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Abstract 

Jimmy Phuong 

Structured Application of Biological Ontologies to Annotate  

High-Throughput Screening Assays and their Targets of Activity 

(Under the direction of Matthew Martin) 

 

High-throughput screening (HTS) assays have changed the pace of chemical data collection, 

enabling assessments at various levels of biological relevance. EPA’s ToxCast Program has 328 

assays (experiments) generating 541 assay components (readouts), which produces 795 assay 

component endpoints (analyses), with intentions to increase the number of assays and the 

number of substances tested. As new assays are developed, it becomes a challenge to 

communicate what kind of data and features are associated with each assay. This report uses the 

BioAssay Ontology and other publicly available ontologies to produce the ToxCast Assay 

Annotation, a structured resource for descriptive information that uses controlled vocabulary to 

aid in the communication and use of ToxCast HTS assay data. Organized by 34 annotations 

including ‘assay design type’ and ‘detection technology type’, this structure allows for a concise 

reference to the pertinent attributes of an assay. Additionally, the perspective differences 

between the technological and intended target are separately captured. This structured annotation 

also allows for the identification of comparable ToxCast assay endpoints, and offers the potential 

to link with other HTS data repositories. 
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Chapter 1 

Literature Review 

Chemical Testing Demand and High-Throughput Screening Assays 

The foremost concern about the chemicals in the environment is that most are 

insufficiently evaluated for their bioactivity and potential hazards. Since 1976, the Toxic 

Substances Control Act (TSCA) inventory has registered over 66,000 chemicals manufactured in 

or imported into the United States (Congress 1976). TSCA mandates the United States 

Environmental Protection Agency (EPA) to protect the public from adverse human health or 

environmental outcomes downstream of these chemicals. For the past 40 years, these risk 

assessments used any bioactivity and adverse effect information available, which largely relied 

on expensive, time-consuming animal model experiments. Due to this slow pace and unevenness 

of chemical testing, a small fraction of chemicals becomes data-rich while the vast majority 

remains with little or no available data. 

The National Academy of Sciences’ (NAS) National Research Council (NRC) has 

addressed the current chemical testing paradigm with the desire to move in a direction that 

reduces the number of animals used, reduces the cost and testing time, and increases the 

mechanistic understanding of the chemical effects (NRC 2007). While encouraging the recycled 

use of existing in vivo data, these desires have turned the scientific and regulatory communities 

towards in vitro assays, particularly high-throughput screening (HTS) and high content screening 

(HCS) assays. Compared with in vivo studies, HTS and HCS assays require smaller amounts of 

testing space and volumes of testing material. Integrated with new methodologies such as 
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toxicogenomics, bioinformatics and computational toxicology, the data collected through HTS 

and HCS assays can more easily enable mechanistic assessments. The assays may probe human 

genes, cells, or tissues to reflect on how chemicals may elicit perturbations at the molecular level 

or cumulatively as pathway responses (Dix et al. 2007; Morisseau et al. 2009; Judson et al. 2010; 

Kavlock et al. 2012). 

At its foundation, an assay is a manufactured test to detect perturbations away from the 

normal biological activity. The activity tested will be dependent on how the assay is conducted 

and what it measures. HTS assays are assays that have been optimized to allow simultaneous 

testing while reducing the cost and time expenditures. Consider a HTS assay conducted in a 384 

well-plate as the optimized form of the same assay that was previously conducted in single test 

tubes—the data yield is in orders of magnitude faster. HTS methodologies are predominantly 

drug discovery approaches; however, reapplying these same approaches towards environmental 

chemicals can help address the number of data gaps existing for the large portion of 

environmental chemicals (Dix et al. 2007; Judson et al. 2009). 

In response to the NRC report (2007), EPA has chosen approximately 10,000 chemicals 

to be considered for the ToxCast screening and prioritization program (Dix et al. 2007; Judson et 

al. 2009). Out of the TSCA inventory, these chemicals were selected due to medium- and high-

production volumes (exceeding 10,000 lb/year), known industrial functions as pesticides actives, 

presence in the environment as drinking-water contaminants, or known inert chemicals (Judson 

et al. 2009). Some of these chemicals are data-rich, enabling a way to compare the assay results 

with precedent knowledge of the chemicals’ activities (Martin et al. 2011). In ToxCast, testing 

would occur in phases; each ToxCast phase is a separate group of nominated chemical that will 
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be tested through a large, diverse number of HTS and HCS assays. In addition to ToxCast, EPA 

is an active participant in Toxicity Testing in the 21
st
 Century consortium (Tox21), an Inter-

Agency collaboration that takes a different strategy towards executing chemical tests. Using the 

latest in automated HTS technologies, Tox21 tests all 10,000 chemicals through small groups of 

assays; each Tox21 phase is a different set of assays (Huang et al. 2011). From these two 

programs, at each phase, ToxCast would provide a broad view of chemical activity across 

diverse biological endpoints while Tox21 would provide a means to rank the 10,000 chemicals 

using assays that target endpoints of high concern. 

Data Storage 

With the large number of chemicals to be tested and even larger nest of HTS data 

expected, data storage becomes a big factor. To list them explicitly, there would be the chemical 

or substance identifiers, the structural features for each chemical or substance, the plate maps for 

each tested chemical plate, the assay identifiers, the readout data and the analyzed data. To cover 

these different needs, separate databases were devoted to capture the information. Judson et al. 

(2012) mentions that ToxCast plans to disseminate the data storage to a number of different 

databases of specific function. The EPA Distributed Structure-Searchable Toxicity (DSSTox) 

program is dedicated to the chemical structure and linkage between chemical structures to 

external data sources (Williams-DeVane et al. 2009; Judson et al. 2012). The EPA ToxCast 

Database (ToxCastDB) would serve as the data repository for both the ToxCast assay data as 

well as descriptive information about each assay. As a key component for biological modeling, 

the EPA ToxRef Database (ToxRefDB), a database devoted to systematic curation of in vivo 

experimental outcomes, would be the anchorage point between the ToxCast chemicals and the 
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historic toxicity endpoint information that may be available for them (Martin et al. 2009). 

Similarly, the EPA ExpoCast Database (ExpoCastDB) stores data pertinent for exposure and 

environmental presence modeling. Separately, the EPA Aggregate Computational Toxicology 

Resource (ACToR) database combines the information from each of these EPA databases and to 

other publicly available data sources. In general, these databases can communicate or be queried 

via chemical structure and identity. This is a chemical-centric, test substance oriented point of 

view, which is not developed for assay-centric or target-centric options. 

Assay Terminology 

With the push for advancing chemical testing, more questions and challenges about HTS 

and HCS assays arise. The language for different aspects of in vitro assays was not formally 

established to enable assay-centric search options. Perhaps more pertinent to ACToR and 

ToxCastDB, this area of assay terminologies gets revisited when trying to communicate 

similarities and differences between assays. For instance, protein assays were previously 

synonymous with binding assays. Now, with new assay technologies developed to probe 

different facets of protein function, a protein assay seems vague. Within ToxCast, a protein assay 

could now mean enzyme-substrate reactions, receptor-ligand binding, protein expressions by 

enzyme-linked immunosorbent assays (ELISA), changes in protein-protein interaction, or even a 

marker protein for cytotoxicity or a pathway response (Kavlock et al. 2012). This area could 

continue to propagate as new, abstract ways to consider a protein’s biological processes and 

systems biological impact are developed. 

Beyond the assay technology, the content readout has shifted towards more multiplexed 

and multiparametric approaches. A single assay could now be equipped to interrogate a battery 
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of targets (Romanov et al. 2008; Houck et al. 2009; Giuliano et al. 2010; Martin et al. 2010; 

Rotroff et al. 2010). This is the real challenge: communicating to the general public what the 

readouts of increasingly complex assays are with respect to the data already available from the 

previous generation of single readout assays. This inherently demands a definition for the 

minimum amount of information for an assay, for which there currently is not an agreed upon 

standard across different technologies (Visser et al. 2011). 

Moreover, different HTS campaigns have their own approaches towards describing and 

categorizing their in vitro assay libraries. The ToxCast program purchases testing data for the 

ToxCast chemical sets from various contract vendors, who have the technology and expertise to 

perform patented assay protocols. Some of the past ToxCast publications emphasized the 

biomedical innovation from assays purchased from different contract vendors while focusing on 

utility of the data for modeling chemical and biological endpoints (Judson et al. 2010; Martin et 

al. 2011; Sipes et al. 2011; Kleinstreuer et al. 2013). Hence, the mechanics, biological 

innovations, and utility behind each HTS assay were separately explained with variations in the 

terminology. A similar scenario can be seen of the Molecular Libraries Program (MLP), an NIH 

funded HTS campaign that began in 2003. MLP uses different testing centers within the 

Molecular Libraries Screening Center Network (MLSCN) to focus on different assay protocols 

then deposits the chemical testing data into PubChem repositories (Wang et al. 2009; Chen and 

Wild 2010). As such, the use of varying vocabulary has preset difficulties in understanding the 

assays and in applying cross-analysis methods (Schürer et al. 2011). 

The ToxCast HTS assays were previously annotated in a number of ways using 

unstructured text. Containing a breadth of initial annotations, these have served as the foundation 
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for chemical-to-pathway modeling and for anchoring in vitro to in vivo outcomes for predictive 

models (Judson et al. 2010; Knudsen and Kleinstreuer 2011; Kleinstreuer et al. 2013). However, 

with exception to the gene target annotations, the use of unstructured text without quality 

controls gave way to mistakes in representation that were later remedied. Visser et al. (2011) has 

described the utility of maintaining quality control checkpoints, a workflow step to inspect for 

annotation mistakes in previous annotations and for annotating new assays moving forward. 

Visser et al. also promotes the use of controlled, ontology vocabulary to help unify synonymous 

concepts, where applicable. In doing so, the use of better annotation terms gets highlighted or, in 

the lack thereof, the usage highlights the need for new concepts and terms. 

Aside from publishing the articles with the HTS and HCS assay data, there are 

communication challenges that sit between access to the data and knowledgeable use of the data. 

There is currently no recognized, uniform guidance for the minimum amount of information (e.g. 

metadata) needed to be supplied with the assay data across technologies (Vempati et al. 2012). 

Alternatively, ontologies provide controlled vocabulary that may address relationships between 

different assay concepts. There are a large number of database schemas and biological ontologies 

currently available within BioPortal (bioportal.bioontology.org) that could provide controlled 

vocabulary for annotation purposes. Among them, the BioAssay Ontology (BAO), an ontology 

created from the University of Miami, has proposed a guidance framework that incorporates 

vocabulary from different ontologies for objectively annotating HTS assay. This includes 

provisions for the assay design, assay formats, detection technologies, perturbagen (further 

referred as the tested chemical), and endpoints (Vempati and Schürer 2004; Visser et al. 2011; 

Vempati et al. 2012). Within each of these annotations, subclasses may branch further, where 

each term has descriptive information provided to explain its contextual usage.  

file:///C:/Users/jphuong/Desktop/bioportal.bioontology.org


7 

 

While ontologies may change, the ontology’s framework can be reused to guide 

annotations. BAO version 1.6 has been used to annotate the assays deposited into PubChem for 

relevant assay descriptive data (Schürer et al. 2011; Vempati et al. 2012). Schürer et al. (2011) 

has applied these PubChem annotations as the basis for assay promiscuity evaluations, a 

calculation method similar to a principle components analysis (PCA) to determine what 

annotations of the assay are major contributors to the amount of noise and non-specific chemical 

hits.  

Because of this precedence, the use of BAO version 1.6 to annotate assays moving 

forward may enable a uniformed language through which assay comparisons may be made. 

However, several limitations in BAO were noted; the amount of terms incorporated into BAO 

from other ontologies is not representative of each of those full ontologies. This suggests that 

BAO keeps only the fraction of those ontology terms that have been encountered with each 

update; therefore, newer and diverse assays may have concepts and terms outside of BAO’s 

capacities. BAO is currently at version 2.0. Between versions, BAO has incorporated more terms 

from Gene Ontology (GO) biological processes and Cell Line Ontology (CLO) into their 

respective branches. The same creators of BAO have also created the G-Protein Coupled 

Receptor Ontology (BAO-GPCR), enabling BAO annotation terms to link with BAO-GPCR 

terms for concepts relating to G-protein coupled receptors (GPCR).
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Chapter 2 

Introduction 

 

 

Seen as versatile, cost-effective, and a way to gain mechanistic insight, testing chemicals 

in concentration-response using HTS and HCS assays with diverse biological endpoints 

overcomes a number of disadvantages in whole animal toxicity testing (Judson et al. 2009; 

Morisseau et al. 2009). The main advantage in using HTS assays is that novel biological targets 

can be investigate through a wide range of in vitro assay technologies (e.g., receptor binding, 

transcriptional activation, protein fragment complementation). The multiplexed and 

multiparametric approaches make it possible to use a single assay for interrogating a battery of 

targets, allowing for more pathway-based analyses and mechanistic learning all while reducing 

testing cost and time (Romanov et al. 2008; Houck et al. 2009; Giuliano et al. 2010; Martin et al. 

2010; Rotroff et al. 2010). With increased throughput, in vitro assay technologies are key 

strategic tools to generate data on chemical-biological activity and step away from the heavy 

reliance upon preliminary in vivo whole animal testing. 

As HTS technologies continue to improve, questions are raised about how to capture the 

increasing complexity while retaining the ability to relate between assays. Often described non-

uniformly, some HTS assays may have higher minimum information standards than what is 

required for other technologies. Without adopting a consensus structure, the approaches to 

describe assays may vary between different HTS initiatives. These inconsistencies in uses of 

vocabulary can presets communication and cross-analysis difficulties.  
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In the early stages of Tox21, the National Institute for Health (NIH) National Center for 

Advancing Translational Sciences (NCATS) came up with a list of reporting parameters for HTS 

and HCS assays (Inglese et al. 2007). This was a short list meant to minimally capture the 

necessary components for the HTS screening and post-analysis. While the concepts were clear, 

how to address the parameters required more clarity and instruction. Annotations would still 

have used unstructured free-text. 

Since then, BAO has proposed a guidance framework based on the screening information 

produced from MLP. This framework nominates concepts that need to be annotated and 

annotation terms for each annotation to use. What’s more, it captures more than the NCATS 

reporting parameters while clarifying certain parameters that are better separated. Featuring clear 

semantics and hierarchical relationships, BAO makes use of several ontologies of biomedical 

and pharmacological focus and has applied their framework to annotate assays in the public 

domain from PubChem and other data repositories (Vempati and Schürer 2004; Visser et al. 

2011; Vempati et al. 2012). This highlights the BAO framework as a broad and integrative 

foundation for capturing similarities and differences between assays within the realm of toxicity 

testing. 

The ToxCast Assay Annotation was developed to describe features represented in 

ToxCast assay endpoints. Led by the EPA National Center for Computational Toxicology 

(NCCT), ToxCast is tasked to test chemicals in the environment with the purpose of increasing 

the biological-toxicological knowledge and informing chemical-testing decision-making. 

Contracting with various laboratories and platform vendors, the ToxCast Phase I and II chemical 

sets (n=1060) were completely tested through innovative set of assay technologies (Kunkel et al. 
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2004; MacDonald et al. 2006; Hartig et al. 2008; Romanov et al. 2008; Giuliano et al. 2010; 

Huang et al. 2011; Sakamuru et al. 2012; Sipes et al. 2013). Assays vary from simple interactions 

(e.g., biochemical binding or enzyme inhibition/activation) to complex biological reporters (e.g. 

multiple targets, inferred targets, or cellular processes). The discussion on minimum information 

standards has become increasingly technology-oriented (Goetz et al. 2011; Patlewicz et al. 

2013). Adhering to minimum information standards makes a global assay annotation framework 

difficult. Therefore, in annotating the ToxCast assays which have more technological and 

biological diversity than in any screening program before it, it requires a uniform list of 

annotations. Since BAO is the most comprehensive assay-oriented ontology currently available 

among the 370 ontologies in BioPortal (http://bioportal.bioontology.org/), it was applied in a 

structured approach that would allow for expansions to the annotations and annotation terms. 

The primary objective of this study is to demonstrate the role of the ToxCast Assay 

Annotation in understanding and analyzing HTS data. First, we describe the structured approach 

used in the global annotation. Next, we show how these annotations can provide resolution to 

understand the assay identification, design, target, or analysis information. Finally, we report on 

an initial cross-analysis of the chemical-biological activity using the annotation terms. Example 

scenarios are provided to illustrate how design and target annotations can be used to represent 

assay biological and technological space. 

http://bioportal.bioontology.org/
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Chapter 3 

Methods 

Data Sources 

The inventory list of ToxCast assays was obtained from ToxCastDB (Judson et al. 2012). 

The assays used to build the first version of ToxCast Assay Annotation was limited to only those 

that have completed testing and analysis with ToxCast Phase I and II chemical sets. Assays that 

met this criteria were found to belong to the following assay sources: 1) ACEA biosciences 

(ACEA, www.aceabio.com) (Rotroff et al. 2013), 2) Apredica (APR, www.cyprotex.com) (Shah 

et al., in-progress), 3) Attagene (ATG, www.attagene.com) (Romanov et al. 2008; Martin et al. 

2010), 4) Bioseek (BSK, www.bioseekinc.com) (Kunkel et al. 2004; Houck et al. 2009), 5) 

Novascreen (NVS, www.perkinelmer.com) (Knudsen et al. 2011; Sipes et al. 2013), 6) Odyssey 

Thera (OT, www.odysseythera.com) (Yu et al. 2003; MacDonald et al. 2006), and 7) Tox21 

(Huang et al. 2011; Sakamuru et al. 2012). EPA purchases the assay data generated from the 

Assay Sources, while Tox21 provides assay data as part of an interagency collaboration. The 

methodology for each assay was obtained from their respective ToxCast platform manuscripts, 

vendor/program publications, or standard operating procedures (SOPs). For data analysis with 

chemical testing data, the High-Throughput Chemical Screening Data from ToxCast & Tox21 as 

part of the December 2013 ToxCast Phase II Data Release was used (ToxCast 2013). 

Annotation Framework 

The BAO version 1.6 (www.bioassayontology.org) was developed around six concepts of 

biological screening (Schürer et al. 2011; Visser et al. 2011; Vempati et al. 2012). To summarize, 

http://www.aceabio.com/
http://www.cyprotex.com/
http://www.attagene.com/
http://www.bioseekinc.com/
http://www.perkinelmer.com/
http://www.odysseythera.com/
http://www.bioassayontology.org/


12 

 

(1) perturbagen (perturbing agents that are screened), (2) assay design (the underlying 

methodology and strategy used for detecting a perturbation), (3) assay format (the chemical- and 

biological-features common to the test condition), (4) detection technology (the physical method 

used to detect and record perturbation signals), (5) meta-target (the molecular entity, biological 

process, or event interrogated by the assay), and (6) endpoint (the analyzed measurements, 

parameters and values). For the ease of maintaining the chemical inventory, the ToxCast 

chemical library, representing the perturbagen component, is stored and routinely updated within 

the DSSTox database (Williams-DeVane et al. 2009; Judson et al. 2012); hence, the ToxCast 

Assay Annotation is meant to describe the other five concepts of biological screening. 

The annotations can be separated into four sets of information. These four sets include 

assay identification information (identifiers for each level, the assay source, and peripheral 

catalog information), design information (format, design, and technology aspects that 

decompress the assay’s innovations), target information (various perspectives about the assay’s 

target), and analysis information (how the data were processed and analyzed). Each set of 

information can be further separated into smaller concepts—the individual annotations. Each 

annotation is rationally assigned to one of three levels, which represent the stage of the assay as 

they undergo processing. Each annotation is annotated with an annotation term (the controlled 

vocabulary) with respect to its level. These levels includes: the assay level–the experiment or test 

event, the assay component level—the individual raw readouts within the experiments, and the 

assay component endpoint level—the analyzed readouts which have been data fitted, such as to a 

four-parameter Hill curve. In this way, the assignment puts an annotation as a feature of a certain 

level, a communication option for focusing the amount of information. 
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Figure 1: The annotation workflow 

 

Data Input 

The initial, data entry steps follow the left-and-middle portions of the workflow shown in 

Figure 1. Initially, from the table of ToxCast assay component endpoints, each assay was 

manually annotated to an Excel spreadsheet, following the BAO version 1.6 annotation template 

as a model (Vempati and Schürer 2004). In this format, each column was an assay component 

endpoint obtained from ToxCastDB and each row was an annotation. Thereafter, annotation 

terms were selected in reference to the SOPs or the assay manuscripts. 

After the initial steps the annotations were transitioned to a MySQL relational database 

for better data structure and ease of quality control. The spreadsheet format permitted rigid one-

to-one assignments. This poses problems for the annotations that have one-to-many 

relationships, such as reagents, which were kept semicolon delimited within each cell of the 

spreadsheet format until they could be transitioned. This also allows for the linkages between 
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each annotation to Assay, Assay Component, or assay component endpoints to be defined and 

represented together as a table. 

The ToxCast Assay Annotation MySQL database is mainly comprised of seven tables. 

The Assay Source table provides some description for the contract vendor that performed the 

assays. The Assay, Assay Component, and assay component endpoint tables are analogous to 

their levels, and contain the annotations assigned to the respective level. Reagents, technological 

targets, and intended targets contain one-to-many relationships so they were separated as their 

own tables. Respectively, Assay Reagents, Assay Component Target, and assay component 

endpoint Target were mapped as dependents of the Assay, Assay Component, and assay 

component endpoint tables. 

Quality Control 

Quality control checkpoints to inspect the manual curations occurred at two steps: (1) 

transitioning the spreadsheet to the MySQL database and (2) for refining the annotations kept in 

the MySQL database. At the first quality control checkpoint, the spreadsheet was transitioned 

into a MySQL database and inspected for mismatched, mistyped, or erroneous entries. At the 

second quality control checkpoint, the annotation terms are extensive reviewed for appropriate 

coverage and representation. We also reviewed the annotations to inspect for appropriate 

transmission of information. Wherever necessary, additional ontologies were incorporated to 

supplement the annotation terms from BAO. Table 1 displays the 37 annotations selected for 

further use, where six annotations have subset annotations. 
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Table 1: The 37 annotations used and the short description of the concepts they capture 

Annotation name Short description of the annotation 

assay source name a short name for the entity that conducted the assay 
assay source long name the long name for the entity that conducted the assay 
assay name a short name for the assay 
assay component name a short name containing the assay and its component readout 
assay component endpoint name a short name containing the assay, the component readout, and the analysis applied 
timepoint hr the duration length to conduct the test portion of the assay 
organism id the NCBI taxonomy id for the organism or cellular derivative used for the assay 
organism* the organism related to the target of the assay 
tissue the organ-level, anatomical entity of the protein or cell used in the assay 
cell format the cellular or subcellular format of the assay 
cell free component source the cellular or sample tissue source of the assayed gene protein 
cell short name the name of the cell line or primary cell used 
cell growth mode* the growth mode of a cell line 
assay footprint the physical format, such as plate density, in which an assay is performed 
assay format type* ¥ the conceptual biological and/or chemical features of the assay system 
content readout type* the throughput and information content generated 
assay design type* ¥ the method that a biological or physical process is translated into a detectable signal 
detection technology type ¥ the type of detection signal  
detection technology the name of the detection technology method 
key positive control the designated positive control  
dilution solvent the solvent used as the negative control and to make the test chemical soluble 
dilution solvent percent max the maximal amount of the dilution solvent that could be present during an assay 
key assay reagent type the type of key determinant substance of the assay 
key assay reagent the name of the key determinant substance of the assay 
assay function type the purpose of the analyzed readout in relation to others from the same assay 
biological process target the biological process or processes investigated by the assay 
normalized data type the fold induction or percent activity scale in which the assay data is displayed 
signal direction type the expected direction of the detected signal in relation to the negative control 
analysis direction the analyzed positive (upward) or negative (downward) direction 
signal direction the direction observed of the detected signal in relation to what was expected of it 
technological target type ¥ the measured chemical, molecular, cellular, or anatomical entity 
technological target gene id the Entrez gene ID for the molecular target measured by the assay 
technological target gene symbol the Entrez gene symbol for the molecular target measured by the assay 
intended target type ¥ the objective chemical, molecular, cellular, pathway or anatomical entity 
intended target gene id the Entrez gene ID for the molecular target that is the objective of the assay 
intended target gene symbol the Entrez gene symbol for the molecular target that is the objective of the assay 
intended target family ¥ the target family of the objective target for the assay 
Culture or Assay the culture or assay condition for reagent annotations 
Reagent Name Value type the type of substance or function served by the reagent 
Reagent Name Value the name of the reagent 

* The descriptions are borrowed in part from the BAO definitions; ¥ Has an annotation to describe a subset 

 

Standardized Vocabulary for Annotation 

BAO is the principle source of annotation terms. Additional ontologies were used to 

standardize and expand certain annotations for broader representation of annotation terms. The 
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NCBI Organismal Classifications (NCBI Taxon), an ontology for species taxonomy, was used 

for the organism and organism id annotations. To standardize the cell short name annotation 

terms, the Cell Line Ontology (CLO), an ontology for cell line information, was used for ‘cell 

line’ cell format (e.g. ‘CHO-K1’ is the more commonly used derivative of Chinese Hamster 

Ovaries) (Sarntivijai et al. 2011), while Cell Ontology (CL), an ontology for in vivo cell types, 

was used for ‘primary cell’ or ‘primary cell co-culture’ cell format (e.g. ‘umbilical vein 

endothelium’ is the annotation term for what is more commonly referred to HUVEC cells) 

(Meehan et al. 2011). In this way, we can identify higher level anatomical entities that the 

annotation terms may belong to (e.g. ‘brain’ tissue includes ‘Rat forebrain’, ‘Rat cortical 

membranes’, ‘KAN-TS cells’ and ‘Bovine hippocampal membranes’). 

While this is not an ontology, the NCBI Entrez Gene annotation files for human, rat, 

mouse, and bovine were used to annotate gene symbols and gene ids for the 

technological_target_gene_id, technological_target_gene_symbol, intended_target_gene_id, and 

intended_target_gene_symbol annotations (Maglott et al. 2011). 

The organism and organism id annotations are generally annotated according to the cell 

short name. In an assay performed in a cell-based format, the general understanding is that the 

host cell will have cellular machinery that influences the gene and outcome of the assay. The 

exception is given to assays performed in a cell-free format, where genes are transfected into 

expression vehicles, extracted, and used in assays without additional cellular component. In that 

situation, the organism is annotated with reference to the gene’s species of origin.  
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Modifications to annotations and annotation terms 

From the BAO framework, the assay format concept was reorganized and separated into 

two annotations, assay format type and cell format. Assay format type identifies the overall 

chemical-feature or biological-response being investigated as ‘biochemical’, ‘physicochemical’, 

‘cell-based’, or ‘whole organism’ (Vempati and Schürer 2004). The cell format type adds 

resolution to the assay format type by represents the cells as immortalized cell lines or primary 

cells, and whether they are treated as homogenous cultures, heterogeneous co-cultures, or cell-

free extracts during the course of the assay. 

Two reporter types were added to the assay design type annotation terms. The 

‘background reporter’ was introduced as a reporter type for baseline noise, while the ‘growth 

reporter’ characterizes assays that measure cellular development without intracellular or 

extracellular morphological endpoints. 

To make the assay protocol information transparent, a few annotations are devoted to 

capturing these details for reporting purposes. At present, due to the lack of formal annotation 

terms for reagent materials, the reagent name value uses unstructured text. However, the reagent 

name value type contains 32 possible annotation terms to annotate the base medium, serum 

variety, culture or assay duration, additional reagent types (e.g. antibody, extractor, fixing agent, 

or stain), environmental factors (e.g. pH level and temperature), and the expected number of cells 

in the well by the beginning of the assay. Since the assay is influenced by the preparatory 

protocols during cell culturing and conditioning, the annotation separates the reagents used for 

the preparatory, cell ‘culturing’ conditions from the experimental, ‘assay’ conditions. If it is 

applicable to the readout, key reagents are highlighted as a separate annotation. 



18 

 

Within the BAO version 1.6 framework, the ‘molecular targets’ was a branch of the meta 

targets concept. Here, the annotation terms in the ‘molecular targets’ was used as the basis for 

the target type annotations—technological target type and intended target type—and their 

subtype annotations. The difference between these two annotations is displayed in Table 1.  

‘Chemical’, ‘cellular’, and ‘pathway’ annotation terms were added to the target type 

annotation. Specifically, the ‘chemical’-type targets were given the subtypes ‘physical feature’, 

‘ATP’, or a hormone chemical name (e.g. ‘Cortisol’, ‘Corticosterone’, or ‘Estrone’). “Cellular”-

type targets can be given to scenarios where the focus is a morphology or function, so the 

subtypes may include the “cellular” or a subcellular object (e.g. mitochondria, nucleus, or 

lysosome). For ‘protein’-type targets, the subtypes ‘protein-specified’ was included for targets 

where the gene protein is known but not pursued for a certain function (e.g. not functioning for 

‘enzyme’-substrate or ‘receptor’-ligand reactions). Furthermore, ‘protein-unspecified’ was 

included for targets that non-specifically tagged proteins. Similarly, ‘pathway’-type targets and 

the ‘pathway-specified’ subtype was introduced as an annotation term for assays that probed 

known gene-mediated biological pathway, such as assays screening for estrogen receptor-alpha 

agonists. 

Visualization Software and Data Analysis 

NCBO BioPortal is a website used as the main source for viewing different ontologies 

and how they map to other ontologies, and to download archived ontology files. In addition, 

Protégé, an open-source software, was used to view web ontology language (owl) format files 

and for conducting SPARQL queries. Cytoscape, an open-source software platform for 

visualizing and integrating complex networks, was used to website were used. R statistical 
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software was used to read-in and rearrange data files, and to perform the principle components 

analysis using the prcomp function from the R Statistical library. 

Figure 2: PCA workflow of the chemical screening data 

 

A principle components analysis (PCA) was conducted to investigate the variances 

observed in the High-Throughput Chemical Screening Data from ToxCast & Tox21 (December 

2013) with regards to the ToxCast Assay Annotations, shown in Figure 2. 50% of Maximal 

Activity Concentration (AC50) values were obtained for each chemical and assay component 

endpoint pair. Using R statistical software, these values were filtered for assays with at least one 

chemical hit (i.e. values not equal to ‘100000’ or ‘NA’), then they were divided by 100000 and 

negative log transformed. Moreover, we removed the APR_1hr assays (n=20 assay component 

endpoints), which were discontinued after Phase I testing, and the BSK_SM3C assay (n=28 

assay component endpoints), which had undergone a name change to BSK_CASM3C prefix 

between phases. Next, an assay annotation binary table was generated to show mapping between 

assay component endpoints and annotation terms. Reagent information and assay identification 

annotations aside from the assay component endpoint were excluded. The log-AC50 values then 

were merged with this Assay Annotation binary table, and filtered to retain only the annotation 

terms mapped with at least one assay component endpoint in use (i.e. the column sum of each 
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annotation term is at least 1). The log-AC50 values were then aggregated by each annotation 

term, and NA or NaN data on each row (annotation term) were normalized to the mean of the 

numeric values. The data were then processed using the prcomp function and the loadings were 

visualized using the heatmap.2 function from the gplot library. The R script is displayed as 

Appendix 3. 
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Chapter 4 

Results 

Assay Annotation Structure 

The ToxCast Assay Annotation structured the 37 annotations adopted from the BAO 

framework and used them to capture annotations for 795 ToxCast assay component endpoints. 

The annotation structure follows the four sets of information and progresses from the ‘assay’ 

level to the ‘assay component endpoint’ level (Figure 1). Used to describe HTS assays, the 

primary goal of this thesis is to establish a structured annotation scheme that uses ontology-based 

annotation terms as controlled vocabulary, where applicable. In addition, these annotations can 

be used to understand general trends observable among the annotated HTS assays as well as 

explain variances observed among the screening data. 

The annotation structure displays dependencies between annotations that follow the same 

concepts. Solid arrows are depicted for relationships between annotations where one annotation 

term influences the next. As seen between the intended target type and intended target family, 

‘protein’ or ‘pathway’ intended target types would merit the intended target family to be 

annotated with a gene family; when the intended target type is ‘cellular’, the intended target 

family may be a ‘cell cycle’ or ‘cell morphology’ annotation term to follow suit. Alternatively, 

annotations linked by dashed arrows suggest a conditional relationship. If given certain 

annotation terms, the subsequent annotations may or may not be annotated. For instance, for an 
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Figure 3: The annotation structure. The annotations can be grouped into A) assay identification information, B) design information, 

C) target information, and D) analysis information. Relationships between annotations are either one-to-many (solid arrow) or 

conditional (dashed arrows), where certain dependencies may not be applicable.
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assay that uses ‘primary cell co-culture’ cell format, it is unnecessary to annotate the cell-free 

component source. In that situation, the cell-free component source get default values equal to 

NA or 0, if the annotation is numeric. In another example, for a ‘cellular’ intended target type, it 

may be unnecessary to annotate target gene symbol or gene id, so both are defaulted. The use of 

dashed arrows is a reflection that different assay technologies may have minimum information 

standards that may be seen as inapplicable with each other. 

Assay Identification Annotation 

Kavlock et al. (2012) reports the general study designs, technologies applied, and unique 

features from each Assay Source. Here, after controlling vocabulary used across Assay Sources, 

Table 2 reflects that total unique features per Assay source with reference to each level. Using 

the 795 ToxCast assay component endpoints library found to have complete ToxCast Phase I and 

II chemical screening data, the analyzed data were linked back to 541 unique assay components, 

which were generated from 328 assays (Table 2). Over 23,000 annotation terms have been 

annotated across the 26 design and analysis information annotations for these 795 assay 

component endpoints. For their respective assays, there are roughly 2,800 records for reagents 

and testing protocol information (approximately 8,400 annotation terms as both structured and 

unstructured text), and about 1,400 records for target information (approximately 7,000 

annotation terms). 
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Table 2: Assay information and content readout types 

    

Content readout type 

Assay  

Source  
Assay 

Assay 

Component 

Assay Component 

Endpoint 
Single Multiplexed 

ACEA  1 1 2 • 

 Apredica (APR) 2 20 40 

 

• 

Attagene (ATG) 2 82 82 

 

• 

Bioseek (BSK) 8 87 174 

 

• 

NovaScreen (NVS) 276 276 422 • 

 Odyssey Thera (OT) 20 20 20 • 

 Tox21 19 55 55 • 

 

 

328 541 795 

   

The assay component is meant to normalize single versus multiplexed/multiparametric 

assays according to individual readouts. Depending on the content readout type, the number of 

targets that a single experiment can probe is analogous to the number of assay components 

deriving from the same assay. At present, the ToxCast assays seem to trend as single or 

multiplexed. Shown in Table 2, NVS and OT assays are found to be characteristic single-readout 

assays displaying equal assay to assay component counts. In contrast, ATG, APR, and BSK are 

multiplexed-readout assays that measure a battery of individual targets including some that serve 

as background detection or as a measure of viability. NVS accounts for the highest number of 

assays, assay components, and assay component endpoints, while ATG assays account for the 

highest number of assay component endpoints per assay conducted. 

Some assays do not follow strictly to the conventions of content readout type but provide 

interesting variants of the single-readout type. The ACEA assay only generates a single readout; 

however, the upward and downward curve-fit analysis can yield findings for two different 

intended targets. The cell line used by the ACEA_T47D assay is sensitive to estrogen-receptor 

(ER) agonists, and can be used to detect ER-pathway-mediated cell proliferation, when analyzed 
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in the ‘gain’ of signal direction, while serving a cell viability purpose in the ‘loss’ of signal 

direction. Similarly, Tox21 assays are meant to generate a ratio to represent the pattern of 

activity. This is seen first as background and raw readout (i.e. Channel 1 and 2 wavelength 

measurements), and a viability readouts. The ratio can be calculated as a ratio of Channel 

2/Channel 1 readouts, and the viability readouts could then be used to inspect for possible 

artifacts or excessive cytotoxicity affecting the quality of the readouts. 

Assay Design Annotation 

The assay design type and detection technology type annotates the objective of the 

measurement and the method of collecting quantified data. A majority of ToxCast assays were 

found to be ‘binding reporter’, ‘enzyme reporter’ or ‘inducible reporter’ assay design types 

(Table 3). These reporter types assess different facets of how chemicals may affect genes of 

concern. 

Table 3: Assay design types annotated to ToxCast Assay Components Endpoints 

  

Totals  Assay Sources  

   

ACEA APR ATG BSK NVS OT Tox21 

Assay design type  subtype  
        Binding reporter  ELISA  149 0 0 0 148 1 0 0 

 

Fluorescent polarization  1 0 0 0 0 1 0 0 

 

Protein fragment complementation  14  0 0 0 0 0 14 0 

 

Radioligand binding  120 0 0 0 0 120 0 0 

 

FRET  8 0 0 0 0 8 0 0 

Conformation reporter  Protein conformation  4 0 4 0 0 0 0 0 

Enzyme reporter Enzyme activity  296 0 4 0 0 292 0 0 

Inducible reporter  Beta lactamase induction  7 0 0 0 0 0 0 7 

 

Luciferase induction  13 0 0 0 0 0 4 9 

 

mRNA induction  84 0 0 82 0 0 0 2 

 

Fluorescent protein induction  2 0 0 0 0 0 2 0 

Growth reporter  Real-time cell-growth kinetics  2 2 0 0 0 0 0 0 

Morphology reporter  Cell phenotype  18 0 16 0 2 0 0 0 

Membrane potential reporter  Dye binding  5 0 4 0 0 0 0 1 

Viability reporter  Cell number  4 0 4 0 0 0 0 0 

 

DNA content  8 0 8 0 0 0 0 0 

 

ATP content  10 0 0 0 0 0 0 10 

 

Protein content  24 0 0 0 24 0 0 0 

Background reporter  Artifact detection  26 0 0 0 0 0 0 26 
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Some assay component endpoints such as BSK_3C_IL8_down are binding reporters by 

way of ELISA immunoassay systems, which assess target protein expression levels (i.e. 

decreases in IL8). In contrast, NVS_ADME_hCYP1A1_Activator considers how the gene 

protein’s normal enzyme-substrate functions get affected by chemical competitive or inhibitory 

action; in this case, it assesses the level by which the enzyme-substrate functions increases. 

While inducible reporters may vary, some like OT_AR_ARE_LUC_Agonist_1440 use 

transfected firefly luciferase to probe the level of transcriptional induction.  

In addition, APR and Tox21 assays were found to have made use of ‘conformation 

reporters’, ‘enzyme reporters’, ‘morphology reporters’, ‘membrane potential reporters’, ‘viability 

reporters‘, and ‘background reporters’. This identifies that certain assay design type may be 

specific to certain assay technologies or methodologies. 

Most ToxCast assays use ‘fluorescence’ or ‘radiometry’ detection technology types 

(Table 4). ‘Fluorescence intensity’ is often the method of quantification for ‘fluorescence’-type 

assays, which are observed in assays from all assay sources except ACEA. For assay component 

endpoints associable to ‘radiometry’-type detection technology, ‘scintillation counting’ is often 

the method of choice for radioligand binding assays, found here to be specific to NVS assays. 

Though in low presence, ‘label-free technologies’, ‘luminescence’, ‘microscopy’, and 

‘spectrophotometry’ detection technology type annotation terms were annotated for at least one 

ToxCast assay component endpoints.  
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Table 4: Detection technology types annotated to ToxCast Assay Components Endpoints 

  

Totals  Assay Sources  

   

ACEA APR ATG BSK NVS OT Tox21 

Detection technology  

type subtype 

        Fluorescence  Fluorescence intensity  582 0 40 82 148 260 14 38 

 

Fluorescence other  1 0 0 0 0 1 0 0 

 

FRET: TR-FRET  8 0 0 0 0 8 0 0 

Label Free Technology  Electrical Sensor: Impedance  2 2 0 0 0 0 0 0 

Luminescence Bioluminescence 21 0 0 0 0 0 4 17 

 

Chemiluminescence 1 0 0 0 0 1 0 0 

Microscopy  Optical microscopy: Fluorescence microscopy  4 0 0 0 2 0 2 0 

Radiometry  Scintillation counting  136 0 0 0 0 136 0 0 

Spectrophotometry  Absorbance  40 0 0 0 24 16 0 0 

 

 

Table 5: A comparison of the assay design subtypes by the detection technology subtypes 

  
Detection technology subtypes 
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Assay design subtypes No of assay component endpoints 594 136 40 21 8 4 2 1 1 

enzyme activity 296 264 16 16 0 0 0 0 0 0 

immunoassay: elisa 149 148 0 0 0 0 0 0 0 1 

radioligand binding 120 0 120 0 0 0 0 0 0 0 

mRNA induction 84 84 0 0 0 0 0 0 0 0 

cell phenotype 26 24 0 0 0 0 2 0 0 0 

protein content 24 0 0 24 0 0 0 0 0 0 

artifact detection 20 20 0 0 0 0 0 0 0 0 

protein fragment complementation assay 14 14 0 0 0 0 0 0 0 0 

luciferase induction 13 0 0 0 13 0 0 0 0 0 

DNA content 12 12 0 0 0 0 0 0 0 0 

ATP content 10 2 0 0 8 0 0 0 0 0 

FRET 8 0 0 0 0 8 0 0 0 0 

beta lactamase induction 7 7 0 0 0 0 0 0 0 0 

dye binding 7 7 0 0 0 0 0 0 0 0 

cell number 6 6 0 0 0 0 0 0 0 0 

protein 6 6 0 0 0 0 0 0 0 0 

fluorescent protein induction 2 0 0 0 0 0 2 0 0 0 

real-time cell-growth kinetics 2 0 0 0 0 0 0 2 0 0 

fluorescent polarization 1 0 0 0 0 0 0 0 1 0 
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A comparison between the two annotations suggests that the same detection technology 

type may assess different assay design types; conversely, the same assay design type may be 

assessed by different detection technology types (Table 5). It is noteworthy to mention 

‘fluorescence’ detection technology type, which have been applied to all assay design types 

except ‘growth reporters‘, reflects that fluorescent protein and probe technologies have 

developed in greater extents for HTS targeted measurements compared with other technologies. 

Related to the detection technology, it was found that the reagent and experimental 

components annotations come secondary to the format annotations. We attempted to capture the 

conditions of the test environment, but in doing so found that separate protocols are used for 

preparations prior to the assay (the culture conditions) compared to the actual assay. Shown in 

Table 6 is an example of the reagent information for the APR_HepG2_1hr assay. Under the 

Culture and Assay conditions, we display the types of reagent of condition used (left) and the 

name or value to that reagent or condition (right). Table 6 is somewhat representative of the cell-

based high-content screening assays, as opposed to cell-free biochemical assays which are only 

annotated with assay conditions.  
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Table 6: Reagent and components information for the APR_HepG2_1hr assay 

 

In addition, depending on the assay, if a reagent is the key factor(s) towards quantifying 

signal changes, then the reagent(s) would also be annotated as the key assay reagent, an 

annotation of the assay component level. Generally, this means that the reagent is captured as a 

factor of the ‘assay’ conditions. Taking the APR_HepG2_1hr reagents, the MitoTracker Red 

(stain) is necessary for identifying the mitochondria within each cell, and so it is highlighted as 

the key assay reagent for APR_MitoMembPot_1hr and APR_MitoMass_1hr assay components. 

However, like for ATG CIS and TRANS assays, specific reporter transcription unit (RTU) used 

during the cell-culturing preparatory protocols are central towards the reporting of the respective 

readouts. Moreover, it is worthy to mention that label-free technologies, such as the cell 

electrical sensing used for the ACEA_T47D assay, would not have a key assay reagent. 

While the connections could not be displayed in Figure 3, the assay format type and the 

cell format, and in some instances the cell short name, have a predominant influence upon the 

reagent use. Certain reagents are necessary for the culture of cell-based versus biochemical assay 

Culture Assay 

media_base 
Eagle's minimum essential media/ 

Earle's balanced salt solution 
media_base 

Eagle's minimum essential media/ 

Earle's balanced salt solution 

media_serum 10% FBS media_serum 10% FBS 

cofactor non-essential amino acids extracellular matrix rat tail collagen I 

cofactor glutamine buffer Hank's balanced salt solution 

inhibitor penicillin fixing agent 3.7% formaldehyde 

inhibitor streptomycin antibody primary antibodies 

media_temp_celcius 37 stain Hoechst-33342 dye 

media_time_hr_min 18 antibody anti-phospho-histone-H2AX antibody 

media_time_hr_max 24 antibody anti-a-tubulin antibody 

media_cell_aliquot 4200 antibody anti-p53 antibody 

    stain MitoTracker Red 

    antibody anti-phospho-c-jun antibody 

  
antibody anti-phospho-histone-H3 antibody 

  
media_temp_celcius_min 25 

  
media_temp_celcius_max 37 

    media_time_hr 1 
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format types. The same is observed for assays that use ‘primary cells’ or ‘primary cell co-

cultures’ versus ‘cell lines’. Certain cell lines will have more specific media and serum 

specifications than others. Table 7 provides a short summary of the three most commonly used 

organism and tissue types by each assay source, and how many unique cell short names or cell 

free component source used by each assay source were annotated to one of five possible cell 

format types. 

Table 7: Organism/tissue types and cell format types  

 
ACEA APR ATG BSK NVS OT Tox21 

Unique Organism & Tissue-types  1 1 1 3 30 5 6 

Most frequently used human  

(breast) 
human  

(liver) 
human  

(liver) 
human  

(vascular) 
human  

(recombinant)
¥

  

human  

(kidney) 
human  

(kidney) 

2nd most frequent       human  

(skin) 
rat 

(brain) 
Chinese hamster 

(ovary) 
human  

(breast) 

3rd most frequent       human  

(lung) 
rat  

(recombinant)
¥

  

human  

(cervix) 
human  

(liver) 

Cell format types 
       cell line 1  3  2  0 0 20  19  

primary cell 0 0 0 4 0 0 0 

primary cell co-culture 0  0  0  4 0  0 0  

cell-free 0 0 0 0 188  0 0 

tissue-based cell-free 0 0 0 0 88  0 0 
¥ 
Target gene proteins were extracted from expression vehicles (e.g. insect cells, bacterial, or cell lines) 

 

Target information 

The names of the ToxCast assay component endpoints may not immediately focus on the 

intended target. In fact, with just the assay component endpoints alone, it will be a challenge to 

determine what the targets are at all. The intended target is the objective probe of the chemical 

bioassay, and it can often be said to be the center of communication in regards to the chemical’s 

activity. This can discount the value of the technological target. After all, the intended target is 
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measured either directly or through an interpretation that uses the technological target. The 

current annotation uses technological target type, intended target type, biological process target, 

intended target family type and gene annotations to distinguish these different motifs. 

Across the 795 ToxCast assay component endpoints, by gene ID and target type 

combinations, there are 383 unique technological targets and 387 unique intended targets. The 

technological target types range from ‘DNA’, ‘RNA’, ‘protein’, ‘cellular’ and ‘chemical’ types, 

while the intended targets include ‘protein’, ‘cellular’, ‘pathway’, and ‘chemical’ types. Though 

it may be simplest to annotate one target per assay, this approach overlooks the value in 

multiplexed assay readouts. The technological and intended target annotations were created to 

dissociate assays that use different means to measure the same intended target. 

A comparison of the technological and intended targets shows that some assays make 

direct measurements, while others use the technological target as a quantifiable surrogate for the 

intended target. Table 8 summarizes the occurrence of these measurement relationships with 

regards to the target types from each assay source. Assays that make direct measurements have 

the same annotations for technological and intended target types and gene ids. Alternatively, 

assays may make use of technological targets as quantifiable surrogates or close substitutes to 

approximate the intended target, shown boxed in Table 8. 

 Table 8: Comparison of technological and intended target types

 

ACEA  APR BSK  Tox21  ATG  BSK  NVS  Tox21  ACEA  APR  OT  Tox21  

Intended  cellular  protein pathway  chemical  

Technological  
            cellular (25)  1 8

 

 12  3  0  0 0 0 1  0 0  0 

protein (662)  0 4  8
 

 0  0  154  422  24  0 16 34  0 

RNA (138)  0 0 0 0  138
 

 0  0  0  0 0 0 0 

DNA (12)  0 8  0 0  0  0  0  0  0 4  0 0  

chemical (22)  0 0 0 10  0  0  0  0  0  0  0  12  
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Most of the ToxCast HTS assays are straight-forward technologies that make direct 

measurements. Displayed in Table 8 as the unboxed values, there are 24 ‘cellular’, 600 ‘protein’, 

and 12 ‘chemical’ targets directly measured by an assay component endpoint from each assay 

source. For example, the BSK ELISA-based assays (e.g. BSK_3C_MIG_dn) use protein-specific 

antibodies to bind to specific target genes. The change in fluorescence would be directly relative 

to the protein expression level at each concentration tested. In a similar way, the Tox21 

autofluorescence assays (e.g. Tox21_Autofluor_HEPG2_Cell_green) aim to detect inherent 

fluorescent properties from the test substance. These assays probe different color wavelengths to 

observe baseline changes that could be concentration-dependent artifact fluorescence from the 

chemical. 

Alternatively, assays may target an abstract component of the intended target’s biology as 

a function of the technological target. Shown in Table 8 as boxed values, there are 30 ‘cellular’, 

138 ‘protein’, and 55 ‘pathway’ targets assessed by various methods and technological target 

types. For instance, OT_PPARg_PPARgSRC1_0480 measures the fluorescence generated from 

the complementary binding of human peroxisome proliferator-activated receptor gamma (gene 

symbol: PPARG, gene ID: 5468) with the v-src kinase (gene symbol: SRC, gene ID: 6714). 

Changes in the measured level of fluorescence and relative localization within the cell are 

indicative of changes along the PPARG signaling pathway. For assays where the concept 

becomes too complex to represent by target type and gene annotations alone, the biological 

process target would be annotated. Take ATG_PPRE_CIS for example. human Peroxisome 

Proliferator-Activated Receptor Alpha, Delta and Gamma—PPARA (gene ID: 5465), PPARD 

(gene ID: 5467), and PPARG (gene ID: 5468), respectively—are the technological targets 
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measured together as a unit as downstream products of transcription factors binding to the 

Peroxisome Proliferator-activated Response Element (PPRE). Changes to the mRNA levels of 

these target genes reflect chemical effect to the upstream transcriptional events, so the biological 

process target is the ‘regulation of the transcription factor activity’. 

Furthermore, to represent a complex signaling or regulatory pathway as the assay target, 

the biological process target is used in conjunction with reference gene focal to that pathway. 

For instance, the ACEA assay monitors cellular growth kinetics as an indication of cytotoxicity 

or estrogen receptor alpha (ESR1) signaling for cell proliferation. Respectively, the cytotoxicity 

intention has a ‘cellular’ intended target type and ‘cell cycle’- ‘cytotoxicity’ intended target 

family. The cell proliferation intention has ‘pathway’ intended target type, ESR1 as the intended 

target gene symbol, ‘nuclear receptor’ and ‘steroidal’ as the intended target family, and 

‘regulation of cell proliferation’ as the biological process target. 

To group the 387 unique intended targets, we developed 24 intended target families (84 

subfamilies). Figure 4 is a simple connection map displaying the intended target families to their 

intended target subfamilies, sized by the number of times an intended target gene is mapped to 

those annotation terms. Three main categories currently exist in the intended target families: 2 

cellular aspects (i.e. ‘cell cycle’ or ‘cell morphology’), 21 gene families (e.g. ‘GPCR,’ ‘kinase,’ 

or ‘protease’), and one for quality control aspects (i.e. background measurements), shown in 

Appendix 1. The intended target families have one-to-many relationships with the intended 

target genes, providing a means to filter down to the targets of interest or to query for assay 

identifiers associated within the intended target family groupings.
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Figure 4: Intended target family annotation terms
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The structure to the intended target families is a work-in-progress that attempts to pull in 

groupings from various ontology sources. First, we realize that gene protein vocabulary bear 

intricate connections in terms of the active/inactive sequence domains, functions, and 

relationships between superfamily, family, subfamily and many more categories. These 

categories are often unevenly distributed between categories making it difficult to communicate 

as some are more developed than others. For the majority of gene proteins, groupings are formed 

based on function and similarity in protein sequence. Some groupings are under debate as more 

gene proteins are characterized and the functions annotated. The intended target families and 

intended target subfamilies are over-simplifications; they are an attempt to cross-sectionally 

group the target genes within reason by their first and second order associations. Often, this 

means the gene-oriented intended target families are the class of proteins, and the intended target 

subfamilies are actually the regarded superfamilies under that class. 

From same creators as BAO, the G-Protein Coupled Receptors Ontology (BAO-GPCR) 

was used to define the high-leveled subfamilies within the domain of G-protein coupled 

receptors (GPCRs) (Przydzial et al. 2013). Unfortunately, for most of the other gene-oriented 

intended target families, there is not a single well established and publicly ontology to represent 

each topic area. This can be seen with the kinase family, which continues to have new gene 

proteins discovered and new subfamilies introduced; thereby, older classifications are antiquated 

and new introductions are not well-characterized (Manning et al. 2002). The five intended target 

subfamilies for kinases displayed are a product between the schemes used in the KinaseDB, the 

WikiKinome, National Cancer Institute Thesaurus (NCIT) and Medical Subject Headings 

(MeSH). The same can be said for the ‘Protease’, ‘Phosphatase’, and many other gene-oriented 

intended target families. 
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When mapped out, we found that 62 intended target gene symbols have homologs genes 

investigated within ToxCast. These gene symbols were mapped back to 145 assay component 

endpoints that could be used for comparison of orthogonal assays (see Appendix 2), excluding 

those genes that were mapped to only one assay component. These genes belong to the ‘nuclear 

receptor’, ‘dna binding’, ‘growth factor’, ‘protease’, ‘cyp’, ‘esterase’, ‘gpcr’, ‘ion channel’, and 

transporter intended target families. Furthermore, among these identified assay component 

endpoints, 24 non-human genes investigated by NVS cell-free protein-binding assays have a 

human homolog investigated among the rest of the identified 145 assay component endpoints. 

These assay component endpoints open the possibilities to compare orthogonal assays for 

understanding different chemical interaction patterns and for comparisons across different 

species.  

Assay Analysis Information 

Assay component endpoints distinguish the data processing decisions applied unto the 

raw assay component data, represented in Figure 4 by four annotations. Differences in the 

concepts covered in these annotations are represented in Table 1. The normalized data type 

prominently observed in ToxCast assay component endpoints is ‘percent change’. Subsets of 

ATG (n=80) and BSK (n=174) assay component endpoints are annotated as ‘fold induction’ 

type. ‘Fold induction’ normalization uses the performance of the negative control as the baseline 

reference, while ‘percent change’ uses the performance of negative control as the baseline and 

positive control for normalizing the maximal activity. The analysis direction details whether the 

assay component data were fitted in a ‘positive’ or ‘negative’ activity direction, important 
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concepts when using values generated, such as the lowest effective concentration (LEC) and the 

activity scores (e.g. AC50). 

The data analysis was used to also identify findings that are both expected and 

unexpected of the assay component. With respect to increasing test chemical concentrations, the 

signal direction type annotates whether the raw readout is expected to have a ‘gain’ or ‘loss’ in 

signal activity relative to that of the negative control, may go ‘both’ ways, or where the 

expectation is no change (‘none’). The actual analysis applied is described by the analysis 

direction, annotated as either ‘positive’ or ‘negative’.  

For assay component endpoints with theoretical intents (i.e. signal direction type: ‘gain’ 

and ‘loss’), the signal direction is annotated as ‘gain’ if the analysis direction annotation 

corresponds (i.e., ‘positive’) or as ‘loss’ if they do not correspond (i.e. ‘negative’). For example, 

the NVS_ADME_hCYP1A1_Activator is expected to have a ‘loss’ of signal (signal direction 

type) as increasing chemical concentrations impedes the cell-free reaction. However, it is fitted 

in the ‘negative’ analysis direction, indicating that a decrease in the fluorescent substrate 

presence (the reaction was promoted to generate the product) relative to the negative control was 

detected with increasing test concentrations. Chemicals active in this assay component endpoint 

would, therefore, have caused a ‘gain’ in the protein’s activity (signal direction). 

For signal direction types annotated as ‘both’ or ‘none’, there was not a theoretically 

intended direction. In these cases, the signal direction only corresponds to the analysis direction, 

where ‘positive’ yields ‘gain’ and ‘negative’ yields ‘loss’, respectively. 
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Principle Component Analysis 

With the December 2013 ToxCast Phase II Data Release, there are 795 assay component 

endpoints with complete chemical screening data. After generating the binary file to map each 

assay component endpoint to their annotation terms (data not shown), we used the global PCA 

using 1,039 of the annotation terms. These terms come from all annotations, except the assay 

identification annotations (removed as non-descriptive annotation terms) and the reagent and 

experimental components annotations (had not undergone full quality control review). The PCA 

produced 1,039 principle components with loading values for each annotation term at each 

principle component (correlation values to each principle component). Figure 5 displays a heat 

map of PC1 through PC5 with the clustered annotation terms, where the loading values are 

presented as heat between dodger blue (negative value) to orange (positive value). 

Figure 5: Heat map of the PCA loadings clustered by the annotation terms for the first five 

principle components 
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The percent proportion of variance for the first three principle components is about 33%, 

where PC1 alone can explain about 20.2% of the variance observed across the screening data. 

This is not unexpected since the percent proportion for each principle component continues to 

decrease as it approaches PC1039, where the summation of all principle component percent 

proportions approaches 100%. Our findings suggest that this global PCA cannot explain the 

variability very well. However, it does help identify the conceptual clusters of annotations terms 

contributing to each of the principle components (Figure 5, at right). For instance, for PC1, we 

observed extreme heat or correlation values coming from a number annotation terms related to 

stress on the test environment and contributors to promiscuous activity. This includes but is not 

limited to factors of the technology, assay and cell format, and where the target of interest is 

cytotoxicity or cellular stress. These peripheral factors to an assay are potentially the main 

contributors to noise in the data and that this may interfere with the cell-free as well as cell-based 

assays.  

Continuing along the principle components, there seems to be certain cluster of 

annotations contributing to more variance than others. Along the right side of Figure 5, 

phosphatases and kinases were identified as next most predominant factor contributing to 

variability in the screening data (PC2), followed by GPCRs, ion channel proteins, and 

transporters (PC3), then CYP enzymes (PC4), and steroidal nuclear receptors and a number of 

transcription factors (PC5). Assays that have these features or combinations of these features 

may be more prone to promiscuous hits that others. What this calls for is new analytical 

approaches to adjust or further analyze these hit variance issues. 
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Chapter 5 

Discussion, Conclusions, Limitations, and Future Directions 

Discussion 

The diversity of in vitro assays has continually broadened, bringing new options for 

investigative toxicology to light while increasing the complexity and information demand. There 

was no structure to meet this information demand. In 2006, at the beginnings of ToxCast, the 

only information sources available to understand an assay and its readouts would have come 

from manuscripts, summary protocols, and other printed sources. Even then, each source may 

use different vocabulary or report different amounts of detail, making it a tedious effort to fully 

grasp one assay let along comparing between multiple, diverse assays. The situation became 

truly challenging when multiple assays of different technologies provided non-concordant results 

for the same intended target. Finally, in recent years, frameworks and minimum information 

standards have arisen. This annotation collates these recent developments and proposes a 

structured approach based on ToxCast assays to better address information capture about an 

assay and to organize them for focused communication. 

The ToxCast assay library has been annotated using a customized, systematic method for 

assay data integration and aggregation. Reflective of one of the visions from MLP, ToxCast 

Phase I and II chemical sets are tested across all 328 ToxCast assays to comprise a complete data 

matrix of comprehensive chemical-biological data (Vempati et al. 2012). We successfully 

applied this annotation approach across 328 ToxCast assays with minimal terminology additions 

to allow for rapid data processing and quality control. 
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Numerous consortia have discussed the minimum information standards appropriate for 

quality reporting. These discussions have become technology-oriented, developing specific 

standards for subsets of assay technologies (Goetz et al. 2011; Patlewicz et al. 2013). The BAO 

framework was constructed with a wide breadth of coverage, capturing the NCATS reporting 

parameters and parameters from other technologies (Sittampalam et al. 2012; Vempati et al. 

2012). Our approach applies structure to the BAO framework, where different annotations (e.g. 

content readout type, detection technology name, intended target family) may flag the use of 

certain guidelines. This unifies the annotation standards though it requires critical review of the 

annotation databases and their limitations. In the future, it may be useful to have these guidelines 

incorporated alongside the detection technology and design annotations. 

Two novel concepts were developed as a result of this study. The first concept is the 

hierarchical assignment of assay annotations as attributes of a particular level. Using the order 

displayed in Figure 3A, the lineage between an assay to the assay component endpoints can be 

defined for conventional usage. Following this example, we can communicate about ‘Bioseek’ 

(name of assay source--BSK) with an interest in the BSK_3C assay (name of the experiment). 

Among its readouts, the assay component BSK_3C_IL8 (name of the raw readout) was analyzed 

to produce the assay component endpoint BSK_3C_IL8_down (name of the analyzed readouts). 

Conversely, the assay component endpoint can be tracked back through its lineage to identify 

other assay components and assay components that may be have generated from the same 

experiment, such as BSK_3C_IL8_up.  

A similar approach is taken by the BioAssay Research Database (BARD), a collaborative 

project by MLP that also uses BAO as their foundational framework. BARD applies a higher 
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level of separation where HTS projects are broken down into experiments and further into 

individual assays. The BARD approach can be adopted into our approach. It essentially stops 

short of the assay component and assay component endpoint levels, but it is in agreement that 

annotations can be separated perspectively by level for better organization and communication. 

Secondly, the assay target annotations were developed to conceptually capture the 

technological target(s) for measurement as well as the intended objective target for assessment. 

Under the BAO framework, a subjective target needed to be selected. The vocabulary did not 

lend to separate that target as the reagent fluorescent probe or a gene of interest. Here, we use the 

key assay reagent annotation to set aside signal probes, and by taking this conceptual separation 

of technological versus intended targets a structure is established to capture targets that are more 

complex and abstract. 

The design information annotations provide context for how the target was measured. By 

simply using the target annotations to filter assays, features such as the objective and 

experimental conditions may be ignored. The study design information is the key component for 

reproducibility issues and often questioned when discussing the influencing factors. For instance, 

fluorescence screening assays are prone to artifact interference from test substances that may 

refract light. Nanomaterials, particulate matter, coloring agents, and volatile test chemicals may 

suffer from the artifact fluorescence interference as well as agglomeration and solubility issues, a 

reason for new assays to use the liquid-air interface culture technologies (Ghio et al. 2013). 

Knowing these limitations, one might say certain test substances are inapplicable to most HTS 

technologies, resonating the need for new, better assay technologies for activity testing. 
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Conclusion 

As an organization tool, we’ve shown that the ToxCast Assay Annotations follows a 

logical structure that can filter down and simplify differences between assays. Combination use 

of the annotations, as seen with assay design type and detection technology type, can enhance 

these aggregations and differentiations. Similarly, combination use of the technological and 

intended target annotations can reveal the different modes of assessing the same intended target 

using different technological means. Furthermore, to support the filtering feature, the intended 

target family annotations were introduced to guide groups of target concepts. 

A key idea generated from these results was that the annotations are indeed 

interconnected, and that these connections can help with reducing redundant annotations which 

can be grouped at a higher level. The flattened table approach for annotation, while useful for 

initial annotations, was too flat and made it difficult to convey the annotations. The annotations 

assigned to the assay component endpoint level are features that can only be separated at the 

most terminal level, whereas the annotations for the raw readouts (e.g. assay design, detection 

technology, and technological target) can be grouped up at the assay component level, and again 

for the assay level. These level groupings provide the organization necessary to concentrate the 

communication, keeping details focused on the experiment, the raw data, or the analyses 

separately. 

Ultimately, the annotations are a support tool to understand the results of the chemical 

screening data. The combined display of multiple annotations can highlight the similarities and 

differences observable in the chemical hits. The principle component analysis showed that there 

are certain annotations terms, certain features belonging to the assays, which may be associable 
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to promiscuous hits and high variance in detected hits. The primary component was isolated to 

be differences in cell sensitivity and technology factors that may add stress on the testing 

environment. Therefore, while the annotations may support informed use of the chemical 

screening data, they can be applied to identify noise that may be truly or artificially stimulated. 

Limitations and Future Directions 

We recognize that there needs to be more definition for assays that target gene or 

pathway ‘agonist’ and ‘antagonist’ activities as well as for those that don’t probe gene targets. 

Beyond the 328 assays, we also annotated over 100 pilot assays, discontinued assays, and in-

progress assays. In particular, several annotations are in-development to capture ‘antagonist’ or 

‘agonist’ target status, and to capture the agonist stimulators necessary for antagonist assays. 

Similar to the positive controls and reference chemicals used in each assay, the agonist 

stimulators were chosen from published literature and do not have clear justifications for the 

selection. As more chemical probes are discovered, this area and annotation should be further 

developed for better clarity. This also extends to metabolic and pharmacokinetics assays, which 

target certain chemical derivatives as the measure of gene-mediated biological processes. 

Furthermore, new HTS assays that target developmental endpoint currently meet certain 

limitations within our annotation approach. Many of the zebrafish assays in the public domain 

look for time-dependent developmental effects, many of which are not gene targets but are 

malformations or disease-state targets (Sipes et al. 2011; Padilla et al. 2012; Truong et al. 2014). 

One solution is to incorporate more Gene Ontology biological process and cellular component 

terms or another source for formal vocabulary on developmental effects. However, these assays 

tend to use multiparametric approaches, which there currently is no formal vocabulary set for 
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certain analytical techniques and calculations. The same can be said of stem cell and pluripotent 

cell differentiation assays. To a lesser degree, multi-cell organotypic cultures are another 

promoted area of new assay development, which can be captured using our annotation approach 

with a few minor adjustments to the assay format type and cell format annotations. 

As a byproduct of the assays that were used for annotation here, the target annotations 

have a bias towards gene-oriented assays. For cell-based assays, the targets can be generalized 

using the ‘cell cycle’ and ‘cell morphology’ intended target families. Annotation terms such as 

‘mitochondria’ and ‘nucleus’ were incorporated into the target subtypes annotations. To separate 

the assay target as an indicator for localization versus organelle disruption would require the use 

of the biological process target. This might force the use of Gene Ontology biological process 

target annotations, so new annotations might be necessary to better capture cellular targets. 

Visual mapping of cellular event pathways or adverse outcome pathways will also aid in the 

representation of ‘pathway’ target types. 

Descriptive elements of HTS assays have previously been used to aid the validation of 

assay results. Patlewicz et al. (2013) had focused on the analytical validation of the ToxCast 

Androgen Receptor (AR) assays, where differences in the human and rat cell free component 

source displayed variant binding capacities. ToxCast now includes a Chimpanzee AR binding 

assay, NVS_NR_cAR, which was compared against different AR homolog performance 

including a wild-type human AR recombinant expression in COS monkey kidney cells (Hartig et 

al. 2008). The ToxCast human AR assay uses a different AR protein extracted from LNCaP 

human Leydig cells (Knudsen et al. 2011). The utility in adding the chimpanzee AR assay is that 

it expands the detection sensitivity of perturbing the gene target across mammalian homologs 
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(Knudsen et al. 2011; Sipes et al. 2013). At the same time, it places more importance on 

annotating features of the experimental protocol to enable similar analyses to that of the AR 

assays. New annotations should be considered to capture species ‘wild-type’, ‘polymorphic or 

mutant’ gene variants, whether obtained through ‘recombinant’ expression or from ‘endogenous’ 

biological sources, or if there are other protein modifications such as ‘ligand binding domain 

only’ recombinant expression products. 

Presently, there is not a minimal way to query for supplemental parameter readouts. As 

seen in the Tox21 AR beta-lactamase assay, we observe all assay components as inducible 

reporters but some as ‘background control’ or ‘reporter gene’ assay function types. This assay 

took multiple reads through which the Tox21_AR_BLA_Agonist_ch1 readout measures the 

baseline (‘background control’) while Tox21_AR_BLA_Agonist_ch2 and 

Tox21_AR_BLA_Agonist_ratio take the differential, ‘reporter gene’ comparisons (Huang et al. 

2011). Similarly, ATG assays take reporter gene readouts (e.g. ATG_AR_TRANS), while a 

number of internal markers are used as ‘background control ‘parameters (e.g. 

ATG_GAL4_TRANS, ATG_M_06_TRANS), a common aspect of multiplexed assays 

(Romanov et al. 2008). A possible solution is to remind the user that ‘signaling’, ‘reporter gene’, 

or ‘binding’ assay component endpoints may need to be analyzed with relation to parameter 

assay component endpoints that are derived from the same assay and have ‘viability’ or 

‘background control’ assay function types. 

The ToxCast Assay Annotation is presently used to support software developments with 

assay descriptions, like for the ToxCast Dashboard. This software tool is meant to promote 

informed use of the HTS data and consistent data representation in regulatory decision making. 
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Currently, the BioPortal interface can map between ontologies by their mutual annotation terms. 

This feature opens the possibility of ontology-based data integration, linking out with external 

databases, and normalization of data format heterogeneity and semantics. Judson et al. (2012) 

has described a knowledgebase essentially as a database supported with an ontology. The 

ontology makes the database better built to conduct search options. As new technologies become 

available, incorporating new vocabulary into the existing ontologies enables a consistent means 

to update the knowledgebase. Applying these functions to the ToxCast Dashboard can greatly 

improve its usability to accommodate the clients’ work needs. 

The ‘assay component map’ is a separate table meant to map the raw data files names to 

the appropriate assay component. This is a recent development that attempts to foster the data 

analysis pipeline with the annotation resource. 

As mentioned, additional annotations are in-progress to highlight more features of an 

assay. Moving forward, the ToxCast Assay Annotation may incorporate parallel annotations to 

support a main annotation with the respective vocabulary and schema used by other ontologies in 

the same domain. For instance, the Brenda Tissue and Enzyme Source Ontology contains 

interesting annotation terms for endogenous enzyme source and anatomical entity hierarchy, 

which could be used alongside CL and CLO for cell short name annotations (Gremse et al. 

2011). Similarly, the reagent and experimental components information, presently BAO 

annotation terms are used, but the Experimental Factor Ontology carries similar annotation terms 

which could also extend to the assay format type and cell format annotations. 
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Chapter 6 

Indoor environmental health sampling, Science talk panels, and mammary gland tumor 

bioinformatics investigation: the Practicum experience with Silent Spring Institute 

 

Joining Silent Spring Institute (SSI) for a two week practicum, I had the great pleasure 

and opportunity to listen in on several of these developments, learn from their experts, and 

contribute to them a segment of database and pathway informatics. After some conversations 

with SSI Director of Research and my practicum preceptor, Ms. Ruthann Rudel, the practicum 

was initiated with three intents, each having environmental science competencies. The first was 

to shadow field scientists and observe their exposure sampling protocol, which exercise diversity 

and cultural competencies. The second was to participate in Silent Spring Institute’s scientific 

meetings and get a feel for how business and science operates in a non-government organization 

(NGO), which involve program planning discussions. The third was to work with SSI experts to 

learn about the Mammary Carcinogen Review Database, one of SSI’s product resources, and to 

use it with a bioinformatics and cheminformatics approach, an application of communication and 

informatics skills.  

Diversity and Cultural Competency 

The goal of the first intent was to demonstrate awareness of and sensitivity to the varied 

perspective, norms, and values of others based on individual and ethnic differences. This was 

done by shadowing two specialists, Mr. Oscar Zarate from SSI and Ms. Meryl Corton from 

Harvard School of Public health. The two specialists were conducting an indoor exposure 

sampling study in a newly-occupied housing-community in the Boston area. On one sampling 
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event, a sampling module was set up in the home of a native Spanish-speaking participant, so 

Mr. Zarate administered the intake survey entirely in Spanish. The survey was very extensive 

and it is important to mention the necessity of interpretive clarifications; for instance, “Number 

of chairs” versus “Number of fabric-covered chairs”, details which may be overlooked are 

separate survey questions within the intake form.  

To efficiently get through the visit in 1 hr, I assisted Ms. Corton in setting up the module, 

sample for floor dust, and conducted the walk-through inspection. The engineered module was 

equipped with different passive air badges and particulate matter collectors, and it was set up to 

sample for 1 full week at a single location within the household. Like some of the intake 

questions, the walk-through inspection was a very eye-opening exercise, requiring awareness of 

direct and indirect exposure factors that may influence the indoor air quality in each room (e.g. 

the number of air purifiers, use of aromatic candles or air fragrances, mold spots, and chipped or 

cracked paint along the infrastructure), a careful reminder of what good housekeeping would 

include and what it could prevent. 

Program Planning 

The second intent was to participate in SSI’s scientific meetings. These discussions 

identified the needs of the scientific and public community, and how to better meet these needs 

as a research entity. Some big concepts out of these meetings include consideration for who the 

proverbial stakeholders are, what it means to outreach and maintain community involvement, 

and what are the scientific products. For example, SSI has been a long-time researching entity 

for the Cape Cod, Massachusetts community. Having looked into the environmental 

contaminants, pesticides used, and the unusually high incidence of cancer and health concerns 
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from the region, what more could be done? Is the amount of research conducted sufficient? This 

resonates whether an NGO may get too niche or may have departed from specialization. This has 

implications for the scientific direction of the institute, the kind of skill sets and human resource 

to develop, and the kind of contribution and amount of people-time to spend towards a 

collaborative product. 

The scientific meetings also demonstrate collective information sharing, a 

communication competency. It was similar to an academic lab meeting, where decisions made or 

results gathered are weighed as “useful or not,” “may contribute towards policy or other 

publication products,” or whether it may be good practice to compare with a respected data 

source or review summary. Through this, scientific results may get digested when reporting out. 

Particularly when reporting to local, non-scientific communities, phrasing and semantics need to 

be considerately and sensitively applied. 

Communication and Informatics 

 Finally, the third intent involves collective information sharing, problem-solving, data 

interpretation, and considering genetic factors for adverse health outcomes. Though it was not 

able to be completed within the 2 week timeframe and follow-up developments have not been 

successful, this has been useful as a learning exercise in understanding different data resources. 

During the 2 week practicum, I was asked to present on a bioinformatics approach performed for 

a Human Leukemogen Project (Thomas et al. 2012) with the intent to do a similar analysis using 

a chemical set from the Mammary Carcinogen Review Database. This was a hypothesis 

generating exercise and an effort to identify chemical clusters based on enrichment of KEGG 

pathways. A few issues immediately surface: 1) unlike the Human leukemogens, the mammary 
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gland carcinogen chemicals are largely obtained from mouse and rat models, and it was not clear 

whether they lead to tumors of specific neoplastic or non-neoplastic types; 2) while the original 

plan was to use Comparative Toxicogenomics Database (CTD) files, the data files had missing 

and confusing data, and initial statistical approaches using Gene Set Enrichment Analysis 

(GSEA) failed to re-capitulated CTD displayed results; and 3) because the chemicals are mouse 

and rat actives, it would be important to consider enrichments of mouse and rat pathways. 

To address these bioinformatics issues, with support from Drs. Lisa Truong and Richard 

Judson from EPA NCCT and Dr. Reuben Thomas from UC Berkeley, Ms. Janet Ackerman from 

SSI and I data-mined through different chemical-biological databases. For the first issue, we 

looked into the mouse and rat pathology data in Chemical Effects in Biological Systems 

database. However, while the data is rich, it required significant computing power and re-

analysis of raw data; therefore, the tumor specificity categorizations could not be determined. 

Next, we identified that due to licensing limitations the CTD gene-pathway file was incomplete 

of certain KEGG pathways of interest and that an alternative source would be needed to consider 

the respective mouse or rat pathways. We then investigated the KEGG REST web services to 

extract pathway information, and we found that this can directly provide species-specific 

pathways, rather than conduct a gene-ortholog translation effort between species. Still, 

recapitulating the pathway enrichments failed; we discovered that CTD takes a human-health 

oriented approach so only human pathway enrichments would be displayed. Therefore, there is a 

need for more inter-species genetic and physiologic research to better understand the 

mechanisms of toxicity specificity and differences in susceptibility for translational science. 
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In addition, within the CTD chemical-gene interaction data set, it was discovered that 

transgenic studies make up a large proportion of the available mouse and rat data subsets (e.g. 

while the tested organism was a mouse species, the genes assessed are inserted from the human 

genome). These data sets have been corrected for using NCBI files for the respective rat, mouse 

and human genomes and will be re-run for enrichment patterns in the near future. This did, 

however, identify that rat and mouse chemical-gene data is actually very meager for the 273 

chemicals of interest (800-1200 interactions in rat; 4000-6000 interactions in mouse) compared 

with the human data (50000-160,000 interactions in humans for the same set of 273 chemicals), 

whereas it was previously thought of as comparable numbers. 

Through the bioinformatics exercise, it brings to light the limitations and challenges 

present in cross-species modeling (e.g. data gaps in testing, transgenic studies, and even 

coverage of species-specific pathways). Hopefully, after the enrichments have been re-run, we 

may see some clusters form out of the human data subset that may be similarly detected from the 

mouse or rat data subsets. Thereafter, we can analyze for a primary set of gene targets useful for 

characterization, and determine whether or not a certain gene-form (e.g. DNA, RNA, or protein) 

of the gene targets contributes most to the characterization. To the larger picture, these outputs 

may help in understanding the mammary gland carcinogens and their similarities and differences 

in physiologic responses between human, mouse, or rat models. 
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APPENDIX 

Appendix 1: Orthologous Gene Targets 
- Intended target gene symbols that are non-human genes are highlighted in blue. 

- The rank column is used to order the groups of assay component endpoints in terms of their number of orthologous assays 

 

Assay component  

endpoint 

Intended target  

type 

Intended target  

subtype 

Intended target  

family 

Intended target  

subfamily 

Intended target  

gene ID 

Intended target  

gene symbol 
Rank 

ACEA_T47D_80hr_Positive pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

ATG_ERa_TRANS protein transcription factor nuclear receptor steroidal 2099 ESR1 1 

ATG_ERE_CIS protein transcription factor nuclear receptor steroidal 2099 ESR1 1 

NVS_NR_bER protein receptor nuclear receptor steroidal 407238 ESR1 1 

NVS_NR_hER protein receptor nuclear receptor steroidal 2099 ESR1 1 

NVS_NR_mERa protein receptor nuclear receptor steroidal 13982 Esr1 1 

OT_ER_ERaERa_0480 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ER_ERaERa_1440 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ER_ERaERb_0480 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ER_ERaERb_1440 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ERa_EREGFP_0120 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ERa_EREGFP_0480 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ERa_ERELUC_AG_1440 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

OT_ERa_ERELUC_ANT_1440 pathway pathway-specified nuclear receptor steroidal 2099 ESR1 1 

Tox21_ERa_BLA_Agonist_ch2 protein receptor nuclear receptor steroidal 2099 ESR1 1 

Tox21_ERa_BLA_Agonist_ratio protein receptor nuclear receptor steroidal 2099 ESR1 1 

Tox21_ERa_BLA_Antagonist_ratio protein receptor nuclear receptor steroidal 2099 ESR1 1 

Tox21_ERa_LUC_BG1_Agonist protein receptor nuclear receptor steroidal 2099 ESR1 1 

Tox21_ERa_LUC_BG1_Antagonist protein receptor nuclear receptor steroidal 2099 ESR1 1 

ATG_AR_TRANS protein transcription factor nuclear receptor steroidal 367 AR 2 

NVS_NR_cAR protein receptor nuclear receptor steroidal 747460 AR 2 

NVS_NR_hAR protein receptor nuclear receptor steroidal 367 AR 2 

NVS_NR_rAR protein receptor nuclear receptor steroidal 24208 Ar 2 

OT_AR_ARELUC_AG_1440 pathway pathway-specified nuclear receptor steroidal 367 AR 2 

OT_AR_ARSRC1_0480 pathway pathway-specified nuclear receptor steroidal 367 AR 2 

OT_AR_ARSRC1_0960 pathway pathway-specified nuclear receptor steroidal 367 AR 2 

Tox21_AR_BLA_Agonist_ch2 protein receptor nuclear receptor steroidal 367 AR 2 

Tox21_AR_BLA_Agonist_ratio protein receptor nuclear receptor steroidal 367 AR 2 

Tox21_AR_BLA_Antagonist_ratio protein receptor nuclear receptor steroidal 367 AR 2 

Tox21_AR_LUC_MDAKB2_Agonist protein receptor nuclear receptor steroidal 367 AR 2 

Tox21_AR_LUC_MDAKB2_Antagonist protein receptor nuclear receptor steroidal 367 AR 2 



54 

 

ATG_PPARg_TRANS protein transcription factor nuclear receptor non-steroidal 5468 PPARG 3 

ATG_PPRE_CIS protein transcription factor nuclear receptor non-steroidal 5468 PPARG 3 

NVS_NR_hPPARg protein receptor nuclear receptor non-steroidal 5468 PPARG 3 

OT_PPARg_PPARgSRC1_0480 pathway pathway-specified nuclear receptor non-steroidal 5468 PPARG 3 

OT_PPARg_PPARgSRC1_1440 pathway pathway-specified nuclear receptor non-steroidal 5468 PPARG 3 

Tox21_PPARg_BLA_Agonist_ch2 protein receptor nuclear receptor non-steroidal 5468 PPARG 3 

Tox21_PPARg_BLA_Agonist_ratio protein receptor nuclear receptor non-steroidal 5468 PPARG 3 

APR_p53Act_1h_dn pathway pathway-specified dna binding tumor suppressor 7157 TP53 4 

APR_p53Act_1h_up pathway pathway-specified dna binding tumor suppressor 7157 TP53 4 

APR_p53Act_24h_dn pathway pathway-specified dna binding tumor suppressor 7157 TP53 4 

APR_p53Act_24h_up pathway pathway-specified dna binding tumor suppressor 7157 TP53 4 

APR_p53Act_72h_dn pathway pathway-specified dna binding tumor suppressor 7157 TP53 4 

APR_p53Act_72h_up pathway pathway-specified dna binding tumor suppressor 7157 TP53 4 

ATG_p53_CIS protein transcription factor dna binding tumor suppressor 7157 TP53 4 

ATG_Ahr_CIS protein transcription factor dna binding basic helix-loop-helix protein 196 AHR 5 

Tox21_AhR protein receptor dna binding basic helix-loop-helix protein 196 AHR 5 

ATG_CAR_TRANS protein transcription factor nuclear receptor non-steroidal 9970 NR1I3 6 

ATG_PBREM_CIS protein transcription factor nuclear receptor non-steroidal 9970 NR1I3 6 

NVS_NR_hCAR_Agonist protein receptor nuclear receptor non-steroidal 9970 NR1I3 6 

NVS_NR_hCAR_Antagonist protein receptor nuclear receptor non-steroidal 9970 NR1I3 6 

ATG_DR5_CIS protein transcription factor nuclear receptor non-steroidal 5914 RARA 7 

ATG_RARa_TRANS protein transcription factor nuclear receptor non-steroidal 5914 RARA 7 

NVS_NR_hRAR_Antagonist protein receptor nuclear receptor non-steroidal 5914 RARA 7 

NVS_NR_hRARa_Agonist protein receptor nuclear receptor non-steroidal 5914 RARA 7 

ATG_FXR_TRANS protein transcription factor nuclear receptor non-steroidal 9971 NR1H4 8 

ATG_IR1_CIS protein transcription factor nuclear receptor non-steroidal 9971 NR1H4 8 

NVS_NR_hFXR_Agonist protein receptor nuclear receptor non-steroidal 9971 NR1H4 8 

NVS_NR_hFXR_Antagonist protein receptor nuclear receptor non-steroidal 9971 NR1H4 8 

ATG_GR_TRANS protein transcription factor nuclear receptor non-steroidal 2908 NR3C1 9 

ATG_GRE_CIS protein transcription factor nuclear receptor non-steroidal 2908 NR3C1 9 

NVS_NR_hGR protein receptor nuclear receptor non-steroidal 2908 NR3C1 9 

Tox21_GR_BLA_Agonist_ch2 protein receptor nuclear receptor non-steroidal 2908 NR3C1 9 

Tox21_GR_BLA_Agonist_ratio protein receptor nuclear receptor non-steroidal 2908 NR3C1 9 

Tox21_GR_BLA_Antagonist_ratio protein receptor nuclear receptor non-steroidal 2908 NR3C1 9 

ATG_PPARa_TRANS protein transcription factor nuclear receptor non-steroidal 5465 PPARA 10 

ATG_PPRE_CIS protein transcription factor nuclear receptor non-steroidal 5465 PPARA 10 

NVS_NR_hPPARa protein receptor nuclear receptor non-steroidal 5465 PPARA 10 

ATG_PXR_TRANS protein transcription factor nuclear receptor non-steroidal 8856 NR1I2 11 

ATG_PXRE_CIS protein transcription factor nuclear receptor non-steroidal 8856 NR1I2 11 

NVS_NR_hPXR protein receptor nuclear receptor non-steroidal 8856 NR1I2 11 
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ATG_RXRa_TRANS protein transcription factor nuclear receptor non-steroidal 6256 RXRA 12 

OT_NURR1_NURR1RXRa_0480 pathway pathway-specified nuclear receptor non-steroidal 6256 RXRA 12 

OT_NURR1_NURR1RXRa_1440 pathway pathway-specified nuclear receptor non-steroidal 6256 RXRA 12 

ATG_TGFb_CIS protein transcription factor growth factor transforming growth factor beta 7040 TGFB1 13 

BSK_BE3C_TGFb1_down protein protein-specified growth factor transforming growth factor beta 7040 TGFB1 13 

BSK_BE3C_TGFb1_up protein protein-specified growth factor transforming growth factor beta 7040 TGFB1 13 

BSK_KF3CT_TGFb1_down protein protein-specified growth factor transforming growth factor beta 7040 TGFB1 13 

BSK_KF3CT_TGFb1_up protein protein-specified growth factor transforming growth factor beta 7040 TGFB1 13 

ATG_THRa1_TRANS protein transcription factor nuclear receptor non-steroidal 7067 THRA 14 

NVS_NR_hTRa protein receptor nuclear receptor non-steroidal 7067 THRA 14 

Tox21_TR_LUC_GH3_Agonist protein receptor nuclear receptor non-steroidal 7067 THRA 14 

Tox21_TR_LUC_GH3_Antagonist protein receptor nuclear receptor non-steroidal 7067 THRA 14 

BSK_BE3C_MMP1_down protein protein-specified protease matrix metalloproteinase 4312 MMP1 15 

BSK_BE3C_MMP1_up protein protein-specified protease matrix metalloproteinase 4312 MMP1 15 

BSK_hDFCGF_MMP1_down protein protein-specified protease matrix metalloproteinase 4312 MMP1 15 

BSK_hDFCGF_MMP1_up protein protein-specified protease matrix metalloproteinase 4312 MMP1 15 

NVS_ENZ_hMMP1 protein enzyme protease matrix metalloproteinase 4312 MMP1 15 

NVS_ENZ_hMMP1_Activator protein enzyme protease matrix metalloproteinase 4312 MMP1 15 

BSK_KF3CT_MMP9_down protein protein-specified protease matrix metalloproteinase 4318 MMP9 16 

BSK_KF3CT_MMP9_up protein protein-specified protease matrix metalloproteinase 4318 MMP9 16 

NVS_ENZ_hMMP9 protein enzyme protease matrix metalloproteinase 4318 MMP9 16 

NVS_ENZ_hMMP9_Activator protein enzyme protease matrix metalloproteinase 4318 MMP9 16 

NVS_ADME_hCYP1A1 protein enzyme cyp xenobiotic metabolism 1543 CYP1A1 17 

NVS_ADME_hCYP1A1_Activator protein enzyme cyp xenobiotic metabolism 1543 CYP1A1 17 

NVS_ADME_rCYP1A1 protein enzyme cyp xenobiotic metabolism 24296 Cyp1a1 17 

NVS_ADME_rCYP1A1_Activator protein enzyme cyp xenobiotic metabolism 24296 Cyp1a1 17 

NVS_ADME_hCYP1A2 protein enzyme cyp xenobiotic metabolism 1544 CYP1A2 18 

NVS_ADME_hCYP1A2_Activator protein enzyme cyp xenobiotic metabolism 1544 CYP1A2 18 

NVS_ADME_rCYP1A2 protein enzyme cyp xenobiotic metabolism 24297 Cyp1a2 18 

NVS_ADME_rCYP1A2_Activator protein enzyme cyp xenobiotic metabolism 24297 Cyp1a2 18 

NVS_ADME_hCYP2E1 protein enzyme cyp xenobiotic metabolism 1571 CYP2E1 19 

NVS_ADME_hCYP2E1_Activator protein enzyme cyp xenobiotic metabolism 1571 CYP2E1 19 

NVS_ADME_rCYP2E1 protein enzyme cyp xenobiotic metabolism 25086 Cyp2e1 19 

NVS_ADME_rCYP2E1_Activator protein enzyme cyp xenobiotic metabolism 25086 Cyp2e1 19 

NVS_ENZ_hAChE protein enzyme esterase acetylcholinesterase 43 ACHE 20 

NVS_ENZ_hAChE_Activator protein enzyme esterase acetylcholinesterase 43 ACHE 20 

NVS_ENZ_rAChE protein enzyme esterase acetylcholinesterase 83817 Ache 20 

NVS_ENZ_rAChE_Activator protein enzyme esterase acetylcholinesterase 83817 Ache 20 

NVS_GPCR_bAdoR_NonSelective protein receptor gpcr rhodopsin-like receptor 282133 ADORA1 21 

NVS_GPCR_hAdoRA1 protein receptor gpcr rhodopsin-like receptor 134 ADORA1 21 
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NVS_GPCR_bDR_NonSelective protein receptor gpcr rhodopsin-like receptor 281125 DRD1 22 

NVS_GPCR_hDRD1 protein receptor gpcr rhodopsin-like receptor 1812 DRD1 22 

NVS_GPCR_bH1 protein receptor gpcr rhodopsin-like receptor 281231 HRH1 23 

NVS_GPCR_hH1 protein receptor gpcr rhodopsin-like receptor 3269 HRH1 23 

NVS_GPCR_gLTB4 protein receptor gpcr rhodopsin-like receptor 100379538 Ltb4r 24 

NVS_GPCR_hLTB4_BLT1 protein receptor gpcr rhodopsin-like receptor 1241 LTB4R 24 

NVS_GPCR_gMPeripheral_NonSelective protein receptor gpcr rhodopsin-like receptor 100379235 Chrm3 25 

NVS_GPCR_hM3 protein receptor gpcr rhodopsin-like receptor 1131 CHRM3 25 

NVS_GPCR_hAdra2A protein receptor gpcr rhodopsin-like receptor 150 ADRA2A 26 

NVS_GPCR_rAdra2_NonSelective protein receptor gpcr rhodopsin-like receptor 25083 Adra2a 26 

NVS_GPCR_hAdrb1 protein receptor gpcr rhodopsin-like receptor 153 ADRB1 27 

NVS_GPCR_rAdrb_NonSelective protein receptor gpcr rhodopsin-like receptor 24925 Adrb1 27 

NVS_GPCR_hNTS protein receptor gpcr rhodopsin-like receptor 4923 NTSR1 28 

NVS_GPCR_rNTS protein receptor gpcr rhodopsin-like receptor 366274 Ntsr1 28 

NVS_GPCR_hOpiate_mu protein receptor gpcr rhodopsin-like receptor 4988 OPRM1 29 

NVS_GPCR_rOpiate_NonSelective protein receptor gpcr rhodopsin-like receptor 25601 Oprm1 29 

NVS_GPCR_rOpiate_NonSelectiveNa protein receptor gpcr rhodopsin-like receptor 25601 Oprm1 29 

NVS_GPCR_hV1A protein receptor gpcr rhodopsin-like receptor 552 AVPR1A 30 

NVS_GPCR_rV1 protein receptor gpcr rhodopsin-like receptor 25107 Avpr1a 30 

NVS_LGIC_bGABAR_Agonist protein receptor ion channel ligand-gated ion channel 282235 GABRA1 31 

NVS_LGIC_bGABARa1 protein receptor ion channel ligand-gated ion channel 282235 GABRA1 31 

NVS_LGIC_rGABAR_NonSelective protein receptor ion channel ligand-gated ion channel 29705 Gabra1 31 

NVS_MP_hPBR protein transporter transporter cholesterol transporter 706 TSPO 32 

NVS_MP_rPBR protein transporter transporter cholesterol transporter 24230 Tspo 32 

NVS_NR_bPR protein receptor nuclear receptor non-steroidal 280895 PGR 33 

NVS_NR_hPR protein receptor nuclear receptor non-steroidal 5241 PGR 33 

NVS_TR_gDAT protein transporter transporter neurotransmitter transporter 100714898 Slc6a3 34 

NVS_TR_hDAT protein transporter transporter neurotransmitter transporter 6531 SLC6A3 34 

NVS_TR_hAdoT protein transporter transporter nucleoside transporter 2030 SLC29A1 35 

NVS_TR_rAdoT protein transporter transporter nucleoside transporter 63997 Slc29a1 35 

NVS_TR_hNET protein transporter transporter neurotransmitter transporter 6530 SLC6A2 36 

NVS_TR_rNET protein transporter transporter neurotransmitter transporter 83511 Slc6a2 36 

NVS_TR_hSERT protein transporter transporter neurotransmitter transporter 6532 SLC6A4 37 

NVS_TR_rSERT protein transporter transporter neurotransmitter transporter 25553 Slc6a4 37 
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 Appendix 2: R Script for a Global Principle Components Analysis of ToxCast Assay Data 

#### Prior to running this code, the “Ontology_realm” E-drive was established on an external  

#### hard drive. It contains the ToxCast Phase II Data release screening data, design info data  

#### file, and target info data files were pre-processed to calculate –Log10(value/100000)  

#### transformed values. 

 
# Progression of objects: 

# 

# Design_info -> Design_melt -> Design_melted merges with Target_melted -> AxM 

# Target_info -> Target_melt -> Target_melted merges with Design_melted -> AxM 

# AxM merges into MxC_prep -> MxC_prep -> MxC (end) 

# DATA_LEVEL6 -> DL6 

# DL6 + AxM -> MxC_prep 

 

# install.packages("Rtools") 

# install.packages("devtools") 

# install.packages("reshape2") 

# install.packages("Rcpp") 

library(Rcpp) 

library(devtools) 

 

# set directory # 

annotation.dir <- "E:/Ontology realm" 

setwd(annotation.dir) 

 

 

# Read in Data release and Annotations# 

list.files() 

DATA_LEVEL6 <- read.csv ("ToxCast_E1k_1858_LEVEL6_AC50_COMPLETE_2014MAR17.csv", 

header=TRUE) 

head(DATA_LEVEL6)[1:10] 

dim(DATA_LEVEL6) 

 

Design_info <- read.csv ("toxcast_assay_annotation_study_design_Mar2014.csv", header=TRUE)  

Design_info <- Design_info[order(Design_info$assay_component_endpoint_name),] 

Target_info <- read.csv ("toxcast_assay_annotation_target_info_Mar2014.csv", header=TRUE) 

Target_info <- Target_info[order(Target_info$assay_component_endpoint_name),] 

 

 

# Merging the BSK CASM3C gaps with the SM3C data # 

BSK_mod <- colnames(DATA_LEVEL6)[grep("BSK_CASM3C|BSK_SM3C",colnames(DATA_LEVEL6))] 

#BSK_mod 

sum(!is.na(DATA_LEVEL6[,BSK_mod[1]])) #775 chemicals with CASM3C data 

sum(!is.na(DATA_LEVEL6[,BSK_mod[29]])) #292 chemicals with SM3C data 

 

for (i in 1:28){ #for each line of CASM3C that is NA, replace with the matching SM3C data 

  j <- i+28 

  DATA_LEVEL6[is.na(DATA_LEVEL6[,BSK_mod[1]]),BSK_mod[i]] <- 

DATA_LEVEL6[is.na(DATA_LEVEL6[,BSK_mod[1]]),BSK_mod[j]] 

} 

sum(!is.na(DATA_LEVEL6[,BSK_mod[1]])) #1058 chemicals with CASM3C data 
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# id and remove APR 1hr (Phase 1 only) data # 

APR_mod <- colnames(DATA_LEVEL6)[grep("APR_",colnames(DATA_LEVEL6))] 

APR_mod <- APR_mod[grep("_1h_",APR_mod)] 

sum(!is.na(DATA_LEVEL6[,APR_mod[15]])) #292 chemicals with each APR 1hr assay 

 

# remove the SM3C and APR_1hr data from further usage # 

DATA_LEVEL6 <- DATA_LEVEL6[,!colnames(DATA_LEVEL6) %in% BSK_mod[29:56]] 

DATA_LEVEL6 <- DATA_LEVEL6[,!colnames(DATA_LEVEL6) %in% APR_mod] 

rm(BSK_mod, APR_mod, i, j) 

 

 

# create annotation:term pairs # 

desc_term_pair <- function (x) { 

  y <- matrix(NA,nrow=nrow(x),ncol=ncol(x)) 

  for (i in 1: nrow(x)) { 

    for (j in 1:length(x)) { 

      #y[i,j] <- toupper(paste(names(x)[j],":",x[i,j],sep="")) 

      y[i,j] <- paste(names(x)[j],":",x[i,j],sep="") 

    } 

  } 

  colnames(y) <- colnames(x) 

  y <- cbind(as.character(x$assay_component_endpoint_name),y) 

  colnames(y)[1] <- "assay_component_endpoint" 

  y <- y[, colnames(y)!="assay_component_endpoint_name"] 

} 

Design_melt <- desc_term_pair(Design_info) 

head(Design_melt) 

 

Target_melt <- desc_term_pair(Target_info) 

head(Target_melt) 

 

 

# Separate out the description variables, annotation IDs, and other variables to be removed from PCA# 

remove <- c("_desc","assay_source_long_name","assay_name","assay_component_name" 

            ,"organism_id","target_gene_id" 

            ,"wavelength_","key_assay_","key_positive_control","dilution_solvent_","timepoint_" 

            ) 

 

Design_melt <- as.matrix(Design_melt[,grep(gsub(", ","\\|",toString(remove)),colnames(Design_melt), 

invert=TRUE)]) 

Target_melt <- as.matrix(Target_melt[,grep(gsub(", ","\\|",toString(remove)),colnames(Target_melt), 

invert=TRUE)]) 

 

colnames(Design_melt) 

colnames(Target_melt) 

 

 

# remove duplicate columns except for "the "assay_component_endpoint" # 

colnames(Design_melt)[colnames(Design_melt) %in% colnames(Target_melt)] 

remove <- colnames(Design_melt)[colnames(Design_melt) %in% colnames(Target_melt)][-1] 

Target_melt <- Target_melt[,!colnames(Target_melt) %in% remove] 

Design_melt <- as.data.frame(Design_melt) 

Target_melt <- as.data.frame(Target_melt) 
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# reshape the matrices # 

library(reshape2) 

Melted <- function(x) { 

  y <- melt(x, id="assay_component_endpoint", na.rm=FALSE) 

  y <- dcast(y, assay_component_endpoint~value, function(x) 1, fill=0) 

} 

 

Design_melted <- Melted(Design_melt) 

head(Design_melted,30) 

 

Target_melted <- Melted(Target_melt) 

head(Target_melted,30) 

 

 

# merge the two matrices for uniform representation of Design and Target # 

AxM <- merge(Design_melted, Target_melted, by="assay_component_endpoint", all=TRUE) 

rownames(AxM) <- AxM$assay_component_endpoint 

colnames(AxM) 

dim(AxM) 

head(AxM,10)[1:10] 

 

plot(colSums(AxM[,-1]), xlim=c(0,300), #ylim=c(0,100),  

     ylab="No. of Assays", xlab="AxM term id", main="No. of Assays across the AxM terms") 

summary(colSums(AxM[,-1])) 

 

 

# checking the format of the AxC table # 

tail(DATA_LEVEL6) 

retired <- colnames(DATA_LEVEL6)[!colnames(DATA_LEVEL6) %in% rownames(AxM)][-(1:3)] 

retired 

#### Note: ATG perc series, Tox21 ch1+ch2, & Tox21 mito fitc+rhodamine  

#### have data released, but not the annotations for them 

 

 

# Generate the MxC matrix # 

names(AxM)  

AxM[1:5,1:5] #still has the assay_component_endpoint column 

AxM[,"assay_component_endpoint"] 

dim(AxM) 

dim(DATA_LEVEL6) 

 

 

# Generate the chemical data as.numeric and as AxC # 

head(DATA_LEVEL6)[1:6] 

DL6 <- matrix(0, ncol=nrow(DATA_LEVEL6), nrow=ncol(DATA_LEVEL6)-3) 

for (i in 1:nrow(DATA_LEVEL6)){ 

  x <- lapply(DATA_LEVEL6[i,4:ncol(DATA_LEVEL6)], as.character) 

  x <- unlist(lapply(x, as.numeric)) 

  DL6[,i] <- x 

} 

class(DL6[,1845]) #check to see if it is numeric 

tail(DL6) 

DL6 <- as.data.frame(DL6) 

rownames(DL6) <- colnames(DATA_LEVEL6)[-(1:3)] 
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# Excluding the retired assays and selecting the chemical identifiers to keep # 

colnames(DL6) <- DATA_LEVEL6[,"TS_ChemName"] #assigning the chemical column names 

DL6 <- cbind(rownames(DL6),DL6) 

head(DL6)[1:5] 

colnames(DL6)[1] <- "assay_component_endpoint" 

DL6 <- DL6[!rownames(DL6) %in% retired,] #removing retired assays 

DL6[1:10,1:10] 

dim(DL6) 

 

 

# Remove the chemicals with too many NAs # 

plot(colSums(is.na(DL6)), 

     xlab = "Chemical ID", ylab = "No of NA values for Assays", main = "Distribution of NA chemical average 

values")  

summary(colSums(is.na(DL6))) 

  #graph and summary table suggests that the magic cutoff numbers are 100, 150, 300, and 600) 

maybeE1K <- colnames(DL6)[colSums(is.na(DL6))>500] 

length(maybeE1K) 

DL6 <- as.data.frame(DL6[,!colnames(DL6) %in% maybeE1K]) 

length(colnames(DL6)) #1059 + assay_component_endpoint_names 

 

 

# Generating the wide file # 

colnames(DL6)[1:10] 

dim(AxM) 

AxM <- AxM[rownames(AxM) %in% rownames(DL6),] 

 

filtered <- colnames(AxM[,-1])[colSums(AxM[,-1])<1] 

length(filtered) 

filtered[1:100] 

AxM <- as.data.frame(AxM[,!colnames(AxM) %in% filtered]) 

AxM[,1] 

 

AxM[1:2] 

MxC_prep <- merge(DL6, AxM, by="assay_component_endpoint") 

head(MxC_prep)[c(1:10,1060:1069)] 

dim(DL6) # 783 by 1060 

 

 

# Getting rid of the 'assay_component_endpoint' columns # 

row.names(MxC_prep) <- MxC_prep[,"assay_component_endpoint"] 

MxC_prep <- MxC_prep[,!names(MxC_prep) %in% "assay_component_endpoint"] 

DL6 <- DL6[,!names(DL6) %in% "assay_component_endpoint"] 

AxM <- AxM[,!names(AxM) %in% "assay_component_endpoint"] 

head(MxC_prep)[1:5] 

 

MxC <- matrix(NA, nrow=ncol(AxM), ncol=ncol(DL6)) 

dim(MxC) # Metadata Annotations by Chemical data; AxM by dataset 

 

dim(DL6) # Assays(+retired) by Chemical data 

dim(AxM) # Assays by Metadata Annotations 

dim(MxC_prep) # assays incommon by [Chemical data + Metadata Annotation] 

MxC_prep[,1060] 
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colnames(MxC) <- colnames(DL6) 

rownames(MxC) <- colnames(AxM) 

 

# Calculate the average(-log10(AC50)) for each chemical to annotation term # 

x <- MxC_prep[,1:1059] 

ptm <- proc.time()   

  for (j in 1000:ncol(AxM)) { 

    k <- j+ncol(DL6) 

    y = MxC_prep[,k] 

    MxC_p <- data.frame(x,y) 

    MxC_p <- MxC_p[which(MxC_p$y=="1"),] 

    z <- aggregate(MxC_p, by=list(MxC_p[,"y"]), FUN=mean, na.rm=TRUE) 

    MxC[j,] <- unlist(z[1,2:1060]) 

  } 

proc.time()-ptm 

MxC[1000:1050,1:5] 

 

rownames(MxC)[is.na(rowSums(MxC))] 

 

rm(i,j,k,x,y,z,MxC_p,ptm) 

 

 

# writing the MxC table # 

write.csv(MxC,"MetaxChem_averagescores.csv")  

# PCA prep #1 

install.packages("gplots") 

 

# Check for the number of NAs per chemical # 

plot(colSums(is.na(MxC))) 

 

# There are still too many NA and NaN values. Trying Matt's solution: Avg()=>NaN) # 

MxC_1 <- MxC 

for (i in 1:nrow(MxC)) { 

  if (sum( is.na(MxC[i,]) )>0) { 

    MxC_avg <- mean(MxC[i,],na.rm=TRUE) 

    MxC_1[i,] <- as.numeric(gsub(NaN,MxC_avg, unlist(MxC_1[i,]))) 

  } 

} 

rm(i) 

MxC_1[1:10,1:10] 

MxC_1 <- t(MxC_1) 

  rownames(MxC_1)=NULL #remove the chemical names 

  remove <- colnames(MxC_1)[colSums(MxC_1)==0] #remove features that have 0 hits 

MxC_2 <- MxC_1[,!colnames(MxC_1) %in% remove] 

MxC_2 

write.csv(MxC_2, "MxC_data.csv") 

 

try1 <- matrix(NA,ncol=ncol(MxC_2),nrow=2) 

for (i in 1:ncol(MxC_2)){ 

  try1[1,i] <- mean(MxC_2[,i],) 

  try1[2,i] <- sd(MxC_2[,i]) 

} 

 

plot(try1[1,], col="blue") 
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par(new=T) 

plot(try1[2,], col="red") 

par(new=F) 

 

MxC_pca <- prcomp(MxC_2,center=TRUE, scale=TRUE) 

tail(MxC_pca) 

names(MxC_pca) 

 

PCA_loading <- MxC_pca$rotation #is.matrix 

length(PCA_loading[,1]) 

write.csv(PCA_loading, "MxC_loading.csv") 

 

Vimportance <- summary(MxC_pca) #generates the importance column 

Vimportance <- Vimportance$importance #is.matrix 

rownames(Vimportance) 

write.csv(Vimportance, "MxC_importance.csv") 

 

 

# examining the data # 

dimnames(PCA_loading) 

pairs(PCA_loading[,1:5]) #scatterplot of PC1 thru PC10 

 

library(gplots) 

my_palette <- colorRampPalette(c("dodger blue", "white", "orange"))(n = 299) 

PCA_heat <- heatmap.2(PCA_loading[,1:5],dendrogram=c("row"),Rowv=TRUE,Colv=FALSE,trace="none", 

col=my_palette, 

                      density.info="none", denscol=FALSE, key=TRUE)  
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