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1 Introduction 

Application distribution platforms, or app stores, such as Apple’s App Store and 

Google Play store, have been growing exponentially in the past years in terms of number 

of users, number of applications, and number of downloads. These platforms allow users 

to search and download software apps of interest to their mobile devices with a few clicks, 

and also allow users to submit feedback on downloaded apps by giving star ratings and 

posting text reviews. Previous studies (Galvis Carreño, & Winbladh, 2013; Pagano, & 

Maalej, 2013; Maalej, & Nabil, 2015) have found that app reviews contain a rich source 

of information that is useful and helpful to software developers, such as bug reports, 

feature requests, and user experiences. This feedback can serve as a communication 

channel between users and developers, and be used to drive the app development and 

improve forthcoming releases. 

However, there are several challenges which prevent app developers from using 

user feedback in the reviews. First, app stores include a substantial number of reviews, 

requiring huge efforts to be processed and analyzed. An empirical study by Pagano and 

Maalej (2013) showed that users submit on average 22 reviews per app per day and that 

popular apps, such as Facebook, receive more than 4,000 reviews in a single day. Second, 

the quality and constructiveness of reviews varies greatly, from helpful suggestions for 

improvement or innovative ideas to general praises or complaints (e.g. “you should add 

command blocks so people can teleport places with just a press of a button”, “I love this 



 3 

game”, “your app isn’t working”). Chen et al. (2014) found that only 35.1% of app 

reviews contain information that can directly help developers improve their apps. Third, a 

review might contain different topics or a mix of sentiments, making it difficult to 

retrieve the feedback from users. 

 Recently, deep learning approaches have obtained significant success on various 

natural language processing tasks such as text classification (Zhang et al., 2015), sentence 

summarization (Rush et al., 2015) and semantic analysis (Tang et al., 2015). Many of the 

proposed neural architectures involve the usage of long short-term memory (LSTM) 

recurrent network and some form of attention mechanism with which model can better 

focus on the parts of the related context.  

In this paper, we propose a deep learning framework with attention mechanism to 

identify software development needs from users that can help developers focus on the 

most needed direction of app development. For example, developers of an app plan to 

implement several new features in the next release and want to prioritize tasks that will 

satisfy the most number of users. By analyzing reviews users have submitted and planned 

release updates, our model is able to automatically identify review comments about 

features that should be included in the next app version release. The model has two inputs: 

a specific user review and a specific item in the release note. The goal for the model is to 

make a binary prediction: a ‘1’ means that the review complains about at least one issue 

that is addressed in the release note item and a ‘0’ means that none of the complains are 

addressed. We evaluate our framework on a manually annotated dataset comprising of 

1,500 reviews. Through the task, we seek to answer the following question: can attention-
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based deep learning model be used to automatically identify user suggestions for 

improvement from mobile app reviews.  

The major contribution of this paper is that we use both mobile app reviews and 

app release notes to train our model which, to our best knowledge, is for the first time 

studied.  

The remainder of the paper is structured as follows. Section 2 reviews past studies 

on mobile app reviews and deep learning approaches. Section 3 presents our framework 

in detail. In Section 4, we describe data collection process, data processing phase and 

evaluation metrics. The results of experiments are discussed in Section 5. Section 6 

concludes the paper and outlines limitations and directions for future research.   
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2 Related Work 

We group related work into four major categories, and survey the literature of 

each category in detail below. 

2.1 App Marketplace Analysis 

With the popularity of smartphones and raising development of mobile 

applications, the app marketplace has drawn much more attention from researchers in 

multiple research communities.  

Harman et al. (2012) pointed out that the app store is a new form of software 

repository and is different from traditional ones. They mined and analyzed the 

relationships between user perspectives, business, and technical characteristics of apps in 

the Blackberry app store. The results showed a strong correlation between customer 

rating and download rank of apps, which can be used to guide developers and managers. 

Minelli and Lanza (2013) performed an in-depth investigation of a corpus of Android 

apps from a structural and historical perspective, focusing on three factors for the analysis: 

source code, usage of third-party Application Programming Interfaces (APIs), and 

historical data. The findings revealed that apps presented significant differences to 

traditional software systems – apps are smaller, simpler, and have less functionality, 

which required novel approaches to comprehend apps. Chandy and Gu (2012) proposed a 

Latent Class graphical model with “interpretable structure and low complexity” to 
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classify apps, users, developers and reviews in Apple’s App Store into the normal and 

malicious categories to identify spam. Automatically identifying spam in app stores is 

important, as it can prevent users from downloading potential harmful spam apps or 

ignoring apps that are victims of review spam.  

2.2 Classification of App Reviews 

User feedback on apps contains a variety of information. Classifying that 

information can provide an overall idea about an app’s usage and types of user 

engagement. It can also be used to compare releases over time and with similar apps.  

Pagano and Maalej (2013) conducted an exploratory study to analyze user 

reviews in the Apple’s App Store. They obtained over one million reviews from 1,100 

applications and conducted investigation on (i) when and how often users give feedback, 

(ii) the content of feedback via manual content analysis, and (iii) the impact on the user 

community. They found that most of the feedback is provided in the first few days after 

new releases, with a long tail over time. The five most popular topics contained in 

reviews were “praise”, “helpfulness”, “feature information”, “shortcoming”, and “bug 

report”. They also identified correlations between numerical ratings, “helpfulness”, and 

textual feedback. This study is empirical and it represents a cornerstone for many other 

works thereafter.  

Recently, approaches have been proposed for automatically classifying app 

reviews. For instance, motivated by the findings of Pagano and Maalej (2013), Maalej 

and Nabil (2015) classified user reviews into bug reports, feature requests, user 

experience and ratings by applying several techniques including text classification, 

natural language processing (NLP), sentiment analysis, as well as other heuristics such as 
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star rating, length of the review text, and tense of the verbs in the reviews. Their work 

concluded that both the classification precision and the recall were enhanced when 

combining review metadata with natural language processing. Regarding to the 

limitations, the authors admitted that they might have missed some keywords for the 

classifiers, and might have missed other machine learning features or algorithms.  

Panichella et al. (2015), on the other hand, exploited linguistic rules and 

combined natural language processing, text analysis and sentiment analysis techniques to 

detect and classify sentences in the reviews into four categories: information giving, 

information seeking, feature request, and problem discovery. They found that the 

combination of the three techniques allowed to achieve higher precision and recall than 

results obtained using individual technique. They also proved that when the size of the 

training set was increased, both precision and recall could be substantially improved. In 

the future, the authors suggested complementing their approach with topic modeling 

techniques to group together sentences in each of the categories, as well as adding more 

natural language processing rules. 

2.3 Summarization of App Reviews 

Researchers also suggested probabilistic approaches to summarize informative 

review content. The reaction of users to app features can inform developers of topics 

users are talking about most and of features that are perceived positively and are 

perceived negatively. Such information can help developers to analyze and quantify user 

opinions about single features and assist them in prioritizing their work for future releases. 

Iacob and Harrison (2013) provided empirical evidence that app users rely on 

reviews to describe feature requests. They developed a prototype named MARA (Mobile 
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App Review Analyzer) to mine for and automatically retrieve feature requests from user 

reviews by means of linguistic rules. The design of the system has four phases: review 

retrieval, feature requests mining, feature requests summarization, and feature requests 

visualization. Linguistic rules for defining feature requests were used during the mining 

phase. The authors first identified 24 keywords for expressing feature requests, such as 

“add”, “could”, “instead of”, “needs”, “wish” and so on. Then they filtered all sentences 

in the reviews containing at least one of these keywords and defined the contexts. 

Examples of such contexts are: “adding an exit button would be great”, “the long press 

should be shorter than 0.25 seconds”, “could use more icons”. And then the authors 

translated contexts into linguistic rules: “(adding) <request> would be <POSITIVE-

ADJECTIVE>”, “<request> should be <COMPARATIVE-ADJECTIVE> than <existing 

feature>”, “could use (more) <request>”, respectively. Two limitations of this study were 

that only reviews written in English were considered and sarcasm was not specifically 

addressed.  

Galvis Carreño and Winbladh (2013) adapted the Aspect and Sentiment 

Unification Model (ASUM) proposed by Jo and Oh (2011) to automatically extract the 

main topics and to summarize user feedback. ASUM, extended from Sentence-LDA 

(SLDA), incorporates both aspect and sentiment to model sentiments toward different 

aspects. Aspect is defined as “a multinomial distribution over words that represents a 

more specific topic in reviews”, e.g. “lens” in camera reviews. Galvis Carreño and 

Winbladh (2013) chose the technique of ASUM based on the possibility of associating 

topics with sentiments, and since the original ASUM approach was applied to reviews of 

electronic devices and restaurants, the authors, in this work, adapted the approach to 
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better fit in the domain of user comments of mobile applications. The results showed that 

the automatically extracted topics match the manually extracted ones, which would 

reduce human effort.  

Similarly, Chen et al. (2014) proposed AR-Miner, a novel review analytics 

framework for automatically summarizing informative user reviews. This framework 

consists of five major steps. The first step preprocesses the collected raw review data into 

well-structured format, {Text, Rating, Timestamp}, and then converts the raw user 

reviews into sentence-level review instances. The second step filters out non-informative 

reviews based on the defined category rules of “informativeness”, and builds the 

classifier using a semi-supervised machine learning algorithm, Expectation Maximization 

for Naïve Bayes (EMNB). The third step partitions the remaining informative reviews 

into groups that reviews in the same group are more semantically similar by adopting two 

algorithms in topic modeling, LDA and ASUM. In the future, the authors plan to explore 

and compare more topic models. The fourth step ranks groups and reviews in each group 

according to their level of importance via a proposed ranking model. The last step 

visualizes the ranked results which can be presented to app developers. This paper also 

pointed out that authors were not actual developers of the apps, and thus it might cause 

biases or misunderstandings about specific information. Another problem related to the 

generality. This study collected raw user reviews of four Android apps from Google Play, 

which made it unclear that if their framework could be generalized or attain similar good 

results when being applied to other types of apps and apps on other platforms.  

Comparing with AR-Miner, a more recent study by Villarroel et al. (2016) 

introduced CLAP (Crowd Listener for releAse Planning) to (i) automatically categorize 
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user reviews using the Weka implementation of the Random Forest machine learning 

algorithm, (ii) cluster together related reviews by applying a data clustering algorithm 

called density-based spatial clustering of applications with noise (DBSCAN), and (iii) 

prioritize the review cluster to be implemented by developers in the next app release. It’s 

worth mentioning that in the last stage of validation, the authors provided CLAP to 

project managers of three Italian software companies to obtain qualitative and 

quantitative feedback about the practical applicability of the tool in their everyday 

decision making process. For future work, the authors aimed at automatic translation of 

reviews in English to overcome the language limitation.  

There are two main differences between AR-Miner and Clap: AR-Miner classifies 

reviews into informative and non-informative reviews, while CLAP classifies them into 

bug report, suggestion for new feature and other, providing more insights to developers; 

AR-Miner ranks the importance of reviews based on a prioritization score, while CLAP 

recommends next release features or fixes. 

2.4 Deep Learning Approaches 

Recently, deep learning approaches, such as convolutional neural networks (CNN) 

and recurrent neural networks (RNN), have successfully been applied to a range of tasks 

in NLP and achieve state-of-the-art performance. There are prior works using CNN to 

learn representations of text or sentence on sentiment classification (Kim, 2014) and short 

text matching (Hu et al., 2014). The most commonly used type of RNN is long short-term 

memory (LSTM), originally proposed by Hochreiter and Schmidhuber (1997). LSTM 

mitigates the gradient vanishing or exploding problem, which conventional RNN is found 

difficult to be trained to capture long-range dependencies. The gradient vanishing 
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problem refers to the large decrease in the norm of the gradient during training, which 

makes the model not possible to learn correlation between temporally distant events. The 

gradient exploding problem refers to the opposite behavior when long term components 

grow exponentially more than short term components.  

 Following the advances of deep learning and artificial intelligence, many 

researchers have been interested in the attention mechanism in neural networks. An 

attention mechanism frees the encoder-decoder framework from the fixed-length 

representation. This is achieved by training the model what to attend based on the inputs 

and related them to items in the output. Uses of the attention mechanism include machine 

translation (Bahdanau et al., 2014), image captioning (Xu et al., 2015), natural language 

question answering (Kumar et al., 2016), etc.  

Yang et al. (2016) proposed a hierarchical attention mechanism for document 

classification with two levels of attention mechanisms applied at the world level and at 

the sentence level, enabling the model to attend differentially to more or less important 

words from a sentence or sentences from a document when constructing the 

representation of the document. They conducted experiments on six large scale document 

classification datasets from Yelp reviews, IMDS reviews, Yahoo answers, and Amazon 

reviews. The results demonstrated that the proposed architecture outperformed baseline 

methods including linear methods, SVM and neural network methods such as word-based 

CNN, character-based CNN and LSTM.  

 Community question answering (CQA) systems, e.g. Yahoo answers and Stack 

Overflow, are forums where users can ask and answer questions in various categories. 

Answer selection in CQA recognizes high-quality responses in order to obtain useful 
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question-answer pairs. Zhou et al. (2015) introduced a novel approach named R-CNN for 

the answer selection task by integrating LSTM units in their CNN to model the 

classification sequence for the thread. CNN are used to learn the joint representation of 

question-answer pair, and then the learnt joint representations are used as inputs of LSTM 

to predict the matching quality (“Good”, “Bad”, and “Potential”) of each answer in the 

answer sequence of a question. Experiments were carried out on the SemEval-2015 CQA 

dataset containing 3,229 questions and 21,062 answers. Experimental results showed that 

the proposed R-CNN model effectively learned the useful context from the answer 

sequence. In the future, the authors plan to explore methods on training unbalanced data 

to further improve the performance of answer selection in CQA.  

 Another work on answer selection (Tan et al., 2015) explored bidirectional LSTM 

utilizing both the previous and future context by processing the sequence on two 

directions which helped to address the drawback of not using the contextual information 

from the future tokens. The authors also extended this framework by leveraging attention 

mechanism to generate better answer representations given the questions as context.  

Our study can be thought as a question answering (QA) problem with an app 

review being a question and a bullet list of updates in a release note being answers. 

Through experiments, we want to find the most matching update(s) for a review. RNN, 

especially LSTM, has achieved good results for QA tasks, therefore, this paper will focus 

on variations of LSTM models.  
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3 Model 

 Inspired by the works from Yang et al. (2016) and Wang et al. (2016), we 

introduce a LSTM architecture with attention mechanism for mapping app review and 

release item in release note. The overall architecture of the model is shown in Figure 1.  

 

Figure 1: The overall architecture of LSTM with attention
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  Assume that a piece of review contains 𝑇 words with 𝑤#, 𝑡 ∈ [1, 𝑇], we embed 

each word into a vector 𝑥# through an embedding matrix 𝑊, initialized by Glove 

(Pennington et al., 2014), 𝑥# = 𝑊,𝑤#. Given that words in sentences have strong 

dependence on each other, LSTM is good at learning long-term dependencies and can 

avoid the vanishing gradient problem. Therefore, we use the LSTM networks, which 

make use of sequential information to learn the hidden state of word ℎ#. As the memory 

of the network, the hidden state captures information in all previous time steps.  

𝑥# = 𝑊,𝑤#, 𝑡 ∈ [1, 𝑇] 

ℎ# = LSTM 𝑥# , 𝑡 ∈ [1, 𝑇] 

 The representation of release item undergoes the same process of word sequence 

encoder. Then in the next step, we concatenate the last hidden state of release item ℎ3 and 

each hidden state of word ℎ#. The reason we use the last vector is that review and release 

item have different length.  

Since not all words contribute equally to the representation of the review/release 

item meaning and the hidden state typically is not able to capture information from too 

many time steps ago, with the initial representation as input we adopt the attention 

mechanism to select informative words contributing to the meaning of the review/release 

item and to attend preferentially to those parts of the review/release item, and then 

aggregate the representation of those important words to form a final vector for a 

classifier. More specifically, we first feed the hidden word ℎ#ℎ3
 through a one-layer 

multilayer perceptron (MLP) to get 𝑢# as a hidden representation of ℎ#ℎ3
, then we use the 

softmax function to get a normalized important weight as attention vector 𝛼#, and after 
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that we compute the final vector 𝑑 based on word attention weights to obtain weighted 

hidden state.  

𝑢# = tanh	(𝑊= ∙
ℎ#
ℎ3

+ 𝑏=) 

𝛼# =
exp	(𝑢#)
exp	(𝑢#)#

 

𝑑 = 𝛼# ∙
ℎ#
ℎ3

#

 

Finally, we use a sigmoid function denoted as 𝜎 to project 𝑑 into two classes, 

solved or unsolved.  

𝑦 = 𝜎(𝑊G ∙ 𝑑 + 𝑏G) 
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4 Experiment Design 

 In this section, we introduce the experiment design in our study. More specially, 

we discuss data collection process, data processing phase, and how we plan to evaluate 

our approach.  

4.1 Data Collection 

To answer our research question, we evaluated our approach on two sets of data – 

reviews and release notes – collected from Apple’s App Store for the application of 

Pokémon GO. The reason we selected a game app but not others was that for apps such 

as airline apps, hotel apps or banking apps, there were reviews that were not related to the 

functionality of the apps but the services provided by those companies. Pokémon GO was 

the most popular game and the most downloaded app in the year 2016. We chose a 

popular app because it was more likely to have more reviews.   

We conducted data collection process on July 28, 2017, and obtained 170,285 

reviews and 31 release notes between July 7, 2016 and July 27, 2017. For each user 

review, we collected the submission date, username, title, star rating, and review text. For 

each release note, it included the date, version, and content of release note. Both datasets 

were stored in MySQL database. From the collected review data, we counted the number 

of reviews for each start rating (Figure 2).  
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Figure 2: Distribution of ratings for Pokémon GO reviews
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Table 1: Overview of the evaluation data

Release Version Release Date # Release 

Item 

# Reviews Sample # Annotated 

Reviews 

1.1.0 7/30/16 11 79,462 500 5,500 

1.3.0 8/8/16 9 44,756 500 4,500 

1.9.0 9/24/16 5 2,141 500 2,500 

Total   126,359 1,500 12,500 

 

 A release note is often a bullet list of release items. When we annotated a review, 

we judged the entire review to each release item of the release note, that is to say that a 

piece of review was labeled multiple times depending on the number of release items, as 

shown in the last column of Table 1. Based on each release item, we produced a binary 

label, 0 or 1, for each review. A ‘1’ means that the review complains about at least one 

issue that is solved in the release note item. A ‘0’ means that none of the complains in the 

review are solved in the release note item. An example below illustrates how a user 

review was labeled (Table 2).  

 

Review Text: 
“Issues: 1. Ever since the game went live in the UK and other countries, the three 
step tracking hasn't been working, so you never know how close you actually are 
to the Pokemon. 2. They got rid of the battery saver mode in the new update. So 
I'm choosing not to update until they bring it back. 3. I don't know if it's because 
I'm at a higher level (22) now, but Pokemon keep running away from me when 
I'm using incense. So don't bother buying them. 4. People don't pay attention 
where they're going! Stop driving and playing!!! I've been hit by a car twice this 
week. Pros: 1. I heard the creators are changing up nest locations. (Seems to be 
the case with a Ponyta nest that is now a Bellsprouts nest.) Better check your local 
Reddit pages and see what other players are saying. 2. A lot of fun (in the 
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beginning). This was the exact way I wanted to play the game when it came out 
on GameBoy back in the late 90s.” 

 

Table 2: Example of the labeling result 

Release 

Item 

Release 1.3.0 Label 

# 1 Added a dialog to remind Trainers that they should not play while 

traveling above a certain speed.  Trainers must confirm they are not 

driving in order to continue playing 

1 

# 2 Made improvements to the accuracy of a curveball throw 0 

# 3 Fixed a bug that prevented ”Nice,” ”Great,” and “Excellent” Poké Ball 

throws from awarding the appropriate experience bonuses 

0 

# 4 Fixed achievements showing incorrect Medal icons 0 

# 5 Enabled the ability for Trainers to change their nickname one time, so 

please choose your new nickname wisely 

0 

# 6 Resolved issues with the battery saver mode and re-enabled this 

feature 

1 

# 7 Added visuals of Team leaders - Candela, Blanche and Spark 0 

# 8 We're currently testing a variation of the "Nearby Pokémon" feature 

with a subset of users.  During this period you may see some variation 

in the nearby Pokémon UI 

1 

# 9 Minor text fixes 0 
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 There were also reviews not written in English or reviews that consisted solely of 

emojis. In those instances, we labeled the review as -1 so as to remove them from the 

dataset. In addition, we took out reviews that had more than 200 characters in the review 

text to decrease the complexity of the problem, and reviews with less than or equal to a 

total of three characters in the title filed plus the review field because we thought those 

short reviews were non-informative. Furthermore, we removed punctuations in the 

review text, converted all words into lowercase, and decoded emoji images to their 

meaning1.  

 For training our classifier and reporting on its performance, we apply ten-fold 

cross-validation in the experiments. In ten-fold cross-validation, the entire sample of 

annotated reviews is randomly partitioned into ten subsamples with equal size. For each 

time, one subsample is left out as the validation data for testing the model, and the 

remaining nine subsamples are used as training data. This process is repeated ten times 

with each subsample used for testing once. The average of the ten evaluations is the final 

performance of the classifier.  

4.2 Evaluation Metrics 

 We assess our model using the precision, recall, accuracy, and F-measure metrics 

commonly used in machine learning. For a given test set, we count the number of true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). In our 

domain, precision describes the proportion of reviews that are correctly classified as 

solved, and recall measures the proportion of solved reviews that are classified correctly.  

                                                
1 https://github.com/kcthota/emoji4j 
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Precision =
TP

TP + FP 

Recall =
TP

TP + FN 

We use the accuracy metric to evaluate the quality of the class predictions. As we 

can see from the above example of labeling result, there are more negative reviews 

(label=0) than positive reviews (label=1). Given this fact, we randomly select one 

negative review when computing accuracy in order to obtain an appropriate accuracy 

metric.  

Accuracy =
TP + TN

TP + FP + TN + FN 

We also calculate the F-measure by using its general form definition, which 

returns the harmonic mean of the precision and recall results.  

F − measure = 2	×	
Precision	×	Recall
Precision + Recall 
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5 Results and Analysis 

In this section, we first describe the results of our approach obtained by ten-fold 

cross-validation, then we test our results to assess whether the improvement in 

performance reflects a true pattern or just random chance, and finally we visualize the 

attention weights of two examples to validate the effectiveness of our model.  

5.1 Comparison with baseline methods 

We compare our model with three baseline models, including Logistic Regression 

(LG) with unigram features, RNN, and LSTM without attention mechanism, whose 

results are shown in Table 3. All of the text from the review and the release item together 

as one big bag of words is used to form unigrams. We choose unigram features because 

we think that some word combinations that occur together may be effective for capturing 

the similarity between the review and the release item.  
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Table 3: Test results compared with baseline models 

Models Precision Recall Accuracy F-measure 

LG 0.657 0.600 0.793 0.627 

RNN 0.693 0.767 0.842 0.728 

LSTM 0.695 0.787 0.839 0.738 

LSTM with attention 0.755 0.786 0.870 0.770 

 

From the table we can see that LSTM with attention model achieves the highest 

precision of 0.755, the highest accuracy of 0.870, and the highest F-measure of 0.770. 

Recall of LSTM with attention is similar to that of LSTM without attention, but is 0.019 

higher than that of RNN model and 0.186 higher than that of LG model. LSTM model 

has a slightly higher precision than RNN model, a 0.02 improvement of recall, and a 0.01 

improvement of F-measure. The accuracy of LSTM is 0.003 lower than that of RNN. LG 

model has the lowest precision, recall, accuracy and F-measure among the four models. 

The results, therefore, indicate that our LSTM network architecture with attention 

mechanism is effective and it improves the overall performance. 

5.2 Significance Tests 

 In order to determine whether the improvements obtained by LSTM and the 

attention mechanism are significant, we conduct one-tail paired t-test to compare the 

accuracy and F-measure of six pairs of models. More specifically, we use the same folds 

for all ten-fold cross-validation experiments and then do a paired t-test on all ten pairs of 

performance values. The results are shown in Table 4 and Table 5.  
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Table 4: One-tail paired t-test results on accuracy 

 Mean Std Dev Std Err t Value Pr > |t| 

Pair 1 LSTM with attention-LG 0.0764 0.0473 0.0150 5.10 0.0003 

Pair 2 LSTM with attention-RNN 0.0276 0.0211 0.0067 4.13 0.0013 

Pair 3 LSTM with attention-LSTM 0.0302 0.0247 0.0078 3.86 0.0019 

Pair 4 RNN-LG 0.0491 0.0519 0.0164 2.99 0.0076 

Pair 5 LSTM-LG 0.0465 0.0495 0.0157 2.97 0.0079 

Pair 6 LSTM-RNN -0.0026 0.0212 0.0067 -0.39 0.3533 

 

Table 5: One-tail paired t-test results on F-measure 

 Mean Std Dev Std Err t Value Pr > |t| 

Pair 1 LSTM with attention-LG 0.1390 0.0820 0.0259 5.36 0.0002 

Pair 2 LSTM with attention-RNN 0.0410 0.0643 0.0203 2.02 0.0373 

Pair 3 LSTM with attention-LSTM 0.0342 0.0577 0.0183 1.87 0.0470 

Pair 4 RNN-LG 0.0981 0.1051 0.0332 2.95 0.0081 

Pair 5 LSTM-LG 0.1048 0.0882 0.0279 3.76 0.0023 

Pair 6 LSTM-RNN 0.0068 0.0300 0.0095 0.71 0.2462 

 

 As the 𝑝-values are less than 0.05 in the first three pairs of models, it can be 

concluded that LSTM with attention model shows statistically significant improvement 

over LG model, RNN model and LSTM without attention model. For the fourth and fifth 

pairs of models, we can also see that both RNN and LSTM perform statistically 
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significant better than LG. In the last pair of models, however, as 𝑝-values are greater 

than 0.1, we don’t have evidence that the improvement of LSTM over RNN is significant.  

5.3 Visualization of Attention 

In order to validate that our model is able to select informative words in a review, 

we can obtain the attention weight 𝛼 in the equation we discussed in Section 3 and 

visualize the attention layers accordingly. Figure 3(a) and 3(b) show the representations 

of how attention focuses on words in reviews with important information which can be 

useful to software developers for next app release. The color intensity in the figures 

expresses the importance degree of the weight in the attention vector 𝛼, the deeper the 

more important.  

 

 

Figure 3(a): Illustration of attention weights 

 

The review text in Figure 3(a) is “God they just ruined the game by removing the 

tracking system I mean why do that seriously. I miss out on catching a lot of Pokemon 

because I don't essentially know which way to go to catch the Pokemon.”, and the 

corresponding release item is “We're currently testing a variation of the "Nearby 

go
d

th
ey ju
st

ru
in
ed th
e

ga
m
e by

re
m
ov
in
g

th
e

tra
ck
in
g

sy
st
em

i

m
ea
n

w
hy do th
at

se
rio

us
ly i

m
iss ou
t

on

ca
tc
hi
ng a lo
t of

po
ke
m
on

be
ca
us
e i

do
n’
t

es
se
nt
ia
lly

kn
ow

w
hi
ch

w
ay to go to

ca
tc
h

th
e

po
ke
m
on



 26 

Pokémon" feature with a subset of users. During this period you may see some variation 

in the nearby Pokémon UI”. Throughout the learning process, the model we trained 

correctly identifies that this review is related to this release item because the “tracking 

system” the user complains about is brought up in the later release note by referring to 

“Nearby Pokémon”. We can see that although “tracking system” and “Nearby pokémon” 

don’t have any word in common, our model successfully learns the semantic matching 

between them. From this figure, we can also observe that the model pays more attention 

to the words “pokemon”, “tracking” and “system” than to other words, and common 

words “the”, “to” and “of” are paid little attention.  

 

 

Figure 3(b): Illustration of attention weights 

 

 Figure 3(b) shows another example of attention visualization. The review text is 

“Bring back the power saver mode”, and the corresponding release item is “Resolved 

issues with the battery saver mode and re-enabled this feature”. In this short review, our 

model still pays much attention on informative words “power”, “saver” and “mode” as 

we expect. And the model correctly classifies the review into the “solved” class.  
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6 Conclusion and Future Work 

In this paper, we study the mobile app reviews and release notes by employing a 

LSTM based deep learning framework with attention mechanism. We conduct 

experiments using review and release note data from Pokémon GO app. Our 

experimental results demonstrate that the proposed model outperforms the baseline 

models. Visualization of attention layers illustrate that our framework is effective in 

picking out informative words.  

Although the results are promising, this study has three potential threats to 

validity that could be improved upon by future research. First, due to the long time 

needed to manually label each review as solved or not solved with each bullet point of the 

release note, we only randomly selected 1,500 reviews and chosen three release notes as 

sample for analysis. We plan to address this limitation by hiring annotators from 

crowdsourcing websites such as Amazon Mechanical Turk to label more reviews and 

having each review be labeled by more than one annotator to decrease subjectivity.  

The second threat relates to the generality of our framework. We validate our 

framework on user reviews of one game app, Pokémon GO, from Apple’s App Store. It is 

unclear that if our framework can attain similar good results when being applied to other 

games, other kinds of iOS apps (e.g. social networking apps, travel booking apps), or 

apps on other platforms (e.g. Google Play store, Amazon Appstore) with reviews written 
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in different styles and with varying vocabularies. Future work will conduct a large-scale 

empirical study to reduce this threat.  

The third limitation relies in only considering reviews written in English. 

However, the approach can be applied to other languages by defining language-specific 

linguistic rules. In the future, we plan to explore in more detail the reviews written in 

other languages.  
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