

Huan Lian. Identifying User Suggestions from Mobile App Reviews. A Master’s Paper
for the M.S. in IS degree. November, 2017. 34 pages. Advisor: Jaime Arguello

The last few years have seen enormous growth in the use of mobile devices. This growth
has fueled the development of software applications, often called apps. Mobile app
developers constantly collect and analyze feedback in user reviews with the goal of
improving their apps and better meeting user expectations. Due to high volume of data,
manually reading user comments requires a labor-intensive effort. In this paper, we
propose a framework for automatically identifying user suggestions from reviews, the
information of which can be useful for next app release. Our approach uses a deep
learning model with attention mechanism. Experimental results demonstrate that the
proposed architecture outperforms the baseline methods.

Headings:

Mobile app reviews

Text mining

Deep learning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210608641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IDENTIFYING USER SUGGESTIONS FROM MOBILE APP REVIEWS

by
Huan Lian

A Master’s paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements
for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

November 2017

Approved by

Jaime Arguello

 1

Table of Contents

1 Introduction .. 2

2 Related Work ... 5
2.1 App Marketplace Analysis .. 5
2.2 Classification of App Reviews .. 6
2.3 Summarization of App Reviews ... 7
2.4 Deep Learning Approaches ... 10

3 Model ... 13

4 Experiment Design ... 16
4.1 Data Collection ... 16
4.2 Data Processing ... 17
4.2 Evaluation Metrics .. 20

5 Results and Analysis .. 22
5.1 Comparison with baseline methods .. 22
5.2 Significance Tests ... 23
5.3 Visualization of Attention ... 25

6 Conclusion and Future Work ... 27
Bibliography ... 30

	

 2

1 Introduction

Application distribution platforms, or app stores, such as Apple’s App Store and

Google Play store, have been growing exponentially in the past years in terms of number

of users, number of applications, and number of downloads. These platforms allow users

to search and download software apps of interest to their mobile devices with a few clicks,

and also allow users to submit feedback on downloaded apps by giving star ratings and

posting text reviews. Previous studies (Galvis Carreño, & Winbladh, 2013; Pagano, &

Maalej, 2013; Maalej, & Nabil, 2015) have found that app reviews contain a rich source

of information that is useful and helpful to software developers, such as bug reports,

feature requests, and user experiences. This feedback can serve as a communication

channel between users and developers, and be used to drive the app development and

improve forthcoming releases.

However, there are several challenges which prevent app developers from using

user feedback in the reviews. First, app stores include a substantial number of reviews,

requiring huge efforts to be processed and analyzed. An empirical study by Pagano and

Maalej (2013) showed that users submit on average 22 reviews per app per day and that

popular apps, such as Facebook, receive more than 4,000 reviews in a single day. Second,

the quality and constructiveness of reviews varies greatly, from helpful suggestions for

improvement or innovative ideas to general praises or complaints (e.g. “you should add

command blocks so people can teleport places with just a press of a button”, “I love this

 3

game”, “your app isn’t working”). Chen et al. (2014) found that only 35.1% of app

reviews contain information that can directly help developers improve their apps. Third, a

review might contain different topics or a mix of sentiments, making it difficult to

retrieve the feedback from users.

 Recently, deep learning approaches have obtained significant success on various

natural language processing tasks such as text classification (Zhang et al., 2015), sentence

summarization (Rush et al., 2015) and semantic analysis (Tang et al., 2015). Many of the

proposed neural architectures involve the usage of long short-term memory (LSTM)

recurrent network and some form of attention mechanism with which model can better

focus on the parts of the related context.

In this paper, we propose a deep learning framework with attention mechanism to

identify software development needs from users that can help developers focus on the

most needed direction of app development. For example, developers of an app plan to

implement several new features in the next release and want to prioritize tasks that will

satisfy the most number of users. By analyzing reviews users have submitted and planned

release updates, our model is able to automatically identify review comments about

features that should be included in the next app version release. The model has two inputs:

a specific user review and a specific item in the release note. The goal for the model is to

make a binary prediction: a ‘1’ means that the review complains about at least one issue

that is addressed in the release note item and a ‘0’ means that none of the complains are

addressed. We evaluate our framework on a manually annotated dataset comprising of

1,500 reviews. Through the task, we seek to answer the following question: can attention-

 4

based deep learning model be used to automatically identify user suggestions for

improvement from mobile app reviews.

The major contribution of this paper is that we use both mobile app reviews and

app release notes to train our model which, to our best knowledge, is for the first time

studied.

The remainder of the paper is structured as follows. Section 2 reviews past studies

on mobile app reviews and deep learning approaches. Section 3 presents our framework

in detail. In Section 4, we describe data collection process, data processing phase and

evaluation metrics. The results of experiments are discussed in Section 5. Section 6

concludes the paper and outlines limitations and directions for future research.

 5

2 Related Work

We group related work into four major categories, and survey the literature of

each category in detail below.

2.1 App Marketplace Analysis

With the popularity of smartphones and raising development of mobile

applications, the app marketplace has drawn much more attention from researchers in

multiple research communities.

Harman et al. (2012) pointed out that the app store is a new form of software

repository and is different from traditional ones. They mined and analyzed the

relationships between user perspectives, business, and technical characteristics of apps in

the Blackberry app store. The results showed a strong correlation between customer

rating and download rank of apps, which can be used to guide developers and managers.

Minelli and Lanza (2013) performed an in-depth investigation of a corpus of Android

apps from a structural and historical perspective, focusing on three factors for the analysis:

source code, usage of third-party Application Programming Interfaces (APIs), and

historical data. The findings revealed that apps presented significant differences to

traditional software systems – apps are smaller, simpler, and have less functionality,

which required novel approaches to comprehend apps. Chandy and Gu (2012) proposed a

Latent Class graphical model with “interpretable structure and low complexity” to

 6

classify apps, users, developers and reviews in Apple’s App Store into the normal and

malicious categories to identify spam. Automatically identifying spam in app stores is

important, as it can prevent users from downloading potential harmful spam apps or

ignoring apps that are victims of review spam.

2.2 Classification of App Reviews

User feedback on apps contains a variety of information. Classifying that

information can provide an overall idea about an app’s usage and types of user

engagement. It can also be used to compare releases over time and with similar apps.

Pagano and Maalej (2013) conducted an exploratory study to analyze user

reviews in the Apple’s App Store. They obtained over one million reviews from 1,100

applications and conducted investigation on (i) when and how often users give feedback,

(ii) the content of feedback via manual content analysis, and (iii) the impact on the user

community. They found that most of the feedback is provided in the first few days after

new releases, with a long tail over time. The five most popular topics contained in

reviews were “praise”, “helpfulness”, “feature information”, “shortcoming”, and “bug

report”. They also identified correlations between numerical ratings, “helpfulness”, and

textual feedback. This study is empirical and it represents a cornerstone for many other

works thereafter.

Recently, approaches have been proposed for automatically classifying app

reviews. For instance, motivated by the findings of Pagano and Maalej (2013), Maalej

and Nabil (2015) classified user reviews into bug reports, feature requests, user

experience and ratings by applying several techniques including text classification,

natural language processing (NLP), sentiment analysis, as well as other heuristics such as

 7

star rating, length of the review text, and tense of the verbs in the reviews. Their work

concluded that both the classification precision and the recall were enhanced when

combining review metadata with natural language processing. Regarding to the

limitations, the authors admitted that they might have missed some keywords for the

classifiers, and might have missed other machine learning features or algorithms.

Panichella et al. (2015), on the other hand, exploited linguistic rules and

combined natural language processing, text analysis and sentiment analysis techniques to

detect and classify sentences in the reviews into four categories: information giving,

information seeking, feature request, and problem discovery. They found that the

combination of the three techniques allowed to achieve higher precision and recall than

results obtained using individual technique. They also proved that when the size of the

training set was increased, both precision and recall could be substantially improved. In

the future, the authors suggested complementing their approach with topic modeling

techniques to group together sentences in each of the categories, as well as adding more

natural language processing rules.

2.3 Summarization of App Reviews

Researchers also suggested probabilistic approaches to summarize informative

review content. The reaction of users to app features can inform developers of topics

users are talking about most and of features that are perceived positively and are

perceived negatively. Such information can help developers to analyze and quantify user

opinions about single features and assist them in prioritizing their work for future releases.

Iacob and Harrison (2013) provided empirical evidence that app users rely on

reviews to describe feature requests. They developed a prototype named MARA (Mobile

 8

App Review Analyzer) to mine for and automatically retrieve feature requests from user

reviews by means of linguistic rules. The design of the system has four phases: review

retrieval, feature requests mining, feature requests summarization, and feature requests

visualization. Linguistic rules for defining feature requests were used during the mining

phase. The authors first identified 24 keywords for expressing feature requests, such as

“add”, “could”, “instead of”, “needs”, “wish” and so on. Then they filtered all sentences

in the reviews containing at least one of these keywords and defined the contexts.

Examples of such contexts are: “adding an exit button would be great”, “the long press

should be shorter than 0.25 seconds”, “could use more icons”. And then the authors

translated contexts into linguistic rules: “(adding) <request> would be <POSITIVE-

ADJECTIVE>”, “<request> should be <COMPARATIVE-ADJECTIVE> than <existing

feature>”, “could use (more) <request>”, respectively. Two limitations of this study were

that only reviews written in English were considered and sarcasm was not specifically

addressed.

Galvis Carreño and Winbladh (2013) adapted the Aspect and Sentiment

Unification Model (ASUM) proposed by Jo and Oh (2011) to automatically extract the

main topics and to summarize user feedback. ASUM, extended from Sentence-LDA

(SLDA), incorporates both aspect and sentiment to model sentiments toward different

aspects. Aspect is defined as “a multinomial distribution over words that represents a

more specific topic in reviews”, e.g. “lens” in camera reviews. Galvis Carreño and

Winbladh (2013) chose the technique of ASUM based on the possibility of associating

topics with sentiments, and since the original ASUM approach was applied to reviews of

electronic devices and restaurants, the authors, in this work, adapted the approach to

 9

better fit in the domain of user comments of mobile applications. The results showed that

the automatically extracted topics match the manually extracted ones, which would

reduce human effort.

Similarly, Chen et al. (2014) proposed AR-Miner, a novel review analytics

framework for automatically summarizing informative user reviews. This framework

consists of five major steps. The first step preprocesses the collected raw review data into

well-structured format, {Text, Rating, Timestamp}, and then converts the raw user

reviews into sentence-level review instances. The second step filters out non-informative

reviews based on the defined category rules of “informativeness”, and builds the

classifier using a semi-supervised machine learning algorithm, Expectation Maximization

for Naïve Bayes (EMNB). The third step partitions the remaining informative reviews

into groups that reviews in the same group are more semantically similar by adopting two

algorithms in topic modeling, LDA and ASUM. In the future, the authors plan to explore

and compare more topic models. The fourth step ranks groups and reviews in each group

according to their level of importance via a proposed ranking model. The last step

visualizes the ranked results which can be presented to app developers. This paper also

pointed out that authors were not actual developers of the apps, and thus it might cause

biases or misunderstandings about specific information. Another problem related to the

generality. This study collected raw user reviews of four Android apps from Google Play,

which made it unclear that if their framework could be generalized or attain similar good

results when being applied to other types of apps and apps on other platforms.

Comparing with AR-Miner, a more recent study by Villarroel et al. (2016)

introduced CLAP (Crowd Listener for releAse Planning) to (i) automatically categorize

 10

user reviews using the Weka implementation of the Random Forest machine learning

algorithm, (ii) cluster together related reviews by applying a data clustering algorithm

called density-based spatial clustering of applications with noise (DBSCAN), and (iii)

prioritize the review cluster to be implemented by developers in the next app release. It’s

worth mentioning that in the last stage of validation, the authors provided CLAP to

project managers of three Italian software companies to obtain qualitative and

quantitative feedback about the practical applicability of the tool in their everyday

decision making process. For future work, the authors aimed at automatic translation of

reviews in English to overcome the language limitation.

There are two main differences between AR-Miner and Clap: AR-Miner classifies

reviews into informative and non-informative reviews, while CLAP classifies them into

bug report, suggestion for new feature and other, providing more insights to developers;

AR-Miner ranks the importance of reviews based on a prioritization score, while CLAP

recommends next release features or fixes.

2.4 Deep Learning Approaches

Recently, deep learning approaches, such as convolutional neural networks (CNN)

and recurrent neural networks (RNN), have successfully been applied to a range of tasks

in NLP and achieve state-of-the-art performance. There are prior works using CNN to

learn representations of text or sentence on sentiment classification (Kim, 2014) and short

text matching (Hu et al., 2014). The most commonly used type of RNN is long short-term

memory (LSTM), originally proposed by Hochreiter and Schmidhuber (1997). LSTM

mitigates the gradient vanishing or exploding problem, which conventional RNN is found

difficult to be trained to capture long-range dependencies. The gradient vanishing

 11

problem refers to the large decrease in the norm of the gradient during training, which

makes the model not possible to learn correlation between temporally distant events. The

gradient exploding problem refers to the opposite behavior when long term components

grow exponentially more than short term components.

 Following the advances of deep learning and artificial intelligence, many

researchers have been interested in the attention mechanism in neural networks. An

attention mechanism frees the encoder-decoder framework from the fixed-length

representation. This is achieved by training the model what to attend based on the inputs

and related them to items in the output. Uses of the attention mechanism include machine

translation (Bahdanau et al., 2014), image captioning (Xu et al., 2015), natural language

question answering (Kumar et al., 2016), etc.

Yang et al. (2016) proposed a hierarchical attention mechanism for document

classification with two levels of attention mechanisms applied at the world level and at

the sentence level, enabling the model to attend differentially to more or less important

words from a sentence or sentences from a document when constructing the

representation of the document. They conducted experiments on six large scale document

classification datasets from Yelp reviews, IMDS reviews, Yahoo answers, and Amazon

reviews. The results demonstrated that the proposed architecture outperformed baseline

methods including linear methods, SVM and neural network methods such as word-based

CNN, character-based CNN and LSTM.

 Community question answering (CQA) systems, e.g. Yahoo answers and Stack

Overflow, are forums where users can ask and answer questions in various categories.

Answer selection in CQA recognizes high-quality responses in order to obtain useful

 12

question-answer pairs. Zhou et al. (2015) introduced a novel approach named R-CNN for

the answer selection task by integrating LSTM units in their CNN to model the

classification sequence for the thread. CNN are used to learn the joint representation of

question-answer pair, and then the learnt joint representations are used as inputs of LSTM

to predict the matching quality (“Good”, “Bad”, and “Potential”) of each answer in the

answer sequence of a question. Experiments were carried out on the SemEval-2015 CQA

dataset containing 3,229 questions and 21,062 answers. Experimental results showed that

the proposed R-CNN model effectively learned the useful context from the answer

sequence. In the future, the authors plan to explore methods on training unbalanced data

to further improve the performance of answer selection in CQA.

 Another work on answer selection (Tan et al., 2015) explored bidirectional LSTM

utilizing both the previous and future context by processing the sequence on two

directions which helped to address the drawback of not using the contextual information

from the future tokens. The authors also extended this framework by leveraging attention

mechanism to generate better answer representations given the questions as context.

Our study can be thought as a question answering (QA) problem with an app

review being a question and a bullet list of updates in a release note being answers.

Through experiments, we want to find the most matching update(s) for a review. RNN,

especially LSTM, has achieved good results for QA tasks, therefore, this paper will focus

on variations of LSTM models.

 13

3 Model

 Inspired by the works from Yang et al. (2016) and Wang et al. (2016), we

introduce a LSTM architecture with attention mechanism for mapping app review and

release item in release note. The overall architecture of the model is shown in Figure 1.

Figure 1: The overall architecture of LSTM with attention

Word
Embeddings

LSTM
Hidden

State

Attention ...↵1 ↵2 ↵n

Review Release Item

... ...wt
2 wt

nwt
1Word wr

1 wr
2 wr

n

Concatenation

Solved / Unsolved

Sigmoid
Weighted
Hidden

State

 14

 Assume that a piece of review contains 𝑇 words with 𝑤#, 𝑡 ∈ [1, 𝑇], we embed

each word into a vector 𝑥# through an embedding matrix 𝑊, initialized by Glove

(Pennington et al., 2014), 𝑥# = 𝑊,𝑤#. Given that words in sentences have strong

dependence on each other, LSTM is good at learning long-term dependencies and can

avoid the vanishing gradient problem. Therefore, we use the LSTM networks, which

make use of sequential information to learn the hidden state of word ℎ#. As the memory

of the network, the hidden state captures information in all previous time steps.

𝑥# = 𝑊,𝑤#, 𝑡 ∈ [1, 𝑇]

ℎ# = LSTM 𝑥# , 𝑡 ∈ [1, 𝑇]

 The representation of release item undergoes the same process of word sequence

encoder. Then in the next step, we concatenate the last hidden state of release item ℎ3 and

each hidden state of word ℎ#. The reason we use the last vector is that review and release

item have different length.

Since not all words contribute equally to the representation of the review/release

item meaning and the hidden state typically is not able to capture information from too

many time steps ago, with the initial representation as input we adopt the attention

mechanism to select informative words contributing to the meaning of the review/release

item and to attend preferentially to those parts of the review/release item, and then

aggregate the representation of those important words to form a final vector for a

classifier. More specifically, we first feed the hidden word ℎ#ℎ3
 through a one-layer

multilayer perceptron (MLP) to get 𝑢# as a hidden representation of ℎ#ℎ3
, then we use the

softmax function to get a normalized important weight as attention vector 𝛼#, and after

 15

that we compute the final vector 𝑑 based on word attention weights to obtain weighted

hidden state.

𝑢# = tanh	(𝑊= ∙
ℎ#
ℎ3

+ 𝑏=)

𝛼# =
exp	(𝑢#)
exp	(𝑢#)#

𝑑 = 𝛼# ∙
ℎ#
ℎ3

#

Finally, we use a sigmoid function denoted as 𝜎 to project 𝑑 into two classes,

solved or unsolved.

𝑦 = 𝜎(𝑊G ∙ 𝑑 + 𝑏G)

 16

4 Experiment Design

 In this section, we introduce the experiment design in our study. More specially,

we discuss data collection process, data processing phase, and how we plan to evaluate

our approach.

4.1 Data Collection

To answer our research question, we evaluated our approach on two sets of data –

reviews and release notes – collected from Apple’s App Store for the application of

Pokémon GO. The reason we selected a game app but not others was that for apps such

as airline apps, hotel apps or banking apps, there were reviews that were not related to the

functionality of the apps but the services provided by those companies. Pokémon GO was

the most popular game and the most downloaded app in the year 2016. We chose a

popular app because it was more likely to have more reviews.

We conducted data collection process on July 28, 2017, and obtained 170,285

reviews and 31 release notes between July 7, 2016 and July 27, 2017. For each user

review, we collected the submission date, username, title, star rating, and review text. For

each release note, it included the date, version, and content of release note. Both datasets

were stored in MySQL database. From the collected review data, we counted the number

of reviews for each start rating (Figure 2).

 17

Figure 2: Distribution of ratings for Pokémon GO reviews

4.2 Data Processing

It was impossible to annotate all reviews, for the purpose of our study, therefore,

we chose three major release notes from the first couple of months since the game was

launched, and randomly selected 500 reviews submitted before each chosen release note

and after its previous major release. In total, we sampled 1,500 reviews for manual

labeling out of 126,359 reviews, as shown in Table 1.

1 2 3 4 5

Distribution of Ratings for Pokémon GO Reviews

Star Rating

N
um

be
r o

f R
ev

ie
w

s

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

 18

Table 1: Overview of the evaluation data

Release Version Release Date # Release

Item

Reviews Sample # Annotated

Reviews

1.1.0 7/30/16 11 79,462 500 5,500

1.3.0 8/8/16 9 44,756 500 4,500

1.9.0 9/24/16 5 2,141 500 2,500

Total 126,359 1,500 12,500

 A release note is often a bullet list of release items. When we annotated a review,

we judged the entire review to each release item of the release note, that is to say that a

piece of review was labeled multiple times depending on the number of release items, as

shown in the last column of Table 1. Based on each release item, we produced a binary

label, 0 or 1, for each review. A ‘1’ means that the review complains about at least one

issue that is solved in the release note item. A ‘0’ means that none of the complains in the

review are solved in the release note item. An example below illustrates how a user

review was labeled (Table 2).

Review Text:
“Issues: 1. Ever since the game went live in the UK and other countries, the three
step tracking hasn't been working, so you never know how close you actually are
to the Pokemon. 2. They got rid of the battery saver mode in the new update. So
I'm choosing not to update until they bring it back. 3. I don't know if it's because
I'm at a higher level (22) now, but Pokemon keep running away from me when
I'm using incense. So don't bother buying them. 4. People don't pay attention
where they're going! Stop driving and playing!!! I've been hit by a car twice this
week. Pros: 1. I heard the creators are changing up nest locations. (Seems to be
the case with a Ponyta nest that is now a Bellsprouts nest.) Better check your local
Reddit pages and see what other players are saying. 2. A lot of fun (in the

 19

beginning). This was the exact way I wanted to play the game when it came out
on GameBoy back in the late 90s.”

Table 2: Example of the labeling result

Release

Item

Release 1.3.0 Label

1 Added a dialog to remind Trainers that they should not play while

traveling above a certain speed. Trainers must confirm they are not

driving in order to continue playing

1

2 Made improvements to the accuracy of a curveball throw 0

3 Fixed a bug that prevented ”Nice,” ”Great,” and “Excellent” Poké Ball

throws from awarding the appropriate experience bonuses

0

4 Fixed achievements showing incorrect Medal icons 0

5 Enabled the ability for Trainers to change their nickname one time, so

please choose your new nickname wisely

0

6 Resolved issues with the battery saver mode and re-enabled this

feature

1

7 Added visuals of Team leaders - Candela, Blanche and Spark 0

8 We're currently testing a variation of the "Nearby Pokémon" feature

with a subset of users. During this period you may see some variation

in the nearby Pokémon UI

1

9 Minor text fixes 0

 20

 There were also reviews not written in English or reviews that consisted solely of

emojis. In those instances, we labeled the review as -1 so as to remove them from the

dataset. In addition, we took out reviews that had more than 200 characters in the review

text to decrease the complexity of the problem, and reviews with less than or equal to a

total of three characters in the title filed plus the review field because we thought those

short reviews were non-informative. Furthermore, we removed punctuations in the

review text, converted all words into lowercase, and decoded emoji images to their

meaning1.

 For training our classifier and reporting on its performance, we apply ten-fold

cross-validation in the experiments. In ten-fold cross-validation, the entire sample of

annotated reviews is randomly partitioned into ten subsamples with equal size. For each

time, one subsample is left out as the validation data for testing the model, and the

remaining nine subsamples are used as training data. This process is repeated ten times

with each subsample used for testing once. The average of the ten evaluations is the final

performance of the classifier.

4.2 Evaluation Metrics

 We assess our model using the precision, recall, accuracy, and F-measure metrics

commonly used in machine learning. For a given test set, we count the number of true

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). In our

domain, precision describes the proportion of reviews that are correctly classified as

solved, and recall measures the proportion of solved reviews that are classified correctly.

1 https://github.com/kcthota/emoji4j

 21

Precision =
TP

TP + FP

Recall =
TP

TP + FN

We use the accuracy metric to evaluate the quality of the class predictions. As we

can see from the above example of labeling result, there are more negative reviews

(label=0) than positive reviews (label=1). Given this fact, we randomly select one

negative review when computing accuracy in order to obtain an appropriate accuracy

metric.

Accuracy =
TP + TN

TP + FP + TN + FN

We also calculate the F-measure by using its general form definition, which

returns the harmonic mean of the precision and recall results.

F − measure = 2	×	
Precision	×	Recall
Precision + Recall

 22

5 Results and Analysis

In this section, we first describe the results of our approach obtained by ten-fold

cross-validation, then we test our results to assess whether the improvement in

performance reflects a true pattern or just random chance, and finally we visualize the

attention weights of two examples to validate the effectiveness of our model.

5.1 Comparison with baseline methods

We compare our model with three baseline models, including Logistic Regression

(LG) with unigram features, RNN, and LSTM without attention mechanism, whose

results are shown in Table 3. All of the text from the review and the release item together

as one big bag of words is used to form unigrams. We choose unigram features because

we think that some word combinations that occur together may be effective for capturing

the similarity between the review and the release item.

 23

Table 3: Test results compared with baseline models

Models Precision Recall Accuracy F-measure

LG 0.657 0.600 0.793 0.627

RNN 0.693 0.767 0.842 0.728

LSTM 0.695 0.787 0.839 0.738

LSTM with attention 0.755 0.786 0.870 0.770

From the table we can see that LSTM with attention model achieves the highest

precision of 0.755, the highest accuracy of 0.870, and the highest F-measure of 0.770.

Recall of LSTM with attention is similar to that of LSTM without attention, but is 0.019

higher than that of RNN model and 0.186 higher than that of LG model. LSTM model

has a slightly higher precision than RNN model, a 0.02 improvement of recall, and a 0.01

improvement of F-measure. The accuracy of LSTM is 0.003 lower than that of RNN. LG

model has the lowest precision, recall, accuracy and F-measure among the four models.

The results, therefore, indicate that our LSTM network architecture with attention

mechanism is effective and it improves the overall performance.

5.2 Significance Tests

 In order to determine whether the improvements obtained by LSTM and the

attention mechanism are significant, we conduct one-tail paired t-test to compare the

accuracy and F-measure of six pairs of models. More specifically, we use the same folds

for all ten-fold cross-validation experiments and then do a paired t-test on all ten pairs of

performance values. The results are shown in Table 4 and Table 5.

 24

Table 4: One-tail paired t-test results on accuracy

 Mean Std Dev Std Err t Value Pr > |t|

Pair 1 LSTM with attention-LG 0.0764 0.0473 0.0150 5.10 0.0003

Pair 2 LSTM with attention-RNN 0.0276 0.0211 0.0067 4.13 0.0013

Pair 3 LSTM with attention-LSTM 0.0302 0.0247 0.0078 3.86 0.0019

Pair 4 RNN-LG 0.0491 0.0519 0.0164 2.99 0.0076

Pair 5 LSTM-LG 0.0465 0.0495 0.0157 2.97 0.0079

Pair 6 LSTM-RNN -0.0026 0.0212 0.0067 -0.39 0.3533

Table 5: One-tail paired t-test results on F-measure

 Mean Std Dev Std Err t Value Pr > |t|

Pair 1 LSTM with attention-LG 0.1390 0.0820 0.0259 5.36 0.0002

Pair 2 LSTM with attention-RNN 0.0410 0.0643 0.0203 2.02 0.0373

Pair 3 LSTM with attention-LSTM 0.0342 0.0577 0.0183 1.87 0.0470

Pair 4 RNN-LG 0.0981 0.1051 0.0332 2.95 0.0081

Pair 5 LSTM-LG 0.1048 0.0882 0.0279 3.76 0.0023

Pair 6 LSTM-RNN 0.0068 0.0300 0.0095 0.71 0.2462

 As the 𝑝-values are less than 0.05 in the first three pairs of models, it can be

concluded that LSTM with attention model shows statistically significant improvement

over LG model, RNN model and LSTM without attention model. For the fourth and fifth

pairs of models, we can also see that both RNN and LSTM perform statistically

 25

significant better than LG. In the last pair of models, however, as 𝑝-values are greater

than 0.1, we don’t have evidence that the improvement of LSTM over RNN is significant.

5.3 Visualization of Attention

In order to validate that our model is able to select informative words in a review,

we can obtain the attention weight 𝛼 in the equation we discussed in Section 3 and

visualize the attention layers accordingly. Figure 3(a) and 3(b) show the representations

of how attention focuses on words in reviews with important information which can be

useful to software developers for next app release. The color intensity in the figures

expresses the importance degree of the weight in the attention vector 𝛼, the deeper the

more important.

Figure 3(a): Illustration of attention weights

The review text in Figure 3(a) is “God they just ruined the game by removing the

tracking system I mean why do that seriously. I miss out on catching a lot of Pokemon

because I don't essentially know which way to go to catch the Pokemon.”, and the

corresponding release item is “We're currently testing a variation of the "Nearby

go
d

th
ey ju
st

ru
in
ed th
e

ga
m
e by

re
m
ov
in
g

th
e

tra
ck
in
g

sy
st
em

i

m
ea
n

w
hy do th
at

se
rio

us
ly i

m
iss ou
t

on

ca
tc
hi
ng a lo
t of

po
ke
m
on

be
ca
us
e i

do
n’
t

es
se
nt
ia
lly

kn
ow

w
hi
ch

w
ay to go to

ca
tc
h

th
e

po
ke
m
on

 26

Pokémon" feature with a subset of users. During this period you may see some variation

in the nearby Pokémon UI”. Throughout the learning process, the model we trained

correctly identifies that this review is related to this release item because the “tracking

system” the user complains about is brought up in the later release note by referring to

“Nearby Pokémon”. We can see that although “tracking system” and “Nearby pokémon”

don’t have any word in common, our model successfully learns the semantic matching

between them. From this figure, we can also observe that the model pays more attention

to the words “pokemon”, “tracking” and “system” than to other words, and common

words “the”, “to” and “of” are paid little attention.

Figure 3(b): Illustration of attention weights

 Figure 3(b) shows another example of attention visualization. The review text is

“Bring back the power saver mode”, and the corresponding release item is “Resolved

issues with the battery saver mode and re-enabled this feature”. In this short review, our

model still pays much attention on informative words “power”, “saver” and “mode” as

we expect. And the model correctly classifies the review into the “solved” class.

br
in
g

ba
ck th
e

po
w
er

sa
ve
r

m
od
e

 27

6 Conclusion and Future Work

In this paper, we study the mobile app reviews and release notes by employing a

LSTM based deep learning framework with attention mechanism. We conduct

experiments using review and release note data from Pokémon GO app. Our

experimental results demonstrate that the proposed model outperforms the baseline

models. Visualization of attention layers illustrate that our framework is effective in

picking out informative words.

Although the results are promising, this study has three potential threats to

validity that could be improved upon by future research. First, due to the long time

needed to manually label each review as solved or not solved with each bullet point of the

release note, we only randomly selected 1,500 reviews and chosen three release notes as

sample for analysis. We plan to address this limitation by hiring annotators from

crowdsourcing websites such as Amazon Mechanical Turk to label more reviews and

having each review be labeled by more than one annotator to decrease subjectivity.

The second threat relates to the generality of our framework. We validate our

framework on user reviews of one game app, Pokémon GO, from Apple’s App Store. It is

unclear that if our framework can attain similar good results when being applied to other

games, other kinds of iOS apps (e.g. social networking apps, travel booking apps), or

apps on other platforms (e.g. Google Play store, Amazon Appstore) with reviews written

 28

in different styles and with varying vocabularies. Future work will conduct a large-scale

empirical study to reduce this threat.

The third limitation relies in only considering reviews written in English.

However, the approach can be applied to other languages by defining language-specific

linguistic rules. In the future, we plan to explore in more detail the reviews written in

other languages.

 29

Acknowledgment

I would like to thank my advisor, Prof. Jaime Arguello, for his continuous support and

valuable guidance for this project.

 30

Bibliography

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv: 1409.0473.

Chandy, R., & Gu, H. (2012). Identifying spam in the iOS app store. Proceedings of the

2nd Joint WICOW/AIRWeb Workshop on Web Quality, 56-59.

Chen, N., Lin, J., Hoi, S. C., Xiao, X., & Zhang, B. (2014). AR-miner: Mining

informative reviews for developers from mobile app marketplace. Proceedings of the
36th International Conference on Software Engineering, 767-778.

Galvis Carreño, L. V., & Winbladh, K. (2013). Analysis of user comments: An approach

for software requirements evolution. 2013 35th International Conference on Software
Engineering, 582-591.

Harman, M., Jia, Y., & Zhang, Y. (2012). App store mining and analysis: MSR for app

stores. 2012 9th IEEE Working Conference on Mining Software Repositories, 108-
111.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation,9(8), 1735-1780.

Hu, B., Lu, Z., Li, H., & Chen, Q. (2014). Convolutional neural network architectures for

matching natural language sentences. Advances in Neural Information Processing
Systems 27, 2042-2050.

Iacob, C., & Harrison, R. (2013). Retrieving and analyzing mobile apps feature requests

from online reviews. 2013 10th Working Conference on Mining Software
Repositories, 41-44.

Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review

analysis. Proceedings of the fourth ACM international conference on Web search and
data mining, 815-824.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint

arXiv: 1408.5882.

 31

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V.,
Paulus, R., & Socher, R. (2016). Ask me anything: Dynamic memory networks for
natural language processing. arXiv preprint arXiv: 1506.07285.

Maalej, W., & Nabil, H. (2015). Bug report, feature request, or simply praise? On

automatically classifying app reviews. 2015 IEEE 23rd International Requirements
Engineering Conference, 116-125.

Minelli, R., & Lanza, M. (2013). Software analytics for mobile applications – insights &

lessons learned. 2013 17th European Conference on Software Maintenance and
Reengineering, 144-153.

Pagano, D., & Maalej, W. (2013). User feedback in the appstore: An empirical study.

2013 21st IEEE International Requirements Engineering Conference, 125-134.

Panichella, S., Sorbo, A. D., Guzman, E., Visaggio, C. A., Canfora, G., & Gall, H. C.

(2015). How can i improve my app? Classifying user reviews for software
maintenance and evolution. 2015 IEEE International Conference on Software
Maintenance and Evolution, 281-290.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word

representation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1532-1543.

Rush, A. M., Chopra, S., & Weston, J. (2015). A neural attention model for abstractive

sentence summarization. Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 379-389.

Tan, M., Santos, C. D., Xiang, B., & Zhou, B. (2015). LSTM-based deep learning models

for non-factoid answer selection. arXiv preprint arXiv: 1511.04108.

Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural

network for sentiment classification. Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 1422-1432.

Villarroel, L., Bavota, G., Russo, B., Oliveto, R., & Penta, M. D. (2016). Release

planning of mobile apps based on user reviews. Proceedings of the 38th International
Conference on Software Engineering, 14-24.

Wang, Y., Huang, M., Zhao, L., & Zhu, X. (2016). Attention-based LSTM for aspect-

level sentiment classification. Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 606-615.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Bengio,

Y. (2015). Show, attend and tell: Neural image caption generation with visual
attention. arXiv preprint arXiv: 1502.03044.

 32

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical
attention networks for document classification. Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 1480-1489.

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text

classification. arXiv preprint arXiv: 1509.01626.

Zhou, X., Hu, B., Chen, Q., Tang, B., & Wang, X. (2015). Answer sequence learning

with neural networks for answer selection in community question
answering. Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing, 713-718.

