
ABSTRACT

i

JAMES G. GARTLAND. Response of an Electronic Sensor to Binary Solvent

Mixtures in a Simulated Charcoal Bed. (Under the Direction of DR.

DAVID A. FRASER)

A study was performed which evaluated the ability of a charcoal

bed breakthrough detector to be utilized under conditions where a

binary mixture of solvents was passed through a bed. A Taguchi Gas

Sensor (TGS 812) was used.

Acetone and toluene were tested in a simulated charcoal bed system

both singly and in binary mixtures over a range of concentrations. TGS

response to acetone was much greater than to toluene. In addition,

acetone achieved the charcoal service life endpoint (ie. 102 of the

challenge concentration) more quickly. Toluene concentrations at the

10% breakthrough times for the acetone were insufficient to appreciably

affect sensor response. It would thus appear that this detector can be

utilized for the detection of a mixture of acetone and toluene if the

alarm signal on the detector is preset for acetone. Sensor

sensitivities were much weaker than found in a previous study with the
same sensor.
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I. INTRODUCTION

A.  GENERAL

The need for purification of air contaminated by potentially

hazardous solvent vapors and gases is a problem encountered both in

industry and the laboratory setting. One of the primary methods of

purification involves the employment of activated carbon filter beds in

ventilation systems. Although often an effective measure, activated

carbon use presents an interesting risk-benefit situation. This

problem arises from the difficulty of determining the exact point where

the carbon bed reaches the end of its service life, the breakthrough

point. This point is reached when the downstream concentration is 10%

of the concentration of contaminant challenging the carbon. When the

beds are discarded before reaching this point, there is an obvious

monetary loss from replacing them more often than needed. If too much

time passes before replacement, there is the more serious problem of

potential risk to workers or the environment from escape of hazardous

levels of contaminant through the bed. Finding a good method for

determining end of service life thus becomes very important.

Unfortunately, there are no intrinsic aspects of carbon beds that

allow easy service life determination. The carbon does not change

color as it becomes full of adsorbed contaminants. There is no change
in airflow resistance as the bed becomes saturated. A gain in mass of
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the bed can be correlated to some degree with the degree of saturation,

but since moisture is also adsorbed, changes in relative humidity make

even this parameter difficult to use consistently (44).

One method that has found some success in the past was the use of

carbon tetrachloride (CCI4) as a nondestructive tracer gas. While CCI4
was released upstream, air samples could be removed downstream of the

filter for gas chromatograph analysis, or test elements (smaller models

of the carbon beds) could be placed downstream and removed at intervals

to evaluate saturation (45). A recent update of this concept has been

suggested which would place a panel of carbon cartridges in a 4 by 4

matrix downstream of the carbon bed. These 16 cartridges could be

individually removed over a period of time and analyzed to give an

approximation of saturation Increase over time and thus an estimate of

service life (44). Although these methods have some usefulness, it

would be better to have a means of continuously monitoring the

downstream concentration of contaminants in order to get maximum

benefit out of a carbon filtration system. A gas sensor would be able

to determine when significant levels of contaminant are breaking

through the filter bed, thus signifying the need for replacement.

A short discussion of carbon adsorption theory is presented in

Appendix A.

An ideal monitor for detecting service life would have to meet a

number of performance characteristics. It should be small, rugged,

inexpensive and be capable of continuous operation. It should actively

Indicate (usually by alarm) the presence of the preset contaminant

level without outside intervention. It should respond reliably to

contaminant gases and vapors over a range of several orders of
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magnitude with a time resolution of a few minutes and be sensitive at
the toxic limits of the contaminant (29,43).

B.  SERVICE LIFE MONITORING METHODS

There is probably no monitor or sensor which meets all of the

requirements discussed previously. A critical review of some of the

techniques suggested for monitoring of breakthrough should allow a
proper choice to be made for further evaluation.

1. Catalytic oxidajtion (12,27,29,42)

Gas detectors operating on the catalytic oxidation principle work

by measuring the amount of heat liberated when an organic molecule

reacts exothermically with an oxidant. Monitors based on this

technique have relatively poor response, especially at low

concentrations where they must be zeroed every few moments. They not

only have poor response to halogenated hydrocarbons, but are easily

poisoned by them. A relatively expensive amplifier circuit is required
for this sensor.

2i    Gas chromatography (12,27)

Systems based on gas chromatography analysis have some very

positive qualities. They give highly accurate, continuous responses to
most gases. Unfortunately, they are often too complicated for easy use
and require extensive training of personnel for reliable results.

Another major consideration is the high cost of such systems.
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3. Nondispersive infrared (12,27,29)

These systems are based on the absorption of infrared radiation by

contaminants. The instrumentation is relatively complex. A separate

setting must usually be made for each contaminant and corrections must

often be made for interference from other contaminants or water vapor.

The instruments are also moderately expensive.

4. Ultraviolet (UV) ionization (27,29)

These systems rely on high energy UV radiation causing the

ionization of molecules, which induces current flow between two

electrodes.    This technique is among the better ones suggested for

breakthrough monitoring.    Most of the commercially used hydrocarbons,

including the chlorinated ones, can be detected by UV ionization

systems.    Monitors based on these techniques have the advantages of

being light, safe and easy to use.    As with infrared systems, detectors

are moderately expensive.

5^    Color-changing indicators  (Detector tubes)  (12,29,39)

This method relies on a change in color of a specific adsorbent

when air containing a given contaminant is passed through it.    The

color change is usually the result of a reduction-oxidation reaction.

The concept has been evaluated for respirator cartridge breakthrough
(29,39).

A major disadvantage of detector tubes is the lack of continuous

response.    There are also problems occasionally with sensitivity and

ͣ•"^erferences.    The technique still  has usefulness for spot checks to
Vl^ obtain qualitative measures of breakthrough.
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,0^ 6. Piezoelectric microbalances (29,42)vi

This method works on the principle of a small amount of

contaminant mass altering the vibrational frequency imposed on a quartz

crystal by an applied electrical AC frequency in the range of 9 to 15

MHz. While these systems have the advantages of high sensitivity,

small size and relatively simple electronics, there is a large problem

with interferences. The sensor can react to water and even aerosols.

Some degree of specificity can be arranged if a given contaminant is

being sought, but this involves coating the crystal and the reactions

with these coatings are usually nonreversible.

7. Flame ionization systems (27,29)

In these monitors, the air to be sampled flows through a hydrogen

flame and the ions thus produced induce a flow of current proportional
to the concentration of the contaminant to an electrode located

adjacent to the flame. These systems are also among the better

breakthrough monitors, especially since almost all hydrocarbons may be

detected by them. High cost is again a disadvantage.

8^ MetalHc oxide semicond|Jctor (MQS) sensors

Instruments based on the metallic oxide semiconductor sensor have

shown some promise as breakthrough monitors. They were the sensor type
chosen for further research in this paper and in several studies

involving respirators (6,25), including a NIOSH (National Institute for
Occupational Safety and Health) study on end-of-life monitors for
respirators (29).

In the following section, a review of the metanicoxide
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semiconductor literature is presented in order to gain a better
understanding of the theory, mechanisms and uses of these sensors. In
addition, a review of the literature is presented pertaining to the
Taguchi Gas Sensor (TGS), which was chosen for further study in this
paper.

C. REVIEW OF MOS SENSOR LITERATURE

li    Early history

It was noticed early in the history of semiconductor development
that the presence of contaminant gases could alter the conductivity of
the semiconductor. Among the first investigators to attempt to find a
practical use for this phenomenon were Seiyama, et al, (41) in 1962. A
thin film of zinc oxide was utilized as a gas detector in a gas
chromatograph in the place of the thermal conductivity cell usually
used. Using nitrogen as a carrier gas, this sensor was tested for
response to toluene, benzene, ethyl ether, ethyl alcohol, propane and
carbon dioxide and was found to be much more sensitive than the thermal

conductivity cell.

Later work by Seiyama and Kagawa (40) involved testing of thin
films of several semiconductor materials. When tested against
hydrogen, carbon dioxide and ethanol, sensors composed of thin films of
zinc oxide, cadmium oxide, ferric oxide and tin oxide showed better

sensitivity than other metal oxides. It is interesting to note that,
with zinc oxide, a linear relationship between detector response and
contaminant concentration was only obtained after plotting on a log-log(1|P        scale, thus suggesting a power relationship.

NEATPAGEINFO:id=769C7895-FFE1-4792-A362-1CE23CE7C0FC



/'^^ 2.    Band theory
^^ To understand the response of the MOS sensor, one must first

consider the sensor at the atomic level.

In order for the conductivity of the semiconductor to be altered

by a gaseous contaminant, an adsorption reaction Involving electron

transfer  (chemlsorptlon) must occur (42).    Oxides of transition and

heavy metals such as tin are semiconductors because these metals can
exist In different oxidation states.    These oxides are

non-stolchlometrlc.    Tin oxide semiconductors are classified as n-type,

having an excess of metal Ions.    A deficiency of metal  Ions occurs In a

p-type semiconductor.    Only n-type semiconductors will be discussed
here unless otherwise noted.    Electrostatic neutrality Is maintained In

n-type semiconductors by the excess metal  occurring as Ions of a lower

charge than the parent metal  Ion, e.g. Sn2+ in SnOg  (14).    The energy
levels of an n-type semiconductor are depicted In Figure 1.    The two

bands of allowed energy,  the conduction and valence bands, are

separated by a band gap, where only localized states can.be occupied by
electrons.    These states Include donor levels near the conduction band

and trap levels near the valence band.    At thermal equilibrium, the

probability of occupation of these states Is given by Fermi statistics

and described by the Fermi  level, as seen In Figure 1  (18).

3.    Conduqtiylty and chejnlsorption

The energy bands are altered as the surface of the semiconductor

is approached.    Electronic surface states may be caused by intrinsic
defects of the semiconductor or by adsorption of other atoms or
molecules.    When the surface states accept a charge, an electricalm
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f^^ double layer is formed of equal but opposite charge in a layer defined
as the space charge layer (18).

The conductivity of the sensor can be maintained, decreased or

Increased, depending on which type of reaction occurs at its surface.
Since physical adsorption does not involve an exchange of electrons,
any contaminant reacting only by this method will not cause a

conductivity change and will not be detected. Noble gases, which are
physisorbed, are not detected by MOS sensors. It Is the chemisorption
reactions which lead to conductivity changes. These reactions are of

two main types. The first is depletive chemisorption, in which

electrons are extracted from the conduction band. The adsorption of

oxygen in an ionic form, such as O2", 0" or 0^", on an n-type MOS
Involves depletive chemisorption (21). Oxygen adsorption thus causes a
drop in conductivity, as electrons are pulled out of the conduction

band of the MOS. This increases the negative charge at the surface and

causes the formation of a positive space charge layer and bending of

the conduction band away from the Fermi level as can be seen in Figure
2(a). This process continues until equilibrium is reached, where the

electron capture rate of the adsorbate equals the rate of emission back
to the conduction band of the semiconductor (26).

The other type of chemisorption reaction causes a conductivity

Increase. This occurs when a reducing gas is adsorbed in the presence
of an ambient atmosphere containing oxygen. Exposure of the MOS to

this airtjient leads to the formation of a chemisorbed oxygen layer. The
reducing gas reacts with the oxygen layer, leading to a donation of
electrons into the conduction band. These donations cause an increase

^^ In conductivity of the MOS as electron density in the bulk of the

C#
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semiconductor is increased, ie. a negative space charge layer is formed
(26). The conduction band is bent towards the Fermi level during this
process, as can be seen in Figure 2(b). Since equilibrium is reached
at a point dependent on the partial pressure of the reducing gas, the
conductance of the sensor can be related to varying concentrations of
reducing contaminants (28).

Ai    MOS response to reducing agents
Carbon monoxide (CO) can be adsorbed on a MOS surface in the form

of the positively charged ion, CO"*". This reducing form of the gas
reacts with the chemisorbed oxygen as described above with resultant
desorption of carbon dioxide and the injection of the electrons
released from the oxygen back into the bulk of the MOS. The resulting
Increase in conductivity reaches an equilibrium level as oxygen is
re-adsorbed from the ambient atmosphere, thus relating conductivity to
the partial pressure of CO (14).

Windischmann and Mark (51) investigated the adsorption of CO on a
thin film of tin oxide (Sn02). They designed their sensor to detect CO
reproducibly in the 1 to 100 ppm range in the presence of an ambient
atmosphere consisting of 10% oxygen, 3% water, 500 ppm sulfur dioxide,
150 ppm nitric oxide, 9%  carbon dioxide and the balance, nitrogen.
Within a temperature range of 200 to 500 oc, the sensor conductance (G)
Increases with increasing CO partial pressure (Pco^ according to the
relation:

G = Go + (K)(Pco)^/2 (^j
where Gq is the background conductance In the absence of CO and

K is a constant with respect to P^q
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Stetter (42) investigated the adsorption of CO on cobalt oxide

(C03O4).    This is a p-type semiconductor (deficiency of metal  ions) as
compared to the n-type Sn02  (excess metal  ions) studied by Windischmann
and Mark (51).    At a constant temperature, the conductivity ((T) and CO

partial  pressure  (Pqo) followed the relation:
ln(O'/0'o) = In K + (m)(ln Pcq) (2)

where 0*0 is the background conductance, K is both a constant
with respect to P^o ^^^ ^^^ y-intercept of a log-log plot
of O'/e'o vs Pco with m as the slope.

This shows a power relation between conductivity and CO partial

pressure of the form:

•       .   er/e-Q = (K)(ln Pco)"" (3)
Seiyama and Kagawa (40) studied the response of a thin film of

zinc oxide (ZnO) to a variety of organic compounds.    It was found that
the sensor sensitivity increased with the number of carbon atoms in

normal chain compounds.    Substituent effects of normal chain compounds

having the same number of carbon atoms showed the following order of

response sensitivity:

amine > ether > mercaptan > alcohol  > ketone > aldehyde >

carboxylic acid > nitrile.

It was noted that this is the same general order for electron donating

properties of the functional  groups.    Greater sensitivity occurred in

compounds with the most nucleophilic groups.    This is to be expected in
n-type MOS like ZnO and Sn02 where the conduction band accepts the
donated electrons readily.    Response for aromatic compounds was more
complex, but some correlation was found between dipole moment and
sensitivity.    This correlation of increasing polarization with

NEATPAGEINFO:id=4EC24DB1-1E18-44F0-B5BC-4D2E07E9B9F0
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increasing sensitivity did not hold for aromatic halides.

5^ Factors affecting MQS respqnse

Any gas which can be adsorbed and react to cause electron transfer
will cause a change in conductivity of a MOS. It is for this reason

that consideration must be given to the combined effects of two or more

components in a mixture. When a MOS is calibrated for detection of a

specific compound, the interference of other compounds may fall into

one of two categories. Proportional interference occurs when every X

ppm of interference gas results in a response of Y ppm in terms of the

gas of interest. In other words, 100 ppm of gas A could show a reading

of 10 ppm of gas B when the MOS is calibrated for B. The other type of

interference is known as tolerance interference. In a response of this

V^^        type, the MOS will not respond to the interference gas A until a
critical concentration is reached. After this critical concentration

is reached, the MOS shows a large response to gas A in terms of gas 8
(24).

Temperature is found to have a major effect on sensor response.

The adsorption of a gas on a given MOS is a temperature-dependent

process. Different gases will have differing temperatures which will
produce optimum response. Firth, et al, (14) found that the

conductivity change produced by a gas at a given concentration usually

increased as the temperature of the MOS increased, passing through a
maximum and decreasing beyond a certain temperature. This optimum
temperature will vary between gases in a chemical series, but the

shapes of the curves will be similar (21). It is clear that by
designing the circuit associated with the MOS so that operating(9
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^ temperature can be varied, that a certain degree of specificity can be

obtained.

Moisture is another factor affecting sensor response. Although

the exact mechanism of this effect is not clear, Boyle and Jones (5)

suggested that water is adsorbed with preferential alignment of the

positive section of the dipole with the MOS surface. Electrons would

then be pulled to the MOS surface to form a negative space charge layer

and increase conductivity. Morrison (28) disagreed with this concept,

stating that the reaction would be too endothermic. He suggested that

the water changes the surface state energy of the oxygen through

neutralization of surface electric fields which have charged areas

attracting oxygen ions. More research is needed to clarify these

mechanisms. It is clear that relative humidity, being a product of

temperature and moisture, will have an effect on sensor response. The

baseline conductivity of a MOS in an ambient atmosphere will increase

with Increasing relative humidity. This can cause problems, as most

measurements utilizing MOS sensors have the ratio of contaminant to

ambient response of the sensor as the factor related to concentration.

6i    Techniques to control MOS sensor sensitivity

One of the most effective methods for controlling MOS sensor

sensitivity is the use of dopants or chemical additives. Two

mechanisms have been suggested for the actions of these dopants (52).

The first is chemical interaction in which the dopant assists the redox

process on the surface of a Sn02 sensor. At the optimum temperature, a

reactant will first adsorb on the dopant particles and then migrate to
(IP the Sn02 surface to react with the adsorbed oxygen. This

%
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increased adsorption leads to increased surface conductivity in the

sensor and thus a stronger response to reducing gases. This

interaction involves a change of oxidation state in the semiconductor

and appears to occur in Sn02 doped with platinum or palladium. The

other suggested mechanism, electronic interaction, occurs when the

dopant interacts with the semiconductor as an electron donor or

acceptor. A change in the electronic state of the dopant due to

reaction with a reducing gas will thus cause an accompanying change in

the semiconductor surface conductivity. Electronic interactions

involve a change in the oxidation state of the dopant as compared to

the change in the state of the semiconductor which occurs with chemical

interaction. Electronic interaction has been suggested as the

mechanism for Sn02 with silver as the dopant.

The proper choice of dopant can help to increase specificity of

the sensor for given compounds or reduce interference from other

compounds. Nitta and Haradome (33) found that utilizing thorium

dioxide (Th02) as a dopant of a Sn02 thick film semiconductor increased

the specificity of the sensor for carbon monoxide (CO) over hydrogen

(H2) while also achieving a high degree of independence in the response

of the sensor to humidity. In another study, Nitta, et al, (34) found

that doping Sn02 with Nb, V, Ti or Mo again gave increased freedom from

relative humidity and temperature effects on sensor response. Jones

(21) reported that uranium dioxide (UO2) is relatively insensitive to

most gases, but response is greatly increased when doped with Pt, Pd or

ea.

The physical form of the MOS can also affect sensitivity. Oyabu

conducted studies on tin oxide with Pd as the dopant. In one study.

NEATPAGEINFO:id=BA155106-9E99-4B08-8682-F732381CE566
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he used a thin film of Sn02 (36) and the other a thick film (37).    The

thin film was formed by vapor deposition of Sn02, while the thick film

was deposited in the form of a thin paste.    In both studies, the

sensors were tested for response to ethanol, carbon monoxide, isobutane

and hydrogen.    The thin film sensor responded only to carbon monoxide

and ethanol, while the thick film responded only to hydrogen and

ethanol.    Jones (21) investigated ZnO in the form of a single crystal,

a polycrystalline mass and a highly sintered compressed disc.    The disc

and single crystal  forms showed similar response to carbon monoxide,

methane and water.    The polycrystalline mass showed a much stronger

response to methane at higher temperatures.    It was suggested that

there is a higher concentration of surface defects on these masses that

would provide sites for greater adsorption of methane.

Pretreatment with heated gases and use of surface state additives

are two more methods which have been found to affect MOS sensitivity.

Lalauze and Pijolat (23) found that pretreatment by heating a Sn02

sensor to 500 OC in a 1000 ppm sulfur dioxide-air mixture changed the

normal  Sn02 maximum response temperature sufficiently that a relatively

specific benzene detector could be developed.    They suggested that a

H2S-specific detector could be developed using a similar technique.

Morrison  (28) investigated the use of surface state additives.   This

technique involved a literature search to find a contaminant-specific

reagent.    The reagent could then be coated on a MOS which would respond

to electronic changes resulting from the reaction of the reagent.    A

N02-specific sensor was developed by coating nickel oxide with

Saltzmann reagent, used in colorimetric tests.    A xylene-specific

sensor was developed by utilizing titanium dioxide coated with vanadium

NEATPAGEINFO:id=3C898BD7-BEC5-4F46-A08C-8BB62D1311B7
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pentoxide, a catalyst for oxidation of xylene. As in the discussion of

piezoelectric balances earlier, the coating of the sensor often leads

to irreversible responses in the sensors using this technique.

D. REVIEW OF TAGUCHI GAS SENSOR (TGS) LITERATURE

1. Introduction

The Taguchi Gas Sensor (TGS) was the MOS sensor chosen for further

study In this project. The TGS meets a number of the requirements

listed earlier for an Ideal breakthrough monitor. It has the ability

to detect a number of gases at low concentrations and with repeatable

responses due to reversible reactions. The TGS is designed to fit some

of the other requirements also. It is small. Inexpensive, shock and

vibration resistant and can be operated from a low voltage power supply

(12,13). The TGS also suffers from the disadvantages associated with

the MOS, in particular, the sensitivity to temperature and humidity

changes (47).

A list of some of the contaminants detected by the TGS can be

found in Appendix B.

The TGS was developed by N. Taguchi and has been marketed by

Figaro Engineering since 1968. Over 13 million TGS sensors were in use

worldwide as of August, 1981 (12). There are a number of TGS models,

varying in design features such as dopants, which have increased

selectivity for given groups of contaminants. The TGS 812 is the model

designed for best response to toxic gases. The following discussions

will concern the TGS 812 unless otherwise noted.

NEATPAGEINFO:id=F6C83B95-2AF2-4959-A315-E17E317C115B
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% 2.    TGS 812 structure

The structure of the TGS 812 gas sensor can be seen in Figure 3.

The TGS 812 is composed of a thin layer of sintered Sn02 coated on a

small ceramic cylinder (4 mm X 1 iran). A small coil of 60 micron

diameter chrome alloy wire is located inside the cylinder to serve as a

heater coil. It has a resistance of 38 ohms. Two 80 micron diameter

gold alloy wires are deposited on the ceramic along with the Sn02 to

serve as electrodes, allowing measurement of resistance changes. The

heater and electrode wires are spotwelded to pins arranged to fit a 7

pin miniature tube socket.

The sensor base and cover are composed of nylon 66 which has a

deformation temperature in excess of 240 oc. The sensor case has upper

and lower openings covered with a flameproof double layer of 100 mesh

"^^P        stainless steel gauze. Independent tests have confirmed that this mesh
will prevent a spark produced inside the flameproof cover from igniting

an explosive 2:1 mixture of hydrogen and oxygen. The TGS 812 also is

tested mechanically with vibration and shock tests. The parameters for

safe operation include a maximum power dissipation for the sensor of 15

MW, a maximum circuit voltage of 24 V and a heater voltage of 5.0 V +

0.2 V (9,11).

3. TGS 812 mechanism of operation

The design of the TGS 812 gives it some advantages over other

sensor types. The symmetrical geometry of the cylinder allows uniform

temperature to be spread along the active semiconductor layer, while

also reducing heating requirements because of a high surface-to-volume

ratio (47). The sintering of the tin oxide powder deposited on the
(9
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stainless steel gauze (double)
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TGS 812 CONFIGURATION.

1(4) 3(6)

411) 6(3)

TGS 812 DIAGRAM OF THE ELECTRIC CIRCUrT.
^ RviiMrka:

Pins numbered 1 and 3 are connected internally.
Pins numbered 4 and 6 are connected internally.

d
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Oimensions in millimeter

TGS 812 STRUCTURAL SPECIFICATIONS.

Electrodes
Tin

Dioxide

Heater coil

Lead wire
Ceramic tube

Confijj^jration of gas sensor

Figure 3.     Structural Diagrams of  the TGS  812.

NEATPAGEINFO:id=FC6255AD-FD87-45FB-9F35-ECC05857C2F7



19

ceramic allows it to have a higher sensitivity, comparable with the

sensitivity of thin film sensors. Morrison (28) suggested that the

contact resistance between grains of the sintered powder was the
dominant factor in overall TGS sensor resistance. With non-sintered

grains, such as would be found in a compressed pellet, electrons

flowing from one grain to another must first flow over a surface

potential barrier, as in Fig. 4(a). Current between grains is very

sensitive to the barrier. Sintering reduces this barrier by providing

a "neck" or channel similar in thickness to thin film, ie, a few

hundred angstroms. These channels are depicted in Fig. 4(b),

Adsorption of oxygen and reducing gases on these necks has similar

effects to adsorption on thin films. Oxygen adsorption increases the

barrier height by decreasing the width of the channel through which the

^-mk current flows and increasing sensor resistance. The adsorption of
reducing gases and reaction with the adsorbed oxygen decreases the

barrier height and thus decreases the sensor resistance.

Clifford and Tuma (10) showed the electron transfer controlled by

this potential barrier to be the rate limiting step in oxygen ionosorp-

tion on the TGS 812. They found the conductance (8*) of the sensor to

be determined by the surface barrier potential (eVg) at a given
temperature (T) by the relation:

e-= e-Q expC-eVg/KT] (4)
and the barrier potential to be determined by the surface concentration

of ionosorbed oxygen (N^) by the Schottky relation:

Ys =e(Nt)2/2Ks£oNd (5)
f'"^ where N^ is the surface density of ionosorbed oxygen, Kgfio

is the semiconductor permittivity and N^ is the
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Figure 4.  Conductance mechanisms in semiconductor powders
(a) Compressed pellet with barrier formation
(b) Sintered pellet containing electron channels,
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(m

volumetric density of electron donors.

The factor before the exponent in Eq. 4 represents the bulk

intragranular conductance:

0^0 = ge-y"b ^^J
where g is a geometrical factor (0.01 cm for the TGS), e is the

electronic charge, >l is the electronic mobility in the space

charge region nearest the surface and nt is the

concentration of electrons in the bulk conduction band.

Clifford and Tuma (10) concluded that the TGS bulk conductance results

from a native non-stoichiometric defect (an oxygen vacancy) which acts

as an electron donor. At steady state, this defect is in equilibrium

with the ambient oxygen pressure.

4. TGS 812 relative humidity response
Changes in relative humidity can cause changes in the background

conductivity which can make setting alarm levels difficult. Advani and

Nanis (2) found that use of the TGS for H2S detection was limited to
relative humidity above 102 because of interference problems below this

level.

Relatively little work has been done on evaluating TGS response to

water vapor. The manufacturer of the TGS 812 provides a rough plot of

relative humidity and temperature dependence in a 1000 ppm isobutane

ambient atmosphere (11). This plot is reproduced in Figure 5.

Clifford and Tuma (9) found that their results for response to water

vapor concentration could be fitted to the empirical equation:

R = Rod + KhpoCH20])--3 (7)
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^Remarks: Ro: Sensor resistance in air containing
lOOOppm of Isobutane gas at 20"C and
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R:  Sensor resistance in air containing
lOOOppm of Isobutane gas at different
temperature and humidity.   .
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where Rq is the sensor resistance in ambient air, K^gO is a
constant with respect to water vapor concentration with

dimensions of ppm"l, [H2O] is the concentration of water

vapor in volumetric ppm and ^ is the power law exponent.

Clifford and Tuma found values of Ro=151 K , KHpO^O'^O^g ppm~l and
^=0.55 for the single TGS 812 sensor they studied. The power law

exponent, fi,  is the slope of the log-log curve of sensor resistance

response vs water vapor concentration.

A number of techniques have been suggested for correction of TGS

water vapor response. The technique most often used is operation of

the sensor at high temperatures. The heating coil in the TGS 812

serves this function. In a study by the.National Institute for

Occupational Safety and Health (NIOSH) (29), it was suggested that a

circuit could be designed so that a reasonably constant water vapor

response could be subtracted electronically. This would help eliminate

false positives due to water vapor response, but lead to the loss of

some sensitivity to organic vapors. Another problem with this

technique is that it is limited to uses where water vapor concentration

does not vary considerably. Another technique that only partially

compensates for relative humidity changes involves the use of a

thermistor. This technique, suggested by the TGS manufacturer (11),

involves the inclusion of a special temperature-sensitive resistor in

the circuit. The resistance of this thermistor changes as the ambient

temperature changes. Since ambient relative humidity and air

temperature vary in a relatively similar fashion, the response to

relative humidity will be somewhat compensated for as the thermistor

compensates for seasonal temperature changes.
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(_^L 5. TGS 812 response to single contaminants
The empirical equation for TGS response to water vapor

concentration given in Eq. 7 was just one of several developed by

Clifford and Tuma (9) for TGS response to single gases. They developed

empirical equations for response to oxygen and methane also, as can be

seen in Table 1. It should be noted that the power law exponent, ^, is

the slope of the log-log plot of sensor response versus contaminant

concentration. This slope is positive for oxygen and negative for

reducing gases. This corresponds to the addition and removal of

electrons from the conduction band as described in the discussion of

MOS chemisorption. A threshold of detection can be determined from the

reciprocal of the constant, ie. [CH43 = (Kch4)"^ (9). The K value can
be used as a sensitivity coefficient for comparison between sensors.

N^^ Clifford and Tuma (9) used the methane response equation in Table
1 to test the temperature dependence of the TGS response. They found

that Increasing temperature led to a rapid decrease in K^h^, ie. rapid

sensitivity increase. They found an exponential dependence of KCH4 on
Inverse absolute temperature. The power law slope, ^, becomes slowly

steeper with increasing absolute temperature, a directly proportional

relationship. This makes changes in concentration easier to detect at

high constant temperatures. They found the ambient air resistance, Rq,

to have a roughly linear response to temperature change, but only over

a narrow temperature range.

Clifford and Tuma (9) found a different response for hydrogen:

'       R = Ro(P02^^ ^^0  + Kh2CH2]^)'^ (8)
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TABLE I.

Clifford and Tuma's Empirical Equations for TGS 812 Single Contaminant Response

Chemical Equati on Parameter Values Measured

Oxygen R^RoPQo^ P0o=1 (Air)
^-5 (Pure 02^

P  =0.25-0.55

Methane R.Rq (1+Kj,j,  [CH4]-P   Rq =27.4 K
KcH,=^-37 X 10-3 ppn,-l
P  = 0.34 (Sin-gle sensor)

0.25-0.55 (Range of 10 sensors)

Water vapor R-Rq (I+KH2O [H203)-P  "o = 151 K
K„ „  = 0.0059 ppm-1
020
P = 0.55

Rq = Resistance in air

Pq  = Relative partial pressure of oxygen

^CH/ ' '^HoO "  Constants with respect to the contaminant concentration
^ = Power law exponent

to
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g^k The average value of K^o was 0.12 ppm""^.  It is obvious from the
squaring factor In this equation that this sensor Is very hydrogen

sensitive. It Is much more sensitive to hydrogen than to methane.

6. TGS 812 general response equation for mixtures

Clifford and Tuma (9) Investigated the effects of mixtures of

several contaminants on TGS 812 response. The mixtures Investigated
were:

(1) Carbon monoxide and water vapor

(2) Oxygen, water, carbon monoxide and methane
(3) Methane and hydrogen.

From these mixtures, they were able to develop an empirical equation to

describe the general  response of the TGS 812 to any combination of
reducing gases:

(R/Ro)"l/^ = (1 +2: KjCGij]"lJ[G2j]"2J ...)/[02] (9)
where [G] Is the reducing gas concentration, n Is an Integer or

fractional  Integer power and Kj Is the sensitivity
coefficient for contaminant j.

They state that the proper determination of the power law exponent, ^,
depends on measuring sensor response to oxygen as well as to the

contaminants of interest.    They also found this exponent,^, to vary
between sensors and to exhibit non-integer exponents.    The physical and

chemical processes responsible for these last two findings are to be
presented in a future paper by Clifford and Tuma.

The mathematical description of TGS response presented In Eq. 9
aids In understanding the competitive and synergistic interactions

(•

0!
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% among gases in mixtures.    It can be seen from Eq.  9 that resistance

response depends on a linear combination of individual gas terms.    This

allows the effects of one gas to be masked by the combined effects of

other gases, a competitive interaction.    The synergistic interaction

occurs when one gas enhances the effect of another.    This can be seen

In Eq. 9 when the product of several gases constitutes a single term in

the summation portion of the equation.

Addition of gas effects in Eq. 9 can be explained by assuming that

each term represents a separate reaction for removal of adsorbed

surface oxygen (9).    This can be demonstrated by the reaction:

<^2g4H|^02s        and        njGj + 02s J^Pj (10)

V^l where 02g is gaseous oxygen, 02s ^^ surface adsorbed oxygen,
Kj and K2 are exchange rates for oxygen between gaseous

(Kj) and adsorbed (K2) states and Gj is a reducing gas

chemically reacting with surface oxygen at rate Kj,

yielding a product Pj that is desorbed from the surface.

The reducing gas reaction rate constant, Kj, is equivalent to the

sensitivity coefficient, Kj,  in Eq. 9.    For each reducing gas, there

will be a different surface reduction equation and reaction rate, Kj.
Watson and Price (48) are also among the limited number of

researchers who have investigated TGS response to mixtures.    They

investigated the response of the TGS 812 to carbon monoxide (CO) and

methane (CH4)^ both singly and in equal mixtures.    They found that the

mixture response was overestimated when individual responses to equal

concentrations of the two contaminants were added.    They concluded that

this was due to the non-linear response of the sensor.

(3
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("^^ 7.    Limitations of TGS sensors
This discussion of TGS limitations covers TGS sensors in general,

but can be applied to the TGS 812 sensor studied in this paper.

TGS sensors must have a stabilization time after first being

energized. When the sensor is first turned on, its resistance in clean

- air drops rapidly and then rises less rapidly to a relatively stable

clean air value. This can trigger false alarms in instruments

utilizing the sensor. The time to reach the clean air value is known

as the primary transitional time or initial action time (13). Ihokura

(19) described the mechanism responsible for this phenomenon. The

sudden heating of the sensor which occurs when it is first turned on

causes momentary excitation of the donor electrons leading to a rapid

increase in electron density in the conduction band. This corresponds

(^^        to the rapid drop in resistance. The slower increase to stabilization
corresponds to oxygen adsorption on the sensor surface. The adsorption

reaction has a higher activation energy than the electron excitation

reaction and is thus a slower process. The primary transitional time

was shown by Ihokura to be related to some extent to the amount of

doped palladium. The time to stabilization is also a function of the

storage time of the unenergized sensor. Generally, the longer the

storage time, the longer the initial action time. The TGS 812 reaches

its maximum Initial action time after 20 days storage. The normal

initial action time for the TGS 812 is less than 2 minutes (11). The

manufacturer has suggested adding a delayed action circuit to an

instrument utilizing the sensor so that these initial false alarms

could be avoided (13).

This initial action response is primarily a problem when utilizing
CM
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j^""^,        the T6S in hand held instruments which may require immediate response
"A
^'~ as soon as they are turned on. TGS sensors have another response

characteristic known as the secondary transitional period. After long

storage in clean air and in some other gases, TGS sensor resistance

increases to a maximum of 20% above the stable ambient air value it

will eventually reach (13). The resistance reaches its maximum value

after six months. The TGS 812 will reach its final, stable ambient

value approximately 3 to 6 days after switch-on (11). This secondary

transitional period means that no calibrations should be made until the

sensor has been switched on for at least one week if the sensor is to

be utilized as a long term breakthrough monitor.

The TGS utilized as a breakthrough monitor for organic toxic gases

and vapors can encounter interferences from a number of different

inorganic gases. These interferences include sulfur dioxide, hydrogen

and ammonia. In addition, interference can occur from organic gases

such as carbon monoxide. Water vapor interference has been discussed

previously. All of these compounds can affect the ability of the

sensor to respond accurately to concentrations of a given contaminant

of interest.

8i TGS applications

The applications listed here for the TGS sensor cover a variety of

TGS models. Applications involving the TGS 812 model studied in this

paper are specifically noted.

TGS sensors have been used in domestic gas leak detectors

(11,12,13) and fire alarm systems through the detection of smoldering

gases such as carbon monoxide (12,13). They have also been used in

^
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("^^ systems designed for detection of inflammable gases below their lower
explosion limits, LEL (7,49). The TGS 813 was found to work quite well

in a prototype permeation indicator for industrial glove testing (46).

Several studies have been done on the use of TGS sensors with

respirators, either as breakthrough indicators or in fit testing.

Loschiavo (25) attempted to utilize the TGS 812 in fit testing of

respirators with ethanol, but found too much interference from the

constituents of exhaled breath. The manufacturer (13) lists the

application of the TGS 109 in a breath alcohol detector, so Loschiavo's

results may be due to choosing the wrong model. A respirator

breakthrough indicator for organic vapor respirators was developed by

NIOSH (29) and evaluated in another study by Kennedy (22). The circuit

for the sensor was designed so that constant humidity readings could be

zeroed. The chemicals tested in the Kennedy study were ethyl acetate,

tetrahydrofuran, acrylonitrile, methylene chloride and acetone. The

alarm response of the indicator was inadequate because readings were

not continuous. To conserve the batteries, an eight minute duty cycle

was designed. Measurements were only made for thirty seconds out of

this eight minutes, thus allowing the possibility for considerable

breakthrough before the alarm was set off.

Bratt (6) evaluated the response of the TGS 812 to sixteen

contaminants. He developed a prototype respirator breakthrough

indicator and tested it against acetone. The response of the TGS 812

over a range of temperature and humidity conditions was also evaluated.

The minimum detectable concentrations found by Bratt for the sixteen

contaminants over a small range of temperature and humidity conditions

are reproduced in Table 2. The contaminant response, temperature and

%

m
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Table 2

Bratt'8 Miniraum Detectable Concentrations (ppin)

Temperature  (^'C)''" Chemical Moisture  (AX RH)*

-2 -1 +1 +2
-20 -10 +10 +20

<1 <1 <1 <1 Acetone <1 <1 <1 <1
2.2 1.1 0.8 1.6 Benzene 5 1 1.2 2.3
2.7 1.2 <1.2 1.9 n-butyl acetate. 5 1.2 1.3 2.8

<l <1 <l <1 n-butyl alcotul 1.1 <1 <1 <1
1.6 <1 <1 <1 Carbon tetrachloride 7 <1 <1 1.7

(# <1.1 <1.1 <1.1 <1.1 Chlorobenzene 1.4 <1.1 <1.1
ͣ

<1.1
<0.9 <0.9 <0.9 <0.9 1-2 Dichloroethane 1.5 <0.9 <0.9 0.9
1.2 <0.9 <0.9 <0.9 Dichloromethane 2.6 <0.9 <0.9 1.3

<1.4 <1.A <1.A <1.A Methyl  alcohol 2 <1.4 <l-4 <1.4
<1 <1 <1 <1 Methyl acetate <1 <1 <1 <1
<0.7 <0.7 <0.7 <0.7 Methyl ethyl ketone <0.7 <0.7 <0.7 <0.7
<0.9 <0.9 <0.9 <0.9 Toluene                         . . 1.5 <0.9 <0.9 <0.9
<1 <1 <1 <1 1,1,1 Trlchloroethane 1.4 <1 <1 <1
2.A 1.1 <1.1 1.5 1,.1,2 Trichloroethylene 5.6 <l.l 1.2 2.5
0.9 <0.6 <0.6 <0.6 Vinyl chloride 1.9 <0.6 <0.6 1

<0.A <0.4 <0.A <0.A Xylene <0.4 <0.4 <0.4 <0.4

tReference   26"C

9
*Refert;nce 6(n RH
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^

humidity evaluations were all performed utilizing a panel of 22 sensors

in a one cubic meter chamber. Bratt's prototype indicator was utilized
in this present study.

9i Summary of MOS and T6S literature

Metallic oxide semiconductors (MOS) have shown some promise as

sensors for toxic reducing gases. The reducing gases react with an

adsorbed oxygen layer on the surface of the semiconductor, releasing
electrons to increase the conductivity (lower the resistance) of the

MOS. This change in resistance can be measured utilizing an electronic

circuit which in turn can set off a preset alarm in response to a given
contaminant concentration.

The Taguchi Gas Sensor (TGS) is one of the most common MOS

sensors. The TGS 812 model is designed to detect toxic reducing gases.

A number of studies have been done on the response of this sensor to

single contaminants. It has been found that different contaminants may

have different response strengths. Response to hydrogen is much

stronger than to most other contaminants such as carbon monoxide.

The sensor can respond to more than one contaminant at a time.

The response can be in part due to the presence of an interference such

as water vapor. Changes in humidity can make accurate responses to a
given contaminant difficult to measure.

A response that is due to the presence of more than one

contaminant is very likely to occur. Many chemical exposures in air

are to chemical mixtures rather than to a single contaminant. While an
increasing volume of research is being done on single contaminant
responses, little work has been aimed at response to mixtures.

NEATPAGEINFO:id=936A4219-FCF1-491A-94B5-D41CD21FE336



c^

%

11. STUDY OBJECTIVE

The objective of this study was to evaluate the effect of solvent

mixtures on the ability of an organic vapor detector to be utilized as

a breakthrough monitor for a charcoal bed. This was done by placing

the detector downstream of a charcoal bed. Comparisons could then be

niade between the detector response to each single solvent passed

through the bed and the response to mixtures of solvents passed through

the bed.

n
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III.  EXPERIMENT DESCRIPTION

A. METHODOLOGY AND APPARATUS

An apparatus was constructed modeled partially on the work of

Bartosh (4) concerning binary vapor effects on respirator service life.

This apparatus had several components: a vapor generation system, a

charcoal bed, the TGS 812 organic vapor detector and a system for vapor

sampling and analysis. A diagram of this system is given in Figure 6.

M^        1. Vapor generation
The solvent vapor was generated by passing a metered amount of air

through a Greenburg-Smith impinger packed in ice. The ice ensured that

a nearly constant concentration was evolved by maintaining the liquid

solvent at a constant temperature. The air containing the vapor was

then diluted with a known volume of room air to produce the desired

concentration which was delivered to the test chamber containing the

charcoal bed.

Pressure regulated house air was passed through a needle valve and

rotameter into a Greenburg-Smith impinger. No attempt was made to

purify this compressed air, since it was assumed that any contaminants

present would be insignificant when compared with the solvents after

the large dilution with room air. The metering of the compressed air
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Figure 6. Test ApparatuaDiagram
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allowed a range of vapor concentrations to be presented to the test

chamber.

A one Inch glass mixing tee was utilized to mix the vapor from the

Implnger with the room air. The fresh air flow was measured by a

calibrated dry gas meter and was regulated by a pinch clamp on the

tubing between the dry gas meter and the mixing tee. Separate systems

were utilized for each solvent stream when a mixture of two vapors was

to be tested. The separate systems were delivered through another

mixing tee to ensure complete mixing before entering the test chamber.

A Teflon® 3-way stopcock placed Immediately after each Implnger

allowed the excess solvent vapor to be bypassed to an exhaust hood as

needed. Breakthrough times could be determined starting from the time

that the stopcock was turned from bypass to straight flow.

2. Cartridge test system with charcoal bed simulation

The cartridge test system consisted of a test chamber,

differential pressure gauge and high volume suction fan with a variable

voltage supply.

The test chant»er was an acrylic cylinder divided Into two parts by

a center plate containing a cartridge receptacle. The chamber was

approximately 20 cm In diameter and 33 cm high with several ports with

SwagelokCS/fittings in the sides of both the top and bottom sections.

These ports allowed attachment of a differential pressure gauge across

the two sections and attachment of a vapor sampling and analysis

system. An entrance baffle encouraged proper mixing and distribution

of the airflow.  A respirator cartridge holder was set in the middle

of the center plate to which another cartridge holder containing the
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Ij^k        TGS sensor could be sealed. The differential pressure gauge allowed
measurement of the pressure drop across the cartridge and thus could be

utilized to determine the Integrity of the seals on the chamber and the

cartridge. Airflow through the test system was provided by the

combination of a high volume suction fan and a house vacuum line

attached to the downstream sampling system through a 3-way stopcock.

Fan air flow was varied by a rheostat on the suction fan and by

adjusting a pinch clamp on the bypass flow to the fan. The house

vacuum air flow was controlled through use of a rotameter and a needle

valve at the vacuum port.

Activated charcoal packed into an empty respirator cartridge was

utilized to roughly simulate a bed of activated carbon of the type

found in ventilation gas adsorber systems. A similar procedure was

used by Abrams (1) in his evaluation of a recirculating fume hood. The

carbon adsorber system chosen to be modeled was the Charcoal Service

Corporation "Cinersorb", Model CSC-16-62-AP. This system contained six

carbon beds in a frame 24 Inches high, 24 Inches wide and 16 Inches

deep with a combined net weight of carbon of 85 lbs. Each of the six

beds was 2 Inches in depth. The activated carbon was 8 to 16 mesh and

was made from a coconut shell base. This system was designed to have a

residence time of 0.125 seconds for contact of the airstream with a

single charcoal bed (8). The packing density and residence time of the

charcoal bed were the key parameters used in simulating this system.

The packing density was defined as the ratio of the mass of carbon to

the volume of carbon in a single bed. Pulmosan Safety Corporation

/^^ respirator cartridges were used to model a single bed in the system. A

comparison of the adsorber bed and respirator cartridge characteristics

(m
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used In the modeling are presented In Table 3.

TABLE 3

Carbon Bed Adsorber Data

Single Adsorber Bed Respirator Cartridge

Volume (liters) 18.88 0.145

Mass of carbon  (gm) 6.43 x 10^ 49.4
Residence time (seconds) 0.125 0.125

Packing density (gm/L) 341 341

The flow rate required through the respirator cartridge was 69.6 L/mln.

The mass of 49.4 gm of carbon was used to produce a packing density of

<vj^ 341 gm/L.    The charcoal  packed Into the respirator cartridges was
Fisher Scientific 6 to 14 mesh, coconut shell based activated carbon.

3.    T6S 812 organic vapor detection system

The cartridge model  described above was set Into a specially

designed respirator cartridge receptacle containing a TGS 812 sensor.

This adapter was In turn set Into the receptacle in the divider of the

cartridge test system.    The electronic circuitry of the breakthrough

Indicator designed and built by Bratt (6) is shown in Figure 7.    A
vernier dial on the instrument allowed a concentration limit to be set

for instrument response in terms of a reference voltage.    The dial was

connected to a 20,000 ohm, 10 turn, linear potentiometer.    The voltage

across this potentiometer was compared with a 10,000 ohm resistor in

series with it.    On exposure to a concentration, the resistance of the

/ ͣ

(f
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(j^ sensor drops, causing an increase in voltage across the 10,000 ohm
resistor.    An alarm signal would be generated when this voltage
exceeded the pre-set voltage level across the potentiometer.

Voltage for the sensor apparatus was provided by a power supply
producing 4.98 VDC.

Since the resistances of the potentiometer and 10,000 ohm resistor
are in series, the current through each resistor must be equal.    Ohm's
Law states:

I = V/R (11)

where I is the current (amps), V is the voltage (volts) and R is
the resistance (ohms).

In terms of the indicator design, the mathematical relationship
between voltage and resistance is:

(# lm&    =        v^ (12)
lOK-rt. Rg + 10 K^

where VioK_^is the dial  setting times 0.498 (reference voltage
of 0 - 4.98 volts, indicated on a 10-turn vernier dial),

Vg is the supply voltage of 4.98 volts,    lOK-A-is the known
resistance in series with the sensor and Rg is the unknown
resistance of the sensor (Kjo.).

Substituting the dial  setting (DS) for VioKvuallows an alarm
setting to be made if the sensor has been calibrated.    From the
calibration plot, the sensor resistance response can be determined for
a given concentration and the alarm set by the equation:

DS = 100 K^ (13)

Rs + 10 Kju
(f
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(Jjj^        The dial setting at which the alarm signals in a clean atmosphere is
related to the initial resistance of the sensor. The resistance of the

sensor to a known concentration (Rg) can be divided by the resistance

in clean air (R^) for a series of concentrations to develop a

calibration curve. In actual use as an alarm system for breakthrough,

one need only obtain the clean air resistance (R^) and consult the

calibration plot for the chosen concentration to obtain the Rg value to

calculate the dial setting (DS) needed.

To establish a permanent record of sensor response in this study,

a strip chart recorder was connected across the sensor. With this

connection, the calculation of sensor resistance (Rj) took the form:

Rs = 10 Kji. (14)

%

(3

Vs/Vm-l

where V^ is the voltage measured across the sensor.

4.    Vapor sampling and analysis system

The sampling system was designed so that it was possible to sample

in a closed circuit system upstream of the cartridge or to sample

downstream with the sample then being exhausted.    The solvent vapor

used to challenge the cartridge could be routed through a MIRAN

infrared analyzer and back into the chamber through a bellows pump.

Total air flow and mass balance were not affected using this method.

The house vacuum system could be utilized to draw a sample from

the downstream section of the cartridge chamber through a MIRAN

analyzer.    The flow rate for this sampling method was controlled

through use of a needle valve and a rotameter.    A higher sampling rate

than that used with upstream bellows pumps allowed a much shorter meter
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\JU^ response time. A bypass was placed on this downstream sampling line so
that constant air flow could be maintained when no downstream sampling

was performed.

B. SOLVENTS

The solvents chosen for use in this study were: acetone, toluene

and carbon tetrachloride. All three were ACS certified reagent grade.

Preliminary testing of the sensor showed no detectable response to

carbon tetrachloride even with concentration increments of 100 ppm.
Carbon tetrachloride has a 1984 ACGIH Threshold Limit Value (TLV) of 5

ppm (3). Carbon tetrachloride was therefore eliminated from further
testing. Chemical and physical data on acetone and toluene are

presented in Table 4.

C. PROCEDURE

The following procedures were performed for acetone and toluene:

determination of suitable analytical wavelengths for the MIRAN infrared

analyzers, calibration of the MIRAN analyzers at the chosen

wavelengths, tests of each of the single components, tests of the

binary mixture, sensor response calculation and determination of

charcoal characteristics. The TGS 812 sensor was energized in room air

for two weeks before the first experimental run.

1. Determination of suitable analytical wavelength

Infrared analysis depends in part on the ability of different

%

(f
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Table 4

Solvent Characteristics

Solvent

Acetone Toluene        Reference

Formula                     CH3COCH3 • C5H3CH3          50

Family       •              Ketone Alkyl Benzene     31

Synonym                     2-Propanone Methyl Benzene    50

Molecular Weight (Sn/nole)   58.08 92.15            50

Density (g^/cm^)            0.7899 . 0.8669           50

Vapor Pressure              210.9 • 25.6             30
(Torr @230C)

Dipole Moment (Debyes)      2.88±1% 0.36±5%          50

Boiling Point (OQ)          56.2 110.6            50

Nelson constant 31
a                        0.034 0.12
b                        0.0029 0.0024

Threshold Limit Value,       750 100               3
1983 (ppm)

Permissible Exposure Limit   1000 200              35
(ppm)

CO
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chemical functional groups to absorb infrared radiation at specific
characteristic wavelengths. When analyzing a mixture of chemicals, it
is Important to determine separate wavelengths where maximum absorbance
response can be determined for each component without interference from
the other component. The MIRAN manufacturer, Foxboro Analytical,
publishes a list of wavelength settings for maximum response for
contaminants listed in the 1982 Threshold Limit Value booklet published
by the American Conference of Governmental Industrial Hygienists (15).

The spectral range of the MIRAN can be scanned automatically.
Scans of room air and house supplied air were made with readings
charted on a percent transmittance scale. These charts were compared
with individual scans made for acetone and for toluene at

concentrations of approximately 250 ppm each. The wavelength settings
suggested by Foxboro Analytical were examined on each plot to determine
If possible Interferences existed for individual contaminant
measurements when analyzing the binary mixture. These contaminant
scans were accomplished by Injection of sample aliquots into a closed
loop system utilizing a metal bellows pump and Teflon® tubing. The
assumption was made that Injected liquids are vaporized completely and
that these vapors behave as ideal gases. To determine the volume of
Injected liquid needed to achieve 250 ppm, the ideal gas laws were
used. The molar volume of the test contaminant was calculated from the

relationship:

MV = (RT/P)(1000) (15)

where MV is the molar volume (cm^/mole), R is the ideal gas
constant [(62.361 liter-mm Hg)/(g-mole-OK)], T is the system
temperature (^K), P is the system pressure (ran Hg) and 1000
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(B ,s a conversion facto, fro. „te.. to 0^3.
The volume of liquid needed for injection was then calculated from the
relationship:

n = (250 ppm)(MH)(5640)(10-3) (16)
(e)(MV)

where n is the injection volume (microliters), MW is the molecular
weight of the test contaminant (gm/mole), the value 5640
represents the closed loop volume (cm3), 10"3 is the
conversion factor from cm3 to microliters and f is the

density of the liquid solvent (gm/cm^).

2. Calibration of the MIRAN spectrometers

Once a wavelength free of interference between test contaminants
and atmospheric components was found, calibration of the MIRAN for each
contaminant was begun. The MIRAN calibration requires the setting of a
pathiength which would give an absorbance less than 1.0 at the maximum
test concentration. From Beer's Law, the following relationship
between absorbance (A) and pathiength (L) occurs:

A = CL£ (17)

where C is contaminant concentration (ppm) and £is an extinction
constant (ppm'l m'^).

This equation can be rearranged to:

e =  A (18)

Ct,

(f

CL

By inserting the values obtained for the test contaminant from the
previously mentioned Foxboro list (15), the extinction constant can be
determined. This value is then inserted into an equation suggested by
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Reist (38) to determine the correct pathlength required for MIRAN

analysis:

L =   0.3 (19)

ce

where 0.3 is the absorbance value suggested by Reist (38) and C

is the median of the calibration concentrations.

The MIRAN pathlength was adjusted to the pathlength setting closest to

the calculated value.

A calibration curve for each contaminant was developed by

successive injections into the closed loop calibration system. The

absorbance value produced two minutes after each injection was

measured. These values were plotted against the cumulative

concentration. The concentration increment (C) for each injection was

calculated from a rearrangement of Eq. 16:

C = (n)(g)(MY)(in6) (20)

(MW)(5640)

The system was purged and several concentrations were remeasured. This

calibration procedure was followed for both test contaminants and both

MIRAN analyzers.

3. Tests of single contaminants

In the single contaminant tests, one MIRAN was utilized to monitor

the upstream challenge concentration. The other MIRAN monitored

downstream concentrations to determine breakthrough. This downstream

MIRAN response also served as the concentration comparison when

determining TGS 812 response to the contaminant. The stopcocks in the

sampling system were adjusted so that a sample was drawn out of the
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((j^ downstream section of the test chamber through the MIRAN and then out
of the system through the house vacuum.    The rotameter connected to the

house vacuum was set to achieve a 20 L/min flow rate to allow a fast

response time for the downstream MIRAN.    The residence time of 0.125

seconds given for the carbon adsorber bed was divided into the volume

of the respirator cartridge, 0.145 liters, to find a flow rate of 69.6

L/min.    Once this flow rate (Q) was known, the approximate flow rate

(Qi') required through the Greenburg-Smith impinger could be estimated

from the relationships:

C-Q =ZCi-Qi (21)

and

Ci = {P/Pi)(106) (22)

where C^ is the concentration (ppm) at flow rate Qi (L/min)

in stream 1 , C is the concentration of vapor (ppm) at total

flow rate Q (L/min), P-f is the partial pressure of the

solvent vapor (mm Hg) and P is atmospheric pressure (mm Hg).

From these two equations the flow rate, Q-f, through the Implnger can be

derived:

Ql = (C)(P)(69.6 L/min) (23)

(Pi)(106)

It should be noted that the solvent vapor pressure. Pi, was found for

temperatures near 0 oc to 4 ^C due to use of the Ice bath to maintain

implnger temperature. The concentration value, C, was set to the

desired challenge concentration for this calculation.

The flow through the rotameter and Impinger was adjusted to the

^ ͣͣ'^k value of Qj via a needle valve on the house air. The stopcock was
adjusted to exhaust the vapor before it reached the cartridge chamber

^,
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(i^
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during the setup procedure. The flow through the dry gas meter was

adjusted to a value of 69.6 - Q-|. This was accomplished through

adjustment of a pinch clamp on the tube between the meter and the glass

mixing tee and through adjusting the bypass clamp and rheostat on the

exhaust fan. During adjustments of flow rates in all experimental

trials, a setup cartridge was utilized containing 49.40 gm of the

Fisher activated charcoal.

After the initial flow setup, the exhaust fan was shut off. A

fresh respirator cartridge containing the pre-weighed amount of

charcoal was placed in the cartridge chamber and the chamber sealed.

Modeling clay provided a further seal around the cartridge after it was

screwed into the receptacle. The fan was turned on again and allowed

to pull air through the cartridge for 5 to 10 minutes to establish a

baseline reading for T6S response to uncontaminated air, R^. The flow

rate was adjusted, if necessary, during this period.

After a steady baseline was established, the strip chart recorders

connected to each MIRAN were turned on and the stopcock turned to route

vapor into the system. The test was continued until the downstream

concentration reached half of the upstream challenge concentration.

The breakthrough times to achieve 10% (tbio) and 50% (t55o) of the

challenge concentration were noted. Depending on the challenge level,

times for breakthrough at the following concentrations were also noted:

1, 5, 10, 25, 50, 100, 150, 200, 250 and 500 ppm. These breakthrough

times were utilized later in developing T6S sensor response curves.

Relative humidity, room temperature and cartridge pressure drop

readings were noted.
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4. Tests of the binary mixture

For binary vapor tests, each MIRAN was assigned to monitor one of

the mixture components. The same MIRAN was utilized for both upstream
and downstream monitoring of its assigned component.

The flow rate needed for each of the impingers was determined

utilizing Eq. 23. The concentration, C, was set to the concentration

value desired for the component at a flow rate, Q, in the mixed stream

of 69.6 L/min. The pinch clamps on each of the dry gas meter lines

were utilized to produce the desired ratio of concentrations in the
mixture. Adjustments were made to provide mixtures with similar

concentrations of each component at low, medium and high exposure

ranges (approximately 250 ppm, 500 ppm and 1000 ppm). This was

accomplished by adjusting each pinch clamp to provide 34.8 - Q,- L/min,
where 34.8 L/min is half of the system flow rate of 69.6 L/min. A

setup cartridge was utilized during these adjustments. After setup,

the fan was shut off, a fresh cartridge of pre-weighed charcoal was

placed in the chamber and the chamber was sealed. The fan was turned

on again and further adjustments to airflow were made as needed while

the TGS response baseline for uncontaminated air was established as in

the single contaminant test. Solvent vapors were routed to the exhaust

hood while setup procedures were followed.

Once a TGS baseline was established, the strip chart recorder for

each MIRAN was turned on and the stopcocks for each contaminant were

turned to deliver the solvent vapors to the system.

The bellows pumps utilized for upstream sampling had a much slower

sampling rate than the 20 L/min for downstream sampling. If an attempt
was made to measure upstream concentrations at the beginning of an
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\J^ experimental run. It could be possible to miss the 10% breakthrough due
to the slower sampling rate and required purge time due to the higher

challenge concentration. For this reason, each MIRAN was set to

monitor downstream concentrations at the beginning of each run. The

run was allowed to continue until nearly 50% of the desired challenge

concentration had broken through for the component having the higher

charcoal retention. At this point the stopcocks were routed to allow

sampling of the upstream challenge concentrations. The flow rates were

continually monitored to assure that the measured challenge

concentration had been maintained throughout each experimental run.

: .   Room temperature, relative humidity and cartridge pressure drop were

noted.

When determining any breakthrough time, the assumption was made

that there was a delay in response of either MIRAN because time was

needed to fill the 5640 cm^ volume of the MIRAN sampling cell. Bartosh

(4) found that 95% of the true response was achieved by the MIRAN after

51 seconds. Since this current project utilized the same sampling flow

rate of 20 L/min in a similar downstream sampling system, this 51

second response delay was corrected for in determining breakthrough

ti mes.

5. Sensor response calculations

TGS 812 sensor response curves for each experimental run were

developed by noting the voltage reading measured across the sensor, V^,

at each of the corrected breakthrough times. This value was Inserted

in Eq. 14 to determine the sensor resistance, Rg, at that breakthrough

time. The fresh air resistance value, Rj, for each experimental

(^
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(j^        run was determined from the baseline reading taken at the beginning of
that run.

Once the R^ value and all Rs values for an experimental run had
been determined, a TGS 812 response curve could be generated.

For the single contaminant tests, the ratio Rs/Ra was plotted
against the contaminant concentration at each defined breakthrough

point (1e. 1 ppm through 500 ppm) as well as the 10% and 50%

breakthrough concentrations.

The procedure for mixtures assumes that each component will

contribute to the sensor response at any given point in time. It thus

becomes Important to know both concentrations at any breakthrough time

of either one of the components. At a corrected breakthrough time for

component A readings were taken for the TGS 812 voltage value and

concentration of component B. The procedure was repeated for all

designated breakthrough times for both components. The Rg and Rg

calculations were performed as In the single contaminant tests and the

ratio Rs/Ra found for all breakthrough points.
It should be possible to visualize the response trend of the TGS

812 to the presence of a two component mixture utilizing a 3-

dlmenslonal plot with Rg/Ra as the dependent value. In addition, the
equation developed to produce this plot should allow estimates to be

made of sensor response to any concentrations of the two components

within the measured range.

%

OP
6. Determination of charcoal characteristics

The Fisher activated carbon was evaluated to determine bulk

density, specific bulk volume, total void volume and solid volume of
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% the granules utilizing methods described by Bartosh (4).

Bulk density was determined by vibrating a pre-weighed (49.401 gm)

sample of the carbon in a volumetric flask to a minimum volume. The

charcoal mass was divided by this minimum volume to obtain the bulk

density. Specific bulk volume was found by taking the reciprocal of

the bulk density. Total void volume was found by adding water to this

same sample to more than cover the charcoal. The volume of water added

was noted and the flask was agitated and allowed to settle several

times over the course of two hours. At the end of this time, the

original charcoal volume was subtracted from the total volume of the

mixture. The difference was then subtracted from the total amount of

water used and the difference divided by the mass of charcoal used to

obtain the total void volume. The total void volume was then

subtracted from the specific bulk volume to obtain the volume of the

solid granules.

The adsorption capacity of the charcoal at the 102 breakthrough

point was also determined for each of the single contaminant tests. To

determine these capacities, the challenge concentrations had to be

converted from ppm to mg/L:

Cn, = Cp(MW/MV) (24)

^ where 0,^ ''s the concentration in mg/L, Cp is the concentration
in ppm, MW is the molecular weight of the test contaminant

(gm/mole) and MV is the molecular volume in cm^/mole.

The total flow rate in L/min, Q, for each experimental run was then

used to calculate the total challenge rate, CR, In gm/hr:

r^ CR = (Cn,)(Q)(60m1n/hr)/(1000mg/gm)       (25)
The mass of solvent vapor which escaped through the charcoal bed

(•.
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\J^ up to the 10% breakthrough point was determined by a strip chart paper
weighing procedure. A solvent challenge mass in grams, Mjc. was

calculated:

Msc = {CR)(tio%)/{60) (26)

where tio% is the 10% breakthrough time (min.) and 60 is a

conversion factor from minutes to hours.

A "standard" piece of strip chart paper was generated by tracing a

straight line for a length equivalent to one hour at the absorbance

value corresponding to 10% of the challenge concentration. This

tracing was then cut out and weighed to find a "standard" chart paper

mass, Msp. A "standard" mass, Mss. for solvent escaping through the

charcoal at 10% of the challenge rate over one hour was calculated.

The chart paper for the experimental run was cut along its reading

trace up to the 10% breakthrough point and weighed to find the

breakthrough paper mass, Mbx. The total mass, M£s» of solvent escaping

through the charcoal bed up to the 10% breakthrough point was then

determined:

"ES = (Mbt)(Mss)/(Msp) (27)

The mass of solvent adsorbed, M;^, was found by subtracting the

escaped solvent mass, M^s, from the solvent challenge mass, Mgc. found

in Eq. 26.

The adsorption capacity was found by dividing the mass of solvent

adsorbed, M^, by the mass of charcoal in the respirator cartridge, Mq,

in each experimental run.

The experimental design allowed data to be collected regarding

r0fk carbon adsorption as well as TGS response. The breakthrough times
measured in each single contaminant test were compared against results

(•
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(JP        predicted by two equations described in Appendix A, Eq. 29 developed by
Nelson and Correia (31) and Eq. 31 adapted by Abrams (1) from Grubner

and Burgess (16).

m
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IV. RESULTS AND DISCUSSION

A. TGS 812 RESPONSE CHARACTERIZATION .

The objective of this study was to characterize the response of

the TGS 812 sensor to a binary solvent mixture which had been passed

through a charcoal bed. To accomplish this, the response to each

single contaminant was first characterized. Table 5 contains the

response values at six selected concentrations for each single test.

1. TGS 812 single contaminant response

Acetone and toluene were the two solvents tested in this study.

These two solvents were also evaluated for TGS 812 response in a study

by Bratt (6). Bratt designed and built the prototype breakthrough

detector utilized in this current study. It was expected that response

characteristics would be similar in the two studies. This expectation

did not hold true.

The TGS response curves for acetone in Trials 1-4 are presented

in Figures 8 to 11. All data points from these tests are plotted

together in Figure 12. The straight line in Figure 12 represents the

power function equation derived from a least squares regression of all

data points in the acetone trials:

TGS = (1.135) Ca"°-228 (£8)

where TGS is the TGS 812 response (Rs/Rj) to acetone and Ca
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Trial
Number

1-A

2-A

3-A

4-A

5-T

6-T

7-T

8-T

TABLE 5

TGS 812 Response (Rs/Ra) in Single Vapor Tests
Challenge Concentration (ppm)Concentration
(ppm) J.       10       50       100

119.3

617.2

1062.7

1110.1

90A.1

347.7

263.8

1386.6

0.944 0.738 0.464 ------

0.966 0.700 0.439 0.372

0.983 0.899 0.684 0.569

0.848 0.682 0.450 0.374

1.000 0.982 0.934 0.824

0.740 0,926 0.946 0.946

0.629 0.712 0.643 0.634

0.921 1.000 0.890 0.882

2M

0.269

0.387

0.259

0.800

0.844

0.587

500

0.300

0.224

0.762

0.647

ON
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(Jl^ is the acetone concentration  (ppm).
A correlation coefficient (r2) of 0.840 was obtained.    It can be seen

that below 10 ppm the relationship tended to be more exponential.

A plot of the results of Bratt's (6) acetone calibration tests is

presented in Figure 13.    It can be seen that the response in his tests

was much stronger.    The sensitivity to changes in concentration was

much greater also as is evidenced by the greater slope found in the

least squares regression of Bratt's acetone data:

TGS =  (0.7035) Ca"0-519 (29)

The TGS 812 response curves for toluene in Trials 5-8 are

presented in Figures 14 through 17.    All data points from these points

are plotted together in Figure 18.    A power function equation for

toluene response was developed and is represented by the straight line

- in Figure 18:

'  TGS =  (0.879) Ct-0-020 (30)

where Cj is the toluene concentration  (ppm).

A correlation coefficient (r2) of 0.053 was obtained.    It is evident

that the toluene data does not follow a power relationship.    An

examination of Figure 18 shows that no discernable response to toluene

occurs below 100 ppm.

A plot of the results of Bratt's (6) toluene calibration test is

presented in Figure 19.    As with the acetone tests, response to toluene

is much greater in Bratt's test.    A least squares regression of his

data is represented by the straight line in Figure 19 and the following

equation:

TGS = (0.9018) Ct"0-474 (31)

Comparison of Figures 18 and 19 and the slopes in Eq. 30 and Eq.

(B
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31 makes it evident that there has been a large loss in sensitivity to

toluene between Bratt's study and this current study. The TGS 812

response to toluene in the current study is also more erratic, although

a noticeable increase in sensitivity occurs above 100 ppm toluene in

Figure 18.

This erratic response was also present in the preliminary

evaluation of carbon tetrachloride. Bratt's tests of TGS 812 response

to carbon tetrachloride showed a very small sensitivity (shallow slope

on a response curve). The overall response sensitivity of the sensor

seems to have deteriorated since Bratt's study. It is therefore not

surprising that carbon tetrachloride response could not be detected

even at high concentrations.

2. TGS 812 binary mixture response

Response of the TGS 812 to binary mixtures of acetone and toluene

was also evaluated. Selected response values are presented in Table 6.

The TGS response values for the selected acetone concentrations are

presented in the columns on the left along with the complementary

toluene concentration present at that same point in the test. This

same procedure is used in presenting the toluene data in the columns on

the right along with the complementary acetone date.

Acetone data for Trial 9 is absent below 450 ppm. This is due to

the quick breakthrough time of acetone. Trial 9 was the first binary

test and the procedure used was found to be inadequate. The sampling

system was adjusted in this trial to measure challenge concentration

first. When the challenge concentration reading had stabilized the

sampling system was re-adjusted to measure breakthrough concentration.
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TABLE 6   ^

TGS 812 Response (Rs/Ra) in Binary Solvent Tests

Trial        Trial Trial Trial
9 . 10 11 12

Acetone Toluene  Acetone Toluene Acetone Toluene Acetone Toluene

Cha11enge

Concentration (ppm)  546.10 541.50   1179.00  746.80" 573.7   364.2  232.8  290.7

Acetone Concentration

(ppm) (*)-—  462.40
Toluene Concentration

(ppm) ---    1.00

TGS Response (Rs/Ra)    ---   0.385

1.00  67.84   1.00   94.40   1.00   72.80

0      1.00  0      1.00   0      1.00

0.927   0.483  0.977  0.370   1.000  0.336

Acetone Concentration

(ppm)

Toluene Concentration

(ppm)

TGS Response (Rs/Ra)

— 664.00

-—  10.00

-—  0.367

10.00  961.60 10.00  648.00  10.00  276.80

0.20   10.00  0     10.00   0     10.00
0.710  0.260 0.633  0.237  0.813  0.172

(�)  Sampling system was set to record challenge concentration.
Was not returned to downstream until after 50% acetone
breakthrough.

(Continued on next page)
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TABLE 6 (Continued)

TGS 812 Response (Rs/Ra) in Binary Solvent Tests

Trial Trial Trial Trial
9 , 10 11 12

Acetone Toluene  Acetone Toluene Acetone Toluene Acetone Toluene

Acetone Concentration
(ppr.)

Toluene Concentration
(ppm)

TGS Response (Rs/Ra)

— 784.80

— 50.00

---  0.360

50.00 1600.00 50.00 702.40  50.00 287.20

0.60       50.00       0.^.0       50.00

0.531        0.248     0.503       0.237

0.40       50.00

0.448       0.167

Acetone Concentration
(ppm)

Toluene Concentration

(ppm)

TGS Response (R&ZRa)

100.00 1600.00 100.00  677.60  100.00  273.60

1.00  100.00  1.20  100.00   1.76  100.00

0.449  0.248  0.359  0.232   0.286  0.171

Acetone Concentration

(ppm)

Toluene Concentration

(ppm)

TGS Response (Rs/Ra)

Acetone Concentration

(ppm)
Toluene Concentration

(PP~)
TGS Response (Rs/Ra)

150.00 1566.00 150.00  636.00  150.00

1.92  150.00   1.36  150.00   2.20

0.382   0.248  0.326   0.232   0.227

200.00

2.08

0.358

200.00  605.60  200.00

1.92  200.00    3.32
0.295  0.231   0.198

NEATPAGEINFO:id=4B824F42-1875-4163-A81C-8A88DB8D8D13



73

iv^^        It was discovered at this time that the acetone reading was already
past the 50% breakthrough. Based on these results, all following

binary tests were performed with the breakthrough readings measured

first as described in the procedure section of this paper.

In evaluating the TGS 812 binary vapor response several patterns

of results should first be discussed. As has been mentioned, the

response to acetone was stronger and more definitive than to toluene.

The response of the sensor to these solvents was also affected in this

study by the ability of the solvent to be adsorbed on the charcoal bed.

Acetone was less strongly adsorbed and was thus always the first

solvent to breakthrough. This breakthrough pattern meant that it was

the affect of toluene breakthrough on the already occurring acetone

response which should be Investigated.

To evaluate the binary response, a linear regression was performed

of the TGS response (Rg/Ra) versus the natural logarithms of acetone

concentration (InA) and toluene concentration (InT):

TGS = 0.611 - {0.043)(lnA) - (0.027)(lnT)   (32)

A correlation coefficient (r2) of 0.60 was obtained. This was a

slightly better fit than found for a linear regression using In TGS

(R2=0.55). It should be noted that response values which occurred

before toluene began breakthrough were not included in this regression

since In (0) is not a real number. A plot of Eq. 32 is presented in

Figure 20. Examination of both Figure 20 and Eq. 32 shows that acetone

has a stronger effect on response of the TGS 812 than toluene when an

equal mixture of the two contaminants is present.

The combination of the rapid breakthrough of acetone and the

relatively poor response of the sensor to toluene makes evaluation of
(9
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(jfl^ the binary solvent response difficult.    Examination of Table 6 shows
that the lOX breakthrough points for acetone occur in each trial at
times when toluene values were very low (less than 10 ppm).

Based on the single tests of toluene vapor, it is not expected

that these low toluene values would affect the ability of the sensor to

set off the alarm at the pre-set 10% acetone breakthrough.    This

statement must be tempered by the consideration of the apparently large
drop in sensitivity found when comparing the single solvent tests

results found in this study with those of Bratt (6).    It is possible
that the toluene would have had an affect on the sensor response to

acetone breakthrough if the sensor was as sensitive as in Bratt's
study.

m

(#

3. TGS 812 fresh air resistance

Another factor to be considered when evaluating the sensor

response to contaminants is the stability of its fresh air resistance.

Examination of Figure 21 shows that this resistance was relatively

constant for the single solvent tests (Trials 1 - 8), but begins to

rise steeply during the binary tests. This rise suggests either a
fault in the sensor or the effect of an uncontrolled environmental

factor. Table 7 contains the fresh air resistance value, room

temperature and relative humidity readings for each trail. Both of the

environmental factors Increased during the last three trials, but the

effect these changes would have are the opposite of those observed.

Examination of Figure 5 and Eq. 7 shows that an increase In either
factor should cause a drop in resistance rather than a rise.

There are two other possible causes for this increasing
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TABLE 7

TGS 812 Fresh Air Resistance (Ra) and Environmental Conditions
T rial N um ber

1

2

3

A

5

6

7

8

9

10

11

12

Ra (Kilohms)

97.097

95.957

63.235

91.220

94.842

91.633

83,084

72.314

64.107

75.862

124.595

185.294

Room
Temperature (^C>

22.3

22.0  ^

21.8

22.5    ;
23.0

24.0

22.6

22.3

23.2   • '

23.4

23.5

23.7

Relative
Humidity (I)

---

44.0

48.5

48.0

4§.0

47.0

50.0

65.0

47.0

54.0

60.0

^
^
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QjH        resistance. One possibility is that the house air supply may have
become contaminated with an oxidizing gas which would cause an increase

In the sensor resistance in a manner similar to that described for

oxygen. The other and more likely cause for the resistance increase is

failure of the sensor. It has already been established that sensor

sensitivity has decreased to a large extent when compared with Bratt's

study (6). The fact that the sensor resistance rose rather steadily

when environmental conditions should be causing a drop in resistance

further supports this theory.

This fresh air resistance change and the relatively poor fit

{r2 te 0.60) of Eq. 32 make it difficult to provide a clear cut
conclusion based on the binary tests. It does appear that the ability

of acetone to reach breakthrough quicker and to react more strongly

with the sensor suggests that this sensor could possibly be used in

breakthrough monitoring for ventilation systems where these two

solvents are in use. No predictions for other solvents can be made

based on the binary test results in this study. Further research is

needed.

B. CHARCOAL BED EVALUATION

The Fisher activated charcoal was characterized using methods

described by Bartosh (4). The results of these characterization

procedures are presented in Appendix C.

The adsorption capacity at the 10% breakthrough point was

calculated for all except the last of the single vapor trials. The

breakthrough curve for Trial 8 could not be weighed as required in

(m

(9
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these calculations. The gain scale had to be reduced during this

trial, thus changing the proportionality between curve size and the

concentration of toluene present. The adsorption capacity and other

charcoal bed adsorption parameters for each single solvent trial are

presented in Table 8. It is clear from the lower calculated adsorption

capacities that acetone is less strongly adsorbed on the charcoal than

the toluene. It would be expected that acetone will thus have a

shorter time to 10% breakthrough than toluene for the same

concentration of each solvent.

The actual and predicted breakthrough results are presented in

Table 9. Nelson and Correia's (31) equation, Eq. 29, consistently

overestimated time for acetone. Equation 29 also underestimated all

the toluene 10% breakthrough times except for that of Trial 8, which it

overestimated by less than 5%.

Equation 31 was found to be quite accurate for prediction of 10%

breakthrough times as compared to Eq. 29. This is not surprising

considering the sources of the adsorption capacity values for each

equation. Eq. 29 utilizes a theoretical adsorption capacity value

calculated from a range of solvents within a chemical family. Eq. 31

utilizes the estimate of adsorption capacity found in Table 8 which is

a crude value, but more directly associated with the solvent of

interest.

Both acetone and toluene 10% breakthrough times (tg) fit well to

Eq. 30 describing a power slope relation to challenge concentration (C)

(ie. te = aC^). Acetone had a power coefficient (b) of -0.515 and a

correlation coefficient (r2) of 0.998. Toluene had a power coefficient

of -0.830 and a correlation coefficient of 0.976. The 10%

NEATPAGEINFO:id=94081852-A990-45AE-8DCD-1E232574DC82
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TABLE 8

Charcoal Bed Adsorption Parameters for the Single Solvent Tests
Trial No. c. M Ads, -flL ͣ PD Atm. RT RH

1-A 119.3 49.403 0.031 69.5S 11.2 753.8 22.3 --

2-A 617.2 49.400 0.075 69.86 11.5 755.8 22.0 44.0
3-A 1062.7 49.402 0.093 70.17 11.6 759.1 21.8 46.5
4-A 1110.1 49.454 0.098 70.21 • 11.1 757.1 22.5 4£.0
5-T 904.1 49.395 0.437 69.18 10.2 755.2 23.0 48.0
6-T 347.7 49.404 0.363 68.08 10.8 751.6 24.0 47.0
7-T 263.8 49.405 0.293 69.82 11.3 756.6 22.6 50.0
8-T 1386.6 49.407 ͣ --- 69.08 10.1 749.4 22.3 65.0

Abbreviations
A = Acetone
T = Toluene
C = Challenge concentration in ppm.M = Mass of charcoal in gm.
Ads " Adsorption capacity in gm solvent/gm charcoal,Q » Air flow rate in L/min.
PD ͣ Pressure drop across charcoal bed in mm of water.Atm « Atmosphere pressure in mm of mercury.RT «: Room temperature in °C,
RH «s Percent relative humidity.

00
o

NEATPAGEINFO:id=B9414B17-D6D4-42C1-9F0A-6C1FB1ACE210



%

TABLE 9

Single Vapor Breakthrough Results

Trial No.   JQ.     Eq . 29      %Dev.      Eg. 31 .    %Dev.      T10%      T50"
1-A 119.3 2A2.90 +65.Al 77.65 -8.19 8A.01 U6.01
2-A 617.2 80.52 +53.A2 36.01 -A.17 37.51 75.11
3-A 1062.7 55.53 ͣ••51.83 25.69 -2.26 26.75 54.91
A-A 1110.1 5A.23 +50.30 26.06 -3.A2 26.95 51.55
5-T 90A.1 78.07 -20.32 91.54 -2.61 93.93 129.05
6-T 347.7 151.27 -39.23 202.60 -3.95 210.61 248.61
7-T 263.8 175.31 -24.31 207.79 '  -4.88 217.93 274.73
8-T 1386.6 59.12 +4.72 ---      --- 56.33 95.93

Abbreviations

A    =  Acetone
T   =  Toluene
C    =  Challenge concentration in ppm.
Eq.29=  10% breakthrough time in min

predicted by Equation 29.
Eq.31=  10% breakthrough time in min

predicted by Equation 31.
%Dev.=  Percent deviation of calculated from measured

10% breakthrough time.
TlO% «s  Measured 10% breakthrough time in min.
T50% «  Measured 50% breakthrough time in min.

00
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r^^ breakthrough times are plotted against challenge concentration for each
solvent in Figure 22.

Typical breakthrough curves for acetone, toluene and a binary

mixture of them both are presented in Figures 23, 24 and 25,

respectively. Table 10 contains the charcoal bed adsorption parameters

for the binary tests. Table 11 contains the breakthrough times for the

Individual solvents in each binary test. An examination of Table 11

and Figure 25 shows that the same general pattern was followed for

breakthrough as with the single solvent tests. Acetone breakthrough

was much faster than that of toluene.

Comparison of Tables 9 and 11 brings to light another pattern for

these binary tests. The acetone achieves 10% and 50% breakthrough in

much shorter time. This can also be seen when comparing Figures 23, 24

V^^        and 25 since the concentration of each single solvent is similar to the
concentration of that solvent in the binary mixture. These figures

correspond to Trials 2, 6 and 11, respectively. Comparison of the

acetone 10% breakthrough times for Trials 2 and 11 shows that the

acetone is achieving breakthrough almost 25% faster than would be

expected with a single vapor. This same pattern was noted by Bartosh

(4) in his study on binary solvent effects on respirator cartridge

breakthrough.
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TABLE 10

Charcoal Bed Adsorption Parameters for Binary Vapor Tests

Trial No.      CA      CT     M.     01 IS:
J!

9       5A6.1   5A1.5  49.401  70.42   11.2, ,
10 1179.0   746.8  49.399  70.83   10.5  *

11 576.7   364.2   49.407  72.02    9.7. ;

12 232.8   290.7  49.401  69.49   9.4

Abbreviations

CA = Challenge concentration of acetone in ppm,
CT = Challenge concentration of toluene in ppm.
M = Mass of charcoal in gm.
QT = Total flow rate passing through the bed in L/min.
PD = Pressure drop across charcoal bed in mm of water,
Atm = Atmospheric pressure in mm of mercury.
RT = Room temperature in *'C,
RH = Percent relative humidity.

Atm £1 M

759.7 23,2 -----

764.8 23.4 47.0

756.6 23.5 54.0

755.1 23.7 60.0

00
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TABLE 11  ,

Binary Solvent Breakthrough Results

Trial No. C        T10%       T50%        C T10%        T50%
9

10

11 576.7      28.05      47.43    : 364.2    99.93       135.93
12

Abbreviations

Acetone .'; Toluene

c_ T10% T50% -L T10%

546.1 ---- ----- 541.5 76.91

1179.0 15.51 25.77 . 746.8 55.21

576.7 28.05 47.43 : 364.2 99.93

232.8 41.97 71.99 290.7 184".37

C   ~     Challenge concentration in ppm»
TlO% =  10% breakthrough time in min.
T50% =  50% breakthrough time in min.

00
00
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V. CONCLUSIONS

The stated objective of this study was to evaluate the effect of
binary solvent mixtures on the ability of an organic vapor detector,
the TGS 812, to be utilized as a breakthrough monitor for a charcoal
bed filter system.

When consideration is given to the relatively rapid breakthrough
times and the greater sensitivity of the TGS 812 for acetone, it would
appear that the sensor can be used as a breakthrough detector when air
containing mixtures of acetone and toluene must be purified. This
statement must be tempered with the fact that the sensor had shown a
large sensitivity decrease to the solvents used here when compared with
a previous study of single solvent response with the exact same sensor
(6). Comparison of the single vapor tests with the binary vapor tests
showed that acetone 10% breakthrough in the binary tests occurred at
points where toluene concentrations were sufficiently low that they
probably could not contribute appreciably to a change in the sensor
response. This may not hold true with new sensors working at peak
efficiencies. Time considerations did not allow further testing with
new sensors to test this idea.

The results of this study suggest that the sensor can be used as
an acetone-toluene binary mixture breakthrough detector. Extrapolation
to other mixtures is difficult, although it is probable that this
sensor could be used in any system where acetone was predicted to
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90

(»

%

(9

breakthrough more rapidly than the other component. Such predictions

are beyond the scope of this current project.

Charcoal bed breakthrough response occurred as predicted by carbon

theory. The more volatile acetone was less strongly adsorbed in the

bed and thus achieved breakthrough more rapidly in both the single and

binary tests. Both acetone and toluene achieved good fit in the single

tests to the power relationship between 10% breakthrough time (tg) and
challenge concentration (C) described by Nelson and Correia (31):

tB = aCb.
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VI. RECOMMENDATIONS

It is clear from comparison of the results achieved here for
single vapor tests with those of Bratt (6) that the TGS 812 sensor is
capable of greater sensitivities than were achieved here. It is thus
clear that further testing is needed.

One possible study to be performed would utilize a bank of sensors
as Bratt (6) did in his calibration tests. This bank of sensors could
be placed in a duct system downstream of an actual charcoal bed while
known concentrations of binary solvent mixtures are passed through the
bed. The bank of sensors would help eliminate problems such as those
encountered in this study where possible failure of a single sensor can
make results difficult to Interpret.

The electronic circuitry associated with the sensor could be
redesigned to allow adjustment of the heater voltage in the sensor to
achieve greater sensitivity by approaching the optimum response
temperature of one of the solvents in a pair. Tuma and Clifford (43)
have suggested using a microcomputer system to control a bank of
sensors in this way.

A recent study by Jonas, et al, (20) presented a new method for
prediction of activated carbon performance for binary vapor mixtures.
The adsorption capacity for each individual component can be calculated
by this method and 10% breakthrough predictions made utilizing Eq. 31.
A procedure based on these predictions would help select further
pairings of solvents for binary testing of the sensor.
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CARBON ADSORPTION THEORY

The breakthrough response for a given organic vapor or gas in a

charcoal bed is dependent on the strength of adsorption of the vapor.

Adsorption is defined as a process in which a gas or liquid sorbate is

attracted to a solid surface of a sorbent and is held in a gas-solid

interface (17). These attractive forces can be categorized as either

chemical or.physical.   -

1. Chemical adsorption

(i^P Chemical adsorption involves sharing of electrons between the
sorbate and sorbent to form a chemical bond. This bond formation often

requires an activation energy input, occurring primarily at

temperatures above 400 op. This high heat requirement means that

primarily physical adsorption should occur in this present study.

Physical adsorption on carbon involves relatively weak attractive

forces known as Van der Walls forces. The sorbate must diffuse close

to the carbon granule surface before these forces take effect. Carbon

granule surfaces have many pores and micropores which can extend into

the granule. Vapors which are trapped in these micropores tend to

condense. It has been shown that a higher degree of pore filling will

occur at high concentrations of relatively nonvolatile solvents as

compared to low concentrations of volatile solvents (31).

(9
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2. Adsorption on activated carbon

Activated carbon is an electronically non-polar substance. It

will adsorb most organic gases and vapors in preference to the more

polar atmospheric moisture (24).

Chemicals can be divided into three categories in regards to their

ability to be physically adsorbed on activated carbon (24). True

gases, with critical temperatures less than -50 oc and boiling points

less than -150 ^C, are virtually non-adsorbable at normal temperatures.

These gases include hydrogen, nitrogen, oxygen, carbon monoxide and

methane. Low boiling vapors, having critical temperatures between 0 ^C

and 150 %  and boiling points between -100 oc and 0 oc are moderately

adsorbable. These chemicals include ammonia, ethylene, formaldehyde,

hydrogen chloride and hydrogen sulfide. Heavier vapors, having boiling

points greater than 0 °C, will be readily adsorbed at normal

temperatures. Chemicals falling into this category include most

odorous organic and inorganic substances.

A number of studies have been made on charcoal cartridges to

determine adsorption response trends. Some of the most extensive work

in this area has been performed by Nelson, et al (31,32). They tested

121 different solvent vapors for sorptive capacity and breakthrough

times in several types of respirator cartridges (32). Defining service

life as the time to 10% breakthrough, it was found that the more

volatile the chemical was, the shorter its service life. It was also

found that a relative humidity greater than 65% would reduce the

cartridge service, especially as the challenge concentration was

reduced. It was also found that the service life was reduced 1 to 10%

for each 10 oc increase in temperature. A predictive equation for
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cartridge service life was developed by Nelson and Correla (31). They

separated the 121 solvents tested Into ten classes Including acetates,

alcohols, alkyl benzenes, ketones, etc. For each of these classes of

compounds, plots were made of boiling point vs sorptlve capacity and

equations for best straight lines developed:

Wad = a + bT (28)

where Wa^ Is the theoretical adsorption capacity (gm/gm), T Is

the boiling point of the solvent of Interest (^C), a Is

the Intercept of the line and b the slope.

All of these plots were performed for 1000 ppm of each solvent. The a

and b coefficients were selected for the solvent class of the solvent

of Interest and utilized along with the boiling point of that solvent

to calculate the adsorption capacity, Wa^. This capacity was used to

calculate the service life for that solvent:

tm^  = (24.2)(106)(Wf;)(Wari) (29)
(C)(MWj((5)

where tio% is the 10% breakthrough time (min), Wc is the mass

of charcoal in the test cartridge (gm), C is the challenge

concentration (ppm), MW is the molecular weight of the

solvent (gm/mole) and Q is the flow rate of the air stream

through the cartridge (L/min).

It was also found that for a range of concentrations of a single

solvent, the time to a given breakthrough percent, tg, could be found

. from the expression:

tB = aCb (30)

where C is the challenge concentration (ppm) and a and b are

(t^ constants for given experimental conditions.
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The average value for b at 10% breakthrough was -0.67 over a

concentration range of 50 to 3000 ppm.

Abrams (1) evaluated several predictive equations for service life

determination in his study of a recirculating fume hood. He found the

best fit to be achieved utilizing an equation he had adapted from

Grubner and Burgess (16):

Tg = {24.1)(G)(A)(106) (31)
----(W)(MW)(t)----

where 1%  is the breakthrough time at a given breakthrough

concentration (min), G is the mass of charcoal adsorbent

(gm), A is the sorptive capacity at a given percent

.  •• . breakthrough (gm/gm), W is the flow rate (L/min), MW is the
molecular weight (gm/mole) and C is the challenge

concentration (ppm).

Grubner and Burgess (16) based their predictive equation on the Theory

of Statistical Moments (TSM). This theory suggests that the parameters

affecting adsorption in a dynamic system are randomly distributed. The

change of concentration with time at a given depth of the charcoal bed

could be described by a normal probability distribution curve.

(t
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GASES DETECTED BY THE TGS
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FIGARO GAS SENSOR

Several incthodi of gas detection, bated on vtrioui chemical and
physical  principles are  now available. A siiort list includes:
OETKCTION TUBE: Bated on colour change resulting from a
chemical reaction between the gat and the tube contents. This
is an accurate quantitative system but each tube can only be
used once. It it luitablc for $pM checking but not for continuous
dctectiun.

INHRA RED / SPECTROPHOTOMETRY /GAS CHROMATO-
CRAPIl: These systems provide high continuous accurate
detection but coett arc high, making them suitable only for
spccialued industrial applications.
CATALYTIC COMBUSTION: One of the original and most
widely used tyuenu based on the temperature change produced
by catalytic combusliun on a platinum wire tensor. Il requires a
reUiivcly expensive sinplilier and the sensor can be poisoned by
silicone and halogen gases. Some technical knowledge is requited
for operation and maintenance and hence it is recommended.

for industrial rather than domcttic appUcationa.
SEMiCONOUCTOR DETECTOR: Introduced by Figaro
Engineering Inc. In 1968, the TCS gaa aensitive semiconductor
tensor Is based on N type tintersd SnO). When combustible or
reducing gates are adsorbed on the sensor surface a marked de¬
crease of electrical resistance occurs. Major features of the TCS
senior include high sensitivity <several hundreds ppm of gaa
easily detected), low cost associated circuitry and the ability to
repeatedly detect gas without deterioration. Some of the original
tensors produced in 1968 suffered from insufficient mechanical
strength and large sensitivity variatioas, but thete problems have
been overcome by a continuous programme of research and
improvement carried out by Figaro Engineering Inc. When used
in accordance wilti the manufaciuter's dau a mimmum sensor
life of 10 years can be expected. By August 1981 more than 13
million TCS sensors were in use worldwide, mainly as domestic
gas detectors, making a significant contribution to improved
safety. . .. •

Main comiMJStible and toxic gases detected by tlie TGS
,Vul..,_--

(#
Hydrocarbons and Their derlvalivcs: Methsne/ Ethane/ Propane/
Buuflc/ I'eniane/ Hexane/ Hepune/ Octane/ Decane/ Petroleum
tihei/ Petroleum Benzine/ CaioUne/ Kerosene/ Petroleum
Naphtha/ Acetylene/ bihylenc/Propylene/ Butadiene/ Butylene/.
Bcnrene/ Tolucue/ o-Xylene/ m-Xylene/ Ethylene Oxide
Halugrniscd HydiocartMina: Methyl Chloride/     Methylene
Clilorulc/   Ethyl   Chloride/   Ethylene   Chloride/   Ethylidene
Chlonde/ Trichloro  Ethane/ Vinylidene Chloride/ Trichtoro
Ethylene/ Methyl Bromide/ Vinyl Chloride
AlOBhola:     Methanol/    Ethanol/   a-Propanol/   iso-Propanol/

n-Butanol/ iso-Butsnol
Ethers: Methyl Ether/ Ethyl Ether
Ketones: Acetone/ Methyl Ethyl Ketone
Esters: Methyl Acetate/ Ethyl Accute/ n-Propyl Acetate/ iso-
Propyl Acetate/ n-Bu(yl Acetate/ iso-Butyl Acetate
Nitrogen Compounds:   Nitro Methane/ Mono Methyl Amine/
Dimethylaminc/ Trimethyl Amine/ Mono Ethyl Amine/ Oielhyl
Amine

Inorganic  Cases:    Ammonia/  Carbon Monoxide/ Hydrogen/
Hydrogen Cyanide

TGS applications
^ ͣ•r^Si^.'^^'.f'^,-^^ ͣ^•''

1. Combustible Gas-Leak Alarm
2. <jibon Monoxide Oeleclor
3. Automatic Fan Control

4. Fire Alarm (Detecting combustible gases contained in smoke)
i. Alcohol Detector (Detector for drunken driver)
6. Air Pollution Monitor

T-ri'T ' ͣ .-j^«*» ͣ: ͣ;  •'«*i-

'^ ͣ'ii      -f ͣ'liiirtU.i Mil ii'iiiiiiiiijii I .....».'<.

I. Long life. Sensors in continuous use for 9 years arc still
functioning normally.

3. High reliability ^en when exposed to toxic gatet.
3. No di-crease in sensitivity even when stored (or a long period

w high humidity atmosphere before use.
4. Detects low concentrations of Nstural Gas, Carbon Monoxide

rfv?*^"^'"'^''.'^

TGS features ^ '^i^i-^Mi^i^
. ͣj.4*:,**.^'..^ ͣJUJJtt

and a range of toxic gases.
5. Conforms to vibration and drop test standards.
6. Large resistance change at low gas concentrttions enables •

reliable low cost detector to be designed.
7. No sensitivity loss even when exposed to high gas cooceoua-

tions accompanied by reduced oxygen leveL

Guidelines for TGS users

#

The senior is affected to some extent by chsnges in almoa-
phcnc temperature and humidity. For precise work, allow¬
ance muM be made fur these changes.
He(.4Ufte Ihc response of the icnsof is cxponenlul rather than
linear a special circuit must be designed WIVQ quantitative
iiic4su^ciiicnl u icquucd.

3. The tensor should be powered for several days to ensure it
has reached its final stable state i.e. the complete defector
should be powered for some days before calibration is cairied
out.

4. A stabilized sensor requires 1 to 2 minutes recovery time whentwitched on.

(P.TjOJ
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CHARCOAL CHARACTERISTICS

Mass of carbon (gm) 49.401

Particle diameter range (mm) 1.40 to 3.35

Bulk density (gm/cm3) 0.398

Specific bulk volume (cm^/gm) 2.51

Total void volume (cm^/gm) 1.62

Solid granule volume (cm^/gm) 0.89
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