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This paper presents an evaluation of the spectral clustering segmentation algorithm used 
for automating the description of musical structure within a song. This study differs from 
the standard evaluation in that it accounts for variability in genre, class, tempo, song 
duration, and time signature on the results of evaluation metrics. The study uses standard 
metrics for segment boundary placement accuracy and labeling accuracy against these 
song metadata. It reveals that song duration, tempo, class, and genre have a significant 
effect on evaluation scores. This study demonstrates how the algorithm may be evaluated 
to predict its performance for a given collection where these variables are known. The 
possible causes and implications of these effects on evaluation scores are explored based 
on the construction of the spectral clustering algorithm and its potential for use in 
describing diverse music collections. 
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I. Introduction 

As new technologies have opened up new ways to study music, they likewise have 

created new applications for this research. Among these is Music Information Retrieval 

(MIR), an interdisciplinary field of study that examines methods of providing access to 

musical data. Modern research in MIR seeks innovative ways of indexing a digital 

collection of music that can be applied in search engines, recommendation services, and 

scholarly databases. These strategies are built upon our ability to describe musical 

similarity and which songs are similar in certain ways to other songs. There are multiple 

things one can take into account for this task, including but not limited to the following 

factors. 1) The bibliographic information that accompanies a piece of music: its title, 

composer, lyricist, date of composition, etc. 2) The social component: what are the 

listeners of this piece of music like and how can we use that to predict who else might be 

interested in the piece of music? 3) The subjective qualia of the music: how might one 

describe the experience of listening to this piece of music and does that make it more 

suitable for certain moods or activities? 4) The aural qualities of the music itself: the 

relationships between notes, harmonies, rhythms, and other qualities that are revealed in 

the content of the music.  The subject of this particular study is musical structure, which 

fits within that fourth factor and comprises that quality of a piece of music which allows 

us to identify themes and sections which repeat within the piece. The study of musical 

structure has long played a major role in music theory and analysis, alongside harmony, 
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melody, rhythm, and timbre.  Structure has historically been a primary component in 

determining how to classify a piece of music; terms like rondo, fugue, and sonata double 

as both structural and genre descriptors in the Western Classical tradition, and even more 

modern genre classifications like blues and pop often imply a defined structure. This 

study of musical structure is certainly central to any debate about musical description.  

Naturally, we cannot expect every digital collection of music to be structurally 

analyzed by a music theorist, but there are nascent methods of automating the task. These 

processes, known as structural segmentation algorithms, are able to parse a digital audio 

file and discern its repeating sectional components. Usually, these algorithms are 

evaluated in an adversarial way, i.e. competing algorithms are tested against one 

collection and ranked according to the which algorithms maximize or minimize the 

values returned by standardized evaluation metrics that measure, for instance, the 

accuracy of the placement of sectional boundaries or the agreement between sections that 

an algorithm determines are alike and those determined by a human expert to be alike.. 

This study proposes another kind of evaluation using just one subject algorithm against 

the same standardized evaluation metrics. This method of evaluation is not to determine 

which algorithm among many receives the highest average evaluation score, but instead 

to determine what variables within a collection have a significant effect on the evaluation 

scores that a single algorithm receives.. In this case, I will examine the performance of 

the spectral clustering algorithm proposed by McFee & Ellis [1] against ground truth 

segmentations in a collection in which broad genre classification (referred to as class), 

narrow genre classification (referred to as genre), the division of beats within a bar 

(referred to as time signature), the frequency of beats (referred to as tempo), and the song 
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duration for each song are known. . It could be used to identify the weaknesses of an 

algorithm or to determine particular types of collections to which an algorithm is or is not 

suited. The basic research questions may then be stated as follows: 

1) Do either broad class or narrow genre of a song have a significant effect on the 

accuracy of the spectral clustering algorithm for the structural segmentation of 

that song? 

2) Is there a significant correlation between the duration, tempo, or time signature of 

a song and the accuracy of the spectral clustering algorithm for the structural 

segmentation of that song?  
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II. Review of the Literature 

As a field of study, MIR rests within the larger field of Information Retrieval (IR). 

Therefore, its beginnings lie in research first pioneered for text-based documents in 

traditional search contexts. The earliest music search systems developed under this 

standard relied on textual metadata for retrieval. Fields that you might find as part of a 

traditional card catalog formed the basis for access: searching for music by a known 

composer, or with a known title, or from a known album, or published in a particular 

year. This model is sufficient for the kinds of basic searches done by reasonably informed 

users on collections that are well described. Even modern applications largely rely on the 

prototypical formula. As an example, the music used in this study was purchased from 

the iTunes store using keyword searches that returned those pieces of music in which the 

title, artist, or some other field matched the given keywords. From an academic context, 

where searches might require more rigorous methods of retrieval, consider the description 

of the catalog of Naxos Music Online1, which maintains a vast and comprehensive 

controlled vocabulary across dozens of metadata fields to provide effective access to its 

users. The methods of description vary in complexity and efficiency, but have in common 

a dependency on a well-trained cadre of catalogers accurately describing large 

collections. Not only is this a time- and resource-intensive process, it is also one with 

limited effectiveness outside of bibliographic information. Even trained experts disagree
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on the largely subjective terminology of genre and style, and explicitly musical qualities 

(including tempo, key, or chord progressions) require exhaustive analysis to evaluate 

even in the few cases where they are unambiguous. As the number of pieces of music 

continues to grow, and services seek to provide access to ever-larger numbers of them, 

searching based on some measure of musical similarity using traditional means of 

musical analysis by experts is just impractical.  

One popular workaround is to crowd-source description tasks. Organizations like 

MusicBrainz2 draw on the efforts of a community of enthusiasts where many amateur 

users may each submit their own metadata as tags. In this system, the agreement of many 

of these users on a set of metadata substitutes for the pronouncement of one or a few 

expert catalogers. Referred to as social-tagging, this metadata arrives unrestricted and 

unstructured; the process democratizes the descriptive task on the predicate that 

popularity is a predictor of accuracy. Given their lack of editorial influence, these tags 

can potentially cut across any and all potential categories of description. Genre, key, time 

signature, lyrical subjects, the appropriate mood for listening, even the internal memes of 

the tagging community may coexist as relevant labels. [2] shows us that this approach has 

real advantages over bibliographic search, but disadvantages as well. The social interest 

across all pieces of music is not evenly distributed, with a small minority of music 

receiving the lion’s share of attention and tags, and the long tail of music that remains 

being so meagerly described as to make meaningful tags hard to distinguish from 

meaningless noise. In cases where one is primarily concerned with only the most well-

known music this might be sufficient, but the effectiveness of social-tagging for a piece 

of music wanes as a function of its obscurity. When one is concerned with providing 
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access, penalizing obscurity can be counterproductive. To consider all pieces of music 

within a collection uniformly, researchers have considered ways to incentivize a user 

base to consider tracks they might not have otherwise considered. For instance, [3] 

discusses how the process of tagging might be gamified to encourage users to tag more 

evenly and comprehensively. Yet attempting to control the behavior of large crowds is 

never a simple or reliable process.  

A similar hurdle once faced text-based IR. That field has since benefitted from 

volumes of research focused on discerning the semantic qualities of documents without 

relying on human description. The potential of this research for internet applications, 

where personal examination of the vast quantities of documents on the web would be 

inconceivable, injected a new urgency into the field in the 80s and 90s that ultimately 

gave us the modern search engine and with it the ubiquity of Google (whose searches-

per-year surpassed 1 Trillion in 20113). The web-search renaissance was built on the 

basic ability to parse and estimate the semantic relevance of textual documents digitally, 

but such a task is not so easily replicable with musical content. Text is divisible into 

letters: well-defined elements that can be represented as a standard string of binary data, 

the collection of which can represent a word. Words exist as independent entities with 

relationships that we can categorize in dictionaries and thesauri. Without needing to 

understand the meaning of words, larger semantic concepts like topic can be 

algorithmically estimated based on relatively straightforward functions like word 

occurrences across an index. Music must work with a different kind of data that cannot be 

understood in the same semantic way that text is. This is not to say that automated text-

based content analysis is easier, only that music content-based analysis must use unique 
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methods to achieve similar results. [4] identifies two techniques that persist in popularity 

in the MIR community. The first is based on the foundational work previously discussed 

in tagging music, with the distinction that the tagging is not done socially but rather 

algorithmically based on the feature analysis of the signal. The second focuses on 

creating relevance judgements using patterns in the time and frequency representation 

(TFR) of the music itself without the mediation of a semantically meaningful tag. [4] 

labels these as the “Bag-of-Features” approach and the “Sequence-based” approach. The 

following section will detail the ways digital music data is used for content description 

and the strengths and weaknesses of major approaches that have informed the creation of 

the structural segmentation algorithm. The final section will discuss approaches to 

evaluating structural segmentation algorithms and how this study differs from those 

approaches. 

Bag-of-Features 

The bag-of-features (BoF) approach is so called because it bears some similarity to the 

bag-of-words conceptualization of a document used in text-based IR. Like the bag-of-

words approach does with words, the bag-of-features approach to content analysis 

separates some kind of identifiable element from within the piece of music and considers 

it as a solitary unit outside of the particular context in which it appears. Which kind of 

feature being considered usually gives the particular implementation of this approach its 

name; researchers call it alternatively by the names bag-of-features, bag-of-frames, bag-

of-audio-words, bag-of-systems, and so on to distinguish the particular qualities being 

bagged in their approach [5]—[10]. Common to all approaches is a set of tags tied to a 

probabilistic model that identifies some features of the TFRs of the pieces of music in the 
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collection commonly associated with those tags. A machine-learning process of some 

variety is typically employed to improve the accuracy of the probabilistic tagging feature 

[9][10]. Tags are often pre-defined according to some controlled vocabulary, although 

this approach can be combined with social tagging to develop an unbound dictionary of 

tags tied probabilistically with identifiable features as in [2]. Accordingly, these 

automatically generated tags may theoretically take any form: genre, instrumentation, 

mood, etc. and are therefore well-suited to search systems in which an end-user is 

searching for music based on a keyword query-by-text. While the variety of approaches 

that fall within the BoF framework are too numerous to go into in fine detail, one can 

nonetheless outline the common process of generating a BoF representation as [8] did in 

fig. 1. 

The first few steps, from audio signal to feature extraction, are just as previously 

outlined. Preprocessing refers to any step that must be taken to prepare a digital audio file 

for signal analysis, including changing the file format or other such tasks. To 

disambiguate, in fig. 1 the term “segmentation” refers to the process of segmenting an 

audio signal into frames by a window function. Once a TFR for an audio signal is 

created, the BoF approach must quantize the vectors of the TFR. In other words, they 

must identify some number n of relevant values per some subdivision in the TFR and 

map them to a vector of n dimensions. This vector is then predicted to belong to some 

defined feature vis-à-vis a probability model in that vector space, where probability is 

determined based on an initial sample set of data for which both vectors and feature tags 

are known.  

Figure 1. From [8] 
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A common approach is to 

employ a nearest-neighbor calculation 

between the given vector and the 

nearest known sample vector. While 

difficult to visualize in vector space of 

more than 3-dimensions, the idea is 

that one can predict which feature is 

represented by a new vector simply by 

determining which feature is 

represented by the nearest known 

vector (by Euclidian distance).  This is 

the basic approach used in [8][11]. This approach has drawbacks, notably that one must 

compute each new vector against all known vectors as they are generated. An alternative 

proposed in [9] is to define some parametric function in the vector space for which the 

output is the probability that the vector belongs to a certain feature. Using a parametric 

probability function requires less computational effort, making it more suited to large 

collections. These probability functions are most often defined using a Gaussian Mixture 

Model (GMM), in which multiple Gaussian distributions of probability simulate a 

continuous probability function[9][10][12], although alternative or modified 

constructions are not uncommon[6]. The audio signal is thus reduced to a collection (or 

bag if you will) of these feature vectors for which each is said to belong to a probable 

feature. That feature for each vector is taken from the vocabulary of tags that is 

determined by the sample data. The data can then be represented by a histogram of all 

Figure 2. A histogram of tags, w, in the song Give it Away by the 
Red Hot Chili Peppers and their cumulative probability, P, of 
occurrence in the bag of feature vectors, X. The 10 most 
probable tags are labeled. From [9] 
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tags in the vocabulary and their cumulative probability of occurrence in the song as in fig 

2.   

 While research continues to make progress in improving BoF approaches to 

music content-analysis, [5] identifies persistent problems that limit its general application 

at least to polyphonic music (music with many voices or sources of sound that do not 

always produce sound in unison). One, BoF methods usually cannot improve beyond a 

maximum precision (about 70%) that is not affected by extenuating factors, which [5] 

calls the glass ceiling. Two, means of modeling dynamic changes in the audio signal in 

BoF approaches offer no improvement over static models despite their significance in the 

perception of a listener. Three, intriguingly there seems to exist a class of polyphonic 

songs which are found to be consistently returned as false positives in BoF MIR tasks 

regardless of the circumstances of the search; these songs are called hubs. Additionally, 

[4] identifies the more general weakness that, while BoF approaches may succeed in 

identifying features accurately, they ignore the context in which the features exist and the 

behavioral relationships between them within the song. For instance, in principle one 

could use tags to identify the number major and minor chords are present in a song, but 

not the movement between major in minor chords across a song. Likewise, one could use 

tags to identify a saxophone in a song, but not where in the song it plays a solo. These 

descriptions and those like them, while they may not be useful for the lay searcher, are 

imperative in a musician’s conceptualization of a piece of music. For these tasks, we 

must look beyond the paradigm of traditional metadata description using text established 

by the practices of card catalogues. One must be able to describe temporal and structural 

patterns within a song directly. [4] calls these approaches “sequence-based.” 
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Sequence-Based Analysis 

When describing temporal and structural patterns, one is not looking merely for the 

presence of some values, but the relationship of those values to the values around it. This 

requires knowledge of the order of values; in other words, we must examine not just the 

values but the sequence of values. For example, consider these three sequences of 

integers: “1,2,3,4,5”, “1,2,3,5,4”, and “2,5,3,4,1”. Approaching this with a BoF 

framework would allow us to identify the equal occurrence of the same values in each 

sequence, and therefore equal similarity among all sequences. However, given 

“1,2,3,4,5” as a query, one nonetheless would likely want to identify ”1,2,3,5,4” as being 

more similar or relevant than “2,5,3,4,1”. The body of sequence-based approaches to 

retrieval depends therefore on the ability to quantify the degree of similarity between two 

comparable sequences of values [4]. This is called sequence alignment. In general, 

sequence alignment seeks to generate an alignment score between sequences, such that 

the highest scoring sequence can be said to be the most similar to the query sequence. 

The specific process, however, depends on the class of values that make up the sequence 

being examined. Certain important features in music can be understood only as a 

sequence. For instance, a melody is a sequence of pitches; a chord progression is a 

sequence of harmonies; even a piece of music itself can be considered a sequence of 

repeating sections. The accuracy of sequence alignment as a process then depends on 

how accurately one can identify the values that make up these sequences: pitches, 

harmonies, sections. Significant progress has been made in the field of melodic 

transcription of polyphonic audio, but the task has not yet advanced to the degree that it 

may be consistently applied to recorded music as opposed to MIDI-based audio examples 
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[4]. The reader is referred to [13] for a review of pitch tracking systems in melodic 

transcription and to [14] for a comprehensive overview of digital melodic transcription 

research. Although melodic transcription is not yet applicable in writ large, significant 

advancements have been made in sequence-based analysis based on the final two 

examples, chord sequence and structural sequence. This review will only discuss the 

research into the latter, although a discussion of chord sequence estimation and its 

foundational work in identifying musical “states” can be found in appendix 5. The 

following will refer to TFRs known as the Mel Frequency Cepstral Coefficients (MFCC) 

and the Constant-Q Transform (CQT) in some detail. See appendix 4 for a full definition 

and discussion of these types of TFRs that are used in musical content analysis and 

specifically in the spectral clustering algorithm. 

Structural Sequence 
The analysis of structural sequence is a way to identify and order the states that are 

emergent within the signal, the musical form. While computationally difficult, this is a 

process that even lay listeners perform almost subliminally when listening to a piece of 

music. It is the process by which a listener can infer, for instance, that the chorus of a 

song has moved to the verse. These states within the music, which may colloquially be 

referred to as a section or part, are conditional on their relationship to other states; that is 

to say, you cannot logically have a song that is all chorus and you cannot have a bridge 

without the two sections that it bridges. It is the repetition, or lack thereof, and order of 

these emergent states which allow us to classify them. Despite how naturally a human 

listener may be able to identify these sections, the computational equivalent referred to as 

segmentation has proven to be a challenge. [15] proposes that sections within a piece of 

music are defined by 3 fundamental relationships: homogeneity, novelty, and repetition. 
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Homogeneity refers to those consistent elements within a section that allow us to say that 

it is one single unit; novelty is the contrast in elements that marks a break in homogeneity 

and thus a new section; and repetition is that feature that marks the recurrence of a 

previously-occurring section. These relationships must be determined by some features 

that can be represented in a TFR, although which features most clearly establish the 

relationships may vary. Accordingly, approaches to the structural sequence problem use a 

variety of TFRs with a variety of specialized uses as a starting point, and there is as yet 

no one TFR that is clearly best-suited. [16] established in 2001 that the MFCC generally 

outperformed other TFRs if the focus of segmentation rested on timbre; however, new 

research and new applications since then have broadened the horizons. While the MFCC 

continues to be used in many studies, it appears in the corpus alongside, and indeed often 

in conjunction with, chroma features and to a lesser extent the CQT as well as many less 

common TFRs [15].  

Regardless of the TFR used, a specialized representation is used for segmentation 

that has not yet been discussed. Rather than visualizing the frequency against time in a 

signal, segmentation requires some method of measuring homogeneity, novelty, and 

contrast. For this, we do not need to know the specific values of frequency features, but 

rather some measurement of the relative similarity and distance of these features to one 

another. [17] proposed a metric known as the self-similarity matrix (SSM) that allows for 

this. Given two vectors, which in this case represent the values of two frames of some 

TFR, [17] asserts that the scalar product of the two vectors may be used as a similarity 

metric. [15] notes that Euclidean or cosine distances between the vectors are also 

commonly used. By comparing each frame of the given TFR pair-wise with every other 
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frame, one can construct a square matrix 

with the values representing the distance 

between every combination of vectors. If 

represented as a heat map, one should find 

that the values are lowest along a center 

diagonal of the matrix, representing the 

distance between each frame and itself. 

Diagonals parallel to the center diagonal 

represent low distances between one 

succession of frames and a separate 

succession of frames. This can be used to identify repetition. Square regions of lower 

values along the central diagonal represent a localized section of frames that have low 

distances among themselves. This can be used to identify homogeneity. Regions of high 

distance values near the central diagonal represent frames that are near to each other in 

time but have a large distance metric. This can be used to identify novelty. These features 

can be seen in fig 3.  

With a given self-similarity matrix, it follows that the next undertaking is to 

describe some computational method of identifying these relevant repetition, 

homogeneity, and novelty features. Different algorithmic approaches often prioritize one 

of these three qualities [15]. Additionally, within these three categories of approach, there 

are two goals to which an algorithm might aspire. The first is boundary detection, in 

which the aim is to identify the points in time in the signal that delineate where sections 

begin and end. The second is labeling, which focuses on grouping sections by the 

Figure 3. A self-similarity matrix representation for 
Mozart’s Symphony #40, Mvt. 3. Low distance is denoted 
by darker shades. Frames are divided by beat. From [52] 
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likelihood that they are alike. Segmentation algorithms typically accomplish either 

boundary identification only or both boundary and label identification.  

In early boundary identification experiments, [18] attempted boundary 

identification without a full SSM representation, simply by calculating the Mahalonobis 

distance between vectors of successive frames in multiple TFRs; however, this method 

suffers in that the scope of frame-to-frame novelty does not take into account the context 

of the frames. That is to say, sometimes, a boundary cannot always be identified as 

change in a single instant. [19] builds on the original SSM research by introducing a 

boundary algorithm that prioritizes novelty of a region. In this method a checkerboard-

like kernel with a Gaussian radial function (a visualization can be seen in fig. 4) with a 

given size, or duration, iterates across the central diagonal of the SSM. The correlation 

between the values in the kernel and the values in the SMM are measured and plotted 

against the duration of the song producing a novelty curve. Where the regions of high and 

low similarity conform closest to the checkerboard shape of the kernel, the correlation 

and thus novelty is high. This shows the location of box corners of high and low distance, 

where regions of high similarity are separated by regions of high distance. High values in 

the novelty curve suggest that a location is a 

logical boundary point between sectional 

regions.  

[20] proposed an improvement to the 

standard novelty curve for boundary 

identification that includes both local novelty 

and a model of global novelty. In the proposed 

Figure 4. The kernel with Gaussian radial function 
used to measure audio novelty in a self-similarity 
matrix in [19] and [17]. 
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method, each vector of a given TFR is concatenated with the values of preceding vectors 

according to some duration parameter. This produces a series of high-dimensional nested 

vectors that retain a kind of “memory” of the recent past. A novelty curve against a time-

lag transformation of these vectors yields boundaries that more accurately captures 

transitions between inter-homogenous sections rather than simply the highest points of 

local novelty. In [21], the authors build upon the work of [20]. They do away with the 

novelty curve altogether and instead reduce the memory-informed self-similarity matrix 

to a fixed-dimensional (i.e. duration-independent) matrix of latent repetition factors that 

capture transitions between repetitive and non-repetitive sections. [22] formulates an 

alternative method of regional boundary identification from homogeneity rather than 

novelty. A cost function is utilized that computes the sum of the average self-similarity 

between successive frames of a signal. The task of the function is to group as many 

frames together as possible given a cost parameter that penalizes grouping frames with 

low self-similarity. By increasing the value of the cost parameter, the number of possible 

segments decreases. This allows control over the function in its implementation that 

prevents spurious or too-frequent boundary identification. 

[18] and [19] both note that boundary identification alone can be useful for 

example by facilitating audio browsing (where the listener may want to jump between 

meaningful sections rather than attempting to locate them via traditional fast-forwarding 

and rewinding). However, simply identifying boundaries does not provide meaningful 

descriptions of the relationships between sections. Repetition-based methods have 

approached labeling visually, as a task of identifying the diagonal stripes parallel to the 

central diagonal in the SSM. These techniques have been prone to noise-based errors and 
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false stripe identification, and they rely on the assumption that all repetitions occur in the 

same tempo (changes in tempo result in a distortion in the shape of a stripe, angling it 

towards or away from the diagonal) [15]. In the first approach to some kind of label 

identification, [23] sought to combine the novelty-seeking kernel boundary algorithm of 

[19] with a homogeny-seeking clustering algorithm that compares the Singular Value 

Decomposition (SVD) of the regions between novelty-identified boundaries. The SVD is 

computed as a function of the relationship between the empirical mean and covariance of 

the spectral values in the TFR for each segment. This SVD takes a value between 0 and 

1. These SVD values are then used to create a segment-indexed similarity matrix (seen in 

fig. 5). High SVD values indicate that two segments should be grouped under the same 

label. This is a highly versatile method that [23] notes could be used to identify structural 

similarity even in image or video data; however, the process is computationally intensive. 

Furthermore the similarity between segments determined by SVD is unable to account for 

changes in key that do not affect the underlying structure. In other words, where a human 

might recognize a section in one key with a certain melody, and a section in another key 

with the same melody as belonging to the same 

section, the SVD cannot. [24] proposes a novel 

alternative to clustering by SVD using a 

calculation of the 2D-Fourier Magnitude 

Coefficients (2D-FMC) of each segment. This 

has the dual advantage over the SVD in that it 

is computationally simpler and key-invariant. 

In this implementation, the 2D-FMC used can 
Figure 5. A segment-indexed similarity matrix of the 
SVD values of a piece of music determined to have 11 
segments. 
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be described as a segment-length-normalized matrix of values that measures in two 

dimensions the frequency-amplitude of some segment of chromagram the way that a DFT 

measures in one dimension the frequency-amplitude of a signal. The distance relationship 

between the 2D-FMCs for each segment can be plotted against each other in a similar 

segment-indexed similarity matrix.  

These methods are largely successful in applying labels but they are nonetheless 

dependent on an independent boundary identification algorithm. [25] the “constrained 

clustering” algorithm holds that the identification of recurring sections can more 

efficiently be done using an E-M trained HMM to identify section states similar to the 

models used in chord identification (see appendix 5). The process by which this occurs 

uses what is essentially a continuous, adapted BoF approach that reduces some frame 

within a TFR to a histogram of feature probabilities. These probabilities are related to 

some probability model of states for which the states involved correspond to expected 

structural sections types in the vein of “chorus,” “verse,” “intro,” etc. Unlike [23], this 

method has the ability to describe sections meaningfully even if there is no repetition of 

them within a song. Additionally, the process can optionally be refined with the addition 

of an independent novelty-seeking boundary identification mechanism which can be used 

to introduce “cannot-link constraints” that define frames which should not be linked with 

the same label. Unfortunately, the general applicability of the method is limited given 

that it requires foreknowledge of the type of music to which it is being applied in order to 

precisely define the states-as-sections.  
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Spectral Clustering 
The spectral clustering algorithm proposed in [1] offers a dual-purpose alternative that is 

more generally applicable: a method of both a boundary and labeling identification based 

on the graphical interpretation of a transformation of the SSM proposed based on 

concepts in spectral graph theory. The algorithm does not generate a novelty curve across 

the central diagonal and relate the sections that fall within these boundaries. Rather, it 

seeks to explicitly identify nested or hierarchical sections by analyzing the SSM at 

narrowing levels of granularity and relates the identified sections via a combination of 

local timbre features and long-term harmonic features. One way to express the practical 

implications of this narrowing granularity is that it seeks at each step to separate a given 

signal that is assumed to be completely homogeneous into two identifiably distinct 

divisions. The first step divides the most distinct, like sections from the rest of the song; 

the second divides the most distinct, like sections from what remains; the third from what 

remains of that; and so on and so on up to some parameter of steps set by the algorithm. 

This process is visualized in fig. 6, where the parameter, m, is set at 10. The process by 

which it arrives at this solution is explained subsequently. 

Figure 6. The song Come Together, by the Beatles is viewed as entirely homogenous at m=1 and progressively 
divided. At m=2, one sees the ‘outro’ identified as distinct from the rest of the song in the upper-right corner. At 
m=3, the ‘solo’ roughly in the center is revealed. As m increases, the repetitive structures of the verse and chorus 
become more evident. Finally, as m approaches 10, even individual measures can be identified. 
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The procedure can be divided into 2 parts: the construction of a graph suitable for 

analysis and the analysis of the graph. First, a CQT of a signal is generated. This TFR is 

chosen based on its ability to capture long-term harmonic patterns. The CQT is mean-

aggregated to the beat level; that is to say, the frames of the CQT that fall within a single 

beat are collected together as a single frame for which the spectral vector values are a 

mean of the vector values of the frames that fall within that beat. A memory-informed 

CQT is constructed according to the precepts of [20] from the beat-synchronous frames 

where each frame is concatenated with the frame that immediately precedes it. A 

specialized SSM is constructed from the resultant modified CQT according to a nearest-

neighbor calculation. In this form, the values between each pair of frames is not a linear 

distance metric. Instead it is binary: 1 for two frames that are determined to be nearest 

neighbors in the vector space and 0 for all other frames. This produces an SSM that 

enforces representation of only the strictest similarity; however, the representation 

produces a field of points rather than smooth lines. The representation must then be 

filtered to more clearly show patterns of similarity. This is done with the aid of an MFCC 

representation of the signal, chosen because it more accurately represents local patterns in 

timbre. A beat-synchronous MFCC is constructed from the first 13 mel frequency 

cepstral coefficients. The relationship between the CQT and the MFCC representation are 

used to generate a filtered representation of the SSM intended to capture the affinity 

between local and global sequences of similarity called the affinity matrix. The full 

calculation of this affinity matrix is outlined in the proposal of the method in [1]. 

Once this affinity matrix is generated, the concept of the Laplacian from spectral 

graph theory informs the subsequent analysis. The Laplacian is a differential operator in 
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the graph in that it measures the diffusion of points in the affinity matrix. Clustering 

occurs based on this diffusion of points, where regions of less-diffuse points can be said 

to constitute a region of homogeneity in the graph. This is done progressively according 

to the m smallest eigenvectors of the Laplacian. These eigenvectors measure the rates of 

diffusion such that they progressively increase in complexity. The first eigenvector 

encodes membership in the complete set. The second encodes the clearest differential in 

diffusion. The third encodes the clearest differential in diffusion of the result, and so on 

up to the eigenvector m which is a parameter. The higher the value of m, the more the 

diffusions will be differentiated and thus the more segments will be identified; however, 

higher m attempts to measure granularity in the affinity matrix so fine that it becomes 

sensitive to errors in the representation. There is also the simpler problem of over-

segmentation. As [1] notes, the challenge of the spectral clustering algorithm is in 

defining the parameter m without “a priori knowledge of the evaluation criteria,” or in 

other words, without some information about the required level of granularity. One 

possible application of this study is to determine the effect of certain known qualities of 

diversity in a music collection that may be known a priori, whether by expert knowledge 

or estimation by some independent automated system, on the performance of the spectral 

clustering algorithm. This will reveal which of these qualities are correlated with worse 

segmentation accuracy, whether by over- or under- segmentation, and thus suggest which 

qualities may require adjustment of the algorithm. 

Evaluation 

Before moving on to the evaluation of spectral clustering performed in this study, it will 

be useful to describe the various evaluation metrics commonly used in the segmentation 
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task and exactly what they are supposed to evaluate. Segmentation evaluation falls under 

the purview of the Music Retrieval Evaluation eXchange (MIREX), a community of MIR 

researchers that organize a yearly presentation of evaluation results of state-of-the-art 

MIR algorithms.  MIREX, which began officially in 2005, has since been the primary 

conduit through which MIR evaluations are conducted [26]. In order to provide robust 

evaluations that can be said to be generalizable across multiple tools and algorithms, 

MIREX seeks to standardize 3 components of the evaluation process:  1, standardized 

tasks or queries to be made of collections; 2, standardized evaluation metrics that 

measure success at these tasks; and 3, test collections of significant size to allow for these 

tasks and evaluations to be run [27].  

The simplest evaluations concern only the boundary identification task and are 

focused on measuring the difference between the boundaries estimated by an algorithm 

and known boundaries. There are two accepted ways of doing this which may be used 

together. The first is hit rate, which considers the accuracy of estimated boundaries by 

detecting whether or not they fall within some window of time surrounding a known 

boundary. Common windows are 0.5 seconds for strict accuracy, explained in [28], and 3 

seconds for more lenient accuracy, explained in [25]. There are 3 values associated with 

hit rate corresponding to precision, recall, and the F-measure of the two. Precision 

measures the percentage of estimated boundaries that fall within a known boundary’s 

window; recall measures the percentage of known boundary windows that include an 

estimated boundary; and the F-measure the harmonic average of the two rates. The 

second boundary evaluation is known as median deviation. [28] defines this metric as 

well. Deviation refers to the value in seconds that separates an estimated and known 
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boundary. The median is determined based on the total collection of deviations between 

near boundaries. There are two values associated with median deviation: that between 

known boundaries and their nearest estimated boundaries and that between estimated 

boundaries and their nearest known boundaries. These are respectively referred to as the 

Median Deviation E to R and Median Deviation R to E. Both the hit rate and the median 

deviation may be trimmed. To trim the metric means to ignore the values generated by 

the first and last boundaries. This can be useful when one does not particularly care about 

an algorithm accurately labeling the point at which silence ends and the music begins 

(and vice versa). When these values are less than a second from the beginning and end of 

the track, that accuracy is not particularly informative for meaningful segmentation. 

 There are also two metrics associated with labeling identification accuracy. The 

first is known as pair-wise frame clustering, defined in [25]. This value compares labeled 

frames in an estimation against known labels. All frame pairs are considered against each 

other. The pairs that are assigned to the same label in the estimation form the set PE, and 

the pairs that are assigned the same ground-truth labels form the set PA. There are three 

values that make up this metric corresponding again to precision, recall, and F-measure. 

These can be calculated according to these equations (ex. 12[25]) where PWFP measures 

possible under-segmentation and PWFR measures possible over-segmentation. Labelling 

success can also be evaluated with the metric known as normalized conditional entropies, 

described by [29]. This is a rather more complex metric that measures the amount of 

missing and spurious information in a labeling estimation. The conditional entropy 

measures the number of disagreements between estimated frame labels and known frame 

labels; however, this is value is simply a count. In other words, even between two 
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estimations that each have full disagreement with their known labels, the song with the 

most segments receives a worse conditional entropy score simply because it has more to 

disagree about. The normalized conditional entropy is, aptly, a normalization of this 

count that makes it segment-count-agnostic. The metric is calculated as a rate, that is to 

say as a value between 0 and 1, and flipped so that better performance returns a higher 

rate. There are also 3 values associated with the normalized conditional entropy 

precision, recall, and F-measure, defined as (ex. 2[29]) where SO measures over-

segmentation SU measures under-segmentation. H(E|A) refers to the conditional entropy 

of estimation to ground-truth (spurious information),  H(A|E) refers to the same between 

ground-truth and estimation (missing information), and Ne and Na define the size of the 

estimation and ground truth respectively. The full process of arriving at these entropy 

scores is outlined in [29].  

 

PWFP =
|PE ∩ PA|

|PA| , PWFR =
|PE ∩ PA|

|PE| , PWFF =
2PWFPPWFR

PWFP + PWFR
 

 

 

SO = 1 −
H(E|A)
log2 Ne

, Su = 1 −
H(A|E)
log2 Na

 

Structural segmentation is just one MIR task among many that are evaluated 

yearly at the MIREX, and in fact it is one of the newer tasks, added first in 20094. 

Nonetheless, a number of collections have since been generated that allow for 

segmentation evaluations. The most recent MIREX event included 4 datasets of songs 

used for segmentation evaluation5: the original dataset collected for MIREX 2009, two 

Ex. 1 

Ex. 2 
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datasets collected for MIREX 2010, and a fourth dataset put together by the Structural 

Analysis of Large Amounts of Music Information (SALAMI) research team.  The 

primary function of these datasets is to link commercially or freely available songs with 

what is known as ground-truth boundaries and labels (boundaries and labels determined 

by an expert listener) referred to as annotations.  The annotations take three forms, the 

simplest two of which are boundary information alone and boundary information 

between simple, non-overlapping sections each with a single label like “intro,” “outro,” 

“chorus,” etc.[30]. The former method of annotation is adopted by one of the MIREX ’10 

datasets6 , the latter is used by the remaining MIREX ’10 dataset7 and the MIREX ’09 

dataset.8 The SALAMI dataset differs from these in that it uses a unique annotation 

method that follows that proposed in [31] that allows for hierarchical sections (large-scale 

and small-scale) and accounts for possible similarities between different sections. For 

instance, while a “solo” and an “outro” may constitute separate musical sections, it is 

possible for them to share musical qualities that are similar. The method used in the 

SALAMI dataset allows for a broad characterization of sections, which could capture the 

musical functions of solo/outro, as well as narrower sections within these that can 

illustrate the musical similarities between them [30]. The SALAMI procedure modifies 

the original procedure of [31] by more strictly defining the hierarchical segmentations 

along three tracks: the musical function track (“outro,” “chorus”), the musical similarity 

track, and a third track which defines the lead instrument at a given point [30]. In all four 

datasets, annotations are generated manually by musically-trained experts. 

As mentioned, the primary function of these datasets it to link these annotations to 

commercially or freely available songs. The datasets used by MIREX for segmentation 
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are built from previously existing collections of music, which carries a number of 

advantages. These collections are often used for multiple MIR tasks, and so they often 

include a wide variety of potentially useful data. Collections may also be assembled with 

specific conditions in mind like genre breadth or specificity, or ease of access. For 

example, the MIREX ’10 datasets are constructed using songs from the Real World 

Computing (RWC) database, first proposed in [32] for the purpose of facilitating MIR 

evaluation across a variety of genres with publically accessible music. It includes songs 

from three broad genres (Classical, Jazz, and Popular) as well as a fourth component of 

entirely royalty-free music, all of which were performed and recorded for the purpose of 

inclusion in the RWC database 32 [32]. Songs are provided with corresponding MIDI 

files and full text of any lyrics used [32]. This source database prioritizes the accessibility 

of the included music and provides useful metadata, but because the included songs exist 

only for use in the database and are performed by a limited set of performers, it can only 

approximate the kind of variety in production and performance that a real-world 

collection of music might represent. The SALAMI dataset draws from multiple 

databases, including the RWC database, with a priority “to provide structural analysis for 

as wide a variety of music as possible, to match the diversity of music to be analyzed by 

the algorithms.”[30]. The largest component database, and the one used in the following 

study, is Codaich, chosen by SALAMI for its detailed curation of metadata [30]. Songs 

described in the Codaich database represent pre-existing commercial pieces contributed 

from three sources: the Marvin Duchow Music Library, the in-house database used by 

Douglas Eck of the Université de Montréal, and the personal music collections of the 

McGill Music Technology Area [33]. Metadata for Codaich, including the more than 50 
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subgenre tags, was first drawn from the Gracenote CD database9 and then edited for 

clarity and consistency by the compilers of the database at McGill University [33]. The 

combination of robust metadata and variety of content makes the Codaich portion of the 

SALAMI dataset idea for testing the correlations between these metadata and the 

accuracy of a segmentation algorithm, although this is not the traditional way the 

segmentation is evaluated through MIREX. 

Because databases like Codaich, which contain robust metadata on a variety of 

real-world songs, necessarily use commercially available songs in their collection, the 

database cannot be shared freely among researchers due to intellectual property concerns. 

As [27] says, “The constant stream of news stories about the Recording Industry 

Association of America (RIAA) bringing lawsuits against those accused of sharing music 

on peer-to-peer networks has had a profoundly chilling effect on MIR research and data 

sharing.” Instead of having the songs in these databases be shared, MIREX has adopted 

an evaluation model wherein the datasets are held by one entity, MIREX itself, and 

multiple researchers each submit their algorithm to MIREX to be evaluated. This 

simplifies the matters of copyright by eliminating the need to share commercial music, 

but results in a particular model of evaluation. Namely, with multiple algorithms being 

evaluated against common collections simultaneously, the evaluations take on an 

adversarial nature. Multiple algorithms are run against the same collections and the 

results and results indicate their relative performance compared to each other.10 This is 

helpful in determining the state of the art among participants, but time and resource 

constraints prevent MIREX from examining results in finer detail [26]. Although datasets 

like SALAMI provide detailed metadata for each track, results returned by MIREX are 
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flat; that is to say, the report evaluation results for each algorithm for each track but do 

not analyze possible variations in that data using the given metadata that accompanies the 

dataset. The following study will present one method of taking the evaluation metrics 

used in MIREX segmentation task evaluations and examining them in finer detail using 

the detailed metadata provided in the SALAMI dataset. By including metadata such as 

genre, class, tempo, duration, and time signature in the analysis of the evaluation, one is 

able to determine the specific relationship between these variables and the accuracy of 

the algorithm. For instance, one would be able to say not just that the algorithm is 

generally expected to accurately describe song structure, but to say that the algorithm is 

expected to describe song structure in one genre more accurately than another, or that the 

algorithm is expected to increase the accuracy of its description for songs in faster 

tempos. This is done by taking the evaluation scores across a full collection, similar to the 

results offered currently by MIREX, and analyzing the means and variances in these 

scores according to the given metadata. This study will compare the means and variances 

in evaluation scores between each genre and class and the evaluation scores and 

determine whether there are significant differences. Additionally, it will find whether 

significant correlations exist between tempo, duration, and time signature and the 

evaluation scores and determine the strength of those correlations. We will then use the 

information described previously about the spectral clustering algorithm to offer possible 

explanations for these differences and describe how they might affect the practical usage 

of the spectral clustering algorithm for automated description. 
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Notes  

1 naxosmusiclibrary.com 
2 musicbrainz.org 
3 According to http://www.internetlivestats.com/google-search-statistics/#trend. Just imagine if 
similar research could do something similar for music. Even something orders of magnitude less 
influential would be an unimaginable change in how we consume music. 
4 http://www.music-ir.org/mirex/wiki/2009:Structural_Segmentation 
5 http://www.music-ir.org/mirex/wiki/2015:MIREX2015_Results 
6 http://nema.lis.illinois.edu/nema_out/mirex2015/results/struct/mrx10_1/ 
7 http://nema.lis.illinois.edu/nema_out/mirex2015/results/struct/mrx10_2/ 
8 http://nema.lis.illinois.edu/nema_out/mirex2015/results/struct/mrx09/ 
9 http://www.gracenote.com/ 
10 A good example of MIREX results can be found at 
http://nema.lis.illinois.edu/nema_out/mirex2015/results/struct/salami/summary.html 
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III. Methodology 

Overview 

The broadly stated objective of this study is to determine how certain variables within a 

diverse collection of songs may affect the accuracy of the spectral clustering algorithm in 

segmentation tasks for that collection. In a general context, diversity in a collection of 

music can mean that the collection contains a breadth of songs from multiple genres, of 

varying durations, a wide range of years of release, multiple unique instrumentations, 

many keys, tempos, styles of (or absence of) vocalists, etc. Any sufficiently defined 

variable could theoretically be measured against the algorithm’s performance, but given 

the strengths of the sources of data for this study described below, the specific variables 

examined here will be class (broad genre category), genre (narrower genre category), 

song duration, tempo and time signature. The accuracy of the spectral clustering 

algorithm for segmentation tasks will be evaluated according to the metrics of median 

deviation (trimmed) of the boundaries, hit rate (trimmed) of the boundaries with a 3 

second window, pair-wise frame clustering, and normalized conditional entropy.  These 

metrics will be analyzed in terms of the variables to show the extent to which those 

variables have an effect on the evaluation results. This information can be used in a 

number of ways. From the perspective of someone considering implementing the spectral 

clustering algorithm in describing the structure of songs in a particular collection, the 

analysis provided in this study will provide baseline expectations based on the 
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collection’s known characteristics. For instance, someone with a collection that focuses 

on a single genre or genres within a single class would be able to predict the likely 

performance of the algorithm specifically in relation to that genre or class. On the other 

hand, someone with a collection that holds songs of varying durations could identify 

more easily which songs could be described effectively by the algorithm and which might 

require manual description. Being able to view multiple analyses like the one presented 

here that cover different description algorithms would allow those charged with picking 

among them to make a more informed decision based on their collection. Finally, in the 

case of the spectral clustering algorithm that operates with adjustable parameters, an 

analysis like the following can suggest possible conditions that warrant adjusting those 

parameters for more accurate segmentation estimations. 

In the design of the experiment there are 4 primary components:  

• First, a collection of song files is needed for which the structure of the collected songs 

in known. The collection must be large enough to represent a breadth of values 

among the variables to be examined in the collection. Furthermore, the structure of 

the collected songs must be determined with a reasonable level of expertise, 

preferably by hand by a subject matter expert, independent of the estimations 

provided by the structural segmentation algorithm. 

• Second, a script must be utilized that is capable of creating these structure estimations 

for the given collection of digital audio files using the spectral clustering 

segmentation algorithm designed by McFee & Ellis [1]. The estimations created by 

this script must be in a machine-readable format.  
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• Third, another script must be utilized that is capable of referencing the estimations of 

the segmentation algorithm against the independent, ground-truth song structure for 

each audio file. The output of this script should be a set of numerical values 

corresponding to standardized evaluation metrics for structural segmentation tasks.  

• Fourth, a statistical analysis will be performed on the data determining the extent to 

which the known variables in the given collection affect the values of the resultant 

evaluation metrics. Results will demonstrate which qualities are correlated with less 

effective (lower evaluation scores) or more effective (higher evaluation scores) 

performance of the segmentation algorithm. 

Tools and resources 

In order to realize this task, I am entirely reliant on the generous contributions of MIR 

researchers who have in recent years made vast quantities of both their own data and 

open-source software tools available online. Here I will provide a brief description of the 

various tools used and their value to the outline above. 

The particular software tools for segmentation analysis and evaluation are taken 

from the Music Structure Analysis Framework (MSAF)[34], an open-source framework 

written in the Python programming language by Oriol Nieto and Juan Pablo Bello and 

first presented at the ISMIR 2015 conference. This software package was selected for its 

versatility and the extent of evaluation options included. MSAF defines functions in 

Python for five boundary algorithms and three labeling algorithms, including McFee and 

Ellis’ spectral clustering algorithm. MSAF is dependent on librosa [35] for audio feature 

analysis and mir_eval [36] to compute evaluations. Statistical analysis of the evaluation 

results is done in JMP. 
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Structural annotations are sourced from the SALAMI annotation data, a project of 

the Digital Distributed Music Archives and Libraries lab (DDMAL) at McGill University 

in Montreal [30]. This dataset provides metadata and ground-truth structural annotations 

for more than 1400 songs from a wide variety of sources. The specific metadata provided 

varies based on the source database of the music. While SALAMI has annotations for 

songs from the Real World Computing (RWC) Music database, the Isophonics music 

database, the Internet Archive music database, and the Codaich database, only music 

from the Codaich database was selected for this study due to its more robust genre 

classifications.11 Further metadata is provided by SALAMI in partnership with the Echo 

Nest12 including duration and estimations of tempo and time signature subdivision.  

Given that the songs in the Codaich database are all held under standard 

commercial copyright, the individual audio files had to be purchased through 

conventional means. Because SALAMI provides bibliographic data about the songs for 

which it created annotations in the XML format used by the iTunes library, the iTunes 

online store was selected as the means of purchase. Within the Codaich subsection of the 

SALAMI annotations, there are four broad genre classifications represented – popular, 

jazz, classical, and world – with 52 subgenres between them at a total of 835 pieces of 

music. While it would have been ideal to have all four genre classifications represented in 

this study, the collection was limited only to songs classified as popular or jazz. There 

were two reasons for this choice. First was a limitation of naming conventions in classical 

music – the construction of the iTunes library file provided limited metadata that was 

insufficient to ensure that any particular classical track that was purchased was the 

correct track as referenced in the SALAMI annotations. This is due peculiarities in the 
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classical tradition in which many different pieces by different composers may share the 

same title (e.g. “Sonatina”), and also the lack of rigorous naming conventions by 

commercial music services in which a piece may be known by multiple titles or the 

“artist” for a piece of classical music may be listed as alternately the composer, the 

performance ensemble, or the individual performers involved.13 Second was a limitation 

of the Codaich database in regards to iTunes – many pieces of music classified as world 

music by Codaich appear on compilation CDs donated from researchers’ personal 

collections that may once have been available in a physical format, but are not available 

for purchase digitally through iTunes.14  

Reducing the proposed collection to the two remaining classifications, popular 

and jazz, left the total number of songs available at 415 and the number of remaining 

subgenres at 33. Furthermore, the total size of the collection for this study was limited by 

funding. Funds for the purchase of music was provided by SILS up to the total of $200 

through a Carnegie grant program. At the iTunes-standard cost of $0.99 to $1.29 per 

track, the size of the proposed collection was roughly estimated at about 165 pieces of 

music. This number allowed for an even representation of each remaining subgenre at 5 

songs each. After these limiting factors, the remaining songs in the proposed collection 

were cross-referenced against the iTunes store to determine what was available for 

purchase. Tracks that seemed to be available but could not be confirmed as a direct match 

with the given metadata were passed over. Other tracks which could only be purchased as 

part of a full album (increasing their cost) were only purchased if they added to the 

representation of under-represented variables whether in genre or time signature.  After 

these mitigating factors, the final collection totaled 143 pieces of music, with each genre 



36 
 

represented usually by 4 to 5 tracks. A full table of the songs used, including their title, 

artist, and the variables used in the subsequent study, can be found in appendix 1. 

Procedure 

These tracks were migrated to the Linux OS environment (Ubuntu 15.10) in 

which MSAF was set up to operate. Because iTunes stores purchased music in the M4A 

file format while MSAF requires either MP3, WAV, or AIFF, a small script using the 

FFMPEG command-line tool was written to convert all files in the collection to MP3 at a 

bit-rate of 192K. Due to the requirements of MSAF, each track was named according to 

its SALAMI track identification number. A second script was written in Python 2.7 to 

estimate structural segmentation for each track in the collection; this script is essentially 

only a wrapper for the spectral clustering algorithmic function defined in MSAF. 

Likewise, this script evaluates the results of these estimations against the ground-truth 

annotations and stores the scores for each evaluation metric previously outlined for each 

song in a CSV file that was imported as a data table into JMP. Metadata elements sourced 

from SALAMI and the Echo Nest representing the independent variables that can be 

found in appendix 1 were appended to this data. 

For all results, a significant effect is assumed at a confidence of 95% or p< 0.05. 

Results against the nominal data of genre, class, and time signature are analyzed 

according to a one-way analysis of variance. The evaluation score results are assumed to 

fall along a normal distribution within each category for each variable. Between the two 

categories of class, jazz and popular, a two-tailed t-test is performed against the null 

hypothesis that both classes yield the same response in each evaluation metric to 

determine the statistical significance of any variation between the two categories. This 
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test is able to show that variance in results is unlikely to be random, but it cannot 

demonstrate that the independent variable of class is necessarily causing the variation. 

Between the multiple categories of genre, an F-test is employed to test the null 

hypothesis that there is no significant variance in the evaluation metric scores across 

genres, and a t-test between each pair of genres is used to determine possible significant 

differences within the collection. The F-test is likewise able to show the likelihood that 

variance among the entire collection due to genre is non-random; however, the F-test 

does not make any claim about specific genres within the collection in comparison to 

others. For this, the t-test among paired genres is used to demonstrate possible significant 

differences between them; however, these tests work with much smaller sets of data (two 

genres together are often comprised of only 7 to 10 songs). This limits their ability to 

comment generally on how accuracy may be correlated with specific genres, but still 

gives an idea of what variances might be affecting the results of the F-test. Results 

against the continuous data of song duration and tempo are analyzed according to their 

Pearson product-moment correlation coefficient with evaluation results. This measures 

the strength of the linear correlation between each pair of variables; however, it can be 

said that even a weak correlation between two variables may still be statistically 

significant. Again, a standard t-test is used to determine the significance of the Pearson 

correlation. Like with the previous tests, these results are not able to determine a causal 

relationship between variables. They can only show that there is a significant correlation 

between the data. 

Research Questions 

The study aims to provide evidence that answers these questions: 
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3) Do either the narrow genre or broad class of a song have a significant effect 

on the accuracy of the spectral clustering algorithm for the structural 

segmentation of that song? 

a. Among all genres, is there a significant difference in the measurement 

of boundary hit rate, median deviation of the boundaries, pair-wise 

frame clustering, and normalized conditional entropy as determined 

by an F-test? And if so, are there significant differences between 

genres determined by a two-tailed t-test? 

b. Between the two classes, is there a significant difference in the 

measurement of boundary hit rate, median deviation of the 

boundaries, pair-wise frame clustering, and normalized conditional 

entropy as determined by a two-tailed t-test? 

4) Is there a significant correlation between the tempo, duration, or time 

signature of a song and the accuracy of the spectral clustering algorithm for 

the structural segmentation of that song? 

a. Is there a significant correlation between the tempo of a song and the 

measurement of boundary hit rate, median deviation of the 

boundaries, pair-wise frame clustering, and normalized conditional 

entropy determined by the Pearson product-moment correlation?  

b. Is there a significant correlation between the duration of a song and 

the measurement of boundary hit rate, median deviation of the 

boundaries, pair-wise frame clustering, and normalized conditional 

entropy determined by the Pearson product-moment correlation?  
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c. Is there a significant correlation between the time signature of a song 

and the measurement of boundary hit rate, median deviation of the 

boundaries, pair-wise frame clustering, and normalized conditional 

entropy determined by the Pearson product-moment correlation?  

 

 

Notes

11 Further information on the Codaich database can be found at 
http://jmir.sourceforge.net/index_Codaich.html. 
12 http://the.echonest.com/ 
13 The perennial example of this is Beethoven’s Piano Sonata No. 14 in C-sharp Minor, Op. 27, 
No.2, Mvt. 1, Adagio sostenuto, known colloquially as the Moonlight Sonata, performed by 
countless artists and ensembles under one or both names and appearing on countless compilation 
albums. 
14 See the Evaluation section in the review of the literature for more detail on the construction of 
the Codaich database. 
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IV. Results 

Summary 

This study found several significant correlations between the variables of genre, class, 

tempo, and song duration (none among time signature) and performance of the spectral 

clustering algorithm in the evaluation metrics of normalized conditional entropy (S), pair-

wise frame clustering (PWF), trimmed hit-rate at 3 seconds (HRt3s), and trimmed median 

deviation (MDt) of the boundaries. Statistically significant findings can be summarized as 

the following:  

an effect of genre on SF;  

an effect of class on HRt3sF;  

an effect of class on MDt from estimations to ground-truth (E to R);  

a positive correlation between tempo and SF;  

a positive correlation between song duration and MDt R to E; 

a negative correlation between song duration and HRt3sF and HRt3sR, but a 

positive correlation between song duration and HRt3sP. 

a positive correlation between song duration and PWFF and PWFR, but a negative 

correlation between song duration and PWFP;   

a positive correlation between song duration and SO, but a negative correlation 

between song duration and SU.
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A full account of the significant results is seen below. The complete table of evaluation 

metric results by song can be found in appendix 2.  All following values are rounded to 

two decimal places except where necessary to report very small p values.

Genre 

The genre of a song was found to have some effect on the SF 

value for that song. The probability p that genre explained no 

difference in SF was found to be 0.04. The expected effect on SF 

is estimated by the adjusted R2 was 0.11. The mean value of SF 

divided by genre can be seen in table 8. A plot of the same, 

ordered by ascending SF , can be seen in fig. 7 following the Discussion section. The 

mean value of SF across all genres was 0.56. While no mean SF in a single genre was 

significantly higher or lower than the global mean of the collection, individual genres 

differed paired against other genres. Notably, the SF for songs in the “R&B - Funk” genre 

was significantly higher than those in the “Instrumental Pop,” “R&B – Soul,” “Jazz – 

Cool Jazz,” “R&B – Contemporary R&B,” “Blues – Urban Blues,” “Blues- Country 

Blues,” and “Modern Folk – Singer/Songwriter” genres. Because SF represents a mean of 

over- and under-segmentation as well as label agreement, this means that the label 

placement and grouping for the genre “R&B – Funk” were significantly more accurate 

than those for the other listed genres. Additionally, the genre of “Modern Folk – 

Singer/Songwriter” returned significantly worse results than the 19 genres with the 

highest mean SF values. A connecting letters report of SF by genre can be seen in table 9, 

where genres that do not share a common letter had statistically significant results in a 

pair-wise comparison.   

Genre and 
SF 

 

p 0.04 
R2(adj.) 0.11 
Mean SF 
(collection) 

0.56 

Table 1 



42 
 

Class 

Class was found to have a probable effect on the placement 

of boundaries according to the metrics of HRt3sF and MDt 

E to R. The algorithm placed boundaries near the ground-

truth boundary points more often for popular songs, and the 

algorithm’s boundaries were closer on average among 

popular songs than they were for jazz songs. The 

probability that class was not correlated with HRt3sF or 

MDt E to R was found to be less than 0.02 and 0.0001 respectively according to a two-

tailed t-test. The mean HRt3sF for the entire collection was measured at 0.39.  

The mean HRt3sF among the class jazz was measured at 0.36 while among the class 

popular it was measured at 0.42. The adjusted R2 was calculated as 0.03. These results 

can be seen in table 10 and the fig. 8. The mean MDt E to R for the entire collection was 

measured at 5.69 seconds.  For jazz, MDt E to R was measured at 6.84 seconds while 

MDt E to R for popular was 4.22 seconds. Adjusted R2 for MDt E to R and class was 

calculated as 0.09. These results can be seen in table 11 and fig. 9. 

Tempo 

The tempo of a song was found to have a likely effect on its SF 

score. Tempo was associated with a Pearson product-moment 

correlation value of 0.25, with a probability of no correlation 

found to be 0.01. This indicates that songs with a higher tempo were more likely 

to score better on the SF evaluation. A scatter plot of the results of SF by tempo can be 

seen at fig. 10. 

Class and 
HRt3sF 

 

p <0.02 

R2(adj.) 0.03 

Mean HRt3sF 
(collection) 

0.39 

Mean HRt3sF 
(pop) 

0.42 

Mean HRt3sF 
(jazz) 

0.36 

Table 2 

Tempo and 
SF 

 

p 0.01 

Pearson’s r 0.25 
Table 3 
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Song Duration 

Song duration was found to have many significant 

correlations. Song duration had a significant effect on 

boundary placement measured by MDt R to E and 

HRt3s. The probability of the null hypothesis for song 

duration and MDt R to E was found to be less than 

0.0001. The Pearson correlation values between 

duration and MDt R to E was 0.78. A scatter plot of  

these results can be seen in fig. 11, which seems to 

reveal a possible outlier effect. With the 6 labeled 

outliers excluded, the value of p remains less than 

0.0001; however, the Pearson correlation is reduced 

to 0.35. These modified results are seen in fig. 12. For 

duration and HRt3sF, p was less than 0.01 and the 

Pearson correlation value was found to be -0.22. This is interesting as duration was also 

significantly correlated with the two values that make up HRt3sF. Against HRt3sP and 

HRt3sR, p was less than 0.01 and less than 0.0001 respectively. The correlation between 

duration and HRt3sP had a value of 0.22, while the correlation between it and HRt3sR has 

a value of -0.47. This means that longer duration was positively correlated with the hit 

rate precision, negatively correlated with the hit rate recall, and overall negatively 

correlated with their harmonic mean. These results can be seen in figs. 13 and 14. Song 

duration also seemed to have an effect on labeling. Duration was found to be correlated 

with PWFF, PWFR, and PWFP at p of less than 0.01,  

Song Duration and 
HRt3sF 

 

p <0.01 
Pearson’s r -0.22 
Song Duration and 
HRt3sP 

 

p <0.01 
Pearson’s r 0.22 
Song Duration and 
HRt3sR 

 

p <0.0001 
Pearson’s r -0.47 

Table 4 

Song Duration and 
MDt R to E 

 

p <0.0001 
Pearson’s r 0.78 
Song Duration and 
MDt R to E (-
outliers) 

 

p <0.0001 
Pearson’s r  0.35 

Table 5 
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less than 0.0001, and less than 0.05 respectively. 

Correlation between duration and PWFF had a Pearson 

correlation value of 0.22, while the Pearson correlation 

between duration and PWFR was measured at 0.44. 

Between duration and PWFP, the Pearson correlation 

was found only to be -0.17. This suggests that longer 

duration was correlated with higher values of both 

PWFF and PWFR, but lower values of PWFP. Figs.  

 15 and 16 show these results. Against SU and SO, p 

was respectively found to be less than 0.004 and less 

than 0.0001. Correlations differed in direction, 

however, with a Pearson correlation of -0.24 against Su 

and 0.49 against SO. These results are seen in fig. 17. 

Discussion 

The first thing one must mention in the interpretation of these results is that the sample 

size of this study, limited as it was by constraints on the number of songs that could be 

purchased, is smaller than the typical evaluation dataset. Because of this, patterns that 

have been identified in the dataset are interesting suggestions for what a more 

comprehensive analysis may or may not confirm. Likewise, the lack of significant 

correlations does not suggest that such correlations could not be present in a more 

comprehensive dataset. For example, this study did not reveal any significant correlation 

between the time signature, measured as the division of beats within a  

Song Duration 
and PWFF 

 

p <0.01 
Pearson’s r 0.22 
Song Duration 
and PWFP 

 

p <0.0001 
Pearson’s r -0.17 
Song Duration 
and PWFR 

 

p <0.05 
Pearson’s r 0.44 

Table 6 

Table 7 

Song Duration 
and SO 

 

p <0.0001 
Pearson’s r 0.49 
Song Duration 
and SU 

 

p <0.004 
Pearson’s r -0.24 
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bar, and any of the evaluation metrics. This could be in part due to the fact that the songs 

used fell into the class categories of popular and jazz and did not have equal 

representation between 3 and 4 divisions. That being said, there were a number of 

significant correlations that were identified. The following is a discussion of these effects 

and also their possible causes and ramifications that may be explored by further study. 

 With regards to the research questions, this study offers the following answers. 

Both genre and class have at least some effect on the accuracy of the spectral clustering 

algorithm. Genre seems to have a small but significant effect on the normalized 

conditional entropy measure SF. This generally measures the agreement between the 

estimated segments and their labels compared to the ground-truth. In other words, genre 

seemed to have some effect on the ability of the algorithm to accurately identify which 

sections within each song were alike. Genre otherwise had no significant effect, including 

notably on the boundary identification evaluation metrics. Class was the opposite; it had 

no significant effect on PWF or S, the labeling evaluations, but did affect two of the 

boundary identification evaluations, the mean hit rate and the median deviation of 

boundaries in the estimation to the ground truth. For both, popular music fared better than 

jazz music in the evaluations, suggesting that spectral clustering is better at delineating 

sections in popular music. Tempo and duration both had at least some effect on the 

accuracy of the algorithm, although time signature seemed to have no significant effect at 

all. Tempo had a positive correlation with SF, indicating the algorithms was better able to 

match similar sections with each other for songs at quicker tempos. Song duration had 

many significant effects, which will be discussed in depth below.  
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The correlative strength of song duration with so many of the evaluation metrics 

has ramifications for the application of the spectral clustering algorithm proposed by [1]. 

Song duration is often one of the most identifiable pieces of content-dependent 

information of a piece of music as it does not require any kind of sophisticated analysis to 

determine. Rather, duration is a value identifiable even in the most rudimentary systems. 

The implications of an easily identifiable variable on the evaluative outcome could signal 

that the value of m in the spectral clustering algorithm could be more precisely adjusted 

to a given song even before more complex values like tempo are estimated. How it might 

be adjusted is a more complicated question owing to the different kinds of measurements 

given by these evaluation metrics. For instance, duration was found to have a relatively 

strong correlation with higher values in the MDt R to E metric, indicating that at longer 

durations the time difference between the boundaries in the ground-truth and the nearest 

boundary in the estimation was likely to be higher and at times, much higher. There was 

no similar significant correlation in the corresponding metric of MDt E to R, suggesting 

that duration was not likely to be related to the time difference between boundaries in the 

estimation and the nearest boundary in the ground-truth. From this, we might infer that at 

longer durations, the boundaries placed by the algorithm were equally likely to be near a 

true boundary, but that true boundaries were often farther from estimated boundaries. 

This result is ambiguous in its implications. One possible interpretation is that the 

algorithm is not placing enough boundaries, but that those that it does place are equally 

likely to fall around the same distance from where they should according to the human 

listener. To say that the algorithm is not generating enough boundaries at long durations, 

we should expect that there would be more ground-truth boundaries that have no 
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estimated boundary that falls nearby. HRt3sR measures the rate at which an estimated 

boundary falls within 3 seconds of a ground-truth boundary. Indeed, a negative 

correlation between duration and HRt3sR demonstrates that at longer durations, ground-

truth boundaries are more likely to be missed by the estimations. Likewise, to 

demonstrate that the boundaries that are being placed are not necessarily inaccurate, we 

would expect that the likelihood of an estimated boundary to be placed near a ground-

truth boundary is not affected by duration. The HRt3sP metric tests this by measuring the 

rate at which there is a ground-truth boundary within 3 seconds of each estimated 

boundary. What we find is that HRt3sP actually has a significant but weak positive 

correlation with duration, indicating that the placed boundaries actually seem to fall close 

to ground-truth boundaries more often at longer durations. Without a corresponding 

correlation in MDt E to R, this effect merits further exploration. Regardless, we have 

further evidence that longer durations could possibly indicate that the algorithm will not 

generate as many estimated boundaries compared to the human listeners; in other words, 

it seems possible that longer durations result in under-segmentation.  

We might expect that a failure to create enough boundaries might result in an 

increased likelihood that paired frames in the estimation are also paired in the ground-

truth. Consider a situation where the algorithm estimates that there is only one all-

encompassing section in a song, even while the ground-truth divides it into multiple 

sections. Even if the estimation is not accurate, we would expect that frames that belong 

to a common label in the estimation to be all frames. As a result, if we are examining the 

set of pairs that share a common label in the ground-truth and in the estimation in terms 

of the labels in the estimation, we expect that value to be maximized. This particular 
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measurement is what PWFR measures, and indeed we find that longer duration is 

significantly and relatively strongly correlated with this metric. In the same vein, as 

duration correlates with a better pair-wise recall, it is also correlated with a worse pair-

wise precision PWFP. This seeks to measure the frames that share a common label in the 

ground-truth and in the estimation in terms of the labels of the ground-truth. In the case 

of under-segmentation, PWFR should be higher but balanced in the harmonic mean by a 

lower PWFP. In fact, because the correlation between duration and the recall rate is so 

much stronger than that of the precision rate, we actually see an overall significant 

positive correlation between duration and PWFF. For further evidence of under-

segmentation, we see that there is a significant positive correlation between duration and 

SO and a corresponding negative correlation between duration and SU. Due to the methods 

in which these metrics are derived, higher scores in each are the result of a lack of 

disagreement errors in terms of over- or under-segmentation respectively. What this 

means is that the positive correlation with SO is interpretable as a correlation with fewer 

disagreements between ground-truth and estimation as a result of over-segmentation, and 

the negative correlation with SU is a correlation with more disagreements as a result of 

under-segmentation. This bolsters the evidence that longer duration is correlated with a 

higher likelihood of under-segmentation.  

Other results did not have as many strong correlations as duration, although that 

does not mean they might not be impactful on the evaluation of the spectral clustering 

algorithm. For example, it was observed that tempo had a significant positive correlation 

with the value of SF. Given that higher values of the components of this metric are 

derived from a lack of disagreement errors, we might interpret this correlation as 
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evidence that higher tempo may result in fewer of such errors. While further research 

would have to demonstrate this more clearly, one possible explanation for this result is 

that the spectral clustering algorithm uses a beat-synchronous CQT and MFCC in the 

formulation of its similarity matrix. The practical ramification is that the feature vectors 

for each frame of the beat-synchronous representations are in fact the mean values of the 

multiple frames that fall within that beat. Additionally, the matrix used follows the model 

of [20] in that frames are concatenated with the information from previous frames in 

order to account for longer-term changes in features. One may expect that at slower 

tempos, features can more easily vary within each beat given that each beat accounts for a 

longer duration of time. Thus, a beat-synchronous representation may fail to account for 

necessary changes, and the multiple-beat concatenation may even multiply this effect. 

This is only a hypothesis, however, and further study may or may not bear this out. 

Class was shown to have a significant effect on some of the evaluation metrics 

regarding boundary detection. As the researchers who designed the spectral clustering 

algorithm wrote in [21], “Features built to detect repeated chord progressions may work 

well for characterizing some genres (e.g., rock or pop), but fail for other styles (e.g., jazz 

or hip-hop) which may be structured around timbre rather than melody.” The spectral 

clustering algorithm is designed to compensate for this effect by utilizing both the CQT 

harmonic features “for detecting long-range repeating forms” as well as the MFCC 

timbre-related features “for detecting local consistency.”[1]. While the weighting of these 

features has been successful in that class had no significant effect on the more general 

metrics of PWF or S, boundary detection in terms of MDt E to R, HRt3sF, and HRt3sR, 

did seem to be correlated with lower values among the class jazz than the class popular. 
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Taken collectively, these evaluation metrics show that boundaries estimated for songs 

under the class jazz were significantly likely to be farther away from ground-truth 

boundaries than those in the class popular, and that estimated boundaries fell within 3 

seconds of ground-truth boundaries at a lower rate among jazz songs than among popular 

songs. The latter effect on HRt3sR seems to have been strong enough to affect the mean 

value of HRt3sF. This may indicate that while the harmonic features from the CQT are 

properly allowing for parity between the two classes when it comes to labeling, the 

timbral features from the MFCC may not be providing enough input to result in accurate 

boundary detection in the jazz class. 

Although genre was not shown to have many significant correlations overall, it 

was shown to have some significant effect on the most commonly used general metric of 

SF. Higher rates of SF indicate that there are fewer errors resulting from either over- or 

under-segmentation as well as general agreement in the labeling of segments. An analysis 

of the mean SF values between genres determined that none rose significantly above or 

dipped significantly below the mean SF of the whole collection, a pair-wise comparison 

between genres gives us some indication as to the significant differences that arise 

between them. As a disclaimer, comparing genres pair-wise reduces the sample size of 

what is being compared from 143 to 10 or fewer. These values indicate only the possible 

values that may or may not be confirmed by a more comprehensive analysis. Even so, 

such an analysis may be quite useful to perform based on the findings in this study. Genre 

is something that is often known, at least in broad strokes, about a collection in terms of 

its scope. The Southern Folk-life collection at UNC Chapel Hill, for example, may wish 

to know that this algorithm performs significantly worse in values of SF on the genres of 
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“Modern Folk - Singer/Songwriter” and “Blues – Country Blues” in comparison to 19 out 

of the 32 genres examined in this study given that the scope of their music collection 

includes many pieces of music that may well fall within those genres. While this 

information is less actionable to those implementing the spectral clustering algorithm for 

describing their collection, it is nonetheless relevant to those at the deciding stage for 

systems of description they may use. With the kinds of information provided by this 

study, those who are seeking to employ this algorithm for describing a collection would 

better understand the limitations of the algorithm given the specific characteristics of the 

collection.
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Results tables 
Table 8. Genre and SF

Level N Mean SF Std Error Lower 95% Upper 95% 

Alternative_Pop___Rock 5 0.562043 0.04871 0.46552 0.65856 

Blues_-_Contemporary_Blues 5 0.54378 0.04871 0.44726 0.6403 

Blues_-_Country_Blues 5 0.423507 0.04871 0.32699 0.52003 

Blues_-_Urban_Blues 5 0.428002 0.04871 0.33148 0.52452 

Country 3 0.522994 0.06289 0.39839 0.6476 

Dance_Pop 3 0.514647 0.06289 0.39004 0.63925 

Electronica 5 0.613374 0.04871 0.51685 0.70989 

Hip_Hop___Rap 5 0.565755 0.04871 0.46923 0.66227 

Humour 2 0.559028 0.07702 0.40642 0.71164 

Instrumental_Pop 5 0.529122 0.04871 0.4326 0.62564 

Jazz_-_Acid_Jazz 5 0.566546 0.04871 0.47003 0.66307 

Jazz_-_Avant-Garde_Jazz 3 0.599126 0.06289 0.47452 0.72373 

Jazz_-_Bebop 4 0.616886 0.05446 0.50897 0.7248 

Jazz_-_Cool_Jazz 5 0.502802 0.04871 0.40628 0.59932 

Jazz_-_Hard_Bop 5 0.610432 0.04871 0.51391 0.70695 

Jazz_-_Latin_Jazz 5 0.618476 0.04871 0.52196 0.715 

Jazz_-_Post-Bop 5 0.562355 0.04871 0.46583 0.65887 

Jazz_-_Soul_Jazz 5 0.597663 0.04871 0.50114 0.69418 

Jazz_-_Swing 5 0.562923 0.04871 0.4664 0.65944 

Modern_Folk_-_Alternative_Folk 5 0.593867 0.04871 0.49735 0.69039 

Modern_Folk_-Singer___Songwriter 5 0.411234 0.04871 0.31471 0.50775 

R_B_-_Contemporary_R_B 5 0.48891 0.04871 0.39239 0.58543 

R_B_-_Funk 5 0.671183 0.04871 0.57466 0.7677 

R_B_-_Gospel 5 0.605283 0.04871 0.50876 0.7018 

R_B_-_Rock___Roll 3 0.544208 0.06289 0.4196 0.66881 

R_B_-_Soul 5 0.515823 0.04871 0.4193 0.61234 

Reggae 4 0.600778 0.05446 0.49287 0.70869 

Rock_-Alternative_Metal___Punk 5 0.63489 0.04871 0.53837 0.73141 
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Rock_-_Classic_Rock 6 0.625543 0.04447 0.53743 0.71365 

Rock_-_Metal 5 0.563916 0.04871 0.4674 0.66044 

Rock_-_Roots_Rock 5 0.5844 0.04871 0.48788 0.68092 

 

Table 9. Genre and SF Connecting Letters Report  

Genres that do not share a letter in common are significantly different. 

Genre       Mean SF 

R_B_-_Funk A      0.67118279 

Rock_-_Alternative_Metal___Punk A B     0.63489022 

Rock_-_Classic_Rock A B     0.62554329 

Jazz_-_Latin_Jazz A B C    0.61847567 

Jazz_-_Bebop A B C    0.61688584 

Electronica A B C    0.61337448 

Jazz_-_Hard_Bop A B C    0.61043240 

R_B_-_Gospel A B C    0.60528299 

Reggae A B C    0.60077823 

Jazz_-_Avant-Garde_Jazz A B C    0.59912626 

Jazz_-_Soul_Jazz A B C    0.59766332 

Modern_Folk_-_Alternative_Folk A B C    0.59386694 

Rock_-_Roots_Rock A B C    0.58440027 

Jazz_-_Acid_Jazz A B C    0.56654557 

Hip_Hop___Rap A B C    0.56575475 

Rock_-_Metal A B C D   0.56391648 

Jazz_-_Swing A B C D   0.56292296 

Jazz_-_Post-Bop A B C D   0.56235483 

Alternative_Pop___Rock A B C D   0.56204331 

Humour A B C D E  0.55902833 

R_B_-_Rock___Roll A B C D E  0.54420774 

Blues_-_Contemporary_Blues A B C D E  0.54378000 

Instrumental_Pop  B C D E  0.52912171 
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Genre       Mean SF 

Country A B C D E  0.52299386 

R_B_-_Soul  B C D E  0.51582274 

Dance_Pop A B C D E  0.51464747 

Jazz_-_Cool_Jazz  B C D E  0.50280246 

R_B_-_Contemporary_R_B   C D E  0.48891003 

Blues_-_Urban_Blues    D E  0.42800191 

Blues_-_Country_Blues     E  0.42350655 

Modern_Folk_-_Singer___Songwriter     E  0.41123357 

 

Table 10. Class and HRt3sF 

Class N Mean Std Error Lower 95% Upper 95% 

jazz 80 0.355574 0.01818 0.31964 0.39151 

popular 63 0.422887 0.02048 0.38239 0.46338 

 

Table 11. Class and MDt E to R 

Class N Mean Std Error Lower 95% Upper 95% 

jazz 80 6.83993 0.44521 5.9598 7.7201 

popular 63 4.22081 0.5017 3.229 5.2126 
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Results 
figures  

Figure 7. Mean SF by Genre, ordered by ascending mean SF. Error bars show range of SF values in 
each genre 
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Figure 9. HRt3sF by Class 

Figure 8.MDt E to R by Class 
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Figure 10. SF by tempo. 
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Figure 11. Median Deviation (trimmed) R to E by Song Duration. The Outliers are marked X. The following plot shows 

these results without these outliers. 
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Figure 12. Median Deviation (trimmed) R to E by Song Duration without outliers. 
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Figure 13. Trimmed Hit Rate (F) at 3 seconds by Song Duration 
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Figure 14. Top- Trimmed Hit Rate (R) at 3s by Song Duration. Bottom – Trimmed Hit Rate (P) at 3s by Song Duration. 
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Figure 15. PWFF by Song Duration. 
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Figure 16. Top -  PWFR by Song duration. Bottom – PWFP by Song Duration. 
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Figure 17. Top – SU by Song Duration. Bottom – SO by Song Duration. 
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V. Conclusion 

This study has presented an evaluation of the spectral clustering algorithm for music 

segmentation in terms of genre, class, tempo, song duration, and time signature. This 

presentation differs from the standard evaluation of segmentation algorithms that 

compare multiple algorithms against a collection. This evaluation has instead focused on 

one algorithm in the context of multiple variables within the collection. This was done to 

determine the effect these variables may or may not have had on various categories of 

performance of the algorithm including boundary identification and labeling accuracy. It 

has revealed that the duration of a song is correlated with many evaluation metrics in 

both categories. Tempo, class, and genre were also shown to have a significant effect on 

evaluation scores. This study has thus demonstrated how the algorithm may be evaluated 

according to known variables in a collection to predict its likely performance for a given 

collection where those variables are known. The possible causes and implications of 

these effects on evaluation scores were explored based on the construction of the spectral 

clustering algorithm and its potential use. Further research based on larger and 

representative datasets will need to be conducted to confirm the results of this study and 

may demonstrate how the algorithm may be adjusted in specific ways to account for 

worse performance in certain contexts according to the hypotheses presented here.
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APPENDIX 1. Song metadata by Song ID

SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

3 Golden_Age Beck popular Alternative Pop/Rock 276   

4 I_close_my_eyes Shivaree popular Alternative Pop/Rock 236 4 126.749 

10 How_Beautiful_You_Are The_Cure popular Alternative Pop/Rock 314 4 145.388 

11 Coldsweat___Remix__ Sugarcubes popular Alternative Pop/Rock 222   

15 Blow_Out Radiohead popular Alternative Pop/Rock 281   

18 Mojo_Boogie Johnny_Winter jazz Blues - Contemporary 

Blues 

287 4 124.141 

22 Dangerous_Mood___With_Joe_Cocker__ B_B__King jazz Blues - Contemporary 

Blues 

295 3 108.726 

24 Blood_On_That_Rock S_Word jazz Blues - Contemporary 

Blues 

202 4 189.858 

27 So_Close___So_Far_Away The_Derek_Trucks_Band jazz Blues - Contemporary 

Blues 

278   

28 Exercise_in_C_Major_for_Harmonica John_Mayall jazz Blues - Contemporary 

Blues 

501 4 120.583 

30 Honey_Babe Lightnin___Hopkins jazz Blues - Country Blues 155 4 96.988 

31 Ramblin___On_My_Mind____Alternate_T

ake 

Robert_Johnson jazz Blues - Country Blues 143   

35 The_Last_Mile Brownie_McGhee jazz Blues - Country Blues 292   
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

39 Hey_Hey Eric_Clapton jazz Blues - Country Blues 196   

40 Just_Like_A_Bird_Without_A_Feather Compilations jazz Blues - Country Blues 142 4 72.139 

43 Howlin___For_My_Darlin__ Howlin___Wolf jazz Blues - Urban Blues 153   

44 Straight_From_the_Heart Mississippi_Heat jazz Blues - Urban Blues 337 4 117.142 

46 Evil Muddy_Waters jazz Blues - Urban Blues 139 4 86.262 

52 Looking_the_World_Over Big_Mama_Thornton jazz Blues - Urban Blues 132 4 58.837 

55 I_Cried_My_Eyes_Out Ronnie_Earl jazz Blues - Urban Blues 171   

306 It__s_Just_About_Time_1 Johnny_Cash popular Country 128 4 91.497 

307 Only_One_And_Only Gillian_Welch popular Country 334   

320 Calling_My_Children_Home Emmylou_Harris popular Country 195 1 169.46 

322 Party Nelly_Furtado popular Dance Pop 242 4 178.121 

324 One_Kiss_From_You Britney_Spears popular Dance Pop 205 4 93.988 

334 Crazy_Little_Thing_Called_Love Rihanna popular Dance Pop 203 4 80.031 

338 Feed_Me Tricky popular Electronica 243 4 171.888 

339 Another_Day Jaga_Jazzist popular Electronica 210   

342 Glass_Museum Tortoise popular Electronica 327 4 151.346 

350 Annie__s_Parlor Kid_Koala popular Electronica 243 3 116.788 

352 Neighbors Gnarls_Barkley popular Electronica 185 4 185.804 

358 Fu_Gee_La The_Fugees popular Hip Hop/Rap 260 4 90.007 

359 Missy__s_Finale Missy_Elliott popular Hip Hop/Rap 24   

364 The_Dusty_Foot_Philosopher K__naan popular Hip Hop/Rap 238 4 182.741 
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

366 I_Gotcha_Back GZA popular Hip Hop/Rap 301 4 89.072 

368 Le_Ou_Marye Wyclef_Jean popular Hip Hop/Rap 330 4 104.972 

370 Boy_Band The_Arrogant_Worms popular Humour 220 4 106.049 

382 A_Night_on_Dildo The_Arrogant_Worms popular Humour 169 4 64.18 

386 Glow_Worm_Cha_Cha_Cha Compilations popular Instrumental Pop 143 4 142.788 

392 Go_Slow Compilations popular Instrumental Pop 135 3 72.368 

395 James_Bond_Theme Compilations popular Instrumental Pop 107   

396 Minor_Swing David_Grisman_Quintet popular Instrumental Pop 179 4 130.288 

400 Big_Town Compilations popular Instrumental Pop 164 4 112.171 

402 Lively_Up_Yourself Charlie_Hunter jazz Jazz - Acid Jazz 340 4 143.043 

404 Minaret Erik_Truffaz jazz Jazz - Acid Jazz 358 4 112.655 

408 Come_As_You_Are Charlie_Hunter jazz Jazz - Acid Jazz 370 3 106.7 

410 Betty Erik_Truffaz jazz Jazz - Acid Jazz 257 4 76.554 

414 Rebel_Music Charlie_Hunter jazz Jazz - Acid Jazz 280 4 145.257 

416 Moods_In_Mambo Charles_Mingus jazz Jazz - Avant-Garde Jazz 255 4 150.213 

422 Asmarina___My_Asmara Ethio_Jazz jazz Jazz - Avant-Garde Jazz 298 3 173.156 

424 A_Love_Supreme___Part_One__ John_Coltrane jazz Jazz - Avant-Garde Jazz 470 4 121.72 

428 So_Sorry_Please Bud_Powell jazz Jazz - Bebop 197 4 173.116 

431 Monk__s_Mood Thelonious_Monk jazz Jazz - Bebop 188   

432 Lover_Come_Back_To_Me Coleman_Hawkins jazz Jazz - Bebop 1028 4 113.975 
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

440 Wee___Allen__s_Alley__ Dizzy_Gillespie___Stan_Getz_

___Sonny_Stitt 

jazz Jazz - Bebop 509 4 85.732 

442 Night_and_Day_2 Stan_Getz____Bill_Evans jazz Jazz - Cool Jazz 394 4 111.029 

444 My_Funny_Valentine Stan_Getz____J__J__Johnson jazz Jazz - Cool Jazz 490 4 132.458 

446 Lover_Man Billie_Holiday jazz Jazz - Cool Jazz 179 4 124.325 

448 I__ll_Never_Be_The_Same Coleman_Hawkins jazz Jazz - Cool Jazz 212 4 113.873 

450 Boplicity Miles_Davis jazz Jazz - Cool Jazz 181 4 135.789 

467 The_Kicker Horace_Silver jazz Jazz - Hard Bop 326   

471 Born_To_Be_Blue Grant_Green jazz Jazz - Hard Bop 294   

474 Soy_Califa Compilations jazz Jazz - Hard Bop 386 4 104.24 

475 Klachnikov Marsh_Dondurma jazz Jazz - Hard Bop 253   

478 A_Tribute_To_Someone Herbie_Hancock jazz Jazz - Hard Bop 525 4 126.812 

480 My_Funny_Valentine Chucho_Valde_s jazz Jazz - Latin Jazz 337 4 119.64 

482 Los_Teenagers_Bailan_Changui Marc_Ribot____Los_Cubanos_

Postizos 

jazz Jazz - Latin Jazz 289 4 127.979 

483 Cool_Breeze Dizzy_Gillespie jazz Jazz - Latin Jazz 168   

487 Manha_De_Carnival___Morning_of_the_C

a 

Stan_Getz jazz Jazz - Latin Jazz 349   

492 Eu_E_Voce Stan_Getz____Astrud_Gilberto jazz Jazz - Latin Jazz 152 4 109.008 

494 Afro_Blue The_Derek_Trucks_Band jazz Jazz - Post-Bop 342 3 114.392 

495 Love_And_Broken_Hearts Wynton_Marsalis jazz Jazz - Post-Bop 460   
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

496 Al_Green Charlie_Hunter jazz Jazz - Post-Bop 339 3 129.937 

498 In_My_Solitude Oliver_Jones____Clark_Terry jazz Jazz - Post-Bop 289 3 110.368 

503 Someday_We__ll_All_Be_Free Charlie_Hunter jazz Jazz - Post-Bop 297   

506 Groovin__ Jack_McDuff jazz Jazz - Soul Jazz 318 4 114.054 

508 First_Street Soulive jazz Jazz - Soul Jazz 401 4 113.347 

514 Politely Art_Blakey jazz Jazz - Soul Jazz 364 4 130.783 

516 Low_Down____Dirty George_Benson jazz Jazz - Soul Jazz 518 3 190.263 

518 Little_Birdie Wynton_Marsalis jazz Jazz - Soul Jazz 264 4 76.929 

523 These_Foolish_Things Yehudi_Menuhin____Stephane

_Grappelli 

jazz Jazz - Swing 199   

524 God_Bless_The_Child Billie_Holiday jazz Jazz - Swing 190 1 98.484 

526 Honeysuckle_Rose Johnny_Hodges jazz Jazz - Swing 182 4 150.676 

528 Little_Man___You__ve_Had_A_Busy_Day

__ 

Count_Basie____Sarah_Vaugh

an 

jazz Jazz - Swing 293 3 93.001 

531 The_Mooche Louis_Armstrong____Duke_El

lington 

jazz Jazz - Swing 218   

532 Providence Ani_DiFranco popular Modern Folk - 

Alternative Folk 

438 3 136.519 

535 When_the_Day_Is_Short Martha_Wainwright popular Modern Folk - 

Alternative Folk 

226   
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

536 Nevada_City___California Utah_Philips____Ani_DiFranc

o 

popular Modern Folk - 

Alternative Folk 

401 4 109.499 

539 You_Were_Here Sarah_Harmer popular Modern Folk - 

Alternative Folk 

293   

543 The_Footsteps_Die_Out_Forever Kaki_King popular Modern Folk - 

Alternative Folk 

135   

550 Gospel_Train___Orchestral__ Tom_Waits popular Modern Folk - 

Singer/Songwriter 

153 4 78.882 

552 COWBOY_GROOVE JEAN_LECLERC popular Modern Folk - 

Singer/Songwriter 

146 4 115.009 

554 Country_Pie Bob_Dylan popular Modern Folk - 

Singer/Songwriter 

97 4 98.828 

556 Singing_To_The_Birds Lisa_Germano popular Modern Folk - 

Singer/Songwriter 

265 4 117.885 

562 Ruby_II Amy_Millan popular Modern Folk - 

Singer/Songwriter 

106 3 103.909 

567 Flow Sade jazz R&B - Contemporary 

R&B 

274   

568 Green_Eyes Erykah_Badu jazz R&B - Contemporary 

R&B 

605 4 76.807 
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

570 Bad_Habit Joss_Stone jazz R&B - Contemporary 

R&B 

221 4 93.093 

572 Interlude__6_Legged_Griot_Trio___Wear Me__Shell_Ndege_ocello jazz R&B - Contemporary 

R&B 

294 4 119.904 

576 Attention___featuring_Raphael_Saadiq__ Kelis jazz R&B - Contemporary 

R&B 

204 4 96.908 

578 Where_Do_We_Go_from_Here Jamiroquai jazz R&B - Funk 313 4 128.035 

579 Baby___You__re_Right___feat The_Derek_Trucks_Band jazz R&B - Funk 254   

583 Mr. Thomas Donald_Byrd jazz R&B - Funk 304   

584 Over_The_Rainbow Maceo_Parker jazz R&B - Funk 256 4 62.743 

587 I_Need_More_Time The_Meters jazz R&B - Funk 195   

590 Didn__t_It_Rain Mahalia_Jackson jazz R&B - Gospel 160 4 89.365 

591 Glory_Train Montreal_Jubilation_Gospel_C

hoir 

jazz R&B - Gospel 237   

594 Since_The_Last_Time Lyle_Lovett jazz R&B - Gospel 431 4 78.826 

595 Lo_And_Behold James_Taylor jazz R&B - Gospel 156   

599 Church Lyle_Lovett jazz R&B - Gospel 361   

606 Runaround_Sue Dion jazz R&B - Rock & Roll 162 4 158.698 

610 Jeepster Compilations jazz R&B - Rock & Roll 249 4 94.884 

615 Lonesome_Town Compilations jazz R&B - Rock & Roll 135   

616 Spooky Compilations jazz R&B - Soul 155 4 106.453 
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

618 Let__s_Stay_Together Al_Green jazz R&B - Soul 200 4 101.541 

622 Rock_And_Roll_Again Donald_Byrd jazz R&B - Soul 369 3 176.907 

623 Love_Is_Plentiful The_Staple_Singers jazz R&B - Soul 152   

626 Don__t_Cry_For_Louie Vaya_Con_Dios jazz R&B - Soul 183 4 89.259 

631 Ride_Natty_Ride Bob_Marley popular Reggae 231   

634 Refuge Matisyahu popular Reggae 242 4 84.138 

635 Johnny_Too_Bad Compilations popular Reggae 185   

636 Alarm___Remix__ Jessy_Moss popular Reggae 187 4 168.68 

646 Dieu_se_pique Les_Vulgaires_Machins popular Rock - Alternative 

Metal/Punk 

158 4 174.051 

650 New_Millenium_Homes Rage_Against_The_Machine popular Rock - Alternative 

Metal/Punk 

224 4 92.806 

652 Bailey__s_Walk The_Pixies popular Rock - Alternative 

Metal/Punk 

143 4 82.42 

654 Mouth_Of_Ghosts The_Dillinger_Escape_Plan popular Rock - Alternative 

Metal/Punk 

409 4 120.034 

658 My_Immortal Evanescence popular Rock - Alternative 

Metal/Punk 

264 4 73.287 

662 Free_Four Pink_Floyd popular Rock - Classic Rock 256 4 124.032 

663 Shakin___All_Over Flamin___Groovies popular Rock - Classic Rock 365   

664 The_Spy The_Doors popular Rock - Classic Rock 257 3 238.334 
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SONG ID SONG TITLE ARTIST CLASS GENRE SONG 

DURATION 

TIME 

SIGNATURE 

TEMPO 

667 Take_It_Back Cream popular Rock - Classic Rock 188   

668 Anyday Derek_and_the_Dominos popular Rock - Classic Rock 397 4 169.225 

676 The_Loner Neil_Young popular Rock - Classic Rock 233 4 105.669 

678 Estranged Guns_N___Roses popular Rock - Metal 592 4 95.303 

680 Now_I_Am_Become_Death_the_Destroyer Nadja popular Rock - Metal 1406 3 78.844 

683 I__d_Die_For_You Bon_Jovi popular Rock - Metal 270   

687 More_Human_Than_Human White_Zombie popular Rock - Metal 270   

690 Go_Go_Not_Cry_Cry Compilations popular Rock - Metal 69 4 113.029 

694 Factory_Girl The_Rolling_Stones popular Rock - Roots Rock 167 4 104.498 

695 Safeway_Cart Neil_Young popular Rock - Roots Rock 391   

696 Imitation_Of_Life R_E_M_ popular Rock - Roots Rock 238 4 124.211 

703 One_Of_Us Joan_Osborne popular Rock - Roots Rock 320   

708 I_Can__t_Make_You_Love_Me Bonnie_Raitt popular Rock - Roots Rock 333 4 123.564 
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APPENDIX 2. Evaluation results by Song ID 

SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

3 2.52678 1.37554 0.421052632 0.285714286 0.8 0.316264 0.673835 0.206621 0.44608 0.322363 0.723899 

4 3.75628 0.46571 0.303030303 0.185185185 0.833333 0.413582 0.441266 0.389166 0.497699 0.474928 0.522764 

10 14.22869 1.60281 0.380952381 0.285714286 0.571429 0.423015 0.436738 0.410127 0.560241 0.534969 0.588019 

11 1.20653 1.35424 0.689655172 0.769230769 0.625 0.547142 0.418933 0.788429 0.624029 0.796449 0.512977 

15 7.18281 2.71136 0.277777778 0.192307692 0.5 0.5397 0.700805 0.438821 0.682167 0.611361 0.771522 

18 4.209805 1.08194 0.379746835 0.234375 1 0.273923 0.439361 0.198994 0.426179 0.358098 0.526224 

22 9.62855 1.06569 0.4375 0.304347826 0.777778 0.380714 0.638994 0.271126 0.419183 0.313215 0.633515 

24 8.27722 5.45669 0.16 0.125 0.222222 0.406903 0.675682 0.291105 0.590116 0.485717 0.751682 

27 7.00608 2.87515 0.421052632 0.363636364 0.5 0.487394 0.619057 0.401914 0.651211 0.581175 0.740441 

28 9.2009 71.66297 0 0 0 0.67454 0.510642 0.993378 0.63221 0.928134 0.479369 

30 3.36293 8.28408 0.25 0.333333333 0.2 0.550275 0.429043 0.767001 0.489684 0.627604 0.40146 

31 6.180475 0.962165 0.285714286 0.176470588 0.75 0.216901 0.846967 0.124376 0.232048 0.135198 0.818103 

35 6.80977 2.34278 0.326530612 0.216216216 0.666667 0.401003 0.697596 0.281373 0.462261 0.354527 0.664054 

39 5.07923 0.5461 0.307692308 0.184615385 0.923077 0.326755 0.700452 0.213077 0.502891 0.372565 0.773448 

40 10.93558 0.22279 0.421052632 0.266666667 1 0.560054 0.839805 0.420109 0.43065 0.298686 0.771517 

43 3.97955 0.55948 0.4 0.255813953 0.916667 0.401561 0.489771 0.340276 0.523217 0.475341 0.581816 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

44 8.059895 2.56369 0.23880597 0.148148148 0.615385 0.328881 0.725682 0.212621 0.450969 0.331915 0.703199 

46 8.777145 0.44739 0.15625 0.086206897 0.833333 0.188132 0.897172 0.105084 0.195849 0.110559 0.856889 

52 7.59655 1.42102 0.325581395 0.2 0.875 0.258101 0.776529 0.154772 0.366199 0.243514 0.738021 

55 6.353955 1.716745 0.5 0.428571429 0.6 0.49198 0.631942 0.402774 0.603775 0.523654 0.712843 

306 2.38163 0.37451 0.30952381 0.185714286 0.928571 0.292949 0.478324 0.211126 0.458015 0.384071 0.567219 

307 2.7176 1.42327 0.65 0.565217391 0.764706 0.512338 0.442948 0.607507 0.528838 0.585901 0.481904 

320 5.60472 0.79528 0.380952381 0.242424242 0.888889 0.422713 0.796136 0.287747 0.582129 0.445257 0.840499 

322 4.29859 6.99483 0.296296296 0.4 0.235294 0.431516 0.379675 0.499753 0.566212 0.615677 0.524103 

324 5.12216 0.931845 0.327868852 0.196078431 1 0.368569 0.797591 0.239658 0.561057 0.428199 0.813448 

334 3.921565 0.65043 0.20979021 0.1171875 1 0.328957 0.432419 0.265445 0.416674 0.360816 0.492995 

338 0.814675 0.82667 0.551724138 0.5 0.615385 0.422029 0.339286 0.558145 0.549463 0.630686 0.486773 

339 0.54521 2.83846 0.608695652 0.875 0.466667 0.651558 0.856506 0.525754 0.678612 0.58188 0.813918 

342 2.722595 1.83438 0.583333333 0.4375 0.875 0.843952 0.950343 0.758984 0.828739 0.758455 0.91338 

350 1.78666 1.2771 0.612244898 0.517241379 0.75 0.336686 0.434192 0.274942 0.512137 0.454456 0.586589 

352 3.64857 0.318425 0.448979592 0.297297297 0.916667 0.468357 0.538718 0.414253 0.497922 0.453631 0.551797 

358 4.51442 2.67206 0.325581395 0.24137931 0.5 0.497143 0.636603 0.407806 0.583965 0.521405 0.663583 

359 3.92417 1.24227 0.307692308 0.181818182 1 0.354485 0.913623 0.219903 0.309952 0.191336 0.815529 

364 0.81341 0.65467 0.509090909 0.4375 0.608696 0.488404 0.505653 0.472293 0.657516 0.629271 0.688415 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

366 13.87381 0.44016 0.434782609 0.3125 0.714286 0.496572 0.447386 0.557909 0.619923 0.667199 0.578903 

368 6.146915 0.870705 0.5 0.352941176 0.857143 0.4862 0.763905 0.356574 0.657418 0.558926 0.798048 

370 6.226725 3.12152 0.186046512 0.125 0.363636 0.410415 0.714296 0.287924 0.579648 0.468126 0.760923 

382 2.343765 5.32644 0.387096774 0.75 0.26087 0.497782 0.441151 0.571094 0.538409 0.56559 0.51372 

386 4.34214 0.89365 0.413793103 0.285714286 0.75 0.30064 0.648611 0.195667 0.45797 0.327827 0.75947 

392 5.31288 0.97013 0.387096774 0.25 0.857143 0.358648 0.79973 0.231157 0.532442 0.39691 0.808526 

395 3.207275 0.18161 0.25 0.144736842 0.916667 0.400563 0.699061 0.280703 0.658987 0.560162 0.800151 

396 0.71979 0.65433 0.75 0.692307692 0.818182 0.504964 0.501326 0.508656 0.537685 0.525359 0.550603 

400 3.204335 3.20433 0.347826087 0.333333333 0.363636 0.442236 0.48861 0.403902 0.458525 0.415278 0.511825 

402 6.604285 6.76095 0.2 0.166666667 0.25 0.435182 0.288668 0.883709 0.528844 0.839348 0.386036 

404 19.59819 0.47864 0.52173913 0.375 0.857143 0.339213 0.905606 0.208691 0.573945 0.418109 0.914966 

408 6.59383 2.72468 0.4 0.333333333 0.5 0.365153 0.457928 0.303637 0.565069 0.484986 0.67683 

410 7.894785 7.244625 0.125 0.1 0.166667 0.499238 0.873634 0.349472 0.572307 0.43545 0.834621 

414 2.95196 0.78095 0.64516129 0.5 0.909091 0.481246 0.40983 0.582804 0.592564 0.667722 0.532613 

416 4.27547 2.77075 0.466666667 0.411764706 0.538462 0.525585 0.723444 0.41271 0.70505 0.632471 0.796445 

422 9.79882 4.02985 0.315789474 0.272727273 0.375 0.468239 0.577522 0.393734 0.574132 0.49387 0.685546 

424 1.33825 27.35227 0.333333333 1 0.2 0.574297 0.403062 0.998492 0.518196 0.971072 0.353388 

428 7.221405 3.258 0.4 0.375 0.428571 0.628343 0.735132 0.548643 0.667422 0.585549 0.775911 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

431 6.775055 0.92884 0.4 0.269230769 0.777778 0.357348 0.77447 0.232257 0.488834 0.363904 0.744385 

432 2.030935 232.1121 0.06779661 1 0.035088 0.682455 0.518198 0.99917 0.599269 0.985012 0.430629 

440 12.19177 47.0614 0.222222222 0.5 0.142857 0.793027 0.658377 0.996914 0.712019 0.956334 0.567134 

442 6.74757 3.51782 0.344827586 0.277777778 0.454545 0.304451 0.866249 0.184679 0.486531 0.337449 0.871591 

444 21.60895 13.84894 0.137931034 0.111111111 0.181818 0.317767 0.82683 0.196677 0.480031 0.333478 0.856389 

446 9.07766 3.197265 0.206896552 0.157894737 0.3 0.354477 0.615695 0.248884 0.571312 0.469752 0.728898 

448 8.521975 2.89041 0.307692308 0.222222222 0.5 0.341889 0.534569 0.251307 0.459598 0.353632 0.656241 

450 2.56168 0.8519 0.545454545 0.409090909 0.818182 0.377162 0.72326 0.255094 0.51654 0.397011 0.73905 

467 3.70221 1.34322 0.476190476 0.357142857 0.714286 0.327168 0.695914 0.213853 0.537371 0.407711 0.787957 

471 9.63501 1.516745 0.484848485 0.347826087 0.8 0.619832 0.848266 0.488327 0.719686 0.617188 0.863007 

474 5.19612 5.49152 0.322580645 0.3125 0.333333 0.389114 0.853831 0.251972 0.587971 0.449063 0.851302 

475 2.889205 0.66054 0.62745098 0.533333333 0.761905 0.44808 0.664706 0.337945 0.594306 0.513637 0.705036 

478 2.777265 3.55084 0.461538462 0.5 0.428571 0.386149 0.903997 0.245511 0.612827 0.462967 0.906142 

480 16.30973 0.380705 0.340425532 0.205128205 1 0.442022 0.569714 0.36109 0.641209 0.573849 0.726486 

482 3.718265 0.58744 0.454545455 0.416666667 0.5 0.59338 0.957998 0.429797 0.725878 0.587324 0.949987 

483 5.95741 7.26859 0.222222222 0.2 0.25 0.45191 0.678554 0.338761 0.568786 0.479538 0.69885 

487 4.5424 4.876065 0.258064516 0.266666667 0.25 0.513875 0.81785 0.374633 0.699785 0.596555 0.846218 

492 11.22669 1.532695 0.3 0.1875 0.75 0.287569 0.666219 0.183357 0.45672 0.329794 0.742471 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

494 7.13324 13.79265 0.230769231 0.230769231 0.230769 0.413282 0.414253 0.412316 0.635099 0.621695 0.649093 

495 8.0341 4.79492 0.322580645 0.263157895 0.416667 0.523462 0.78705 0.392134 0.675258 0.580283 0.807405 

496 10.61049 0.46431 0.150537634 0.081395349 1 0.299676 0.37285 0.250511 0.368393 0.335786 0.408015 

498 6.020825 1.1525 0.4 0.28125 0.692308 0.424465 0.659598 0.312916 0.575409 0.484016 0.709348 

503 11.60996 9.58982 0.315789474 0.272727273 0.375 0.545297 0.496857 0.604203 0.557616 0.606812 0.515799 

506 3.903525 1.63844 0.448275862 0.342105263 0.65 0.440332 0.406567 0.480214 0.548003 0.553794 0.542332 

508 10.28172 0.48082 0.461538462 0.333333333 0.75 0.523918 0.711325 0.414669 0.649046 0.533828 0.827689 

514 14.57639 1.01789 0.333333333 0.235294118 0.571429 0.27918 0.947972 0.163694 0.438255 0.284857 0.949648 

516 2.42819 113.2681 0.125 0.5 0.071429 0.828575 0.70771 0.999226 0.775416 0.977366 0.642631 

518 2.40498 3.34368 0.529411765 0.6 0.473684 0.422574 0.386864 0.465548 0.577596 0.594914 0.561258 

523 2.28092 2.667115 0.408163265 0.37037037 0.454545 0.299884 0.528067 0.2094 0.521813 0.416622 0.698066 

524 1.64564 1.64564 0.545454545 0.545454545 0.545455 0.41413 0.43589 0.394439 0.490166 0.456828 0.528755 

526 3.93079 1.344425 0.56 0.466666667 0.7 0.399052 0.688468 0.280948 0.566022 0.451887 0.757294 

528 10.87513 8.84622 0.2 0.15 0.3 0.410586 0.64255 0.301678 0.57647 0.47965 0.722261 

531 4.70755 4.70755 0.375 0.333333333 0.428571 0.526243 0.771823 0.399219 0.660143 0.55879 0.806409 

532 10.3866 2.01754 0.3 0.2 0.6 0.584238 0.662225 0.522683 0.653268 0.603628 0.711805 

535 1.321405 0.68181 0.755555556 0.653846154 0.894737 0.420351 0.52512 0.350434 0.600568 0.562186 0.644575 

536 6.76571 3.1169 0.333333333 0.333333333 0.333333 0.567517 0.508498 0.642036 0.64224 0.66609 0.620039 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

539 0.41071 0.669735 0.514285714 0.473684211 0.5625 0.601359 0.547193 0.667427 0.693169 0.710606 0.676568 

543 17.25642 1.523085 0.157894737 0.088235294 0.75 0.273128 0.975614 0.158791 0.380089 0.23788 0.945063 

550 4.19463 3.895145 0.266666667 0.222222222 0.333333 0.41196 0.990957 0.26003 0.403209 0.255297 0.958586 

552 5.73141 0.41002 0.129032258 0.068965517 1 0.249077 0.610558 0.156451 0.306298 0.208144 0.579635 

554 2.52617 0.5756 0.6 0.428571429 1 0.401333 0.402361 0.400311 0.437237 0.422288 0.453283 

556 2.00129 10.10564 0.294117647 0.555555556 0.2 0.466821 0.353152 0.688392 0.573018 0.688761 0.490578 

562 2.26059 2.26059 0.545454545 0.545454545 0.545455 0.373128 0.291796 0.51732 0.336406 0.408644 0.285871 

567 9.22271 0.72993 0.13559322 0.076923077 0.571429 0.433989 0.487049 0.391355 0.512509 0.490959 0.536038 

568 1.092245 152.2516 0.25 1 0.142857 0.607125 0.436129 0.998691 0.505348 0.97856 0.340628 

570 5.81426 0.68118 0.289855072 0.169491525 1 0.448901 0.67534 0.336181 0.59277 0.495674 0.737172 

572 19.60505 0.675725 0.078125 0.040983607 0.833333 0.363353 0.868352 0.229743 0.458485 0.318097 0.820683 

576 4.532665 1.21146 0.235294118 0.135135135 0.909091 0.374292 0.788839 0.245354 0.375439 0.253983 0.719516 

578 1.1376 2.06657 0.666666667 0.769230769 0.588235 0.754119 0.710565 0.80336 0.772131 0.818981 0.730351 

579 4.772415 0.99422 0.4 0.3125 0.555556 0.509882 0.611139 0.43741 0.554173 0.483015 0.649921 

583 1.41378 1.4385 0.740740741 0.769230769 0.714286 0.515559 0.537303 0.495506 0.592208 0.589288 0.595159 

584 8.08565 3.19556 0.375 0.333333333 0.428571 0.699415 0.674904 0.725772 0.697866 0.69824 0.697492 

587 2.345205 5.40183 0.434782609 0.5 0.384615 0.554914 0.487192 0.644503 0.739535 0.785198 0.698892 

590 2.244025 2.92778 0.705882353 1 0.545455 0.695147 0.587606 0.850868 0.680001 0.807478 0.587286 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

591 6.227875 1.984715 0.291666667 0.184210526 0.7 0.40129 0.682773 0.284146 0.580891 0.479922 0.735664 

594 17.1915 7.47122 0.28 0.212121212 0.411765 0.310616 0.403538 0.252478 0.493855 0.43377 0.573262 

595 0.45907 0.71496 0.769230769 0.833333333 0.714286 0.655817 0.605506 0.715246 0.676372 0.709751 0.645992 

599 7.22094 3.04621 0.357142857 0.294117647 0.454545 0.46527 0.774464 0.332518 0.595295 0.463668 0.831282 

606 2.738605 0.575485 0.382352941 0.240740741 0.928571 0.388713 0.571618 0.294484 0.554842 0.482774 0.652202 

610 1.86959 0.64438 0.576923077 0.483870968 0.714286 0.440519 0.363955 0.557877 0.620417 0.717051 0.546736 

615 7.812675 1.31277 0.227272727 0.131578947 0.833333 0.259563 0.878283 0.152284 0.457364 0.309037 0.87949 

616 4.61986 1.19843 0.149253731 0.081300813 0.909091 0.240443 0.485179 0.159824 0.370434 0.280838 0.543982 

618 3.99651 4.1541 0.363636364 0.444444444 0.307692 0.64916 0.734145 0.58181 0.701104 0.683067 0.72012 

622 10.98304 2.194805 0.428571429 0.3 0.75 0.587013 0.607176 0.568147 0.714787 0.689049 0.742522 

623 7.95632 0.43778 0.358974359 0.225806452 0.875 0.387797 0.557941 0.297174 0.538686 0.46635 0.637583 

626 8.20463 0.772755 0.344827586 0.217391304 0.833333 0.356127 0.408854 0.315447 0.254102 0.192832 0.37244 

631 0.31857 0.6409 0.75 0.818181818 0.692308 0.625254 0.540832 0.740907 0.69463 0.780654 0.625684 

634 1.14081 0.976265 0.608695652 0.538461538 0.7 0.564703 0.639441 0.505607 0.693285 0.646054 0.747967 

635 4.482565 0.4228 0.196721311 0.109090909 1 0.253789 0.564741 0.16367 0.425843 0.326424 0.612346 

636 5.32008 0.38534 0.238095238 0.135135135 1 0.513529 0.721665 0.398576 0.589354 0.504743 0.708046 

646 0.79175 5.23592 0.275862069 0.444444444 0.2 0.45173 0.334713 0.694543 0.529425 0.658074 0.44285 

650 0.89701 0.895015 0.823529412 0.777777778 0.875 0.799308 0.726102 0.88893 0.76497 0.821609 0.715637 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

652 1.96949 3.452545 0.538461538 0.583333333 0.5 0.497671 0.642892 0.405968 0.49471 0.414625 0.613138 

654 8.383035 2.44075 0.454545455 0.357142857 0.625 0.454697 0.903921 0.303745 0.639344 0.496166 0.898672 

658 1.94611 3.30013 0.538461538 0.583333333 0.5 0.713867 0.675296 0.75711 0.746002 0.782443 0.712804 

662 6.69281 0.322005 0.363636364 0.243902439 0.714286 0.513471 0.907964 0.357949 0.697642 0.572642 0.89245 

663 5.63236 1.34525 0.484848485 0.421052632 0.571429 0.372668 0.829988 0.240276 0.573809 0.434913 0.843052 

664 1.742915 0.598805 0.375 0.272727273 0.6 0.493578 0.612743 0.413216 0.584712 0.535583 0.643764 

667 4.975865 0.45601 0.356164384 0.216666667 1 0.440988 0.681215 0.326019 0.527178 0.433229 0.673155 

668 0.885835 0.32618 0.684210526 0.541666667 0.928571 0.621395 0.474815 0.898892 0.693839 0.855385 0.583618 

676 4.819085 0.347345 0.3 0.176470588 1 0.493078 0.841848 0.34864 0.676081 0.565964 0.839399 

678 4.52076 6.48578 0.274509804 0.35 0.225806 0.361953 0.438764 0.308029 0.537082 0.497805 0.583089 

680 7.088415 227.9324 0.125 0.5 0.071429 0.390521 0.242865 0.996156 0.356995 0.95627 0.219463 

683 3.75002 1.01006 0.5 0.391304348 0.692308 0.48148 0.399709 0.605313 0.674972 0.708732 0.644281 

687 0.62694 5.90703 0.461538462 0.666666667 0.352941 0.491251 0.461009 0.525739 0.591933 0.618857 0.567254 

690 3.42344 0.54161 0.476190476 0.3125 1 0.474302 0.800637 0.336959 0.6586 0.538062 0.848737 

694 4.47483 1.76046 0.533333333 0.380952381 0.888889 0.354318 0.836487 0.224761 0.549462 0.408677 0.83822 

695 7.3888 1.42763 0.472727273 0.317073171 0.928571 0.394309 0.341078 0.467229 0.455077 0.514893 0.407712 

696 6.48412 0.768425 0.168224299 0.092783505 0.9 0.346705 0.512014 0.262088 0.506484 0.435933 0.604281 

703 2.42889 2.12481 0.619047619 0.481481481 0.866667 0.662431 0.650097 0.675243 0.748587 0.730352 0.767755 
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SONG 

ID 

MDt 

E2R 

MDt 

R2E 

HRt3sF HRt3sP HRt3sR PWFF PWFP PWFR SF SO SU 

708 5.7768 3.426 0.275862069 0.19047619 0.5 0.543931 0.565225 0.524183 0.662392 0.648808 0.676556 
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APPENDIX 3. Abbreviations and acronyms 

2D-FMC –  Two-Dimensional Fourier Magnitude Coefficients. 

BoF –   Bag of Features. 

CQT –  Constant-Q Transform. 

DFT –  Discrete Fourier Transform. 

F0 –   Fundamental frequency. 

FT –   Fourier Transform. 

GMM –  Gaussian Mixture Model. 

HMM –  Hidden Markov Model. 

HRt3s –  Hit Rate (trimmed) at 3 seconds. 

 HRt3sR – the recall rate of HRt3s. 

 HRt3sP –  the Precision rate of HRt3s. 

 HRt3sF –  the harmonic mean of HRt3sR and HRt3sP. 

IR –   Information Retrieval. 

m –   the parameter of the maximum eigenvector in the spectral clustering  

algorithm. 

MFCC –  Mel-Frequency Cepstral Coefficients. 

MIR –  Music Information Retrieval. 

MIREX –  the Music Information Retrieval Evaluation eXchange. 

MDt E to R –  Median Deviation (trimmed) from the estimated to the ground-truth  

boundaries.

MDt R to E –  Median Deviation (trimmed) from the ground-truth to the estimated  

boundaries.  
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MSAF –  Music Structure Analysis Framework. 

PWF –  Pair-Wise Frame clustering. 

 PWFR –  the Recall rate of PWF 

 PWFP –  the Precision rate of PWF 

 PWFF –  the harmonic mean of PWFR and PWFP. 

S –   Normalized conditional entropy. 

 SO –   the Oversegmentation score as measured by normalized  

conditional entropy. 

SU –   the Undersegmentation score as measured by normalized  

conditional entropy. 

 SF –   the harmonic mean of SO and SU. 

SALAMI –  Structural Analysis of Large Amounts of Music Information. 

SSM –  Self-Similarity Matrix. 

STFT –  Short-Time Fourier Transform. 

SVD –  Singular Value Decomposition. 

TFR –  Time and Frequency Representation.
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APPENDIX 4. Time and Frequency Representations (TFRs) 

The Spectrogram 

We understand generally that text can be broken down into data that represents it in some 

way while reducing its complexity. An index is just that; it represents the words used in a 

document or collection without preserving the full complexity of their order. Likewise, it 

is possible to reduce the complexity of a piece of music by representing only certain 

important features. When a music theorist attempts an analysis of a piece of music, they 

do not often do it solely by listening to it. They use the aid of a particularly famous kind 

of feature representation: a score. The score is not the piece of music itself; it only 

represents which notes are played by which instruments on which beats. Digital 

representations of music are fundamentally similar. What we want to create is what [37] 

calls a time and frequency representation (TFR).  A score is just one type of TFR, where 

bars and tempo represent time and notes and instrumentation represent frequency. While 

the TFRs used in digital content-analysis take a different form, they operate under these 

same simple parameters. 

The most basic TFR used in digital music content-analysis is called the spectrogram, 

defined by [37] as “the Fourier transform of successive signal frames,” where the signal 

is the pertinent piece of music. The Fourier transform is the function which discerns the 

amplitudes of the constituent harmonics of a signal, a function of time. In other words, 

given a sound, the Fourier transform represents the relative amplitudes of the frequencies 

that make up that sound. The mathematics predate this application by more than a 

century, first proposed by French mathematician Joseph Fourier in 1822 in his Théorie 
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analytique de la chaleur and forming the basis for the Fourier series and Fourier 

analysis. The most commonly applied variation on the Fourier transform used in the field 

of digital music content analysis is known as the Discrete Fourier Transform (DFT), 

which can be defined as (Ex. 3 [37]) where k denotes the discrete frequency and x(n) 

denotes signal as a function of discrete time n. The result is a complex value representing 

the amplitudes of the signal at a given range of time in the frequency domain, which is 

visualized in fig. 18. 

DFTx(k) = � x(n)e−j2πkn
∞

n=−∞

 

The Fourier transform (FT) 

computes only one set of 

amplitude values for a signal. It 

cannot capture the nuances of how 

frequencies and amplitudes may 

shift in a signal over time; 

therefore, a Fourier transform of a 

complete piece of music is not 

useful as far as discerning internal features is concerned. This process is computed, as 

[37] indicates, for “successive frames of the signal.” These frames represent short, 

overlapping windows of time in the signal which commonly range from a few dozen 

milliseconds up to a full second. The window of time in the frame should be short enough 

that no functional change in frequency amplitudes is expected. A frame of a signal can be 

represented as (Ex. 4[37]), where snw[m] is the frame localized around discrete time point 

n and computed with the windowing function w[n – m] multiplied by the framed signal 

Figure 18. In red, left – the signal over a given range of time. In blue, 
center– the Fourier series of constituent harmonics in the signal. In 
blue, right – the amplitudes of the constituent harmonics mapped in 
the frequency domain. By Lucas V. Barbosa (Own work) [Public 
domain], via Wikimedia Commons 

Ex. 3 
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x[m]. Windowing functions may take many forms, but the most common include 

Gaussian (seen in figure 19), Hamming, and Hanning functions. This windowing function 

is multiplied across the range of the signal, returning successive frames of a given 

duration. For each frame, a DFT is computed which gives the localized amplitudes of 

frequencies in that frame. The DFT for each frame x(m) are represented in a matrix 

known as the Short-Time Fourier Transform (STFT), expressed as the sum of a number 

DFTs with a duration in discrete samples N as (Ex. 5[37]). The spectrogram, the most 

common TFR, is expressed as (Ex. 6[37]) or as the absolute square of the STFT. It is 

commonly plotted as a heat map representing the amplitude of frequency ranges in the 

signal over time.  

 

 

snw[m] = x[m]w[n − m] 

 
Ex. 4 

Figure 19.  Top – Signal x(n). Center – Window function w(n-m). Bottom – Frame s(m). From [37] 
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STFTxw[n, k] = � x[m]w[n − m]e
−j2πkm

N

N−1

m=0

 

 

SPxw[n, k] =  |STFTxw[n, k]|2 

 

 

The spectrogram is one of the most 

well-known TFRs for signal analysis 

generally, but it is not the most ideal 

for analysis in music. [38] explains 

that the linear frequency 

representation and constant resolution 

does not lend itself efficiently to the 

mapping of musical frequencies, 

which operate mainly within the range of comfortable human hearing as opposed to the 

full spectrum of sound. There are two popular approaches in MIR to compensating for 

the weaknesses of the standard spectrogram: the mel frequency cepstral coefficients and 

the Constant Q transform. The first is a filtering method that modifies the STFT using 

cepstral filtering according the mel scale, while the latter is an alternative computation to 

the STFT itself. 

Mel Frequency Cepstral Coefficients 

The cepstrum (an anagram of spectrum) of a signal is broadly defined as an inverse 

Fourier transform of the logarithm of the Fourier transform of a signal. As the Fourier 

Figure 20. A sample spectrogram of the author pronouncing his 
own name (frequencies shown from 0 to 22K Hz). 

Ex. 5 

Ex. 6 
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transform operates on a signal to produce a frequency-amplitude spectrum, the inverse 

Fourier transform operates on a frequency-amplitude spectrum to produce a signal 

cepstrum. Likewise, similar to the windows of discrete time used to simulate a 

continuous and dynamic Fourier transform over a signal (the STFT), to compute an 

Inverse Discrete Fourier Transform (IDFT) one must use windows of discrete frequency. 

The points on the frequency domain at which we define the center of these windows are 

known as the cepstral coefficients. [37] identifies two of the most common ways to 

establish these coefficients: linear prediction and mel frequency. Only mel frequency 

coefficients, however, are commonly used for signal analysis in music. 

Mel frequency cepstral coefficients were first proposed by [39] and are defined 

according to the mel frequency scale. Whereas a standard musical scale describes notes 

according to real frequency, the mel scale is a concept in psychoacoustics that describes 

the perceptual distance between pitches to a human observer as a function of their 

frequency [40]. As frequency increases, the perceptual distance between them decreases 

exponentially. One can convert real frequency into mel frequency according to the law 

(Ex. 7[40]). The same law is used to define the mel frequency cepstral coefficients in 

such a way that the center points of each frequency window are equidistant on the mel 

scale, but exponential on the real frequency scale. The resulting resolution of each 

window is constant according to perceptual frequency but decreases according to real 

frequency. The number of coefficients, denoted Kmel, is a parameter that may be set at any 

integer, although Kmel = 40 is typical [37] [41]. The window surrounding each coefficient 

has a triangular shape such that frequencies at the center peak of the window filter are 

weighted most heavily (see fig. 21). The mel frequency cepstrum is computed for each 
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DFT of a frame of the original signal. The values in the cepstrum are represented as a 

vector of the dimensions Kmel for the given frame, in which the values of kmel(1) through 

kmel(K) are the sum of the amplitudes within each corresponding cepstral coefficient. The 

logarithm of the cepstrum is mapped back into the time domain with a Discrete Cosine 

Transform described by (Ex. 8[39]), producing an energy representation similar to the 

spectrogram but reduced in complexity from real frequency resolution to perceptual 

frequency resolution. This representation is referred to as an MFCC, as the cepstral 

coefficients are its unique contribution.  
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The Constant-Q Transform 

The Constant-Q transform is similar to the MFCC in that they both seek to generate a 

TFR that prioritizes frequency representations according to our perceptual understand of 

the frequencies. It differs, however, in that it is not a way to filter and modify an STFT; it 

Figure 21. From [37] 

Ex. 7 

Ex. 8 
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is instead an alternative computation to the STFT. It rests on the same basic principle as 

the MFCC that a logarithmic conceptualization of frequency is more musically 

meaningful than the linear conception of the STFT and thus the standard spectrogram. In 

the first proposal where the CQT is adapted for music, [38] explains that an additional 

benefit of a transform against logarithmic frequency is that it expresses the harmonic 

series of a frequency as an easily recognized and linearly consistent pattern. Given that 

the relative distance between frequencies in the overtone series above a fundamental 

frequency, or pitch, is constant, the constant Q transform seeks to preserve these patterns 

[42]. Because timbre is a function of the various amplitudes of the frequencies in the 

overtone series above the fundamental, the CQT is also well-suited to applications that 

want to identify the source of a frequency, like instrument identification tasks as well as 

more general timbre related functions.  

The most essential aspect of the CQT, however, is behind its name. In order to 

ensure a frequency resolution sufficient for musical analysis, [38] proposed that the 

resolution be directly related to the frequency such that the ratio between them maintains 

Figure 22.. Left - A DFT of 3 complex sounds with the fundamentals 196 Hz, 392 Hz, and 784 Hz, each having 20 
harmonics of equal amplitude. Right – A CQT of the same sounds. One can see that the ratio relationships between 
the harmonics have been preserved linearly when expressed in the logarithmic frequency domain. From [38] 
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a constant quality or Q defined as 

(Ex. 9[38]) where f is frequency and 

δf is resolution. Her value of Q was 

set to provide a resolution that could 

distinguish a quarter-step in the 

traditional western chromatic scale. 

Assuming equal-temperament, the 

change in frequency from one note to 

its quarter-step neighbor is always a 

change of 3%; therefore, the relationship must always resolve to at least f/.029f or Q = 34. 

As explained previously, the frequency resolution of a frame varies as a function of the 

duration in time of that frame. The constant Q transform operates, then, by varying the 

duration of the frames inversely with frequency in order to maintain Q = 34. This requires 

that the duration in the frame in samples, denoted N[k], for a given frequency bin k 

contain at minimum Q periods of a given frequency in order to distinguish it from its 

nearest quarter-step neighbor. The constant Q proposed by [38] uses a Hamming window 

function of variable duration to determine the shape of each frame, defined in terms of 

the frequency spectral component k and the signal fragment x[n] as (Ex. 10[38]) with the 

given parameters. The CQT of the frame is computed using this variable window 

function, and can be expressed similarly to the previously defined DFT as (Ex. 11[38]). 

To distinguish between harmonics above 1568 Hz, Q is modified to resolve to 68. A 

sequence of CQTs for analyzed frames can then be mapped into the time domain to 

produce an energy representation akin to the spectrogram. The resultant representation 

Figure 23. A sample CQT of the author pronouncing his own 
name. Notice the harmonics moving in parallel and the resolution 
decreasing as frequency increases. 
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displays frequency amplitudes in the logarithm of the frequency domain and preserves 

patterns of harmonic distance regardless of fundamental frequency, as can be seen in fig 

22. 

Q =
f
δf
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APPENDIX 5. Chord Sequence Estimation 

One can understand a chord as a functional harmonic relationship between multiple 

pitches with some intervals of separation, so to identify a chord requires that one know 

two things: the combination of pitches being played and the functional relationship 

implied by that combination. For this, a system must be capable of discerning pitches out 

of a signal. A pitch is defined in terms of the amplitudes of the frequencies being sounded 

in a signal. Identifying a pitch depends on a process known as fundamental frequency, of 

F0, estimation. When a listener perceives a pitch, it is the F0 that defines the “note” that 

the pitch is sounding [43]. Logically then, one can estimate pitches and the chords they 

create based on the TFRs previously outlined, and indeed [44] has demonstrated a 

method of doing so using the 

CQT. As shown, a strength 

of the CQT is that it 

preserves the harmonic 

relationships between 

frequencies as an easily 

recognizable pattern. The 

harmonic relationships 

between frequencies that 

belong to the 

Figure 24. The chroma features of an audio sample. The frequency features 
are filtered by pitch class, and greater value in the heat map represents sum 
amplitude. 
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same pitch are defined according to the overtone series [42], and as pitch changes the 

ratio between these frequencies does not change. This means that a fundamental 

frequency can be defined as a frequency over which the overtone series of frequencies 

can be identified. In situations where only one pitch is sounding, this is a simple 

procedure; however, when applied to chord identification where multiple pitches are 

sounding at once, interference between frequencies can cause strange behavior in the 

frequency-amplitude spectrum. [44] demonstrates that a component that should appear on 

the frequency-amplitude spectrum of the CQT at the frequency f1 will not appear if 

another component exists on the spectrum at the frequency f2 according to the 

relationship (Ex. 12[44]). In practical terms, out of the 57 chords in the Western tradition 

that can be defined as a combination of up to 4 pitches, 14 of these chords consist of a 

combination of pitches that includes two frequencies with this relationship. This makes 

these chords impossible to identify with complete accuracy even given a completely 

accurate TFR.  

 

Q
Q + 1

f2 ≤ f1 ≤
Q

Q + 1
f2 

While [44] explores how one might compensate for this effect, most 

contemporary research is built upon an alternative representation that is designed to 

provide an estimation of likely pitches over a signal in combination with a pattern 

recognition model that can take these estimations as input and return the likely chords as 

output. [45] identifies three components common to chord identification systems under 

this paradigm: chroma feature extraction, filtering, and pattern matching. Chroma feature 

extraction refers to the generation of a type of this specialized TFR known as a pitch class 

Ex. 12 
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profile or chromagram. This TFR was first proposed for in [46] and is comparable in 

some ways to the MFCC. In both cases, the frequency-amplitude values determined by 

each frame of a TFR of a signal are passed through specialized filter bins, reducing the 

complexity of the representation to signify frequency features organized by some concept 

of relevance. In the case of the MFCC, these filter bins sit along the frequency spectrum 

with their distances determined by mel scale. It thus organizes frequency-amplitude by 

perceptual frequency distance. The pitch class profile organizes frequencies with another 

kind of filter, that of pitch. Windows in the frequency domain divide frequencies by the 

pitches that a fundamental in that range would signify. For instance, the range of 

frequencies around 440 Hz are filtered into the pitch class “A.” These filters are octave-

agnostic, meaning that all frequencies at would resolve to an A of any octave are filtered 

into the same pitch class of “A.” The sum of the amplitudes of the frequencies that fall 

within each pitch class filter in each frame of the STFT determine the value for that pitch 

class. Given that there are 12 pitch classes in the Western classical tradition (one for each 

note on the chromatic scale of an octave), the values for each frame of the STFT are thus 

reduced from a full frequency representation to a vector of 12 dimensions, for which the 

values represent the sum of amplitudes in that respective pitch class. In other words, the 

pitch class profile approximates the relative strength of each pitch at every frame of the 

signal, regardless of octave. Alternative PCP’s could be devised using vectors or greater 

or fewer dimensions corresponding to the organization of pitches used in other musical 

traditions. This TFR is considered foundational in the field of chord-sequence based 

retrieval [47]—[50]. Like with other TFRs, the duration of the frame has significant 

effects on the resolution of the represented frequency-amplitudes. This is what makes the 
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filtering step necessary before pattern matching can begin[45]. On one hand, the frame 

must be of a short enough to fit within the expected rate of chord change in order to 

capture that change. On the other hand, the shorter the frame, the more susceptible the 

frequency-amplitude representation is to noise. Commonly, researchers will pass a 

chromagram with frames of short duration through a low-pass filter that minimizes 

frequency-amplitude values that do not persist over a significant number of frames 

[46][48][51]. 

The next step is to take these pitch estimations and formulate some function that can use 

them to identify chord structures. The method originally proposed in [46] took the form 

of a simple nearest-neighbor calculation in the vector space defined by the pitch classes; 

however, [51] notes that this method has only been found to work well in cases of 

synthetic sound and not in real, often more chaotic polyphonic recordings. The first 

method to find success with live sound was proposed in [50] using hidden Markov 

models (HMMs) trained with an Expectation-Maximization (EM) algorithm. HMMs are 

a machine-learning algorithm in which the state of a set of data out of some finite set of 

states is predicted based on observations in that data. The use of HMMs is common in the 

signal analysis for speech signals, in which the state determined is a phoneme being 

pronounced. In [50], a vocabulary of chords forms the finite set of states. The probability 

of each state is defined as a single Gaussian distribution in N-dimensional space where N 

matches the dimensions of the pitch class vector. The probability is then adjusted 

(trained) based on the performance according to an EM algorithm defined as (ex. 13[50]) 

where E is the estimation of the chord in terms of the probability P given the observed 

features X and unknown chord labels Q according the probability parameters Θ. The 
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estimation is determined as a function of the probability of both the current parameters 

and previous parameters such that the value of logP(X,Q|Θ) is maximized as the sum of 

estimated labels increases. The original Gaussian distribution model is set initially at 

random parameters and is then tuned by this E-M training process.  As [50] notes, the 

original model parameters could be estimated directly only if the delineation between 

states (the boundaries between chords) was known beforehand. [48] attempted to 

approximate these boundaries by introducing high-level rhythmic information into the 

pitch class representation with some success, outperforming the original work done by 

[50]. Once a sequence of chord states is determined, sequence alignment can allow for 

quantization of similarity between chord sequences. This method has achieved marked 

success in cover-song and contrafact identification, for which instrumentation, timbre, 

duration, tempo, key, and potentially other qualities like melody are expected to vary, but 

harmonic progression is likely to remain largely the same [47].  

 

E[log P(X, Q|Θ)] = � P(Q|x,
Q

Θold) log(P(X|Q,Θ)P(Q|Θ)) 
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