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1. Introduction 

 Prescription Opioid Abuse continues to be a significant and growing problem in the 

United States. According to the National Institute of Drug Abuse, more than 115 

Americans die every day from an opioid overdose. The Substance Abuse and Mental 

Health Services Administration (SAMHSA) survey, has stated that non-medical use of 

prescription drugs is the second most prevalent type of drug abuse, after marijuana. In 

October of 2017, President Trump declared a public health emergency to combat the opioid 

epidemic. He also directed agency and department heads to use all appropriate emergency 

authority to reduce the number of deaths from opioids. 1 President Obama had earmarked 

$1.1 billion dollars for developing solutions to this issue while he was in office.  

 Considering the graveness of the situation, this project aims at briefly studying the 

current trends and literature pertaining to the opioid epidemic and using data analytics to 

identify predictive risk factors for opioid addiction. This will be done by studying 

longitudinal electronic health data for patients with and without a history of opiate abuse. 

This data will be analyzed using predictive machine learning algorithms to identify risk 

factors for opioid addiction.

1.1 Opioid Abuse 

 Opioids are a class of drugs that include the illegal drug heroin, synthetic opioids 

such as fentanyl, and pain relievers available legally by prescription, such as oxycodone 
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(OxyContin®), hydrocodone (Vicodin®), codeine, morphine, and many others. These 

drugs are chemically related and interact with opioid receptors on nerve cells in the body 

and brain. Opioid pain relievers are generally safe when taken for a short time and as 

prescribed by a doctor, but because they produce euphoria in addition to pain relief, they 

can be misused (taken in a different way or in a larger quantity than prescribed or taken 

without a doctor’s prescription). 2 Risks of using prescription opioids include dependence 

and addiction. The risks of dependence and addiction are higher if you abuse the medicines. 

Abuse can include taking too much medicine, taking someone else's medicine, taking it in 

a different way than you are supposed to, or taking the medicine to get high (MedlinePlus).3 

The misuse of and addiction to opioids—including prescription pain relievers, heroin, and 

synthetic opioids such as fentanyl—is a serious national crisis that affects public health as 

well as social and economic welfare. 4 Although most people take prescription medications 

responsibly, an estimated 52 million people have used prescription drugs for nonmedical 

reasons at least once in their lifetimes. 5 The Centers for Disease Control and Prevention 

estimates that the total "economic burden" of prescription opioid misuse alone in the United 

States is $78.5 billion a year, including the costs of healthcare, lost productivity, addiction 

treatment, and criminal justice involvement. 4  

1.2 The Opioid Epidemic 

 The opioid epidemic has its roots in the explosive growth of prescription 

painkillers. Between 1991 and 2011, the number of opioid prescriptions (selling under 

brand names like Vicodin, Oxycontin, and Percocet) supplied by American retail 

pharmacies increased from 76m to 219m. As the number of pain pills being doled out by 
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doctors increased, so did their potency. In 2002 one in six users took a pill more powerful 

than morphine. By 2012 it was one in three. Many of the victims’ hail from white middle-

class suburbs and rural towns. The Data collected over the years shows that the problem is 

worsening with time. 6 

 Tackling the problem of accidental deaths due to Opioid abuse has become a top 

priority amongst many government as well as non-government bodies. Various bodies such 

as The U.S. Department for Health and Human Services (HHS), The National Institute on 

Drug Abuse (NIDA), The Centers for Disease Control and Prevention; insurance agencies 

(Blue Cross Blue Shield)7 as well as retail pharmacies (Walmart)8 throughout the country 

have deployed resources to monitor the opioid crisis and implement various policies to 

overcome this epidemic. Figure 1.0 below, shows the distributions of drugs involved in 

overdose deaths in the U.S. and we can clearly see that the death rate due to synthetic 

opioids has considerably shot up since 2013. 

 

Fig 1: Drugs Involved in U.S. Overdose Deaths 
src: https://www.nih.gov/sites/default/files/about-nih/nih-director/statements/collins/20171026-opioid-statement.jpg 
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 The research (and consequent findings) carried out by the above-mentioned 

organizations has been briefly studied in the following chapters to gain a better 

understanding of the current situation in this crisis. 

 The nation’s opioid epidemic reflects a complex set of circumstances. The pattern 

of opioid prescribing—including dose and duration-—and the patient’s risk factors of age, 

gender and condition are major determinants of whether a patient becomes dependent. 9 

Keeping in mind the research and efforts of various “key” organizations, this project aims 

at studying patient data and developing an interactive system that would set up predictors 

allowing monitoring of drug prescription as well as use. The literature review to support 

the theories, the methodology as well as the predictive algorithm and its features have been 

described in detail in the further chapters. 

1.3 Analyzing Electronic Health Records 

 Health data is collected during a patients’ routine interactions with the medical care 

system within the patients’ electronic health record (EHR). The EHR specifically contains 

medications and diagnosis data, which record longitudinal (over time) history of opiate 

prescriptions and opiate dependency diagnoses, along with tons of thousands of other 

diagnoses. 

 This data should hold clues about risk factors associated with the development of 

opiate dependency. This project aims to identify leading factors via retrospective analysis 

of this routinely collected medical data.
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2. Literature Review 

 This chapter provides an overview of previous research prescription drug abuse and 

data-driven preventive measures undertaken to combat it. It introduces the framework for 

the research and methodology that summarize the main goals of this project. It is important 

to set the context of the literature review work by first providing a brief history of opioid 

abuse and its rising importance. It will be followed by: 

1. Identifying populations (and organizations) affected by the opioid epidemic; 

2. Comments on current preventive measures being undertaken by the concerned 

organizations; 

3. Case studies of data-driven approaches to fight the opioid epidemic and predictive 

analytics on health care data. 

2.1 Opioid Abuse – History and Rising Importance 

 The opioid addiction epidemic is one of America’s foremost health crises. While 

the word “epidemic” is often overused, it is an apt description of the crisis brought on by 

opioid abuse in America. According to the most recent statistics from the Centers for 

Disease Control and Prevention (CDC), opioids (including prescription opioids and heroin) 

kill more than 33,000 people annually, which is more than any year on record and more 

than at the peak of the human immunodeficiency virus (HIV) epidemic.10 Opioid 
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abuse/overdose is considered a leading cause of shortened life expectancy in the U.S.11 

According to the Substance Abuse and Mental Health Services Administration (SAMHSA) 

Survey, nonmedical use of prescription drugs is the second most prevalent type of drug 

abuse, after marijuana.   

 

Fig 2: The Opioid Epidemic by the Numbers 
src: https://www.hhs.gov/opioids/sites/default/files/inline-images/opioids-by-the-numbers-091918v.png 

  

 Since 1999, prescriptions of opioids have almost quadrupled, as have the number 

of deaths involving opioids. According to the Centers for Disease Control and Prevention 

(CDC), drug overdose deaths have tripled from 1999–2014. In 2014, among 47,055 drug 

overdose deaths, 61% involved an opioid. From 2014 to 2015, the death rate from synthetic 

opioids increased by 72.2%.12 While prescriptions have increased substantially, the level 

of pain reported by Americans has not. Historically, illegal opioids, such as heroin, were 
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the primary contributing factor to overdoses. It could be said that prescribing practices are 

fueling opioid misuse which contributes significantly to the overdose epidemic.13  

2.2. Populations and Organizations Involved (and Affected) 

 While it is wide spread in the United States of America, countries across the world 

are currently grappling with what is a global opioid crisis.14 Opioids were the most harmful 

drug type and accounted for 70 % of the negative health impact associated with drug use 

disorders worldwide, according to World Drug Report, released by the United Nations 

Office on Drugs and Crime (UNDOC).15  In its 2016 report, the International Narcotics 

Control Board (INCB), based in Vienna, Austria, noted with great concern, the largescale 

opioid, prescription drug and heroin abuse problem that continues to affect the United 

States, claiming tens of thousands of victims each year. 16  

 Considering the graveness of the situation, tackling the problem of accidental 

deaths due to Opioid abuse has become a top priority amongst many governmental as well 

as non-governmental organizations.   

 The United Nations and many of its subsidiaries are doing everything in their power 

to promote education and preventive measures about the rising opioid epidemic. Within 

the United States, bodies such as Center for Disease Control and Prevention (CDC), Health 

and Human Services (HHS), Department of Veterans, National Institute of Drug Abuse 

(NIDS), Substance Abuse and Mental Health Services Administration (SAMSHA) and 

various other government bodies (including individual state governments) are allocating 

funds towards finding solutions for the opioid crisis.   
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 Many health insurance companies such as Blue Cross Blue Shield and retail 

pharmacies such as Walmart, CVS are also active participants in the fight against the opioid 

epidemic. 

Preventive Measures being Undertaken by Involved Organizations 

 The misuse of prescription opioids and heroin can lead to a wide variety of 

problems, including overdose deaths, hospitalizations, and drug diversion arrests. To fully 

understand the impact of these problems, prevention practitioners collect data on a variety 

of prescription opioid- and heroin-related indicators—to inform their needs assessments, 

create epidemiological profiles and/or data tools, and select prevention priorities and target 

populations.17 This section, elaborates on the efforts taken by various international 

agencies; and governmental bodies within the United States to solve the opioid crisis. 

The International Narcotics Control Board & other United Nations Bodies 

 In its 2016 Report, The International Narcotics Control Board approved the Drug 

Enforcement Administration’s comprehensive action plan to address opioid addiction and 

the allocation by the Government of $27.6 billion for the 2016 fiscal year to support the 

implementation of the 2015 National Drug Control Strategy. The Food and Drug 

Administration released the Opioids Action Plan in February 2016, in response to the 

ongoing crisis of opioid abuse, dependence and overdose in the United States. The plan 

includes expanding the use of advisory committees, strengthening requirements for drug 

companies to generate post-market data on the long-term impact of using opioids, updating 

risk evaluation and mitigation strategy programs, and expanding access to abuse-deterrent 

formulations to discourage abuse. As part of the action plan, class-wide safety labelling 

changes for immediate-release opioid pain medications have been announced. 18 
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United States Government & Other Departments 

 The President of the United States requested $27.6 billion for the fiscal year 2016 

to support efforts under the 2015 National Drug Control Strategy to reduce drug use and 

its effects in the country. Most of that amount was allocated to prevention and treatment 

efforts. In March 2016, the President requested from Congress an additional $1.1 billion to 

bolster efforts to address the prescription opioid and heroin crisis in the country. This 

represents further steps to expand access to treatment, prevent opioid overdose deaths, 

invest in community policing to address heroin abuse, and increase community prevention 

strategies.  

 Opioid overdose and heroin-related deaths have been the focus of state of the state 

addresses in a number of states of the United States. As of March 2016, 49 states had 

established prescription drug monitoring programs and 14 states had enacted legislation 

requiring physicians to receive training on the proper prescription of opioids.18 

 On 22 July 2016, the Comprehensive Addiction and Recovery Act 19 came into 

force. The Act addresses the opioid crisis by, inter alia, authorizing the United States 

Department of Justice to award grants to state, local and tribal governments to provide 

opioid abuse services, directs the Department of Veteran Affairs 20 to expand its opioid 

safety initiative, focuses on helping communities develop treatment and overdose 

programs and addresses exemptions from criminal and civil liability for those 

administering an opioid overdose reversal drug or who contact emergency services in 

response to an overdose.  

 The National Institute on Drug Abuse 17 dedicated a section of its website to 

resources about this opioid overdose reversal drug, including information about dosage, 
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precautions, side effects and links to pharmacies that offer it. The Administration has also 

been reviewing options, including making naloxone available over the counter, to make 

the drug more accessible for treating opioid overdose in the country. As at May 2016, 39 

states allow prescribers to dispense a naloxone prescription to third parties, such as a family 

member of drug users. 

 In 2013, the cost of medical care and substance abuse treatment for opioid addiction 

and overdose was an estimated $78.5 billion, according to a report in the journal Medical 

Care 21. 

 Forty-nine states have prescription drug monitoring programs, databases which 

enable health care providers to curb "doctor shopping" by patients who obtain opioid 

prescriptions from multiple physicians. Missouri's program is not yet statewide but has 

enacted legislation to authorize it. 

 The 21st Century Cures Act 22, passed in 2016, allocated $1 billion over two years 

in opioid crisis grants to states, providing funding for expanded treatment and prevention 

programs. In April 2017, Health and Human Services Secretary Tom Price announced the 

distribution of the first round of $485 million in grants to all 50 states and US territories.23 

 In August 2017, Attorney General Jeff Sessions announced the launch of an Opioid 

Fraud and Abuse Detection Unit 24 within the Department of Justice. The unit's mission is 

to prosecute individuals who commit opioid-related health care fraud. The DOJ is also 

appointing US attorneys who will specialize in opioid health care fraud cases as part of a 

three-year pilot program in 12 jurisdictions nationwide. 

 State legislatures are also taking action, introducing measures to regulate pain 

clinics and limit the quantity of opioids that doctors can dispense. 
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2.3 Data Driven Solutions for the Opioid Epidemic 

 Data management and analysis can provide a broad spectrum of integrated 

solutions, from helping develop better treatment protocols, to enabling pharmacies to 

identify dispensing anomalies, and allowing large hospital systems and public health 

agencies to better analyze the possible outcomes of well-intentioned initiatives.25 

 For any solutions, all individual groups mentioned above, need to work in tandem 

by sharing data and creating a flow of information. Fighting this epidemic is a highly 

complex challenge that requires a variety of players to collaborate in order to fully 

understand and solve the problem. 

 The research conducted by SAS 25 states that most fundamentally, better data and 

analytics can help develop better treatment protocols, both for pain in the first place and 

for remediation when patients are becoming dependent on the drugs. Physicians want to 

know how their treatments and results compare with those of their peers, as well as what 

specific patterns give early warning of addiction or overdose. The CDC has issued 

guidelines about reevaluating chronic pain patients after three months, and Schedule 2 

drugs (those with high potential for abuse or dependency) cannot be automatically refilled. 

But many patients demand opioids and are provided them by the system in unsafe 

quantities for long periods of time. Analytics help the physician recognize patient 

scenarios, prescribe correctly, and focus on the best overall outcome. Large hospital 

systems, licensing boards, and public health agencies need the ability to benchmark 

providers by specialty and get a better picture of where and how to educate them. These 

organizations are in the best position to aggregate data – PDMP, emergency room, 

hospitalization, medical examiner – and give providers that peer-to-peer comparison. 
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Analytics can inform treatment guidelines, educational initiatives, and resource allocations, 

including treatment centers and community prescription drug take-back programs. These 

organizations can also be better positioned to inform and influence policy makers at the 

state and national levels. Data and analytics should enable the organizations charged with 

leadership and policy to see more of the big picture and accelerate their decisions.  

 According to the study conducted by Blue Cross Blue Shield (BCBS)26, twenty-

one percent of BCBS commercially-insured members filled at least one opioid prescription 

in 2015. Data also show BCBS members with an opioid use disorder diagnosis spiked 493 

percent over a seven-year period. The report analyzes medical claims from BCBS 

commercially insured members diagnosed with opioid abuse disorder from 2010 through 

2016 (Members diagnosed with cancer or who were undergoing palliative or hospice care 

were excluded from this analysis). Specifically, it looks at the degree of prescription opioid 

use—in terms of the dose and duration of opioid prescriptions—and how this relates to 

opioid dependence. 

 The Department of Justice is recruiting big data analytics to help combat opioid 

fraud and abuse in the healthcare system. 27   

 The Centre for Disease Control and Prevent believes that improving the nation’s 

big data analytics capabilities is critical for success in the ongoing fight against opioid 

abuse at the state level as the substance abuse epidemic continues to ravage communities 

on a massive scale. 28  

 While initiatives are being taken at every level be it by the government sector or 

the private, it is important to understand the brevity of the problem and come up with 
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analytical solutions for it. Using data to overcome such challenges is becoming more 

common these days. 

2.4 Predictive Analytics on Medical Data 

 Healthcare analytics refers to the systematic use of health data and related business 

insights developed through applying analytical, e.g. statistical, contextual, quantitative, 

predictive, cognitive, and other models, to drive fact-based decision making for planning, 

management, measurement, and learning in healthcare 29. At the same time, predictive 

analytics is believed to be the next revolution both in statistics and medicine around the 

world 30.  

Predictive Analytics 

 Predictive analytics involves using empirical methods (statistical and other) to 

generate data predictions as well as methods for assessing predictive power 31. The 

collection of methods in Predictive Analytics known as ‘data mining’ offers 

methodological and technical solutions to deal with the analysis of medical data and 

construction of prediction models 32. For this instance, predictive analytics can be used to 

identify high-risk patients and provide them treatment to reduce opioid addiction. 

Predictive Analytics uses a variety of statistical techniques such as modeling, machine 

learning, and data mining that analyze current and historical data to make predictions about 

the future.  

 For this project the predictive algorithms used include Logistic Regression and 

Random Forest (refer section on Predictive Modelling). In the context of low-dimensional 
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data (i.e. when the number of covariates is small compared to the sample size), Logistic 

Regression is considered a standard approach for binary classification 33. Since its 

invention 17 years ago, the random forest (RF) prediction algorithm 34, which focuses on 

prediction rather than explanation, is increasingly becoming a common “standard tool” also 

used by scientists without any strong background in statistics or machine learning 35.  

Electronic Health Record Systems 

 Electronic health records (EHRs) systems, such as Epic 36, collect a range of data 

including demographics, medical history, medication and allergies, immunization status, 

laboratory test results, radiology images, vital signs, personal statistics like age and weight, 

and billing information 37. Large healthcare systems use this data for research and 

retrospective analytics. Carolina Data Warehouse for Health 38 is one such organization. 

Construction of predictive models for disease targets across varying patient cohorts using 

EHRs has become increasing common in Healthcare analytics. Opioid Addiction being the 

target disease for this project, the EHRs of patients were segregated into 2 sections – EHRs 

of patients with a history of opioid addiction and EHRs of patients with no history of opioid 

addiction. This segregation was possible by using the ICD-10 system for diagnoses coding. 

ICD-10 System 

 ICD-10 is the 10th revision of the International Statistical Classification of Diseases 

and Related Health Problems (ICD), a medical classification list by the World Health 

Organization (WHO). It contains codes for diseases, signs and symptoms, abnormal 

findings, complaints, social circumstances, and external causes of injury or diseases 39. 

Patients with and without a past history of opioid addiction were identified using this 

coding system.  
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3. Methods 

 The goal of this project was to develop a model that could highlight and predict 

factors leading to opioid addiction among patients. The predictive model was be built using 

patient diagnosis data, while the patient medication data gave additional insights into 

addiction patterns. The following sections expand on the data used for this project and the 

predictive modelling algorithms that were applied to achieve a high level of accuracy in 

predicting opioid addiction among patients.  

3.1. Data 

Data Source 

 In order to assess distribution ad use of opioids among the population in the United 

States, limited patient data from the Carolina Data Warehouse for Health (CDW-H) 38 was 

analyzed. The most identifiable features were omitted from the data set and artificial patient 

IDs were used to link variables across a single patient. However, this mapping was 

performed by NC TraCS 40 analysts and was not shared with the research team. 

 To minimize the risk of a breach of confidentiality, the data is stored on NC TraCS 

provisioned and maintained secure storage which is a Level III Data Security environment 

and has been approved for such use with data from the CDW-H.  

Feature Description 

 The dataset from CDW-H comprised of deidentified patient data from three 

different cohorts – COPD, Diabetes and Heart Failure. Each cohort was further divided 
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into three datasets – patient events, patient medication, and patient demographics. They 

have been described in detail below. Each dataset had a common patient id or a deid 

(deidentified id) that linked the three datasets together. Additionally, the data came with a 

Data Guide that included a summary of the data provision, a data dictionary for each file 

provisioned, and entity relationship diagrams (ERD). Considering unique patients from 

each of the three cohorts, the datasets contained records for 20,291 unique patients. 

Patient Events 

 This dataset comprised of the deidentified patient ID, date (date on which the 

procedure was done or diagnosis was made), codeclass (procedure/diagnosis), and code. 

These three features together made up a unique event for any patient. 

Patient Medication 

 This dataset comprised of several columns such as Patient – id, cohort, age; visit_id, 

medication is, medication name, medication brand name, generic drug description, drug 

strength, dosage formulation etc. 

Patient Demographics 

 This dataset comprised on general demographic information such as patient id, age, 

sex, and race without divulging personal identifiable information. 

3.2 Data Cleaning and Manipulation 

 Data cleansing or data cleaning is the process of detecting and correcting (or 

removing) corrupt or inaccurate records from a record set, table, or database and refers to 

identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then 

replacing, modifying, or deleting the dirty or coarse data. 28 Data cleansing may be 

performed interactively with data wrangling tools, or as batch processing through scripting. 
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While all three datasets were used for initial data exploration, the datasets used to build the 

predictive model were Patients Events and Patient Medication and the data cleaning and 

manipulation was done in Python. The general algorithm to clean and manipulate these 

datasets has been specified below. 

Patient Events: 

Step 1: Load data and Create Pandas Dataframe 

 Firstly, the events.csv files for all cohorts (COPD, DM and HF) were combined 

into one pandas dataframe and dropped all duplicate rows since there were many patients 

who existed in multiple cohorts. 

Step 2: Filter Dataframe 

 Next, the master dataframe was filtered on codeclass=ICD10CM since we were 

only interested in the ICD10 diagnosis codes and not procedure. 

Step 3: Feature Reduction 

1. Drop unnecessary variables: The date and codeclass variables were dropped from 

the dataframe as they would not be informative in building the predictive model. 

2. Restructure hierarchy: The code variable was then manipulated to include all sub-

codes for a given code into the parent code. For example: F11.01, F11.09 fell under 

F11 and so on. This helped in reducing the number of features. Since this step 

generated duplicate values, they were again dropped at this stage. 

Step 4: Identify Unique Patients 

1. Identified all unique patients in the master dataframe and created a list of the same. 

Total number of unique patients: 202190 
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2. Identified patients that were diagnosed with Opioid Addiction (ICD10 code for 

Opioid Dependency – F11 39, 41) and created a list of the same. 

3. Total number of unique patients diagnosed with opioid addiction: 

4. Created a list of unique patients not diagnosed with opioid addiction by subtracting 

the list of patients diagnosed with opioid addiction from the list of all unique 

patients. 

   

Fig 3: Spread of opioid addicted and non-opioid addicted patients in the master dataset 

 

Step 5: Create Dataframe of Opioid Addicted and Non-Opioid Addicted Patients 

 Comparatively, only a small subset of patients within the master dataset were 

diagnosed with opioid addiction. For a robust predictive model, it is important to have 

equal number of entries for the target variable. In this case, opioid addiction being the target 

variable, it was important to create a dataframe that had equal number of patients diagnosed 

with opioid addiction as well as patients not diagnosed with opioid addiction and include 

all instances of these patients from the master dataframe. 

  

Number of Non-
Opioid Addicted 

Patients: 

29993

Number of 
Opioid 

Addicted 
Patients:

863
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Step 6: Binary Encode and Group by patient id 

 Predictive models accept data in certain format. Most models require categorical 

variables to be encoded. Since the dataframe contains all categorical variables (all 

diagnosis codes are categorical), it was important to binary encode them. After binary 

encoding the diagnosis codes and grouping them by patient id, codes that appeared less 

than 5 times in the entire dataframe were dropped. 

 

Fig 4: Dataset before binary encoding 

 

Fig 5: Dataset after binary encoding 
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Step 7: Explore the dataset and proceed to building the predictive model 

The final dataframe consisted of 958 variables - 957 diagnosis codes and the patient id 

variable, and 1726 rows. 

 

Fig 6: Equal number of opioid addicted and non-opioid addicted patients. 

As we can see in the figure above, the dataset consisted of 863 patients diagnosed with 

opioid addiction and 863 patients not diagnosed with opioid addiction. 

 Finally, the cleaned and transformed dataframe was saved as a csv file and ready to 

be used to build the predictive model.  

3.3 Predictive Modelling 

 Predictive modelling uses statistics to predict outcomes 42. Most often the event one 

wants to predict is in the future, but predictive modelling can be applied to any type of 

unknown event, regardless of when it occurred. Nearly any regression model can be used 

for prediction purposes. Broadly speaking, there are two classes of predictive models: 

parametric and non-parametric. Parametric models make "specific assumptions with regard 

to one or more of the population parameters that characterize the underlying 

distribution(s)", 43 while non-parametric regressions make fewer assumptions than their 

863863

Clean and Transformed Dataset

Opioid Addicted

Not Opioid Addicted
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parametric counterparts 44. Since we would like to predict opioid addiction (assumption) 

using diagnosis and medication data (parameters) for the given patients (population), the 

models we will use are parametric in nature. 

 In predictive modelling most of the time is spent understanding the requirements 

and then framing the problem. The next step is to tailor the solution to the needs. Generally, 

a framework can be used to build the first cut of models. Python is a useful tool since it has 

a large number of open source libraries for predictive analytics and data science, making it 

a good choice for building the predictive models for this study. The various libraries used 

during data cleaning, and model building are: pandas, numpy, scipy, sklearn, etc.  

Building the Model 

Step 1: Drop Variables not important for prediction 

 The id feature in our dataframe did not contribute towards the prediction and was 

dropped. 

Step 2: Create list of features and identify Target Variable 

 The remaining variables are features that will be used for building the predictive 

model. the outcome we wish to predict is opioid addiction (code: F11) 31 making it our 

target variable. 

 

Fig 7: Python code snippet for Steps 1 and 2 
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Step 3: Split the dataframe into train and test 

 The dataframe was split into train and test. The training set contains the known 

target variable – opioid addiction, allowing the model to learn on this data in order to be 

generalized to other data later on. The test dataset is used to test our model’s prediction on 

this subset. 

 

Fig 7: Dividing the dataset into training and test data 

Step 4: Fit the train and test datasets 

 The dataset was then fit against a logistic regression and random forest model (after 

specifying a ten-fold cross validation) respectively to make the prediction.  After dropping 

the id column, assigning the target variable and splitting the dataset into train and test data, 

the shape of the train and test sets is shown in Table 1. 

Dataset Rows Columns 

Train_x 1380 956 

Train_y 1380 - 

Test_x 346 956 

Test_y 346 - 

 Table 1: Train and Test Datasets  

 At this point, we were ready to run our chosen predictive models. The first model 

that was run was the Logistic Regression. 

Logistic Regression 

Logistic regression is a statistical method for analyzing a dataset in which there are 

one or more independent variables (diagnosis codes) that determine an outcome. In logistic 

regression, the dependent variable (target variable – opioid addiction) is binary or 
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dichotomous, i.e. it only contains binary encoded data (the reason why we binary encoded 

our dataset). The goal of logistic regression is to find the best fitting to describe the 

relationship between the dependent and the independent variables. 45, 46 

 To build the logistic regression model, the sklearn library in python was used. 

First, the Logistic Regression module was imported and a Logistic Regression classifier 

object was created using LogisticRegression() function. Then, the model was fit on the 

train set using fit() and prediction was performed on the test set using predict(). 

 
Fig 9: Python Code snippet for Logistic Regression Model.  

 The model was evaluated using success metrics in the form of a confusion matrix, 

the accuracies scores, and precision and recall scores. The results for the same have been 

discussed in detail in the results and evaluation sections. 

 
Fig 10: Python Code snippet to check Logistic Model Performance and Accuracy 
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Random Forest 

 Random Forest is an ensemble of unpruned classification or regression trees created 

by using bootstrap samples of the training data and random feature selection in tree 

induction. Prediction is made by aggregating (majority vote or averaging) the predictions 

of the ensemble 47. Thus, given data on predictor variables (inputs, X) and a continuous 

response variable (output, Y) Random Forest builds a model for: 1. Predicting the value of 

the response from the predictors. 2. Understanding the relationship between the predictors 

and the response 48. To say it in simple words: Random forest builds multiple decision trees 

and merges them together to get a more accurate and stable prediction.  

 The random forest regression model from skicit-learn imported, instantiated, and 

fit (scikit-learn’s name for training) on the training data.  

 
Fig 11: Python Code snippet for Random Forest Model.  

 Having trained the model on the training dataset, the next step was figuring out how 

good the model was. This was done by making predictions on the test dataset. The 

predictions were then compared to the known answers. Ten-fold cross validation was used 

to measure the root mean squared error for the random forest prediction. 

 
Fig 12: Python Code snippet for Random Forest Prediction and root mean square error 
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 Random Forest is not the best choice for this study since the response variable is 

categorical and not continuous. However, a great quality of the random forest algorithm is 

that it is very easy to measure the relative importance of each feature on the prediction 49.  

 The Random Forest Model helps understand feature significance i.e. – which 

features contribute the most towards the prediction. For this study, it is the feature 

significance that is of interest as opposed to the prediction itself. Similar to Logistic 

Regression, the Random Forest model was also built using the sklearn library in Python. 

Sklearn provides a great tool for this, that measures a features importance by looking at 

how much the tree nodes, which use that feature, reduce impurity across all trees in the 

forest. It computes this score automatically for each feature after training and scales the 

results, so that the sum of all importance is equal to 1. 

 
Fig 13: Python Code snippet for investigating feature importance with Random Forest 

  

 The next section expands on the results and evaluation of the predictive models.
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4. Results and Discussion 

 Having built the predictive models, the next step was to look at the results. 

Logistic Regression 

 Logistic Regression describes and estimates the relationship between one 

dependent binary variable and independent variables 49. This gave a binary prediction for 

opioid addiction. That is, it predicted a yes or no outcome for opioid addiction for a given 

patient. The first run of the Logistic Regression model yielded the following results: 

Model Accuracy 

 The logistic regression model was trained on the training data and gave a 97% 

accuracy. The test data was used to make the prediction. When the trained model was run 

on the test data, it gave an accuracy of 79%. This means that 79% of the predictions made 

on the test data were accurate. 

Confusion Matrix 

 A confusion matrix is a table with two rows and two columns that reports the 

number of false positives, false negatives, true positives, and true negatives. This allows 

more detailed analysis than mere proportion of correct classifications (accuracy).  

 Table 2: Logistic Regression Confusion Matrix 

 

 
Predict No Predict Yes Total 

Actual No 142 37 179 

Actual Yes 31 136 167 

Total 173 173 346 
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 Table 2 shows the confusion matrix for the logistic regression model. It shows 

that the logistic regression model predicted 142 True Positive values, 37 False Positive 

values, 31 False Negative Values and 136 True Negative values. The goal is to build a 

model that has minimum False Positive and False Negatives to reduce Type I and Type II 

errors respectively. 

Classification Report – Precision, Recall, F-1 score 

 Precision is intuitively the ability of the classifier to not label a sample as positive 

if it is negative. Recall is intuitively the ability of the classifier to find all the positive 

samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision 

and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-

beta score weights the recall more than the precision by a factor of beta. beta = 1.0 means 

recall and precision are equally important. The support is the number of occurrences of 

each class in the target variable for the test data. 

 

 

 

  

Table 3: Logistic Regression Classification Report – Precision, Recall, F-1 score 

Root Mean Square Error  

 The root mean squared error for the Logistic Regression Model was 0.44.  

Random Forest 

 An advantage of random forest is that it can be used for both regression and 

classification tasks and it is easy to view the relative importance it assigns to the input 

features. We will now discuss the results of the random Forest Model. 

 
Precision Recall F-1 score Support 

0 0.82 0.79 0.81 179 

1 0.79 0.81 0.80 167 

Total 0.80 0.80 0.80 346 
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Root Mean Square Error 

 Ten-fold cross validation was used to measure the root mean squared error for the 

random forest prediction.  

 Fig 14: Random Forest Model: Cross Validation Iterations and Score  

The root mean squared error for the Random Forest Model was 0.36. 

Feature Significance 

 As stated in the model building section, the random forest model was chosen for 

the feature significance module it provides. The model allowed plotting a feature 

significance graph to understand which of the variables (features) contributed the most 

towards the prediction. Fig 15 shows the top 10 predictive features for the model. 

 

Fig 15: Random Forest Model: Feature Significance 
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Discussion 

 Using Fig 15 and the ICD 10 coding system 39, 41, we can determine which 

diagnosis codes contributed the most towards opioid addiction.  

Rank Diagnosis Code Description (from the ICD 10 coding system) 

1 G89 Acute pain 

2 F19 Other psychoactive substance related disorders 

3 F14 Cocaine related disorders 

4 F18 Inhalant related disorders 

5 F17 Nicotine dependence 

6 F41 Other anxiety disorders 

7 R52 Pain, unspecified 

8 M96 Intraoperative and postprocedural complications and 

disorders of musculoskeletal system, not elsewhere 

classified 

9 F13 Sedative, hypnotic, or anxiolytics related disorders 

10 E78 Disorders of lipoprotein metabolism and other lipidemias 

 

Table 4: Ranked Diagnosis codes and their description.  

(Derived from: Feature Significance for Random Forest Model) 

 From Table 4 we can see that patients diagnosed with Acute Pain were more prone 

to opioid addiction. The table also shows that patients diagnosed with other addiction or 

dependencies, such as cocaine, nicotine, etc. were also more susceptible to opioid 

addiction. While these results are not surprising, they lead one to believe that most cases 

of opioid addiction stem from being prescribed opioid medication since Acute Pain is 

ranked first in the list of important features. What would the results look like if we were to 

run the predictive models solely on patients diagnosed with Acute Pain? 

  The next section elaborates on the results of the second run of predictive models 

on patients diagnosed with Acute Pain. 
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Predictive Models for Patients Diagnosed with Acute Pain 

  Similar to the first run of predictive model building, the second run followed the 

same basic steps, except being filtered for patients diagnosed with Acute Pain. There were 

total 941 patients in the dataset.  

Dataset Rows Columns 

Train_x 752 956 

Train_y 752 - 

Test_x 189 956 

Test_y 189 - 

Table 5: Train and Test Datasets for Predictive Modelling for patients diagnosed with Acute Pain. 

Logistic Regression (for patients diagnosed with Acute Pain) 

  The results and the success metrics for the Logistic Regression Model for patients 

diagnosed with Acute Pain were as follows: 

Model Accuracy 

 The logistic regression model was trained on the training data and gave an accuracy 

of 99%. When the trained model was run on the test data, it gave an accuracy of 78%. This 

means that 78% of the predictions made on the test data were accurate. 

Confusion Matrix 

 Table 6 shows the confusion matrix for the logistic regression model for patients 

diagnosed with Acute Pain. It shows that the logistic regression model predicted 26 True 

Positive values, 26 False Positive values, 15 False Negative Values and 122 True Negative 

values. Again, the goal is to build a model that has minimum False Positive and False 

Negatives to reduce Type I and Type II errors respectively.  
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Table 6: Logistic Regression Confusion Matrix (for Patients diagnosed with Acute Pain) 

Classification Report – Precision, Recall, F-1 Score 

 Table 7 shows the Precision, Recall, and F-1 score for the logistic regression model. 

 

 

 

  

Table 7: Logistic Regression Classification Report – Precision, Recall, F-1 score 

Root Mean Squared Error  

  The root mean squared error for the Logistic Regression Model was 0.47. An 

error closer to 0 is generally preferable.  

Random Forest for patients diagnosed with Acute Pain 

  The results and the success metrics for the Random Forest Model for patients 

diagnosed with Acute Pain were as follows: 

Root Mean Squared Error 

The mean squared error for the Random Forest Model for Patients diagnosed with 

Acute Pain (Ten-fold cross-validation as before) was 0.4 

 
Predict No Predict Yes Total 

Actual No 26 26 52 

Actual Yes 15 122 137 

Total 41 148 189 

 
Precision Recall F-1 score Support 

0 0.63 0.50 0.56 52 

1 0.82 0.89 0.86 137 

Total 0.77 0.78 0.77 189 
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Fig 16: Random Forest Model for patients diagnosed with Acute Pain: Cross Validation Iterations and Score 

Feature Significance 

Again, the Random Forest Model allowed plotting a feature significance graph to 

understand which of the variables (features) contributed the most towards the prediction. 

Fig 17 shows the top 10 predictive features for the model. 

 

Fig 17: Random Forest Model for patients diagnosed with Acute Pain: Feature Significance 
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 As before, using Fig 17 and the ICD 10 coding system 39, 41, we can determine 

which diagnosis codes contributed the most towards opioid addiction in patients 

diagnosed with Acute Pain.  

Rank Diagnosis 

Code 

Description (from the ICD 10 coding 

system) 

1 F19 Other psychoactive substance related 

disorders 

2 F17 Nicotine dependence 

3 M96 Intraoperative and post procedural 

complications and disorders of 

musculoskeletal system, not elsewhere 

classified 

4  F33  Major depressive disorder, recurrent 

5 R52 Pain, unspecified 

6 F41 Other anxiety disorders 

7 Z01 Encounter for other special examination 

without complaint, suspected or reported 

diagnosis 

8 M54 Dorsalgia 

9 I49 Other cardiac arrhythmias 

10 J32 Chronic sinusitis 

 

Table 8: Ranked Diagnosis codes for patients diagnosed with Acute Pain and their description.  

(Derived from: Feature Significance for Random Forest Model for Patients diagnosed with Acute Pain) 

Comparing Table 7 (ranked diagnosis codes from the Random Forest model) and 

Table 8 (ranked diagnosis codes from the Random Forest model for patients diagnosed 

with Acute Pain), we can see that while some diagnosis codes appear in both the tables, 

many diagnosis codes are dismissed and new diagnosis codes appear in their place when 

we filter the dataset on patients diagnosed with Acute Pain. Table 9 describes the difference 

in the diagnosis code rankings for both the Random Forest Models.  
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 All Patients Patients Diagnosed with Acute Pain 

Rank DX_Code Description DX_Code Description 

1 G89 Acute pain F19 Other psychoactive 

substance related disorders 

2 F19 Other psychoactive 

substance related 

disorders 

F17 Nicotine dependence 

3 F14 Cocaine related 

disorders 

M96 Intraoperative and 

postprocedural 

complications and disorders 

of musculoskeletal system, 

not elsewhere classified 

4 F18 Inhalant related 

disorders 

F33 Major depressive disorder, 

recurrent 

5 F17 Nicotine dependence R52 Pain, unspecified 

6 F41 Other anxiety disorders F41 Other anxiety disorders 

7 R52 Pain, unspecified Z01 Encounter for other 

special examination 

without complaint, 

suspected or reported 

diagnosis 

8 M96 Intraoperative and 

postprocedural 

complications and 

disorders of 

musculoskeletal system, 

not elsewhere classified 

M54 Dorsalgia 

9 F13 Sedative, hypnotic, or 

anxiolytics related 

disorders 

I49 Other cardiac arrhythmias 

10 E78 Disorders of lipoprotein 

metabolism and other 

lipidemias 

J32 Chronic sinusitis 

Table 9: Comparison of Table 7 and Table 8 – Ranked Diagnosis Codes generated from Feature 

Significance module of the Random Forest models  

 Table 9 gives a clear distinction of the difference in ranked diagnosis codes once 

we filter the dataset for patients diagnosed with Acute Pain. There is clear distinction 

between codes that did not get carried forward, the codes that were carried forward and the 

new codes that were seen in the new ranked list. The list of significant features generated 
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from the Random Forest model run on the main dataset (not filtered for patients diagnosed 

with Acute Pain) contained diagnosis codes for other dependencies (rr to Table 7). While 

some of these dependency diagnosis codes such as F19 (Other psychoactive substance 

related disorders) and F17 (Nicotine Dependency) were passed along, diagnosis codes 

related to anxiety and other psychological disorders cropped up in the new Table (refer to 

Table 8). This leads one to question the influence of psychological disorders on opioid 

addiction. 

 

Exploring the Patient Medication Dataset 

 Based on the results of the predictive models, it was advisable to look at the Patient 

Medication Dataset to draw further insights. 

Insights from Patient Medication Dataset 

 The subjects of interest in the Patient Medication dataset were patients who were 

prescribed opioids. Thus, the medication dataset was filtered for patients that were 

prescribed opioids.  

 The list of opioids used to filter the dataset was: 

• Fentanyl 

• Methadone 

• Morphine 

• Oxycodone 

• Hydrocodone 

• Demerol 

• Percocet 

• Oxycodone 

• Oxycontin 

• Vicodin 

• Heroin 

• Duragesic 

• Roxicodone 

• Darvocet 

• Lorcet 
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 This list was derived from the National Institute on Drug Abuse 51. It is 

important to understand that many of these drugs share the same parent drug and could 

just be different brand names for the same generic drug.  

  Within the dataset, the opioids found were: 

• Fentanyl 

• Methadone 

• Morphine 

• Oxycodone 

• Hydrocodone 

• Oxycodone 

• Oxycontin 

• Vicodin 

 

  While it was difficult to gleam information and draw insights from initial 

exploration of the Patient Medication dataset, it would prove to be useful to study this 

dataset further and include those variables in building the predictive model. The drugs 

patients are prescribed along with the duration they have been on said drug could 

significantly contribute towards predicting opioid addiction.  
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5. Conclusion and Future Work 

 Prescription opioid abuse is inherently dangerous and may lead users down a path 

towards serious, illicit drug abuse and addiction problems. Efforts to curb the prescription 

opioid abuse problem are challenged by numerous factors that all relate to the way that 

these medications are perceived in the public sphere. Despite their legal status, opioid 

medications have a very high potential for abuse and addiction and are being 

overprescribed at alarming rates 52. 

 Fortunately, people are beginning to realize the brevity of the situation and 

necessary steps are being taken address this issue. Educating people, both professional and 

consumers, of the underlying causes of this epidemic, will make them better equipped to 

address the major public health concerns arising from opioid abuse.  

 Analyzing data related to patients diagnosed with opioid addiction has led to 

identifying risk factors that lead to opioid addiction. The predictive model built is based 

solely on past patient diagnosis history. However, there are numerous other factors that can 

contribute towards addiction. It would be useful to study the patient medication history to 

gain further insights and narrow down the risk factors. Past research has shown that patient 

demographics (age, gender, race, socio-economic status) could also contribute towards 

addiction. Adding these variables to the predictive model could yield better results and give 

a deeper understanding of the risk factors leading to opioid addiction. 
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This project is another such attempt at providing a solution to the opioid epidemic. 

Prevention is always better than cure and addressing the risk factors leading to opioid 

addiction would help overcome the epidemic on a whole. 
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