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Abstract  

Liver fat is recognized as a separate and important contributor to metabolic disease development. 

The liver is an insulin responsive tissue that contributes significantly to both whole body insulin 

sensitivity and availability of sex steroids through the production of sex hormone binding 

globulin (SHBG). Our objective was to describe the relationship between ectopic liver fat, 

insulin resistance, and hormonal profile in perimenopausal women. The Study of Women Across 

the Nation (SWAN) is a cross sectional multiethnic population of women recruited from multiple 

geographic areas during their perimenopausal years for longitudinal evaluation. A subset of 

women from SWAN (n=208) were evaluated from the Pittsburgh site as part of the SWAN-Heart 

study. Women had computed tomography scans to quantify visceral and subcutaneous adipose 

tissue, and liver fat. Adiposity measures, blood pressure, and menopausal stage, based on cycle 

irregularity, were recorded. Blood samples were collected and measured for hormonal and 

metabolic endpoints. We found in this overweight but healthy cohort that liver fat and SHBG 

were unaffected by menopausal stage or race. Both endpoints remained significantly associated 

with insulin after adjustment for adiposity. SHBG and liver fat had interactive effects on 

measured insulin concentration. Other sex hormones were not significantly associated with 

metabolic endpoints. Only liver fat accounted for differences in insulin across increasing SHBG 

quartiles, suggesting ectopic liver fat modifies SHBG. Both higher liver fat and lower SHBG 

have consequences for insulin sensitivity and the role of liver fat in modifying SHBG should be 

explored. 

 

Keywords: liver fat, sex hormone binding globulin, SWAN, perimenopause, ectopic fat, insulin 

resistance 



Introduction 

Metabolic syndrome (MS) describes the clustering of obesity, insulin resistance and 

cardiovascular risk. Each component has been associated with the accumulation of ectopic fat in 

the liver [1], and ultimately fatty liver, also referred to as non-alcoholic fatty liver disease, is 

associated with atherosclerotic burden [2]. Aside from increasing cardiovascular morbidity and 

mortality, progressive accumulation of fat deposition in the liver can result in more serious liver 

disease, such as non-alcoholic steatohepatitis, cirrhosis, and neoplasia [3]. Fatty liver has been 

considered the hepatic manifestation of MS [3]; however it has been recently recognized that 

ectopic liver fat accumulation has an independent role that determines insulin resistance and 

cardiovascular risk biomarkers included in the MS definition [4-6]. This causative relationship 

increases the significance of epidemiological data which suggests that prevalence of fatty liver in 

the United States ranges from 33 – 46% of the population [7, 8]. Incidence data is sparse but one 

healthy cohort prospectively followed reported that 22 of 144 subjects developed fatty liver at 

some point in the 8.5 year follow up period [9].  

Prevalence of liver fat and its consequences for MS and cardiovascular health generally 

increases with adipose accumulation [1, 7, 8], which is generally known to increase with aging. 

Weight change resultant of menopause in aging women is well documented, and is specifically 

related to increasing visceral adipose tissue (VAT) [10]. Visceral fat is also considered an 

ectopic fat depot that is highly associated with fat in the liver [11]. The Study of Women Across 

the Nation (SWAN) is a community-based study of women undergoing the menopausal 

transition. Subjects in SWAN have been studied regarding their regional adiposity quantification 

by computed tomography scanning (CT) [10, 12] and are a midlife population of women at risk 

for liver fat accumulation and increasing risk of developing MS [13]. 



Results from SWAN have indicated an important relationship between sex hormone 

binding globulin (SHBG) and MS components [10, 13, 14]. In these reports, SHBG had a 

stronger relationship with obesity and metabolic disease endpoints than did estrogen or 

testosterone [13, 14]. SHBG is a carrier protein produced by the liver with a main function to 

transport sex steroids, but has potential insulin sensitizing effects independent of its transport 

function [15, 16]. Recently, the predictive capacity of SHBG in diabetes development has been 

reported in both men and women, generating new interest in this protein as a marker for the 

development of metabolic disease [17-19]. Sex hormones are known to change over the 

menopausal transition whereas SHBG remains relatively constant making it additionally 

attractive as a biomarker for disease [20, 21]. SHBG regulation is closely tied to liver fat, and 

factors that promote liver lipogenesis [22-24]. Our aim for this study was to extend previous 

findings regarding sex steroids and SHBG by evaluating, in a subset of the SWAN, the 

investigated specific relationships between liver fat, SHBG and glycemic endpoints in 

perimenopausal women who are at risk for future development of MS and diabetes development.  

Public Health Relevance 

 Cardiovascular disease risk is the primary cause of death in women living in westernized 

societies. The menopausal transition is a period where the trajectory for risk of cardiovascular 

disease increases significantly, suggesting that the alterations in sex hormones towards a more 

androgenic profile (lower estrogen, lower SHBG) may be mechanistically involved in 

atherogenesis, independent of aging [13]. Obesity, and specifically abdominal obesity,  increases 

with menopause [25, 26] and has been considered causative of the diabetes and cardiovascular 

disease pandemic affecting westernized countries. MS classification, which relates to the 

presence of risk for diabetes and cardiovascular disease, uses abdominal obesity as its major 



determinant [27] and most public health and medical advice to aging women is directed at 

weight reduction and decrease in waist circumference. However, it has been recently shown that 

abdominal obesity alone may not increase the risk of cardiovascular disease if not accompanied 

by metabolic abnormalities, and this ‘healthy obese’ state may represent up to 30% of the United 

States population [28, 29].  

Liver fat represents a storage depot for adipose tissue that may increase without clinical 

signs or measurable changes in waist circumference. As mentioned above, excessive liver fat is 

now estimated to have very high prevalence rates in both men and women [7, 8]. In animal 

models of menopause, differences in liver fat and cardiovascular disease are present after 

hormone therapy or placebo therapy, despite no differences in body weight [30]. To prevent 

cardiovascular disease risk in perimenopausal women, assessment of liver fat rather than 

measures of more generalized adiposity, may improve prediction of who is at risk and who may 

benefit most from hormone replacement therapy. SHBG has already been suggested as a 

biomarker for diabetes risk [17, 18, 31]. SHBG has also been related to liver lipogenesis [24] and 

has a known role in determining the hormonal milieu during the menopausal transition. As 

current obesity rates are so high, targeting therapy by defining what may predict future events in 

the ‘healthy obese’ versus the ‘unhealthy obese’ has public health relevance regarding cost 

savings.  

Methods and Procedures 

The current study included participants from the SWAN. The SWAN is a multicenter, 

multiethnic, longitudinal study designed to characterize the biological and psychosocial changes 

that occur during the menopausal transition in a community-based sample. Details of the study 



design and recruitment have been previously published [32]. Briefly, SWAN is being conducted 

at 7 sites: Boston, MA; Chicago, IL; the Detroit area, MI; Los Angeles, CA; Newark, NJ; 

Pittsburgh, PA; and Oakland, CA. A total of 3302 women aged 42–52 years were enrolled from 

1996 to 1997. The current data were derived from the SWAN Heart Study, an ancillary study of 

SWAN, which was designed to characterize the natural history of subclinical atherosclerosis 

during the menopausal transition. SWAN Heart was conducted at the Pittsburgh and Chicago 

SWAN sites and was initiated 4 years after the SWAN baseline enrollment, with enrollment into 

SWAN Heart occurring across calendar years 2000–2005. To be eligible for SWAN Heart, 

participants must have undergone a carotid ultrasound scan at a previous SWAN visit or, if they 

had not, were required to meet the following criteria: have at least one intact ovary and an intact 

uterus, no evidence of clinical atherosclerosis (myocardial infarction, angina, intermittent 

claudication, cerebral ischemia, or revascularization), and no reported use of menopausal 

hormone therapy (MHT) within the prior 3 months or current use of antihypertensive or diabetes 

medications. Of those individuals who had undergone carotid scanning before the initiation of 

SWAN Heart, there were 2 women who experienced clinical atherosclerosis, 79 who initiated 

antihypertensive medications, 75 women who initiated MHT, and 5 who initiated diabetes 

medications in the intervening time period. A total of 608 women (259 from the University of 

Pittsburgh and 349 from Rush University in Chicago) were enrolled in SWAN Heart. For the 

current analysis, 208 eligible women from the Pittsburgh site only were evaluated, including 

only Caucasians and African Americans. Women initiating antidiabetic or antihypertensive 

medications were retained; however, women were excluded for missing data on cardiometabolic 

measures and poor quality imaging studies leading to missing fat distribution data.  The 



institutional review boards of the participating institutions approved this study, and all women 

signed informed consent at all SWAN and SWAN Heart visits. 

Liver fat, abdominal VAT and SAT measurement 

Abdominal adipose tissue area was measured by using an electron beam CT scan, as 

described elsewhere [33]. Briefly, 6-mm transverse images were obtained with a c-150 Ultrafast 

CT Scanner (GE Imatron, San Francisco, CA).  A selected slice between L4 and L5 was read by 

a single reader at the University of Pittsburgh. A pixel range of 230 to 2190 Hounsfield units 

(HU) was used to define fat. The area of adipose tissue was defined by using image analysis 

(AccuImage Diagnostics, South San Francisco, CA). A region-of-interest line was drawn at the 

interior of the abdominal musculature, along the fascial plane. Fat within this area was 

considered to be visceral fat area (VAT). Subcutaneous fat (SAT) was calculated as the 

difference between the whole image and the VAT. Interobserver reliability was determined by 

repeat reads on 10 scans, with intraclass coefficient values of 0.97 and 0.94 for total and visceral 

fat area, respectively. Liver fat was assessed using the same unenhanced CT scan as that taken 

for abdominal adiposity measures. Quantification was performed similarly as to what has been 

previously described [34, 35] with the following modifications: a representative slice at the 

thoracolumbar junction was selected with 3 regions of interest (ROIs) of 200mm
2 

 placed over 3 

regions of the liver (right posterior, right anterior, and left medial sectors) and averaged for a 

final HU. A single 100mm
2 
ROI at the same slice level was placed over the spleen, and a slice 

chosen for the left ventricle of the heart at its maximal diameter for a single 100mm
2 

ROI. The 

spleen and the left ventricle measures were collected as potential reference tissues for the liver 

density assessment. Liver fat assessments were read by a single reader at Wake Forest University 

School of Medicine. 



Questionnaire data 

Race, current smoking habits, and educational status were obtained from a self-reported 

questionnaire. Women were also asked about their menstrual bleeding patterns in the 12 months 

before recruitment, which were divided into the following categories: 1) pre- or early 

perimenopausal (menstrual periods in the past 3 months, 2) late perimenopausal or 

postmenopausal where there was > 3 months amenorrhea, 3) using MHT or 4) hysterectomized. 

MHT use was ascertained by self-reported use of birth control pills, estrogen pills, estrogen 

injection or patch, combination estrogen and progestin, or progestin pills. 

Cardiometabolic risk factors 

Fasting blood samples were assayed at Medical Research Laboratories (Lexington, KY), 

which is certified by the National Heart, Lung, and Blood Institute, Centers for Disease Control 

and Prevention Part II program, as previously described [36]. Serum total cholesterol, high 

density lipoprotein (HDL) cholesterol, and triglycerides (TG) were measured directly; and low 

density lipoprotein (LDL) cholesterol was calculated by using the Friedewald equation, 

excluding women with concentrations of triglycerides >400 mg/dL. The homeostasis model 

assessment insulin resistance index (HOMA-IR) was calculated from fasting insulin and glucose 

as fasting insulin in μU/mL multiplied by fasting glucose in mmol/L and divided by 22.5. High 

sensitivity C-reactive protein (CRP) levels were measured using an ultra-sensitive rate 

immunonephelometric method (BN 100, Dade-Behring, Marburg, Germany). 

Hormonal assessments 

Phlebotomy was performed in the morning after an overnight fast.
 
Subjects were 

scheduled for venipuncture between days 2 to 5 of a
 
spontaneous menstrual cycle within 60 days 

of the anniversary
 
of the baseline examination date. All assays were performed

 
on an automated 



analyzer (ACS-180; Bayer Diagnostics Corporation,
 
Tarrytown, New York) using a double-

antibody chemiluminescent
 
immunoassay with a solid-phase anti-IgG immunoglobulin 

conjugated
 
to paramagnetic particles, antiligand antibody, and competitive

 
ligand labeled with 

dimethylacridinium ester. The estradiol
 
assay modifies the rabbit anti–estradiol-6 ACS-180 

immunoassay
 
to increase sensitivity, with a lower limit of detection (LLD)

 
of 1.0 pg/mL (to 

convert to picomoles per liter, multiply by
 
3.671). The testosterone assay modifies the rabbit 

polyclonal
 
antitestosterone ACS-180 immunoassay, with an LLD of 2.19 ng/dL

 
(to convert to 

nanomoles per liter, multiply by 0.0347). The
 
SHBG assay was developed at the central 

laboratory at the University
 
of Michigan, Ann Arbor, using rabbit anti-SHBG antibodies, with

 
an 

LLD of 0.22 µg/mL (to convert to nanomoles per liter,
 
multiply by 8.896). Duplicate estradiol 

assays were conducted
 
with results reported as the arithmetic mean for each subject,

 
with a 

coefficient of variation of 3% to 12%. All other assays
 
were single determinations. Serum FSH 

concentrations were from a 2-site chemiluminescence immunoassay to the β subunit. Inter- and 

intra-assay coefficients of variation were 12.0% and 6.0%, respectively, and the lower limit of 

detection was 1.1 IU/L. The absolute concentrations of FSH are higher in this assay than values 

from many clinical laboratories, based on differences in the standards selected. An automated 

ACS:180-based chemiluminescent assay was developed using Bayer Diagnostics ACS:180 to 

determine the levels of dihydroepiandrosterone (DHEAS) in human serum. 

Physical measures 

Blood pressure (BP) was measured in the right arm with the participant seated, after >5 

minutes of rest. Two sequential blood pressure values were obtained and averaged. Height and 

weight were measured in participants while wearing light clothing and without shoes. Body mass 

index (BMI) was calculated as weight in kilograms divided by height in meters squared. Waist 



circumference was measured with the participant wearing nonrestrictive undergarments, at the 

level of the natural waist, defined as the narrowest part of the torso as seen from the anterior 

aspect. For cases in which waist narrowing was difficult to determine, the measure was taken at 

the smallest horizontal circumference in the area between the ribs and the iliac crest. Waist to hip 

ratio (WHR) was calculated as the waist circumference divided by the largest horizontal 

circumference below the waist. 

Statistical methods 

Descriptive data was provided for all variables after checking that normality assumptions 

were met (mean ± SEM) or median and interquartile ranges were provided. Pearson’s correlation 

coefficients were generated for all continuous variables. Quartiles of liver fat and SHBG were 

generated, and trend tests were computed to study the relations in continuous variables across 

increasing quartiles. Partial correlation coefficients were computed after adjustment for 

adiposity, or base model covariates which included menopausal status, education level, smoking, 

race, hormone replacement use, age and BMI. Significance was set at p <0.05 for all analyses. 

All statistical analyses were carried out using Statistica V9.1 (StatSoft Inc., Tulsa, OK).  

 

Results 

Anthropomorphic and metabolic characteristics of the subjects (Table 1) indicate that 

these women were mostly white and overweight, but healthy. Mean waist circumference was 

similar to the Adult Treatment Panel III criteria for MS and all other MS criteria were below 

these limits. Consistent with this is that only 4 women in this cohort were on medications for 

diabetes and only 7 had ever received a diagnosis of diabetes. Unadjusted liver attenuation 

values were used in analysis as it was found that spleen and left ventricular attenuation values 



both correlated with all measures of adiposity (BMI, waist, WHR, VAT, and SAT; all p<0.001). 

Average liver attenuation was 56 HU which is comparable to liver assessments from cancer 

patients [34] and only 10% lower (more fatty) than healthy subjects [35] with a range that 

included very fatty livers and fat-free livers (5 – 77 HU). No differences in liver fat were seen 

with menopausal status (p=0.57) or race (p=0.16). Hormone profiles were variable as expected in 

the perimenopause. Women classified as pre- or early perimenopausal had significantly higher 

estrogen and lower FSH concentrations than late- or postmenopausal women (104 ± 12.3 vs. 44 

± 7.46 pg/mL and 36 ± 3.98 vs. 80 ± 4.85 nmol/mL, respectively; p<0.001 for both). SHBG 

concentrations did not differ by menopausal status (p=0.71) or race (p=0.97). 

All measures of adiposity correlated significantly with liver fat (data not shown) and by 

trend across increasing quartiles of liver fat (Table 2). VAT had the highest association (r=-0.51, 

p<0.001; Figure 1A). BMI was also highly associated (r=-0.43, p<0.001; Figure 1B), however it 

should be noted that healthy fat-free livers were present in individuals of BMI > 40 kg/m
2 

and 

fatty liver was present in individuals that were only moderately overweight. Stage of menopause 

did not significantly predict the amount of VAT or liver fat measured (p=0.93 and 0.17, 

respectively). 

There is no agreed upon cutoff CT attenuation value for fatty liver diagnosis at present. 

When subjects are examined by quartile of liver fat (Table 2), it is likely that only the first 

quartile represents women with fatty liver, or liver predicted to have greater than 20% content as 

TG [34]. Most metabolic variables show a significant trend towards less healthy values with 

increasing liver fat, with the exception of age, LDL cholesterol and diastolic BP. Although LDL 

cholesterol remains unchanged across all quartiles, increasing liver fat is associated with 

decreasing HDL cholesterol such that there is a relative increase in atherogenic cholesterol in the 



circulation. Further examination of the relationship between liver fat and glycemic endpoints 

(insulin, glucose and HOMA) demonstrate that liver fat is significantly associated with all 

measures even when measures of regional adiposity, including VAT, were accounted for (Table 

3). Associations were strongest between liver fat and insulin, and BMI and VAT had the greatest 

modifying effects on the relationships of both insulin and glucose concentrations with liver fat.  

We next evaluated the relationship of endogenous sex hormones with glycemic endpoints 

(Table 4). After adjustment for variables known to affect metabolic health which included a 

measure of adiposity (BMI), only SHBG had a significant relationship with insulin (r=-0.17, 

p=0.01). Consistent with the hypothesis that SHBG is partly causative of metabolic disease, 

neither estrogen nor testosterone had a significant relationship with any metabolic endpoint after 

adjustment for covariates (p>0.05 for all). These sex steroids also did not differ across quartiles 

of liver fat (p>0.05 for all). FSH and estrogen had the expected inverse relationship (r=-0.37, 

p<0.05) present in women undergoing the menopausal transition. As liver fat and SHBG were 

both associated with insulin independently of adiposity, the interplay between these variables on 

insulin concentrations were examined by quartiles of liver fat and SHBG (Figure 2). Significant 

trends were present for both SHBG and liver fat but an interaction also appears present, with the 

combined effects of these two variables on insulin concentrations. Higher insulin concentrations 

are resultant from pancreatic compensation for tissue insulin resistance and are characteristic of a 

prediabetic state [37, 38]. Highest insulin concentrations were seen with lowest SHBG 

concentrations and the fattiest livers and lower insulin concentrations were seen with fatty livers 

that had high SHBG.  

To further understand the relationship, we examined SHBG’s relationship with glycemic 

endpoints across quartiles (Table 5). Only insulin changed significantly with increasing SHBG 



after adjustment for base covariates (p=0.025). We then looked at the modifying effects of 

metabolically important fat depots and found that only liver fat, and not VAT, attenuated this 

relationship (p=0.07).  

 

Discussion 

In this biracial sample of healthy perimenopausal women, we demonstrate the importance 

of ectopic liver fat in modulating metabolic disease risk factors. We report also for the first time 

the individual and combined effects of liver fat and endogenous hormonal profile on metabolic 

endpoints. The data demonstrates that circulating insulin concentrations is the endpoint most 

strongly affected by the interplay between liver fat and SHBG. SHBG levels, which were 

consistent across race and menopausal stage, were influenced by liver fat and determined 

resultant insulin concentrations. Elevated fasting insulin values are a consistent feature of 

patients at risk for MS or prediabetes [39, 40] and normoglycemic persons who go on to develop 

overt diabetes [37, 38]. Increased insulin reflects early hepatic insensitivity, and changes in 

insulin secretory patterns that result of glucolipotoxicity, which over time progress to pancreatic 

failure.  

Hepatic steatosis is associated with insulin resistance and type 2 diabetes development [4-

6, 41, 42]. We report that in perimenopausal women, liver fat was associated with all glycemic 

endpoints after adjustment for VAT and other adiposity measures. Importantly from a biomarker 

perspective, hepatic fat content is comparable in perimenopausal-aged women and men [11]. The 

specific contribution of liver fat to whole body insulin sensitivity has been demonstrated in small 

studies of obese men and women matched on fat depots. In one study where healthy Class I and 

Class III obese patients were matched on hepatic triglyceride content and compared [5], no 



differences were seen in insulin sensitivity. In a similar investigation where 20 obese patients 

were matched on VAT, individuals with high liver fat had dramatically lower hepatic and whole 

body insulin sensitivity [4]. In other investigations liver fat was found to be a highly significant 

and independent predictor of circulating insulin even after adjustment for BMI [11], and in a 

reverse association study, insulin and alanine transferase levels (representing liver injury) were 

found to be predictive of fatty liver [8].   Further supportive evidence is found in lipoatrophic 

humans and animal models, where other fat depots are absent, but ectopic fat in the liver is still 

present and insulin resistance is an important phenotype [43]. The liver is highly insulin 

responsive, stimulating lipogenesis and fat storage within the hepatocyte as TG. In insulin 

resistance this lipogenic pathway is enhanced, leading to greater accumulation of fat and 

progression of hepatocellular dysfunction [44].  

Control of SHBG expression in hepatocytes has been characterized in vitro, and insulin 

has been shown to non-specifically down-regulate SHBG release as a result of general protein 

secretion reduction. Estrogen had no in vitro effect on SHBG [45], despite changes in SHBG 

being seen in women taking estrogen replacement therapy [46]. Recently, lipogenic factors such 

as simple carbohydrates have been shown to reduce hepatic nuclear factor 4 α, and decrease 

SHBG specifically in the liver. This hepatocyte signaling pathway to reduce SHBG is 

independent of insulin and has a rapid time course, with changes in plasma concentrations 

occurring within days of increasing or decreasing monosaccharide exposure [24]. The same 

signaling pathway is implicated in response to thyroid hormone, which increases SHBG 

secretion from the liver, which may be a direct effect or secondary to reduced liver fat that 

results of thyroid hormone exposure [22]. In concert, in vitro and animal studies conclude that 

the greater the amount of liver fat present, the lower the secretion of SHBG into the circulation. 



Our data supports this concept with differences in SHBG concentrations in healthy women being 

statistically accounted for by the amount of liver fat estimated to be present. A larger prospective 

study that quantified changes in liver fat, insulin sensitivity and SHBG in men and women also 

showed a strong correlation between the change in liver fat and change in SHBG concentration 

[15]. 

Accumulation of adipose tissue with the menopausal transition has been considered a 

central cause for increased cardiometabolic disease risk in aging women. Longitudinal data from 

SWAN has shown that the early stages of menopause is associated with increasing waist 

circumference and risk for MS [13], and the magnitude of weight gain across the transition 

determines the risk for development of insulin resistance [39]. This risk is related to decreasing 

estrogen and SHBG, and thus increased bioavailable testosterone [13, 25]. Weight changes and 

associated reductions in insulin sensitivity with this hormonal profile shift are seen also in 

women with polycystic ovarian syndrome who similarly have reduced SHBG and higher 

bioavailable testosterone [19, 47, 48]. In these women, this relationship between SHBG and 

testosterone is seen independent of total adiposity but having close association with hepatic 

steatosis [48]. A study comparing obese and polycystic ovarian syndrome (PCOS) women, both 

having lower SHBG concentrations compared to their lean or endocrine-normal control groups, 

implicated soluble glycoprotein 130 as modifying insulin sensitivity through interference with 

normal cytokine signaling [49]. However, the mechanism by which higher SHBG improves 

insulin sensitivity is largely unknown. Sex hormone binding globulin is able to bind cellular 

receptors independently of the estrogen or androgen it is transporting. The actual receptor is not 

fully elucidated but is known to be from the G-coupled superfamily, with induction of cyclic 

adenosine monophosphate upon binding, potentially leading to glucose uptake and improved 



insulin sensitivity [16]. In our study of healthy women, we did not see differences in specific fat 

depots or SHBG with menopausal stage, but significant relationships between fat depots and 

SHBG across all stages. Further, SHBG and liver fat were associated with circulating insulin. 

We propose that the menopausal transition may not result in changes in insulin sensitivity if 

adipose accumulation is avoided, as has been suggested by Guthrie et al. [39].  

Estrogen-containing hormone therapy has been shown in large randomized clinical trials 

to reduce diabetes incidence [50, 51], which used to be considered partly the result of increased 

SHBG concentrations. Estrogen therapy has also been shown to have significant effects on liver 

triglyceride content in the absence of changes in bodyweight [30] which makes these data 

consistent with the concept regarding interaction of liver fat and SHBG production. A working 

model relating these effects is presented in Figure 3. In this proposed model, the changing 

hormonal profile seen during menopause will result in both lower estrogen concentrations and a 

relative increase in androgenicity, which then promotes weight gain. In most women, increasing 

body weight will result in some fat partitioning to the liver which in turn reduces hepatic and 

whole body insulin sensitivity, and production of SHBG [4, 24]. An early response to reduced 

insulin sensitivity is production of more insulin to maintain normoglycemia; however, high 

insulin concentrations are initially secreted into the portal circulation where hepatocytes are the 

first cells exposed. Insulin extraction from the portal circulation by the liver causes insulin 

receptor activation and lipogenic effects, which further drives further fat accumulation and 

reductions in SHBG. The contribution of SHBG to peripheral insulin sensitivity is unknown, 

however epidemiological evidence suggests it may have a role independent of it being a signal 

for liver fat. With relative nutrient excess, this negative cycling of liver and peripheral insulin 



sensitivity continues over time until eventual consequences such as MS, diabetes, or 

steatohepatitis develops.  

Concentrations of SHBG approximating 30% that of healthy controls (or a difference of 

16-17 nmol/L) have been estimated as the difference between normal and insulin resistant or 

diabetic people [17, 19]. This represents the approximate difference between the lowest quartile 

of SHBG that we report and the overall SHBG average reported for the 3,302 women surveyed 

as part of the entire SWAN cohort [14]. Women in this lowest quartile were notably more insulin 

resistant as indicated by HOMA-IR, fasting insulin and glucose, than the rest of the women 

included in this study. The association between insulin resistance and SHBG, independent of 

body weight or BMI, is seen consistently in postmenopausal women and men [14, 20, 40]. 

Women have higher SHBG levels than men, and a larger absolute difference in SHBG 

concentrations between healthy and diabetic subjects [17, 18]. This sex difference exists despite 

having similar amounts of liver fat when differences in VAT and SAT are present [11]. In a 

study of premenopausal or early perimenopausal women (mean age of 42 years) and men, liver 

fat also associated with insulin concentrations in a manner that is not sex specific [11]. So for a 

given level of hepatic steatosis, younger women have higher SHBG and protection from diabetes 

when higher estrogen concentrations are likely. However, as they progress through the 

menopause, accumulation of liver fat initiates a downward cycle of SHBG and insulin 

sensitivity. The suggestion that liver fat and SHBG are proximate in effect to changes in insulin 

sensitivity is supported by dietary interventions which show that in response to short term 

reduced dietary fat and total calories, plasma SHBG concentrations increase without changing 

circulating insulin [52], however in women transitioning through menopause, SHBG only 



decreases in those who develop insulin resistance [21]. More research regarding the sequence of 

events regarding liver fat accumulation, SHBG decrease, and insulin sensitivity is warranted.  

Limitations to our study include the relatively small sample size and limited ethnicities 

represented. The cross sectional study design does not allow causal relationships to be deduced. 

We also did not include alcohol or dietary factors in our models, both of which may have been a 

modifying factor for liver fat in this population of women. However a strength of the study 

includes the measurement of multiple fat depots in a well-characterized group of women 

undergoing the menopausal transition. Despite the relative good health of these women, we 

report that increasing liver fat specifically drives insulin resistance, as indicated by circulating 

insulin concentrations, and that this liver fat partially explains variation in SHBG, which also 

independently modulates insulin sensitivity. In conclusion, this data supports the hypothesis that 

increasing ectopic liver fat over the menopausal transition causes a decline in glycemic control 

which contributes to the increasing metabolic disease seen in aging, post-menopausal women. 

Public Health Implications 

 As awareness grows regarding the variability in metabolic health and related health risks 

that accompanies the definition of the obese state by BMI [28, 29, 53], understanding the 

mechanisms by which health varies across levels of fatness is important. The changing 

demographics of Western societies also show that aging women is the segment of the population 

that will experience the fastest growth, with significant longevity beyond the menopausal 

transition. Cardiovascular disease is predicted to remain the predominant cause of death in aging 

women [54] and efforts to understand what health parameters are useful for risk screening are 

ongoing. Historically, evidence from epidemiological studies implicated generalized obesity, 



which was then refined as abdominal obesity, and perhaps now ectopic liver fat will be the next 

iteration for understanding risk of metabolic disease.  

Our data adds to the growing body of knowledge that suggests that liver fat specifically 

promotes reduction in SHBG and increases in insulin prior to the development of overt metabolic 

disease in perimenopausal women. Currently, few specific therapeutic options exist for the 

reduction of liver fat. However, those women found to be at risk by virtue of their fat distribution 

could be additionally counseled in lifestyle interventions, vitamin supplementation, and 

potentially judiciously timed hormone therapy. In the future, directed therapies to reduce liver fat 

and/or increase SHBG may be available to prevent age-associated metabolic disease 

development and increased risk of death with diabetes and cardiovascular disease in women.  
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Table 1. Characteristics of the cohort. 

 

 

  
 All subjects 

Mean/Median 

(SEM or IQR) 

N  208 

Race (%White)  71 

Liver attenuation  (HU)  55.56 (0.77) 

Age (Yrs)  50.89 (0.18) 

Status (%) Pre/early peri -menopausal  53.4 

BMI (kg/m
2
 )

 
 28.76 (0.41) 

Waist: Hip Ratio  0.82 (0.0049) 

Waist (cm)  88.43 (0.98) 

Glucose (mg/dL)  87 (81-93) 

Insulin (μIU/mL)  8.3 (6.8 – 11.75) 

HOMA index  1.76 (1.36 -2.60) 

Triglycerides (mg/dL)  99.3 (78 – 140) 

HDL cholesterol (mg/dL)  58.19 (1.00) 

LDL cholesterol (mg/dL)  126.53 (2.35) 

Systolic BP (mmHg)  113.78 (1.05) 

Diastolic BP (mmHg)  72.27 (0.61) 

CRP (mg/L)  0.413 (0.034) 

SHBG (nmol/L)  49.89 (2.09) 

FSH (mIU/mL)  53.32 (3.17) 

Estradiol (pg/mL)  39.95 (17.5-83.6) 

DHEAS (μg/dL)  121.65 (4.61) 

Testosterone (ng/dL)  33.07 (1.06) 

VAT (cm
2
)  116.72 (4.55) 

SAT (cm
2
)  338.81 (10.15) 

VAT:SAT  0.365 (0.012) 



Table 2. Metabolic characteristics and adiposity of subjects based on quartile of ectopic liver fat. 

 

                          More Fatty   Liver Attenuation Quartiles Less Fatty  

 Q1  Q2  Q3  Q4  p-trend  

Liver Attenuation (HU)  43.96 (12.69)  59.11 (1.60)  62.88 (0.99)  68.28 (2.63)  <0.001  

Race (%White)  75  75  77  65  0.36  

Age (Yrs)  51.65 (0.38)  50.46 (0.35)  50.90 (0.39)  50.54 (0.33)  0.07  

Status (%) Pre/early peri -

menopausal  
44  56  54  60  0.15  

BMI (kg/m
2

 )  32.82 (0.98)  28.20 (0.74)  26.87 (0.60)  27.15 (0.69)  <0.001  

Triglycerides (mg/dL)  162.85 (13.23)  111.81 (8.40)  116.85 (11.50)  97.68 (4.78)  <0.001  

HDL cholesterol (mg/dL)  51.56 (1.69)  58.90 (1.79)  60.04 (2.31)  62.27 (1.87)  <0.001  

LDL cholesterol (mg/dL)  127.19 (5.03)  127.69 (4.27)  126.00 (4.79)  125.23 (4.82)  0.69  

Systolic BP (mmHg)  119.46 (2.31)  111.10 (1.87)  112.00 (1.84)  112.56 (2.23)  0.039  

Diastolic BP (mmHg)  74.53 (1.28)  71.19 (1.05)  71.19 (1.24)  72.17 (1.26)  0.27  

Glucose (mg/dL)  99.17 (4.48)  85.85 (1.17)  86.46 (1.26)  84.82 (0.98)  0.001  

Insulin (μIU/mL)  15.10 (1.30)  9.95 (0.90)  7.69 (0.40)  8.68 (0.47)  <0.001  

HOMA index  4.17 (0.75)  2.15 (0.22)  1.73 (0.11)  1.83 (0.11)  <0.001  

CRP (ng/mL)  5.79 (0.70)  3.52 (0.65)  3.21 (0.52)  2.81 (0.49)  <0.001  

Waist: Hip Ratio  0.85 (0.01)  0.82 (0.01)  0.80 (0.01)  0.80 (0.01)  <0.001  

Waist (cm)  98.37 (2.34)  87.18 (1.74)  83.42 (1.33)  84.73 (1.63)  <0.001  

VAT (cm
2
)  169.56 (10.30)  111.82 (8.40)  95.60 (6.83)  89.91 (5.85)  <0.001  

SAT (cm
2
)  404.05 (18.98)  337.42 (23.18)  302.41 (15.81)  311.35 (20.01)  <0.001  

 

 

  



Table 3. Correlation coefficients (p-value) of liver fat with glycemic indices. 

 

 Liver attenuation 

 No adjustment  Adjusted 

for BMI  

Adjusted for  

Waist:Hip  

Adjusted for 

Waist  

Adjusted for 

VAT:SAT  

Adjusted for 

VAT  

HOMA 

Index  

-0.315 

(<0.001)  

-0.160  

(p=0.02)  

-0.296 

(<0.001)  

-0.194 

(<0.001)  

-0.305 

(<0.001)  

-0.197 

(0.009)  

Insulin  -0.411 

(<0.001)  

-0.240  

(<0.001)  

-0.345 

(<0.001)  

-0.260 

(<0.001)  

-0.389 

(<0.001)  

-0.242 

(<0.001)  

Glucose  -0.316 

(<0.001)  

-0.166 

(p=0.02)  

-0.287 

(<0.001)  

-0.184 

(0.008)  

-0.310 

(<0.001)  

-0.169 

(0.023)  

 

 

 

 

 

 

 

  



Table 4. Partial correlation coefficients (p-values) adjusted for menopausal status, education, 

smoking, race, hormone replacement use, age and BMI. 

 

 

  HOMA index  Insulin  Glucose  

SHBG  -0.129 (0.08)  -0.167 (0.014)  -0.130 (0.07)  

Estradiol  -0.052 (0.44)  -0.106 (0.09)  -0.046 (0.50)  

FSH  0.066 (0.36)  0.03 (0.66)  0.046 (0.52)  

DHEAS  -0.0093 (0.89)  -0.067 (0.28)  -0.0075 (0.91)  

Testosterone  -0.012 (0.85)  -0.037 (0.56)  -0.035 (0.60)  

 

  



Table 5. Regression results for differences in glycemic indices by quartile of sex hormone binding 

globulin adjusted for base model covariates (menopausal status, education, smoking, race, hormone 

replacement use, age and BMI) and regional adipose tissue. 

 

 

 SHBG 

Quartile 1  

SHBG 

Quartile 2  

SHBG 

Quartile 3  

SHBG 

Quartile 4  

P-values 

adjusted for 

base covariates  

P-value 

adjusted base  

+ VAT  

P-value 

adjusted base  

+ ectopic 

liver fat  

SHBG  18.79 (1.88)  35.84 (1.83)  54.02 (1.88)  90.91 (1.87)  <0.0001  <0.0001  <0.0001  

HOMA  4.01 (0.38)  2.27 (0.38)  2.00 (0.39)  1.64 (0.38)  0.068    

Glucose  97.78 (2.34)  87.40 (2.30)  87.79 (2.37)  83.12 (2.34)  0.056    

Insulin  14.38 (0.79)  10.32 (0.78)  9.19 (0.80)  7.91 (0.79)  0.025  0.035 0.068 

 

  



Figure Legends 

 

Figure 1. Association of liver fat content as measured by computed tomography and visceral 

adipose tissue (A) and BMI (B). 

 

Figure 2. Interaction of liver fat and sex hormone binding globulin on fasting insulin levels in 

healthy, overweight perimenopausal women. 

 

Figure 3. Proposed working model for the interplay between ectopic liver fat and sex hormone 

binding protein effects on insulin sensitivity. 
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