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Chapter 1

Introduction and Motivation

1.1 Biology as an Information Science

Biology is rapidly transforming itself into an information-based science. In its be-

ginnings, biology was largely an exercise in cataloguing and classification. With the

discovery of the genetic basis of inheritance by Mendel, biology became an experi-

mental pursuit. The elucidation of the role of DNA in genetics ushered in the age

of molecular biology, with researchers dissecting biological pathways to discern the

function of their components. Researchers could spend months and years determining

functions of single proteins, but modern biology does not have this luxury. Advances

in instrumentation and analysis technologies, as well as computational techniques,

have opened up new avenues of investigation for the biologist (Hood 2002) by gener-

ating an ever-increasing amount of detailed biological information.

Modern biological research is quite familiar with the ”information overload”

commonly pointed to by information scientists in recent years. Medical text min-

ing experts regularly tout the exponentially increasing number of research articles

indexed by Medline, just as genetics researchers tout a similarly exponential growth

in the number of sequenced genes in GenBank. The completion of the draft human

genome in 2001 heralded the entry into a “systems biology” era, in which complex
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experiments capable of examining broad aspects of cellular function (e.g. analyzing

the expression of all of a cell’s genes, as opposed to only a handful) are common-

place. The thought of a single experiment generating hundreds of megabytes of data,

let alone gigabytes, while unthinkable in years past, is rather unsurprising today. No

human can effectively assimilate and integrate such a staggering volume of data with-

out assistance from computerized systems. Thus, an important line of work in the

research community centers on devising solutions to the problems this glut of informa-

tion presents. Research articles describing the creation of task- and research-specific

databases, as well as analysis packages and evolving community-driven data stan-

dards, are frequently seen. In order to be of any use, biological data must be stored

and organized in such a way that it can be easily accessed and queried; information

that cannot be accessed may as well not exist.

1.2 Project Context

This work was performed in the systems biology laboratory of Morgan Giddings in

the Department of Microbiology and Immunology at UNC. Her lab carries out both

“dry lab” computational research centering on algorithm design, modeling, and data

analysis, as well as traditional “wet lab” investigations focusing on understanding and

elucidating mechanisms underlying the evolution of antibiotic resistance in bacteria.

Specifically, members of the Giddings lab are currently looking at mechanisms

of resistance in the bacteria E. coli to the antibiotic streptomycin. They do this by

comparing unmutated bacteria (called “wild type” or “WT”) to bacteria that have

been grown in conditions that select for streptomycin resistance (dubbed “SmR”).

Additionally, a third bacterial strain, “SmRC”, is used. Generally, mutated bacteria

grow at a reduced rate when compared to their unmutated counterparts; SmRC is

a strain of the SmR mutant that has been selected for increased or “compensated”
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growth. As streptomycin interferes with protein synthesis, mutations in the protein

components of the ribosomal complex (which is responsible for protein synthesis)

impart resistance to the drug. Thus, by comparing ribosomal proteins from each of

these three bacterial strains, the lab aims to determine the nature of the mutations

that give rise to streptomycin resistance. The hope is that this knowledge will shed

light on antibacterial resistance mechanisms in general.

Understanding the mutations amounts to characterizing the proteins of the

ribosomal complex, which entails a cataloging of any mutations, truncations, and

post-translational modifications that have taken place; the essential question being

asked is “what makes the mutated proteins different from their normal counterparts?”

To answer this question the lab takes a mass spectrometry (MS)-based proteomics

approach (see Appendix B for a broad overview of techniques and terminology). By

combining data from so-called “top-down” and “bottom-up” MS techniques, a more

complete and accurate characterization of proteins in their cellular milieu is possible.

The power of this approach has been demonstrated by the Giddings lab and col-

laborators at the Oak Ridge National Laboratory (VerBerkmoes et al. 2002; Strader

et al. 2004; Connelly et al. 2006). However, like many of the “-omics” approaches

in modern biological research, this approach generates large amounts of data. Re-

searchers would like to have an automated way to analyze the information, but no

such system exists; data is compiled and cross-referenced manually through the use of

spreadsheets. Also contributing to the manual nature of the task is the fact that the

outputs of many analysis programs used by the lab are in a variety of formats that

are not immediately machine-readable; HTML, plain text, and even Excel spread-

sheets. This has many drawbacks, as one might expect. Being a manual process, it is

tedious and error-prone. The data is multidimensional and does not always fit nicely

into the tabular format dictated by the spreadsheet model, which hinders complex

analysis. With each new experiment, all previous data should ideally be checked for
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correlations; as the data grows, this becomes quite a daunting task. The addition of a

new research technique to the laboratory’s repertoire is another complicating factor;

even if there was an information system in place, the chances that it could easily

incorporate new data for which it was not designed without significant overhead in

terms of both data model and software redesign are slim indeed. Thus, the informa-

tion problem faced by the Giddings lab is two-fold; the information must be better

organized, taken from a collection of files and put into some form of organized and

flexible data repostiory, and new tools to facilitate the analysis of these data in an

automated way must be developed.

This is not a problem that is limited to the Giddings laboratory, however; it

is a situation that must be dealt with by all systems biology research groups. Since

systems biology encompasses a multitude of research approaches and techniques, and

since integration of information from these various techniques is an ultimate goal

for the research community, a versatile and general information system that can be

used by investigators regardless of their particular research approach would be an

ideal solution. Naturally, this is a challenging proposition, given the diversity and

complexity of the overall research endeavor. However, the Ultra-Structure notation for

complex systems, developed by Jeffrey Long, has the potential to provide a solution.

To this end, the Giddings lab, in collaboration with Bradley Hemminger of the UNC

School of Information and Library Science, are pursuing the creation of an Ultra-

Structure system for biological research. Initial exploratory efforts, undertaken with

the assistance of Long, resulted in a small prototype system, implemented in Microsoft

Access and Visual Basic. This work describes additional development efforts for the

system.
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Chapter 2

Ultra-Structure

2.1 Introduction

Our knowledge of biology is pushing at the limits of reductionist science. The com-

plexity we see in biological systems creates obstacles to further progress. One such

obstacle concerns the computer systems we use in biological research. The problems

associated with software engineering are well-known (Brooks Jr. 1995). To be robust,

computer systems must be able to cope gracefully with change. Object-oriented devel-

opment, for example, allows for the development of specialized, orthologous software

components that can be assembled into working systems. However, maintenance in

the face of changing requirements can still be daunting. When changing requirements

fall into the realm of domain knowledge, updates can be particularly problematic, as

they require both software experts and domain experts. To take an example from

the business world, imagine the problem of updating a complex financial package

following a massive rewrite of the tax code.

The Ultra-Structure approach addresses this problem by representing data

and algorithms as “rules” stored in a database. These rules are formally defined,

human-readable rules that system operators are able to modify, in order to change

how the system operates. The only traditional software components are the so-called
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“animation procedures,” which are general purpose software methods that operate

in a general way on these rules in order to generate the behavior of the system.

Because the animation procedures are general, they should not need to be changed

to introduce new behavior and functionality; this is achieved through the addition of

rules to the system.

These rules are conceived as a new kind of notation system. Notation concerns

the symbol languages humans have developed to convey information. In mathemat-

ics, we have various symbols, such as
∫
,

∑
, π,

√
, and ∂, not to mention numbers

themselves, all of which have very specific meanings, and can be chained together to

create “sentences” in the mathematical language. In chemistry, we refer to molecules

with formulæ such as C6H6, C6H12O6, and the like, as well as via structural diagrams.

In music we have the staff notation, chord symbols, and tablature. Other notations

exist as well, including money and time. Written language itself is a notational device,

one which has been developed in many ways by many cultures throughout history.

New notational systems arise to solve some problem, creating abstractions that

enable us to manipulate systems more efficiently. For example, consider the move from

Roman numerals to Arabic, which introduced the abstraction of “zero”; this simple

concept revolutionized math and science. In psycholinguistics, the Sapir-Whorf hy-

pothesis states that the language that people use influences how they see the world.

Jeffrey Long takes a similar stand in asserting that our notational models determine

the advances that can be made in various pursuits from science to the arts; how far

could science and mathematics have progressed before the idea of “zero”? According

to Long, our current notational devices are ill-suited to dealing with complex and

dynamic systems, which accounts for a large part of our difficulty in truly under-

standing and exerting control over such systems (Long 1999a). In response to this,

he has developed the new notational system of Ultra-Structure, which is specifically

designed to cope with this kind of complexity.
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The best introduction to Ultra-Structure is the seminal ACM paper from 1995

(Long and Denning 1995); interested readers are strongly urged to give this paper

a thorough reading. Apart from this reference, however, there is only a very small

body of available literature on Ultra-Structure (Long 1999b; Shostko 1999; Overgard

1999). Long is writing a book on Ultra-Structure, but it is not yet finished (Long

2005). Since the approach is relatively unknown, and this project is fully built on

its ideas, a review will be given here, drawn from these resources, as well as the

experience of working with the CORE576 system.

2.2 The Power of Rules

Ultra-Structure is a rule-based notation and information system model that grew out

of ideas based on Chomsky’s transformational grammars. Ultra-Structure takes the

position that all complex systems are the result of the interactions of processes, and

that regardless of their complexity these processes can be described using relatively

simple rules. This idea of emergence is echoed by systems theory researchers (Wein-

berg 2001; Laszlo 1996) and can be seen in Conway’s famous Game of Life, wherein

surprisingly complex and life-like behaviors come about in a simulation of artificial

lifeforms based on only three simple rules (Gardner 1970). In Ultra-Structure, rules

can interact with each other in a variety of ways, triggering different behavior based

on the context in which they are processed. Rules can be defined in a hierarchical

manner, meaning that individual rules explicitly covering each contingency need not

be created, as more general rules can subsume these specific cases. This economy of

system specification can reveal the higher level essential components of the system

in a way that other representations may not be able. Knowledge of these essential

components is a prerequisite for true system mastery and understanding, and may

also reveal hidden connections between seemingly different systems.
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In Ultra-Structure, rules have a canonical form consisting of a series of one

or more factors and a series of zero or more considerations. Factors specify condi-

tions that must be met in order for a rule to be examined during processing, and

considerations can specify actions that may be taken. To a first-degree approxima-

tion, factors can be thought of as forming the antecedent of an if-then statement,

with considerations forming the consequent; this analogy is only approximate, how-

ever. If input to the system matches the factors for a particular rule, the action

implied by the considerations is not necessarily carried out. They are called “consid-

erations” because many rules may have factors that match a given input (depending

on various context-dependent transformations that may subsequently take place; see

Section 2.6). The system then “considers” the right-hand sides of the matching rules

to determine the course of action. For instance, the considerations of one rule may

be overridden or modified by another matching rule. Actions and scenarios denoted

in considerations are not guaranteed to occur; rather, they are acceptable possible

actions whose executions are contingent on the overall state of the system’s rule base.

2.3 Deep, Middle, and Surface Structures

Ultra-Structure organizes the rules that generate the complex behaviors of a system

in a hierarchical fashion. This hierarchy is three-tiered, consisting of the deep, middle,

and surface structures, each level being built on top of the ones preceding it. These

levels provide a helpful and straightforward way of thinking about complex systems,

and offer a means by which to link related systems together.

Ultra-Structure theory postulates that all members of a given class of systems

will share a common underlying structure. For example, while basketball and chess

are clearly quite different kinds of games, they are at their core “Games,” and as

such share some fundamental organization that is responsible for their “game-ness.”
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Similarly, all businesses, be they large multinational corporations or local family-

owned hardware stores, share features by virtue of their membership in the class of

“Businesses.” In Ultra-Structure these class-wide similarities must somehow relate to

rules; they are the kinds of rules that appear in the systems of a given class. The deep

structure of a class of systems is thus defined as the formal specification of families

of rules, as well as general software methods that operate on these rule families.

It is not uncommon in biological research that databases and software be tai-

lored to a specific research organism, technique, or research regime. For instance,

researchers studying the Escherichia coli bacterium will likely have different informa-

tion storage and processing needs than those studying other model organisms, such

as the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, or the

mouse. Similarly, researchers using microarray technology must deal with different

information infrastructures than those utilizing mass spectrometry. A survey of schol-

arly bioinformatics journals regularly turns up application notes for such specialized

systems (Prickett et al. 2006; Mao et al. 2005; Jacques et al. 2005). Integration of

data across this variety of resources and formats is a complicated affair, and is an

active area of research (Baker et al. 1999; Wilkinson and Links 2002). These specific

systems all have their own unique structure; the database schema for one project is

generally not able to be replaced with the schema from another and still be expected

to work, for example. If a combined schema were to be developed to store informa-

tion from several different research approaches, it would likely become quite large and

cumbersome, making it difficult to query and modify. Some combined schemata have

been developed (see for example Section 4.5), but for relatively similar data sets. In

any event, with the pace at which new research techniques and projects come into

being, any effort to consolidate data from markedly different sources would quickly

run into insurmountable complexity barriers. The question that Ultra-Structure seeks

to answer is “Is there, in some sense, a ‘universal schema’ that can be used for these
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different systems?” The conjecture is that yes, there is, and it is based on the fact

that all these bioinformatics resources exist within the common realm of biological

research. It is the deep structure of biological research.

In practice, since Ultra-Structure systems are generally implemented in the

context of a relational database, the rule definiton component of the deep structure

is composed of a set of tables which specify the definitions of the rules on which the

system operates. These tables are known as ruleforms, and are discussed more fully

in Section 2.4. Additionally, animation procedures, the software components of the

deep structure, are discussed in Section 2.7.

The middle structure of a system consists of all the rules that define a specific

system. To continue with the games analogy, baseball and chess are both “Games,”

and so share the same deep structure; however, they are very different games, gov-

erned by different rules. All the Ultra-Structure rules that describe the various rules

and regulations of baseball (“three strikes and you’re out,” “a game consists of nine

innings,” “bases are located 90 feet apart,”) and chess (“rooks may move any num-

ber of spaces horizontally or vertically,” “pawns that make it across the board are

promoted,” “a requirement for castling is that the king and the rook involved have

not yet moved”) comprise the middle structure. While the middle structure can con-

tain these “rulebook” rules, it can also contain other types of higher-level rules, such

as those that govern strategy formation. In practical terms, the middle structure

consists of the contents of the database tables that define the rules.

The surface structure is the easiest to grasp, as it is the readily seen manifes-

tation of the system. Continuing with the example of games, the surface structure

of baseball and chess can be seen in the playing of a game of baseball or chess. The

unfolding of the final game of the World Series, or the endgame played between two

Grandmasters comes about through the application, observance, and utilization of
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the particular rules in the middle structure. As such, the surface structure is not

explicitly stored anywhere in an Ultra-Structure system, but arises out of the use of

that system, from the animation and interaction of the rules that define it.

2.4 Ruleforms

As a notational system, Ultra-Structure offers the idea of ruleforms, which are collec-

tions or classes of formally equivalent rules. In other words, the rules in a ruleform

all share the same structure. Ruleforms are generally presented in a tabular form, the

structure of which is dictated by the ruleform. The contents of the table are the rules,

one per row. When implemented in a working system, a ruleform is conveniently de-

scribed by a relational database table, with each tuple of the table representing a

single rule. The primary and foreign key integrity constraints of modern relational

database systems are also beneficial, and allow for rapid matching and selection of

rules; a primary key consists of a ruleform’s factors, and foreign keys allow linking of

information in one ruleform to another.

It is thought that complex systems can be described by relatively small num-

bers of ruleforms; there may be many thousands of rules needed to full describe any

given system, but these rules will fall into a small number of ruleforms, generally less

than 50, based on experience (Long and Denning 1995). The utility of ruleforms lies

in the fact that all rules that belong to a ruleform are formally equivalent, meaning

they can be operated on in an equivalent manner. This allows semantically similar

information to be treated similarly, a situation that may not occur in more tradi-

tional information modeling approaches. An illustrative example concerns the notion

of Locations (Long and Denning 1995). In a traditional relational database approach,

items as disparate as phone numbers, email addresses, and physical locations (of, say,

items in a warehouse inventory) would occupy separate tables. In an Ultra-Structure
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system, these data might all be viewed semantically as being Locations; an email ad-

dress is a person’s location in “email space”, whereas a phone number is a location in

“phone space”. Treating semantically similar items in the same manner is a powerful

idea, and can help to reveal the underlying nature or meaning of the system. The

full version of this idea, called the Ruleform Hypothesis, is quoted from (Long and

Denning 1995):

Ruleform Hypothesis. Complex system structures and behaviors are
generated by not-necessarily-complex processes; these processes are gener-
ated by the animation of operating rules. Operating rules can be grouped
into a small number of classes, whose form is prescribed by ruleforms.
While the operating rules of a system change over time, the ruleforms
remain constant. A well-designed collection of ruleforms can anticipate
all logically possible operating rules that might apply to the system and
constitutes the deep structure of the system.

A corollary to this is known as the CORE Hypothesis:

CORE Hypothesis. There exist complex operating rule engines, or COREs,
consisting of ≤ 50 ruleforms, that are sufficient to represent all rules found
among systems sharing broad family resemblances, for example, all cor-
porations. Their definitive deep structure will be permanent, unchanging,
and robust for all members of the family, whose differences in manifest
structures and behaviors will be represented entirely as differences in op-
erating rules. The animation procedures for each engine will be relatively
simple compared to current applications, requiring less than 100,000 lines
of code in a third-generation language.

Clearly, the Ultra-Structure approach carries with it significant philosophical

considerations that relational databases (i.e. those designed with traditional entity-

relation modeling approaches), for example, simply do not have. This is in fact one of

the motivations for the current work; the discovery of a stable underlying structure to

biological information would be of incredible use to researchers. It could unify diverse

research fields and facilitate discoveries at the interfaces of these fields, discoveries

that are difficult if not impossible to make with current information practices.
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While each Ultra-Structure CORE will likely have a number of distinct rule-

forms, reflecting the unique features of the class of systems it represents, there exist

several general kinds of ruleforms that commonly appear in Ultra-Structure systems.

Each has a characteristic structure and usage pattern. These are described below.

2.4.1 Existential Ruleforms

Ruleforms with one factor are known as existential ruleforms. Rules of this form

declare the existence of some entity of interest. An example is shown in Table A.1.

Several existential ruleforms may, and generally do, exist in an Ultra-Structure sys-

tem, specifying all the different kinds of entities that the system concerns itself with.

For example, the business-oriented CORE650 system (see Section 2.8) has existential

ruleforms for Products, Locations, Agencies, among others, whereas the CORE576

system includes BioEntities, Resources, Attributes, and BioEvents.

The single factor of existential ruleforms specifies a unique name for the entity.

While existential ruleforms (and ruleforms in general) are not required to have con-

siderations, existential ruleforms generally do specify some number of considerations

that will contain additional information about an entity, as well as provide metadata

about individual rules, such as when the rule was last updated, and by whom.

In nearly every existential ruleform, there will exist a few “special” entities

that each merit additional discussion. The first, referred to as “Top Node”, is used

in Network ruleforms, which are discussed in the next section. The other special

entities are generally named “ORIGINAL” and “ANY”. These will come into play in

so-called Metarules, which will be discussed further in Section 2.6.

An idea of the kinds of entities that are found in an existential ruleform of the

CORE576 system is discussed in Section 3.3.1.
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2.4.2 Network Ruleforms

Ruleforms whose factors refer to two existential rules, as well as a relation code

(known in Ultra-Structure parlance as a relcode) are network ruleforms (see Table

A.2 for examples). Rules in these ruleforms define semantic networks, linking the two

entities (nodes) with the directed, labeled edge specified by the relcode. Relcodes

can define many kinds of relationships: taxonomic relationships are accomplished

with relcodes such as “IS-A” and “INCLUDES”; associative relationships can also be

formed, linking objects in different taxonomic branches, creating a network. These

networks are also used to create groupings and classes of similar objects. In supplying

this grouping and classification facility, Network ruleforms supply much of the power

of the Ultra-Structure approach. The information contained in Network ruleforms can

also be used to logically deduce new rules based on these grouping and classification

features; see Section 2.5.

The basic Network rule takes the form of <Parent Relcode Child> where

Parent and Child denote the two entities being related, and Relcode is the name

of the relationship; for example <Serine IS-A Amino Acid>. The factors of

a Network ruleform are Parent and Relcode, while Child will be included with the

considerations. In addition to Child, other considerations of note include Is Original.

This consideration is used in network propagation (discussed in Section 2.5), and

has the value of “TRUE” for rules that have been entered by a user or data import

process, and “FALSE” for deduced rules. If an entity can participate in several

relationships of the same type, then an additional factor, called a Sequence Number,

can be used to distinguish between instances (and maintain primary key constraints

when implemented in a relational database system). The ruleform must also be

augmented if the relationship depends on some other factor or factors, such as time.

As mentioned above, the “Top Node” entity plays an important role in Net-
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work ruleforms. This special entity is conventionally used in Ultra-Structure systems

to denote the archetypal, most basic primitive entity (or superclass, if you will) of

an existential ruleform. It is thus utilized in Network ruleforms as a “root” of the

semantic network, an entity that all other entities are eventually connected to. “Top

Node” serves as a convenient entry point into Network ruleforms. While this entity is

conventionally named “Top Node”, it can be called anything. System designers may

want to name it after the containing existential ruleform to yield rules that “read”

easier; certainly the rule <Bacteria IS-A BioEntity> is more readable and com-

prehensible than <Bacteria IS-A Top Node>. If a particular existential ruleform

has no accompanying Network ruleform, a “Top Node” entity is not needed.

2.4.3 Relcodes

A relcode (short for “relationship code”) functions as the name of one of the various

relationships that may exist between entities in the system; they can be thought of

as the labels on the edges of the Network ruleform semantic networks. Relcodes are

defined in their own existential ruleform, the considerations of which help to define

the behavior of the relcode. Important considerations that appear to have a place in

Relcode ruleforms in general (i.e. regardless of the particular CORE they appear in),

include Contra, Is Transitive, and Is Preferred.

The Contra consideration defines the relcode to use in the “opposite” relation-

ship. An example will clarify: if the Contra of “IS-A” is “INCLUDES”, then from

the rule <Serine IS-A Amino Acid>, we can deduce that <Amino Acid IN-

CLUDES Serine>. If “IS-A” has “INCLUDES” as its Contra, then “INCLUDES”

must have “IS-A” as its Contra; to be otherwise would result in erroneous deductions.

Note that a relcode may have itself as its own Contra. Refer to Section 2.5.1 for

more discussion on the use of Contra.
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The Is Preferred consideration is a boolean flag that indicates, among the (at

most) two relcodes linked through the Contra consideration, which one is to be used

for original rules. In other words, network rules that are input by users or data import

processes should be in the form dictated by the preferred relationship. Therefore, any

rules that use the non-preferred directionality will be deduced rules (though some

deduced rules will use the preferred form). Such a distinction will be useful in future

graphical user interfaces, presenting users with only valid choices when creating new

rules. Additionally, the current network propagation algorithm utilizes this flag in its

processing; see Section 2.5.5.

The Is Transitive consideration, also a boolean flag, indicates (appropriately

enough) whether a relationship is transitive in nature. This, of course, is essential to

the network propagation algorithm; see Section 2.5.

Relcodes themselves can even be organized into networks, as has been done

in the CORE650 Ultra-Structure system, and may be done in the CORE576 system

(see Section 5.3).

Just as existential ruleforms have “special” entries, so to does the Relcodes

ruleform. Its special entry, dubbed “SAME”, plays a special role in MetaProtocol

rules, which are discussed in Section 2.6.

2.5 Inference on Networks

Network ruleforms, establishing semantic networks linking entities in various ways,

provide a rich knowledgebase from which to make logical inferences. These inferences

serve at least two purposes. First, they allow the system user to enter a relatively

small number of rules — establishing a “skeleton” network, so to speak — and then

automatically “fill in” the rest of the information. One does not need to enter a rules
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that state that <Serine IS-A Amino Acid> and <Serine IS-A Molecule>

(as well as similar rules for alanine, proline, glycine,. . . ); all that needs be entered is

<Serine IS-A Amino Acid> and <Amino Acid IS-A Molecule>, and logi-

cal inference takes care of the rest. Network inference can also be useful in checking

the validity and consistency of entered rules; unexpectedly deduced rules may indi-

cate incorrectly entered data. Alternatively, unexpected links may signal previously

unknown information. These links may be unknown because they are heretofore un-

considered, or simply because they are lost in an overwhelming volume of information.

It is hoped that this system can help address these last concerns.

A collection of animation procedures, dubbed the Network Propagation Engine

(NPE) was written to perform this inference on Network ruleforms. There are several

forms of inference that these procedures carry out, each of which will be described in

turn.

2.5.1 Contra Relationships

Every rule in an Ultra-Structure Network ruleform has at least one additional rule

that can be inferred from it. When given a rule stating <Serine IS-A Amino

Acid>, we can immediately deduce that <Amino Acid INCLUDES Serine>;

that is, the notion of “Amino Acid” includes the entity “Serine”. In order to formally

deduce this, the information needed (apart that contained in the rule itself) is the

name of the relationship that is the “opposite” of the “IS-A” relationship. This

information, is contained as a consideration (the Contra) in the rule that defines the

“IS-A” relcode. Thus, the animation procedure responsible for inferring these contra

relationships simply inspects the relcode ruleform to determine the appropriate contra

relationship and then uses that to create a new rule in which the left hand side and

right hand side of the original rule are interchanged.
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2.5.2 Transitive Deductions

The next form of deduction is a straightforward deduction on the rules of a Network

ruleform that takes advantage of the transitive nature of certain relationship types.

If two network rules exist, such that both have the same relcode, and that the right

hand side of one rule is the same as the left hand side of the second, then a new rule

can be deduced, linking the left hand side of the first rule with the right hand side

of the second. More simply, if <A EQUALS B>, and <B EQUALS C>, then

<A EQUALS C>. This deduction is only possible if the “EQUALS” relationship

is transitive, which of course it is. Again, to make this deduction possible from a

formal computation point of view, the only information outside of the two rules that

is needed is whether or not the relcode in question is transitive or not. This is stored

as a consideration in the Relcodes ruleform.

In practice, the NPE scans the Network ruleforms, considering each existing

rule in turn. For each rule that has a transitive Relcode, additional rules are selected

where the Parent of the second rule is the same as the Child of the first rule, and

both rules share the same transitive Relcode. The new rule is then constructed as

described above.

2.5.3 Property Inheritance

The final kind of deduction carried out by the NPE is, strictly speaking, a superset of

the previously described transitive deductions. This form, which may be considered

as a kind of “property inheritance,” relaxes the restriction that the relcodes used by

two rules are identical, while introducing new restrictions on the kinds of rules that

will be considered as input for the deduction (see Section 2.5.5). It allows for two

rules of the form <A r1 B> and <B r2 C> to be used to deduce <A r2 C>.
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Long and Denning (1995) state that network rules “declare relationships of the

form Class A, with respect to relationship type R, is a member of Class B.” Viewed

in this light, Network ruleforms not only form semantic networks, but also define

class hierarchies. Network propagation can thus implement a kind of inheritance

functionality. This is not inheritance in the polymorphic, object-oriented sense of the

term, however, because there is no way for children to override parents.

An example of this kind of inference can be seen in the original Ultra-Structure

paper (Long and Denning 1995), dealing with a Network of “Locations.” Some of

the example rules given contained information such as <37 Bret Harte Terrace

CITY Washington> (stating that the street address “37 Bret Harte Terrace” is

in the city of “Washington”) and <Washington STATE D.C.> (stating that

the city of “Washington” is located in the “state” of “D.C.”). Based on a property

inheritance kind of inference, the rule <37 Bret Harte Terrace STATE D.C.>

can readily be inferred, by virtue of the fact that the “CITY” and “STATE” relcodes

are declared transitive. Note that the standard transitive deduction, in which both

relcodes are identical, would not be able to deduce this new rule.

This situation reveals important information about the concepts of relcodes

and network ruleforms. In general, as a path is traced from an entity through the

network to the “Top Node”, each connection has a unique name that reflects the

nature of that connection. This will come into play in the discussion of animation

procedures in Section 2.7.

2.5.4 Comment on Deductions

The currently implemented deduction procedures operate either on a single rule or

on a pair of rules. Deductions that ultimately require more rules as input can still

be performed, however; entering the rules <A EQUALS B>, <B EQUALS C>,
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and <C EQUALS D> still allows the rule <A EQUALS D> to be deduced.

Such a deduction proceeds stepwise, first deducing that <A EQUALS C>, and

then coupling that rule with <C EQUALS D> to achieve the desired result. In

practice, the various forms of deduction described are carried out on the collection of

rules in a Network ruleform, with a counter keeping track of how many new rules have

been deduced in a single pass; deduction continues until no new rules are deduced by

any method.

This method of deduction has some issues, which may have to be addressed in

the system; see Section 5.3.

2.5.5 Requirements of Manually Entered Network Rules

The described propagation techniques require that the rules that are manually entered

into the Network ruleforms obey certain restrictions in order to ensure complete and

accurate rule propagation. A key requirement is that these manually entered rules

must describe a skeleton network; that is, the rules must describe some path from

every node to the “root” of the network. Network propagation is a powerful technique,

but it can only operate on the data it is given; if there is no data that can be used to

establish connections, then none will be able to be made.

Another requirement is that network rules that are manually entered should

use only the “preferred” relcodes. What this means in practice is that propagation

of new rules will take place in one direction, either from the “root” of the network

out to the perimeter, or vice versa. Currently in the CORE576 system, preferred

relcodes create rules in a specific-to-general form, such as <Serine IS-A Amino

Acid>, resulting in a deduction that proceeds from the network perimeter to the

center. Rules handling the reverse navigation are generated by the contra deduction

discussed in Section 2.5.1.
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2.6 Protocols and Metarules

Thus far, the ruleform types described have mainly been concerned with the storage

of data, yet a key feature of an Ultra-Structure system is the encoding of processes

as data. This information is stored in Protocol and Metarule ruleforms. A protocol

ruleform defines the various steps needed to perform some action, as well as the

sequencing of those steps. When rules in this kind of ruleform are activated (by

matching their factors), their considerations, defining various actions, are inspected

for possible execution. Metarule ruleforms, on the other hand, contain rules on how

to interpret rules. When some input comes into the system, Metarules are responsible

for determining which Protocol rules should be examined to carry out some desired

action or series of actions. Long and Denning (1995) present a helpful example

from the CORE650 system, wherein a request for a product order (the input) is

guided through a rather complex series of processing steps, defined by the contents

of metarule and protocol ruleforms. What initially entered the system as a simple

request to ship a product to a customer triggered several subsidiary processes, such as

credit checking, discount application, billing, inventory picking, and shipping. When

one considers the various constraints on ordering — the status of the customer as well

as their location, to name just two — the task of writing software to appropriately

handle these becomes quite difficult. By encoding these constraints as rules, the task

becomes much easier. A Metarule ruleform will thus contain rules that can be used

to transform system input in a variety of ways to facilitate further processing.

The factors of a Metaprotocol ruleform will define some condition under which

the rule should be examined for further processing. The considerations will contain

relcodes that are used to navigate relevant network ruleforms to create a “masked”

input that in turn is used as a key into a Protocol ruleform. In the CORE576 system,

for instance, if some processing task that took the name of a (BioEntity) chemical
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molecule as input (say “Water”) needed to know something about the molecule’s

polarity in order to properly guide process execution, a Metarule might contain the

relcode “POLARITY”. This would mean that the the BioEntity Network ruleform

would be searched for a rule that had factors of <Water POLARITY>, which

would find the consideration “Polar Molecule”. Thus, “Water” will have been masked

with “POLARITY” to become “Polar Molecule”. In cases when a particular input

should not be masked, but used as-is to inspect the appropriate Protocol ruleform,

the special relcode “SAME” is used.

As stated earlier, Protocol ruleforms define the ordering of various processing

steps in the system. The factors of these ruleforms are generally set up to reflect the

“output” of their corresponding Metarule ruleforms. A mapped input set obtained

from a Metarule thus forms a key by which to select rules from the Protocol ruleform.

Considerations of these ruleforms then define actions to execute. In the CORE650

business system, this might entail a work order being written to a department’s work

queue, from which human workers would draw their tasks. Alternatively, it could

trigger some autonomous computer program to perform a task, such as calculating

sales tax. In the Protocol ruleforms that currently exist in the CORE576 system,

triggered actions generally involve reflectively invoked Java methods.

In Section 2.4.1, the special Existential ruleform values of “ANY” and “ORIG-

INAL” and their utility in Protocol ruleforms were mentioned. If a particular rule

needs no particular value for a given factor, then the signal value of “ANY” may be

used, indicating that any value is acceptable to cause inspection of the rule. The value

of “ORIGINAL” is utilized in the considerations of a Protocol rule. Values found in

considerations are used to invoke software methods, and are commonly used as pa-

rameters. “ORIGINAL” indicates that the original, unmapped input value should be

used for a particular consideration, instead of the value obtained following Metarule

processing.



27

This processing is more easily grasped with an example, which is given in the

context of the CORE576 system in Section 3.5.

2.7 Animation Procedures

In order for the rules defined in a system to have any kind of effects, they must be

interpreted and acted upon. In Ultra-Structure, small software methods known as

“animation procedures” perform this function. These methods are designed to operate

in a general manner on ruleforms rather than on individual rules. In this way, the

coded software may remain stable in the face of changing system requirements. By

being coded to ruleforms, they will be able to properly manipulate any rules contained

in those ruleforms. The purpose of animation procedures is thus to separate control

logic from “world knowledge;” all information specific to the system itself is contained

in rules while the animation procedures define things like which ruleforms to inspect,

and in which order. As such, the animation procedures are kept general; a well-coded

animation procedure should not need to be altered in order to make some specific

processing possible. It is possible, however, that in the course of processing, some

external software may be invoked.

Animation procedures can be coded in whatever programming language that

is desired; there is nothing “special” about them from a software engineering perspec-

tive.

2.8 Previous Uses of Ultra-Structure

Long has investigated the Ultra-Structure system through the implementation of sev-

eral COREs. The most mature CORE, CORE6501, concerns business-related opera-

tions, such as ordering and billing. This CORE has been used by several companies,
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to impressive effect (Long and Denning 1995). Long has implemented additional

COREs for the Australian government to track shipments from the United States

and Europe, and for a declassification project under the auspices of the United States

Department of Energy (Jeffrey Long, personal communication). Long has also de-

veloped smaller, experimental COREs in the fields of Artificial Life, Games, Music,

and Legal Systems. The current work is an extension and updating of a preliminary

exploration of a Biology CORE.

Notes

1The number 650 is the Dewey Decimal Classification for “Management and Auxiliary Services”.
Similarly, 576 is the classification code for “Genetics and Evolution”. This is the standard naming
schema for COREs.
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Chapter 3

CORE576: Ultra-Structure for

Biology

The Ultra-Structure notational system offers a novel vantage point from which to

think about complex systems. Certainly some of the most complex systems humans

seek to understand are biological ones; millions of years of evolution have crafted

intricate and elaborate networks of interacting chemicals, molecules, cells, organs,

organisms, and populations. Teasing out exactly what goes on in these systems is a

monumental challenge, one that biological researchers have been tackling for centuries.

Managing the scientific data that comes from this research has always been difficult,

but it has become particularly thorny in recent years due to the sheer volume of data

our modern research approaches are capable of generating.

The CORE576 system is a work-in-progress application of the Ultra-Structure

approach to modeling and managing biological information. It is hoped that Ultra-

Structure can offer relief to researchers struggling to make sense of their data, and

at the same time provide insights into the complexities of biology, something that

perhaps only a new notational abstraction may do.
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3.1 Background

The current implementation of the CORE576 system has its roots in an early proto-

type system designed by Jeff Long for the Giddings Lab in 2003. This system was

based on Microsoft Access, chosen due to the rapid prototyping capabilities its graph-

ical user interface provides. Ruleforms were created as relations in the database, with

factors constituting primary keys, and integrity constraints to link ruleform univer-

sals (Ultra-Structure terminology for the components of a ruleform; “attributes” in

relational theory) to their parent ruleforms. Animation procedures for the system

were coded in Visual Basic, and user interfaces were created as Access forms. This

prototype system exhibited interesting features. For instance, it was capable of sim-

ulating the translation of a protein sequence from a corresponding DNA sequence.

Rules governing the translation process (e.g. “DNA is translated in codons of length

three,” “The codon ‘ATG’ encodes the amino acid ‘Methionine’,” etc.) were entered

into the database, and animation procedures were coded that acted on these rules

to carry out the process of translation. In addition to this, the system could calcu-

late the masses of chemical compounds: rules stating the composition of a molecule,

say serine, were entered, as well as rules declaring information such as the atomic

weight of various biologically important elements. Animation procedures were then

responsible for calculating the final mass based on these rules. An interesting aspect

of the system was that molecules could be defined, not just in terms of which and

how many atoms of each element they were composed of, but in terms of larger func-

tional groups, such as amino groups (NH3) or carboxyl groups (COOH). This enabled

large compounds to be built up piece-by-piece, something that would be helpful, for

example, in calculating the theoretical mass of a protein, based on its amino acid

sequence.

Due to lack of resources, little work was done on CORE576 in the following
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years. The contents of the database had been migrated to MySQL, and a basic

web-accessible front end was created, but little work was done on the animation

procedures. A few Perl scripts had been written, but they were mainly ad hoc single-

use scripts for loading data, and not animation procedures per se. As such, the

“definitive” version of the system remained the Access prototype. This was the state

of of the CORE576 system at the beginning of the current work.

3.2 Current Implementation

The current implementation of the CORE576 system has been migrated from Mi-

crosoft Access and Visual Basic to PostgreSQL (version 8.0.3) and Java (1.5 JDK).

PostgreSQL was chosen over Access due to its more advanced capabilities, its avail-

ability on a broad number of computer platforms, as well as its open source license;

it was chosen over MySQL due to PostgreSQL’s support for a greater subset of the

SQL standard. Using Java to code the animation procedures also removes platform

restrictions, as the Java Virtual Machine is widely available. The SQL used to create

the database is relatively portable, but utilizes a few PostgreSQL-specific extensions

for convenience, namely the extensions to the VARCHAR and NUMERIC types that elim-

inate the need to specify a maximum length or precision, respectively. By allowing

unrestricted VARCHARs, genetic and protein sequences can be stored without concern

that they will be erroneously truncated (any genomic information to be stored in

the system will likely utilize a special table of CLOB data), and unrestricted NUMERIC

datatypes allow both integer and decimal numeric information to be stored an manip-

ulated exactly. This simplifies data storage and also prevents errors being introduced

in the data import and export processes. Not all decimal values can be represented

exactly in binary; without the NUMERIC datatype, a value imported as “0.1” will be

stored as something slightly different, possibly leading to erroneous calculations and
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user confusion. The system thus accepts what it is given and returns exactly the

same; processing methods may subsequently use floating point or integer arithmetic

as appropriate, but the database itself is neutral.

3.3 Ruleforms

Each Ultra-Structure CORE consists of both animation procedures and a distinct set

of ruleforms that are specific to the CORE’s target domain. Although a complete

CORE576 is not yet achieved — as the CORE Hypothesis is non-falsiable, it will be

impossible to definitively say that one has been achieved — several ruleforms are now

defined (though they are certainly open to modification as work progresses). Their

current incarnations are described below, with example rules found in Appendix A.

3.3.1 BioEntities

The BioEntities ruleform is one of the key ruleforms of the CORE576 system. It is

an existential ruleform, declaring the existence of the various entities and (groupings

of those entities) that will participate in biological processes and their analyses. For

example, amino acids, the building blocks of proteins, are declared in this ruleform,

yielding rules with factors such as “Serine”, “Alanine”, and “Tryptophan”. Similarly,

the classes of amino acids (“Polar Amino Acids”, “Charged Amino Acids”, etc.)

are also defined, which facilitates the creation of animation procedures that apply

not to individual rules, but to classes of rules. Additional entities defined in the

BioEntities ruleform would include proteins, chemical elements and their isotopes,

bacterial strains, genes, peptide mass lists (e.g. output from a mass spectrometry

analysis), and results from various computational analyses (such as Mascot, GFS,

and PROCLAME; see Section 3.4 below, as well as Appendix B).
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As an existential ruleform, BioEntities has only one factor; namely, the name

of the entity. In the current incarnation of CORE576, the considerations are mainly

metadata-related, including a free-text description, usage notes, last-updated date,

and the Resource responsible for adding the rule to the system (see Section 3.3.5 on

Resources below).

3.3.2 BioEntity Network

The BioEntity Network is another vital ruleform in the CORE576 system. As a

network ruleform, it defines a semantic network relating BioEntities to one another;

each rule connects two BioEntities (referred to by the labels Parent and Child) with

a named link (the Relcode). Based on the relationships encoded in the rules of this

ruleform, new rules can be generated by logical inference, as detailed in Section 2.5.

While this can be used to automatically “fill in” trivial rules (such as <E. coli

ribosomal protein S22 IS-A Molecule>, deduced from the rules <Protein IS-

A Molecule>, and <E. coli ribosomal protein S22 IS-A Protein>), it can

be put to more powerful uses, such as determining all the measured peptides that are

common to a set of liquid chromatography fractions.

Currently the BioEntity Network has the Network factors Parent, Relcode, and

Seq Nbr (for “Sequence Number”). An additional factor Resource, which functions

to attribute the declaration of the rule to some Resource, enables several competing

hypotheses to be present in the network simultaneously.

3.3.3 BioEvents

The contents of this existential ruleform describe various processes that the system

is aware of. This can include biological processes inside a cell, processes the system

carries out, and even experiments performed by members of the lab.
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As an existential ruleform, the sole factor is the name of the BioEvent. Current

considerations for this ruleform are limited to metadata (such as a Description), but

will likely be expanded as this ruleform is further investigated.

3.3.4 BioEvents Network

As might be expected, the BioEvents Network ruleform defines groupings and connec-

tions among BioEvents. The chief use of this ruleform is currently the organization of

individual experiments into larger research campaigns. For example, groups may be

formed collecting all experiments performed in support of a particular research grant

aim, or all experiments performed by a particular lab memeber, or all experiments

performed on a particular piece of equipment.

The factors of this ruleform are the standard Parent, Relcode, and Seq Nbr,

while the considerations include Child and Is Original. See Table A.4.

3.3.5 Resources

In the CORE576, the Resources ruleform includes such entities as laboratory mem-

bers, standards bodies (such as IUPAC, the International Union of Pure and Applied

Chemistry), biological textbooks, computer programs, and the like; a Resource is

thus some source of information, an entity that declares that a rule entered into the

system is true.

The sole factor of the Resources ruleform is the name of the Resource. The

current non-metadata consideration is Credibility, an integer that ranges from 0 to 10

and indicates the trustworthiness of the Resource, with 10 being the most trustworthy.

A standards body may be assigned a credibility of 10, whereas the network inference

software may be assigned a credibility of 0 or 1, to reflect the provisional nature of



35

inferred rules.

3.3.6 Resources Network

Like all Network ruleforms, the Resources Network defines relationships between Re-

sources. The most common relationship types that currently exist between Resources

are simple grouping ones, such as those that declare computer programs to be mem-

bers of the group “Software”.

The structure of this ruleform is identical to that of BioEntity Network, with

the obvious difference that the linked entities come from the Resources ruleform rather

than BioEntities.

3.3.7 Relcodes

The Relcodes ruleform, another vital ruleform in the CORE576, defines the various

relationships that can exist in each of the Network ruleforms of the system. Its current

form is as described earlier in Section 2.4.3.

3.3.8 Attributes

Often, the entities that are used in the CORE576 system will have various pieces of

relevant information that must be recorded and tracked. In the mass spectrometry

applications, for instance, the mass of a protein or peptide is most certainly a piece

of data to be tracked. These attributes are not themselves entities, but are attached

to entities. Thus, the Attributes ruleform is an existential ruleform that defines the

kinds of attributes that will be considered in the system. Entries would include

“Atomic Number”, “Monoisotopic Mass”, “Sequence Start Position” (for example,

to locate a peptide fragment within the context of a parent protein’s primary amino
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acid sequence), and the like.

3.3.9 Attribute Network

Just as it can be helpful to have groupings of BioEntities, so too can it be helpful

to have groupings of Attributes. An example of such a grouping used in the current

system involves “Masses”. Protein mass spectroscopists deal with several kinds of

mass measurements: monoisotopic mass, average mass, nominal mass, most abundant

isotopic mass, and so on. These are all instances of “Mass”, and network rules can

express this fact.

The factors of this ruleform are the standard Network ruleform factors of Par-

ent, Relcode, and Seq Nbr, with non-metadata considerations of Child and Is Original.

An example is shown in Table A.9.

3.3.10 BioEntity Attributes

This ruleform contains rules that specify the attributes a particular BioEntity has, as

well as the values of those attributes. For instance, this is the ruleform that would

contain the knowledge that the element carbon has an average mass of 12.0107.

It is not enough to say that a particular BioEntity has a given value for a

given Attribute unconditionally and for all time, however. Rules in this ruleform may

be qualified with a Resource in order to, among other things, denote the credibility

of the rule, as well as accommodate alternative hypotheses. An additional factor is

BioEvent which denotes the process by which this attribute observation was obtained.

There are two non-metadata considerations for this ruleform, only one of which can

be non-null. These considerations hold either a textual string or a number, depending

on the Attribute. An example is given in Table A.10.
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3.3.11 BioEntity Attribute Authorization

All the attributes that the CORE576 system is capable of tracking are declared in the

Attributes ruleform, but there is nothing in that ruleform that constrains the entities

to which the attributes may be applied. For instance, the attribute “Monoisotopic

Mass” is applicable for chemical elements such as carbon and hydrogen, as well as for

proteins and peptides, but is nonsensical when applied to, say, E. coli bacteria. In or-

der to define which BioEntity / Attribute pairings are acceptable, the Ultra-Structure

notion of an “authorization rule” must be invoked. Long and Denning (1995) state

that authorization rules are responsible for declaring “what inputs are allowable, au-

thorized, or expected.” Thus, to acknowledge the fact that chemical elements can

have a monoisotopic mass, a rule to that effect must exist in this ruleform; the lack

of a corresponding rule for E. coli bacteria indicates the inappropriateness of that

pairing. Note, however, that an authorization rule does not mean that the Bioentity

must have an attribute, just that it may. For instance, an experimental protein, as

a protein, is allowed to have a monoisotopic mass, but that mass may not have been

measured or calculated yet.

Since a given BioEntity may potentially have several valid attributes, and all

BioEntities in a class (say, all “Proteins”) can have the same attributes, there would

be a very large number of redundant rules in this ruleform if there were no Network

ruleforms. For instance, knowing that all proteins can have a monoisotopic mass, we

would like to avoid having to explicitly state an individual rule for every protein in

the system (Protein A, Protein B, Protein C, etc.) that repeats this fact.

Additionally, clusters of related attributes may exist. The Attribute Network

provides a means for formally grouping these related concepts. Rules could be entered

into that ruleform, creating a notion of “Protein applicable mass attributes.” The

BioEntity Attribute Authorization ruleform could thus contain a single rule to the
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effect that all proteins can have any and all of the attributes in the “Protein applicable

mass attributes” group. This economy of rules is one of the strengths of the Ultra-

Structure notational approach.

This ruleform is used to ensure that only valid attributes are entered into the

system. In a future graphical interface, it will be used, for example, in screens for

users to manually enter rules; the user will only be given valid choices of attributes

to enter for a chosen BioEntity.

Currently, the factors of the ruleform include BioEntity and Seq Nbr (because

a given BioEntity may have several authorized attributes). The considerations include

the Attribute, along with metadata fields.

3.3.12 BioEntity Network Attributes

Just as BioEntities can have Attributes, so too can BioEntity Network connections.

This situation arises when additional information about the two connected entities

needs to be tracked, and when attaching this information to one of the entities alone

does not capture the true situation. An example of this is seen in the import of

Mascot data (see Section 3.4.2); the predicted amino acid sequence of a peptide ion

only makes sense when you have both a peptide ion as well as a protein that it is

predicted to have come from. Without the context provided by the protein, one

cannot say, for example, that a peptide ion represents the sequence “ITEVK” or

“IVTEK;” both have the same mass, so additional information must be provided.

Just as BioEntity Attributes rules are contextualized with a Resource and a

BioEvent, so too are rules in this ruleform. Thus the factors for a BioEntity Network

Attribute rule include Resource, BioEvent, Attribute, Seq Nbr, as well as all the

factors of the BioEntity Network rule the Attribute is being applied to. Similar to

BioEntity Attributes, the considerations in this ruleform can accomodate text string
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or numeric values for the Attribute. See Table A.12.

3.3.13 BioEntity Aliases

In the real world, a BioEntity may be known by many names or labels. For instance,

the element carbon is also known by the symbol “C”, and the amino acid threonine

is known by the codes “Thr” and “T”. Additionally, depending on the context, the

same label can refer to several different BioEntities. When discussing amino acids,

the label “C” is interpreted as referring to cysteine, but in the context of examining

a genetic sequence it refers to the nucleotide cytosine. The ability to resolve these

multiple names back to one “canonical” label — in our case, the label that acts as a

key into the BioEntities ruleform — is essential, and the BioEntities Aliases ruleform

presents a way to accomplish this goal.

The BioEntity Aliases ruleform (see example as Table A.13) currently contains

three factors. The first, Alias, is the alias that is being resolved. This factor references

the Aliases ruleform, which is currently a bare-bones ruleform, having only a single

factor (the Name of the alias) and no considerations. The second, Sense, refers to

a valid BioEntity and is the context in which to evaluate the alias, as described

above. This takes advantage of the grouping and classification capabilities of the

BioEntity Network ruleform; in the example given above, resolving the alias “C” to

cysteine requires a context of “Amino Acid”, which is itself a BioEntity. The final

factor, Seq Nbr, is added to allow a Alias to refer to potentially several BioEntities in

the same sense. This appears counterintuitive, and may perhaps be dropped in the

future, but the current way of handling references to proteins from other databases

necessitates this. Specifically, results from the Mascot program contain a protein

database accession number as well as a textual name for the protein. While the

accession number is unique, the name is not necessarily so; there are 690 E. coli
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proteins with the name “Hypothetical protein.- Escherichia coli.” in the MSDB (the

database underlying the Mascot program), as well as a number of other duplicately-

named proteins. Thus, in order to handle information obtained from Mascot, the

CORE576 system currently refers to proteins by using their accession number, with

the name serving as an alias. Other data sources likely have similar issues.

The single consideration for this ruleform is BioEntity, which is the BioEntity

the Alias refers to.

3.3.14 Attribute Metarules

This ruleform, along with Attribute Protocol, defined in the following section, are

provisional in the sense that they were created to perform a specific task in the

system; these ruleforms may or may not exist in future incarnations of the system,

depending on the evolution and consolidation of the ruleforms. As such, they are

somewhat particular to the task at hand, yet still retain some generality, as will be

discussed.

This ruleform supports the functionality described in Section 3.5. The exam-

ple ruleform is seen in Table A.14. As a metarule ruleform, this ruleform contains

information on how to process other rules. In particular, this ruleform guides the pro-

cessing of rules in the Attribute Protocol ruleform. The factors of this rule, Event and

Seq Nbr indicate which BioEvent the rules apply to. The considerations — BioEn-

tity1 and Attribute1 — have Relcodes as their values, and are used to transform a

BioEntity and Attribute, respectively, for examination of the Attribute Protocol rule-

form. These rules thus determine for a given input, which rules of Attribute Protocol

will be inspected.

As stated earlier, this ruleform is a provisional one. It is intended to support

functions that create, delete, and manipulate various BioEntity Attributes.
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3.3.15 Attribute Protocol

This ruleform is a companion to Attribute Metarules. After system input has been

transformed by an Attribute Metarule, the transformed input is used to select rules

from this ruleform. As such, the factors of this ruleform mirror the form of the

metarule ruleform: Event corresponds to Event from Attribute Metarules, and BioEn-

tity1 and Attribute1 correspond to the transformed values from those ruleforms (this

is clarified by the example presented in Section 3.5). If processing requires multiple

steps, Seq Nbr will determine the ordering of that processing. The considerations of

the ruleform specify the action to be taken when a rule’s factors are matched. In this

case, Method and Class define the Java class and method that should be invoked to

perform a task, and BioEntity2 and Attribute2 specify the inputs for that method.

As discussed in Section 2.6, a value of “ORIGINAL” in these considerations indicates

that the unmapped, original input values be passed. Otherwise, the value of the

considerations are passed as is to the specified software method. An example of this

ruleform may be seen in Table A.15.

The ruleform as currently designed specifies Java methods to execute via the

Java Reflection API. The specified method should be a static class method, as there

is no way to specify a particular instance object. The ruleform would likely need to

be modified if another programming language were used.

3.3.16 Transformation Metarules

This ruleform is paired with the Transformation Protocol; the two ruleforms combine

to guide processes that transform BioEntities in some fashion. Currently these rule-

forms are used to simulate protein translation, as well as RNA transcription. These

processes are described in Section 3.6.
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This ruleform is very similar to Attribute Metarules; it will be interesting to see

if there is a way to consolidate the functions of these ruleforms into one more general

ruleform. The ruleform has BioEvent and Seq Nbr as its two factors, and Resource

and BioEntity as its considerations. Each consideration value will be a Relcode used

to transform some input in the appropriate Network ruleform. In this case, Resource

and BioEntity act as inputs to be mapped. Mapped values will be used to inspect

the rules in the Transformation Protocol ruleform.

An example is seen in Table A.16. As mentioned in Section 2.6, the special

relcode value of “SAME” indicates that no mapping is to take place.

3.3.17 Transformation Protocol

This ruleform contains processing steps for transformation steps, currently including

things like protein translation.

The ruleform has three factors: BioEvent, Seq Nbr, and Resource. Its consid-

erations include BioEntity and Relcode, which refer to entities declared in those two

ruleforms. In essence, this ruleform contains rules that say how to select a specific

mapping from the BioEntity Network, but guided by the Transformation Metarules

ruleform.

An example is seen in Table A.17. The example detailed in Section 3.6 will

make the usage of this ruleform and Transformation Metarules clear.

3.4 Data Import

In order to be useful as an investigative tool, it is necessary that laboratory data

be imported into the systems ruleforms. Collections of Java classes were written for

each of the several sources detailed below to aid in the import process. In general, the
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data is read into an object-oriented data structure, which can then be passed to an

importer class, which then generates the rules in the appropriate ruleforms necessary

to represent the data. The entire data sets are first transformed to an in-memory

data structure because some generated rules will require knowledge of the data set as

a whole, which may not be available if a line-by-line interpretation of the data were

performed. Additionally, such data structures can potentially be re-used in other

applications.

3.4.1 OBO Import

The Open Biomedical Ontologies group (Open Biomedical Ontologies 2006) has de-

fined a common format for representing a number of popular ontologies in the biomed-

ical domain, including the Gene Ontology (Gene Ontology Consortium 2000). Thus,

to import the Gene Ontology into the system, a parser and importer was written to

the OBO format specifications, enabling import of any other OBO ontology.

Mapping from the Gene Ontology to CORE576 ruleforms is rather straightfor-

ward. The GO contains three sub-ontologies: biological process, cellular component,

and molecular function. Processes and functions are entered into the BioEvents

ruleform, while components are entered into the BioEntities ruleform. The ontologi-

cal links (the “IS-A” and “PART-OF” relationships) are entered into the appropriate

Network ruleform.

3.4.2 Mascot Import

The Mascot program (Perkins et al. 1999) is a powerful tool for matching peptides

to the proteins from which they are derived, provided that sequence information

for those proteins exist in sequence databases. The UNC Mass Spectrometry Core

Facility offers Mascot searching as a service to campus research labs. Though the
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Mascot program is capable of generating output in a variety of formats, the UNC

facility provides results in an Excel spreadsheet format only. To import this data

into the CORE576 system, a collection of Java classes were written which convert

the data (exported from Excel as a tab-delimited text file for ease of parsing) into an

object-oriented data structure which is then used for rule generation.

In general, the Mascot results concern a collection of peptide ions, generated

from a single biological sample, whose mass has been experimentally measured by a

mass spectrometer. For each sample, a number of “hits” are presented, indicating

that an identifying match has been made between some subset of the peptide ions and

a protein in the MSDB (Pappin and Perkins 2005). Each hit contains information

concerning the protein and the peptides that are predicted to match, including a num-

ber of pieces of contextual information, such as the predicted sequence of the peptide

ions, as well as statistical confidence values. For each sample, a BioEntity is created,

as well as one for each of the peptide ions generated from that sample. A rule in the

BioEntity Attributes ruleform is created to store the observed mass of each peptide

ion. Rules in the BioEntity Network ruleform are generated linking all peptide ions

to the sample from which the are derived. Additional BioEntity rules are generated

for each hit, with additional BioEntity Network rules linking hits to samples, as well

as peptide ions to the hits they participate in. If an existential rule for the matched

protein does not already exist, a new one is created in the BioEntities ruleform, with

BioEntity Network rules being generated to link hit entities and peptide ion entities

to the matched protein entity. To accommodate the information that is dependent

on the match, rules are entered into the BioEntity Network Attributes ruleform.
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3.4.3 GFS Import

The Genome-based Peptide Fingerprint Scanner (Giddings et al. 2003), or GFS, is a

system developed in the Giddings lab that functions like Mascot to identify proteins

based on mass spectrometry data, but without the restriction that protein information

reside in any database.

Since GFS is available via the internet (http://gfs.unc.edu), the current

standard output of GFS is an HTML document. Migration to XML output is un-

derway, but an XML schema to represent GFS results is not yet complete. As an

intermediate solution, an importer was written to parse a generically XML-formatted

dump of the internal GFS results data structure. Generation of this XML is a lan-

guage feature of the Apple Objective-C frameworks in which GFS is written.

As GFS presents results very similar to those of Mascot, the mapping process

for GFS data is similar as well. Instead of matching peptides to proteins, GFS

matches peptides to genomic sequences, so BioEntity rules creating these sequences

are created instead of rules for proteins. Other rules are generated in the BioEntity

Network and BioEntity Network Attributes as necessary.

3.4.4 PROCLAME Import

Also developed in the Giddings lab, the PROtein CLeavage And Modification Engine,

or PROCLAME, is an algorithm for determining putative post-translational modifi-

cations based on intact protein mass measurements (Holmes and Giddings 2004).

Similar to the GFS output, an XML dump of the internal PROCLAME results

data is the input to the importer. This work is currently ongoing, and may require

either an extension of existing ruleforms or the creation of a new one. The reason for

this is that while the above described data sets can be modeled with binary Network

http://gfs.unc.edu
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rules, PROCLAME data appears to require ternary rules. An experimental protein

has its whole mass measured, and is then linked to a known protein in the context of

some number of post-translational modifications. The post-translational modification

is currently conceived as a BioEntity in and of itself, so we have three BioEntities

that are related to each other in a way that is not decomposable into binary Network

rules.

3.5 Example Use: Mass Calculation

While the prototype CORE576 system could calculate masses of chemical compounds,

its capabilities were rather limited. Only the average mass of molecules was able

to be calculated, whereas researchers (particularly mass spectroscopists) are gener-

ally interested in a number of different masses, as mentioned above. In the current

CORE576, nominal, monoisotopic, and average masses are able to be calculated, for

both molecules (such as water and proteins) and for elements. To support this, the

system contains rules specifying the masses and abundances of all chemical isotopes,

imported from the National Institute for Standards and Technology’s (NIST) website;

all other information is directly calculable from these data.

To facilitate the calculation of these masses for molecules, the grouping ca-

pabilities of the BioEntity Network ruleform were leveraged. Two classifications of

molecules were made: “Base Mass Type” and “Composite Mass Type”. If a molecule

belongs to the class “Base Mass Type”, its molecular composition is defined in terms

of the numbers of atoms of each of its component elements. For example, a molecule

of water would be defined as having two atoms of hydrogen and one of oxygen, while

a molecule of the amino acid glycine would be defined as having two atoms of car-

bon, two of oxygen, one of nitrogen, and five of hydrogen. The class is called “Base

Mass Type” because instances of these molecules will be used to assemble instances
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of “Composite Mass Type”. For instance, instead of having to define the composition

of an amino acid residue (an amino acid with a loss of the equivalent of one molecule

of water) in terms of atom counts (which would largely be a duplication of the defini-

tion of the amino acid molecule), one can state rules that say, e.g., a glycine residue

has a glycine molecule as its “base”, with a water molecule subtracted. The mass of

the glycine residue can then be calculated by subtracting the mass of a single water

molecule from that of the intact glycine molecule.

To calculate masses of elements, a different approach needs to be taken. Masses

of elements depend on the masses of their isotopes, as well as each isotope’s relative

abundance in nature. For instance, a monoisotopic mass of an element is the mass

of its most abundant isotope, while the average mass is the sum of the masses of

all the element’s isotopes, weighted by their relative abundances. Thus, depending

on what kind of mass calculation is requested, a different algorithm is required. It

may seem odd to want to calculate the mass of an element when such information

is readily available, as is the case on the NIST website. Periodically, IUPAC will

release updated measurements of isotopic weights and / or abundances (due to more

accurate measurement technologies, for example). In such a case, the new data can be

entered into the system, which can then compute any elemental mass measurements

that depend on that data.

An envisioned use for this mass calculation facility would include automatic

protein mass calculation. Upon entering the sequence of a new protein to the system,

a mass calculation event could be triggered, calculating average, monoisotopic, and

nominal mass, as well as most abundant isotopic mass, an important measurement

for mass spectroscopists (to be implemented at a later date). Additionally, a common

task in the Giddings lab is to correlate experimentally measured peptide masses with

the masses of theoretical peptides; these theoretical peptides could be generated auto-

matically from the new protein sequence, and each of their masses could subsequently
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be generated.

Small software methods implementing algorithms for calculating the various

masses were written. To trigger the calculation of a mass, three parameters need to

be input into the system; the name of a BioEvent (“Calculate Attribute”), the name

of the BioEntity to operate on (“Water,” “Carbon,” “Serine Residue,” etc.), and the

name of the Attribute to calculate (“Monoisotopic Mass,” “Average Mass,” etc.); for

the purposes of illustration, assume the parameters “Calculate Attribute,” “Serine,”

and “Average Mass.” These three parameters are used to drive the processing of the

request. Initially, the BioEvent is used as a key to search the Attribute Metarules

ruleform, which can be seen in Table A.14. The two rules for “Calculate Attribute”

seen there would be returned. The contents of the BioEntity1 and Attribute1 fields

are not a BioEntity and Attribute, respectively, but rather relcodes used to navigate

the BioEntity Network and Attribute Network ruleforms in order to generalize the

BioEntity and Attribute request parameters. First, the metaprotocol rule indicated

by Seq Nbr = 1 is considered. The BioEntity Network ruleform is consulted, where

a rule stating that “Serine” with respect to the relcode “MoleculeType” is a member

of class “Base Chemical, Molecule, Or Group”. Similarly, the Attribute Network

is consulted for the mapping of “Average Mass”, which yields a rule stating that

“Average Mass” with respect to the relcode “Attribute Type” is a member of class

“Mass”. Thus, our original set of parameters has been transformed into “Calculate

Attribute,” “Base Chemical, Molecule, Or Group,” and “Mass.”

Continuing with the processing, this new transformed set of parameters is used

as a search key for the Attribute Protocol ruleform, seen in Table A.15. A matching

rule is found, which indicates that its considerations should now be examined. The

Class and Method considerations indicate which software method is to be invoked,

while BioEntity2 and Attribute2 indicate the parameters to be passed. In this case,

both values are “ORIGINAL”, which indicates that the untransformed inputs (i.e.
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“Serine” and “Average Mass”) should be passed. The animation procedure driving

this entire process will then reflectively invoke the specified method, passing it the

specified parameters.

3.6 Example Use: Protein Translation Simulation

The original CORE576 prototype had the capability of translating a DNA sequence

into a corresponding protein sequence, but the current system has more sophisticated

capabilities in this regard.

One significant drawback of the prototype system is that the only kind of

translation possible was that dictated by the universal genetic code. The code is

universal in that for the vast majority of known species it specifies the mapping from

three-letter DNA codon to single amino acid, but in a number of species, this code

is slightly modified. Generally these alternative genetic codes are identical to the

universal code with the exception of one or two altered mappings. Unfortunately,

the prototype did not account for the existence of these alternative codes. Addition-

ally, the prototype only handled the translation of DNA into protein, but not DNA

transcription to RNA, or RNA to protein.

Biological sequences were also represented in a rather unconventional way. A

gene would be entered into the BioEntities ruleform. Since the nucleotides that com-

prise the sequence of a gene are themselves BioEntities, the sequence of the gene would

be encoded as a series of BioEntity Network rules, utilizing the Seq Nbr factor as an

index into the sequence; the fact that Gene X has cytosine as the nucleotide at the

fifth position would be stored thusly: <Gene X HasComponent 5 Cytosine>.

With increasingly long genetic sequences (such as chromosomes or whole genomes),

this approach would be untenable. Currently sequences are stored conventionally as

strings, e.g. “ATCGGCAT. . . ” in the database.
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To simulate the translation of a strand of DNA into protein, one must first split

the target DNA sequence into codons. Unfortunately, this processing currently exists

outside of the confines of the Ultra-Structure ruleforms; incorporating this “string

parsing” is ongoing work. However, given a codon (in the form of a three-letter

triplet, such as “ATG”) and a genetic code (encoded as a Resource), one can begin

to translate the protein. Currently, the 64 different possible codons are represented

as BioEntities, named “ATG”, “ATC”, etc.

Recall that a Resource is some entity that is the source of a piece of information

in the system. Thus a genetic code, such as “Universal Genetic Code” or “Ciliate

Nuclear Genetic Code”, is the source of the information that informs us which amino

acid a particular codon codes for. Also recall that the “Universal Genetic Code” is in

essence the code that other alternative codes are based upon; alternative codes are

kinds of “exceptions” to the universal code. This “exception” idea can be encoded

as a rule in the Resources Network ruleform: <Ciliate Nuclear Genetic Code

IS-EXCEPTION-TO Universal Genetic Code>. With this information in

place, translation can begin.

Input for this transformation will consist of the BioEvent, Resource, BioEntity,

which will be used to select rules from the Transformation Metarules ruleform in much

the same way as with the Attributes Metarules ruleform. As an example, consider

the input <Protein Translation, Ciliate Nuclear Genetic Code, ATG>. In

other words, we want to determine the amino acid that is encoded by the DNA codon

“ATG” using the “Ciliate Nuclear Genetic Code”.

First, inspect the Transformation Metarules ruleform for rules matching the

BioEvent “Protein Translation”. As seen in Table A.16, two rules match; these will

be inspected in an order determined by the value of Seq Nbr. The first rule states

that no transformations are to be performed (indicated by the special relcode value
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“SAME”).

Processing is now transferred to the Transformation Protocol ruleform, at-

tempting to match the factors BioEvent and Resource. As seen in Table A.17, two

rules match. Both state that the BioEntity to be transformed should be the “ORIG-

INAL” one passed as input; in this case, the codon “CTG”. The first matching rule

specifies a Relcode of “Signal Encoded”. This rule tells us to examine the BioEntity

Network ruleform to find out what signal (if any) the CTG codon encodes in the Cil-

iate Nuclear Genetic Code (certain codons specify processing signals, such as “Begin

Translation” or “Stop Translation”). As CTG encodes no special signal according to

the Ciliate Nuclear Genetic Code, there will be no matching rule. The next matching

rule is then inspected, requesting an inspection using the “Amino Acid Encoded”

relcode instead, since it is possible for codons to encode both a signal and an amino

acid.

Earlier it was mentioned that alternative genetic codes generally differ from the

universal genetic code in only a small number of codon assignments. As such, it would

not make much sense to essentially duplicate rules stating, for example, that both

the Ciliate Nuclear Genetic Code and the Universal Genetic Code both mapped the

codon CTG to the amino acid lysine. We should be able to take advantage of the rule

in the Resources Network ruleform that says <Ciliate Nuclear Genetic Code IS-

EXCEPTION-TO Universal Genetic Code>, which is exactly what is done.

Rules are entered into the BioEntity Network linking each of the 64 possible codons

to the appropriate signals and amino acids, as defined by the Universal Genetic Code.

Thereafter, only those assignments that differ between the universal and alternative

genetic codes are recorded as rules. Thus, to add a new alternative genetic code to

the system, only two or three new BioEntity Network rules will generally need to be

added.
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With this in mind, the last inspection described (using the “Amino Acid En-

coded” relcode) will most likely not match any rule — there are only three codon

assignments difference between the Ciliate Nuclear Genetic Code and the Univer-

sal Genetic Code. As a result, processing will revert back to the Transformation

Metarules ruleform, with the second of the two originally matched rules.

This second metarule, instead of requesting no mapping of the input values,

specifies that the Resource — in our example, the “Ciliate Nuclear Genetic Code”

— should be masked via the Relcode “IS-EXCEPTION-TO”. Examination of the

Resources Network indicates that the result of this masking will be “Universal Genetic

Code”.

With this new transformed input set, the Transformation Protocol ruleform is

inspected as before, this time matching with “Universal Genetic Code” rather than

the earlier value of “Ciliate Nuclear Genetic Code”. Again, no “Signal Encoded” is

found, but this time an “Amino Acid Encoded” is found, namely “Leucine”. In this

way, an entire genetic sequence could be translated into protein sequence, using any

number of genetic codes.

Note that this transformation method is general, in that largely the same

processing can be used to simulate the transcription of RNA from DNA. Instead

of scanning a genetic sequence in groups of three nucleotides (i.e. codons), scanning

would have to take place a single nucleotide at a time, resolving the single-letter codes

to the BioEntity representing the nucleotide base by utilizing the BioEntity Aliases

ruleform. However, once that was done, the processing would be essentially the same;

the rules would look different, but the relationships among them would be identical to

those among the protein translation rules. A tracing through this processing will not

be given, but the rules governing it are given in the example ruleforms in Appendix

A.
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Chapter 4

Related Work

The post-genome information overload in the biological sciences has necessarily re-

sulted in the development of methods to efficiently and effectively manage that infor-

mation. This work on an Ultra-Structure for biology is the latest in this line. What

follows is a survey of some of these efforts, with comparisons to Ultra-Structure.

4.1 BioNetGen

The concept of applying rule-based reasoning to biological problems is not new. A

recent application, BioNetGen (Blinov et al. 2004; Faeder et al. 2005), is a specialized

system for modeling cell-signaling networks. A user creates a plain-text input file,

defining the existence and amounts of signaling molecules (as well as their modification

states) and the equations that govern their interactions. This file is then processed

by a Perl program, simulating the network of biological interactions. This results

in the generation of plain-text output, including complete listings of all generated

chemical species and their modification states, timecourses of protein levels, and even

SBML-formatted XML output.

Compared to the Ultra-Structure methodology, this most certainly not a gen-

eral tool. All components of the system are specific to cell signaling networks. Ad-
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ditionally, the structure of the rules is not clearly specified with anything resembling

ruleforms. The rules are expressed for the most part in mathematical language,

as opposed to the natural language-like rules of Ultra-Structure. BioNetGen does,

however, take a relatively small number of rules and fully propagates a network of

logically consistent data that are implied by those rules. In this way, BioNetGen and

Ultra-Structure are similar; both can be used to investigate and evaluate hypotheses,

represented by the input rules. The CORE576 model as it currently stands is not

explicitly mathematical, as BioNetGen is, but nothing in Ultra-Structure theory nec-

essarily precludes this. Indeed, a proposed extension to the current model involves

the addition of confidence values to rules, to be utilized in probabilistic inferencing.

Another obvious difference between BioNetGen and CORE576 is that BioNetGen is

not an information storage system, but rather a modeling and simulation system.

4.2 SPLASH

The SPLASH (systematic proteomics laboratory analysis and storage hub) system

(Lo et al. 2006) is a web-accessible, XML-based proteomics information system. Its

development arose from an ever-present need in the bioinformatics community to

integrate information from a variety of sources into some unified architecture.

The heart of SPLASH is the PEDRo proteomics data model (Taylor et al.

2003). This data model was proposed before the MIAPE (minimal information about

a proteomics experiment) standard (HUPO PSI 2005a) as a way to encode relevant

information concerning a proteomics experiment. SPLASH uses a slightly modified

version of this data model to accommodate the particular work that its research

group does, but all information can be mapped back to the original PEDRo model,

preserving compatibility for both import and export. Thus, any PEDRo-compliant

data can be easily brought into the system. Data import can be interactive, through
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a variety of predefined forms, or via batch mode, wherein data exported from e.g.

mass spectrometers are processed by helper programs and input into the underlying

database. Internally, data is stored in a conventional relational database mapping

of the PEDRo data model. The system is XML-based in the sense that its inputs

and outputs are XML documents, which is well-suited to its web-accessible nature;

of particular interest is the generation of SVG representations of two-dimensional

gel images. SPLASH also incorporates outside information from the Gene Ontology

(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG).

SPLASH is based on PEDRo; the system’s main contribution is a web-accessible

front-end for interacting with the data, in terms of querying, analyzing, importing,

and exporting. SPLASH has a modular architecture, which currently includes com-

ponents for data entry and management, as well as search and data mining. The

maintainers of SPLASH stress that they have kept an eye open for evolution of com-

munity data interchange standards, such as MIAPE and mzData (HUPO PSI 2005b),

in order to facilitate their seamless interchange with SPLASH repositories. As a re-

sult, the SPLASH system is robust and useful for integration and inspection of various

proteomics information sources.

Both the CORE576 Ultra-Structure and SPLASH platforms aim to be a gen-

eral information architecture for bioinformatics researchers. However, SPLASH is

clearly crafted specifically for the proteomics community. CORE576 was developed

in the context of a proteomics laboratory, but nothing in the structure of the sys-

tem restricts it to only proteomics data. Indeed, one of the tenets of Ultra-Structure

methodology is that the underlying architecture (the ruleforms and procedures for

manipulating them) will remain the same across a class of domains. The differences

come into play in the form of the rules that are entered into the system. SPLASH

encodes this information into the very structure of the system, and so is limited to

the proteomics community.
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Although SPLASH has data mining modules, it does not intrinsically contain

any kind of inferencing capabilities, which is a significant difference with CORE576.

4.3 PRISM

PRISM is an distributed information system targeted toward high-throughput pro-

teomics research, developed by the Pacific Northwest National Laboratory to manage

their LC-MS proteomics workflows (Kiebel et al. 2006). It is a large system, com-

posed of several interconnected servers, performing specialized tasks. It has a unique

modular architecture that allows a degree of flexibility in managing data processing

pipelines. While the PRISM system is quite different from an Ultra-Structure system,

there exist a number of interesting similarities between the two approaches.

The first of these similarities concerns the so-called “manager programs,” spe-

cialized, autonomous programs that periodically query a main data server to see if

there is any work for them to perform. These programs perform tasks such as pre-

processing incoming data from laboratory equipment, archiving old data sets, and

performing specific data analyses. These manager programs are described as state

machines whose operations are based on the values of state variables associated with

metadata records for the scientific data managed by the system. Tracking entities

(the PRISM term for these metadata records) are organized into a hierarchy, rooted

at “Campaign” and extending down to “Analysis Job,” enabling the tracking of data

throughout the entire experimental process, as well as the organization of data into

experiments and larger encompassing research campaigns.

The manager program aspect of the PRISM architecture recalls Long’s descrip-

tions of the CORE650 business Ultra-Structure system (Long and Denning 1995). In

that system, animation procedures are responsible for generating implicit work or-

der steps, ordering them, and writing them to a Work Orders ruleform (table). The
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agencies responsible for executing these various steps, be they human or computer,

will monitor the Work Orders table for tasks that indicated that they are “ready”

to be performed. When a task is completed by an agent, it is flagged as such; the

Ultra-Structure system then determines which subsequent tasks are now ready to be

executed. This cycle is repeated until all tasks have been completed.

Additionally, PRISM’s tracking entities recall Ultra-Structure’s concept of Net-

work ruleforms, though in a more restricted form. PRISM maintains a strict hierarchy

of entities, whereas Ultra-Structure allows for richer graphs. PRISM’s tracking en-

tities do allow for specialized handling of experimental data sets based on metadata

attributes: an example given concerned the differential processing of experimental

data from 18O- versus 15N-labeled samples. Rules associated with particular tracking

entities direct their processing by the manager programs. It is unclear how these rules

are implemented in the PRISM system; are they encoded into software, or are they

decoupled and available to the user for ease of inspection and modification? These

rules are certainly important in terms of directing processing, but it is not clear how

central they are to the overall PRISM architecture. Additionally, it does not seem

that PRISM’s hierarchy of tracking entities allows for any form of logical inferencing,

which is an important aspect of any Ultra-Structure system.

4.4 PRIDE

PRIDE (the protein identifications database) is another XML-based proteomics data

repository (Martens et al. 2005). It was developed at the European Bioinformatics

Institute (EBI) to address a common problem: protein identification data published

in journal articles is typically available only in PDF tables, which is not readily

amenable to machine processing. The PRIDE system is envisioned as a way to turn

“publicly available data into publicly accessible data” by creating a machine-accessible
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repository for protein identification information.

The PRIDE data format is a hierarchical, experiment-centered XML model,

backed by a relational database backend. The creators of the system list this as a

strength of the system; as there are many possible mappings of hierarchical data

to a relational model, third parties can create relational implementations that are

tailored for specific data processing and querying needs. The relational schema used

by the official PRIDE system is thus a reference implementation, presumably chosen

for performance in general usage cases.

PRIDE certainly fills an important role in proteomics research. It is a rather

specialized role, however, and is clearly proteomics-specific. Additionally, the system

is only used for storage of information; any manipulation or analysis of the data is

wholly external to the system.

4.5 BioWarehouse

The BioWarehouse system (Lee et al. 2006) represents an evolution of the federated

database approach taken by other projects. The warehouse approach integrates in-

formation across a number of different data sources, but does so in a local context; all

data sources are replicated locally and integrated via a common schema. Lee et al.

(2006) list several reasons why decentralized federation approaches may be less than

adequate, and argue that local replication can have definite benefits.

To facilitate the import of different datasets, BioWarehouse has the concept

of Loaders, specialized programs that are responsible for importing data from some

dataset (e.g. Swiss-Prot, the Gene Ontology) into the common BioWarehouse schema.

The CORE576 system has similar facilities; an Open Biomedical Ontologies (OBO)

importer has been developed for import of the Gene Ontology and other OBO-
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formatted ontologies, as well as importers for output data from Mascot, GFS, and

PROCLAME software.

While BioWarehouse does have schema-level support for experimental data,

the system appears to be targeted towards more large-scale integration efforts. In

contrast, CORE576 is currently very much focused on the integration of experimen-

tal data on a local level, though incorporation of large data sets on the scale of

BioWarehouse is a development goal.

While BioWarehouse integrates data from various sources, it does not store

any information regarding methods of processing these data. Here, CORE576 and

BioWarehouse are clearly different. Further, BioWarehouse achieves its integration

using traditional relational database modeling approaches, as opposed to the novel

rule-based approach of CORE576.

4.6 Summary

Clearly the creation of information management systems is an popular and impor-

tant area of research for proteomics and biological research in general. Most systems

address the problem of data integration in some way, usually by importing data from

a number of sources into some common repository. Some systems are essentially

for storage only, while others include some form of data analysis capabilities; some

are specialized while others are general. All are built on standard information tech-

nologies, whether it be relational databases or XML. The CORE576 system is the

next research project in this line of work. It is distinct from other approaches in its

use of the Ultra-Structure methodology; no other system to date has explored this

technology for biological information management.
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Chapter 5

Future Work

The work presented in this thesis is largely exploratory in nature. As such, there is

much work to be done in the future in order to create a truly robust and user-friendly

information system. To that end, several efforts are outlined below.

5.1 Interface

The interface to the CORE576 is currently very limited. Most interaction takes

place via server command line. The Network Propagation Engine has a basic GUI

implemented in Swing (the standard Java widget set). Interaction with the rules

of the system is facilitated through the use of the PgAdmin III software (http:

//www.pgadmin.org/), and Open Source frontend to the PostgreSQL DBMS. For

development purposes, these interfaces are acceptable, but will not be appropriate

for end-users. Thus, a comprehensive user interface must be developed. Initial efforts

will likely provide either command line interaction or a simple Swing GUI for a small

number of tasks. Further efforts will likely be devoted to expanding the scope of

the Swing GUI. If a web interface is desired, a natural choice will be J2EE servlet

technology, using Tomcat, the J2EE servlet container reference implementation, and

either the popular Jakarta Struts framework, or the newer Stripes framework, which

http://www.pgadmin.org/
http://www.pgadmin.org/
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leverages new features of the Java 1.5 JDK.

5.2 Ad Hoc Querying

Existing Ultra-Structure systems are “closed” systems, in that all the queries and

analyses the systems are capable of handling are encoded as rules in the system. Ad

hoc querying is thus not supported. This works fine for business systems, where

common analyses are repeatedly performed, but may not be suitable for biological

research contexts. To be sure, there are regular analyses that will be performed, but it

is certainly reasonable for a researcher to come up with some exploratory question, the

solution for which may not be addressable by existing rules. However, an analysis of

the kinds of questions commonly asked by researchers may reveal commonalities; these

may be leveraged in the design of Ultra-Structure rules and animation procedures that

can respond to broad classes of queries.

Should ad hoc querying prove necessary for the CORE576 system, a key re-

quirement for its support will be an improved method of network propagation, dealt

with in the next section.

5.3 Network Propagation

Possibly the most pressing work for the CORE576 lies in network ruleform propa-

gation. Previously implemented Ultra-Structure systems have taken the approach

of explicitly deducing all logical consequences of the given rules in a particular net-

work ruleform at once, writing these new rules into the database. This approach

requires several passes of logical deduction through the ruleform; each pass extends

the “inference frontier” out by one step. Since newly deduced rules can combine

with previously deduced rules to generate even more rules, deduction must continue
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until a pass through the ruleform results in no additional rules being generated. This

approach works well with small collections of rules, or in situations where immedi-

ate access to deduced facts is not of great importance: some implementations of the

CORE650 business management system propagate their networks only on a weekly

basis (Jeffrey Long, personal communication).

In a systems biology context, however, such approaches may not be appro-

priate. A single mass spectrometry experiment, for example, can generate copious

amounts of data, resulting in the addition of thousands and thousands of new rules.

Furthermore, any facts and connections implicit in these data will likely need to be

immediately accessible. For example, upon importing data from a new experiment, a

researcher might want to know how that data relates to existing data in the system.

The rulebase of such a system would be expected to grow to millions of rules (as

have previous Ultra-Structure systems). In such a scenario, the brute force deduction

scheme outlined above would rapidly become impractical.

An alternative to pre-computation of deducible rules is restricted dynamic

query-time deduction. This approach would incur a runtime performance penalty,

but would eliminate the repeated and lengthy full-ruleform deductions that would

necessarily have to be performed. In Section 2.4.3, the concept of relcode networks

was discussed, a concept that will be necessary to implement query-time deduction.

Since network ruleforms define directed acyclic graphs, a given entity may have mul-

tiple parents. This offers several choices of direction for deduction; pre-computing

deducible rules entails deduction proceeding along all these paths, but query-time de-

duction requires some way of narrowing down the choices. For instance, the deduction

of which other proteins a given protein interacts with may not need to proceed down

a path dealing with which gene encodes that protein. A relcode network would allow

relcodes to be grouped together into broader classes, enabling animation procedures

to choose only deduction paths based on relcodes of a desired class. Such an approach
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stands to considerably reduce the amount of deduction that must be done for a given

query.

5.4 Advanced Functionality

In addition to working out implementation-level details, additional functionality will

be added. One straightforward yet helpful feature will be the creation of reports

detailing all the currently known information on a given entity, particularly proteins.

Another more exciting function would be to use the CORE576 system to assess the

validity of PROCLAME predictions, given a set of mass spectrometry data. When

a peptide mass fingerprinting program like Mascot or GFS identifies proteins based

on peptide masses, there are invariably peptides that remain unmatched. This may

be for a number of reasons, but post-translational modifications are among the most

interesting. With all mass spectrometry data and identifications stored in the same

system, it will be straightforward to automatically generate a list of unmatched pep-

tides. Predicted posttranslational modifications from PROCLAME can be evaluated

relative to these peptides; for each peptide, does the mass change predicted map it to

a Mascot- or GFS-identified protein? PROCLAME predicts several scenarios, each of

which can appear equally legitimate; the only way to determine which one is actually

true is to correlate each scenario to the experimental data on hand. This task is

currently one that is tediously performed by hand; automated analysis would be a

boon to researchers. This work is currently underway.
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Chapter 6

Conclusion

Ultra-Structure presents an information system design methodology that may prove

beneficial to the biological research community by enabling diverse data and protocol

information to be stored, queried, and manipulated in a single repository. This can

facilitate analyses that incorporate all available knowledge in ways that current ap-

proaches cannot. This thesis presents the results of an exploration of Ultra-Structure

in a biological research setting by building on and extending previous work done on

a prototype system. A more complete CORE576 will certainly contain more rule-

forms than are listed here, and the ruleforms described herein are likely to change in

the course of development, as the “true” deep structure of biological research is ap-

proached. Indeed, these ruleforms described here are rather different than the ones in

the original prototype, and have undergone revision since the beginning of this work.

The processes encoded into these ruleforms, while simple, do convey the general ideas

of an Ultra-Structure system, and this overall project represents the first application

of these ideas to biological research. It is hoped that this work can be a foundation

on which further development can be based. The ultimate goal will be the creation of

an information management system that serves as an effective tool to aid biological

researchers in their work.
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Appendix A

Example Ruleforms

Presented here example ruleforms, shown in tabular format, which are referred to

many times in the text. As a convention, all factors are shown to the left of the

double vertical line, and all considerations are on the right. The header of table

defines the ruleform itself, while rows of the table are instances of individual rules in

that ruleform.

The ruleforms that follow are condensed versions of the actual ruleforms used

in the CORE576 system. In practice, ruleforms generally have a number of additional

considerations which annotate rules with metadata, such as declaring what agency

is responsible for asserting this rule, when the rule was last modified, and other

“bookkeeping” information. These condensed ruleforms are given in order to convey

the essence of the ruleform, as well as for space considerations.

Table A.1: The BioEntities Ruleform

Name Description
Serine The amino acid
Serine Residue The residue form of serine
Experiment 5 LC Fraction 6 The sixth liquid chromatography fraction obtained from Experiment 5
Q4FBC3 ECOLI A protein in the MSDB; see BioEntity Aliases
Carbon The chemical element
Carbon-12 An isotope of carbon
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Table A.3: The BioEvents Ruleform
Name
Definition
Protein Translation
DNA Replication
RNA Transcription
Reverse Transcription
MALDI Mass Spectrometry Experiment 534
NIH Grant 734883 Experiments
Christopher Maier’s Experiments
Mass Spectrometry Experiments
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Table A.5: The Resources Ruleform
Name Credibility
Ciliate Nuclear Genetic Code 10
Contra Software 0
GFS 0
IUPAC 10
Mascot 0
Propagation Software 0
Property Inheritance Software 0
Top Node 0
Universal Genetic Code 10
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Table A.7: The Relcodes Ruleform
Name Contra Is Preferred Is Transitive
SAME SAME t f
Attribute Class Includes Attribute t t
BaseComponent IsBaseComponentOf t f
HasException IsExceptionTo t f
Includes IsA f t
Includes Attribute Attribute Class f t
IsA Includes t t
IsAddedTo Addition f f
IsBaseComponentOf BaseComponent f f
IsPolarityOf Polarity f f
MoleculeType MoleculeTypeOf t t
MoleculeTypeOf MoleculeType f t
PartOf HasPart t t
Polarity IsPolarityOf t f
RNA-Equivalent DNA-Equivalent f f
Subtraction IsSubtractedFrom t f

Table A.8: The Attributes Ruleform
Name
ORIGINAL
Abundance
Amino Acid Sequence
Atom Count
Atomic Number
Atomic Weight
Average Mass
Delta Mass
Mass
Mass Charge State
Mass Tolerance
Monoisotopic Mass
Nominal Mass
Nucleotide Sequence
Top Node
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Table A.9: The Attribute Network Ruleform

Parent Relcode Seq Nbr Child Is Original
Average Mass IsA 1 Mass TRUE
Mass Includes 1 Average Mass FALSE
Mass Includes 1 Monoisotopic Mass FALSE
Mass Includes 1 Nominal Mass FALSE
Mass IsA 1 Top Node TRUE
Monoisotopic Mass IsA 1 Mass TRUE
Nominal Mass Attribute Class 1 Mass FALSE
Nominal Mass IsA 1 Mass TRUE
Nominal Mass IsA 1 Top Node FALSE
Top Node Includes 1 Average Mass FALSE
Top Node Includes 1 Mass TRUE
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Table A.11: The BioEntity Attribute Authorization Ruleform
BioEntity Seq Nbr Attribute
Molecule 1 Mass
Element 1 Average Mass
Element 2 Monoisotopic Mass
Element 3 Nominal Mass
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Table A.14: The Attribute Metarules Ruleform
BioEvent Seq Nbr BioEntity1 Attribute1
Calculate Attribute 1 MoleculeType Attribute Class
Calculate Attribute 2 MoleculeType (SAME)
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Table A.16: The Transformation Metarules Ruleform
BioEvent Seq Nbr Resource BioEntity
Protein Translation 1 (SAME) (SAME)
Protein Translation 2 IsExceptionTo (SAME)
DNA Replication 1 (SAME) (SAME)
RNA Transcription 1 (SAME) (SAME)
Reverse Transcription 1 (SAME) (SAME)
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Appendix B

Mass Spectrometry and

Proteomics Background

B.1 Mass Spectrometry

Mass spectrometry is a technique for accurately determining the mass of a molecule.

Originally conceived by J.J. Rutherford in 1899, mass spectrometry has grown into

an extremely powerful analytical tool for biologists, as it allows detailed mass mea-

surements to be taken on large protein molecules. These measurements can then be

used in a variety of ingenious ways to identify and characterize proteins, a key goal

of modern bioinformatics research.

Briefly, chemicals and molecules introduced into a mass spectrometer are given

an electric charge through any of a number of ionization techniques. Often, the process

of ionization will cause a molecule to fragment into a number of ions. A detector in

the instrument then measures not the mass of the ions, but their mass-to-charge

ratio m/z. Data is presented in the form of a graph, called a mass spectrum, with

m/z on the x-axis and normalized ion detection intensity on the y-axis. Algorithmic

techniques can be used to deconvolve the spectrum so that mass may be read directly.

The spectrum produced by a molecule is generally unique to the molecule, and acts
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as a “fingerprint” of sorts, enabling molecular identification on the basis of mass

alone. Improved mass spectrometry instrumentation and data analysis techniques

have resulted in the ability to obtain extremely high resolution mass measurements,

which results in higher confidence identifications, as well as the ability to discriminate

between different isotopes of an analyte.

B.2 Proteomics

Proteomics is the study of the entire protein complement of an organism, similar to

to how the term genomics refers to the study of the entire genome of an organism.

As proteins are the embodiment and instantiation of the instructions contained in

a genome, their function and interrelationships determine virtually every aspect of

an organism’s development and function. Two key tasks of proteomics research are

identification and characterization1.

Given an unknown protein, the identification task seeks to answer the obvious

question, what protein is this? Besides the pairing of a name to a protein, the

identification task can provide additional important information about a protein.

Tools such as GFS (Giddings et al. 2003) can help discover which gene encodes the

protein in question. Additionally, one may want to know what proteins are similar to

a given protein. This can be helpful both in identifying proteins as well as discovering

what the function of a protein may be.

While knowing the identity of a protein is certainly important, other questions

remain. The function of a protein can be altered dramatically depending on any

modifications that may have been made to it. Post-translational modifications such

as methylation and phosphorylation can act as signals and functional modulators,

as can truncations. Additionally, a protein under study may be mutated in some

way that affects its function. Alternatively spliced genes can give rise to a number
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of related but distinct protein forms, each of which can have potentially different

activities. Thus, elucidation of the precise state of a protein in the cell is extremely

important and can reveal a wealth of information. This is the characterization task.

B.3 Mass Spectrometry-Based Proteomics

With the advent of soft-ionization techniques in the 1980s, mass spectrometry evolved

from a technique used mainly by chemists into one amenable for use by biologists.

Further refinements and advances over the years have led to mass spectrometry tech-

niques becoming key tools for bioinformatics researchers. Mass spectrometry is a

versatile technique for proteomics, and experimental approaches generally fall into

one of two classes: bottom-up and top-down.

B.3.1 Bottom-Up Proteomics

The most common kind of mass spectrometry proteomics application is known as

“bottom-up.” In this approach, a protein sample is fragmented, generally through the

use of proteases such as trypsin, and the resultant peptides are analyzed using tandem

mass spectrometry. In this approach, once the mass of an individual peptide ion has

been determined, that ion is subjected to an additional step of fragmentation, this

time by e.g., bombardment with inert gas atoms. The masses of the ion fragments that

are produced are determined by a second spectrum analysis (thus, “tandem” mass

spectrometry). Since peptides generally break apart along the peptide backbone in

this situation, a “ladder” is produced, yielding a series of successively longer ions,

which differ by the mass of a single amino acid residue. By analyzing the spectra

that are produced, the amino acid sequence of the peptides may be deduced. This

method is also known as “shotgun” proteomics.
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A peptide mass fingerprint (PMF) can be used to identify a protein, or at least

specify a number of candidate proteins. Once spectrally-derived amino acid sequence

has been obtained for peptides, it can be used to search sequence databases to help

identify the protein. Software such as GFS eliminates the need to consult a sequence

database altogether, as it can search an unannotated genome sequence to discover

the genetic region that encoded the protein.

A strength of bottom-up proteomics is rapid identification of proteins that are

present in a mixture. However, because measurements of the intact protein are not

taken, any information reflecting the state of the protein in the biological milieu is

lost.

B.3.2 Top-Down Proteomics

So-called “top-down” proteomics entails the use of a mass spectrometer to ascertain

the mass of the complete, unfragmented protein, rather than of individual peptide

fragments of the protein. This enables a researcher to obtain information on any

changes in the observed protein, compared with theoretical predictions, including

mutations, alternate splicings, post-translational modifications (PTM), and trunca-

tions. Such insight is of key importance in understanding a protein’s function and

regulation. Such information is lost with bottom-up approaches, because the associ-

ation between a peptide and the original parent molecule is lost.

Tentative identification of a protein may be made using only top-down infor-

mation. If the sequence of a protein is known, as is the case for proteins which have

entries in a protein sequence database such as the Protein Data Bank, a theoretical

mass may be computed by summing the masses of the constituent amino acids. An

experimentally-derived mass can thus be compared to the theoretical masses of all of

an organism’s known proteins. A ranked list of possible identifications can be thus
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obtained according to how close the experimental mass matches a theoretical mass.

This can be helpful for characterizing any modifications to a protein. This task can

be performed by the PROCLAME software (Holmes and Giddings 2004), which uses

intact mass measurements as an aid for PTM prediction.

B.3.3 Integration of Bottom-Up and Top-Down Approaches

By utilizing both bottom-up and top-down approaches, a researcher can leverage the

strengths of both, and reveal more comprehensive information on complex protein

mixtures than is possible with either approach in isolation (Strader et al. 2004; Con-

nelly et al. 2006). The basic idea proceeds thusly. A bottom-up analysis of a mixture

of proteins is performed, yielding a list of protein identifications; this list is usually a

subset of the proteins in the sample, due to variety of reasons, depending on the iden-

tification method used, the ionization efficiencies of the peptides, sequence coverage

of the peptides, etc. Then, top-down analysis is carried out on another aliquot of the

same sample, yielding intact masses for the proteins present. These masses reflect

the state of the protein in the cell, including PTMs, mutations, different isoforms,

and any other covalent modifications. By comparing the theoretical masses of the

proteins identified via bottom-up methods to the intact masses obtained through the

top-down approach, a characterization of the state of the protein may be able to be

determined.

A protein with some PTM may be recognized via top-down but not by bottom-

up if the site of the PTM is not contained in any of the fragment ions measured in the

bottom-up experiment. For example, if a protein contains a phosphorylated serine at

the fifth residue, yet the tandem MS produces coverage beginning at the, say, tenth

residue, that fact will remain unobserved. A measurement of the intact protein mass

will necessarily include this information. By combining approaches, identifications
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of PTMs, as well as a pinpointing of their locations, may be made with greater

confidence. Data from one approach can be used to iteratively refine information

obtained by the other approach.

Currently, there are no information systems in use by the mass spectrometry

community that facilitate this complex data integration task.

Notes

1A third main task involves quantification, but as the aim of the current project does not concern
quantification, this point will not be further elaborated.



87

Bibliography

Baker, Patricia G., Carole A. Goble, Sean Bechhofer, Norman W. Pa-
ton, Robert Stevens, and Andy Brass. “An ontology for bioinformat-
ics applications.” Bioinformatics 15 (June 1999): 510–520. Avail-
able from: http://bioinformatics.oxfordjournals.org/cgi/reprint/15/6/

510, DOI:10.1093/bioinformatics/15.6.510.

Blinov, Michael L., James R. Faeder, Byron Goldstein, and William S. Hlavacek.
“BioNetGen: software for rule-based modeling of signal transduction based on the
interactions of molecular domains.” Bioinformatics 20 (November 2004): 3289–3291.
Available from: http://bioinformatics.oxfordjournals.org/cgi/reprint/20/
17/3289, DOI:10.1093/bioinformatics/bth378.

Brooks Jr., Frederick P. The Mythical Man-Month: Essays on Software Engineering.
2nd edition. Addison-Wesley, 1995.

Connelly, Heather M., Eric Hamlett, Kevin Ramkissoon, Robert L. Hettich, and
Morgan C. Giddings. Characterization of ribosomal proteins in two streptomycin
resistant E. coli strains. Manuscript in preparation, 2006.

Faeder, James R., Michael L. Blinov, Byron Goldstein, and William S. Hlavacek.
“Rule-Based Modeling of Biochemical Networks.” Complexity 10 (March/April
2005): 22–41. Available from: http://cellsignaling.lanl.gov/downloads/

Complexity 2005.pdf, DOI:10.1002/cplx.20074.

Gardner, Martin. “Mathematical Games — The fantastic combinations of John
Conway’s new solitaire game “Life”.” Scientific American 223 (October 1970): 120–
123. Available from: http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/

lis projekt/proj gamelife/ConwayScientificAmerican.htm.

Gene Ontology Consortium. “Gene Ontology: tool for the unification of biology.”
Nature Genetics 25 (May 2000): 25–29. Available from: http://www.nature.com/
ng/journal/v25/n1/pdf/ng0500 25.pdf, DOI:10.1038/75556.

Giddings, Michael C., Atul A. Shah, Ray Gesteland, and Barry Moore. “Genome-
based peptide fingerprint scanning.” Proceedings of the National Academy of Sci-
ences 100 (January 2003): 20–25. Available from: http://www.pnas.org/cgi/

reprint/100/1/20, DOI:10.1073/pnas.0136893100.

http://bioinformatics.oxfordjournals.org/cgi/reprint/15/6/510
http://bioinformatics.oxfordjournals.org/cgi/reprint/15/6/510
http://bioinformatics.oxfordjournals.org/cgi/reprint/20/17/3289
http://bioinformatics.oxfordjournals.org/cgi/reprint/20/17/3289
http://cellsignaling.lanl.gov/downloads/Complexity_2005.pdf
http://cellsignaling.lanl.gov/downloads/Complexity_2005.pdf
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://www.nature.com/ng/journal/v25/n1/pdf/ng0500_25.pdf
http://www.nature.com/ng/journal/v25/n1/pdf/ng0500_25.pdf
http://www.pnas.org/cgi/reprint/100/1/20
http://www.pnas.org/cgi/reprint/100/1/20


88

Holmes, Mark R. and Michael C. Giddings. “Prediction of Posttranslational
Modifications Using Intact-Protein Mass Spectrometric Data.” Analytical
Chemistry 76 (January 2004): 276–282. Available from: http://pubs.

acs.org/cgi-bin/article.cgi/ancham/2004/76/i02/pdf/ac034739d.pdf,
DOI:10.1021/ac034739d.

Hood, Leroy. “A Personal View of Molecular Technology and How It Has
Changed Biology.” Journal of Proteome Research 1 (October 2002): 399–
409. Available from: http://pubs.acs.org/cgi-bin/sample.cgi/jprobs/2002/

1/i05/pdf/pr020299f.pdf, DOI:10.1021/pr020299f.

HUPO PSI. MIAPE: Mass Spectrometry. 2005. Available from: http://psidev.

sourceforge.net/gps/miape/MIAPE MS 2.0.pdf.

HUPO PSI. The mzData standard [online]. 2005. Available from: http://psidev.
sourceforge.net/ms/#mzdata.

Jacques, Pierre-Étienne, Alain L. Gervais, Mathieu Cantin, Jean-François Lucier,
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