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ABSTRACT

The purpose of this project is to present a simple and

specific method to assess the radon progeny hazards in the home

and to apply this method.  Equations presently are available to

calculate lung dose for adults using a typical particle size

distribution. Using these equations for children results in an

underestimation of lung dose.  In order to determine the lung

dose for any age individual and particle size distribution, this

research developed equations using a lung model by D. Crawford-

Brown.  These equations may be used to estimate annual lung dose

from information concerning the radon progeny concentration,

unattached fraction, and aerosol size distribution.  Measurements

of radon and radon progeny were performed in two upstate New York

homes which were identified as having potentially elevated radon

concentrations.  Sampling procedures for unattached fractions

developed by A. George and a computer program to determine

working levels from gross alpha counts on air filters were

applied to obtain the necessary parameters for the lung dose

calculations.  Estimates of lung dose equivalent to the

subsegmental bronchioles for the two families were calculated
from these specific measurements, with the assumption of a

typical particle size distribution.  Therefore, a method both for
sampling radon progeny and for calculating lung dose to various
groups under differing particle size distributions and unattached
fractions is presented.
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1 INTRODUCTION

Indoor Rn-222 (radon) recently has been the focus of
nationwide attention, since it comprises the largest single
source of exposure to ionizing radiation to the general
population.  The average effective whole body dose equivalent
from radon, 200 millirem per year, is larger than all other
natural sources combined, as well as industrial and medical
sources (NCRP-93,1987).  Radon-222 is the decay product of
radium-226 which is part of the uranium series starting with
uranium-238. The actual hazard is not the radon gas, which does
not readily interact chemically with other elements, but the
particulate progeny to which it decays.  As shown in Figure 1,
two daughters, polonium-218 and polonium-214, decay by alpha
emission.  While all the radon progeny are breathed into the
lung, these two daughters are responsible for most of the
radiation dose received by the lung.  The Environmental
Protection Agency estimates the annual lung cancer deaths from
radon in the United States to be in the range of 5,000 to 20,000
(Bodansky et al,l987).

While previous attention to indoor radon has been focused on
homes built above uranium mill tailings or phosphate deposits and
homes in which construction materials contained uranium, it is
now widely accepted that the most common source of indoor radon
is from the natural uranium in soil and rocks under homes

(personal communication, Watson).  One of the most publicized of
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Figure 1 Uranium-238 decay scheme (NCRP-77,1984)

such areas is the Reading Prong, an underground granite formation
which is highly permeable and enriched with uranium.  It extends
under eastern Pennsylvania, northern New Jersey, and southern New
York (Cothern,1987).

The primary mechanism through which radon enters the home
from the ground is through gaps in the building structure.
Lesser amounts often enter from building materials and from the
water supply. Weatherization of homes for energy conservation
possibly can lead to elevated radon levels due to a decreased
rate of air exchange with the outdoors. Radon concentrations
differ greatly among homes due to differing rates of radon entry
and varying locations.  It is estimated that the average radon
concentration for a single family home is 1.5 picocuries per
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liter (pCi/1) (Bodansky at al,l987).  One extensive study of

annual and normalized average concentrations found most of the

single-family homes to have a concentration in the range of 0.2

pCi/1 to 4 pCi/1, with about 9% having higher concentrations.  Of

those having higher concentrations, around 2% have levels greater

than 8 pCi/1.  This corresponds roughly to one million homes.  It

should be noted that the Environmental Protection Agency (EPA)

recommends that action be taken when radon levels exceed 4 pCi/1

on an annual average basis (Bodansky et al,1987).

Even within a single home, radon concentrations can differ

greatly.  In general, homes demonstrate higher levels during the

winter months when the house is more tightly closed.  In

addition, higher concentrations are often observed during the

early morning hours and the lowest concentrations are found in

the late afternoon, with concentrations about one-third the peak

morning values (Eisenbud,1987).

The concern about radon began in the mining industry when it

was observed that certain mining populations were developing an

elevated number of lung cancers (Cothern,1987).  However, radon

exposure in the home differs from that in mining atmospheres.

Generally, in the home, a smaller aerosol median particle size

(0.1 micron versus 0.2 to 0.4 micron) is found (NCRP-78,1984).

Also, the fraction of radon progeny not attached to aerosol

particles (unattached fraction) is larger in homes (0.07) than in

mines (0.04).  In addition, home atmospheres constitute

continuous exposures as opposed to occupational mining exposures.
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While these differences increase the lung dose per unit of radon

concentration, this increase is compensated by generally lower

concentrations of radon progeny in the home.

The primary unit used to describe radon concentration is the

working level (WL). A WL is defined as "any combination of

short-lived radon daughters in one liter of air that will result

in the emission of 1.3 X 10^ MeV of potential alpha energy"
(NCRP-78,1984).  To describe cumulative exposure, the unit of

working level month (WLM) is used.  A WLM is an exposure to one

WL for one working month (170 hours). Working levels relate to

pCi/1 of short-lived radon progeny by the equation:

WL = 0.00103 (RaA) + 0.00507 (RaB) + 0.00373 (RaC)

(Evans,1969); where (RaA), (RaB), and (RaC) is the concentration

of RaA, RaB, and RaC, respectively, in units of pCi/1. As shown

in Figure 1, the radionuclides corresponding to RaA, RaB, and RaC

are, respectively, Po-218, Pb-214, and Bi-214. The unit of WL is

defined in terms of potential alpha energy which includes the RaB

and RaC beta emitters since they eventually decay to an alpha

emitter.  The alpha emitter RaC (Po-214) is in equilibrium with

the much longer-lived RaC. Therefore, with each RaC decay, an

almost instantaneous RaC' decay occurs.

Equations presently are available to calculate the bronchial

lung dose to adults if the unattached fraction and radon

concentration are known.  One such equation assumes a typical

particle size distribution and applies only to adults (Maher et

al,1987).  Calculations have been performed by W. Hofmann
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(Hofmann et al,1979) and N. Harley (Harley and Pasternack,1982)
for the lung doses to children but not as a function of aerosol
size distribution.  The age-dependent lung model by Crawford-
Brown (Crawford-Brown,1981) predicts lung dose for differing ages
and aerosol sizes.

The general purpose of this study is to develop a method for
calculating the dose delivered to the lung tissue of various age
groups under any atmospheric conditions. These conditions would
include the unattached fraction and particle size distribution.
At the present, calculations of lung dose are available only
under a single typical particle size distribution.  The resulting
equations presented in this report, therefore, may be used to
calculate lung dose in homes in which the state of radon progeny
has been measured.  Since these equations require that the radon
progeny concentration and unattached fraction be known, a method
is also presented to obtain these parameters using two New York
homes as examples. Combining the equations with the measurements
yields an estimation of the annual lung dose equivalent for the
members of two families at a radon progeny concentration

specified as the action level by the EPA.  Since no measurement
of particle size distribution has been obtained here, only a
single example of the application of the general method may be
given.
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2  THEORETICAL DEVELOPMENT OF AGE-DEPENDENT LUNG DOSE EQUATIONS
2.1  LUNG ANATOMY AND MODELLING

The respiratory system can be divided into three parts.  The

naso-pharyngeal region consists of the nose, mouth, throat,

pharynx, and larynx, and in these areas air flow is most likely
to be turbulent.  The tracheo-bronchial region extends from the

trachea through the lobar, segmental, and subsegmental bronchi to

the terminal bronchioles.  The third area is the pulmonary region

which consists of the alveoli where carbon dioxide and oxygen are

exchanged with the bloodstream.  The area of interest for radon

progeny deposition is the tracheo-bronchial region.  In this

region, the trachea divides into two main bronchi, which divide

into five smaller bronchi to compose the lobar region of the

lung.  Further divisions continue and produce the segmental,

subsegmental, and terminal bronchioles.  As shown in Figure 2,

the inner surface wall of the airways in this region is composed

of a layer of pseudostratified columnar epithelial cells above a

layer of basal cells.  These basal cells divide to replace the

epithelial cell layer. Goblet cells, which function to secrete

mucus, can also be found in the columnar layer.  Cilia lie above
these colimmar cells and propel mucus upward along the

passageways.  Since the basal cells are undifferentiated and
rapidly dividing, it is often assumed that they are the critical
cells in radon dosimetry, although this is not certain (Crawford-
Brown, 1987) .
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Figure 2 Cross-section of the epithelial layer of the lung
(Crawford-Brown,1987)

The lung model by Crawford-Brown is comprised of twenty

generations beginning with the mouth and ending in the terminal

bronchioles.  The area of interest here is in generation 7, which

is the subsegmental region. This region is important because

many of the lung tumors in uranium miners are assumed to have

developed in this area (NCRP-78,1984). This lung model

incorporates several important steps.  First, it is necessary to

calculate the amount of radon progeny deposited in each

generation of the lung.  Deposition modelling depends on the size

of aerosol particles to which radon progeny attach, the

unattached fraction, the volume of air breathed, and the age of

the individual (which influences airway diameters and lengths).
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Transport processes in the lung must also be described since the

mucociliary blanket can move a particle from its original site of

deposition.  From calculations of deposition and mucociliary

blanket movement, the number of disintegrations in the generation

of interest (generation 7) can be estimated.  Using this

information on the total number of disintegrations in a

generation, it then is possible to calculate the dose to cells in

that generation.  This calculation requires the use of depth-

dose curves which describe the dose to cells located at different

distances from the lung passageway walls (Crawford-Brown,1987).

For this research, the most important feature of the model

is the calculation of the number of disintegrations per inhaled

atom of radionuclide for various pacticle sizes and ages. The

model yields estimates of the number of disintegrations for a

wide range of aerosol particle diameters and also considers the

effects of breathing characteristics.  Both light and resting

states of physical activity are specified in the model, but only

resting states are considered in this report due to the focus on

the home. This model also calculates disintegrations for various

radiological decay constants.  The decay constants of RaA (0.227

per minute), RaB (0.026 per minute), RaC (0.035 per minute) were

summed and resulted in an average decay constant of 0.096 per

minute.  The closest value examined by Crawford-Brown is a

radiological decay constant of 0.07 per minute.  Therefore, the

relative values of dose to the lung at various ages calculated

using a decay rate constant of 0.07 per minute will be used in

NEATPAGEINFO:id=17AC75B5-16C9-4FA0-84F2-746D05B9B96C
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the present report.  As long as the decay constant for the radon
progeny is within 50% of that given in the lung model, the
relative values of dose to the various generations will be the
same (personal communication, Crawford-Brown).  In other words,
the ratio of the dose at age "a" to the dose in an adult will be
correct.  The absolute value of the adult is taken from NCRP-78

(NCRP-78,1984).  The absolute value at any other age may then be
calculated by multiplying the adult value by the ratio mentioned
above.

In summary, the model yields estimates of the number of :
disintegrations in the subsegmental bronchioles for any aerosol
diameter and age.  If this number is divided by the surface area
of that generation, a measure of the dose to that generation is
obtained.

2.2  STATISTICAL ANALYSIS OF PARTICLES

Since the Crawford-Brown lung model considers various
particle diameters, lung dose equations may be formulated for
different particle size distributions.  This requires information
on the frmction of particles at any size.  Particle size
distribu'^lona generally follow a log-normal distribution, which
means that the logarithm of the particle sizes is normally
distributed (Crow and Shimizu,1988).  In such a distribution, the
geometric mean, or median diameter, is used to describe the data.
This median diameter corresponds to the size at which 50% of the
particles have smaller diameters and 50% have larger diameters.
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The arithmetic mean diameter is not particularly useful in these
distributions since it is influenced greatly by outliers.  The
geometric standard deviation is used in log-normal distributions
to describe the variability or spread in the data.  A common way
to display these parameters graphically is with a cumulative plot
on log-probability paper.  This plot displays the particle size
logarithmically and the probability or percent of particles less
than the stated size on a probit scale.  If this cumulative plot
is a straight line, then the data are truly log-normal (Crow and
Shimizu,1988).

In the present research, three aerosol median diameters were
considered:  0.05 micron, O.l micron, and 0.5 micron.  These
median diameters should closely approximate the range of most
aerosol size distributions found in the home (personal
communication,Crawford-Brown).  In addition, geometric standard
deviations of two, three, and four were applied to each median
diameter, resulting in a diversity of possible distributions. As
shown in Figure 3, NCRP-78 considers a typical particle size
distribution in the home as approximately 0.1 micron median
dieuneter with a geometric standard deviation (GSD) of two.

The medians and geometric standard deviations for the nine
aerosol size distributions considered here are displayed on log-
probit paper as shown by the nine figures in Appendix A. The
aerosol diameters ranged from 0.001 micron to 10 microns and were
divided into 16 different intervals.  Particle sizes greater than
10 microns were not considered because the majority of these

NEATPAGEINFO:id=25EE7EC5-07C5-4495-94CB-6986B63A6AC9
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Figure 3 Particle size distribution for a typical home (NCRP-
78,1984)

particles are stopped by impaction in the nose before reaching

the lung (personal communication, Crawford-Brown).  Particle

sizes less than 0.001 micron were assumed to be mostly unattached

to aerosol particles.  Since the unattached progeny are deposited

with an efficiency similar to that of the 0.0001 micron diameter

particles, the disintegrations corresponding to the 0.0001 micron

diameter as predicted by the lung model were used to determine

the bronchial dose contribution from the unattached fraction of

the radon progeny (personal communication, Crawford-Brown).

These particle size intervals are shown in Table 1.
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Table 1 Particle Size Intervals Used In This Study

Interval Range (micron) Interval Range (micron)

1 0.001-0.005 S 0.8-1.0

2 0.005-0.01 10 1.0-2.0

3 0.01-0.05 11 2.0-3.0

4 0.05-0.1 12 3.0-4.0

5 0.1-0.2 13 4.0-5.0

6 0.2-0.4 14 5.0-6.0

1 0.4-0.6 15 6.0-8.0

a 0.6-0.8 16 8.0-10.0

The fraction of particles in each size interval given in

Table 1 was determined for each of the nine assumed aerosol

distributions by the cumulative plot of each aerosol

size distribution (Appendix A).  Figure 4 shows an example

of a cumulative plot of a particle size distribution.
For each interval shown in Table 1, the percent of particles

less than the lower boundary of each interval was subtracted from

the percent of particles less than the upper boundary of each
interval. The difference is the fraction of particles in that

interval.  Using the seventh interval as an example, the
cumulative percent corresponding to 0.4 micron for the particle
distribution in Figure 4 is 37%. The cumulative percent for 0.6
micron in 60%. Therefore, the fraction of particles with
diameters between 0.4 micron and 0.6 micron in this distribution
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is 60% - 37% = 23%.  This methodology was used for each size
interval in each distribution such that the fractions in each
distribution summed to 100%.

I

I

10 20     30  40   so   M   70    ao       90      9S      98
Ptr cant I«m than suMtf ww

Figure 4 Cumulative plot of a particle size distribution.  The
particle size corresponding to the 50% point is the median
diameter, 0.5 micron, and the ratio of the 84% size to the 50%
size gives the geometric standard deviation as 2.

2.3  METHODOLOGY FOR FORMULATING AGE-DEPENDENT LUNG DOSE EQUATIONS

In this report, the individual ages of 0 (newborn), 2, 8,
12, 16, and 32 (adult) will be considered.  From the Crawford-
Brown lung model, the number of disintegrations in each lung

generation, D^ q*,  are given at age "a" as a result of particles
in size range "i". These are the total number of disintegrations
per breath and assume a concentration of 1 particle per cc.
Therefore, the number of disintegrations per breath at each age
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must be multiplied by the breathing frequency (breaths per year)
for that age in order to estimate the total number of

disintegrations per year (Di^^).  Figure 5 shows the breathing
frequency in breaths per minute as a function of age.  These

values are converted into breaths per year for the specific ages
considered as shown in Table 2.

Since the particle size endpoints of interest in the present

study (Table 1) occasionally were different from the particle

sizes given in the lung model, interpolation was necessary to
determine the number of disintegrations associated with the

particle size intervals considered.  The midpoint of each

interval in Table 1 was calculated. As described above, the lung

model predicts the total number of disintegrations occurring in

generation 7 for each age, "a", and particle size, "i" (D^ a*)*
When multiplied by the breathing frequency, this number becomes

^i a' with units of disintegrations per year resulting from

exposure at age "a" to an atmosphere of 1 atom per cc. Values of

D^ a for the specific particle size intervals used in this study
were obtained by interpolation between the values given by the

lung model.  The fraction of particles, f^, in each size inter¬

val, i, as determined by the cumulative plot for each assumed

particle size distribution in Appendix A then were multiplied by

"Di a". These values, fi,Di^a' represent the total number of
disintegrations in generation 7 from each size interval and age,
weighted by the fraction of particles in each of these intervals
for each particle size distribution.  To obtain the total number

NEATPAGEINFO:id=41B10DE6-2215-49B7-AF0F-206AE6322878
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Figure 5 Breathing frequency as a function of age (Crawford-
Brown, 1987) .

Table 2 Breathing Frequency for Specific Ages

Age Breaths per minute  Minutes per year Breaths per year

0 34               5.256 E 5 1.7870 E 7

2 27               5.256 E 5 1.4191 E 7

8 18               5.256 E 5 9.4608 E 6

12 16               5.256 E 5 8.4096 £ 6

16 15               5.256 E 5 7.8840 E 6

32 14               5.256 E 5 7.3584 E 6

(Adapted from Crawford-Brown,1987)
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of disintegrations corresponding to all size intervals at a given
age, the values of fi»Dj^ ^ were summed over all particle sizes
(i.e. V fifDi^a)- "^^e total dose from all size intervals then is
proportional to this sum divided by the age-dependent regional
surface area of the lung for generation 7 (SA^).  These surface
area values are shown in Table 3.  This dose, however, pertains
to a radon progeny concentration of 1 atom per cc.  Therefore,
V ^i'^i,a / ^^a  must be multiplied by the radon progeny
1

concentration, C (in units of WL), and an arbitrary conversion
factor, k, to obtain the total lung dose per year.  The units.of
k will be rads per disintegration per square centimeter times
atoms per cc per WL.

The discussion above has considered only radon progeny
attached to aerosol particles.  The contribution of the radon
progeny unattached to aerosol particles was derived in the same
manner as above with one alteration.  For the unattached progeny,
the disintegrations per year and per unit concentration for each
age, Df ^,  were obtained by using only the disintegrations
corresponding to the particle diameter of O.OOOl micron from the
lung model, which is considered smaller than aerosol particles
(personal communication, Crawford-Brown). Adding the
contributions from the attached progeny and unattached progeny
results in the total lung dose per year, Rp,a' specific for each
particle size distribution and age. The following general
equation illustrates the previous discussion:

NEATPAGEINFO:id=81919E1E-64C6-4A95-B2D8-B86ED9D3C903
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Table 3 Age-Dependent Regional Surface Areas of the Lung

Age Surface Area (citi^)

0 2.6

2 4.5

8 11.4

12 15.9

16 20.1

32 28.7

(Adapted from Crawford-Brown,1981)

^p,a - (1-f) C k I)fi,Di^a / SAa + f C k Df^^ / SAg, (1)

where f is the unattached fraction and C is the total

concentration of the progeny in WL, regardless of the state of

attachment. The only term left to determine is the conversion

factor, k, which is independent of age and particle size

distribution.  This factor may be obtained by providing known

values of Rp ^ and C and solving the above equation for k.  NCRP-
78 provides a factor for lung dose per unit radon progeny

concentration of 0.5 rad per WLM for adults. Additional values

are given corresponding to gender-specific environmental

exposures (women =0.6 rad/WLM and men =0.7 rad/WLM) and could
be used if desired. The conversion of 0.5 rad/WLM was chosen

because it represents a consensus of values used by the NCRP and
EPA (personal communication, Crawford-Brown).  Since this NCRP
conversion factor is expressed in units of rad per WLM, the radon
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progeny exposure also must be expressed in WLM.  However, radon
progeny concentration usually is expressed in WL, as is the case
in Equation 1.  Therefore, a conversion is needed to equate WL
with WLM.  A WLM corresponds to exposure at 1 WL for 1 month (170
hours).  Since there are 52, 170-hour periods in a year for
continuous exposure, a concentration of 1/52 WL will yield 1 WLM.
Therefore, a concentration, C, of 1/52 WL was used in Equation 1
to solve for k, with Rp set equal to 0.5 rads.

Another factor needed to determine k (see Equation 1) is the
unattached fraction, f, which for a typical home is 0.07 (NCRP-
78,1984).  The attached fraction is therefore 1-f or 0.93.  Since
0.5 rad/WLM is a factor corresponding to adults, the surface area
(SAj^) term that must be used is 28.7 cm^ (Table 3). The only
values left to be supplied for Equation 1 are ^^^i'^i a ^"^
Df a.  These terms were explained previously and the values
used here may be found in Appendix B.  For purposes of solving
for k in Equation 1, a typical particle size distribution with a
median of 0.1 micron and GSD of 2 is used here. With the

appropriate values inserted into Equation 1, it is possible to
solve for k as follows:

0.5 rad/WLM = (0.93) (1/52 WL) (1.1792 E6) k / 28.7
+ (0.07) (1/52 WL) (3.7271 E7) k / 28.7;
k = 2.0137 E-4.

The conversion factor, k, may then be substituted back into
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Equation 1 along with any desired age and/or particle size

specific values for 2 fi^Dj^ g, Df g, and SA-^, in order to

calculate Rp a* ^^ ^^^  present research, six ages and nine
particle size distributions are considered.  This yields a total

of 54 different versions of Equation 1.  The following example

for adults and a typical particle size distribution illustrates

the method used to develop these equations:

R = (1-f) C (k) (^fi'Di^a) / SAa + f c (k) (Df^a) / SAa
R = (1-f) C (2.0137 E-4) (1.1792 E6) / 28.7 + f C (2.0137 E-4)

(3.7271 E7) / 28.7  or,

R = (8.3 + 253.2 f) C.

A similar calculation can be performed for each age/particle

distribution combination.  Each of the resulting 54 equations is

of the form:

R = (A + B f) C. (2)

The values for A and B, as calculated for this study, are given

in Table 4 and are specific for each age and particle size

distribution. Consider the previous example for an adult and a

particle size distribution with a median diameter of 0.1 micron

and a geometric standard deviation of 2.  From Table 4, it may be

seen that A equals 8.3 and B equals 253.2.
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Table 4 Parameters for Age-Dependent Lung Dose Equations
(Ages 0-8)

20

Age Distribution

(median, GSD)

B

0 0.05, 4 22.5 382.5

0.10, 4 27.4 377.6

0.50, 4 96.3 308.7

0.05, 3 16.7 388.3

0.10, 3 18.5 386.5

0.50, 3 84.2 320.8

0.05, 2 14.4 390.6     .

0.10, 2 12.9 392.1

0.50, 2 62.3 342.7

2 0.05, 4 37.5 460.6

0.10, 4 61.0 437.1

0.50, 4 231.0 267.1

0.05, 3 25.1 472.9

0.10, 3 38.3 459.8

0.50, 3 214.6 283.4

0.05, 2 19.4 478.7

0.10, 2 23.0 475.0

0.50, 2 170.4 327.7

8 0.05, 4 24.6 345.2

0.10, 4 37.8 332.0

0.50, 4 172.0 197.8

0.05, 3 17.1 352.7

0.10, 3 23.3 346.5

0.50, 3 145.1 224.7

0.05, 2 13.8 356.0

0.10, 2 14.6 355.2

0.50, 2 102.5 267.3
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Table 4, continued
Parameters for Age-Dependent Lung Dose Equations

(Ages 12 - 32)

Age        Distribution A B
(median, GSD)

12            0.05, 4 20.5 310.9
0.10, 4 29.7 301.7
0.50, 4 143.2 188.2
0.05, 3 14.6 316^8
0.10, 3 18.5 312.9
0.50, 3 115.2 216.2
0.05, 2 12.1 319.3
0.10, 2 11.9 319.5
0.50, 2 77.8 253.6

16            0.05, 4 18.7 294.7
0.10, 4 26.4 287.0
0.50, 4 133.3 180.1
0.05, 3 13.5 300.0
0.10, 3 16.3 297.1
0.50, 3 104.0 209.4
0.05, 2 11.4 302.0
0.10, 2 10.8 302.6
0.50, 2 67.4 246.0

32-                              0.05,   4 14.7 246.8
0.10,   4 19.2 242.4
0.50,   4 94.8 166.8
0.05,   3 10.8 250.7
0.10,   3 12.2 249.3
0.50,   3 72.0 189.5
0.05,   2 9.2 252.3
0.10,   2 8.3 253.2
0.50,   2 46.7 214.8
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3  DETERMINATION OF RADON PROGENY CONCENTRATIONS IN HOMES

Radon progeny concentrations were determined in two New York

homes.  These homes were identified through the New York State
Department of Health.  Both homes had elevated charcoal canister
readings in March of 1988.  The Department of Health communicated
to the families that these extensive measurements of the radon

progeny concentration and unattached fraction were available to
them if they were interested.  These homes were located in West

Chester County, New York on the edge of the Reading Prong.  Radon
progeny measurements were made using a filter technique and radon
gas measurements were taken for comparison purposes.  Unattached
fraction measurements were also made using a wire screen
technique.  Particle concentration was determined in these homes
to compare to the unattached fraction measurements.

3.1  FILTER TECHNIQUE AND COMPUTER PROGRAM

The filter method for determining radon progeny

concentrations was originally developed by E. C. Tsivoglou

(Tsivoglou et al, 19^53) and consists of sampling the air through
a filter at a fairly low flow rate.  This method first was used
in mine atmospheres to determine the amount of radon progeny

activity present in contaminated air.  In this method, samples
are collected for 5 minutes and the filter is then counted by an

alpha scintillation system at three separate time intervals (5,
15, and 30 minutes after the termination of sampling). The
individual air concentrations of the three short-lived radon
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daughters, RaA, RaB, and RaC, can be estimated from the total
activity on the filter at the three measurement times by solving
a set of differential equations.  Three measurements are required
because three differential equations are used in this technique,
one for each radon progeny, with three unknowns.  One subset of

equations accounts for the buildup and decay of activity on the
filter during the sampling period, while another accounts for the
time period after the termination of sampling (when the progeny
are decaying but not being collected).  The rate of buildup of
the three radon progeny on the filter depends upon their

concentrations in air, the flow through the filter, and the

radiological decay constants of the three progeny.  The activity
of each of the radon progeny is described by the sets of

differential equations incorporating these factors.  From these
differential equations and the above factors, it is possible to
solve for the activity of each of the progeny on a filter at any
time, given the concentration in the air.  This situation could
be reversed and the concentration of the progeny in the air may
be inferred from the activity on the filter (gross alpha counts).
Therefore, measurements of the activity on the filter may be used
to calculate the concentrations of the three radon progeny. The

solutions to these differential equations are quite long and

cumbersome and are presented in a paper by D. E. Martz (Martz et
al,1969).  These equations allow for a variation in counting and
sampling times and include a theoretical development of the
associated standard errors.  However, these equations assume that

NEATPAGEINFO:id=D42052D4-658C-4DDD-AEF3-DB51D487B551



24

measurements are available of the instantaneous count rates
during each of the three 1-minute counting intervals.  To improve
the accuracy of the counting method by accounting for the finite
length of the measurement intervals, the equations describing
count rate must be integrated over the three different time
intervals (personal communication, Crawford-Brown).  With this
modification, total alpha counts over three specified time
interv^als are used instead of count rates.

Several studies of different time intervals were reviewed to
determine the simplest intervals to use with the available
equipment without sacrificing accuracy.  J. W. Thomas found that
the post-sampling time intervals of 2 to 5 minutes, 6 to 20
minutes, and 21 to 30 minutes with a sampling period of 5 minutes
yield the highest accuracy (Thomas,1972).  However, for
simplicity, time intervals suggested by A. G. Scott were chosen
(Scott,1981).  The time intervals suggested by Thomas involved
irregular counting times which would have required manual control
of the counting equipment.  Errors might be introduced due to
manually controlling the scaler. Therefore, to reduce possible
error and still retain high accuracy, the Scott method of 5-
minute counts was used.  This procedure involved taking an air
sample for 5 minutes, then counting the filter with an alpha
scintillation system from 1 to 6 and 6.25 to 11.25 minutes after
the termination of sampling. The third 5-minute count is made on
the filter at any time between 40 and 85 minutes post-sampling.
The last counting interval was chosen here to be 40 to 45 minutes
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to reduce total counting and waiting times.  Using these
intervals, the filter must be transported from the holder to the
counters within 1 minute after the end of sampling.  In addition,
the scaler reading must be noted and the second interval started
within 15 seconds.  This requires a careful account of time since
the scaler must be started manually.  However, by using the 5-
minute intervals the scaler will stop automatically since 5-
minute counting times can be preset on the scalers, thus removing
some possible counting errors.  This technique was practiced
using an early 1900's radium "drinking water" source placed in a
wooden box with drilled sampling ports.  This "radon box" was
used to practice sampling and counting techniques before home
measurements were made.

A computer code designed to relate the activity on the
filter (gross alpha counts) to the concentrations of the three
radon progeny in air has been written based on the Tsivoglou
technique. This program uses simplified equations derived by Y.
Fu-Chia and T. Chia-Yong (Fu-Chia and Chia-Yong, 1978) and can be
found in Appendix C with a brief explanation of the major steps
involved. This program yields the RaA, RaB, and RaC
concentrations in pCi/1 and their standard errors along with
working level computations. Table 5 illustrates the quantities
required to be input into this computer code.  To test this
computer program, time intervals given by Thomas (2-5, 6-20, 21-
30) and Scott (1-6, 6.25-11.25, 70-75) were entered into the
program along with the 5-minute sampling time used by both
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authors.  A comparison then was made between the results

calculated by the code and those published by Thomas and Scott.

An exact match was obtained and the computer code was assumed

correct.

The theoretical development of the standard errors

corresponding to the radon progeny concentrations can be found in

the Martz paper.  Errors associated with background subtraction

were not included in the Martz paper but were included in this

program since fewer sample counts were expected than in the mine

atmospheres that Martz was considering.  The standard errors were

determined by error propagation formulas as shown in Appendix D.

These standard errors were determined to demonstrate that errors

that could be quantified were at an acceptable level.  All radon

progeny concentration standard errors were less than 10%.  Error

was not propagated throughout the dose equations since many

uncertainties are present which are difficult to quantify,

although the lung model itself should be accurate to a factor of

two (personal communication, Crawford-Brown).
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Table 5 Inputs for Computer Code

INPUT SOURCE

Sampling time (minutes)
Sampling flow rate (1pm) *
Sampling flow rate std. error *
Detector efficiency *
Detector efficiency std. error *
Total alpha counts (3 intervals)
Duration of 3 intervals (minutes)
Total bkg. counts (3 intervals)
Post-sampling start times

Preset (5 minutes)

Flowmeter/Pump (12.2 1pm)
Manufacturer

Detector/Source

Source Cert./Error Prop.
Detector

Preset (5 minutes)

Detector (5-minute counts)
Preset (1,6.25,40 minutes)

* See Appendix D for measurements and calculations

3,2  EQUIPMENT AND CALIBRATIONS

3.2.1 Filters

Membrane filters were used because of their ability to trap
particles on the filter surface rather than within the filter
matrix. This is important when sampling alpha particles due to
self-absorption.  Membrane filters also have a high retention
efficiency for respirable particles and are commonly used for

NEATPAGEINFO:id=4E94C22A-3D1E-4D02-96A7-0A0C9C087251



28

radioactive aerosol sampling (Cember,1987).  Millipore 0.8

micron, 37-millimeter diameter filters were used along with

backing pads to support the filters against vacuum pressure.

Plastic 37-millimeter aerosol analysis monitors were used to hold

the filters in place.  These holders have a center section

between the top and bottom portions which serves as a retaining

ring to hold the filter in place.  This filter apparatus is shown

in Figure 6.  When the top section is removed, open aerosol

sampling can be accomplished with a vacuum pump connected to the

monitor outlet by tygon tubing.  However, air leaks were observed

on these monitors during vacuum testing and black electrical tape

was wrapped securely around the retaining ring seals while

sampling to eliminate this problem.

FILTER

BACKINQ

PAD

VACUUM

PUMP TYGON

TUBING U

y
BOTTOM

SECTION

- TOP

SECTION

RETAINING RING

Figure 6   Filter Apparatus
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3.2.2 Screens

Two 60-mesh screens with 3.9 centimeter diameters were used

to determine the unattached radon progeny.  One screen fitted
into a metal monitoring device with a top retaining ring to hold
the screen in place, similar to the apparatus shown in Figure 6.
A paper filter followed and prevented the progeny from

contaminating the vacuum pump.  Tygon tubing was then tightly
connected to the monitoring apparatus and to the vacuum pump.
This equipment and method was developed by A. George at the
Environmental Measurements Laboratory in New York (personal
communication, George).  While other methods are available, wire
screens are inexpensive and simple to use.  However, the

unattached radon progeny must be collected with high efficiency
and minimal collection of the attached radon progeny.  The wire
screen has an inherently negative charge which attracts the

positively charged unattached radon progeny, especially RaA.

With the proper combination of air velocity and mesh size,

experimental evidence has shown that a reasonable collection

efficiency for unattached radon progeny can be obtained (George,
1972).  In George's experiment, wire screen mesh sizes from 60 to
325 per inch were tested and only the 60-mesh screen demonstrated
"zero collection efficiency" for attached radon daughters.

George determined efficiencies for unattached radon progeny of
0.60 and 0.50 for 60-mesh screens at linear velocities of 12 and

17 centimeters per second respectively.  A linear velocity of 17
cm/s was used for these measurements which corresponds to a
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sampling rate of 12.2 liters per minute and 50% screen
efficiency.  This sampling rate was determined from the following
calculation:

Q = A X V

Q = 11.95 cm2 X 17 cm/s X 60 s/min X 1 1/1000 cc
Q = 12.2 1pm

where Q = sampling rate in liters per minute, A = area of the
screen in cm^, v = linear velocity in cm per second, and
conversion factors are included to obtain the units of 1pm.

3.2.3  Condensation Nuclei Monitor

An inverse relationship exists between the unattached
fraction of radon progeny and particle concentration as shown in
Figure 7.  As the number of particles in the air increases, more
unattached atoms have particles they can attach to, and hence a
smaller unattached fraction results.  This explains why
unattached fractions are larger in the home than in a mining
atmosphere where more aerosol particles are present.  Therefore,
particle concentration measurements were made in order to confirm
or explain the unattached fraction results.

An Environment One Rich 100 Condensation Nuclei Monitor was
used to measure the concentration of aerosol particles.
According to the equipment manual, this monitor measures
particles 0.0025 micron and larger with a range of 300 to lo"^
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particles per cubic centimeter.  This instrument operates on the

principle of a cloud chamber which produces droplets from

condensation of submicroscopic particles.  A light beam is

attenuated by the cloud proportional to the concentration of

aerosol particles.  The humidifier was filled with distilled

water which was removed and replaced each time the instrument was

moved to prevent flooding of the cloud chamber.  Ideally this

monitor is tested with a known concentration of particles.  This

monitor had been calibrated when it was purchased several years

ago and a new calibration could not be obtained.  As a rough

check of the ability of the detector to respond to different

particle concentrations, the detector was exposed to two

atmospheres of very different particle concentration.  First,

cigarette smoke was used to produce a high concentration of

particles to determine if the monitor needle would rise rapidly.

Then, the vacuum pump intake was filtered to check if the needle

would drop rapidly.  The detector readily responded to the

difference in particle concentration.  It is assumed, therefore,

that the detector can detect the difference between two

atmospheres of very different particle concentration.  Since a
new calibration was not available, only relative values of

particle concentration can be obtained.
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Figure 7 Variation of unattached fraction of RaA with aerosol
concentration (NCRP-78,1984).

3.2.4  Alpha Scintillation Detectors
Two alpha scintillation detectors were used since

simultaneous measurements of the wire screen and filter were
necessary.  Both detectors contained a thin sheet of zinc-sulfide
scintillation material.  This scintillation material produces
light photons when alpha particles strike the surface. A
photomultiplier tube then detects this light and converts it into
an electrical signal.  Figure 8 shows a diagram of the detector
and associated electronics.

An Americium-241 small circular plane source was used for
all voltage and efficiency determinations, as well as for the
standard error computations.  This National Bureau of Standards
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Figure 8 Alpha scintillation detector and associated electronics

source was chosen from the available sources because the alpha
energy emitted most closely resembled that of the radon
daughters.  The two alphas emitted by Am-241 have energies of
5.29 MeV (85%) and 5.44 MeV (13%) (Radiological Health Handbook,
1970).  The alpha energy of RaA is 6.00 MeV (100%) and that of
RaC is 7.69 MeV (100%).  Operating voltages were deteirmined by
voltage plateaus such as the one shown in Figure 9.  This plateau
was generated by increasing the voltage on the detector by small
increments and then noting the corresponding 5-minute source
counts.  An operating voltage then was chosen from the flat
region (plateau) of the graph.  Efficiency determinations were
performed by obtaining a lO-minute background count and five 10-
minute source counts.  Background counts were then subtracted
from each count and an average of the five counts was calculated.
After correcting for decay, efficiencies then were calculated
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from detector counts per minute divided by source disintegrations
per minute.  These calculations are shown in Appendix D.

The first detector used was an Eberline SAC-4 alpha
scintillation counter. This detector was used to count the thick

screens because it had a sample holder which adjusted to various
depths.  A voltage plateau was obtained using a Sensitive
Research electrostatic voltmeter and resulted in an operating
voltage of 575 volts.  An efficiency of 42.22% was determined by
the calculations shown in Appendix D.  Since the source was much
thinner than the wire screen, this efficiency was determined by
placing pads under the source until the same thickness as the
wire screen was obtained.

The other detector used was fabricated at Brookhaven

National Laboratory and was not self-contained.  Therefore, the
associated electronics were placed in a BNC Portanim.  These
electronics consisted of a Canberra Dual Counter/Timer, a Bertan
Associates High Voltage Module, and a Canberra Preamplifier/
Amplifier Module.  The preamplifier/amplifier module was adjusted
to the following settings:  coarse gain = 4, fine gain = 1, and
discrimination = 0.8 as per Laboratory personnel suggestions.
The voltage plateau was obtained by adjusting the potentiometer
on the high voltage module and the operating voltage was set at
1300 volts.  The efficiency calculations resulted in 35.69%, as
shown in Appendix D.  An additional Brookhaven scintillation
detector was kept for use as a spare in case problems with this
one arose.
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Figure 9 Voltage plateau for Eberline detector

3.2.5 Vacuum Pumps and Flowmeter

Air sampling equipment consisted of three Cast diaphragm

vacuum pumps and a Cole-Parmer precision variable area flowmeter.

Two of these pumps were used for the screen and filter and the

remaining pump was used to purge the screen and as a spare. The

flowmeter was calibrated by comparing the flowmeter reading with

a known air source from a Brooks air flow calibrator on the 0-100

liters per minute scale.  Different flowrates were obtained by

adjusting the valves on the air samplers. This calibration plot

is shown in Figure 10.
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Figure 10 Flowmeter calibration plot.

3.2.6  Pylon AB-5 Radon Gas Monitor

A Pylon AB-5 radon gas monitor was used to make comparative
radon gas measurements using an alpha scintillation cell (Lucas
cell size 300).  This instrument operates on the same principle
as the alpha scintillation detector except that air is pumped
directly into a cell coated inside with scintillation material.
This instrtiment was calibrated in the Environmental Measurements

Laboratory radon chamber at a humidity of 44% and a temperature
of 22.4 degrees Celcius. An alpha scintillation cell adapter was
used to secure the cell next to the photomultiplier tube.  The
detector was programmed to continuously take 10-minute counts in
the chamber.  A length of tygon tubing was connected from the
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pump intake on the rear panel to the alpha scintillation cell.

Another length of tygon was connected to the alpha scintillation

cell, and to an open-faced (top section removed) 0.8 micron

Millipore filter apparatus which was placed in the chamber

sampling port.  Figure 11 demonstrates this calibration set-up.

The filter was attached to prevent radon progeny from entering

the alpha scintillation cell so that only radon gas entered the

cell.  In this calibration, 25 radon gas measurements were made

corresponding to a radon chamber concentration of approximately

20 pCi/1.  A calibration factor of 1.1 cpm / pCi/1 was determined

by the plot shown in Figure 12.  The first counts were

disregarded until the gas had equilibrated, then subsequent

counts were used as true measurements.  These 10-minute counts

and corresponding concentrations were averaged to determine the
above calibration factor.

CHAMBER WALL
INSIDE RADON CHAMBER OUTSIDE RADON CHAMBER

NTAKE ON BACKTO PUMP

IB TYfin LUa^ CELL
TUBING

PYLON

FILTER •

APPARATUS

SAMPLING PORT

Figure 11   Pylon AB-5 calibration set-up
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Figure 12   Pylon AB-5 calibration plot.  The dotted line
represents the average 10-minute counts obtained in the period
following equilibration.

3.3  HOME SAMPLING PROCEDURES

Before sampling in the homes, 5-minute background and source

counts were taken on the two scintillation detectors.  The source

checks were taken to determine if moving the detectors had caused

any damage which would result in a poor response.  The Pylon was

then programmed to take continuous grab samples and store counts

in 15-minute intervals.  The condensation nuclei monitor was next

started and allowed to warm up.  Since only one flowmeter was

available for both pumps, flow rates were set up outside where

the radon progeny concentration was assumed to be negligible.
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The screen and filter to be used were placed in their respective

holders, which were attached to the vacuum pumps by tightly

fitting tygon tubing.  The flow was then quickly adjusted on each

pump to the specified amount.  Using the graph in Figure 10 and

conducting experiments with the calibrator, this amount was 87.5

on the flowmeter which corresponds to 12.2 liters per minute.

Figure 13 demonstrates the flowmeter, filter, and pump set-up.

The filter and screen mechanisms were set up at the desired

location in the home and the scintillation detectors were placed

in a "low background" area.  The filter and screen apparati were

placed side by side a few feet off the floor and the pumps were

turned on simultaneously.  Exactly 5 minutes later, the pumps

were turned off together.  Within 1 minute, the screen and filter

were disassembled from their holders and transported to the

scintillation detectors.  At precisely 1 minute after sample

termination, the two detectors simultaneously were started to

count the samples.  Five-minute counting intervals were preset on

the detectors.  The detectors were restarted after 15 seconds for

a second count and after 40 minutes post-sampling for a third

count.  A new set of measurements using the screen/filter samples

were obtained during the delay before the last count was made on

the first set of samples.  These times were carefully calculated

and documented to insure that no errors were made.  In addition,

the same pump and detector combination was used each time for

consistency.  The particle concentration was noted each time a

new sample was started and flow rates and background counts were
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taken before each set of samples.

Since only two wire screens were available for sampling, the
residual radon progeny had to be removed from them before reuse.
An alcohol rinse was applied to these screens with little
success.  This was a significant problem since radon progeny in
the home atmosphere were attracted to the screens even without
being suctioned.  After making several attempts to decontaminate
these screens, two methods proved to be the most effective in
removing the progeny.  Following the first two counts, the
screens then were placed in small plastic bags and sealed
tightly.  After the third count was completed, the screens were
purged outside with the spare vacuum pump at a high flow rate and
again placed in a clean, sealed plastic bag until reuse.  This
procedure was repeated for every two filter/screen measurements.

FILTER

^
VALVE

i

o

FLOW

FLOWMETER

Figure 13    Flowmeter set-up
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4  RESULTS FOR TWO NEW YORK HOMES

4.1  RADON PROGENY MEASUREMENTS

The first home sampled, Home A, had a finished basement that

was only partially underground.  The basement consisted of a

living area, play area, workroom, and a bathroom.  Four

filter/screen measurements were taken in the living/play area
outside the workroom which was assumed to be the source of radon

from cracks in the block wall and concrete floor.  Table 6

displays these measurement results along with measurements of the

unattached fractions.  The unattached fractions were calculated

by the following equation:

Cs / Es

where Cg = the concentration of radon progeny on the screen, Eg =
the collection efficiency of the screen for unattached radon

progeny (0.50), and Cf = the concentration of radon progeny on
the filter (personal communication, George).  The values found in

Home A generally were higher than the standard unattached

fraction of 0.07. The particle concentration in Home A varied

from 2,000 to 12,000 particles per cubic centimeter.  George has

conducted condensation nuclei concentration studies in homes and

buildings with a range of 15,000 to 100,000 particles per cubic

centimeter, as shown in Figure 14.  Figure 7 displays an inverse

relationship between particle concentration and unattached

fraction. This helps to explain why the unattached fractions in

NEATPAGEINFO:id=C13CBD8F-0870-465F-B335-589E41A2BFFF



42

Home A were higher than average, since the particle concentration

was generally lower than the average given by NCRP-78.

TABLE 6      HOME A MEASUREMENT RESULTS

Sample
Number

Filter
WL

Screen

WL

Unattached
Fraction

Location Average
Radon WL

1 2.72 E-2 1.02 E-3 0.0752 BASEMENT

2 2.73 E-2 1.56 E-3 0.1143 BASEMENT

3 2.37 E-2 3.01 E-3 0.2548 BASEMENT

4 2.15 E-2 1.03 E-3 0.1210 BASEMENT

AVG 2.49 E-2 1.72 E-3 0.1382 BASEMENT 2.5 E-2

120

-2 90

^ 60
30

Condmation Nudii Concwtrotion in o Sngli Fomily Houst
(Uvinq Room), Bay«dt, MY.

• 8/18/78
0 8/20/78

I
Sunday(

X

0100     0500
J.

liiplunM nOOl

J_

1000 1500
Tuntdwun)

2000  2400

Figure 14  Condensation nuclei concentrations in a single family
home (NCRP-78,1984).
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As a rough check of the filter method, 13 radon gas
measurements were made with an average measurement of 5 pCi/1.
Assuming 50% equilibrium (1 WL = 200 pCi/1), this average
corresponds to 0.025 WL, approximately the average obtained by
the filter measurements.  If the radon gas and radon progeny
measurements had been grossly different, the sampling techniques
could have been incorrect since the equilibrium ratio does not
vary greatly from home to home (personal communication, Crawford-
Brown) .  These measurements were all made at the same location

from about 9:00 A.M. to noon in August of 1988.  It was perceived
that the windows and doors would be closed in upstate New York
for the majority of the year.  Therefore, the windows and doors
were closed for these measurements in an attempt to approximate a
year-round average.  The alpha counts and other necessary
parameters were input into the computer program to result in the
calculated concentrations found in Table 6. These sample runs
can be found in Appendix E.  Measurements were also made in the
upstairs living area but were disregarded due to counting
fluctuations and screen problems.

The second home. Home B, also had a finished, partially
underground basement.  This basement consisted of a living area
and a laundry/storage room.  The radon was determined to be
entering into the laundry/storage room.  In this section, there
was poured concrete over the existing rock and the block wall
foundation was visible.  This home did not have central air

conditioning and the windows were usually left open in the
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summer.  The windows in the upstairs bedrooms had been left open
on the day the following measurements were taken, but the
basement windows were closed.  Again, all measurements were taken
in August of 1988.

Four filter/screen measurements and 11 radon gas
measurements were taken in the basement laundry room during the
morning hours.  The pylon, condensation nuclei monitor, and both
vacuum pumps were set up near the area where clothing would be
handled with the detectors placed in a lower background area.
The filter and gas averages are shown in Table 7.  Four
filter/screen measurements and eight radon gas measurements were
taken in the basement living area in the afternoon.  In these
samples, with the assumed 50% equilibrium, the WL computed from
the radon gas average was larger than the radon progeny average.
The equilibrium ratio can vary slightly and result in less
accurate working level calculations from the radon gas
measurements.  Therefore, the radon progeny measurements were
used for the lung dose calculations.

Four filter/screen measurements and 10 radon gas

measurements were also taken in the upstairs living area which
adjoins the kitchen.  Again, the bedroom windows had been left
open previous to and during sampling. The results of the radon
gas average and radon progeny average are comparable.  As shown
in Table 7, the averages of the unattached fractions are
approximately that of a typical home as defined by the NCRP.
In addition, the particle concentrations in Home B were generally
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TABLE 7 HOME B MEASUREMENT RESULTS

Sample
Number

Filter
WL

Screen
WL

Unattached
Fraction

Location Average
Radon WL

1 3.47 E-2 1.20 E-3 0.0689 LAUNDRY

2 3.07 E-2 8.67 E-4 0.0566 LAUNDRY

3 2.28 E-2 7.87 E-4 0.0689 LAUNDRY

4 1.97 E-2 9.06 E-4 0.0920 LAUNDRY

AVG 2.70 E-2 9.40 E-4 0.0696 LAUNDRY 2.50 E-2

5 1.19 E-2 6.78 E-4 0.1143 LIVING

6 1.16 E-2 4.90 E-4 0.0846 LIVING

7 1.06 E-2 4.48 E-4 0.0849 LIVING

8 9.36 E-3 2.33 E-4 0.0497 LIVING

AVG 1.09 E-2 4.62 E-4 0.0848 LIVING 2.31 E-2

9 2.14 E-2 6.94 E-4 0,0649 UPSTAIRS

10 1.77 E-2 3.09 E-4 0.0349 UPSTAIRS

11 6.10 E-3 4.06 E-4 0.1332 UPSTAIRS

12 8.39 E-3 4.91 E-4 0.1171 UPSTAIRS

AVG 1.34 E-2 4.75 E-4 0.0709 UPSTAIRS 1.25 E-2
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higher than in Home A, explaining the lower unattached fractions.
The majority of these measurements were in the range specified by

Figure 14. Only one measurement was atypical due to cooking

activities using a gas burner which resulted in a particle

concentration of 250,000 particles per cc. The computer runs for

the Home B measurements can be found in Appendix E.

As shown in Tables 6 and 7, the measurement results for both

homes generally decrease as time progresses.  The highest

measurements were found in the morning hours, indicating that

still higher measurements can be obtained in the very early

morning hours.  A few of the measurements were taken in the

afternoon when levels were generally the lowest.  Therefore, it

is possible that these measurements are lower than the average
levels found in this home.
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4.2  LUNG DOSE CALCULATIONS

In calculating the lung dose equivalents for the two New

York families, the present recommended quality factor for alphas,
20, was used (NCRP-93,1987).  These lung dose equivalents are

shown in Table 8.  They were calculated using the radon progeny
concentrations and corresponding unattached fractions shown in

Tables 6 and 7 and the equations found in Table 4.

As shown in Table 8, Home A consists of two adults and a

two-year-old child.  Only basement data were used and a typical
particle size distribution of 0.1 micron median diameter with a

geometric standard deviation of 2 was assumed since the particle

distribution was not measured.  The age-dependency of these lung

doses is especially obvious in the average lung dose equivalent
of 44 rem per year for the two-year-old.  This value is

approximately twice that of an adult in Home A (22 rem per year).

The dose equivalents presented for Home A would have been more

representative of an annual average if upstairs and winter
measurements were available.

Also shown in Table 8, Home B consists of two adults and two

preteen children. Again, a typical particle size distribution
was assumed and the age-dependency of these lung doses is
demonstrated in the table.  The average lung dose for an adult in

Home B is 9 rem per year as compared to a value of 12 rem per

year for a twelve-year-old and almost 14 rem per year for an
eight-year-old in Home B.
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TART.E 8 AGE-DEPENDENT LUNG DOSES IN TWO NEW YORK HOMES

Home Age Dose 1 Dose 2 Dose 3 Dose 4 Avg. Dose

A Adult 14.87 20.33 34.51 16.74 21.61

A 2 31.94 42.20 68.27 34.60 44.26

B Adult-L 17.87 13.85 11.74 12.45 13.98

B Adult-B 8.86 6.90 6.32 3.91 6.50

B Adult-U 10.59 6.07 5.13 6.36 7.04

B Adult-A 12.44 8.94 7.73 7.57 9.17

B 12-L 23.54 18.35 15.47 16.27 18.41

B 12-B 11.52 9.03 8.27 5.20 8.51

B 12-U 13.97 8.16 6.64 8.27 9.26

B 12-A 16.34 11.80 10.13 9.91 12.06

B 8-L 27.12 21.24 17.82 18.63 21.20

B 8-B 13.14 10.36 9.49 6.04 9.76

B 8-U 16.12 9.56 7.55 9.42 10.66

B 8-A 18.79 13.72 11.62 11.36 13.87

Note: All doses equivalents are in rem per year. For
results; L = laundry room, B = basement living area, U
living area, and A = average of all areas.

Home B

= upstairs
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5  DISCUSSION AND RECOMMENDATIONS

A specific method has been presented to assess the radon
progeny hazards in the home.  Lung dose equations for different
aged individuals have been formulated using an age-dependent lung
model by D. Crawford-Brown. These equations are unique in the
respect that no similar equations have been developed which apply
to a variety of ages and particle size distributions.  These
equations have been simplified and require only three parameters:
the unattached fraction, the radon progeny concentration in
working levels, and the particle size distribution.

A method for measuring the radon progeny concentration and
unattached fraction also has been applied to two New York homes.
The gross alpha counts detected from a wire screen and a membrane
filter were input into a computer program which implements the
modified Tsivoglou technique to obtain radon progeny
concentrations and working levels.  The concentrations found in
these homes were approximately at the EPA action level of 4 pCi/1
(0.02 WL).  Home A had a slightly higher concentration than 4
pCi/1 and Home B had a slightly lower concentration.  The
unattached fraction measurements were determined by a wire screen
method from A. George.  The majority of the unattached fraction
measurements were comparable to 0.07, considered typical by the
NCRP. Some unattached fraction measurements were larger due to

lower particle concentrations in one home. Using these
measurements in the Equation 1 yields estimates of annual lung
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dose equivalent for the two New York families, under the
assumption of a typical particle size distribution.  Doses under
any other particle size distribution could be calculated using
Equation 2 and the values for A and B found in Table 4.  The most
obvious increase in these lung dose results due to age-dependency
was for a two-year-old in Home A receiving 44 rem per year to the
lung.  This value is approximately twice that of an adult in Home
A.  This age-dependency also is demonstrated in Home B where the
lung doses of the children (ages eight and twelve) are
approximately 1.5 and 1.3 times, respectively, that of an adult
in this home.

Home A also consists of a smoker, who according to the
Committee on the Biological Effects of Ionizing Radiation (BEIR
IV, 1988) experiences even higher lung cancer risks.  A female
adult nonsmoker experiences a lifetime excess risk of lung-cancer
mortality of approximately 0.00427 for the annual exposure rate
found in Home A, 1.25 WLM per year (0.025 WL for 1 year). By
comparison, an adult male smoker at this exposure rate has a
corresponding excess risk of 0.073. Home B consists of two
nonsmoking adults with lifetime excess risks of lung-cancer
mortality of approximately 0.0052 (male) and 0.00292 (female) for
the annual exposure rate found in Home B, 0.85 WLM per year
(0.017 WL for 1 year).  These risks were obtained from Table 2-4
in BEIR IV.  This table gives the exposure rate in WLM per year
with the corresponding lifetime risk of lung-cancer mortality
specific to gender and smoking status. The excess risks were
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derived by subtracting the lifetime risks at an exposure rate of

0 WLM per year from the lifetime risks corresponding to the

exposure rate of interest.  Since the table only gave specific

exposure rates, interpolation was necessary to obtain the

lifetime risks corresponding to the exposure rates of interest.
In summary, lung dose equations were formulated in this

report and apply to any radon progeny concentration and

unattached fraction for a variety of ages and particle size

distributions.  A method also has been presented to obtain the

radon progeny concentration and unattached fraction measurements

in the home.  Annual lung doses were calculated for two New York

families as an example of this method.  Recommendations for

improving measurements and dose calculations include:

1. Make winter or long-term measurements in addition to summer

measurements to determine a more accurate average radon progeny
concentration.

2. Use several wire screens for the unattached fraction

measurements due to the difficulty in removing the radon progeny
from the oesh.

3. Measure the particle size distribution with an instrument

such as a cascade impactor or a diffusion battery to determine
which of the values for A and B in Table 4 are most

representative of the environment sampled.  If these measurements
are not available, use the equations corresponding to 0.1 micron
median diameter and a geometric standard deviation of 2.
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4. When the unattached fraction is not measured, use the NCRP
recommended value of 0.07 which was also closely approximated in
the Home B results.

5. If possible, use easily portable instruments for measuring
gross alpha counts to avoid the awkwardness of nimbin
electronics.

6. Use alpha spectroscopy instrumentation if available to
determine alpha counts, since this gives a separate determination
of the rate of decay for RaA and RaC, yielding a more accurate
detection of the activity of each progeny.
7. To use the NCRP-78 factors for lung dose per unit radon
progeny concentration corresponding to gender-specific
environment exposures (see page 17), multiply the lung doses
obtained by the equations in this report by 1.2 for women and 1.4
for men.
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CUMULATIVE PLOTS OF PARTICLE
SIZE DISTRIBUTIONS
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6.2    APPENDIX B:  FACTORS REQUIRED FOR EQUATION 1

AGE VALUE FOR Df^^

32 3.7271 E 7

16 3.1285 E 7

12 2.6166 E 7

8 2.0937 E 7

2 1.1130 E 7

0 5.2286 E 6
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DISTRIBUTION (MEDIAN, GSD)     AGE      VALUE FOR I^fi,Di ^
i

0.05, 4 32 2.0989 E 6
16 1.8681 E 6

12 1.6202 E 6

8 1.3930 E 6

2 8.3733 E 5

0 2.8997 E 5

0.10, 4 32 2.7312 E 6
16 2.6340 E 6

12 2.3441 E 6

8 2.1393 E 6

2 1.3627 E 6

0 3.5340 E 5

0.50, 4 32 1.3504 E 7
16 1.3305 E 7

12 1.1308 E 7

8 9.7379 E 6

2 5.1621 E 6

0 1.2428 E 6
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DISTRIBUTION (MEDIAN, GSD)     AGE      VALUE FOR 2^i'°i ai

0.05, 3 32 1.5394 E 6
16 1.3423 E 6

12 1.1539 E 6

8 9.6875 E 5

2 5.6126 E 5

0 2.1536 E 5

0.10, 3 32 1.7396 E 6
16 1.6269 E 6

12 1.4570 E 6

8 1.3190 E 6

2 8.5605 E 5

0 2.3875 E 5

0.50, 3 32 1.0262 E 7
16 1.0383 E 7

12 9.0974 E 6

8 8.2145 E 6

2 4.7960 E 6

0 1.0867 E 6

NEATPAGEINFO:id=6F81C004-0C3A-4517-B3D7-D3DDB58A0213



B-4

DISTRIBUTION (MEDIAN, GSD)     AGE     VALUE F0R2fj^,Dii

(0.05, 2) 32 1.3168 E 6
16 1.1394 E 6

12 9.5703 E 5

8 7.8267 E 5

2 4.3242 E 5

0 1.8579 E 5

(0.10, 2) 32 1.1792 E 6
16 1.0783 E 6

12 9.4193 E 5

8 8.2570 E 5

2 5.1472 E 5

0 1.6647 E 5

(0.50, 2) 32 6.6555 E 6
16 6.7293 E 6

12 6.1395 E 6

8 5.8039 E 6

2 3.8081 E 6

0 8.0456 E 5
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APPENDIX C:  COMPUTER CODE FOR MODIFIED TSIVOGLOU TECHNIQUE

ͣ<*--�--*--�--*--«- i:Z) p, jzr i'vi        ^t- ^|^ ^. . ͣ^. H^ .» ͣ »^ ͣ»• ͣ*. ͣ�ȉ -ifr- ͣ»- ^.. i;.- -ji- ͣͣ*. v- "f ͣ*- -«; ͣ -» ͣ ͣ* ͣ -tf- -?
3 REM      * ͣ , *
'+ RE:M      *       PCPEWhNG., BAS *
5 PEM       * * -
6 REIr1       ͣ*<• *
7 REM * *
3   R E] r1                  *^' ͣ^' "^' "^ '^ "^ "^ '^ '^ '''^' "*^ '^ •*• ͣ� -^ ¥. ͣ 'li- -If -^^ ^ti- ͣ* ͨͣ-**••�ȉ -^ ͣ» ͣ if if- w- if if ͣ�• ͣ»- ͣ•• -» ͣ if -v- -4 if if ͣ* ͣ ͣ* ͣ
9 REM

10 DIM F': IE) ,FF(9) ,hM9) '^
15 PF;INT "Enter sampling time in minute-s"
SO IN*^'UT ST

25 PRINT

75 PRINT "Enter s-amplinq flow rate in liters per minute"
80 INPUT V

35 PRINT

90 PRINT "Enter samplinq flow rate standard deviation"
95 INPUT U

100 PRINT :
105 PR;INT "Enter detector efficiency"
IOh INPUT Y

106 PRINT

108 PRINT "Enter detector efficiency standard deviation"
110 INPUT E

111 REM THIS PART DETERMINES ERROR DUE TO BKG. SUBTRACTION
lie PRINT

11 if FOR 1^1 TO 3
116 PRINT "Enter total counts ";I
113 INPUT TC(I>
ISO PRINT

125 PRINT "Enter duration of count in minutes"
124 INPUT D(I)

126 CE(I) = SQR(TC<I) )/D(I)

135 PRINT  "Enter total background counts ";I
134 INPUT BC •; I )

136 BE(I> = SQR(BC(I))/D<I)
140   B ( I )   =   SQR (BE (I ) ••' ͣͣ2+CE ( I ) '-2)
142   C(I)   =  TCa)   -  BC(I )
146 NEXT I

147 REM
148 REM  THIS PART DETERMINES THE START AND STOP TIMES FOR
149 REM  DIFFERENT COUNTING INTERVALS-
150 PRINT "Enter count start time "min. after end of
samp 1ing) "
15S PRINT "for counts 1, 2, and 3"
154 INPUT T1,T3,T5
160 T2 = Tl + D(1)
162 T4 = T3 + D(2)
164 T6 = T5 + 0(3)
168 REM
169 REM

170 REM  THIS PART OF THE PROGRAM DEFINES THE PARAMETERS FOP
171 REM  THE CONCENTRATION FORMULAS.
172 REM
173 REM
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''i'ii-\   i  1

210 L.2 = L06(2)/26.3
SSO L3 = LOG •; 2 ) / 19 „ 7

a 30 HI = 1/Ll

5 H'....' He :== 1 / j P

250 H3 ^= 1/L.3

S70 Gl = EXP(-ST/H1)

230 G2 == £XP<-ST/H2)

290 G3 = EXP(-ST/H3>

300 G^+ = EXP(-T1/H1)
310 G5 - EXP';-T1/H2)

320 G6 = EXP(-T1/H3)

330 G7 = EXP<-T2/H1)

3^0 68 = EXP(-T2/H2)  ,:
350 G9 = EXP(~T2./H3)

360 GIO - £XP<-T3/H1)
370 611 - EXP(-T3/H2)

380 612 = EXP<-T3/H3)

381 bl3 --= EXP (-Tit/HI)

38 E 61'4 ͣ--- EXP(-T'^/H2)

383 615 = EXP(-T'^/H3)

38^ 616 - EXP(-T5/H1)

385 617 = EXP(-T5/H2)

386 618 = EXP<-T5/H3)
387 619 = EXP(-T6/H1)

388 620 = EXP(-T6/H2)

389 621 = EXP<-T6/H3>
390 F(l ) ==1-61

-400' F(E) = 1 - G2

^ 10 F (3) = 1-63

^20 F •; ^) = 64 - 67

^30 F':5) =65-68

-^^0 F(6) =66-69

^50 Fw) = 610 - 613

^+60 F<8) = 611 - 61 'it

^70 F •; 9 ) = BIS - 615
-^80 F ( 10 ) = 616 - 619

^90 F<11) = 617 - GEO

500 F( 12) = 618 - 621

550 FF(1) = F(1)*F<'+)

630 FF(2) = Fa)*F(7)
6if0 FF (3) = F(1)*F<10)
650 FF('^) = F{2>*F<5)

660 FF(5) = F(a)*F':8)

670 FF(6) - F(E)*F(11>

680 FF( 7) = F(3)*F'6)

690 FF(a) = F(3)*F(9)

700 FF '• 9) =   F(3)*F<12)

702 k: ( 1 ) =: ii.H*FF ( 1 ) +1610*FF (H)--91 1 *FF (•:

70h !•: ͣͣ (2) = 12500*FF('+)-6770-*FF :7)

':'06 k: ( 3 > - ͣ=    1790*FFw)
70S l< (H ) == it'+*FF(a)+1610*FF(5) -91 l*FF(f

710 K'5> = ia500*FF(5)-6770*FF :8)

71E K (6 ) = 1790*FF(3)
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714   k:; ('7 )    =   ͣ^•''t^FF \ 3 ) +1h 10*FF' ( h > —91 ,1 -s-FF' >' 9 )
716   K(B)    =   ia500*FF(6)-6770*FF(9)
718 K(9)    =    1790*FF<9>
719 PEN

750 REM  THE K VARIABLES ARE MATRIX INVERTED AND MULTIPLIED
751 REM  IN A LATTER PART OF THE PR06RAMn  THE DD VARIABLES
72S REM  ARE PART OF THE ERROR PROPAGATION FORMULA AND THE
723 REM  SS VARIABLES ARE THE ERROR FORMULAS FOR THE
CONCENTRATION

72-+ REM  STANDARD DEVIATIONS.
725 REM

726 REM

750   DD( 1 )   =   C ( 1 )• ͣ••2*'; B < 1 >••• ͣ2/ ( C (1 ) ͣ- ͣB ) +£-'-B/ ( Y---2 ) +U- ͣ2/ • V--2 ) )
760   DD( a )   =   C ( 2 ) ͣ•• ͣ2* ( B (2 ) ͣ•• ͣ2/ (0(2) -^) +E--a/ ( Y--2 ) +U--2/ ( V--a ) )
770   DD ( 3 >   =   C ( 3 ) •- ͣ2* (BO) ͣ-2/ (CO ) -a ) +-E ͣͣ•2/ ( Y--2 ) +\y-S/ ( V--2 ) )
790   GOSUB   "^000
310   5S(1)   =

SQR ( INV (1,1) ͣ• ͣͣ•2*DD ( 1 ) +1NV (1,2) • ͣ•2*DD ( 2 ) +1NV ( 1 , 3) ͣͣ2*00 ( 3 ) ) / (•Y*V)

820   SS(2)   =

SQR ( I NV (2 , 1 ) -NS^DD ( 1 ) +1 NV (2,2) ͣ• ͣ• ͣ2*DD ( 2 ) +1 NV ( 2 , 3 ) --2*00 ( 3 ) ) / ( Y*v)
830   SS(3)   =

SQR (I NV ( 3 , 1 ) ͣͣͣ•2*DD ( 1 ) +1 NV ( 3,2 ) -a^DD ( a ) +1 NV ( 3 , 3) • ͣ•2-*DD ( 3 ) ) / ( Y *V)

848 REM

849 REM

850 REM  THE CN VARIABLES USE THE INVERTED MATRIX SOLUTIONS
851 REM  AND DIVIDES THEM BY THE EFFICIENCY AND FLOW RATE.
852 REM  WORKING LEVELS ARE THEN CALCULATED FROM THESE
CONCENTRATIONS.
853 REM

354 REM

1570 CN(1) = 03(1,1)/(V*Y)
1580 CN(2) = Q3(2,1)/(V*Y)
1590 CN(3) = D3(3,1>/(V*Y)
1600 WL = .00.103*CN<1) + .00507*CN(2) + .00373*CN(3)
2000 LPRINT "Sampling time in minutes = ";ST;""
2010 LRRINT

a020 LPRINT "Count duration in minutes for count 1 =
"50(1)?""
2030 LPRINT
2040 LPRINT "Count duration in minutes for count 2 =
";D(2)?""
2050 LPRINT
2060 LPRINT "Count duration in minutes for count 3 =
";D(3);""
2070 LPRINT

2030 LPRINT "Sampling flow rate in liters per minute and i fc<=..
standard"

2090 LPRINT "deviation =" |iV ;"+-"> U; " "
2100 LPRINT
2130 LPRINT
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3010 LFRINT "Detector efficiency and its standard deviatic

30a0 LPRINT " " ;Y5 " +- " iiE; ""
3030 LPRINT ^  ^
3040 FOR 1 = 1 TO 3 ;     J ,;
3050 LPRINT "Total counts = ";TC(I)r"'
3060 LPRINT
3130 NEXT I

3aS0 LPRINT

3E30 LPRINT "RaA concentration in pCi/1 and its standard
deviation ="
3240 LPRINT " ";CN<1);" +- ";.SS(1);""
3S50 LPRINT

32<b0 LPRINT "RaB concentration in pCi/1 and its standard
deviation="

3a70 LPRINT " ";CN(2);" +- "SS-S)?""
3E80 LPRINT

3H90 LPRINT "RaC concentration in pCi/1 and its standard
deviation="

3300 LPRINT " ";CN<3);" +- "SS(3);""
3310 LPRINT

3350 LPRINT "Working levels of radon = ";WL;""
3500 GOTO 9900
3690 REM
3695 REM

3700 REM  THE K VARIABLES ARE INVERTED AND ARE CALLED THE
"AA" MATRIX.
'+000  AA (1 , 1) = K ( 1 )
4010  AA(1,2) = K(2)

4020  AA <1,3) = K(3 >
4030  AA(2,1) = K<4)
4040  AA(2,2) = K(5)
4050  AA(2,3) = K(6)
4060  AA<3,1) = K(7)
4070  AA(3!.2) = K<8)
4080  AA(3,3) = K<9>
4090  M = 3
9000  REM

S002  REM
8004  REM
3006  REli This subroutine inverts AA(M,M) to
aOOS  REM  yield the inverted matrix, INV(M,M)
8009 REM
8010 FOR I = 1 TO M
S015  INV<I,1) = 1
SOSO  NEXT I
8025 FOR I = 1 TO M
8030 TTl = AA'1,1)
3035 FOR J = 1 TO M ͣ;
B040 AAdjJ) = AA(I,J) / TTl
8045 INV(I,J) = INV<I,J) / TTl
8050 NEXT J
S055 FOR J == 1 TO M
8060 IF J = I THEN GOTO B090
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a065 TT2 = AA<J,I)
8070 FOR K = 1 TO M

3075 AA(J,K) = AA(J,K) - <AA':i,K) * TT2)
S<:»aO INV ( J, K ) = INV ( J , K > - ( I NV ( I , K ) * TT2 >
aOS5 NEXT K

8090 NEXT J

a095 NEXT I

9000 REM

9005 REM  This portion of the program multiplies the
matricies

9010 REM  Q3<M,W) = Q2<M,N) >; Q1(N,W)
9015 REM  which equals CONCENTRATIONS = K VARIABLES * NET
COUNTS

9020 M = 3

9030 W - 1

^Qi^O N = 3

9050 FOR I =» 1 TO M

9060 FOR J = 1 TO N

9070 Qa<I,J) = INVdjJ)
9080 NEXT J

9090 NEXT I

9100 Ql(l,l) = C(l)
9110 Ql(2,l) = C(2>
9120 QlOul) = C(3)
9500 FOR I = 1 TO M

9502 FOR J = 1 TO M

9503 Q3 ( I,. J) = 0
9504 NEXT J

9505 NEXT I

9510 FOR K * 1 TO M
9520 FOR I » 1 TO W
9540 FOR J = 1 TO N

9560 Q3(K,I) = Q3<K,I) + Q2(K,J) » Q1(J,I>
9580 NEXT J
9600 NEXT I

9620 NEXT K

9640 RETUWi

9700 RBI    THIS PROGRAM USES SIMPLIFIED EQUATIONS FROM YANG
9702 RBM    FU-CHIA AND TANG CHIA YONG MHICH CAN BE USED FOR
9704 RBf    ANY SAMPLING AND COUNTING TIME COMBINATIONS.  THE
9706 REM    COEFFICIENTS FROM THE INVERTED MATRIX EQUATIONS
9708 REM    HAVE BEEN VERIFIED WITH THE COEFFICIENTS FROM J.
9710 RiM    THOMAS AND A. SCOTT. BOTH OF WHICH USE A MODIFIED
9712 REM    TSIVOGLOU METHOD.  THIS APPROACH IS THE SAME EXCEPT
9714 REM    THE EQUATIONS ARE GENERIC AND SIMPLIFIED SO THAT ANY
9716 REM    CUNTING AND SAMPLING TIMES CAN BE USED.  THE ERROR
9718 REM    PROPAGATION FORMULAS ARE STANDARD AND WERE TAKEN
9720 REM    FROM WORK DCXfE BY D. MARTZ.
9900 END
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6.4   APPENDIX D:  EFFICIENCY DETERMINATION AND ERROR PROPAGATION

SOURCE INFORMATION

Radionuclide:  Am-241

Activity:      4.753 E 2 disintegrations per second (07-01-80)
Half-life:    432.2 years

SOURCE ACTIVITY ON CALIBRATION DATE (07-25-88):
Decay Equation:  A = Aq e"-^^
where A = activity at time "t", Aq = original activity, 1 = decay
constant (0.693/radiological half-life), and t = time.

e"l*^ = 0.9871478
A = (4.753 E 2 dps)(0.9871478)
A = (4.6919 E 2 dps)(60 s/min)
A = 28,151 dpm

EFFICIENCY OF EBERLINE DETECTOR:

10-minute background count = 13 counts/10 minutes = 1.3 cpm
10-minute source counts - background counts
(1) 119,157 counts/10 minutes = 11,915.7
(2) 119,272 counts/10 minutes = 11,927.2
(3) 118,230 counts/10 minutes = 11,823.0
(4) 118,371 counts/10 minutes = 11,837.1
(5) 119,342 counts/10 minutes = 11,934.2

Average corrected cpm = 11,886 cpm
Efficiency = 11,886 cpm/28,151 dpm = 42.22%

ERROR PROPAGATION FOR SOURCE:

Uncertainty from source certificate: 1.1%
Using same derivation as above for source activity on calibration
date:

Error (source) = (4.753 E 2 dps) (0.011) = 5.2283
(5.2283) (0.9871478) = 5.1611
(5.1611) (60) = 309.66 dpm

ERROR PROPAGATION FOR DETECTOR COUNTS:

(All error propagation formulas derived from Knoll,1979)

E (counts) = (counts) V2 / minutes
E(l) = 34.5191
E(2) = 34.5358
E(3) = 34.3846
E(4) = 34.4051
E(5) = 34.5459
E(background) = 0.3 606

1. 3 = 11,914 4 cpm
1. 3 = 11,925 9 cpm
1. 3 = 11,821 7 cpm
1. 3 = 11,835 8 cpm
1. 3 = 11,932 9 cpm
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ERROR PROPAGATION FOR BACKGROUND SUBTRACTION: D-2

E(sub) = ((E counts)2 + (e background)^)1/2
E(sub 1) = 34.5210
E(sub 2) = 34.5377
E(sub 3) = 34.3865
E(sub 4) = 34.4070
E(sub 5) = 34.5478

ERROR PROPAGATION FOR INDEPENDENT COUNTS:

E(ind)2 = (E sub 1)2 + (E sub 2)2 + (E sub 3)2 + (E sub 4)2 +
(E sub 5)2

E(ind) = 77.0997 / 5 trials = 15.4199

ERROR PROPAGATION FOR DIVISION OF TWO ERRORS:

Detector count rate   11,886 cpm +/~ 15.42     X +/~ ^

Source Activity       28,151 dpm +/~ 309.66    Y +/~ Y

e2 = (1/Y)2 (x)2 + (-X/y2)2 (y)2
E = 0.0047

Therefore, the Eberline detector efficiency and standard error is
0.4222 +/- 0.0047

The efficiency and standard error of the Brookhaven detector were
obtained in a similar manner.  Only the calculations will be
shown here.  For a more detailed and clear account of error
propagation, the reader is advised to refer to the Knoll
textbook.

EFFICIENCY OF BROOKHAVEN DETECTOR:
10-minute background count = 1 count/10 minutes =0.1 cpm
10-minute source counts - background counts
(1) 100,752 counts/10 minutes = 10,075.2 - 0.1 = 10,075.1 cpm
(2) 101,486 counts/10 minutes = 10,148.6 - 0.1 = 10,148.5 cpm
(3) 99,571 counts/10 minutes = 9,957.1 - 0.1 = 9,957.0 cpm
(4) 100,405 counts/10 minutes = 10,040.5 - 0.1 = 10,040.4 cpm
(5) 100,133 counts/10 minutes = 10,013.3 - 0.1 = 10,013.2 cpm
Average corrected cpm = 10,047 cpm
Efficiency = 10,047 cpm/28,151 dpm = 35.69%
ERROR PROPAGATION FOR SOURCE:
Same as before in Eberline calculations
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ERROR PROPAGATION
E(l) = 31 7415
E(2) = 31 8569

E(3) = 31 5549

E(4) = 31 6868

E(5) = 31. 6438

D-3

FOR DETECTOR COUNTS:

E(background) = 0.1
ERROR PROPAGATION FOR BACKGROUND SUBTRACTION:
E(sub 1) = 31.7430
E(sub 2) = 31.8584
E(sub 3) = 31.5565
E(sub 4) = 31.6883
E(sub 5) = 31.6454

ERROR PROPAGATION FOR INDEPENDENT COUNTS:
E(ind) = 70.8800 / 5 trials = 14.1760
ERROR PROPAGATION FOR DIVISION OF 2 ERRORS:
14.1760 / 309.66 = 0.0040

Therefore, the efficiency and standard error of the Brookhaven
detector is 0.3569 +/~ 0.0040.

STANDARD ERROR OF FLOWMETER (from manufacturer) =2%
Flow rate:  12.2 Ipm
Flow rate standard error:  (12.2) (0.02) = 0.244
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APPENDIX E

COMPUTER RUNS FOR HOME A AND

HOME B MEASUREMENTS
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iU r  J:;l C-Liji i      .LI!     111 .11 ! U u tr il

HOME   A

FILTER   #1

a 11 o n    111   mm Li t e s   T c; r"

flow rate in liter

04

ital

i o La ,i. CO 1..1 n "cB • ͣͣͣ•  Oj/ /

:;rhal counts -  442

SaA concentration in pCi/1 and its standard deviation
3.128895  +-  .6424943

F-;aB concentration in pCi/1 and its standard deviation^
2.913311  +-  -127S452

K^r.C concentration in pCi/1 and its standard deviation^
2,470813  +-  .2009811

Working levels of radon =  2.723475E-02

NEATPAGEINFO:id=D734FCB1-3C6F-4DF9-8041-1ED1A4832F14



iT: in Lit 53  To

E-2

HOME A

SCREE3* #1

low rate m litsr

and : a r'i vd a r c j iJ s v i a 11 o r i

aiD

"otal count. 11

"VaA concentration xr>   pCi/1 and its standard deviation
.' ͣͣ?' ͣ?'33964  ͣͣ'—  5 . 121510' ͣ?£" ͣ 02

":aB concentration in pCi/1 and its standard deviation:
-3,777494E--02  -i--  9.634751E--03

ͣ^:aC concentration in pCi/1 and its standard deviation:
- ͣ. 1034905  +-  1 . 314254E-02

Workinq levels of radon -  4.461753E-04

NEATPAGEINFO:id=B8DDC5C3-37E0-47D6-96B2-3D1AF86D6EBD



E-3

HOME A

FILTER   #2

a 1.1 ,j n    1 i"i   1111 n u. t. b s

flow   rate   iri    iiter

:;'"=,A9      -i......       .. ;'i(j4

\.J ͣi;' ͣ.' ..L <:f. !.. i t.J;

I i:..i !~ a J.       L.. U Li I I ͣ

i o t. a 1    c o u n h -li   ͣͣ-      4 4.1

RaA concentration in pCi/l and its standard deviation
3-971271  +-  ,6400486

RaB concsntfatian in pCi/1 and its standard deviation:
2.927601  +-•  .1274442

RaC concantration in pCi/1 and its standard deviation^
2.239091  +--  .1979405

jorkinq level; i_i 1  r =( don L o s-i X o nn ~ O xl

NEATPAGEINFO:id=691E8109-9C85-489F-A101-B8462423649D



E-4

ount   dUf'cstion   in   minutes    foi^'   coufit.   ^,i!   ͣͣ- ^j

auiit   Ji.ii'-aticn   in   oiinutes   for   count   3   = S

amp 1 ma   flow   rate   in    liters   per   minute and
--viat2.or,    =       12.2       +-       .2

HOME  A

SCREEN  #2

iard

T X c 1 e n c V a o

. 0047

d its standard deviation

Tat;:<l couritB

i O t >-:; 1 u o IX n t £

Total   counts ͣi L'

RaA concentration in pCi/1 and its standard deviation =
.7916551  +-  5.392004E-02

RaB concentration in pCi/1 and its standard deviation=
.1466674  + ͣ-  i.413a94E-02

RaC coricentration in pCi/1 and its standard deviation =
-9.33513SE-02  +-  i.604249E-02

kiorkinq levels of radon =  i.210806E-03

NEATPAGEINFO:id=55FDE358-F271-40FA-987F-E8D3D3B88ED3



i:"i i;.   dur'ation   in   rninutKii   To

i. r; t.   !.j Li r a h i o n   i n   rn i n Li t e s   f c:j

iplii'q   flow   rate   in   liters
' !.. ͣͣ; ͣ;•. ;,.i J n   ͣͣ-      12.2      -i—       .2

E-5

HOME A

FILTER  #3

.' l-J   !    . ͣ"' i

;- ͣ - I ͣ; {"i A

idard deviatiar

r o t a 1 »:: ci u n t s ͣͣ- 724

Total counts -• 535

Total count 3 -- ͣ-     :?84

RaA concentration in pCi/1 and its standard deviation
3.014334  +-  .563619

RaB conc-sntration in pCi/1 £*nd its standard deviation^
2,524601  +-  .1123401

RaC concentration m pUi/1 and its standard deviation^
2,076822  -!---  .1755334

WorKinq levels of radon =  2.365103EE-02

NEATPAGEINFO:id=55ECB21F-4EB7-4758-B671-6DCFAE09D90B



E-6

:our\ t.   dL.irat.ion li'i m

.;ri i:. duration in minutes toi

HOME A

SCREEN #3

ͣiimplmq    flow   rats   in    liters   o>s\

OO-aj

t a fi d a r d   u s V1 a 11Q n

ot;

c.Ai counts -- ͣ:.: ͣͣ:-•

tai c our its "  49

KaA concentration in pCi/1 and its standard deviation
1.332397  +- ͣ  6.57363i£--02

FvaB concentration in pCi/1 and its standard deviation--
, 323626  +--  1 - 340296E-02

F; -a C c o r-I c e n t i-" a t i o n i ri p C i / 1 and its stand a r d d e v i a t i o n =
-.2051967 +-       .0189895

Working levels of radon =  2.247769h-03

NEATPAGEINFO:id=66274E71-A1E7-4162-B02A-55B2C5BEC178



mint.ites to

i n 1 its? r i

iicy ail a

Lj La .1 c oun t ͣ;

D ca J. >.. oL.U I

oral counts 42

RaA concentration in pCi/1 and its standard deviation
4,008715  -i--  .5374224

ͣRaB concentration in pCi/i and its standard deviation^
!--•  ,,101713-

RaC concentration in pCi/1 and its standard deviation^
1„ 775266 i--      -1627236

Working levels of radon ==  2.i54209E-02

E-7

1 O r i  -.i. 1 !  111 1 I 1 i..l _ ti ::5

HOME A

FILTER #4

NEATPAGEINFO:id=AAE6FA90-9419-4A71-A12D-30BEBA6537E9



E-8

'ji';    in   iVi 1 r~i u t e 3    t

n   fninutss   Tc

.1 o ','i   :- ͣ' a t e   i r"i    1 i t s r s

HOME A

SCREEN #4

31 a f'l d a i^' ci d e v i. a t. .i c r

-• 1

Total

<A concentration xn pCi/1 and its standard deviation
vv.-!: lo-an 0743706

RaB concentration in pCi/1 and its standard deviation
3.6a9454E-02  +--  1.370902E~02

.-,[ : mr centration in pCi/1 and its standard deviation^
.2iB2554  +-  2.2a55i6b.--0

Workina levels of radon ~ 1  -uV-^ifiaQP:' —( i'T

NEATPAGEINFO:id=99E017B6-0452-4D5A-9BF3-2FFD820E7445



'T1:   'Ji\f'a1.1 or"i   in   ininu'Ces    i ov"   counx,

ni   !:;iL>ration   in   mmut&s   for   count

uj. iiic   flow   r'ate   in   liters   per   mii
I. at a. on   -      12.2      +-      .2

E-9

HOME B IJMJNDRY ROOM

FILTER #1

jocy and its standard deviation
>4

Total coLsnts ͣ-  985 ' ͣ

i o t a i c; o L! n t s ͣͣ-•  cj 16

lolial oounts --  tj/l

RaA concentration in pCi/'l and its standard deviation
4.04526  •+•--  .7655856

RaB concentration m pCi/1 and its standard deviation^
4 . C) 0 510 7  + -  . i 6 Cj 7 4 6 5

RaC concentration in pCi/1 and its standard deviation^
2.738509  +-  .2411774

W u rki n q 1evels o t ra d on 68715E-02

NEATPAGEINFO:id=071E542D-6A6F-44EE-8D1B-DE0A4B8CD660



E-10

HOME B LAUNDRY ROOM

SCREEN #1

jUiit   J Li rat ion   m   mmutB^

rnDlinq    flow   rate   in    liters   Der
.^   >., _......... .i    -       ^ i_____ ͣ-;,

:Qf    et f 1.c .li-sr'iCV   and    .i. lb   standard   deviation
:2      -1......       . 0C)47 ͣ ; ͣ

S. ;.1 .1       ͣ-... L.i C I I

ota.i.    counts   -

R a A c D n c e r-i t r a t i o n .i n p C i / 1 a n d 11 s s t a n d £i r d d e v i a t ion
.B675699  +--  5. a376i4E-02

RaB concentration in pCi/1 and its standard deviation^
5.957803E-02  ͣi—-  1.2961i2E-02

RaC concentriition in pCi./l and its standard deviation:
ͣ-6.0077i7E-02  h—  i-660539E-02

Working    lev if    radon    ͣ=      9.Vi56a7b-04

NEATPAGEINFO:id=E6B1CC5C-2458-478F-AB3B-5B021FEB4702



E-1 1

duration m minutes tor

duration in minutes tor

nq flow rate in liters
ion -  12.2  +-  .2

HOME B LAUNDRY ROOM

FILTER #2

•ll.i-1 iU Ub;'  rfl IIJ

ustecLor e t Ticler'icy and its standard deviation

Total counts ͣ-  1043

Total coun cs —  76-3

Total counts ~  482

Ka.H concentration in pui/l and its standard deviation
i> 090313  +--  ,755391

RaB concentration in pCi/1 and its standard deviation^
2.966646  +-  .1392143

RaC concentration in pCi/1 and its standard deviation^
2.502063  +-  .226542

Workinq levels of radon =  3,064661E-02

NEATPAGEINFO:id=93B1D9D3-1663-4755-AE6B-36FFF7F23B27



:11 oi"i    in    IMinL!teS    1'Qi~    co<.xr:

low   rate   in    liters   per'   in

ͣ. H .1.  1... ;.: I (.., I I U ::j

X -i  U ,JL \.J i

i)4 7

E-12

HOME B LAUNDRY ROOM

SCREEa* #2

KaA CDPcsntration in pCi/1 and its standard deviation
.757352  +--  5.79297SE-02

RaB concentration in pCi/'l and its standard deviation^
i . 70a223E--02  +-  1. 207382E -02

RaC concentration in pCi/1 and its standard deviation^
--i .9969i8E-02  +--  1.653422E-02

Workinq levels of radon "  7,921944E--04

NEATPAGEINFO:id=1DFFE8D0-CD9F-4AB5-95A5-CAA4FCAE531F



jun t   diar'atior'i    m   minutes    tor   count.    ,1   ' ͣͣ-       '".• ͣ

junt   iJur'ation   in   minutes   for   ccLint   3   ͣ• ͣ• ͣ      5 ͣ-

ifiji:; 1. lOQ    flow   rate   in    liters   '0'::;:r   minute   and    i i:s   standard
vS  U X >..! I I 12.2      +-

E-13

HOME B LAUNDRY ROOM

FILTER #3

UStectDi"- efficiency and its standard deviation
. 3569 -'<- ͣ-       . 004 , ,

Total cour'its -  713

Total counts =  564

rotal counts "3.63

RaA concentration in pCi/1 and its standard deviation =
3.244418  +-  .5501163

RaB concentration in pCi/1 and its standard deviation=
2,39353  +-  .1034223

RaC concentration in pCi/1 and its standard deviation^
1.967693  +-  .1701953

Working levels of radon =  2.2a4v07E-02

NEATPAGEINFO:id=00785E46-2FAD-4D7C-81B8-636DD8B0661B



uration   m   miiiucEfS    i or'   co

ur ation    in   ininutes    for   co

u   flow   rate   in   liters   per
\jr<    ͣͣͣ      12,2      +—       .2

E-14

HOME B LAUNDRY ROOM

SCREEN #3

and t a n d a r d d e v i a 11 o i'

i Cjta.L    rount.i

'.A

R a A ( ͣ.:. o :"i c e r 11 i'"' a 11 o n i n p C i / 1 and its standard d e v i a t i o n
,2294396  +- ͣ  5-272337E-02

RaB concerntration in pCi/'l and its standard deviation^
,0355302  +-  1.098142E-02

RaU concentration in pui/1 and its standard devisition:
9.923946E-02  +-  .016406

Working levels of radon -  7.368776E-04

NEATPAGEINFO:id=C59DC45F-2FD8-4AD8-8204-F1FD657B2D94



E-15

dUi'"-ation     Xi\    liULiiUue--

HOME B LAUNDRY RCX)M

FILTER #4

iu ration m minutes to

;q flow rate in liters
.un    --^      12.2  +~  .2

!.......    \' ͣͣ('} ͣH-

X. B s t a n d a r d   d e- v .l a ͣ

i ! .: ͣ I., -.ni 1  l._ U I.

t;j t a i c o L.i n cs

RaA concentration in pCi/1 and its standard deviation

?\aB   concentration in pCi/1 and its standard deviation =
1.896185 -r......  9.3?i59eE-02

F-vaC concentration in pCi/1 and its standard deviation-
1,765453  +-  ,1527914

Workinq Isvels of radon =      1.969413E~02

NEATPAGEINFO:id=B0E790E7-6CD1-4DBB-A77E-92FD89A6FF50



E-16

"at.ion    iri   irnnuces    i oi

HOME  B  LAUNDRY  ROOM

SCREEN  #4

ͣation   m   minutes   To

flow   rate   in    lit6?rs ::5  i_ -ivf 1 : i..; :.± t

Detsctor sfficiencv and its standard deviation

Total counts =  40 ':; ͣ

Total counts — -..yz ':'•-.

! c.' t a i c o u n v.. s ͣ—  .,::! J.

RaA concentration in pCi/1 and its standard deviation
.1427306  +- ͣ  4.939764E~-02

RaB concentration in pCi/1 and its standard deviation=
9.Oi3743E-02  +-  1.i93S64E-02

RaC concentration in pCi/'l and its standard deviation-
8.0a2Q54E-02  +-  i.6038i9E-02

Wor k inQ 1 evels of radon =  9 . C'54993E-04

NEATPAGEINFO:id=C66ABF25-BC7D-4FFB-A532-7E82632F170B



i i:. ͣ:J:.u''at:ion in rninuues tor'

lit diwB.iixon in minutes Tor"

pii nj    flow   rate   in    liter's

E-17

HOME  B  BASEMENT

FILTER   #1

f t X •'.:. 1 is I! c V ij n d it
. 004

;j ,-_i I '..J  U l-^ V" X rJ.  i._ .L Ui I 1

! ijtai counts

Tf.j La 1 CDLifi t\a

t o h a .1. c. o u ri t s

r'aA concentration in pui/1 and its standard daviation ͣ
2.24c3037  +•--  .3290335

RaEi concentration in pCi/1 and its istandard devi5itiDn =
i.06t3963  ^......  6.063232E~02

KaC concentration m pCi/1 and its standard deviation^
1.104432  +-  9.928502E-02

Workmq levels of radon =      1,185465E-02

NEATPAGEINFO:id=07DCB1E8-C1BE-4752-BE11-C4800AE39241



E-18

'..^^juri r duration xn ibj.fiuvies "^D^ coup ti 1 ' ͣ- ͣ      '3 HOME B BASEMENT

Count duration in nvinutes for count 2 ͣͣͣ-      5 SCREPN i*1
Count duration in minutes for count 3 ~  5

Samplmq flow rate in liters per minute and its standard

Detector' efficiency and its standard deviation ͣ-
.4222  +-  .0047

Total counts ͣͣ--- ͣ     35 .

Total counts =15 ͣ     _
Total counts •-14

RaA concentration in pCi/1 and its standard deviation =
.4239699  +-  3,932599E-02

RaB concentration in pCi/1 and its standard deviation=
4.650654E-02  +-  9.664996E-03

RaC concentration in pCi/1 and its standard deviation=
-3.6005a3E-02  +-  l.i72987E-02

Workinq levels of radon =  5.433255E-04

NEATPAGEINFO:id=4CF0A94D-F848-4007-8A2E-BD07A4AE7F6C



E-19

v.   duration   iri   minuL&s .tof"   coui

ͣ:   di.iratxon    in   minutes   for   cou

HOME  B  BASEMENT

FILTER  #2

:\j<3.>i! U 1 .1-1 i:.l flow   rate   in    liter
-      12.2      +-       .2

; r      i r I X i i ._i L. 1^    ;:(I ! 1.2      l. L. ͣͣ- ͣ

It       ':::::> Icioncy and its standard deviation

T o t a 1 c o u n t s - 3 5 7

r cj t. a J. u o Li r 11 s — 'J. V1

Total counts -  190

RaA concentration in pCi/1 and its standard deviation
1,403658  + ͣ-  .2973369

RaB concentration in pCi/l and its standard deviation=
1.228705  +-  6.083541E--02

RaC concentration in pCi/1 and its standard deviation:
1.047154  +~  9.337663E-02

Working levels of radon ~  l.i5S119E-02

NEATPAGEINFO:id=7072F61B-F856-478D-8C43-EC5AEC672B72



E-20

HOME B BASEMENT

SCREEN #2

!j ͣ..!r'atiOf! in iTLinuttis toi

snuiHro

2 +-

-!......    r;n47

1" o t a 1 c o u n t s —      i 4

i oX.a .1 COuri tb ͣ==  1 ',£

KaA concentration in pUi/l and its standard deviation =
.3133527  H—  3.669869E-02

R3.B   concentration m pCi/i and its standard deviation^
3.296726E-02  +-  9.08a913E-03

RaC concentration m pCi/1 and its standard deviation^
-1.709321E--02  +-  l.i22i62E-02

workinq ie^ oT radcn -i ,.26l395E-04

NEATPAGEINFO:id=3A6B4DA7-E9B7-4F8F-B1CE-1F966CD56161



i t: e i3 t co 1.11 i t. :.ii-if"a t ion in (Ti

0!..ii'it uLAration in minutes for c:

.:-jujl.;.nq flow rate in liters pe

E-21

HOME B BASEMENT

FILTER #3

Jl. L. X i' 1 I I- •'

. 004

L t s s t. a i "i d a i' ͣ cJ d s? v .i i-j. t.

! Ota 1 COLii"! t;

'"otal couiiti

01

Rafi   concentration in pCi/1 and its standard deviation
.6S 6 3713  + —  .2671963

RaB concentration in pCi/1 and its standard deviation=
4   4 i"j y^ .- ͣ( ͣͣͣ" Ez    1      c:  "7 "T^ i i::: /~j o CT  .-"v -"^.1. . X-y O4.i; „.!   -r—   1.1 . / ..j1 widdt — O^ii

RaC concentration m pCi/'l and its standard deviation^
1.02461  +--  a.6i3666E-02

Working levels of radon =  i.056473£-02

NEATPAGEINFO:id=95B350EA-5C22-4819-A46F-3F8A8EB24941



E-22

. Lj ri 1 r"i (Ti i n u 'c s s i o v

HOME B BASEMENT

SCREEN #3

at.ion m minutes tc

fiov-j rats in liters
r;i(-vV Lation ==  12.2  +-

.i; T T 1 c 1 ts n c y    a n d    i t 'S   standard   d s v i
ͣͣ--•       . 0047       . ͣ    ͣ

I o'ca j.   CDLincs 26

Total counts -=  11

RaA concentration in pCi/1 and its stand^ird deviation =
-,,1240107  ͣͣ!.....  4.313782E-02

RaB concentration m pCi/1 and its standard deviation-
-2.955961E-02  +-  9.856606E-03

F'JaC concentration in pCi/1 and its standard deviation^
.1201933  +-  i.443586E-02

Working levels of radon -  1.707414E-04

NEATPAGEINFO:id=752890BA-9A5D-4493-A449-523475231FC1



E-23

njiii:.    Jur'.-ition    in   fininutes   ,tor

ͣI.;: t. di.; rat ion in minutes for

uiiol ii'u    flow   rate   in    liters   a
. ͣviation   -      12.2      +-       .2

HOME  B  BASEMENT

FILTER  #4

a n d a r ci

Deh5cti:;;f efficiency and its standard de-'
.3569  ͣ!--  .004

ͣ''otal counts ~=  306

Total counts 153

RaA concentration in pCi/1 and its standard deviation -
1.976712  +-  ,2458333

RaB concentration in pCi/1 and its standard deviation=
.9366354  +—  .0506972

RaC concentration in pCi/1 and its standard deviation^
.622394  +•-  7.50ia57E-02

Wurkinq levels of radon -- 9.3597S4E-03

NEATPAGEINFO:id=BFE4DCA8-D0D4-42C9-9024-05B7006F4268



iU rat ion    in    fnmutss    tor   ccun'

ia    f l.cv'j   i-ate    in    liters    per   m

E-24

HOME B BASEMENT

SCREEN #4

snd Its d a!

standard deviation

Vjtal CDUirits

Ota i CO Lin ts

OtaI    counts

ͣ047

2i

13

12

KaA cciicentr ation in pCi/1 and its standard deviation =
a> P •_ ͣ' 4 4  ^—  ͣ- ͣ „ cj '•-' ii a;J P • j. E—O 2

F<aB concentration in pCi/1 and its standard deviation^
1 .227677E:-02  +-  9.940i74E-03

RaC concentration in pCi/1 and its standard deviation-
--l,0S437iE-02  +-  i,i7744SE--02

Workinq levels of radon *21006E-04

NEATPAGEINFO:id=E0DD5D13-E7FB-45CD-A383-E3E2BBCBFFB9



duration in minutes for

E-25

HOME B UPSTAIRS

FILTER #1

duration m mmuces i or coun

Samolinq flow rate in liters 11 i i.!! Lt c t{^ a n I ^ndai-

its standard deviatior

"!' ͣ i:j t a 1 c a u n t s ͣ-- 6 54

Total counts ~ 445

Total counts ~  346

KaA concentration in pCi/1 and its standard deviation
cz       .1 it: ~rr-rr~t~T i_ .q —7 /\ n f~\ ͣ—,i~,ͣ_i . 4 ͣ-' ͣ_. •_ ͣ d J'  ͣ+• —   .4/477^7'

RaB concentration in pCi/1 and its standard deviation=
2.486969  +-  .101433

RaC concentration in pCi/1 and its standard deviation^
.8448371  +-  .1419348 '

Workmq levels of radon =  2. 137716E-0:;

NEATPAGEINFO:id=68BDF124-4262-450A-85EE-F6197207B66E



E-26

JLin t:.   dLii' a't. 1 of 1    in   minuitss   To

HOME  B  UPSTAIRS

SCREEN   #1

ULU'ation    m   mmures   Tc

-i'lq    flaw   i-ats    in    literi

\ E? C. t. O r ͣͣ      S t  t XC j.'Si'iCy      3. n d      1 t S rr 'L, a n d a r d   d !— ͣ V X a 11 q n

iotai counts - ob

i c j'". a i c o Ls n t. b -•• *:; 6

i o b a 1 c; o u n t. s ͣ-  !^! i

KaA concentration m pui/1 and its standard deviation
.1973373  +-  4.59ai76E-02

RaB concentration in pCi/1 and its standard deviation^
7,43527iE-02  + ͣ-  1.202a99E-02

;aC concentration in pCi/1 and its staindard deviatiori =
3.325988E-02  +-  .0150037

W D r i:: i n q 1 e v els of r a don =  6 . V 4 0 Z 6 51 - O 4

NEATPAGEINFO:id=CA075B0F-70ED-4665-84F3-8E053A06E450



E-27

-II  Hill iU Lin:'^  i U i'

HOME B UPSTAIRS

FILTER #2

unt Uuration m minutes Tor count

inq flow rate in liters per niinute and andarcl

1 a u xLji 1 12.2  +-

t.ec tor eTTicieni;:y and its standard deviation =-
,, 3569  ͣ!--  . 004 >'

Total counts ͣͣͣ- ͣ- 461

r (J t a 1 c o u 1 "i t s — 4 C) 5

Total counts ͣ^ ͣ-      297

RaA concentration in pCi/1 and its standard deviation
1.499747  •+•-  .3916069

RaB concentration in pCi/1 and its standard deviation^
2.132742  +-  a.a63722E-02

RaC concentration in pCi/1 and its standard deviatiDn=
1.359386  +-  .1265211

Wcriiinq levels of radon =^  i.76S175E—02
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lount   duration   in   minutes   for   cour

;our; b.   duration   in   minutes   for   coun

BaiTiDliriq    flow   rate   in    liters
deviation   -      12.2      +-      .2

(...! i~; r  111 .i. i IU L. f.' AI IO

E-28

HOME B UPSTAIRS

SCREEN #2

Uetecto!'' efficiency and its star-idard deviation
.4222  +—  .0047

Total counts ==  26

Total counts ==  16

1 o t a 1 c o L! n t. s —  13

RaA conctsntration in pui/l and its standard deviation
.1977354  +-  .0333435

RaB concentration in pCi/1 and its standard deviation^
1.942793E-02  +-  1.00070SE-02

RaC concentration in pCi/1 and its standard deviation^
i.8i9401E-03  ͣ+—  i.23202aE-02

Working levels of radon =  3.089537E~04
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dur'atixon    in   minute?

E-29

HOME B UPSTAIRS

FILTER #3

jL;n t dL; rat ion in minutes toi-

q flow rate in liter^i per
Ljn -      12.2  +-  .2

IJ &? t B c" t Q f" s? t T 1 c 1 fc-' n c V a r i d its s t a 11 d a r cj deviation —
„ 35<b9  +- ͣ  ., <)04

fotai c. Durvts ͣ-- 207

i o l". a i c:. o Li F i t s = 14 V

T ci t a 1. c: o u n t s ͣ -  9 8

XaA concentration in pCi/1 and its standard deviation
1.310668  +•- ͣ  .1771861

F;aB concentration in pCi/1 and its standard devicntion"-
.6080687  +-  3.617i66E-02

RaC concentration in pCi/1 and its standard deviation^
.4463624  +-  5.4i5403E-02

Ukjrkinq levels of radon -  6.09782aE~03
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E-30

"a'Ci.oi'i   i.ii   ivi 1 i 1 u c&s    rQI

HOME  B  UPSTAIRS

SCREEN   #3

ii;!   uuration    " ͣ.   minLites   for

'iijliiiq    flow   rate   in    liters

and   Its:5       ͣ::=   L. i;SI uJard   d

047

. t-A L. .J. UI I

I   LJ l.cS i        I... LJI...U 1

! cj t a 1    c; o Li n t s   ~

KaA concentration in pCi/1 and its standard deviation
-4.55S'v49E~03  +-  2.963741E-02

RaB concentration in pCi/1 and its standard deviaticn-
4„795726e-02  +-  7 . 73736aE-03

RaC concsntration in pCi/1 and its standard deviation^
4,370307E -02  +-  1.00453aE-02

Workmq Isvels of radon =  4.0i4601E-04

^ ^^
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, ͣ•^^ ͣ" - ..... -  ' "" " . - \~   ͣ"" "_ , - „.. E-31
Count d..ration m rnmute- tor count 1 ^      S ^^^^   g UPSTAIRS
Count duf'ation m minutes for" count 2 -~      5 FILTER #4

Count duration in minutes tor count 3 ==  S

Sainolmq flow rate in liters per ͣ ii 1 n u'::. s and its standard

Detector sfTiciency and its standard deviation ~
.3369  i-—  . C"-j4

Total counts •-  2S4

Total counts —  !^lb

Total counts ͣ-  134 •   •

K a A c o n c e r-i t r a t i o n i n p C1 / 1 and i 15 s t a n d a r- d deviation
1.448296  +--  .2355189

RaB concentration in pCi/1 and its standard deviation:
.3085674  +-  4.6i7377E-02

RaC concentration m pCi/1 and its standard deviation:
.7487197  +-  7.233305E-02

Working levels of radon -  3,3a3906E-03
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