useful when redacting entire

directory structures.76 For example, to redact the contents within a Windows My

Documents directory, the contents of the My Documents directory can be derived from

information stored within these two attributes.

70 Ibid, 204.
71 Ibid, 264.
72 Ibid.
73 Ibid, 205.
74 Ibid.
75 Ibid, 267.
76 Ibid.

 16

When NTFS is first installed on a volume, the MFT starts out small and grows

larger as needed.77 As a result, the MFT can be fragmented over many different clusters

as it grows.78 In Windows environments, the MFT will never shrink in size, even if all

user files are deleted.79 As previously mentioned, this “deleted” data is not actually

overwritten on the storage medium and is recoverable.

One of the security improvements NTFS supports is file encryption, which can

present problems for finding and redacting sensitive data. Encrypted attribute content

would need to be decrypted before the data could be searched or redacted. NTFS uses a

symmetric encryption algorithm called DESX to encrypt attribute content.80 In Windows

operating systems, the encryption keys are generated by combining a random key issued

to the MFT entry with the user’s password.81

Disk Images

A disk image is a bit-identical copy of a storage medium’s data clusters.82 A disk

image can be stored in one or more files.83 Creating a disk image is different from simply

copying files from one location to another. When copying files from one file system to

another, descriptive metadata may be replaced or omitted when the file is copied to the

destination file system. Because imaging a disk preserves the data on the entire storage

medium, it also saves files marked as deleted and file-fragments located in slack space.

Slack space refers to unused sectors within a data cluster. It occurs when a file segment

77 Ibid, 201.
78 Ibid.
79 Ibid.
80 Ibid, 210.
81 Ibid.
82 Kirschenbaum, Digital Forensics and Born-Digital, 17.
83 Kam Woods and Christopher A. Lee and Simson Garfinkel, "Extending digital repository architectures to
support disk image preservation and access," Proceedings of the 11th annual international ACM/IEEE joint
conference on Digital libraries (ACM, 2011), 58.

 17

assigned to a cluster is smaller than the total size of the cluster. 84 Because most file

systems do not immediately overwrite file clusters when a file is deleted, fragments from

previously deleted files can be found in unassigned sectors within a cluster.85

Disk images have many uses, including forensic examination, data rescue, and the

preservation of information. In Information Technology (IT) communities, disk images

are used to rapidly deploy operating system and software configurations to computers.86

In a preservation context, a disk image allows the information from a given storage

medium to be transferred to a new medium while preserving the original structure of the

data.87 In forensic contexts, imaging a disk can help to establish a trustworthy chain of

custody of the data.88 In a preservation setting, a cardinal rule is to minimize irreversible

transformations to the data. By creating a disk image of a medium, it is possible to

perform transformations on copies of the disk image without affecting the original data.

Disk Image Formats

Disk images can be created in several formats by a variety of different programs.

Common programs for imaging disks are Data Dump (dd) included with Linux,

Guymager, FTK Imager, and EnCase. The most common image formats are RAW, EWF,

AFF, and ISO.89,90 Each format is designed for specific use-cases.

84 Kirschenbaum, Digital Forensics and Born-Digital, 43-44.
85 Kirschenbaum, Digital Forensics and Born-Digital, 43.
86 Simson Garfinkel, "Digital forensics XML and the DFXML toolset," Digital Investigation 8, no. 3
(2012) 162.
87 Kam Woods and Christopher A. Lee, "Acquisition and Processing of Disk Images to Further Archival
Goals," Archiving Conference, vol. 2012, no. 1, pp. 147-152. Society for Imaging Science and Technology,
(2012): 148.
88 Woods, Extending Digital Repository, 57.
89 Garfinkel, Digital Forensics XML, 162-163.
90 Simson Garfinkel, "Providing Cryptographic Security and Evidentiary Chain-of-Custody with the
Advanced Forensic Format, Library, and Tools," International Journal of Digital Crime and Forensics
(IJDCF) 1 (2009): 3.

 18

 The RAW image format produces an uncompressed and unencrypted, bit-for-bit

duplicate of data on a disk.91 The RAW format does not add metadata about the original

storage medium or the operating system. Originally used by the Linux Data Dump (dd)

program, the RAW format was designed to allow the simple duplication of disk drives.92

It is important to note that because the RAW format is uncompressed, the disk image will

be the same size as the original disk.93 A 300 gigabyte disk will produce a single 300

gigabyte disk image file. Split-RAW allows large disk images to be divided by size over

multiple files. This makes it easier to transfer disk images on smaller storage media like

compact disk or flash disk.

As computer forensics began using disk images to gather evidence, additional

metadata describing the case and file compression were added to the image formats. As a

result, several forensic disk image formats emerged. The Expert Witness Format (EWF)

is a proprietary, forensically packaged imaging format created by Guidance Software for

use with their commercial forensic examination software, EnCase.94 The name was later

changed to the EnCase Image File format and used the “.E01” file extension.95 The EWF

format is arguably the most popular image format used in forensics and archives.96 EWF

uses file compression to reduce the size of disk images.97 The EWF format also stores

metadata about the original media, as well as information about the case and the person

creating the image.98 The proprietary EWF format was reverse-engineered by Joachim

91 Carrier, File System Forensic Analysis, 43
92 Kirschenbaum, Digital Forensics and Born-Digital, 15.
93 Carrier, File System Forensic Analysis, 43
94 Carrier, File System Forensic Analysis, 43
95 Garfinkel, Digital Forensics XML, 162.
96 Ibid.
97 Woods, Extending Digital Repository Architectures, 58.
98 Garfinkel, Digital Forensics XML, 162.

 19

Metz, who created libewf, a code library that allows other programs to read and write

EWF format files.99

Data within the EWF format is organized into a header, followed by disk image

data, and then by a one-way hash of the file.100 The file header contains information

about the disk image, including “Case Number, Evidence Number, Unique Description,

Examiner Name, and Notes”.101 The disk image itself is compressed and divided into 32-

kilobyte data blocks.102 At the end of each data block is an Adler32 checksum which is

used for error correction.103 The disk image data is followed by a one-way hash of the

disk image data.

Because the EWF disk image format was designed for use in forensics, it was

created with safeguards to identify if any part of the file is altered. If any chunk of data

within the disk image is changed, the checksum at the end of the data block has to be

recomputed, as does the one-way hash at the end of the file. One can test the validity of a

EWF disk image by computing the checksum of each data block and the hash for the file.

According to Joachim Metz, the open source libewf library cannot edit EWF files.104 To

protect disk images from unauthorized access, EWF includes the ability to encrypt the

disk image as well as require passwords to access the file.105

The Advanced Forensic Format (AFF), developed by Simson Garfinkel and Basis

Technology, is an open format for storing disk images and associated forensic

99 “Libewf,” Forensics Wiki, last modified February 16, 2014, http://www.forensicswiki.org/wiki/Libewf.
100 “Encase Image File Format,” Forensics Wiki, last modified July 15, 2013,
http://www.forensicswiki.org/wiki/Encase_image_file_format.
101 “ASR Data's Expert Witness Compression Format,” Forensics Wiki, last modified March 29, 2013,
http://www.forensicswiki.org/wiki/ASR_Data%27s_Expert_Witness_Compression_Format.
102 “Encase Image File Format.”
103 “Encase Image File Format.”
104 Joachim Metz, e-mail message to author, January 3, 2014.
105 “Encase Image File Format.”

 20

metadata.106 The primary advantage that AFF has over EWF is that it contains a hash of

the disk image in the metadata section within the file. This allows edits to be made to the

metadata without changing the hash of the imaged data and thus casting doubt on the data

within the disk image portion of the file.107 All transformations performed on the disk

image can be detailed in Digital Forensic XML (DFXML) metadata. DFXML is an XML

(Extensible Markup Language) implementation designed for the exchange of structured

forensic information.108

The latest AFF version called AFF4 was developed by Michael Cohen, Simson

Garfinkel and Bradley Schatz and added features like multiple data streams within one

file and links between archives.109 There is still no complete, publicly available

implementation of AFF4. Many forensics tools support AFF, but its adoption does not

appear to be as widespread as the adoption of EWF.

Viewing Disk Images

Disk images can be read and interpreted by several different software packages.

Most commercial forensic tools can read and interpret all of the major image formats. But

there are also a number of open-source tools that can view the contents of disk images.

The bulk_extractor tool is an open-source forensic triage application that can

parse and extract text from storage media and disk images.110 It extracts forensic features

consisting of email addresses, Uniform Resource Locators (URLs), search terms

(extracted from URLs), credit card numbers, and phone numbers, EXIF (Exchange Image

106 “AFF,” Forensics Wiki last modified January 29, 2014, http://www.forensicswiki.org/wiki/AFFLIB.
107 “AFF.”
108 Garfinkel, Digital Forensics XML, 161.
109 “AFF.”
110 Simson Garfinkel, "Digital Media Triage with Bulk Data Analysis and bulk_extractor," Computers &
Security 32 (2013): 56-72.

 21

File Format) from JPEG images, Global Positioning System (GPS) coordinates, and other

types of information.111 Although it was designed to be used as a command line tool,

there is also a graphic user interface (GUI) for bulk_extractor called Bulk Extractor

Viewer (BEViewer), which can be used to run the scanners, and view and search

extracted features.112 When bulk_extractor parses a disk image, it splits the image file

into 16 megabyte chunks called pages and allocates each page to an available computer

processing core.113 By leveraging the multi-threading capabilities of most modern

computer processors, bulk_extractor has been shown to process disk images up to 10

times faster than single-threaded forensic tools.114

The fiwalk tool is an open source forensics batch analysis application that

interrogates the file system(s) on a disk image and outputs the contents in DFXML

objects corresponding to allocated, deleted, and orphaned files and directories.115 In

addition to the file system data, fiwalk can also extract forensic metadata (e.g., examiner

name, examiner notes) from the EWF and AFF packaged disk image formats.116 Even if

the disk image contains multiple file systems on multiple partitions, fiwalk can analyze

and parse the different file systems and produce the contents in DFXML objects.117

Digital Redaction

A common definition of the word redaction in a digital context is the obscuring or

removing of sensitive information. For this paper, I will use the following definition: the

111 Garfinkel, Digital Media Triage, 60.
112 Garfinkel, Digital Media Triage, 67.
113 Garfinkel, Digital Media Triage, 59.
114 Garfinkel, Digital Media Triage, 66.
115 Garfinkel, Digital Forensics XML, 171.
116 Simson Garfinkel, "Automating disk forensic processing with SleuthKit, XML and Python," Systematic
Approaches to Digital Forensic Engineering, 2009. SADFE'09. Fourth International IEEE Workshop on,
pp. 73-84. (IEEE, 2009).
117 Garfinkel, Automating Disk Forensic Processing, 2.

 22

removal of digital artifacts from an electronic information storage system, regardless of

sensitivity. Stripping or overwriting data can fall under this definition.

As Lee and Woods point out, “modern computing devices often contain a

significant amount of private and sensitive information.”118 Because disk images are

identical copies of a computer’s storage media, they also can contain a significant amount

of sensitive information. In archival settings, disk images can contain sensitive or

personal data that is not appropriate for the collection or should not be immediately

disclosed to the public. Patient data, social security numbers, credit card numbers, contact

lists, address books, email, and personal files are all examples of data that may need to be

removed from a disk image before making it available.

There are two methods to redact information form storage media: 1) overwrite the

original disk image data in-place or 2) create a redacted copy of the disk image. Creating

a redacted copy of the disk image can be divided further based on when redaction is

performed: 1) In advance or 2) upon request. In an Open Archival Information System

(OAIS), redacting information in advance would be akin to creating a new Archival

Information Package (AIP) whereas creating a redacted disk image on-demand would be

analogous to creating a new Dissemination Information Package (DIP)119. Both the

redaction in-place method and creating a redacted copy method have benefits and

drawbacks. Redacting the data in-place ensures that all original target data is permanently

destroyed.120 Because only the original redacted disk image is needed, this method

118 Christopher A. Lee and Kam Woods, "Automated Redaction of Private and Personal Data in
Collections," Proceedings of The Memory of the World in the Digital Age: Digitization and Preservation.
An international conference on permanent access to digital documentary heritage, (2012).
119 The Consultative Committee for Space Data Systems, “Reference Model for an Open Archival
Information System (OAIS),” Magenta Book, Issue 2 (2002).
120 Complete destruction of data assumes that standard data sanitization practices are followed.

 23

requires the least amount of storage space for the disk images. Creating a redacted copy

preserves the original data at the expense of requiring more storage space. Depending on

the amount of data redacted, as much as twice the disk space can be required to store the

original and the redacted disk images. The size of the redacted disk image is influenced

by the amount of data redacted and the method of redaction. Because the master disk

images are not redacted and contain target data, they should be securely stored with

limited access.

Some practitioners recommend overwriting with a single byte, while others

recommend overwriting the data with random byte sequences.121 Another method for

overwriting the data is to encrypt the original sensitive data and write out the encrypted

file. The advantage to encrypting the data in-place instead of overwriting a duplicate disk

image is that the redacted data is secure and yet recoverable on the original medium. A

secondary benefit to encryption in-place method is the reduction of storage space

required to house duplicate redacted disk images.

Because disk images are bit-identical copies of the underlying blocks or clusters

of storage on a medium, disk images include all information on the original media,

including unwritten space and deleted space. Disk images are created by reading the bits

from the storage medium and copying the bits in the same order they were retrieved from

the disk to another medium.122

Disk images are used in a variety of applications including digital forensics,

computer repair, and preservation. One of the first steps that law enforcement takes when

logging digital evidence is to create a disk image of the acquired evidence. This is done

121 Garfinkel, One Big File is not Enough, 15.
122 Kirschenbaum, Digital Forensics and Born-Digital, 37.

 24

to preserve the evidence and prevent tampering that could jeopardize a trial. In computer

repair, disk images are retrieved from failing media or devices infected with viruses or

malware. In preservation contexts, disk images are used to transfer information from the

original physical medium to the repository’s storage media. There are a variety of reasons

why a disk image would be taken of a storage medium, e.g., in cases when the original

media is obsolete or failing, to prevent bit rot of the original media, etc.

Related Work
There is surprisingly little research on redacting disk images. Because of this

relative dearth of information, this project draws from research from three areas:

automating forensic analysis, applying forensic methods to digital curation, and

electronic document redaction. Each area offers a unique perspective into disk image

redaction.

Automating Forensic Analysis

Commercial forensic toolkits like Access Data’s FTK or Guidance Software’s

EnCase Forensic provide users the ability to process and analyze the contents of forensic

disk images.123,124 EnCase also has the ability to automate forensic processing through its

proprietary EnScript scripting language. However, a shortcoming of EnScript is that

external programs cannot interface with it.125 In addition, commercial forensic tools are

often cost-prohibitive for use in non-forensic environments like libraries and archives.

123 “Computer Forensics Software for Digital Investigations,” Access Data, accessed November 8, 2013,
http://www.accessdata.com/products/digital-forensics/ftk.
124 “Computer Forensic Software - Encase Forensic,” Guidance Software, accessed November 8, 2013,
http://www.encase.com/products/Pages/encase-forensic/overview.aspx
125 Garfinkel, Automating Disk Forensic Processing, 2.

 25

Despite a plethora of document redaction tools, there are few tools designed for

redacting data from forensic disk images. Joachim Metz’s libewf library can export

forensically packaged disk images to the RAW format, which can then be edited using

third-party software and imported back into the forensically packaged disk image format.

Libewf reads and writes EWF disk images.126 In an email exchange with Metz, he

acknowledges that libewf cannot overwrite data in a EWF image.127 Several open source

toolkits include this library to edit EWF files. Similarly, Simson Garfinkel’s AFFLIBv3

library allows third party tools to read and write AFF files.128

There are a few open source forensic tools that provide access to external

programs through application programming interfaces (API). The PyFlag project,

originally created by the Australian Federal Police, enabled developers to integrate

forensic analysis into the development of new forensic software.129,130 The SleuthKit

(TSK), one of the most popular open source digital forensic tool kits available, includes

an API for programmers to access the tools from other programs.131 However, some

developers have found it difficult and cumbersome to interface with the API when

creating new forensic applications.132

Garfinkel’s work with DFXML and fiwalk advanced the body of knowledge

around open source forensic analysis and included an easy-to-use API to create new

126 “Libewf.”
127 Joachim Metz, e-mail message to author, January 3, 2014.
128 “AFF.”
129 Garfinkel, In Systematic Approaches, 75.
130 “Forensic and Log Analysis GUI,” Source Forge, accessed November 12, 2013,
http://sourceforge.net/projects/pyflag/.
131 “The Sleuth Kit (TSK) & Autopsy: Open Source Digital Forensics Tools,” last modified April 4, 2014,
http://www.sleuthkit.org/.
132 Garfinkel, Automating Disk Forensic Processing, 84.

 26

forensic tools.133,134 The development of two modules included with fiwalk,

imicrosoft_redact.py and iredact.py, are the basis for this project. Imicrosoft_redact.py

overwrites crucial components within a disk image of a Windows operation system so the

disk image cannot be booted.135 Iredact.py is an experimental module designed to redact

individual files or multiple files with similar characteristics based on user-defined

parameters.136 At the time of this writing, iredact.py has limited functionality, e.g., it can

only redact files from RAW disk images based on their file hash signature.

Applying Forensic Methods to Digital Collections

Lee, Woods, Kirschenbaum, and Chassanoff’s white paper reviews how forensic methods

have been applied in libraries, archives, and museums to improve their digital curation

workflows. In addition they detail how collecting institutions can begin using forensic

methods, software and equipment.137 Kirschenbaum, Ovenden, and Redwine’s report

provides an in-depth review of how digital forensic methods can and are being applied to

collecting institution workflows.138 Most of the forensic tools presented in the report

were not packaged together for use in collection institutions. The BitCurator Project, led

by Lee and Kirschenbaum, with Kam Woods as the technical lead, organized several

open source forensic tools into a self-contained Linux package for use by collection

professionals.139 The package contains a disk imaging tool, a disk image exploration tool,

133 Garfinkel, Automating Disk Forensic Processing, 75.
134 “Category:Forensics File Formats,” Forensics Wiki, last modified July 21, 2012,
http://www.forensicswiki.org/wiki/Forensic_file_formats.
135 Garfinkel, Digital Forensics XML, 172.
136 Garfinkel, Automating Disk Forensic Processing, 83.
137 Christopher A. Lee et al., "From Bitstreams to Heritage: Putting Digital Forensics into Practice in
Collecting Institutions," (2013).
138 Kirschenbaum, Digital Forensics and Born-Digital, 16.
139 “About | BitCurator,” BitCurator, last modified April 2, 2014, http://www.bitcurator.net/aboutbc/.

 27

and automated processes to capture digital forensic XML data about the data on the disk

image, among other features.

Electronic Document Redaction

Electronic document redaction parallels disk image redaction in that the process

of selectively removing subsections of information from an entire document is similar to

removing subsections of data from a disk image. Analogous to disk image redaction,

electronic document redaction is focused on removing both the directly visible and

“hidden” contents from the document.140 Improper electronic document redaction

techniques have led to several high profile cases of sensitive information being

inadvertently released.141

There are two standard methods for performing analog redactions to physical

documents. The first is to black out or cover the text of a document.142 The second is to

physically remove parts or entire pages of a document.143 After the physical redaction has

been made, the document is photocopied and distributed.144 The methods used in

electronic document redaction are similar to those used in analog document redaction.

Data within an electronic can be overwritten or can be omitted when copying the data to

another document.145

140 Mads R. Dahl and Eivind O. Simonsen and Christian B. Høyer, "What You See is not What You get in
the PDF Document Format," Health Informatics Journal 17, no. 1 (2011): 24-32.
141 Jembaa Cole, "When Invisible Electronic Ink Leaves Red Faces: Tactical, Legal and Ethical
Consequences of the Failure to Remove Metadata," Shidler JL Com. & Tech. 1 (2005): 8-12.
142 Daniel P. Lopresti and A. Lawrence Spitz, "Information Leakage Through Document Redaction:
Attacks and Countermeasures," Electronic Imaging 2005, pp. 183-190, International Society for Optics and
Photonics, (2005).
143 Alexander Barclay, “Redacting Digital Information From Electronic Devices,” Advances in Digital
Forensics III: IFIP International Conference on Digital Forensics, National Center for Forensic Science,
(2007).
144 Lopresti, Information Leakage, 183.
145 Barclay, Redacting Digital Information.

 28

Project Design
The purpose of this project is to analyze the feasibility of automating disk image

redaction for use in digital curation environments. My two primary research questions

are:

• Can the disk image redaction process be automated?

• Can an automated redaction process remove all target data identified for

redaction?

My approach to answer these questions is to identify and then automate, a basic

disk image redaction workflow using open-source digital forensic tools.

Development Environment

The BitCurator environment was selected to develop and evaluate the automated

redaction workflow because it includes all of the software libraries necessary to automate

the redaction processes. The BitCurator virtual machine, a self-contained Linux-based

package that runs on a host operating system, was the ideal development environment

because it did not require special hardware and could run on a laptop.146 It includes

Python, bulk_extractor, fiwalk, Guymager and several code libraries – libewf, AFFLIB,

and The SleuthKit – which were all used to create and evaluate the automated workflow.

Corpus

Disk images from the public Naval Postgraduate School (NPS) Realistic Corpora

were used to test and evaluate the effectiveness of the automated redaction workflow.147

The NPS Realistic Corpora consists of disk images created by a project team that

146 “BitCurator,” last modified April 1, 2014, http://wiki.bitcurator.net/index.php?title=Main_Page.
147 “Index of /corp/nps/scenarios/2009-m57-patents/usb,” Digital Corpora, last modified April 3, 2012,
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/usb/.

 29

executed user actions and used scripts to mimic actual users.148 However, the disk images

do not contain personally identifiable information from real people. Individual disk

images are made available on the digitalcorpora.org website in the EWF disk image

format. As noted above, packaged forensic disk image formats are not designed for

editing. The easiest method to redact a disk image is to first convert it to the RAW image

format so the target data can be overwritten. RAW disk images can be accessed as binary

files by most programming languages, which make the actual redaction a trivial task. The

redacted RAW disk image is then converted back into the packaged image format.

Because each disk image in the corpus had to be expanded into the RAW image format

for redaction, the smaller USB Drive images from the M57 Patents scenario were used

instead of the much larger Redacted Drive Images.149 The USB Drive images range in

size from 8 megabytes to 217 megabytes in the EWF format. When expanded to RAW,

the disk images used in this project occupied a total of 3 gigabytes, which is manageable

within the BitCurator virtual machine. The Redacted Drive Images ranged in size from

2.2 gigabytes to 10 gigabytes, which are too large to store and process within a virtual

machine hosted on the laptop computer used for this study.

Redaction Workflow

The manual disk image redaction work flow is comprised of three basic steps: 1.

Identify data within the disk image to redact, 2. Redact the data from the disk image, 3.

Document and save the changes to a file.

148 “Disk Images,” Digital Corpora, last modified June 24, 2013, http://digitalcorpora.org/corpora/disk-
images.
149 The Redacted Drive Images get their name because the Microsoft system files that would allow the disk
image to be booted have been removed. The disk images still contain mock data that could be used to test
redaction methods.

 30

I targeted specific textual data patterns for redaction within the NPS Corpora disk

images. Domains, email addresses, and phone numbers represent common contact

information that donors may not want disseminated publicly.150

Figure 3: BEViewer. Partial view of an email histogram containing 214 instances of charlie@m57.biz and the
context of the selected instance.

To execute the first process in the workflow, bulk_extractor was selected to query

the disk image to identify target data to redact because of its execution speed and easy-to-

use BEViewer user interface.151 Once the target data was identified, it was selected using

the bookmark function in bulk_extractor. The bookmark function is used to document

interesting features to the forensic examiner or archive professional. It also allows the

150 Lee, "Automated Redaction of Private,” 299.
151 “Using Bulk Extractor Viewer to Find Potentially Sensitive Information on a Disk Image,” BitCurator,
last modified March 9, 2014,
http://wiki.bitcurator.net/index.php?title=Using_Bulk_Extractor_Viewer_to_Find_Potentially_Sensitive_In
formation_on_a_Disk_Image.

 31

BEViewer user to export the bookmarked features to a text file. The export file contains

the starting offset and length of each bookmarked target data.152

Figure 4: Partial view of a bulk_extractor bookmark file. Note the boxes drawn around the feature and
corresponding offset.

To execute the second process of the workflow, the disk image files were

converted to the RAW file format. Because all selected NPS Corpora disk images were in

the EWF packaged disk image format and contained forensic metadata like examiner

name, evidence number, acquisition date, etc., the forensic metadata had to be retained

152 “Bulk Extractor Viewer,” Forensics Wiki, last modified April 5, 2012,
http://www.forensicswiki.org/wiki/Bulk_Extractor_Viewer.

 32

during the redaction process and inserted back into the redacted packaged disk image.

The ewfexport and the ewfinfo functions within libewf were used to convert EWF format

disk images into RAW disk images and save the forensic metadata.153 To make parsing

the forensic metadata easier, it was exported as DFXML instead of into the default flat

text file. The following DFXML objects were used: examiner name, case number,

evidence number, description, notes, media size, media type, file format, bytes per sector,

sectors per chunk, error granularity, and segment file size. These options were chosen

because they are needed to import a RAW disk image into EWF.

Figure 5: GHex view before redaction. Note the box drawn around the bytes representing the feature (on left)
and the feature in its context (on right).

Once the disk images were converted to the RAW format, the bookmark file was

reviewed to determine the disk offsets and the number of bytes to be redacted. GHex, an

open-source hex editor, was used to open the RAW disk image, locate the starting offset

of the first redaction target, and then overwrite the target data.154 Overwriting the data

153 “Libewf and Tooling to Access the Expert Witness Compression Format (EWF),” Google Project
Hosting, last modified April 3, 2014, http://code.google.com/p/libewf/.
154 “Software,” BitCurator, last modified April 1, 2014, http://wiki.bitcurator.net/index.php?title=Software.

 33

involved manually locating the starting offset and then changing all hex values from the

starting offset to the ending offset. The hex value for each byte within the data string was

changed to the NULL ‘x00’ value. After each redaction, a note was added to the end of

the DFXML notes object describing the starting offset, the value used to overwrite the

data, and the length of the redacted data. This redaction process was manually repeated

for all data targeted for redaction. Depending on the number of redaction targets and their

length, this activity proved to be the most labor-intensive process in the workflow.

Performing this manual process on several offsets is manageable; however, performing

this process on hundreds or thousands of offsets in a single disk image is not realistic.

Figure 6: GHex view after redaction. Note the box drawn around the bytes representing the redacted feature (on
left) and the redacted feature in its context (on right).

The third process in the workflow was to convert the redacted RAW disk image

back into the original EWF packaged format. The ewfacquire function from libewf was

used for this process. The redacted RAW file and forensic metadata stored as DFXML

was entered into the ewfacquire function which produced a redacted disk image. The

redaction process was confirmed by opening the redacted disk image in bulk_extractor

 34

and searching for the original target data. If the data was not found, it was assumed that

the workflow was performed correctly. However, if targeted data was found, the

workflow was repeated on the redacted disk image.

Automated Redaction

After I established the manual workflow and performed it several times, I

developed a Python script to automate the process. The workflow of the script is detailed

in Figure 6 below. The Python programming language was chosen to automate the

redaction workflow over Java, C, and C++ because of its ease of use and ability to

integrate into existing forensic tools, including pyewf and pyflag.155 If the program were

to be written in C or C++, it could potentially execute faster and run in different

environments.

Figure 7: Python script workflow.

When the Python script is run from the command line, the user is prompted for

the location of the bookmark file created in bulk_extractor, the location of the disk image,

155 “Pyewf,” Libewf, last modified February 27 2014, http://code.google.com/p/libewf/wiki/pyewf.

 35

and the image format, e.g., RAW, EWF, AFF, ISO, etc. If the disk image format is

anything but RAW, the appropriate conversion function is called to convert the disk

image to the RAW format. If forensic metadata is included in the packaged disk image, it

is saved as DFXML in an array within the Python script while the redaction function

executes.

Figure 8: Partial view of DFXML from the charlie-work-usb-2009-12-11.E01 disk image.

Once the disk image has been converted to the RAW format, the redaction

process begins. The Python script parses the bookmark file created by bulk_extractor and

stores the starting offset and length of each target into an array. Based on this

information, the ending offset is also calculated and stored in the array. The RAW disk

 36

image is opened and the NULL character ‘x00’ is written to each targeted byte offset,

beginning with the starting offset through the ending offset of the target data. Each time

target data is redacted, the byte offset and length is appended to the notes section of the

DFXML. The redaction process is repeated until all targeted byte offsets have been

redacted. After all target data has been redacted, the script either converts the RAW disk

image back to its original format or saves the redacted RAW image file. When exporting

the RAW disk image back to EWF, the stored DFXML is parsed and inserted as

command arguments into the ewfacquire function. This allows most of the original

forensic metadata to be retained in the redacted EWF disk image. I will discuss metadata

that is not retained in this process in the Limitations section below.

To maintain the provenance of the disk image, each transformation performed on

the disk image is documented in the notes section of the DFXML when the Python script

executes. The Python script can add three different changes: conversion to RAW image,

conversion to packaged image, and redaction. All changes start on a new line with a time

stamp and are followed by the type of change made. Every time a target offset is

redacted, the starting offset and ending offset of the target data, as well as the character

used to overwrite the offsets, are documented in the DFXML. It is important to note that

only the redacted disk offsets are written into the DFXML and not the actual redacted

data itself. After all redactions are complete, the content of the temporary DFXML file is

either imported into a forensically packaged image when the RAW disk image is

converted back into the packaged image format or saved as a separate XML file in the

same directory as the redacted RAW disk image.

 37

Evaluation

Table 2: Redaction results. Note all remaining instances in the Charlie disk image are located in compressed
files, which the Python script cannot process.

The effectiveness of the automated disk image redaction script was evaluated

using three disk images from the NPS Corpora that had not been previously examined.

Using bulk_extractor, several targets from within each disk image were identified and

marked for redaction. The Python script then attempted to redact the targets from each

Disk Image
Name

Pattern Target # of
Instances

Redacted
Instances

Remaining
Instances

Size of EWF
(megabytes))

Size of RAW
(megabytes)

Total Execution
Time (minutes)

Charlie 9.3 1010 1:53
Email andy@swexpert.com 3 2 1

jaspermcrachelvick@yahoo.com 1 0 1
jamie@project2400.com 7 3 4
Bfritz31@mail.com 1 1 0
lie@m57.biz 1 1 0

Domain 192.168.1.103 1 1 0
www.google.com 1 0 1
mustang.nps.edu 1 0 1
2.0.0.23 1 0 1
autos.yahoo.com 2 1 1
swexpert.com 3 2 1
192.168.1.104 2 0 2
205.155.65.103 3 1 2
208.97.132.222 4 1 3

Phone 831-555-1234 3 1 2
URL http://autos.yahoo.com/2010_ford_shelby_gt500/ 2 1 1

http://www.w3.org/1999/02/22-rdf-syntax-ns# 4 0 4
http://ns.adobe.com/xap/1.0/mm/ 4 0 4
http://purl.org/dc/elements/1.1/ 6 0 6
http://www.w3.org/1999/xlink 3 0 3

Jo-work 118.2 125 0:14
Domain gmail.com 10 10 0

mail.gmail.com 1 1 0
Email gross.joshua.b@gmail.com 5 5 0

hous-daccq-1369054661@craigslist.org 4 4 0
amsuich@nps.edu 3 3 0

Jo-favorites 23 23 227.1 1000 1:11
Windirs DSC00003.JPG 1 1 0

DSC00004.JPG 1 1 0
DSC00005.JPG 1 1 0
DSC00006.JPG 1 1 0
DSC00007.JPG 1 1 0
DSC00008.JPG 1 1 0
DSC00009.JPG 2 2 0
DSC00010.JPG 1 1 0
DSC00011.JPG 1 1 0
DSC00012.JPG 1 1 0
DSC00013.JPG 2 2 0
DSC00014.JPG 2 2 0
DSC00015.JPG 2 2 0
DSC00016.JPG 2 2 0
DSC00017.JPG 2 2 0
DSC00018.JPG 2 2 0
DSC00019.JPG 2 2 0
DSC00020.JPG 2 2 0
DSC00021.JPG 2 2 0
DSC00022.JPG 2 2 0
DSC00023.JPG 2 2 0
DSC00024.JPG 2 2 0

 38

disk image. To measure the efficacy of the Python script, each redacted disk image

produced by the Python script was searched for remaining target data. The redacted disk

images were opened in bulk_extractor and queried for target data. The presence of target

data after the redaction indicated a failure in the redaction process.

The disk images used to evaluate the Python script were “charlie-work-usb-2009-

12-11.E01”, “jo-work-usb-2009-12-11.E01”, and “jo-favorites-usb-2009-12-11.E01.”156

Within these disk images, several bulk_extractor pattern types were selected for

redaction: email addresses, domains, Uniform Resource Locators (URL), phone numbers,

and Windirs. The number of features from each pattern varied based on the number of

features available on each disk image. Several data targets within a given pattern

appeared in multiple locations on the disk. To simplify the evaluation, all recurrences of a

data target were marked for redaction, including targets in compressed files.

In the first evaluation disk image, charlie-work-usb-2009-12-11.E01, fifty-three

instances from four pattern types was marked for redaction. The Python script processed

the disk image in one minute and fifty-three seconds. The first one minute and twenty-

two seconds was spent converting the disk image from EWF to RAW. The actual

redaction of target data took less than one second to complete.157 The remaining thirty-

one seconds was spent converting the RAW image back to EWF. The original EWF

image was 9.8 megabytes, but the RAW image expanded to 1,010 megabytes during the

redaction process. The EWF image was compressed one hundred and three times smaller

than the RAW image file. Of the fifty-three instances, thirteen instances were from five

156 “Index of /corp/nps/scenarios/2009-m57-patents/usb.”
157 The duration of the redaction was calculated by comparing timestamps for each process in the log file.
The smallest unit of measurement in the log timestamps is one second. All logged redacted instances had
the same timestamp.

 39

email addresses, eighteen instances were from nine domains, three instances were from

one phone number, and nineteen instances were from five URLs. Of the thirteen email

instances, seven were successfully redacted. Of the eighteen domain instances, six were

successfully redacted. Of the three phone number instances, one was successfully

redacted. The initial accuracy of the Python script redacting data targets from the charlie-

work-usb-2009-12-11.E01 disk image is 38 percent.

In the second evaluation disk image, jo-work-usb-2009-12-11.E01, twenty-three

instances from two pattern types was marked for redaction. The Python script processed

the disk image in fourteen seconds. Three seconds was spent converting the disk image

from EWF to RAW. The actual redaction of target data took less than one second to

complete.158 The remaining ten seconds was spent converting the RAW image back to

EWF. The original EWF image was 118.2 megabytes, but the RAW image expanded to

125 megabytes during the redaction process. The EWF image was barely compressed

1.05 times smaller than the RAW image file. Of the twenty-three instances, twelve

instances were from three email addresses and eleven instances were from two domains.

All twelve email instances and eleven domain instances were successfully redacted. The

initial accuracy of the Python script redacting data targets from the jo-work-usb-2009-12-

11.E01 disk image is 100 percent.

In the third evaluation disk image, jo-favorites-usb-2009-12-11.E01, thirty-five

instances from the Windirs pattern type was marked for redaction. The Python script

processed the disk image in one minute and eleven seconds. The first twenty-three

seconds was spent converting the disk image from EWF to RAW. The actual redaction of

158 The duration of the redaction was calculated by comparing timestamps for each process in the log file.
The smallest unit of measurement in the log timestamps is one second. All logged redacted instances had
the same timestamp.

 40

target data took less than one second to complete.159 The remaining forty-seven seconds

was spent converting the RAW image back to EWF. The original EWF image was 227.1

megabytes, but the RAW image expanded to 1,000 megabytes during the redaction

process. The EWF image was compressed 4.4 times smaller than the RAW image file.

All thirty-five Windirs instances were successfully redacted. The initial accuracy of the

Python script redacting data targets from the jo-favorites-usb-2009-12-11.E01 disk image

is 100 percent.

Limitations
There are several limitations to this project. First, the size of the storage space on

the laptop running the BitCurator virtual machine prevented me from testing the

redaction script on large disk images, such as those generated from entire workstation

hard drives. The laptop hard disk had a capacity of 300 gigabytes; however, only 40

gigabytes were allocated to the BitCurator virtual machine. Of the 40 gigabytes allocated

for this project, only 11 gigabytes were available for disk images. The Linux operating

system, the software, and libraries in the BitCurator virtual machine occupied 4 gigabytes

and the VirtualBox virtual machine environment created periodic backups of the system

that used another 25 gigabytes. Because the Python script converts all compressed disk

images to RAW during the redaction process, the BitCurator virtual machine would need

enough space for the original disk image, the temporary RAW disk image, and the

redacted disk image. As a result, only small 2 to 4 gigabyte USB disk images could be

redacted.

159 The duration of the redaction was calculated by comparing timestamps for each process in the log file.
The smallest unit of measurement in the log timestamps is one second. All logged redacted instances had
the same timestamp.

 41

The second limitation is that only the Expert Witness Format was evaluated in the

workflow and subsequent Python script. Time limitations prevented the inclusion of other

popular disk image formats like AFF, ISO 9660, DMG, etc.

The third limitation is that the Python script can only redact target offsets that are

provided to it. It does not search for target data. The script is only as good as the program

feeding it target offsets. In this case, if bulk_extractor did not locate all target data or if

the user did not bookmark all target data, the redacted disk image would still contain

target data.

The fourth limitation is that target data found within compressed file formats like

PDF, ZIP, or DOCX cannot be redacted, despite bulk_extractor identifying the location

of the data. The bulk_extractor tool uses special scanners to identify compressed files.

Once found, the scanner decompresses the file and re-scans the decompressed data. As

shown in Figure 9 below, the location of this data is described using two offsets. The first

offset is the starting location of the compressed file on the storage medium. The second

offset is the location of the target data within the compressed file. Time limitations

prevented the inclusion of a method to expand and redact target data within compressed

files, so the Python script ignored targets located in compressed files. As a result, the

thirty-eight instances located in compressed files in the charlie-work-usb-2009-12-11.E01

disk image were ignored.

Figure 9: bulk_extractor bookmark file containing entries for targets located in compressed zip files.

 42

The fifth notable limitation is that the python script cannot transfer all of the

original forensic metadata from within a packaged disk image to a redacted packaged

disk image. When ewfacquire creates a disk image, it uses the current time on the host

computer for the acquisition_date and the system_date timestamps. It also assigns a new

set_identifier and computes a new hash digest. To preserve this information and maintain

the provenance of the disk image, the values from the original disk image are inserted

into the notes section of the redacted disk image.

Discussion
The results in Table 2 above show that the Python script was effective at redacting

target data in the jo-work-usb-2009-12-11.E01 and jo-favorites-usb-2009-12-11.E01 disk

images, but ineffective at redacting all target data in the charlie-work-usb-2009-12-

11.E01 disk image. As previously mentioned, all data targets that did not get redacted

were located in compressed files within the charlie-work-usb-2009-12-11.E01 disk

image.

When I started this project, my primary focus was how to perform the redaction

process, that is, the actual overwriting of byte offsets. However, I soon realized that

overwriting byte offsets is trivial in most programing languages. In fact the amount of

time required to redact all target instances in in each disk image took less than one second

to complete. The majority of the execution time was devoted to converting the disk image

between the EWF and RAW formats. The more difficult problem was how to preserve

the original forensic metadata and record the redactions performed to the disk images.

DFXML proved to be a natural solution to this problem because it organized the forensic

data in such a way that it could be parsed by the python script, yet was also human

 43

readable. Using DFXML for redaction did illuminate a problem with DFXML. There is

not a DFXML object for redaction.160 I relied heavily on the notes section of the DFXML

as a catchall for original metadata that could not be preserved in its original context

(acquisition_date, system_date, etc.) and to document each redaction performed on the

disk image. Depending on the number of redactions performed on a disk image, storing

this information in the notes section has the potential to create a large disorganized

DFXML file that could become difficult for collection professionals to review. A better

method would be to develop a standard redaction object within DFXML that includes

attributes and child nodes to better organize this information.

In this project the NULL character was used to overwrite target data because the

absence of characters was easy to identify in long strings of text in the GHex editor. Any

character could be used, and in fact, a different character should be used in a professional

archive environment to make it easy to identify which parts of the disk image have been

redacted. If large areas of the image will be redacted, as in the case of a large continuous

file or entire directories, a string of characters could be written repeatedly instead of

individual characters. Simple strings like “REDACTED_” or even complex strings that

include the start offset and end offset, e.g.,

“REDACTED_STARTING_AT_OFFSET_#########_THROUGH_#########_”,

could be used.

My intent was to perform the target data redaction on the original disk image

format instead of first converting it to RAW and then converting back to the original

format. Because packaged formats use file compression, disk space requirements would

160 The official DFXML Schema can be found on the DFXML Working Group’s github page
https://github.com/dfxml-working-group/dfxml_schema

 44

be significantly lower if the entire compressed image did not have to be expanded to

RAW. Presumably the total execution time could be reduced since the disk image would

not be subjected to as much processing. However, because the forensically packaged disk

image formats are designed to prevent editing, I did not have time to reverse engineer the

EWF format to develop a method to redact target data within the packaged disk image

format.

A compromise would be to convert only the parts of the disk containing target

data to the RAW format while leaving the rest of the disk in the original format. Once

converted to RAW, the target data would be redacted, and then converted back into the

original disk image format. For example, EWF disk images are comprised of 32 kilobyte

chunks of compressed data.161 If only the chunks containing target data were converted to

RAW, then redacted, and then converted back to the original format, the amount of space

required to perform the redaction could be significantly reduced. By processing each

chunk sequentially, each temporary copy of the redacted RAW chunk could be deleted

before the next chunk is expanded to RAW. The redaction environment would only need

to be slightly larger than twice the size of the largest compressed disk image. Once all

chunks containing target data have been redacted, a new hash would be computed for the

disk image and the changes recorded in the DFXML within the disk image.

I did not test fragmented files or fragmented byte runs; however, the Python script

could redact fragmented targets if they were written to the bookmark file as separate

offsets with byte lengths. The primary limitation to processing fragmented files or byte

runs is the parsing routine that processes the bookmark file.

161 “Libewf.”

 45

Implications
Despite being a proof of concept for performing disk image redaction, this project

demonstrates that disk image redaction can indeed be automated. Implementing the

Python script in a curatorial workflow, in its current form, would not contribute much and

may in fact be a hindrance. However, the project does illuminate several issues that need

to be mitigated in future production tools.

Future Work
A limitation of this project was only one packaged image format was tested.

Future work on this Python script should include other popular disk image formats like

AFF, ISO 9660, DMG (Apple), VMDK (VMware), VDI (Oracle VM VirtualBox), etc.

This is by no means a comprehensive list of disk image types. Future work should

include disk image formats that suit the needs of preservation professionals at that time.

Disk image redaction tools should include support for all common packaged forensic disk

image formats.

Another limitation of this project was the lack of support for redacting within

compressed files such as PDF, ZIP, the Microsoft DOCX formats, etc. As shown in the

“Charlie” disk image above, disk images can contain many different compressed files.

Disk image redaction systems should include support for processing compressed files

within disk images. A starting place for future work could be the bulk_extractor

compressed file scanners. The open-source code for the scanners is available within

bulk_extractor and could be modified to work with the Python script.

The current command line interface could be difficult for collection professionals

to use. A GUI for the Python script could to be developed or adapted from another

 46

program to allow professionals to easily search and for target data and then initiate the

redaction by clicking a button within the interface. In addition, the ability to examine and

redact individual files and directories in an interface similar to the original operating

system would make it easier for preservation professionals to interact with the redaction

system.

As more institutions adopt the Preservation Metadata Implementation Strategies

(PREMIS) model, future disk image redaction systems should include support for

exporting DFXML data into PREMIS records. The offset, length, and byte character used

to redact the data that is currently appended to the notes section of the DFXML could be

converted into PREMIS records. Of the five PREMIS entity types – intellectual entities,

objects, events, agents and rights – the events object would best describe redactions

performed to the disk image.162 Within the PREMIS Event elements, the eventType,

eventDateTime, eventDetail, and eventOutcomeInformation entities match to the existing

DFXML values.163 The eventType could be configurable by the user to match the

institution’s controlled vocabulary. The eventDateTime entity would match to the

redacted disk DFXML acquisition_date, the eventDetail would match to each redacted

byte offset, and the eventOutcomeInformation would include the byte that was used to

redact the data. Additional information about why the redaction was performed could be

stored within eventOutcomeDetailNote.

Finally, future disk image redaction systems should be evaluated by preservation

professionals and practitioners to determine what additional features and configuration

162 Sarah Higgins, "Premis Data Dictionary for Preservation Metadata," (2009).
163 U.S. Library of Congress, Data Dictionary for Preservation Metadata: PREMIS version 2.2,
(Washington DC, 2012), 130.

 47

options are needed. Like any product, direct feedback from professionals would help to

ensure that redaction systems perform as expected.

Conclusion
In this project, I investigated the feasibility of redacting sensitive material from

disk images while maintaining the provenance of the disk image using open-source,

forensic software. After reviewing fundamental concepts of storage media, file systems,

and disk images, I discussed how to perform electronic information redaction. I proposed

how to automate a simple manual redaction workflow through a proof-of-concept Python

script that effectively redacted target data from packaged forensic disk images. As others

advance disk image redaction systems, I make the following recommendations for future

work: (i) Include support for the most common disk image formats including AFF, ISO

9660, DMG (Apple), VMDK (VMware), and VDI (Oracle VM VirtualBox). (ii) Develop

support for redacting target data from within compressed files such as PDF, ZIP, and the

Microsoft DOCX format. (iii) Include support to export descriptive forensic metadata

into PREMIS objects. (iv) Finally, seek feedback from preservation professionals on the

usefulness and effectiveness of functions within the redaction system.

 48

Bibliography
Barclay, Alexander. Redacting Digital Information from Electronic Devices. Advances in

Digital Forensics III : IFIP International Conference on Digital Forensics, National

Center for Forensic Science, Orlando, Florida, January 28-January 31, 2007.

BitCurator. “About | BitCurator.” Last modified April 2, 2014.

http://www.bitcurator.net/aboutbc/.

BitCurator. “BitCurator.” Last modified April 1, 2014.

http://wiki.bitcurator.net/index.php?title=Main_Page.

BitCurator. “Using Bulk Extractor Viewer to Find Potentially Sensitive Information on a

Disk Image.” Last modified March 9, 2014.

http://wiki.bitcurator.net/index.php?title=Using_Bulk_Extractor_Viewer_to_Find_Po

tentially_Sensitive_Information_on_a_Disk_Image.

Carrier, Brian. File System Forensic Analysis. Vol. 3. Reading: Addison-Wesley, 2005.

The Consultative Committee for Space Data Systems. “Reference Model for an Open

Archival Information System (OAIS).” Magenta Book, Issue 2. 2002.

Digital Corpora. “Index of /corp/nps/scenarios/2009-m57-patents/usb.” Last modified

April 3, 2012. http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/usb/.

Forensics Wiki. “AFF.” Last modified January 29, 2014.

http://www.forensicswiki.org/wiki/AFFLIB.

Forensics Wiki. “ASR Data's Expert Witness Compression Format.” Last modified

March 29, 2013.

 49

http://www.forensicswiki.org/wiki/ASR_Data%27s_Expert_Witness_Compression_Form

at.

Forensics Wiki. “Bulk Extractor Viewer.” Last modified April 5, 2012.

http://www.forensicswiki.org/wiki/Bulk_Extractor_Viewer.

Forensics Wiki. “Category: Forensics File Formats.” Last modified July 21, 2012.

http://www.forensicswiki.org/wiki/Forensic_file_formats.

Forensics Wiki. “Encase Image File Format.”Last modified July 15, 2013.

http://www.forensicswiki.org/wiki/Encase_image_file_format.

Forensics Wiki. “Libewf.” Last modified February 16, 2014.

http://www.forensicswiki.org/wiki/Libewf.

Garfinkel, Simson L., and David J. Malan. "One Big File is not Enough: A critical

Evaluation of the Dominant Free-Space Sanitization Technique." In Privacy

Enhancing Technologies, pp. 135-151. Springer Berlin Heidelberg, 2006.

Garfinkel, Simson L. "Digital Forensics XML and the DFXML Toolset." Digital

Investigation 8, no. 3 (2012): 161-174.

Garfinkel, Simson L. "Providing Cryptographic Security and Evidentiary Chain-of-

Custody with the Advanced Forensic Format, Library, and Tools," International

Journal of Digital Crime and Forensics (IJDCF) 1 (2009): 1-28.

Garfinkel, Simson L. "Digital Media Triage with Bulk Data Analysis and

bulk_extractor." Computers & Security 32 (2013): 56-72.

Garfinkel, Simson L. "Automating disk forensic processing with SleuthKit, XML and

Python." In Systematic Approaches to Digital Forensic Engineering, 2009.

SADFE'09. Fourth International IEEE Workshop on, pp. 73-84. IEEE, 2009.

 50

Gengenbach, Martin J. ““The Way We Do It Here”: Mapping Digital Forensic

Workflows in Collecting Institutions." Master’s paper, University of North Carolina,

2012.

HDD-Tool. “NTFS vs FAT, HDD Tool.” Last modified January 25, 2010.

http://www.hdd-tool.com/pic/FAT-NTFS.png.

HDD Tool. “What is FAT File System.” Last modified January 20, 2010.

http://www.hdd-tool.com/hdd-basic/what-is-fat-file-system.htm.

John, Jeremy Leighton. "Digital Forensics and Preservation." Digital Preservation

Coalition (2012).

Kirschenbaum, Matthew, Richard Ovenden, Gabriela Redwine, and Rachel Donahue.

"Digital forensics and born-digital content in cultural heritage collections." (2010).

Kirschenbaum, Matthew, Christopher A. Lee, Kam Woods, and Alexandra Chassanoff.

"From Bitstreams to Heritage: Putting Digital Forensics into Practice in Collecting

Institutions." (2013).

Lee, Christopher A., Kam Woods. "Automated Redaction of Private and Personal Data in

Collections," Proceedings of The Memory of the World in the Digital Age:

Digitization and Preservation. An International Conference on Permanent Access to

Digital Documentary Heritage (2012).

Levendoski, Matthew G. “Solid State Drives and the Forensic Process.” Master’s thesis,

Purdue University, 2013.

Google Project Hosting. “Libewf and Tooling to Access the Expert Witness Compression

Format (EWF).” Last modified April 3, 2014. http://code.google.com/p/libewf/.

 51

Lopresti, Daniel P., and A. Lawrence Spitz. "Information leakage through document

redaction: attacks and countermeasures." In Electronic Imaging 2005, pp. 183-190.

International Society for Optics and Photonics, 2005.

Microsoft. “Overview of FAT, HPFS, and NTFS File Systems.” Last modified May 7,

2007. http://support.microsoft.com/kb/100108/EN-US.

Libewf. “Pyewf.” Last modified February 27, 2014.

http://code.google.com/p/libewf/wiki/pyewf.

“The Sleuth Kit (TSK) & Autopsy: Open Source Digital Forensics Tools.” Last modified

April 4, 2014. http://www.sleuthkit.org/.

Stitch, Malcolm. "Laser Handbook." 1972.

Strickland, Jonathan. "How Cloud Storage Works." HowStuffWorks.com. Last modified

April 30, 2008. http://computer.howstuffworks.com/cloud-computing/cloud-

storage.htm.

White, Ron, and Downs, Timothy. “How Computers Work.” Que Corp., 2007, 186.

Wikipedia. “Compact Disk.” Accessed February 11, 2014.

http://en.wikipedia.org/wiki/Compact_disc.

Wikipedia. "Comparison of File Systems." Accessed February 18, 2014.

http://en.wikipedia.org/wiki/Comparison_of_file_systems.

Wikimedia Commons. “ComputerMemoryHierarchy.svg.” Accessed February 11, 2014.

http://en.wikipedia.org/wiki/File:ComputerMemoryHierarchy.svg.

Wikimedia Commons. “Ntfs_mft.svg.” Accessed April 13, 2014.

http://commons.wikimedia.org/wiki/File:Ntfs_mft.svg.

 52

Wikipedia. “Floppy Disk,” Accessed February 11, 2014.

http://en.wikipedia.org/wiki/Floppy_disk.

Wikipedia. “Random-Access Memory.” Accessed February 11, 2014.

http://en.wikipedia.org/wiki/Random-access_memory.

Woods, Kam, and Christopher A. Lee. "Acquisition and Processing of Disk Images to

Further Archival Goals." In Archiving Conference, vol. 2012, no. 1, pp. 147-152.

Society for Imaging Science and Technology, 2012.

Woods, Kam, Christopher A. Lee, and Sunitha Misra. "Automated Analysis and

Visualization of Disk Images and File Systems for Preservation." In Archiving

Conference, vol. 2013, no. 1, pp. 239-244. Society for Imaging Science and

Technology, 2013.

Woods, Kam, Christopher A. Lee, and Simson Garfinkel. "Extending Digital Repository

Architectures to Support Disk Image Preservation and Access." In Proceedings of the

11th Annual International ACM/IEEE Joint Conference on Digital Libraries, pp. 57-

66. ACM, 2011.

Woods, Kam, Alexandra Chassanoff, and Christopher A. Lee. "Managing and

Transforming Digital Forensics Metadata for Digital Collections." Proceedings of the

Tenth International Conference on Digital Preservation (iPRES), Lisbon, Portugal,

September 2-6, 2013.

 53

Appendix A: Python script code
Updated versions of this code can be found on Github:
https://github.com/caseyemerson/redact_disk_images.

**

This code was written by Casey Emerson on 1/9/14 for his Masters Paper at the
University of North Carolina School of Information and Library Science.

This script reads a bookmark created by bulk_extractor file that contains one
or more feature offsets to be redacted. It determines the format of the image
file and if necessary, converts the image file to RAW for redaction. It then
overwrites the offsets, and if necessary, converts the image back into the
original file format.

For proprietary forensic image files, the script also transfers any DFXML from
the original file into the newly cleansed file. In addition, it appends the
notes section of the DFXML with the offsets and lengths of the redacted blocks
of the disk.

**

"""IMPORTS GO HERE"""

import argparse
import os
from time import localtime, strftime
import re
import subprocess
import xml.etree.ElementTree as ET
import string

"""VARIABLES DEFINED HERE"""

offset = [] # global initialization of this empty list variable
length = [] # global initialization of this empty list variable
feature = [] # global initialization of this empty list variable
flags = {} # define dictionary (key value pair)
saveFilePath = os.getcwd() # get the current working directory

 54

""" FUNCTIONS GO HERE"""

DFXML PARSING FUNCTION ###
def parseDFXML(ewfDiskImage):
 dfxml = subprocess.check_output(["ewfinfo", ewfDiskImage, "-f", "dfxml"])
 root = ET.fromstring(dfxml)

 log.write('\n\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Attempting to parse DFXML...') # update log file

 if root.iter('notes'): # look for existing notes object
 for acquiry_information in root.iter('acquiry_information'):
 acquiry_information =
ET.SubElement(acquiry_information,'notes') # if notes object doesn't exist, create the
object under acquiry_information
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'The DFXML Notes object already exists') # update log file
 else:
 for acquiry_information in root.iter('acquiry_information'):
 acquiry_information =
ET.SubElement(acquiry_information,'notes') # if notes object doesn't exist, create the
object under acquiry_information
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'The DFXML Notes object did NOT exist, creating one now...') #
update log file

 if root.iter('notes'): # look for existing notes
 for notes in root.iter('notes'):
 #notes.text = 'here is a new note'
 flags['-N'] = notes.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Imported Existing DFXML Notes: ' + str(flags['-N'])) # update log
file

 if root.iter('sectors_per_chunk'):
 for sectors_per_chunk in root.iter('sectors_per_chunk'):
 flags['-b'] = sectors_per_chunk.text
 flags['-p'] = sectors_per_chunk.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Sectors Per Chunk to: ' + sectors_per_chunk.text) # update log
file

 55

 if root.iter('media_size'):
 for media_size in root.iter('media_size'):
 size = (re.search('(?<=\()\d+', media_size.text)).group() # parse
the number between the parens
 flags['-B'] = size
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Media Size to: ' + size) # update log file

 if root.iter('compression_level'):
 for compression_level in root.iter('compression_level'):
 compression = compression_level.text[:-12]
 flags['-c'] = compression
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Compression Level to: ' + compression) # update log file

 if root.iter('case_number'):
 for case_number in root.iter('case_number'):
 flags['-C'] = case_number.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Case Number to: ' + case_number.text) # update log file

 if root.iter('description'):
 for description in root.iter('description'):
 flags['-D'] = description.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Description to: ' + description.text) # update log file

 if root.iter('examiner_name'):
 for examiner_name in root.iter('examiner_name'):
 flags['-e'] = examiner_name.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Examiner Name to: ' + examiner_name.text) # update log file

 if root.iter('evidence_number'):
 for evidence_number in root.iter('evidence_number'):
 flags['-E'] = evidence_number.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Evidence Number to: ' + evidence_number.text) # update log
file

 if root.iter('file_format'):
 for file_format in root.iter('file_format'):
 fformat = file_format.text.replace(" ", "").lower()
 flags['-f'] = fformat
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set File Format to: ' + fformat) # update log file

 56

 if root.iter('error_granularity'):
 for error_granularity in root.iter('error_granularity'):
 flags['-g'] = error_granularity.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Error Granularity to: ' + error_granularity.text) # update log file

 if root.iter('media_type'):
 for media_type in root.iter('media_type'):
 mtype = media_type.text[:-5]
 flags['-m'] = mtype
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Media Type to: ' + mtype) # update log file

 if root.iter('is_physical'):
 for is_physical in root.iter('is_physical'):
 if is_physical.text == 'yes':
 flags['-M'] = 'physical'
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Is Physical to: physical') # update log file
 else:
 flags['-M'] = 'logical'
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Is Physical to: logical') # update log file

 if root.iter('bytes_per_sector'):
 for bytes_per_sector in root.iter('bytes_per_sector'):
 flags['-P'] = bytes_per_sector.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Bytes per Sector to: ' + bytes_per_sector.text) # update log file

 if root.iter('segment_file_size'):
 for segment_file_size in root.iter('segment_file_size'):
 flags['-S'] = segment_file_size.text
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ",
localtime())) + 'Set Segment File Size to: ' + segment_file_size.text) # update log
file
 else:
 flags['-S'] = '100 TiB'
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Set Segment File Size to: 100 TiB') # update log file

 flags['-r'] = 2 # set the retry number to 2
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) + 'Set the
Retry limit to: 2') # update log file
 flags['-o'] = 0 # set the begining offset to zero

 57

 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) + 'Set the
Begining Offset to: 0') # update log file
 flags['-t'] = args.output + '_REDACTED'
 return

BOOKMARK PARSING FUNCTION ###
def parseBookmarks(BookmarkFile): # open and parse the Bulk_Extractor bookmark file
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - processing bookmark file
located at: ", localtime())) + (BookmarkFile) + '\n') # enter into log
 with open(BookmarkFile, "r") as file: # open the bookmark file in
read mode
 for line in file: # parse each line of the file
 if re.match(r'[0-9]+,', line): # look for the offset (a sequence of
numbers followed by a comma)
 try:
 line = line.split(', ') # split the line into pieces
using ', ' delimeter
 offset.append(line[0]) # append the first part of the
line into the offset list
 feature.append((line[3]).rstrip()) #
append the third part of the line into the feature list
 length.append(len((line[3]).rstrip())) #
calculate the length of the feature and append it into the length list
 except:
 print('Something went wrong matching the offset')
 # if there was a problem, display an error
 log.write((strftime("%H:%M:%S %b %d, %Y -
ERROR parsing offset " + offset + " in the bookmark file ", localtime())) + '\n') # enter
into log

 log.write((strftime("%H:%M:%S %b %d, %Y - Finished parsing the bookmark
file ", localtime())) + '\n') # enter into log
 return (feature,offset,length) # return the disk image, list of features, their
offsets and lengths. This is redundant because of the global declaration of these variables

REDACTION FUNCTION ###
def redact(diskimage,beginOffset,featureLength): # redact the disk image by passing the
image location, offset, and length of target data
 byte ="\x00" # hex byte used to overwrite data
 endOffset = int(beginOffset) + int(featureLength)
 #print(diskimage) # used for debug
 #print(beginOffset) # used for debug
 #print(featureLength) # used for debug
 #print(endOffset) # used for debug

 58

 #print(byte) # used for debug

 try:
 file = open(diskimage, "r+b") # open the image in read and binary write
mode
 try:
 for num in range(int(beginOffset),int(endOffset)):
 file.seek(num,0) # find the location of the offset from
begining
 file.write(byte) # overwrite the byte
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y -",
localtime())) + ' Successfully redacted offset: ' + beginOffset + ' with \\x00 \n')
 print('Successfully redacted offset ' + beginOffset)
 except:
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y -",
localtime())) + ' ERROR: REDACTING OFFSET: ' + beginOffset)
 print('ERROR redacting offset ' + beginOffset)
 except:
 print('There was a problem opening the file at ' + diskimage)
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y -", localtime())) + '
There was a problem opening the image file located: ' + diskimage)
 return # return

CONVERT RAW TO EWF ###
def exportEWF(rawDiskImage):
 log.write('\n\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Atempting to create packaged EWF from RAW image\n') # update log file
 ewfacquire = ['ewfacquire', rawDiskImage, '-u'] # initialize variable
 [ewfacquire.extend([str(key),str(value)]) for key,value in flags.items()] #
convert the flags key/value dictionary to a list

 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Attempting process: ' + (' '.join(ewfacquire))) # update log file
 try:
 check = subprocess.check_call(ewfacquire) # call ewfacquire with the
dfxml arguments
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Successfully created EWF disk image') # update log file

 except CalledProcessError as e:
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'ERROR creating EWF disk image: ' + e) # update log file

 return

 59

""" MAIN STARTS HERE"""

parser = argparse.ArgumentParser(description='Redact binary features') # store all the
information necessary to parse the command line
parser.add_argument('-i','--disk_image', help='This is the location of the disk image to be
redacted', required=True) # add image file location argument
parser.add_argument('-b','--bookmark_file', help='This is the bookmark file exported
from Bulk_Extractor', required=True) # add image file location argument
parser.add_argument('-f','--image_format', help='type of image file [EWF] [AFF] [RAW]
[ISO]', required=True) # add image file location argument
parser.add_argument('-o','--output', help='This is the output location and name (without
extension) to save the redacted disk image', required=True) # add image file location
argument
args = parser.parse_args() # parse the arguments and store in variable args
print('\nyou entered ' + args.disk_image + ' ' + args.bookmark_file + ' ' +
args.image_format + ' ' + args.output) # used for debug

try:
 log = open(saveFilePath + '/' + args.output + '.log.txt', 'w') # open the log file
 #print('\nlog written to ' + saveFilePath + '/log.txt') # used for debug
 log.write('Script started running at ' + (strftime("%H:%M:%S on %a %b %d,
%Y", localtime())) + '\n') # write the first entry into the log
except:
 print('There was an error creating the log file')

if (args.image_format) == 'EWF':
 print('Converting EWF image to raw...')
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Converting image file from EWF to RAW...') # update log file
 subprocess.check_call(['ewfexport', args.disk_image, '-t', args.output, '-f', 'raw', '-
o', '0', '-S', '0', '-u']) # convert the EWF disk image into RAW using ewfexport
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) +
'Successfully converted disk image file to RAW') # update log file
 parseDFXML(args.disk_image)
 ### save DFXML to temporary file, append notes section with date/time
redaction script was run
"""
if args.image_format == 'AFF':
 print('Converting AFF image to raw...')
 ### convert image to RAW

 60

if args.image_format == 'ISO':
 print('Converting ISO image to raw...')
 ### convert image to RAW
 ### save DFXML to temporary file, append notes section with date/time
redaction script was run
"""

bookmarks = parseBookmarks(saveFilePath + '/' + args.bookmark_file) # parse the
bookmark file, pass it the bookmarks file location

log.write('\nAttempting redaction on RAW disk image located at: ' + saveFilePath + '/' +
args.output + '.raw\n') # enter into log
for i in xrange(len(offset)):
 log.write('\n' + (strftime("%H:%M:%S %b %d, %Y - ", localtime())) + '
Attempting to redact offset: ' + str(bookmarks[1][i]) + ' for ' + str(bookmarks[2][i]) + '
bytes.')
 redact((saveFilePath + '/' + args.output + '.raw'),offset[i],length[i]) # call redact
function, pass the image, offset, and length
 #print(bookmarks[0][i]) # used for debug
IF original format was RAW, save the DFXML file in the same place as the redacted
RAW file.

exportEWF(args.output + '.raw')

log.write('\nScript stopped running at ' + (strftime("%H:%M:%S on %a %b %d, %Y",
localtime())) + '\n\n') # write out the last entry in the log
log.close() # close the log file

	Automating Disk Image Redaction
	Introduction
	Background
	Related Work
	Project Design
	Limitations
	Discussion
	Implications
	Future Work
	Conclusion
	Bibliography
	Appendix A: Python script code

