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I. INTRODUCTION

One of the fundamental roles of the information science professional is to enable 

precise, efficient retrieval of specific information upon demand. Behind the scenes this 

involves extended, collective, and carefully structured effort, such as the meticulous 

creation and application of metadata, the careful organization of relational databases for 

sharing data between institutions, and the compliance with established transfer protocols. 

Information retrieval (IR) researchers refine iteration after iteration of search algorithms, 

improving precision and recall to improve the systems’ effectiveness. Thus optimized, 

the entire infrastructure of organized information is thereby harnessed for public use.  

Between this enormous (indeed, worldwide) information infrastructure and the 

population of end users lies the search interface. Users enter their search queries in text 

form and receive a set of results (i.e., documents), at least some of which will probably be 

relevant to their information need. Even at this stage, however, the information need has 

not yet actually been met. Information seekers must examine the full text of the 

documents within a result set1 in order to 1) understand the nature of each document and 

2) assess the document’s value. In other words, the first question a seeker asks about  

each result is “what is this?” and the second question is “what does it contain?” Only  

then can the document’s relevance (“do the contents fulfill my information need?”) be 

fully assessed.  

                                                
1 An exception would be a case of “good abandonment,” where the information shown in 
the headline or text snippet satisfies the query (Chuklin & Serdyukov, 2012). 
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As a general rule, a standard text search will present users with a document set 

displayed in a textual format: a list of document titles, each followed by its Uniform 

Resource Locator (URL) and a snippet of the document’s body text. Figure 1 shows the 

output of a Google text search, a typical example of this format. This presentation style 

embodies an expectation that users will assess the documents in a linear, sequential way, 

starting with the items located at or near the top of the list. Indeed, by design, search 

engine relevance algorithms encourage this approach by placing the “most relevant” 

documents at the beginning of the result list.   

FIGURE 1   Sample Output from a Google Text Search 
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Because readers’ behavior can be expected to conform to the principle of least 

effort (Zipf, 1949), they will usually begin by selecting the top item in a list (Joachims, 

Granka, Pan, Hembrooke, & Gay, 2005; O’Brien & Keane, 2006). Indeed, eye-tracking 

studies provide empirical evidence of users’ habit of zeroing in on the top items first. 

Investigation by Nielsen (2006), among many others, consistently demonstrates users’ 

gaze going first and longest at the horizontal zone at the top of the screen and then at a 

vertical zone along the left margin, as if tracing the capital letter F.  

Such habituation may prevent users from noticing the flaws of the text format. As 

shown in recent studies of Google search results and “trust bias” (Joachims et al, 2005; 

O’Brien & Keane, 2006), users’ acculturation to the top-to-bottom presentation mode 

may hinder their information-gathering mission (i.e., selecting the document with the 

greatest relevance). When users select documents on the basis of their list position, false 

starts or time-wasting detours — additional sources of potential frustration – may ensue.  

The linear-sequential style also presents some significant usability drawbacks. To 

grasp how any given result document relates to the search query (the semantic 

connection) and compares to other search results (the ontological import), users must 

read the text snippet or follow the headline’s hyperlink to the full article. In reading and 

assessing text, users expend a measure of cognitive effort, plus additional effort to 

remember and compare the contents (Bettman, Johnson & Payne, 1990). And given all 

this following of links, the speed with which users can fulfill an information need is 

necessarily affected by the nature and availability of their Web connections.  

 By contrast, a non-linear graphical display of a document set can provide cues to 

indicate each document’s semantic content at the same time as the display positions that 
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content within an ontology, i.e., the universe of documents selected by the search 

engine’s retrieval algorithm. That ontology will have a node-link relational structure, 

enabling users to determine the point of entry and order of access, with no predetermined 

path (Boechler, 2001). 

Should such interfaces improve information seekers’ ability to retrieve and 

quickly identify relevant documents from the Web, the effects on productivity and task 

satisfaction are likely to be significant. Visualized display of document sets would be a 

boon to librarians and educators as well, enabling concept-based presentations of journal 

article search results or of the holdings of the entire catalog. Thus not only users, but also 

information professionals, can benefit from the implementation of clearer and more 

intuitive displays of document sets.
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II. LITERATURE REVIEW

 The body of research on the graphical presentation of text documents is large and 

varied, and recent studies on visualizing text documents have rolled out interactive 

prototypes in a variety of formats. Because the visual ordering of intangibles, such as 

document content, calls for abstraction (Chen, 2010), all visualization necessitates an 

organizing metaphor — though the specific metaphorical model is less important than 

whether its schema effectively conveys the intended meaning (Chen, p. 388). A brief 

overview of these metaphorical models is warranted. 

 

METAPHORICAL MODELS 

Within the scholarly literature, radial representations are common. The influential 

Lyberworld project (Hemmje, Kunkel, & Willet, 1994) depicted “content space” with 

“relevance spheres.” Other iterations using concentric circles or spheres include DocBall 

(Vegas, Crestani, & de la Fuente, 2007); DART (Amar, Day, Godfrey, & Plaue, 2004), 

which (naturally) uses a dartboard metaphor; DocuBurst (Collins, Carpendale, & Penn, 

2009), which deploys radial graphs and coxcombs to encode semantic content; and Wivi 

(Lehmann, Schwanecke, & Dorner, 2010), which does the same for Wikipedia articles.   

Also, maps remain a frequent and useful paradigm. Websom (Kaski, Honkela, 

Lagus, & Kohonen, 1998) uses latent semantic analysis to place documents on a “word 

category map.” ResultMap (Clarkson, Desai, & Foley, 2009) works from hierarchical 
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metadata to create a squarified treemap representation of library holdings in context. 

Astronomical map metaphors inform InfoSky (Andrews et al., 2002), which creates 

nodes to represent documents, topics, and other semantic entities; and WebStar (Zhang  

& Nguyen, 2005), which uses hyperlinks as a basis for identifying nodes and the 

relationships among them.  

 Morphologically similar to starburst maps, node-link diagrams have become the 

format of choice recently for some well-known visualization researchers. Two high-

profile instances from recent years are TopicNets, which colorfully depict semantic 

entities as connected nodes of different types (Gretarsson et al., 2012); and PhraseNet 

(van Ham, Wattenberg, & Viegas, 2009), which maps and links unstructured text units 

within documents, rather than across documents.   

As noted, all of these prototypes are interactive. Interactivity is invaluable for full 

examination of a data set. It allows seekers to zoom in on useful information while 

filtering out the unhelpful or provide additional detail, as per Ben Shneiderman’s famous 

mantra, “Overview first, zoom and filter, then details on demand” (1996). Its affordances 

enable users to explore data, thereby rendering search an iterative process (Koshman, 

2004). The reliance on these functionalities implicitly asserts that multi-dimensional data 

sets necessitate interaction for sensemaking.2  

 

THE ROLE AND CREATION OF STATIC DIAGRAMS  

Despite the undeniable value of interactive functionality, this study sets aside the 

                                                
2 Note that interactivity alone does not suffice; an evaluation of visualization tools by 
Kobsa (2001) found representational accuracy of only 68–75% on simple user tasks. 
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topic of interaction3 in order to assess the value of static graphical depictions, which 

might be considered subunits of an interactive visualization. Indeed, the ability to 

comprehend a two-dimensional static depiction must by definition precede interactive 

engagement: users must be able to make sense of simple diagrammatic representations 

before deploying interactive tools. On this principle, the current investigation tested a 

simple hypothesis — that information seekers locate relevant documents more efficiently 

within a diagrammatic depiction of a document set than within a list of the same items.  

 Not surprisingly, given their part-to-whole functional relationship, static and 

interactive renderings must resolve similar representational issues. One such issue is the 

multi-dimensionality of a textual data set. Even the most sophisticated and complex 

interactive visualizations cannot codify every single dimension of a text collection. When 

dimensions are so numerous that it is impossible to depict them all, or so redundant that  

it is unnecessary to keep them all, reduction of dimensionality becomes necessary. (See 

Ingram, Munzner, Irvine, Tory, Bergner, & Moller, 2010; and Cribbin, 2010.)  Thus, 

researchers must devise a technique that will reduce dimensionality without 

simultaneously reducing semantic content.  

 Koshman (2006) distinguishes between the dimensionality of data and the 

dimensionality of representation, and concludes that the two need not be equivalent. 

(Indeed, from a theoretical perspective, they could not be: data may have hundreds of 

dimensions, but visual depictions, especially static ones, clearly cannot.) To that end, 

many in the field have turned to dimensionality reduction via clustering (Lagus, Kaski, & 

                                                
3 Consequently this study does not address applications involving active information  
seeking or visual analytics. Mechanisms of implementation are also beyond the scope of 
this investigation.  
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Kohonen, 2004), often on the basis of latent semantic analysis (Landauer, Laham, & 

Derr, 2004), or a related technique, edge compression, which has the effect of node 

reduction (van Ham et al, 2009). Faced with billion-record data sets, Shneiderman (2008) 

proposes atomic, aggregated, and density plots. To calibrate the degree of compression, 

Venna, Peltonen, Nybo, Aidos & Kaski (2010) present a reduction mechanism that 

conceptually parallels the IR concepts of precision and recall: each user decides how 

much dimensionality to sacrifice, balancing the desire to avoid irrelevant documents with 

the fear of potentially missing similar documents.  

Most of these methods, however, apply only to visualization modalities that are 

interactive and multi-scale. When one is creating static diagrams of text documents, 

further constraints apply, even as the abstraction level and the dimensionality of the data 

remain high. Options such as motion, reorientation, temporal sequencing, filtering and 

"focus+context" renderings are eliminated. Static visualizations still depend on the tools 

and rules described by Bertin: “retinal variables” by which to differentiate graphical 

marks, plus guidelines for positioning arrays and other spatial displays. Rogowitz, 

Treinish, and Bryson (1996) list ten ways that visual encoding can differentiate among 

dimensions, of which eight can be applied to static visualizations. Gestalt principles — 

e.g., proximity, similarity, closure, symmetry  — and the implications of color take on 

additional importance (Sayim, Westheimer, & Herzog, 2010; Rogowitz et al.). 

 Given these constraints, the practitioner who seeks to express dimensions of 

ontology (context) and taxonomy (structure) will probably have to employ verbal content. 

The interactive prototype WordBridge (Kim, Ko, Elmqvist, & Ebert, 2011) does so by 

assembling tag clouds into a node-link diagram to show relationships. Recurrent terms, in 
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the form of tag clouds, characterize nodes as well as links. This reliance on term 

frequency evinces a clear relationship to information retrieval, and thus points a way 

toward the depiction of a set of search results such as those being represented in this 

study. As a result, this study’s static renderings bear some conceptual resemblance to 

WordBridge, in that nodes contain document titles, and edges represent frequent,  

shared terms.  

 



male 52.5% some college 7.5%
female 47.5% bachelors degree 35.0%

some graduate school 12.5%
masters degree 40.0%

English 97.5% Ph. D. 2.5%
not English 2.5% J.D. 2.5%

first language

gender education level

III. STUDY DESCRIPTION

PARTICIPANTS  

To assess the value of the study’s static visualizations, 40 adult volunteers were 

recruited via social media. The principal investigator placed a solicitation notice on her 

Facebook page and on that of her husband. Note that this convenience sample may or 

may not yield generalizable results, given the group’s relative homogeneity in age and 

education. Table 1 presents a summary of demographic characteristics. (Note that this 

population sample might be atypical, given the distribution of gender and educational 

level; further discussion of this issue follows in Chapter V.)  

 

   

 

 

 

 

  TABLE 1 Demographic Information About Study Participants 
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METHODOLOGY 

GENERATING THE DATA 

SESSION OVERVIEW 
 

After submitting a signed consent form, each subject used his/her own Web-

enabled computer to participate in an online session that lasted roughly 30 minutes  

(far less in most cases). The session consisted of reading instructions, working an 

interface exercise that contained three informational tasks, and then completing a  

brief supplemental questionnaire about such personal traits as computer use, education  

level, gender and age. The host locations for the exercise and the questionnaire 

respectively were ProProfs (www.proprofs.com) and Adobe Forms Central 

(www.adobeformscentral.com).  

TASK DESCRIPTION 

The premise for the task is that participants should imagine they have been 

assigned to write an essay on a given topic, which is carefully defined and described on 

screen. The topics were wildlife extinction, international art crimes, and attacks by black 

bears. All exercises presented them in this order so as to eliminate any confounding effect 

arising from question sequence. For each of the exercise’s three tasks, subjects saw nine 

documents and were asked to choose the three that they considered most relevant 

(“useful”) for writing the essay. (See instructions in Appendix A.) 

TASK FORMATS 

In order to ascertain the effect of format on item selection, it was necessary to 
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present each task in one of two ways: a textual format, as shown in Figure 2, and a node-

link diagram format, as shown in Figure 3.  As discussed in Chapter II, the node-link 

format was chosen because it proved the most informative (among static diagram 

options) in expressing the relationships between documents.  

 Whether a participant saw the text or diagram format for each question was 

determined by random assignment. (See next section.) After each subject finished the 

session, his/her choices for “most useful” were compared to the subset of documents 

adjudged relevant by the U.S. National Institute of Standards and Technology’s Text 

Retrieval Conference (TREC).4  The use of TREC’s materials and ratings enabled the 

investigator to minimize her own interpretive bias in the matters of topic selection, the 

aggregation of documents into sets, and judgments about a document’s relevance. 

TASK PRESENTATION 
 
 To enable assessment of a subject’s performance in both format categories, each  

participant saw at least one document set in textual format (Figure 2) and at least one 

document set in diagram format (Figure 3). For the third question, roughly half of the 

group was shown a text display and the other half was shown a diagram display.  

To reiterate, each of the three questions could appear in either presentation mode.  

(See Table 2, below.)  

Ensuring that both presentation modes expressed the same information was 

essential in order to avoid skewing the results of the investigation. Thus it was necessary 

(if ironic) to deliberately exclude graphical aspects such as positioning, color, and shape, 

which could have conveyed additional information to users. 

                                                
4 http://trec.nist.gov/data.html 
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Within the node-link network diagram format (Figure 3), each node contains a 

document’s title, and connections (“linkages”) derive from recurrent terms that co-occur 

in more than one document. Proximity and placement have no particular meaning; this 

was intended to minimize the possibility of positional trust bias. 

The text interface (Figure 2), used to generate a performance baseline, was styled 

to resemble the familiar Google output shown in Figure 1. The list contains document 

titles in a large, blue font, each with a snippet of body text in a smaller black typeface. 

Certain elements of the Google-style list (document URLs, links to relevant domains, 

image links, faceted index along the left margin) were left out to ensure that the text 

format would provide only the information that would also appear in the diagrams.  

To minimize confounding effects arising from the order in which the formats 

were shown, the investigator created four versions of the exercise. As noted above, each 

version contained a mix of formats, as shown in Table 2. (All four versions may be seen 

FIGURE 2  

Text: Wildlife Extinction Task 

FIGURE 3    
 
Diagram: Wildlife Extinction Task 
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in their entirety in Appendix A.) Versions were randomly assigned to participants as 

follows: Ten instances of a set of four (A, B, C, and D) were auto-generated using the 

Research Randomizer Tool.5 This sequence dictated the order for assigning versions. As 

each subject enrolled in the study, he or she was e-mailed the link to whatever version 

came next in the randomized list. 

 

 VERSION A VERSION B VERSION C VERSION D 

QUESTION 1  
(EXTINCTION) TEXT DIAGRAM TEXT DIAGRAM 

QUESTION 2 
(ART CRIME) DIAGRAM TEXT DIAGRAM TEXT 

QUESTION 3 
(BLACK BEARS) TEXT TEXT DIAGRAM DIAGRAM 

TABLE 2   Question Formats for Each Version of the Exercise 
  

TASK SCORING  

The investigator then compared the users’ performance with text-interface tasks  

to that with graphical-interface tasks. Performance was scored as follows: For each 

information task, an efficiency score was calculated. Within this study, “efficiency” is 

defined as accuracy divided by speed. Accuracy, the fraction’s numerator, equals the 

number of correctly selected documents per task, i.e., the number of “useful” documents 

selected by the participant that match those labeled “relevant” by TREC judges. Speed, 

the fraction’s denominator, equals the elapsed time (in seconds) for completing the task, 

                                                
5 www.researchrandomizer.com 
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i.e., selecting three documents. As a result, for one format to be more efficient than the 

other, one of two situations must pertain: 1) greater accuracy and equal speed; or 2) equal 

accuracy and greater speed, as shown in the efficiency scoring matrix (Figure 4).  In 

cases where both formats yield equal efficiency, that outcome was not considered 

affirmative support for the research hypothesis, but was considered satisfactory from a 

usability perspective. The results of the three tasks executed by 40 participants (120 

measurable instances) were then subjected to statistical analysis to assess outcomes  

and potential correlations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FIGURE 4   Efficiency Scoring Matrix   
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QUESTIONNAIRE 

 Also analyzed in conjunction with task performance were some personal 

characteristics of the participants, elicited via a brief questionnaire at the end of the 

exercise. The eight-question form asked subjects to provide information about age, 

gender, first language, education level, document search frequency, daily amount of 

computer use, favored search engine, and typical level of focus during computer work. 

(The questionnaire can be found in Appendix A.)  Participants were free to answer as 

many or as few of these questions as they desired; indeed, one subject declined to fill  

out the questionnaire entirely. 

COLLECTING AND COMPILING THE DATA  
 
 Commercial vendors ProProfs and Adobe Forms Central, respectively, hosted the 

main exercise and the exit questionnaire. Task answer data, including selections, 

accuracy, and elapsed time per task, was logged by ProProfs and extracted  

by the investigator. Questionnaire answers were compiled by Adobe and similarly 

downloaded by the investigator. Processing the data with statistical software (JMP and 

XLSTAT) yielded a detailed depiction of the study results, as will be discussed in the 

following chapter.



IV. DATA ANALYSIS AND DISCUSSION

As indicated in Chapter I, the group of experimental subjects consisted of 40 

adults: 21 men and 19 women between the ages of 30 and 65, with a median age of 46. 

With three tasks per participant, the investigator thus had the opportunity to collect  

120 observations. However, in 10 instances, subjects selected more than three documents 

for the task. In such cases it was impossible to determine which three documents the 

subject preferred most, so these instances were nullified. After their removal, the final 

count of observations was 110. That data set was then analyzed for correlation and 

statistical significance. 

OVERVIEW OF PERFORMANCE 

As shown in the data summary (Table 3), the average time for diagram tasks was 

148.11 seconds (2.47 minutes), while the average time for text tasks was 173.96 seconds 

(2.90 minutes); thus the average text task was more than 17% slower. Median times for 

text and diagram, respectively, are 136.5 seconds (2.28 minutes) and 125.5 seconds (2.09 

minutes), meaning the median text task was 8.8% slower. Although both average and 

median figures for text-task accuracy were higher than those for diagram tasks, the speed 

of the diagram tasks so exceeded that of the text tasks that the diagram format (both 

average and median) ultimately prevailed on the efficiency measure. Average efficiency 

for diagram tasks was 30% higher than for text tasks; median efficiency for diagram  

tasks was 15.4% higher.  
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format average median

speed 173.9630 136.5
TEXT accuracy 1.4815 2
(n=54) efficiency 0.0110 0.0091

DIAGRAM speed 148.1071 125.5
(n=56) accuracy 1.4107 1

efficiency 0.0143 0.0105

 

 

 

 
 

 

 

 

TABLE 3   Average and Median Scores, by Format 
 

Results from the three topics and two formats are compared in the three graphs in  

Figure 5. (Additional graphs of these results can be found in Appendix C.) From this 

data, several notable patterns emerge and are discussed in the following subsections. 

 
 
FIGURE 5a   Accuracy by Question and Format 
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FIGURE 5b   Speed by Question and Format 

 
 
 
 
 
 
 
 
 

 

 

 

 
 

FIGURE 5c   Efficiency by Question and Format 
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TEXT FORMAT  

Correctly selected documents from the text format numbered 64 overall, as shown 

in Figure 5a. Average efficiency improved as the exercise progressed: the average 

efficiency score for the wildlife extinction task (.0076) was exceeded by that of the art 

crime task (.0129), which was exceeded by that of the black bear task (.0133). This is 

almost certainly a reflection of the decrease in average elapsed time, as shown in Figure 

5b. Average time for the first task averaged 203 seconds; the second task, 159 seconds; 

and the third task, 152 seconds. For the wildlife and black bear tasks, the mean efficiency 

score exceeded the median score (positive skew), indicating that a small faction of 

participants performed efficiently enough to raise the average of the entire group. Also, 

the highest median efficiency score overall is associated with a text instance, that of the 

art crime task.  Meanwhile, the highest mean efficiency score is associated with a 

diagram instance — also that of the art crime task. From these two results, it can be 

inferred that participants found the art crime task easiest to execute successfully, 

regardless of format. 

DIAGRAM FORMAT  

 The diagram format resulted in the selection of 79 relevant documents, exceeding 

the number of text instances by 23.4%. Most of the difference in performance is 

associated with the wildlife question: the text format elicited only 12 correctly selected 

documents, versus 24 for the diagram format.  

 For two of the tasks (wildlife extinction and art crime), the average efficiency 

score exceeds the median by 20.6% and 17.6% respectively. As noted above, this 
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indicates that efficiency performance among a few participants far exceeded that of the 

sample as a whole. 

 As with the text format, average and median speeds within the diagram format 

improved from task to task through the entire exercise. Average speed for the wildlife 

extinction task was 173 seconds; for the art crime task, 140 seconds; for the black bear 

task, 133 seconds.  

FORMAT COMPARISONS WITHIN TOPICS 

WILDLIFE EXTINCTION 

 As noted above, the diagram version of this question earned twice as many correct 

selections as did the text version of the question. In part, this is a result of a smaller 

number of text instances; an unusually high number of the null results were associated 

with this question and format. Consequently, for this topic, the diagram format’s 

efficiency figures proved to be 98.7% (mean) and 24.6% (median) better than those for 

the text format.  

ART CRIME 

 Text and diagram formats proved roughly equal in eliciting correct selections, 

numbering 31 and 30, respectively. For the diagram version, however, the distribution of 

correct answers per participant is more uniform, with 18 of the 19 instances showing 

correct selections of one or two documents, and no instance where zero correct 

documents were chosen. The text version yields a performance distribution that is slightly 

closer to the normal bell curve; in two instances participants got zero selections right, and 

in two instances participants selected all three documents correctly. A comparison of the 
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Correlation matrix - Pearson (n)

Variables
speed              

(in seconds)
accuracy             

(# correct)
efficiency 

(accuracy/speed)
text 0.112 0.041 -0.101
diagram -0.112 -0.041 0.101
approx. age 0.320 0.074 -0.118
female 0.062 -0.046 -0.121
male -0.062 0.046 0.121
English is first language -0.089 0.275 0.172
English is not first language 0.089 -0.275 -0.172
some college 0.155 0.140 0.018
bachelors degree 0.052 -0.012 0.101
some graduate school -0.173 0.064 0.143
masters degree -0.036 -0.121 -0.174
doctorate -0.057 0.051 0.035
professional degree 0.092 -0.031 -0.103
focus mostly on one task 0.079 -0.079 -0.157
multitask -0.057 0.026 0.124
no focus in particular -0.053 0.132 0.071
Google -0.178 -0.015 0.085
Bing 0.178 0.015 -0.085
Est # searches yesterday 0.037 0.043 0.111
Est # hrs/day online (non-game) -0.093 0.096 0.123

results in the two formats shows that although the median duration for the text version 

was 8.4% longer, its median efficiency was also 23.8% better.  

BLACK BEAR ATTACKS 

 For this task, the text format’s median duration is 14 seconds longer than its 

mean, while the diagram format’s median duration is 10 seconds shorter. No explanation 

can be offered for why the skew is so large, or why the direction differs between formats. 

Meanwhile, accuracy results for both formats reveal themselves to be normally 

distributed around the mean. 

OVERVIEW OF CORRELATIONS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TABLE 4   Correlation Matrix Containing All Factors Under Consideration 
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FIGURE 6  Correlation Between Speed and Accuracy for Each Task  

in Each Format 
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FIGURE 7  Correlation of Interface Format with Accuracy, Speed and Efficiency 

  

 By task topic.  The black bear task results for both formats present the tightest  

fit around the trend line (Figure 6), with r-values of 0.14 and 0.18. Of course, these and 

all other r-values shown on the graphs are far too low to be statistically significant.  

By interface. Overall the interface type correlated very little with speed, 

accuracy, or efficiency (Table 4).  None of the correlation factors exceeded an absolute 

value of 0.112. 

Correlation matrix (Pearson):

Variables interface total seconds
interface 1 0.129
total seconds 0.129 1

p-values:

Variables interface total seconds
interface 0 0.180
total seconds 0.180 0

Values in bold are different from 0 with a 
significance level alpha=0.05

Values in bold are different from 0 with a 
significance level alpha=0.05

Correlation matrix (Pearson):

Variables accuracy interface
accuracy 1 0.048
interface 0.048 1

p-values:

Variables accuracy interface
accuracy 0 0.617
interface 0.617 0

Values in bold are different from 0 with a 
significance level alpha=0.05

Values in bold are different from 0 with a 
significance level alpha=0.05

Correlation matrix (Pearson):

Variables efficiency interface
efficiency 1 -0.125
interface -0.125 1

p-values:

Variables efficiency interface
efficiency 0 0.194
interface 0.194 0

Values in bold are different from 0 with a 
significance level alpha=0.05

Values in bold are different from 0 with a 
significance level alpha=0.05
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By gender. Men performed slightly better overall; gender correlation was 0.121 

for men and -0.121 for women.  

By age. Younger people performed slightly better, with age having a correlation 

value of -0.118 with accuracy.6 However, age had a comparatively strong positive 

correlation (0.320) with speed. This correlation factor is the largest value of any shown  

in Table 4. 

By education level. The greatest correlation was in fact a negligible one (-0.174), 

relating performance to the possession of a master’s degree.  

By computer habits.  Participants who typically spend more hours per day online 

achieved greater efficiency, but the correlation factor was a mere 0.123, again far below 

the level of statistical significance.7  Also, task efficiency correlated with attention habits 

to a surprisingly small degree; cases where subjects reported the habit of focusing on one 

task at a time ended up with the largest negative correlation (-0.157), while multitasked 

instances had the largest positive correlation (0.124).  

Unfortunately, certain factors could not be considered as possible correlates (or 

even meaningful indicators), because participant counts for those aspects skewed 

overwhelmingly in one direction. One such factor was the subject’s first language. In all 

cases but one, the subject’s first language was English; therefore it was not feasible to 

generalize based on that attribute. Similarly, only three of the 40 subjects (7.5%) prefer 

the search engine Bing to Google. Given such a small Bing cohort, generalizing on the 

                                                
6 The statistical power of this observation is uncertain, given the overrepresentation of 
people in their 40s within the sample. Further discussion on the generalizability of results 
from this sample population can be found at the end of Chapter IV. 
 
7 Note that, where subjects estimated their number of searches per day and the number of 
hours per day spent online as “7+”, the value 8 was used in calculations. 
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basis of that preference is statistically insupportable.  

For those correlations it was possible to calculate, the r-values fell far below the 

.95 level indicating statistical significance. Thus no clear association of efficiency with 

any of the above factors can be assumed, and based upon the results of this study, we 

cannot reject the null hypothesis. 

Upon examination, it became clear that the first task (wildlife extinction) 

exhibited the widest range in answer speed. This finding is unsurprising, as getting used 

to the task and/or the format early in the exercise might well take a bit of extra time.  

Further, as shown in Figure 6, the relationship between speed and accuracy was 

negligible. Participants generally achieved similar efficiency regardless of speed; hence 

the trend lines on these graphs demonstrate very little correlation. 

Finding so little difference in the effects of the two interfaces was surprising; this 

outcome is promising from a usability standpoint if not from an experimental one. 

Admittedly, the node-link diagram as constituted here represents a very crude effort 

toward graphical representation of a document set. As noted in Chapter II, many more 

sophisticated and dynamic versions of this interface have been introduced, and yet it 

appears that few have been assessed against baseline data derived from text formats.  

Ironically, in order to make this comparative assessment, the degree of semantic 

expression (i.e., dimensionality of data) had to be kept equal between formats; 

consequently this diagrammatic presentation sacrificed many of the connotative 

opportunities offered by graphical presentation. The main value of the diagram interface 

is that the system can embed many more semantic clues via color, shape, position, and 

other indicators. This is precisely the reason to employ a diagram interface, after all: to 
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express various attributes in an immediate and comprehensible fashion, without 

necessitating that users click a link and/or leave the web page.  

 As for assessments of this particular diagram format, no participant feedback was 

solicited or recorded. The investigator did not inquire about this aspect because 

ultimately this study was not conducted to assess this specific diagram interface, but 

rather to assess diagram interfaces generally. To that end, future investigators who seek 

to compare the effects of textual and graphical presentation may wish to improve not only 

on this study’s diagram renderings, but also its experimental design and data collection.  

 Given this study’s convenience sample, which was solicited via social media — 

specifically, a notice on the principal investigator’s Facebook page and that of her 

husband — it must be stressed that generalizability of these results is limited. By 

comparison to the U.S. population as a whole,8 this sample was skewed toward people 

with a higher level of education (92.5% with a bachelors degree or higher, vs. 27.9% for 

the population at large); also, participants’ median age of 46 was significantly higher  

than that of the entire U.S. population (37.2%).  

 Most fundamentally, assessments of document relevance are by no means  

hard and fast. In a study by Al-Maskari, Sanderson and Clough (2008), “63% of 

documents judged relevant by our users matched official TREC judgments.” The level of 

contradiction was highest among those who, like the participants in this study, were given 

a small set of documents to judge. “Therefore, in interactive IR studies which make use 

of TREC test collections ... care should be taken when comparing user effectiveness with 

system effectiveness” (p. 684).  

                                                
8 2006-2010 American Community Survey 5-Year Estimates; www.census.gov. 



V. CONCLUSION 

 In an era when billion-record data sets not only exist but also abound, users 

cannot begin to comprehend a large collection of documents just by reading or clicking 

one at a time. Thus graphical presentations, with their dimensional richness and 

information density, are becoming a necessity. Researchers such as those mentioned in 

Chapter II continue working to refine interfaces that help users orient themselves within a 

document set, so that they can perceive and understand relationships among the retrieved 

items.  

 Against that backdrop, this study sought to determine the degree (if any) to which 

a graphical interface would boost user efficiency in finding relevant documents.  

Experimental results were inconclusive, indicating that further study of this question is 

needed. One can posit that the diagrams are not a hindrance, precisely because the two 

formats generated no statistically significant difference in user efficiency.9 In fact there 

are good reasons to continue testing and refining these interfaces. Using Bertin’s retinal 

variables (color, shape, size, position, etc.) to encode various dimensions of the data (i.e., 

metadata such as file format, top-level domain, recency, or file size) would, in theory, 

give users a context within which to work more efficiently, in the same way that faceted 

displays or browsers can do.  

 Such a visual system might require a significant time investment for the user to 
                                                
9 This statement must be qualified: results from this population sample may not be 
generalizable, as discussed in Chapter IV. 
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become proficient, however, and more reliable empirical performance data should be 

collected in order to determine whether 1) efficiency gains exist, and 2) the gains are 

large enough to make that upfront time investment worthwhile. This calculation would 

depend, of course, on the quality of the display and the information architecture, which in 

turn depend on the quality of the information professional.  

 From a broader perspective, given the fundamental importance of efficient 

retrieval and identification of relevant documents, it behooves information professionals 

to portray document sets in more than one way, so as to address various cognitive styles 

of as many seekers as possible. Static diagrammatic portrayal constitutes one possible 

method; it may prove useful in situations where users do not have either the connective 

bandwidth or the computing power to avail themselves of interactive visualization 

applications. When practicable, interactive presentations can be excellent. 



VII. APPENDICES
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APPENDIX A:  THE EXERCISE 

Instructions 

Text and Diagram Interfaces of the Three Tasks 

Questionnaire 
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APPENDIX B:  RESULTS  

Results for Each Version  

Questionnaire Responses from Adobe Forms Central 
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My education level is:

* Total Responses: 40, 100% of submissions

some high school 0% (0)

high school graduate 0% (0)

some college 8% (3)

associates degree 0% (0)

bachelors degree 35% (14)

some graduate school 13% (5)

masters degree 40% (16)

Ph.D. 3% (1)

J.D. 3% (1)

M.D. 0% (0)

1 additional choice not shown

My first language is:

* Total Responses: 40, 100% of submissions

English 98% (39)

not English 3% (1)

I am:

* Total Responses: 40, 100% of submissions

male 53% (21)

female 48% (19)
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My preferred search engine is:

* Total Responses: 39, 98% of submissions

Bing 8% (3)

Google 92% (36)

Yahoo 0% (0)

Other (please identify) 0% (0)

When I use a computer I usually:

* Total Responses: 40, 100% of submissions

focus mostly on one task 20% (8)

multitask 75% (30)

don't focus on anything in particular 5% (2)

Recent computer use

Total 
Responses

0 1 2 3 4

5 6 7+

98% (39)
Estimated number 

of Web searches 
yesterday:

98% (39)
Estimated number 

of hours per day 
spent online in 

non-game activity:
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APPENDIX C: ADDITIONAL GRAPHS OF RESULTS 

 Documents Correctly Selected, By Question And Format 
 

 
           DIAGRAM VERSION                        TEXT VERSION 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

  

 

 

 

 

 

 

 The series of bar graphs above shows, for each question and in each format, the 

distribution of each question interface’s accuracy scores. A participant’s accuracy score 

(“zero,” “one,” “two,” or “three”) reflects the number of relevant documents correctly 
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selected by a participant. On the chart labels, the wildlife extinction topic is signified  

by w, the art crime topic is signified by a, and the black bear attacks topic is signified by 

b. The left column represents the topic’s diagram version; the right represents the text 

version. The topics were presented in the order shown (from top to bottom).  

 
 
 

 
 
 

 This clustered column chart simply aggregates all the data shown in the  

previous six charts. Despite their obvious differences, the two interfaces elicited 

remarkably similar outcomes. 
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Accuracy Vs. Speed, All Questions, Diagram Format 

  
 
 These scatterplot graphs show accuracy scores and speed (in seconds) for each 

question’s diagram version. Each point is a participant’s performance on a particular 

question. Circles indicate the wildlife topic; triangles, the art crime topic; and squares, the 

black bears topic. Because accuracy scores are small integers, putting them on the 

vertical axis has the effect of visually stratifying the data somewhat, but the clustering 

across the horizontal time axis is instructive. For the diagram interface, almost every 

instance took place in less than 400 seconds — except for one outlier, on the extinction 

task. That instance took roughly 600 seconds (10 min.). It ended with the participant only 

getting one out of three accuracy points. Coincidentally, one participant with the text  
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Accuracy Vs. Speed, All Questions, Text Format 

 

 

 

 

 

 

 

 

 

 

 

 

version of that question also took almost 10 minutes to answer the question. That 

participant scored two out of three.  

 Additional Observations: 

• The text format elicited three perfect (“3”) accuracy scores; the diagram 

format got only two.  

• All five of the zero-accuracy text instances were executed within 190 seconds, 

while two of the six zero-accuracy diagram instances took longer (220 and 

300 seconds). The extra time was to no avail.  

• 47 of the 56 diagram instances finished in less than 200 seconds, while only 

34 of the 54 text instances did.
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