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ABSTRACT 

 

Kaitlyn Phillips 

Viability of Cultured Primary Human Skin Cells Treated With 

1, 6-Hexamethylene Diisocyanate Monomer and Its Oligomer Isocyanurate 

(Under the direction of Dr. Leena Nylander-French) 

 

The diisocyanate monomer 1,6-hexamethylene diisocyanate (HDI) and its oligomer HDI 

isocyanurate are components in sprayed polyurethane coatings.  Exposure via the lungs and skin 

can lead to allergic sensitization and asthma. Research on these compounds has focused on 

effects of exposure on respiratory and immune cells and variation in gene expression, pathway 

activation, and mechanisms influencing toxic response.  Here, we focused on the toxic effects of 

HDI monomer and HDI isocyanurate on three types of cultured primary human skin cells, 

namely keratinocytes, melanocytes, and fibroblasts.  To determine the cell-type specific toxicity, 

we used a luminescent ATP-viability assay.  The dose-response data indicated that sensitivity to 

death varied among the different skin cell types and death by necrosis.  The observed variations 

in toxicity between the HDI monomer and HDI isocyanurate as well as between the cell types 

may have important implications for developing an adverse effect, for regulatory limits, and for 

worker safety.  
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INTRODUCTION 

Isocyanate Chemical Structures and Characteristics   

Isocyanates are a group of small reactive chemicals (with N = C = O functional groups) 

that are used in polyurethane products such as foams and coatings 1,2. Classification of individual 

compounds depends on the number of NCO-groups present; diisocyanate monomers such as HDI 

are comprised of two NCO-groups, and poly-isocyanates such as HDI isocyanurate are 

comprised of multiple NCO-groups (Figure 1) 2. Isocyanates react with compounds containing 

active hydrogen atoms (i.e., polyols or amines) to form polyurethane or other complex polymeric 

products 2–4. Figure 2 illustrates the formation of the urethane bond. 

 

Figure 1: The structures of 1,6-hexamethylene diisocyanate (HDI) (left) and HDI isocyanurate 

(right). 

 

Figure 2: Formation of the urethane bond (courtesy of Tosoh Asia Pte. Ltd). 
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Isocyanates in the Workplace 

The use and production of isocyanates doubled between 2004 and 2014 and is predicted 

to continue to increase at an estimated rate of 5% a year 5,6. Isocyanates used in the automotive-

repair industry are primarily aliphatic isocyanates, particularly HDI 7.  Aromatic isocyanates 

include toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) and are mainly 

used for foam production, elastomers, and coatings8.  Isocyanates are also found in specialty 

glues and paints, so there is a potential for non-occupational exposure in general population 9.  

Polyurethane paints commonly used in the automotive industry contain monomeric and 

polymeric species of HDI 7.  Polymeric diisocyanates like HDI isocyanurate are less volatile than 

smaller diisocyanates like HDI monomer, and may as a result remain on the skin surface longer 

and potentially elicit stronger toxic, adverse responses than the monomer 10. Exposure to 

isocyanates can damage or irritate skin and mucous membranes, or cause allergic sensitization 11. 

Regulatory Standards 

There are fewer regulatory standards for poly-isocyanates than for monomeric 

isocyanates, despite the fact that poly-isocyanates are the major source of isocyanate exposure in 

workplaces 2.  Current NIOSH documentation regarding HDI monomer exposure shows a 

National Institute for Occupational Safety and Health (NIOSH) time-weighted average (TWA) 

recommended exposure limit (REL) of 0.005 ppm for an 8-h work day, and an Occupational 

Safety and Health Administration (OSHA) 10-minute ceiling permissible exposure limit (PEL) 

of 0.020 ppm. This means that an employee can be exposed to 0.020 ppm HDI monomer, and no 

higher, for a maximum period of 10 minutes during an 8-h work day 12.  

The American Conference of Governmental Industrial Hygienists (ACGIH) has set an 8-

h threshold limit value (TLV) of 34 mg/m3 for HDI monomer and the state of Oregon has set an 
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TWA occupational exposure limit (OEL) of 500 mg/m3 for HDI monomer 13,14. These levels 

were set in an effort to prevent sensitization, but they are not necessarily sufficient to protect 

workers who have already been sensitized. Bayer offers some guidelines about HDI poly-

isocyanates, but nothing specifically for HDI isocyanurate. Bayer recommends a TWA of 500 

µg/m3 for HDI poly-isocyanates during an 8-h work day 15.  

Exposure Routes 

Exposure may occur via inhalation or skin exposure. Factors such as personal protective 

equipment (PPE) used, number of exposure periods per day, and duration of exposure are 

common causes for exposure variability 16.  

Inhalation Exposure 

Inhalation has been considered the primary route of exposure to isocyanates, and as such, 

research and regulation have focused heavily on inhalation exposures 2. When breathing-zone 

concentrations of isocyanates for auto-shop workers were assessed, the geometric mean of HDI 

isocyanurate exposure was observed to be higher than any of the other analytes 17. Additional 

analysis of the personal breathing-zone samples in spray-painters indicated that there was 

significant variation in composition of isocyanates among the samples collected, demonstrating 

that current short-term exposure limits (STEL) may not accurately reflect exposures that occur in 

the workplace 18. Respirators with a protection factor of 25 or greater are required to protect the 

workers whose personal breathing zones were monitored, and the most commonly used half-face 

respirators (with a protection factor of 10) do not suffice 19. In general, occupational exposures to 

airborne isocyanate have been reduced through improved engineering controls, safety, and the 

use of less volatile isocyanates like poly-isocyanates 20. Despite this, isocyanate-induced asthma 
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continues to occur even in work settings where measured respiratory exposures are non-

detectable, but where there is an opportunity for skin exposure to occur 18–22.  

Skin Exposure 

Skin exposure may occur when airborne vapor, aerosols, and/or particles contact the skin 

via deposition on unprotected skin, or may result from unintended penetration of protective 

equipment 7,21,23–25. In a recent review, Redlich et al concluded that skin exposure takes place 

frequently despite the use of PPE 26. There is considerable variation in PPE usage between 

workers 27. A majority of workers (69%) reported always using gloves, but there was a large 

amount of variation between type of glove used (i.e., latex or nitrile) 27,28. Fent et al., in a study 

of automotive spray-painters, observed that skin concentrations of isocyanates were significantly 

higher in painters who did not wear coveralls or gloves 29. HDI isocyanurate was the primary 

species measured in the skin, regardless of PPE, with a 95% detection rate. Analyte-specific 

breathing-zone concentration and paint time were the most significant factors contributing to 

skin exposure 29.  

Previous studies have demonstrated that HDI isocyanurate penetrates skin better than 

HDI monomer and that HDI isocyanurate makes up a greater percentage of exposure than the 

HDI monomer 10,30. Therefore, automotive spray-painters may be exposed to high doses of HDI 

isocyanurate via skin exposure. Results from animal and human studies have indicated that less 

than 20% of isocyanates will leave the skin through evaporation 10,31. From this, we can conclude 

that skin exposure to isocyanates is significant even when accounting for evaporation. Using an 

equation from Walker et al. and worker data, it was estimated that it would take between 6 and 

40 minutes of exposure at levels present within this specific auto-body shop to achieve a total 

body burden equivalent to the ACGIH TLV for HDI monomer inhalation exposure 10,32. Skin 
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exposure could comprise the bulk of exposure for workers exposed to isocyanates, but skin 

exposure was not accounted for when the major regulatory limits were developed and set.  

Health Effects 

The NIOSH publication, Preventing Asthma and Death from Diisocyanate Exposure, lists 

potential health effects of isocyanate exposure as contact dermatitis, skin and respiratory tract 

irritation, immune sensitization, occupational asthma, and, occasionally, hypersensitivity 

pneumonitis 33. Occupational asthma is the most common health outcome as a result of 

isocyanate sensitization, and death from severe asthma as a result of sensitization has been 

reported 25,33–35. The estimated prevalence of occupational asthma in workers exposed to 

isocyanate is 1% - 20% 33,36. Contact dermatitis has also been linked to sensitization. Typically, 

sensitization will take place over months or years; however, as few as one or two exposures can 

be sufficient. After sensitization has taken place, a very small exposure can be enough to trigger 

a dramatic and potentially deadly response 11,12,37. 

The NCO-group can react with nucleophiles that are commonly in carrier proteins like 

blood albumin. Because of its abundance in blood, albumin is the main protein carrier of 

isocyanates in vivo 38–40.  Several other peptides and proteins found in cells, serum, and skin have 

also been observed to bind with isocyanates 38,39. HDI monomer has been observed to react with 

glutathione in vitro to form a conjugate 41.  The significance of isocyanate reactivity with 

proteins is that it can act as a hapten when covalently bound to a protein or macromolecule and, 

subsequently, elicit an immune response 38,39.  Haptenization is important for immune 

recognition and the development of allergy 41.  

Wisnewski et al. observed that sub-cytotoxic concentrations of HDI monomer formed 

micelles on the surface of in-vitro human airway epithelial cells that appeared to be taken up by 



14 
 

the cells over several hours post-exposure 42.  They also documented susceptibility of airway 

epithelial cell proteins to isocyanate conjugation42.  Verstraelen et al. investigated alterations in 

gene expression of in vitro human alveolar epithelial cells after exposure to a variety of 

sensitizing chemicals, including HDI monomer43.  They observed enhanced gene expression of 

proteins associated with immune response and function, but not specifically with respiratory 

sensitization.   HDI is a known respiratory sensitizer, but the specific role of airway epithelial 

cells is unclear 41,44. Airway epithelial cells may play a role in the human respiratory immune 

response. Human and animal studies indicate  potential gene profiles and biological pathways 

that are activated during exposure, as well as the disease progression of respiratory sensitization, 

but additional research is required to understand the role epithelial cells play in the respiratory 

immune response 3,40,41,43–47 

Sensitization in Animal Studies 

Animal studies have provided evidence that skin exposure can provide a route for 

respiratory and allergic sensitization 20,26,31,48–51. Studies have shown that skin may be a more 

effective sensitization route than inhalation exposure 45,49 and result in airway sensitization when 

followed by a subsequent inhalation exposure 25,45,47,51.  Several animal studies have shown that 

only one or two skin exposures at low isocyanate concentrations could induce sensitization 

48,49,51.                                    

Cell Studies 

Genes and pathways influencing sensitization and other health effects have been 

investigated in in vitro cell-culture studies. A gene that may contribute to increased exposure 

dose and development of adverse health effects is the epidermally expressed filaggrin gene 

(FLG).  Loss of function mutations in the filaggrin gene can cause atopic dermatitis, which 
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contributes to skin barrier function 52. Filaggrin loss of function mutations have been 

significantly associated with atopic disease, asthma, and allergies 52,53. Additionally, disruptions 

such as atopic dermatitis in the skin barrier predispose the skin to being penetrated by external 

chemicals and pathogens 54. Atopic dermatitis is one of the most common chronic inflammatory 

skin diseases, and its overall prevalence is increasing 55. It is estimated to affect over 15% of 

children and between 2-10% of adults in industrialized countries 55. Kabashima et al., when 

investigating the pathogenesis of atopic dermatitis, observed that while a single hapten exposure 

provoked a T helper type 1 cell (Th1) response, repeated exposure shifted the response towards T 

helper type 2 cell (Th2)-dominated responses 54. Barrier dysfunction may predispose the skin to 

Th2 conditions due to the activation of keratinocytes, which favor a Th2 response 54. Th2 

cytokines will decrease filaggrin expression by keratinocytes, suggesting that Th2 conditions will 

lead to further barrier dysfunction 54. De Benedetto et al. came to a slightly different conclusion 

53. They reported that in individuals who already had atopic dermatitis, initial exposure to an 

allergen induced a Th2 response via the exposed keratinocytes; which was amplified with future 

exposures 53. Disruptions in the barrier function of the skin may predispose an individual to 

receiving a higher than average dose from an average exposure. This chain of events, namely 

exposure, followed by an atopic inflammatory response, and resulting disruptions in the skin 

barrier leads to the development of a positive feedback loop leading to more disruption and more 

exposure. This amplified exposure to haptens leads to the development of an immune response, 

which may result in isocyanate induced asthma.  

There have been several studies investigating the role of DNA methylation status in 

response to isocyanate exposure 22,56. Ouyang et al. concluded that there were several genetic 

associations with individuals who were either protected or especially susceptible to sensitization 
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56. Subjects with isocyanate-induced asthma had higher levels of IFN-gamma promoter 

methylation, but the ultimate role of increased methylation was unclear.  Nylander-French et al. 

suggested that DNA methylation may affect gene expression of proteins involved in HDI mass 

transport, permeation, and metabolism 22. They also suggested that methylation may mediate 

individual responses by modifying levels of exposure and cellular responses 22. 
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GOAL AND SPECIFIC AIMS 

 

In this study, my goal was to investigate differences in toxicity and mechanism of cell 

death caused by HDI monomer and its oligomer, HDI isocyanurate, exposure in cultured normal 

human skin cells; specifically, keratinocytes, fibroblasts, and melanocytes. Previous studies have 

shown that HDI monomer, oligomers, and other isocyanates can have a variety of effects on 

cultured cells, cancer cell lines, or animal models 7,25,38–41,43,48,49,57–59. However, only in a few of 

the studies cell type-specific toxicity in cultured primary human cells were investigated or the 

mechanism of cell death identified 40,42,43,50,59.  

Cancer cell lines have many mutations that may cause them to respond to insult 

differently than normal cells 60. As a result, experiments using cancer cell lines are not as 

relevant to human exposures. Cultured primary human skin cells are more challenging to isolate 

and have a limited lifespan, but generally respond similarly as the same cells in vivo. It is 

important to use primary human skin cells when performing toxicology studies because they 

because they are more relevant to human exposures.  

This study was designed to: 

1. Quantify LC50 values for HDI monomer and HDI isocyanurate in cultured human skin cells. 

2. Investigate the mechanism of cell death in cells exposed to HDI monomer and HDI 

isocyanurate using assays that measure the kinetics of cell death and caspase 3/7 activity.  
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METHODS 

Human Primary Skin Cell Culture Conditions 

Primary skin cells were isolated from neonatal foreskin obtained from the University of 

North Carolina Memorial Hospital, Chapel Hill, NC.  Unidentified tissues are considered 

medical waste and thus were exempt from University of North Carolina Institutional Review 

Board’s approval (IRB exemption Study #10-1251).  Keratinocytes and melanocytes were 

isolated from the epidermis and fibroblasts from the dermis of four to seven individuals using a 

method similar to Basic Protocol 1 in “Isolation, Culture, and Transfection of Melanocytes” by 

Godwin et al 61. Fibroblasts isolated from neonatal foreskin were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM; Gibco, Grand Island, NY) supplemented with 10% Cosmic 

calf serum (Hyclone GE Healthcare Life Sciences, Logan Utah), 1X NEAA (non-essential amino 

acids; Gibco), and Glutamax™ (Gibco). Melanocytes and keratinocytes were cultured in 

DermaLife Basal Medium (Lifeline Cell Technology, Frederick, MD) supplemented with 

LifeFactors DermaLife M or LifeFactors DermaLife K (Lifeline Cell Technology) growth 

factors, respectively. GlutaMax™ was substituted for the provided L-glutamine in LifeFactors M 

and K. The condition of the cultures was assessed daily or every other day and cell cultures were 

split (1:3 to 1:5) whenever they reached 70% confluence.  Cells were passaged in this fashion 

until they began to show signs of differentiation or senescence.  For optimal culture growth, cells 

were allowed to recover for 24 h from thawing or passaging before use in an experiment or 

medium was changed 18 – 24 h before plating for an experiment. See Table 1 for a description of 

specific cells used.  
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Table 1: The cell types used in the study. The number of experiments performed on a given cell 

type is indicated by parentheses.  The notation for specific cell strain is as follows: the first 

letter, K, M, or F, corresponds to keratinocytes, melanocytes, and fibroblasts. The three-digit 

number identifies skin samples.  

HDI Monomer HDI Isocyanurate 

Keratinocytes Melanocytes Fibroblasts Keratinocytes Melanocytes Fibroblasts 

K051 (n=4) M051 (n=5) F051 (n=8) K051 (n=4) M051 (n=4) F051 (n=4) 

K065 (n=5) M065 (n=6) F065 (n=4) K065 (n=4) M065 (n=4) F065 (n=5) 

K066 (n=4) M066 (n=5) F066 (n=5) K066 (n=3) M066 (n=4) F066 (n=5) 

K070 (n=5) M070 (n=6) F070 (n=7) K070 (n=4) M070 (n=4) F070 (n=4) 

    M092 (n=1)  

    M093 (n=1)  

    M098 (n=1)  

 

Isocyanate Treatment of Primary Skin Cells 

Logarithmically growing cells (~70% confluent) were plated in black 96-well tissue 

culture plates (Greiner Bio-one, Germany) at a concentration of approximately 7,000 cells per 

well for fibroblasts and 12,000 – 15,000 cells per well for keratinocytes and melanocytes. After 

plating, cells were allowed to re-attach and recover overnight prior to treatment. Cells were 

rinsed with 200 µL of cell-appropriate basal medium (Gibco or Lifeline Cell Technology) and 

then exposed to 200 µL of dilutions of either HDI monomer or HDI isocyanurate. The 

isocyanates were initially dissolved and diluted in dimethysulfoxide (DMSO; Sigma-Aldrich, St. 

Louis MO) and then serially diluted in DMSO and then basal medium (final concentration 0.05% 

DMSO).  Basal medium was used instead of supplemented medium for treatment in order to 

prevent the isocyanate to react with the protein and serum supplements before contact with cells.  
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Because of its reactivity to air and water, isocyanate dilutions were prepared immediately 

before treatment in glass vials with Teflon™ cap liners.  The concentration of the stock HDI 

monomer solution in DMSO was 6 M (1.51 g isocyanate in 0.5 mL DMSO); and 0.1 M for the 

stock HDI isocyanurate solution (0.2 g isocyanurate in 4 mL DMSO). The stock HDI monomer 

or HDI isocyanurate solution was then serially diluted into DMSO, producing concentrations 

ranging from 0.06 M to 6 M HDI monomer in DMSO or 0.001 M to 0.1 M HDI isocyanurate in 

DMSO. These solutions were then diluted 1:1000 into 2 mL of basal media so that the final 

DMSO concentration was 0.05%. This produced a working concentration range of 30µM to 3000 

µM HDI monomer or 20 µM to 0.5 µM HDI isocyanurate in basal media. Specifically, cells 

were exposed to (1) 30 µM, 100 µM, 200 µM, 300 µM, 600 µM, 1200 µM, 2400 µM, or 3000 

µM of HDI monomer or (2) 0.5 µM, 1 µM, 2 µM, 5 µM, 10 µM, or 20 µM of HDI isocyanurate. 

A 4-h exposure period was used to simulate a worker’s average daily exposure period. At the end 

of the 4-h exposure, the exposure media was removed, 200 µL of supplemented growth media 

was added into each well, and cells were cultured overnight (18 h) to allow for cellular recovery 

to occur.  

Cell Viability 

Approximately 18 h after the exposure, cell viability was measured using the Promega 

CellTiter Glo 2.0 ATP luminescence assay according to manufacturer’s instructions (Promega, 

Madison, WI) 62. This assay, after adding the single reagent, results in cell lysis and then 

generates a luminescent signal that is proportional to the amount of ATP present. The amount of 

ATP present is proportional to the number of cells present in culture. We included an 18-h 

recovery period post treatment so that the amount of ATP present was more proportional to the 

amount of living cells, as the treatment may have inhibited ATP production but not killed some 
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cells. Because the half-life of the assay reagent is greater than five hours, its stability helps avoid 

errors that may be present in other methodologies used to measure ATP 62. We chose to use 

Promega CellTiter Glo 2.0 instead of the common MTT assay for several reasons. The MTT 

assay uses MTT tetrazolium compound to measure the number of viable cells, and has been  a 

widely-accepted method since the 1980’s. The MTT compound is directly added to cells in 

culture and incubated for 1 to 4 h. Viable cells will reduce tetrazolium into a precipitate that 

accumulates inside the cells. A second reagent is added to lyse the cells and solubilize the 

precipitate. The absorbance is measured to estimate viable cell number. However, the MTT assay 

is less sensitive than fluorescent or luminescent methods for measuring viable cell number, and 

many chemical compounds are known to interfere with this assay 63. The MTT reagent is also 

cytotoxic, so longer incubation times that would otherwise enhance sensitivity are limited. The 

detection sensitivity also varies considerably between different cell types and the metabolic 

activity of the cells. Results from an MTT assay will not produce as accurate a dose-response 

curve as would results from a more sensitive assay, such as CellTiter Glo. 

Cells were rinsed once with the appropriate basal medium and then assayed using 100 µL 

of basal medium and 100 µL of CellTiter Glo 2.0 luminescence reagent. The plates were then 

shaken for two minutes and incubated for ten minutes inside the plate reader at room temperature 

(~ 22oC) prior to reading with the GloMax microplate reader (Promega). Luminescence was 

measured in RLU (relative light units). Black 96-well plates were used to minimize spill-over 

effect of luminescence from the adjacent wells during reading. A standard curve of rATP 

(ribonucleotide adenosine triphosphate) dissolved in basal medium was performed to determine 

the linear range of the luminescence (0 – 6 µM rATP). Previously frozen aliquots of diluted 

rATP were further diluted with the appropriate basal media and mixed with an equal volume of 
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the CellTiter Glo 2.0 luminescence reagent in the 96-well plate. The standard curve included 

samples of 0, 0.3, 1, 3, 6, and 100 µM rATP. A graph of the linear values (0 – 3 µM rATP) was 

then produced within Microsoft Excel, and the r-squared value of a linear trend line for the data 

was determined to ensure the standard curve was linear. All r-squared values were greater than 

0.9, with values ranging from 0.95 to 0.99 most common.   

The average RLU value from triplicate samples was recorded and background RLU value 

from the wells containing only basal medium (no cells) were subtracted from all triplicate sample 

RLU averages. Viability of the isocyanate-treated cells was compared to the 0.05% DMSO 

control. To calculate the LC50 (concentration that kills 50% of cells), the percent viability was 

plotted against log-transformed (base 10) exposure concentrations and the 50% decrease in 

viability was determined from the linear portion of the curve using the linear regression equation 

of the line. Standard error was determined by calculating the standard deviation for all LC50 

values for one cell type, and dividing the standard deviation by the square root of the number of 

experiments. All statistical analyses were performed using R version 3.3.0. P-values comparing 

differences in responses to the test chemical between cell types were produced using paired t-

tests. We used ANOVA tests to investigate differences in responses between the three cell types 

to HDI monomer, differences in responses between the three cell types to HDI isocyanurate, and 

differences in responses between cells used within a specific cell type such as keratinocytes (i.e. 

comparing K051, K065, K066, and K070 responses to HDI isocyanurate) (see Table 1).  

Cell Death 

The toxicity assay CellTox Green Assay (Promega) was used to measure the kinetics of 

cell death.  This assay measures cell death by changes in membrane integrity by detecting a 

fluorescent DNA intercalator binding to DNA released from dead cells.  Since the fluorescent 
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complex is stable over time, cell death can be quantified cumulatively 64. Cells were exposed to 

isocyanates and the fluorescent complex concurrently and the kinetics of cell death followed 

over time. Cells were plated in a black 96-well plate at a concentration of 15,000 cells 

(keratinocytes and melanocytes) per well and left to attach and recover overnight. HDI monomer 

and HDI isocyanurate dilutions were prepared according the same dilution protocols outlined 

above, and CellTox Green reagent was diluted into the cell medium at a concentration of 1:1000.  

Cells lysed with supplied CellTox Green Lysis Solution acted as 100% toxicity control.  Cells 

were rinsed with 200 µL basal medium per well immediately before treatment. Then, 100 µL of 

solution with both diluted isocyanates (prepared as before) and fluorescent reagent (specific to 

CellTox Green) was added to each well and fluorescence was measured every 15-30 min for 

three hours.  Plates were read at 485 excitation wave-length in nanometers (ex) /520 emission 

wavelength in nanometers (em) using a BioTek Cytation 3 microplate reader after shaking for 

one minute at 700 rpm. Cultures were returned to incubator between the readings.  

To investigate the mechanism of cell death, we performed the ApoTox Glo Assay 

(Promega). This is a 3-in-1 assay that measures both live and dead cells concurrently using 

fluorescent substrates. Cell viability is measured via a protease detected within intact viable 

cells. Dead cells are quantified by detection of a dead cell-specific protease activity released into 

the medium. Apoptosis is measured by quantification of caspase 3/7 activities in lysed cells 

using luminescent substrates. The resulting luminescent signal is proportional to the amount of 

caspase activity 65. 

There were two reagents prepared for the ApoTox Glo Assay, the viability/cytotoxicity 

combined reagent solution and the Caspase-Glo® 3/7 reagent. The viability/cytotoxicity reagent 

is prepared by mixing the GF-AFC substrate and bis-AAF-R110 substrate into 2.0 mL of assay 
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buffer. This was used immediately or stored at 4°C and used within seven days as per 

manufacturer instructions. The Caspase-Glo® 3/7 reagent is the reagent measuring apoptosis. The 

Caspase-Glo® 3/7 reagent was prepared by transferring the contents of the Caspase-Glo® 3/7 

buffer bottle into the amber bottle containing Caspase-Glo® 3/7 substrate. The Caspase-Glo® 3/7 

reagent was mixed by swirling or inverting the contents until the substrate is thoroughly 

dissolved to form the Caspase-Glo® 3/7 reagent (~20 seconds). The Caspase-Glo® 3/7 was used 

immediately or stored at 4°C and used within seven days as per manufacturer instructions.  

Cells were prepared for the assay by plating at 17,000 cells per well in a 96-well plate. 

The test chemical concentrations used were 300 µM and 800 µM HDI monomer and 5 µM and 

10 µM HDI isocyanurate. These doses were used because they represent the middle and upper 

range of the LC50 values calculated previously. The necrosis control was 50 µM ionomycin in 

basal media and the apoptosis control was 10 µM staurosporine in basal media. Cells treated 

with basal media only and cells treated with basal media plus DMSO were positive controls. 

Cells were treated for 4 h. 

After the treatment period, 20 µL viability/cytotoxicity reagent was added to each well, 

briefly mixed by orbital shaking (300 – 500 rpm for 30 seconds) and incubated at 37°C for 45 

min. Fluorescence was measured at 400Ex/505Em (viability) and 485Ex/520Em (cytotoxicity) 

with the BioTek Cytation 3 microplate reader. 

To measure the presence of apoptosis, 100 µL of Caspase-Glo® 3/7 reagent was added to 

each well and briefly mixed by orbital shaking (300 – 500 rpm for 30 seconds). Plates were 

incubated for 95 min at room temperature and luminescence was measured with the integration 

time set between 0.5 – 1 second with the BioTek Cytation 3 Plate reader.  
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Statistical Analyses 

Standard deviation and standard error were calculated to compare LC50 values. Paired t-

tests and ANOVA tests were performed to compare cell viability between the different cell types 

exposed to isocyanates and to investigate differences between individual donors of keratinocytes, 

melanocytes, or fibroblasts. All statistical analyses were performed using R version 3.3.0.  

Graphs were produced within Microsoft Excel or R version 3.3.0. 
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RESULTS 

 

Cell Viability 

A rATP standard curve was prepared with each Celltiter Glo 2.0 assay performed. This 

was done to ensure the reagent was performing consistently between experiments, and to 

determine the linear range of the assay. The optimal number of cells per well was determined by 

comparing RLU values to the standard curve to ensure it was in linear range. The standard curve 

included concentrations of 0, 0.3, 1, 3, 6, and 100 µM rATP. A graph of the linear values (0 – 3 

µM rATP) was then produced within Microsoft Excel, and the r-squared value of a linear trend 

line for the data was determined to ensure the standard curve was linear. All r-squared values 

were greater than 0.9, with values ranging from 0.95 to 0.99 most common.   

 

 

Figure 3: A representative rATP standard curve. 
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We used the CellTiter Glo 2.0 results to calculate LC50 values, since this assay had the 

most sensitive and reproducible dose response curve.  In CellTiter Glo 2.0, cells are treated and 

then allowed to recover in supplemented media for 18 hours before being rinsed and being 

exposed to the reagent in basal media 62. Then, the reagent in CellTiter Glo 2.0 lyses the 

remaining living cells and reacts with the ATP that was inside those cells. This could give 

inaccurate readings if cells had stopped producing ATP but not died. We attempted to minimize 

this effect by allowing cells to recover for 18 hours between treatment and measurements.  

We observed several key differences when investigating cell viability. HDI isocyanurate 

was 20 – 100 times more toxic than HDI monomer (p < 0.01), depending upon cell type (Figure 

4). We also observed a statistically significant difference in cell viability between cell types in 

response to HDI monomer exposure (p ≤ 0.02) (Figure 4). Fibroblasts were significantly more 

susceptible to HDI isocyanurate toxicity than keratinocytes (p < 0.006) or melanocytes (p < 

0.003) (Figure 5). There was no significant difference between the fibroblast and melanocyte 

response to HDI isocyanurate (p = 0.8) (Figure 5).  
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Figure 4: The average LC50 levels for cells exposed to HDI monomer or HDI isocyanurate (n = 

4-7 per cell type; see Table 1). 

 

 

Figure 5: The average LC50 levels for the different cell types when exposed to HDI isocyanurate 

(n = 4-7 per cell type; see Table 1). 
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ANOVA was used to compare cell viability between the different cell types exposed to 

HDI monomer or HDI isocyanurate.  A highly significant difference (p<0.001) was observed 

between the cell types when exposed to either of these compounds. These results support the 

observed significant difference in LC50 values between the different cell types when exposed to 

either of these compounds. Melanocytes were the most sensitive cell type to HDI monomer 

exposure. Keratinocytes were the least sensitive cell type when exposed to HDI isocyanurate 

while fibroblasts and melanocytes had approximately similar response. 

In addition, ANOVA tests were performed to investigate differences between individual 

donors of keratinocytes, melanocytes, or fibroblasts. However, no significant differences were 

observed between individual donors for any of the cell types; further confirming our observation 

that there was no significant difference in toxicity between individual donors’ primary cultured 

human skin cells (keratinocytes, melanocytes, or fibroblasts).  

A second cell viability assay was performed with the ApoTox Glo assay. The viability 

results were confirmatory of the results observed from the CellTiter Glo 2.0 assay (data not 

shown).  

Cell Death 

We utilized the CellTox Green Assay (Promega) to investigate the kinetics of cell death. 

Rapid cell death within one hour of exposure to HDI monomer or HDI isocyanurate indicates 

death by necrosis as opposed to apoptosis that generally requires more time and the presence of 

caspases 3/7 66 (Fig. 6).  The control group exhibited a small amount of cell death because the 

cells were treated in 0.05% DMSO in basal media.  The presence of DMSO and the absence of 

supplements in the media caused some cell death. In the CellTiter Glo 2.0 experiments, we 

observed a clear dose response indicating that higher doses of isocyanate produced more cell 
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death. The dose-response curve obtained by the CellTox Green Assay shows a trend for dose 

response but falls off at the highest dose. We interpret these results to indicate that at high doses, 

the isocyanates inhibit the assay to some degree. This experiment demonstrates that necrotic cell 

death by isocyanate exposure occurs rapidly and within the first hour of exposure. 

 

Figure 6: Time course of cell death as measured using the CellTox Green cytotoxicity assay 

performed on primary human keratinocytes, K075. 

 

To confirm that isocyanate induced death was necrotic and not caused by apoptosis, the 

luminescent ApoTox Glo assay was used to measure apoptotic caspase 3/7 activities.  Figure 7 

shows that neither the HDI monomer nor HDI isocyanurate induced the expression of caspases 

3/7.  Only the apoptosis control (10 µM staurosporine) produced luminescence in all of the 

caspase 3/7 detection experiments. This indicates that apoptosis was not the mechanism of cell 
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death in isocyanate-treated cells.  The experiment conducted with fibroblasts yielded similar 

results (F070, n = 1) (data not shown).  

The ApoTox Glo assay also included a fluorescent cell death assay that measured the 

activity of a protease released from dead cells. This cytotoxicity assay did not work with our 

compounds. HDI monomer exposure did not result in toxicity levels that were significantly 

different than the positive controls of basal media or DMSO in basal media. We can conclude 

that HDI monomer appears to interfere with the cytotoxicity protease reaction. HDI isocyanurate 

exposure, interestingly, did produce expected levels of cytotoxicity. These results demonstrate 

the importance of including proper controls in order to determine if the test compound interferes 

with proper function of the assay. 

 

Figure 7: Results from a representative ApoTox Glo Assay performed on primary human 

keratinocytes, K075 (n = 3).  
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DISCUSSION 

In this study, we investigated differences in toxicity and mechanism of cell death caused 

by HDI monomer and oligomer exposure in normal human skin cells; specifically, keratinocytes, 

fibroblasts, and melanocytes. We quantified LC50 values for HDI monomer and HDI 

isocyanurate in cultured human skin cells, and further investigated the mechanism of cell death.  

Assay Comparisons 

We observed differences in the dose response between the luminescent CellTiter Glo 2.0 

assay, the fluorescent CellTox Green assay and the two fluorescent viability/cytotoxicity assays 

in the ApoTox Glo kit.  The four assays are designed to measure cell viability and death using 

different approaches, which can influence the results.  The most sensitive assay was the 

luminescent CellTiter Glo 2.0 assay, which measures ATP content of live cells.  In general, 

luminescent assays have a greater dynamic signal range than fluorescent and pigmented assays 

and thus are more sensitive.  We found the data from this assay very reproducible. However, 

despite the fact that this assay uses an enhanced luciferase, it is still limited by the half-life of the 

enzyme, which limits the timing of the assay. The CellTox Green assay was designed to measure 

the kinetics of cell death because its substrate is stabile over long periods of time.  It uses a 

fluorescent DNA intercalator that binds to DNA released from dead cells.  This assay clearly 

showed that cells die rapidly in the presence of isocyanates, but we observed a limited dose 

response with highest doses yielding lower fluorescence.  We hypothesize that the isocyanates at 

higher doses may interfere with either the binding of the intercalator to the DNA or inhibited the 
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unwinding of the DNA to make it available to the intercalator.  Isocyanates are known to 

preferentially bind amines on proteins that act as a sink for these compounds in vivo (e.g., serum 

albumin).  The ApoTox Glo kit contains fluorescent reagents for measuring proteases inside of 

living intact cells as well as proteases released from lysed dead cells.  Since isocyanates bind 

proteins readily, we believe that they inhibited the dead cell protease activity in the ApoTox Glo 

cytotoxicity assay.  The fact that the viability assay in this same kit worked well confirms our 

hypothesis that the live cell protease was protected from isocyanate binding by the cell 

membrane.  Thus, the type of a viability/cytotoxicity assay used should be thoroughly vetted 

before use.  

We have shown that isocyanates kill cells rapidly by cell necrosis (Fig 6) and confirmed 

this by the absence of caspase 3/7 activity (Fig 7).  Verstraelen et al suggested the method of 

death within immortalized human bronchial cells was apoptosis, based on gene activity and 

signaling pathways. There are several factors that could explain this. They used a cancer line of 

respiratory cells, which may respond differently to isocyanates than primary skin cells. They 

measured selective gene markers and canonical signaling pathways, including the gene CASP9 

and several pathways involving the CASP9 protein, including an antigen presentation pathway 

and an apoptosis signaling pathway. They theorized that CASP9 may have some biological 

relevance relating to respiratory sensitization43. We measured caspase 3/7 activities, which are 

effector caspases at the terminal end of the apoptotic pathway and are more specific for 

apoptosis. Additionally and more importantly, they exposed cancer cells to a variety of different 

chemical combinations of sensitizing, irritant, and non-sensitizing chemicals which in 

combination could affect the type of response. They also used supplemented medium that could 
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have affected the effective isocyanate dose due to serum proteins acting as a sink for isocyanate 

binding. 

Differences between Isocyanates 

In this study, we observed a large difference in cellular toxicity between HDI monomer 

and HDI isocyanurate exposure. In order to theorize why we observed this difference, we must 

consider the many complex chemical and physical differences between these compound that 

could have factored into the results.  Reactivity, lipid solubility, and deposition site are all 

thought to influence health outcomes 67,68. Poly-isocyanates have additional reactive NCO-

groups, but the inherent reactivity of the NCO-group alone does not sufficiently describe the 

observed differences 2,40,42.  Bello et al. theorized that properties of the protein that becomes 

attached to the NCO-group may have an effect on cell permeability, which may contribute to 

variations in reactivity and toxicity 2.  

Different isocyanate monomers and poly-isocyanates cause similar health outcomes, 

typically immune sensitization and asthma. Immunologic cross-reactivity has been observed 

between different isocyanates, which suggests commonality in the mechanism of sensitization 69–

71,58. This may be due to the same protein becoming attached to the NCO-group, or simply due to 

the NCO-group itself 2. Data on health effects relating to poly-isocyanates such as HDI 

isocyanurate are more limited, but sufficient to demonstrate that these compounds can cause 

similar health outcomes as isocyanate monomers. Chemical-induced asthma and hypersensitivity 

pneumonitis have been observed as a result of poly-isocyanate exposure 20,25,26,34.  

Some animal studies have indicated that HDI monomer may be better able to induce 

allergic airway inflammation than poly-isocyanate forms like HDI isocyanurate47,49,58,57 . In 

animal studies, both forms of HDI have produced similar levels of antibody titers indicating that 



35 
 

the allergenic response may be very similar 47,68. However, Pauluhn did not observe a response in 

animals sensitized with HDI isocyanurate when later exposed to conjugates; but he 

acknowledged that this may have been related to inappropriately produced conjugates 47. In this 

study, we observed much lower LC50 values associated with HDI isocyanurate exposure than 

HDI monomer. We cannot directly compare the LC50 values calculated here to regulatory 

standards for exposure, such as TLV. However, we can consider our results in context with the 

published peer-reviewed scientific literature. HDI isocyanurate may sensitize humans and 

animals using the same mechanism as HDI monomer, and HDI isocyanurate penetrates the skin 

faster 10. Taken together, evidence exists that HDI isocyanurate may have a large impact on 

overall exposure that is not being accounted for in current regulatory standards.  

Factors Influencing Susceptibility to Isocyanate Toxicity 

Structure of the Skin 

The structure of the skin itself has significant effects on penetration of the compounds, 

and ultimately on toxicity. As individual isolated cell types were used in this study, we must 

consider how the cell types may behave or how the exposure may be modified by the overall 

structure of the skin.   

We observed differences in susceptibility for isocyanate toxicity between the cell types 

we tested. It is well known that different skin cell types communicate with each other, and this 

influences cell activity. The top layer of the skin is the cornified layer or stratum corneum, made 

up of dead keratinocytes and lipids, which forms the major protective barrier against water loss 

and foreign substances (see Figure 8). Below is the viable epidermis, containing mostly 

keratinocytes and melanocytes (at the basement membrane) as well as Langerhans cells, which 

are important in immune responses. The dermis, located beneath the viable epidermis, contains 
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fibroblasts, hair follicles, blood vessels, and many other elements embedded in a collagen matrix 

25,53,72.  

 

Figure 8: Structure of skin. Courtesy of CliniMed UK 72 

 

There are also differences in skin between different areas of the body. The thickness of 

the non-hydrated stratum corneum is between 10 and 50 µm in most areas of the body, but it may 

be up to 10 times as thick on areas like the palms of the hands or soles of the feet 73. The rate of 

absorption of chemicals through the various areas of the skin generally follows the following 

order, from the fastest to the slowest: scrotal, forehead, armpit, scalp, back, abdomen, palm, and 

undersurface of foot 74. Despite large variability in permeability and skin structure, current 

regulations for skin exposure do not address the differing doses that may be absorbed by 

different areas of the body.  

Cell Types  

Figures 4 and 5 illustrate the large difference observed in toxicity between the different 

cell types. The cell types used in this the study were keratinocytes, melanocytes, and fibroblasts 
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isolated from neonatal foreskins. Keratinocytes are localized in the stratum corneum, the top or 

most external part of the skin and comprise 90% of the cells within the epidermis 73. In the 

experiments performed here, keratinocytes were the least susceptible to isocyanate toxicity of 

tested skin cells types. Because of the location, abundance, and relative resistance to toxicity, 

keratinocytes are the most important cells used here regarding the development of an immune 

response. In other studies, keratinocytes were observed to be relatively resilient, potentially 

because of higher enzymatic activities 75–77. Differing activity levels may play a role in the cell 

response to xenobiotic exposure and, thus, warrant further investigation. Of the three cell types 

used here, melanocytes are the least abundant within the skin and were the least resistant to the 

isocyanate toxicity. Other research suggests that melanocytes may be the most vulnerable skin 

cell, potentially because of low antioxidant enzyme activity or high cellular proliferation with 

low relative efficiency of DNA repair processes 78,75,77,76. As isocyanates do not cause cell death 

through oxidation or DNA damage, these observations are not directly applicable within this 

study. However, it is interesting that melanocytes appear to be an especially vulnerable cell in 

many settings.  

Skin Penetration 

Many factors influence skin absorption.  Key factors include lipid solubility, size of 

molecules, concentration, co-exposures, skin integrity, hair follicles, and clothing 79. Generally, 

more lipophilic substances are better absorbed and smaller molecular weight haptens and 

allergens can better penetrate the cornified layer 25. Thomasen et al. established that HDI 

isocyanurate and HDI monomer can penetrate the skin without being metabolized 10. They 

investigated penetration patterns of HDI monomer, polymeric HDI, and two clearcoat paints 

containing HDI monomer and HDI isocyanurate. Both monomeric and polymeric HDI were 
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readily absorbed through the excised full thickness human skin 10. HDI isocyanurate was 

observed to have the shortest absorption time regardless of paint formulation. Compounds tested 

were neat or in ethyl acetate (EA) solution, because EA is a common solvent used for 

isocyanates. EA was observed to enhance skin penetration. Polyurethanes used in occupational 

settings are frequently mixed with reducers, which could have a similar enhancing effect.  

In the second set of experiments described by Thomasen et al, penetration patterns for 

both slow-drying and fast-drying clearcoat were investigated 10.  Both formulations contain a 

larger proportion of HDI poly-isocyanates than HDI monomer. Slow-drying clearcoat contains 

significantly more HDI monomer and HDI biuret, another HDI trimer, than fast-drying clearcoat. 

Evaporative losses were minimized through the use of a plastic lid that covered the skin samples. 

Slow-drying clearcoat was observed to penetrate the skin more quickly than fast-drying clear 

coat. These results are supported by Bello et al. 2006, which investigated the residence time of 

isocyanates on hairless guinea pig skin in vitro and saw similar patterns regarding rapid 

penetration and minimal evaporation 31. Observations indicating that HDI isocyanurate is 

absorbed either just as well or faster than HDI monomer suggests that even a short exposure 

could result in a considerable body burden 10,29,30. Here, we observed a higher toxicity associated 

with polymeric HDI. The results observed in this study suggest that even a short exposure to 

HDI isocyanurate could result in a significant body burden and, thus, a higher cytotoxicity. This 

has concerning implications for worker health and future development of limit values merits 

further investigation.  

Inter-individual Variability 

There are many factors that may impact inter-individual variability and susceptibility to 

toxicity. Filaggrin is an important protein in the structure of the skin. It facilitates terminal 
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differentiation of keratinocytes, which contributes to the formation of the cornified layer 52. Null 

mutations in FLG as well as inflammation in the skin can cause changes in FLG expression 

leading to atopic dermatitis.  Atopic dermatitis compromises the skin barrier function and thus 

increases individual susceptibility to environmental exposures. Individual genetic and epigenetic 

alterations can influence immune responses. The immune response is modified by keratinocytes, 

which act as an important first line of defense. DNA methylation may also play a role in 

individual differences, and may increase susceptibility to HDI22 . DNA methylation may affect 

gene expression of proteins involved in isocyanate mass transport, permeation, and metabolism 

and thereby mediate individual responses 22. These genetic factors can have a significant impact 

on susceptibility, and our current safety limits may not protect all workers.  

In a review published by the World Health Organization, Byford reports that the barrier 

properties of the skin may be influenced by species of animal, age, sex, and race, anatomical site, 

skin condition, temperature and blood flow rate, and hydration 73.  When considering inter-

individual variability, age, sex, and race as well as hydration status are relevant. In this study, we 

only used cells from male donors due to the availability of foreskin samples. Given that most 

isocyanate exposed workers are male, the use of cells from male donors in this study is 

appropriate 80. Age may also influence susceptibility. Matsuo et al 2004 investigated the 

responses of fibroblasts from old and young donors to oxidative stress 81. They observed that 

fibroblasts from old donors were more resilient against oxidative stress, and theorized that this 

was due to an increase in glutathione peroxidase activity 81. All cells used in this study were 

isolated from neonatal foreskin, and therefore from the youngest possible donors. These cells 

may have relatively low enzymatic activity and thus be more susceptible to toxicity. No 

significant differences relating to race have been reported in previous studies or were observed in 
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the experiments performed in this study (data not shown)73,76. Hydration status is an 

environmental condition that can drastically alter the barrier function of the skin. Decreased 

hydration status may be the probable cause for increase in absorption 73. The humidity of the 

environment as well as individual differences in hydration may influence variations in 

susceptibility. We used isolated skin cells in this study and, therefore, exposure conditions were 

not modified by hydration status or humidity of the environment. However, the hydration status 

of the skin appears to be very important when considering occupational skin exposures and 

penetration of xenobiotics through the skin.  

Monitoring exposure levels and setting limits specific to skin exposure are needed to 

protect workers from potential adverse health effects like contact dermatitis or occupational 

asthma. These data suggest that special attention should be paid towards preventing skin 

exposure to HDI isocyanurate. 

Limitations of the Study 

 This study used monocultures of skin cell types, in which tissue-specific interactions do 

not occur. This study also did not use immune cells such as Langerhans cells, so we could not 

assess the effect of immunologic response within the skin. Additionally, it was not possible to 

compare the doses used in this study to the skin exposure levels experienced by workers exposed 

to isocyanates because no methodology is available to accurately measure skin penetration in an 

occupational setting.  
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The Effect of Intermittent Noise Stress on Ozone-Induced Cardiovascular Dysfunction in 

Wistar-Kyoto Rats.  

Kaitlyn Phillips1, Kimberly Stratford1, Leon Walsh2, Malek Khan2, Leslie Thompson2, Aimen 

Farraj2 & Mehdi S. Hazari2. 1  

University of North Carolina, Chapel Hill, NC 27599; 2Environmental Public Health Division, 

USEPA, Research Triangle Park, NC 27711. 

Previous studies have established that acute exposure to air pollution increases the risk of 

cardiovascular dysfunction. Intrinsic factors are likely the most important determinants of how 

the body responds to an exposure. But data also suggests that non-environmental stressors like 

noise, which is a common urban public health problem, can modify and in fact worsen the 

response. Noise can cause obvious psychological disturbances typical of non-specific stress, but 

also changes that can increase the number of cardiovascular disease related mortalities. 

Therefore, we hypothesized that short-term exposure to noise would worsen the cardiovascular 

response to ozone.  

Male Wistar-Kyoto rats were implanted with radiotelemeters for the measurement of 

heart rate (HR), blood pressure (BP) and electrocardiogram (ECG) and exposed to intermittent 

noise (85-90 dB) for one week; after which they were exposed to either ozone (0.8 ppm) or 

filtered air.  Left ventricular functional responses to dobutamine were measured using a Millar 

probe as well as arrhythmic sensitivity to aconitine in a separate set of untelemetered rats 24 

hours after exposure.  

HR and BP decreased in all telemetered animals during ozone exposure; noise caused HR 

to increase. Noise caused BP to decrease, both during noise exposures and post-exposure. Noise 
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and ozone had a significant interaction on ventricular tachycardia and ventricular fibrillation (see 

Figure 1). Baseline left ventricular pressure (LVP) was significantly higher in animals exposed to 

both noise and ozone when compared to no noise; furthermore those animals had the least 

amount of change in LVP, dP/dT max and min with increasing doses of dobutamine. These 

animals also had a higher arrhythmic sensitivity to aconitine. In conclusion, these results suggest 

that noise alters the cardiovascular response to ozone exposure. Thus, non-environmental 

stressors may be playing an important role in modifying the response to air pollution and may in 

fact increase the risk in people with underlying cardiovascular disease.  

 

Figure 9. Ventricular Premature Beat, Ventricular Tachycardia, and Ventricular Fibrillation in 

Rats. Courtesy of Mehdi Hazari. 

 


