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Abstract
EVIN UZUN JACOBSON: Scheduling on Service Systems with Itigrg Customers and Insights on
Mass-casualty Triage
(Under the supervision of Nilay Tanik Argon)

In this research, we study a resource allocation problenngncompeting customers who may differ
in their tolerance for wait. If a customer waits longer thasitrer tolerance for wait (which we call the
“lifetime”), then he/she leaves the system without recgj\ény service. On the other hand, if a customer
enters service, a random reward is earned. The decisionrrkiake's the type of the customer, which
determines the lifetime, service time, and reward distitims for that customer. The objective is to
obtain dynamic scheduling priority policies that maximibke total (or average) reward collected.

Our motivation for this study is a resource allocation peoblcommonly observed in the aftermath
of mass-casualty events, where the medical resources arelemed with the nearly simultaneous
arrivals of large numbers of patients. In such situatiohg, common practice is to first triage the
casualties, i.e., categorize them into priority groupsedasn only the type of the injuries. In this
dissertation, we study the benefits of taking into accoumnhtimber of patients, the available resources,
and the changes that occur with time while giving prioriiiza decisions during a mass-casualty event.
We formulate the problem as a priority assignment problermafgueueing system with multiple types
of impatient jobs (patients). We study the problem under w&in scenarios::] the case with a fixed
number of jobs to be cleared (no future arrivalg)) the case with job arrivals. In either case, the
objective is to maximize the reward (either total or long-average). For the clearing problem, we
consider the multi-server case under the assumption thdtedimes are identically distributed, and
when we relax this assumption, we restrict our attentiohécsingle server case. In the analysis of both
cases, we use sample path methods and stochastic dynamiamproing to characterize structures of
“good” scheduling policies. For example, we show that a goprioritized irrespective of the number of
other jobs, if it comes from the job type that brings the hgglmeward and that has the shortest lifetime in
some stochastic sense. We also provide analytical rebaltshow how the optimal policy might depend

on the state of the system when such conditions do not holdedBan these partial characterizations



of the optimal policy, we develop state-dependent and -gtaiEpendent heuristic policies, and test
the performance of these policies by a numerical study. llyinae extend the clearing model by

considering job arrivals after time zero and allowing jobshange type while waiting in the queue.
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CHAPTER 1

| ntroduction

Many service systems give prioritization decisions on alla@gbasis for the allocation of scarce
resources among their customers to fulfill one or more obgxt In service systems such as call centers
and health care systems where customers may renege if thiefoadong, the tolerance for wait can
be different for different customer groups. Taking into@aut these differences for delay intolerance
as well as other customer characteristics (such as expestends brought) while assigning priorities
could enhance the overall performance of the service systarthis research, we study the priority
assignment problem for such service systems by modeling @ queueing systems with multiple
classes of impatient customers.

In our most general queueing model, there are multiple idanparallel servers, each serving one
customer at a time. Each customer has a certain toleranseaigrwhich we call the lifetime of that
customer. If customers wait longer than their lifetimegntithey abandon the system without receiving
any service. The lifetimes of the customers are unknowndalétision maker, but the decision maker
knows the type of the customers which determines the setwvieand lifetime distributions. A cus-
tomer that is taken into service brings a random reward, hadeaward distribution is type-dependent
as well. We study this problem under two main scenaridsthe case with a fixed number of customers
to be cleared (no future arrivalg)ii) the case with customer arrivals. In the first case, the pnolie
essentially a stochastic job scheduling problem, whenmedise second case the problem is more of a
queueing control problem. In both cases, our objective getermine optimal or near-optimal policies
that maximize the reward (either total or long-run averdbga) the customers bring to the system.

The main motivation behind this research is a basic resalloeation problem that is commonly

encountered in the aftermath of a mass-casualty event. elmftermath of mass-casualty events and



disasters, critical resources such as ambulances, restises, operating rooms, and physicians are
typically overwhelmed by the sudden jump in demand for tiseivices. In a matter of minutes to
hours, these resources become insufficient in numbers wderonmediate relief to all that are in need
and therefore their efficient allocation is essential f@& dventual success of the emergency response
effort. However, making these allocation decisions is g \dfficult task as it requires simultaneous
consideration of multiple factors. Furthermore, one ndedsct fast as there is only a short period of
time during which lives can be saved. The first step of a respeffort is typically to determine (at least
roughly) the urgency of different “jobs” to which the resoes need to be assigned. (Here a job could
be a single patient, a group of patients, or a rescue miseiaiving a large number of individuals.)
Once that is done, one reasonable policy could be to stamt tihe most urgent jobs and move onto less
urgent ones as resources become available. However, wiaticates the problem is that normally, the
expected “payoff” from jobs at different urgency levels different from each other. For example, in
the case of mass-casualty incidents with traumatic irguneost patients with shorter life expectancies
have lower chances of going through a successful operat@onlower expected payoffs. Furthermore,
the service times of jobs at different urgency levels cowdddifferent as well. One of the objectives
of this thesis is to investigate these trade-offs betwegenay, payoff, and faster service and identify
“good” resource allocation policies that are simple enotaghe implemented during chaotic situations.
Triage, the practice of rationing medical resources deipgnoh the severity of the patients’ condi-
tions, dates back to Napoleonic Wars. Since then it has béd#lywadopted not only in wars but also
in civilian life in case of mass-casualty events or even iityd@amergencies. In the medical literature,
triage is defined as a brief clinical assessment that detesihe order in which patients should be seen
in the Emergency Department or, if in the field, the speedarfsport and choice of hospital destination
[65]. (In this research, we define triage as the decision proggssciated with determining the order
which patients be served based on the information aboutydters.) There are several proposed and
adopted triage systems in the emergency medicine literafne common mass-casualty triage method
is Simple Triage And Rapid Treatment (START), which seggdlhe injured into four groups based on
the type of the injury with each group marked by a color; seg, &locera and Garneb4]. However,
to our knowledge, there has not been any comprehensive studshether or not using these systems
improves the outcome of emergency response efforts. In faste recently, adopted practices have

been criticized for being too short-sighted. Several neseas from the emergency medicine commu-



nity have argued that when making prioritization decisjandike the current practice, scarcity of the
resources should be taken into account and called for meeareh on how that should be done (see,
e.g., Frykberg29 and Saccog6f]).

With this thesis, we aim to contribute to this discussion bgvping insights on how resource
limitations can be taken into account when determininggpatpriorities in mass-casualty events and
the associated potential benefits. We do not attempt toaeeedlecision support tool that can readily be
used in real time. The goal rather is to develop a relativiehpke model that captures the most essential
components of the decision problem, identify basic priles@and rules-of-thumb that work well, and
provide some guidance to the emergency response commaunieir efforts to devise practical and
efficient policies.

Since the nature of the system under consideration inclfat#srs that are hard to quantify such
as loss of life, it is not easy to find an appropriate perforceameasure for the analysis of the under-
lying queuing model. Most of the Operations Research woak tonsiders allocation of resources in
health care systems defines the performance measure agthgeautilization of resources or the queue
waiting times. In the aftermath of a large-scale emergenepntewhere the decision may involve life
or death, these performance measures may not be approfieeefore, we decided to let our perfor-
mance measure be the expected reward that can be earneding gatients. The reward associated
with each patient can have various interpretations. If thjeaiive of the emergency response effort is
to save as many patients as possible, then the reward foiemipean be seen as the probability that
the patient will survive when the required resource is mtedi If the objective is to maximize the to-
tal QALY (Quality Adjusted Life Year) score, then the rewarah be seen as the expected QALY that
would be gained by allocating the resource to the patientag®e of prioritizing rescue missions, if the
objective is to maximize the number of survivors, then thearel can be the number of disaster victims
who would survive as a result of the associated rescue missio

Although the triage problem is our main motivation, pri@ation decisions can arise at various
other applications and our results in this thesis are ndusie to any specific setting. These appli-
cations include communication systems where data need tabgsmitted by a given timelp]; and
call centers where impatient customers change their pattgfrwaiting, e.g., customers may decide to
abandon the queue before they receive service if their ngatime exceeds a certain threshold|[

Hence, to keep the general appeal of our results, we adopteaa¢erminology throughout the thesis,



which also allows us to emphasize the relevance of our firgdiaoghe classical scheduling literature.
For example, we use “jobs” that are impatient instead ofpédi with finite lifetimes and “servers” that
provide service to these jobs instead of ambulances or tipgraoms. However, throughout the thesis,
we will interpret our results and provide insights mainlythim the context of prioritization decisions
during emergency response to a disaster or a mass-casattgrit.

The outline and a brief summary of this dissertation are lkm#s. In Chaptel, we provide a review
of the literature on scheduling in clearing systems with auittiout deadlines, queues with reneging,
and relevant work in emergency response. In this review, bgeiwe that although the literature on
gqueueing systems with impatient customers is vast, thererdy a handful of articles on the dynamic
prioritization of different classes of customers with diffnt reneging patterns. In Chapsgmwe present
our clearing model with multiple identical servers and adirember of impatient jobs that are initially
present in the system. We consider two main trade-offs iatiadysis of the clearing moddli) lifetime
vs. reward (urgency vs. payoff), aritl) lifetime vs. service time (urgency vs. fast service). In Qtka
3, we study the first trade-off by assuming that service tinmesdentically distributed for all jobs. This
is a reasonable assumption for the patient triage probleem\iite service constitutes the transportation
of the patients from the field to the hospitals. The analysih® second trade-off is more challenging,
but we were able to consider both trade-offs in the same nipdedstricting the number of servers to
one. Our work on this is presented in Chapter

In the theoretical analysis of our clearing model, we usepamath arguments, stochastic orders,
and stochastic dynamic programming to characterize strestof “good” scheduling policies. In par-
ticular, we identify conditions under which some simpldestadependent policies are optimal, and for
the cases when these conditions are not satisfied, we showhleawptimal policy depends on the sys-
tem state. For example, one of our analytical results shbatswhen there are two types of customers
with identical service times distributions, it is optimalgerve the class of customers who brings higher
rewards when the total number of customers exceeds a cttashold value. Based on the knowledge
obtained from such analytical results, we develop easyfdement state-dependent heuristic policies
that can be used effectively for patient triage. By meansuoherical experiments, we compare these
heuristics to the common practice and other proposed tiesrisom the literature.

In Chapter5, we study two main extensions to our base clearing modestlf;iwe allow arrival

of jobs after time zero. Secondly, we consider the model wle@ch customer’s lifetime consists of



multiple stages and the decision maker knows which stage @stomer is in at any given time. We
use an approach similar to that used for the clearing modalbtain insights on efficient prioritization

policies. Finally, we present our concluding remarks in |@8e6.



CHAPTER 2

Literaturereview

In this chapter, we review the related literature in fourm@tegories. Although some of the papers

that we review fall into more than one of these categorieswilleliscuss them in only one category.

2.1 Schedulingin clearing systems

There is a vast literature on stochastic scheduling in iclgasystems, where the objective is to
determine the order of the processing of jobs that are ailedla at time zero so as to optimize certain
performance measures. We here review only the most relevark and refer the interested reader
to a popular textbook on scheduling by Pine®®][for an overview of deterministic and stochastic
scheduling in clearing systems and issues about implentetiiese models. Within the stochastic
scheduling literature, we are aware of only four papersdisatuss scheduling in a clearing system with
impatient jobs. These articles are Argon, Ziya, and Rigi&grGlazebrook, Ansell, Dunn, and Lumley
[31], Li and Glazebrook %1], and Childers, Visagamurthy, and Taaff@l]. As we do in this thesis,
these four articles seek a solution to the problem of allogagervice capacity to impatient jobs in a
setting where all jobs are present at time zero and no additiobs are expected to arrive. However,
our work differs from these four articles in a number of wagsie common difference is that they all
consider models with a single resource while we allow the lmemof resources to be possibly more
than one. This is an important generalization since in mamgrgency response settings there is usually
more than one resource available (e.g., when the resoureesrdulances). We next review these four
related articles in more detail.

Among these four articles, the closest to our work is the gn&rgon et al. ]. The authors consider

a formulation where patients who belong to one of two diffétypes (which determine their lifetime



and service time distributions) receive service from alsirsgrver. The objective is to determine the
optimal policy that maximizes the total expected numbewuofisors. Along with a number of analytical
results that characterize the optimal policy, the authoopgse two state-dependent heuristic policies
that give priority to jobs with smaller mean service times longer mean lifetimes when the system is
heavily congested. In this thesis, we consider formulatithiat generalize the model of Argon et & [

in several ways making it a much more realistic represemiaif the actual system. First, as we stated
before, the number of servers can be greater than one. Segeatnehts can belong to more than two
different types. Third, unlike in the model of Argon et &] pot all patients who receive service bring
the same reward; the rewards may depend on the type of thepalihis generalization significantly
enriches the model. For example, it allows us to incorposatwival probabilities that differ across
patient types.

Although not motivated by priority decisions during emerge response, Glazebrook et &81]
study a model that is highly relevant. Specifically, the atghconsider a general job-scheduling for-
mulation of a multi-class single server clearing systenmvitpatient jobs having exponential lifetimes
under the objective of maximizing the expected total reveeclimulated. They propose a simple state-
independent policy resembling theyi rule” and prove that this policy is asymptotically optimalthe
class of non-preemptive policies as the death rates agptoazero, i.e., as the mean lifetimes go to
infinity. The authors also provide a brief numerical studytloe performance of the suggested policy.
However, as Argon et al2] and Li and Glazebrookd1] demonstrate later, this simple policy does not
perform well when death rates are sufficiently large.

Li and Glazebrook%1] consider a formulation that is very similar to that of Argenal. [2] ex-
cept that they allow more than two patient types. The ohjeatif the work is developing a heuristic
method that could be executed in real-time to produce ao@anal solution. With this objective,
the authors use the idea of applying a single-step of theyalprovement algorithm (for Markov
decision processes) on the state-dependent policy proms&lazebrook et al.3l]. They also use
a fluid approximation for computing value functions needethie policy improvement algorithm. By
a numerical study, the authors show that this method preadacsolution that is close to the optimal
performance.

In a numerical study, Childers et aRl] consider a similar job-scheduling problem with impatient

jobs with the motivation of ordering patients for transgartase of a health-care facility evacuation. In



their model, the patients are classified into two typesi¢aliand non-critical) and there is a final due
date common to all patients. They study the problem undemfyectives: maximizing the number of
lives saved and minimizing the holding cost of patients. <Istent with the results by Argon et a2]]
Childers et al. 21] conclude that when the resources are severely limitedevaeuation should start
with non-critical patients first and switch to critical gerits as the number of patients in need decreases.
Finally, there are many other articles on traditional jobextuling problems but with jobs that do not
renege from the system after their due date. See, for exaBpiena and Forstl5], Coffman, Flatto,
Garey, and Webe2[3], Emmons and Pined@F], Righter [63], Weber, Varaiya, and Walrand@4], and
Weiss and Pinedo/p]. The articles by Boxma and Forstg] and Emmons and Pined@T] are the
most relevant as their models also have multiple servergtaaidobjective is to minimize the weighted
number of tardy jobs (i.e., jobs for which the deadline eepiwhile waiting in the queue). In these
models, “weights” can be seen as “rewards” in our formufgtiout unlike our work, the weights of
jobs are deterministic. Furthermore, the work by Boxma arat15] differs from ours in that they
consider only static policies under the assumption thatdtie dates are independent and identically
distributed (i.i.d.). As only static policies are consigr all jobs are scheduled at time zero, and hence
a tardy job can be taken into service although it is not odttmdo so. One of the results by Boxma and
Frost [L5] shows that if all due dates are i.i.d. and processing timestchastically ordered, then the
jobs with stochastically shortest processing times shbalgrocessed first. Emmons and Pine2id,[
on the other hand, consider dynamic scheduling policieseasglavin this thesis. One of their results
states that if the processing times are i.i.d., and the dies @dae either i.i.d. or have the same value, then
the optimal non-preemptive dynamic policy is to processjéhewith the largest weight. In Chapt8r
we prove a similar result but without the assumption on.iduk dates and deterministic weights. They
also investigate the system under preemptive serviceptiisei They prove that if the processing times
are i.i.d. exponential random variables, and the due daéeimdependent and can be ordered according
to their failure rates, then the optimal preemptive dynapailicy is to process the jobs in the increasing

order of their failure rates.



2.2 Scheduling in queueing systemswith deadlines

In this section, we first review five relevant papers that m®rsscheduling in multi-class queueing
systems with deadlines. The main difference of this sedtimm Section2.1is the arrival of customers
after time zero. Bhattacharya and EphremidEk 13] assume that the stochastic due date of a job is
announced upon the arrival of the job and show that a formefghortest-time-to-extinction” policy
is optimal under certain conditions. Moreover, Pandelid a&@neketzis§6] establish sufficient condi-
tions under which serving one type of job is optimal at allisien epochs. The studies of Bhattacharya
and Ephremidesifi, 13] and Pandelis and Teneketzis6] differ from our work as the due dates are
announced upon arrival and their performance measureayesttis the (expected) discounted tardiness
(and/or earliness) and/or long-run average tardinesgdaedrliness) per customer. Finally, Li&J]
investigates the scheduling of a multi-class queueingeaystith deterministic deadlines by consider-
ing fixed and dynamic prioritization policies with preengetj and the performance measure is server
utilization. In addition to the difference in the perforntenmeasure of interest, our work also differs
from Liu [53] since we consider random deadlines (i.e., lifetimes).

Among the studies on scheduling in a single-class queusistgr® with random deadlines, the
papers by Bhattacharya and EphremidEg,[Panwar, Towsley and WolH[7] and Pinedo %9 are the
most relevant to our problem mainly because the performareasure of interest in these papers is the
(weighted) number of tardy jobs. Bhattacharya and Ephremt?] show that under the assumption
of i.i.d. lifetimes, i.i.d. service times, and i.i.d. inggrival times (that are all mutually independent), the
“earliest-arrival” policy is optimal if the lifetime disitoution has a non-decreasing failure rate. Panwar et
al. [57] show that a form of the “shortest-time-to-extinction” @yl is optimal under certain conditions
if the due date of a job is known upon arrival, and they comiaegerformance of the “shortest-time-
to-extinction” policy with the first-come, first-served jmyl for various scenarios. Pineddd] considers
only list scheduling policies, i.e., the decision makeraages all jobs into a list at time zero, and is not
allowed to change this list thereafter. Hence, when a lisedualing policy is applied, all jobs (even
those jobs that are tardy) are processed. It is shown tha rtocessing times of jobs are independent
and exponentially distributed, their release dates {he.times that the jobs are available for processing)
are random, and their due dates are identically distributexh the optimal static list policy sequences

jobs in increasing order of mean processing times when tsteisyhas a single server.



2.3 Queueing systemswith reneging

There is a vast literature on the analysis of queueing systeith impatient customers (reneging or
abandonments). The most relevant one is the study by Dowolekand Lewis 26]. They consider a
single server Markovian queueing system with two types sfamers and both types of customers have
equal service rates. They analyze both the discountedrgptdist minimization and the long-run aver-
age reward maximization problems, and they formulate e&tiiiedwo problems as a continuous-time
MDP. One of their objectives is to identify the cases whergaticspolicy is optimal. Their main result
states that if type 1 jobs have higher reneging rates andrdewthen it is optimal to serve type 1 jobs.
We obtain a similar result for our clearing problem in Chap8and4, but our results hold with more
generality as we allow more than two types of jobs, gen€igtitie and service time distributions, and
multiple servers in Chapt&, and type-dependent service rates in Chagtddy means of a numerical
study, they identify the conditions under which #erule’s deviation from optimality is significant.

We are also aware of three studies on heavy traffic approiximsabf the multi-server multi-type
gueueing systems with impatient customers; namely, Ateat &d Shimkin §], Ghamami and Ward
[30], and Perry and Whitt48]. Under the Markovian assumption, Atar et ab] propose a policy
called “cii/0 rule,” wherec, 11, andf denote the holding cost rate, the service rate, and the abareht
rate, respectively. They show that the/6 rule is asymptotically optimal for the long-run average
cost minimization problem. They also provide a countergdanthat shows that theu /6 rule is not
necessarily asymptotically optimal for a finite horizonsien of the cost function. Ghamami and Ward
[30] consider the dynamic control of a system with two job typed &vo parallel servers, one of which,
namely server 2, can serve both types of jobs, and server ardgrserve type 1 jobs. (This system is
usually called the N-system.) Customers from each claggeaccording to a renewal process and the
lifetime of a customer is exponentially distributed. Theim@sult shows the asymptotic optimality of
a two-threshold policy that uses one threshold on the tatalber of customers and another threshold
on type 1 jobs to determine which job server 2 should serveirtbjective is to minimize the expected
infinite horizon discounted holding and reneging cost okjoBinally, Perry and Whittd8] consider a
multi-class Markovian queueing problem, where each classtseparate queue that is served by a pool
of multiple servers. They approximate the problem by a deitéstic fluid model and propose a policy

that balances the workload by sharing a server pool amongugagqueues when the workload is high.
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They test the performance of the proposed policy using sitioul.

There are other papers that examine queueing systems withlasses of customers, where only
class-1 customers are impatient and have higher priorigy the class-2 customers, see, e.4j, [L9,
22,40, 3, 4]. These papers assume preemptive service, and theretdyitlamics of class-1 customers
are not affected by class-2 customers. Thus, the dynamidasg-1 customers reduce to a single class
of customers with impatience, which is well investigateddgyeral authors (partly as special cases
of more general models), see, e.d., 8, 9, 14, 16, 18, 37, 73] and references therein. Moreover, in
some of these studies, a customer may abandon the systemlyettole waiting for service, but also
during his/her service, see, e.@®, 22, 37]. In that case, some of the service will not be useful. Among
the work that examines the characteristics of class-2 met®, Choi et al.32] study anM /M /1
gueueing system, where class-1 customers have impati¢momstant duration. The main results are
on the stability condition, the probability generating étion of the distribution of number of class-
2 customers, and Laplace-Stieltjes transform of the sojdumne of class-2 customers. Brandt and
Brandt [L9] generalize this model by considering impatience with aegeindistribution. They obtain
the distribution of the number of customers in service olass-1 queue. They develop an approximate
method for obtaining the moments of the number of customectaiss-2 queue. Furthermore, Brandt
and Brandt17] analyze the case where class-1 customers may join theZlgssue or leave the system
if the random maximal waiting time exceeds a given deterstimtime. They propose a birth-and-death
gueueing model for a call center with impatient class-1 amstrs and patient class-2 customers. |If
class-1 customers wait in the queue beyond a given threstield become class-2 customers. Class-2
customers are served when no class-1 customers are waitththe number of idle agents exceeds a
threshold. Iravani and BalciogldQ] consider three separate problems. In the first problenpladl are
impatient and the server follows a preempt-resume poliag, ia the second problem, only the high-
priority class customers are impatient and their servigeeiformed in a non-preemptive manner. In
the third problem, there are multiple servers and in additmleaving the system due to reneging, a
customer can leave the system without joining the queudiftwglif he/she knows his/her prospective
waiting time upon arrival, and this time exceeds the maxwveiting time. Our work differs from the
studies reviewed in this paragraph, as they analyze themeahce measures of interest for a fixed
policy, whereas we aim to characterize the optimal policythie performance measure of interest.

Similar to the third problem ir4Q], the articles by Armony and Maglara3, {] consider a multiple-
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server problem where the system provides information ab@iting times upon arrival, and after re-
ceiving the information, customers can balk, join the higlority queue, or request a call-back. The
information provided upon arrival includes the waiting &imm the high-priority queue and a guaranteed
amount time within which the system will call them back. Wéth objective of minimizing the delay
in the high-priority queue, Armony and Maglared] fhow that the proposed policy is better than the
policy that only gives the information on the waiting timethe high-priority queue asymptotically.
Furthermore, Armony and Maglara3] jnvestigate the optimal staffing levels that satisfies asebn-
straints on the system performance under heavy traffic mgitimally, in addition to two-class priority
gueueing models that are discussedidy B, 4], there are other queueing systems in the literature where
customer balking is investigated, see, €.§.40, 77]. Additionally, other types of departures from the
system without service completion can be due to admissidreapulsion decisions. For examples of

this work, see20, 42, 45, 64, 78, 79, 80] and the references therein.

2.4 Operations Research work on emergency response management

Even though patient triage has long been practiced, iriteghs there has not appeared any com-
prehensive study on how useful existing triage systems iane fact whether or not triage is useful
at all (Jenkins et al.41] and Lerner et al.§0]). More recently, a number of authors (e.g., Frykberg
[29)]) discussed the limitations of existing practices and adyim support of making triage and priority
decisions while taking into account resource limitatioH®wever, to the best of our knowledge, there
is only one work from the emergency medicine literature ¢Baet al. p6, 67]) that proposes a pri-
oritization method (called th8acco Triage Metho{STM)) that takes into account system conditions.
More specifically, Sacco and his coauthors propose a lipeagramming-based method for determin-
ing priorities when dispatching patients to the hospitdistheir model, patients are categorized into
twelve criticality levels upon arrival, the planning harizis divided into a fixed number of periods,
and a decision about which patients to transport to the taddpimade at the beginning of each time
period. Transportation times are deterministic and ptgibacome deterministically more critical with
time. The survival probability of a patient depends on thacality level at the given time. The idea
is to solve a linear program at the beginning of the respofied and perhaps repeatedly thereafter as

the conditions change. Then, the results are compared t®RE B means of a numerical study. Their
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results show that the difference in the performance of tlpgsed method and START is very small
when patients are not very critical but the difference bes®significant when patients become more
critical. Moreover, when the resources are overwhelmesl]dbs critical patients with higher survival
probabilities should be given priority. Then, their maimclusions state that the current procedures of
triage do not take into account resource limitations anchiaw few categories, so patients have very
different survival probabilities within a category, aneyhpoint out that a method that better predicts
the condition of the patient and considers resource limitatwhile giving prioritization decisions is
needed to improve the expected number of survivors. Iniaddib the fact that STM largely ignores
the randomness inherent in the actual system, the methdaeleascriticized as being impractical as it
suggests using a real-time solution, which might differstically from one event to the other, and it
highly relies on perfect system information and commuicatithin the disaster area; see Cone and
MacMillan [24]. Our objective is not to propose a real-time solution mdtlike STM, but instead to
identify basic rules and principles that the emergencyaese community can use in the development
of simple and effective prioritization policies.

Although not very relevant, we would like to mention that e tcontext of emergency response
planning, excluding patient triage, there is also someyeeaotk that used multi-server queueing models
for optimal dispatching of police patrols in New York Citges[32, 33, 35, 48, 68, 69]. Green B2] pro-
poses a multiple-car dispatch model. The model is a multiesemulti-priority Markovian queueing
model, and the number of servers needed by each type of s@alids given by a probability distribu-
tion. The service times are assumed to be i.i.d., and thempesihce measures of interest include the
probability of delay, mean delay for each type of call, areldlierage number of available servers. The
comparison of this model with several other queueing modaléscussed in Green and Kolesa8].
Furthermore, in the study by Green and Koles%],[the validity of this model is tested. Schack and
Larson B8, 69] also consider a multi-server, multi-priority queueingi®m motivated by dispatching
of police patrol cars, assuming that the service times igle T.hey derive some system statistics includ-
ing the waiting time distributions for each type of calls. gilmer study by Larsordf] investigates the
effects of increasing the service area of police patrolscam¢ludes that travel times do not necessarily
increase when the service area increases, especially @ieitiem utilization of police patrols.

For comprehensive reviews of the Operations Research woekm@rgency response, the interested

reader is referred tdl| 36, 46, 49, 72].
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CHAPTER 3

Scheduling of impatient customersin a clearing system with

multiple serversand i.i.d. servicetimes

In this chapter, we investigate a problem that is similar timagitional job scheduling problem
although with some important differences. Very broadle titoblem can be described as follows:
There are different types of jobs each having a stochasgaddite, which is unknown to the decision-
maker, and an associated expected reward that will be e#rtieljob is taken into service before its
due date. Each job has a stochastic processing time distilidentically for all jobs. The objective is
to maximize the total expected reward by dynamically deteimg the order according to which jobs
will be processed.

The outline of the chapter is as follows. We start with our eladescription in Sectio3.1 In
Section3.2, we use a sample-path argument to show that urgent jobs timat tigh rewards should
be prioritized at all times. In the absence of such a conditive need to make other simplifying
assumptions for analytical tractability. Hence, in Setdi8.3 and 3.4, we assume that service time
and lifetime (time until the due date) for each job are expbiaély distributed, and then formulate the
problem as a stochastic dynamic program. Using this forimmawe prove several structural results
that characterize the optimal policy under certain coaodgi These analytical results not only help us
generate useful insights on the characteristics of “goadlicigs but also provide analytical support
for the development of three heuristic methods that we mepo Sectior8.5. Finally, in Section3.6,
we test the performance of our heuristic policies by meares miimerical study and observe that it is

possible to design simple policies that perform well.



3.1 Model description

In our model, we assume that at time zero thereMajebs that are in need of receiving service from
one of theM identical parallel servers, wher€ > M > 1. (The problem is trivial wherdv < M)
Jobs are impatient in the sense that if a job’s waiting timta@queue exceeds its “lifetime,” it reneges,
i.e., it leaves the system without receiving any servicdaslbat enter service do not renege while in
service. We assume that there will not be any future job @gigo that the problem is over as soon as
all of the IV jobs in the system are cleared either after they receivécgeov after their lifetime expires.

A job that is taken into service brings a random reward.

In the context of a mass casualty event, jobs can refer to emypgof tasks that require the same
set of scarce resources during an emergency response &ftorexample, in case of a bombing, jobs
can be injured patients who are waiting to be transportedhtosaital; or in case of a natural disaster,
they can be already hospitalized patients who are waitifg tvansferred to safer locations from areas
affected by the disaster. In these two examples, the socasoeirce would be ground or air transportation
vehicles. Similarly, jobs can be patients with traumatjaries that are brought to a hospital following
an emergency event and the scarce resource can be the mpecains of the hospital. In each one
of these cases, there is a random due date for each job sitieatpaan die before they are safely
transported and/or provided with the required medical.cilereover, the reward of a job can be seen
as the probability that the patient will survive after theeagi service or the patient’s QALY. In the case
of prioritization of rescue missions, where a limited reseuneeds to be allocated among several rescue
missions, the reward can be seen as the number of poterialas associated with the mission.

Each job in the system is characterized by its lifetime amehrd distribution. We assume that the
service times for all jobs are i.i.d. One setting where thlisuanption would be perfectly reasonable
is when determining priorities for patients who need to Ispdiched to a specific hospital from the
disaster area via ambulances. In such a situation, trasasioortimes are not expected to depend on the
type of patients. We also assume that the service is pertbima non-preemptive manner, i.e., once a
server starts processing a job, it cannot start working athen job before completing the processing
of the job that is already in service.

Let Y; be the lifetime of jobi at time zero,Z; be the non-negative reward earned whenjad®

taken into service, and; be the service time for job for i = 1,..., N. We assume thafY;}¥,,
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{Z:}N,, and {S;} | are sequences of independent random variables and thatttiree sequences
are independent from each other. We also assume[#af’ , is a sequence of identically distributed
random variables. We |dl be the set of all dynamic and non-preemptive schedulingtization)
policies. Here, a dynamic prioritization policy is a coliea of rules that determine which job is taken
into service at any given decision epoch based on the stdle alystem, i.e., the time of the decision
epoch and the collection of jobs in the system. We also défif¢) to be the total reward earned by
time ¢ > 0 when policynr € II is applied. Our objective is to identify characteristicspoficies that
either maximizeC; (t) stochastically or its expectation by the time the systenteiared.

In Sections3.2, 3.3 and3.4, we study the characteristics of the solution to this optation problem.

Before we proceed with the analysis, we first note an intitasult, which is proved in the Appendix.

Proposition 3.1.1. Any idling policy is suboptimal in the sense of maximizingt) along any given

sample path.

Based on PropositioB.1.], in the rest of the chapter, we only consider non-idlingg@es. Note that
since idling can never be optimal and preemption is not athvwhe decision epochs for our dynamic
control problem are time zero and service completion iristaft time zero, allV servers are available
and hence the decision is to assign all these servers to faiosn then on, new jobs are allocated at

service completion instants, i.e., at times when servarsrhe available.

3.2 When more urgent jobs have higher rewards

We first study settings where jobs with earlier lifetimesd@hus are more urgent) have higher
associated rewards. In this section, we do not make anyhdistmal assumptions on service times,
lifetimes, and rewards, and our objective is to maxintizgt) stochastically. We start by providing the
definitions of three stochastic orders used throughoutdiksertation.

Suppose thak andY are two random variables that are either discrete or cootiswlf Pr{X >
u}p < Pr{Y > u}, forallu € (—o0,00), thenX is said to be smaller thal in the sense ofisual
stochastic orderg¢denoted byX <;; Y). On the other hand, Pr{X —v > u|X > v} < Pr{YV —v >
ulY > v}, for all u,v > 0, thenX is said to be smaller thak in the sense ohazard rate orders

(denoted byX <, Y). Finally, let f(¢) andg(t) be the densities or probability mass functionsXof
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andY’, respectively. Iff(t)/g(t) is decreasing im over the union of the supports &f andY’, thenX
is said to be smaller tha¥ in the sense olfikelihood ratio orders(denoted byX <;. Y). Note that
X<, Y=X<,Y=X <,Y.Formore onthese stochastic orders, see Shaked and Kioamaini

(2007).

Proposition 3.2.1. Consider a decision epocfy > 0 at which jobs; andj are available for service. If
Y: < Yy andZ; >, Z;, then a policyr < II that serves joly at timet, can be improved (in the sense

of stochastically increasing';(¢) for all ¢ > t,) by serving johi instead of jobj at timet.

Proposition3.2.1, which is proved in the Appendix, states that if the lifetsrend rewards of any
two jobs can be ordered according to the hazard rate andhliloel ratio orders respectively, then giving
priority to the job with a shorter lifetime and larger rewandreases the total reward stochastically, and
as a result, also in expectation. Thus, when determiningtwjbb to serve next, a job can be eliminated
from consideration if it is dominated by another job whos$etiline is longer in the sense of hazard rate
ordering and whose reward is smaller in the sense of liketih@tio ordering. If these two orderings
hold for any job pair, then the optimal policy can be completharacterized. Hence, Propositidr.1

directly leads to the following result.

Corollary 3.21. If Y7 <, Y5 <pp -+ <p» Yy and Zy >y, Zo >y, --- >3, Zy, then a non-idling
policy that prioritizes the job with the smallest index aemvdecision epoch maximizés, (t) in the

sense of usual stochastic orders for every 0.

Corollary 3.2.1indicates that giving priority to the job with the shortegétime (in the sense of
hazard rate orders) maximizes the total reward earnedtijdbaalso brings the highest reward (in the
sense of likelihood ratio orders).

Both Proposition3.2.1and Corollary3.2.1 make intuitive sense as it is reasonable to believe that
high-reward jobs with short patience times (e.g., patignts shorter life expectancies and higher sur-
vival probabilities) should get higher priority. Theseuks are important in that they provide specific
ordering conditions under which this intuition holds. Irttontext of emergency response, the results
imply that if a group of patients have a higher chance of sahhbut a shorter life expectancy in terms
of the stochastic orders given in Propositi®2.1and Corollary3.2.], then that group should receive

priority no matter how many resources (e.g., ambulancesyailable and how many patients there are
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at any point in time during the response effort. Howevergast in the case of mass-casualty triage,
the situations where these conditions hold are not comnmme siurvival probabilities for patients with
longer life expectancies are typically higher (see, e.gccB et al. 2005). Therefore, in the following

sections, we mainly focus on cases where more urgent jobg lmiver rewards.

3.3 When more urgent jobs have lower rewards

In most mass-casualty incidents, patients who have shbigeexpectancies also have smaller
chances of survival. Thus, investigating priority deaisidor the case where more urgent jobs bring
lower rewards is crucial. However, in this case, even a glactiaracterization of the optimal policy
appears to be very difficult if not impossible for generalvgmr time and lifetime distributions. If we
assume that service times and lifetimes are exponentigtyiluited, then we can obtain partial char-
acterizations of optimal policies and gain insights intdigees that perform well. Furthermore, these
characterizations lead to simple heuristic policies tlaatloe used in non-exponential settings as well.

Our claim here is not that in reality (at least in schedulimghbems that arise during emergency
response efforts) service times or lifetimes are expoakytilistributed. Although, to the best of our
knowledge, no prior work has studied what particular disiions would be good fits, there is also no
reason to expect that the exponential distribution would geod choice neither for lifetimes nor service
times. However, the assumption of exponentially disteduifetimes and service times (which we refer
to as the Markovian assumption) allows some mathematicdysis and helps us develop insights into
what kind of policies are likely to work well in practice. ladt, as we demonstrate in Secti®®, the
heuristic methods that are developed based on our analiydie &larkovian case perform well even
under settings when the exponential assumptions do not Adids, the main insights that come out
of our analysis appear to be valid under conditions that anergeneral than the Markovian setup we
assume here.

In the following, we assume that jobs are classified iAtadifferent job types, each type being
characterized by its mean lifetime and reward, where K < N. These job types can be seen as
triage classes for patients with different injury charastes or more generally patients with different
health conditions. Let: > 0 be the service rate for all jobs. Also, for=1,... K, letr; > 0 be

the abandonment rate (i.e., the reciprocal of the meaini@tand«; > 0 be the expected reward for
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a typei job. Finally, if we letZ; denote the reward of a typgob fori = 1,..., K, we assume that
Z; comes from a distribution such that < «; implies thatZ; <;. Z; for all 7,5 € {1,...,K}.

We let D,(mq,...,mg) be the expected total reward accumulated after all jobs lagged when
prioritization policyr € II is applied andn; jobs from typei € {1, ..., K} are initially in the system,
wherezfi1 m; = N. We use a dynamic programming formulation to charactehieesblution of the

optimization problem, which is stated as

D . .
max (M. .., mK)
We define the state of the system with the vectgrs), whereq := (q1, . .., qx), g; IS the number

of type i jobs waiting (excluding the ones in service), anis the number of jobs in service. The
decision epochs are time zero and service completion titne$iah there exist at least two job types
say: andj such thatg;,¢; > 1. At time zero, the state of the system(isi, ..., mg;0) and the
decision is to determine the number of servers to be allddateeach job type, i.e., to determine the
vectorn := (nq,...,ng), wheren; € {0,1,...,m;}fori =1,..., K andezlnj = M. On the
other hand, at service completion times at which there isastlone job waiting for service,will be
equal toM — 1 and the decision is to determine the type of job to be allactighe available server
among those types for whiafy > 0 fori = 1,..., K. We next present the dynamic programming
equations.

Let V(q; s) be the value function at stafe; s), i.e., the maximum expected total reward starting
from state(q; s). Also lete; denote the vector with a one in thté position and zeroes elsewhere dnd
denote the indicator function of evedt i.e., I, = 1if A is true, andl4 = 0 otherwise. The dynamic

programming equations are given as follows:

K
V(imy,...,mg;0) =  max {Zami—l—V(ml—nl,...,mK—nK;M)}, (3.3.2)

(n1,...,ng)eP et

where

K
<I>:{(nl,...,nK):ni:0,1,...,mi,i:1,...,K; an:M}.
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Forq e {(q1,...,qx) g =0,1,...,mii=1,...,K;3 1 ¢; < N — M}, we have

V(igpM —1) = ‘_IglaXK{H{inHOéi +V(q—e;M)} and (3.3.2)

_ MpV(g M - 1)+ 38 qiriV(a - &; M)

Vg, M
(9 M) M,U‘inlil%?“i

: (3.3.3)

Finally, we letV(q;s) = 0 if min{q,...,qx,s} < 0,0rqg; = Oforalli = 1,...,K ands =
0,1,..., M.

In the remainder of this section, we use this dynamic prognang formulation to obtain results on
the characteristics of optimal policies. Without loss ofgellity, assume that; < as < --- < ag.
From Corollary3.2.1, we already know that itvy < as < --- < ag andr; < r, < --- < rg, i.e.,
when the expected rewards and abandonment rates are dgreoed, then it is optimal to prioritize
type K jobs. What if jobs with higher rewards do not necessarilyehsivorter lifetimes? How should
we set priorities in that case? In this section and Se@idnwe will provide some answers to these

guestions.

3.3.1 Structure of the optimal policy

In order to give the reader some idea about how the optimaipsllook like in general we start
with two examples. First, suppose that there are two typgsbsfand two servers. FiguBl presents
the shape of the optimal policy for a specific example where- o1 andry < 71, i.e., type 2 jobs have
higher expected rewards and longer lifetimes. We selebisgarticular example since it demonstrates
the general structure for the optimal policy that we obsgfvem several numerical examples.

Figure3.1(a) shows the optimal allocation of the two servers at tinte fer various values ofn,
andms. Figure3.1(b) demonstrates the optimal allocation of the server ahacgecompletion instant
for different values of;; andg.. As it can be seen from both plots, the optimal policy givasriiy
to less time-critical jobs that bring a higher reward (itgpe 2 jobs) when the number of jobs waiting
is sufficiently large. To better understand the reason lgethiis, it might help to think of the extreme
hypothetical case where there is an infinite supply of typedltgpe 2 jobs. In this case, one can see that

it is always preferable to serve high-reward (type 2) jobsaithere is simply no advantage in serving a
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(a) The optimal policy at time zero (b) The optimal policy after a
service completion

Figure 3.1: The optimal policy for the case whérle= K = 2, a1 = 1.000, ao = 1.001, p = 0.9009,
r1 = 0.9091, andry = 0.9009.

type 1 job instead. When there are fewer jobs however, dajasgrvice to type 2 jobs becomes a better
strategy since one can “afford” to serve at least some ofyie 1 jobs before switching to type 2 jobs,
which have longer lifetimes. In the context of emergencypoese, this observation suggests that giving
priority to less time-critical patients with a higher swali probability might be better when there are
many patients in need of treatment. When the number of déssiad significantly high and it is clear
that a large percentage of them is likely to die because olree limitations, it makes more sense to
use the resources to serve those with higher rewards, leoge wwho are more likely to go through a
successful service. However, when there are so few patigr@s it makes more sense to give priority
to those with shorter life expectancies even though theadwsaf saving them are smaller since there is
enough time to get back to less time-critical patients later

The optimal policy shown in Figur& 1does not possess some of the desired monotonicity prapertie
that would make describing and determining optimal poti@asier. In particular, for a fixed number of
type 2 jobs, the optimal policy is not monotone in the numbdype 1 jobs. For example, if there are
25 type 2 jobs, as the number of type 1 jobs decreases, thmalmtecision switches from serving type
2 jobs to serving type 1 jobs and then back to serving type { &gain.

For the second example, suppose that there are three jof type serverses > as > a1, and

rg < ro < r1. Thus, type 3 jobs bring the largest expected rewards areltheMongest mean lifetimes
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while type 1 jobs bring the lowest expected rewards and Haweshortest mean lifetimes. Figue2
gives a rough description of the optimal policy for this exden As the reader can observe from the
figure, the state space is divided into three regions. Thedgson is shaded in grey and is a polyhedron
defined by corner points A, B, C, and O. The second region ithanpolyhedron defined by the corner
points A, B, C, D, and E. Finally, the third region includesthke other remaining points in the state
space. The optimal policy for this case prioritizes tygebs at the end of every service completion if
the state falls in théth region, fori = 1,2,3. Hence, as in the previous example, when the number
of jobs is large, the optimal policy prefers jobs with largspected rewards and longer lifetimes, and
when the number of jobs is small, the optimal policy prefeifssjwith smaller expected rewards and

shorter lifetimes.

2 servers

9

Figure 3.2: The structure of the optimal decisions at sergompletion instants for the case where
M =2, K =3, a; = 1.0000, ag = 1.0018, a3 = 1.0020, p» = 0.9009, r; = 0.9091, 2 = 0.9009,
andrs = 0.9001.

As the two examples clearly demonstrate, when the expeetedrds and abandonment rates are
not agreeably ordered, the optimal policy may be a statestgnt policy, i.e., a policy where the pri-
oritization decisions depend on the number of jobs from dégpl that are waiting to receive service.

However, even though the numerical computation of the agitpolicy is straightforward, its structure
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can be quite complex, and therefore coming up with a compledeacterization of the optimal policy
appears to be a significant challenge. We can however shavihthaptimal policy possesses a partic-
ular type of monotonic structure under certain conditionisis structure is rigorously described in the

following proposition, which is proved in the Appendix.

Proposition 3.3.1. Consider a job typg € {1,..., K} and a statgq; M — 1), whereg; > 1. Suppose
that for all k € {1,..., K} \ {j} such thatg; > 1, an optimal action in statéq — ex; M — 1) is to

serve a typg job, and ifg; > 2, an optimal action in statéq — e;; M — 1) is to serve a typg job. If

K K
(ajry — i) Y aqrri + (ri = 15) > ey = agri(Mp —r5) — agry(Mp — ;) (3.3.4)
k=1 k=1
and
T > T (whenK > 3) (3.3.5)

for everyi € {1,..., K} \ {j} such thatg; > 1, then an optimal action in statgy; M — 1) is to serve

atypej job.

Proposition3.3.1 essentially says that under Conditior83(4 and 3.3.9, it is optimal to give
priority to a job of typej in a given state if it is also optimal to give priority to a typgob in all states
with one less job of any particular type. Proposit®8.1is important not only because it gives a partial
characterization of the optimal policy but also becauseritess as a backbone for the proofs of a number
of insightful results on the structure of optimal policid3rgpositions3.4.1and 3.4.2in particular),
which in turn form the basis for one of our heuristic methodsalibed in Sectio.5. Furthermore,
Proposition3.3.1leads to more sufficient conditions under whiotex policiesare optimal, specifically

Corollaries3.3.1and3.3.2 and Propositior3.4.4

3.3.2 Optimality of index policies

An index policyis a set of state-independent decision rules that assignt@s based only on job
types at any given state. Index policies have clear prddideantages over state-dependent policies.
They are easier to implement since under such policies fbétgrrelation among types of jobs does
not change with time and system state, and also there is rbtodesep track of the number of jobs

from each type. In this section, we study index policies nutosely.
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In Proposition3.2.1, we identified a set of conditions under which a job type sthdod prioritized
over another regardless of the system state. For the Makaase, these conditions imply that if
a; < o andr; < rj, then jobj should receive higher priority than jatat all decision epochs. We now
identify a condition under which a job with the smallest adi@mment rate receives the highest priority
independently of the system state. Proofs of all propasstioresented in this section are deferred to the

Appendix.

Proposition 3.3.2. Suppose that there exists a job type {1,..., K} such that; > r; and oyr; <

ajr;foralle =1,..., K. Then, the optimal policy gives priority to typgobs at all decision epochs.

According to Propositio8.3.2 non-urgent jobs can receive priority at all decision epadgardless
of the system state if their rewards are sufficiently highisTheans that in the context of emergency
response, if there is a particular type of patients, say fypdo have long life expectancies (i.e;,< r;
foralli = 1,..., K), they should nevertheless get the highest priority rdgasdof the system state if

their expected reward is significantly large (i®;,> «o;r;/r; foralli =1,..., K).

Proposition 3.3.3. Suppose that there exists a job type {1,..., K} such that; < o; anda;r; <

ajr;foralle =1,..., K. Then, the optimal policy gives priority to typgobs at all decision epochs.

Proposition3.3.3 states that jobs with the highest reward should receiveifyriat all decision
epochs regardless of the system state if they also aband@ystem at a sufficiently high rate. In the
context of emergency response, this means that the typeieh{s say typeg, who bring the highest
expected reward (i.eq; > «; foralli = 1,..., K) should get the highest priority regardless of the
system state if their life expectancies are significantlyrsi.e.,r; > a;r;/aj foralli =1,..., K).

Propositions3.3.2and3.3.3also lead to complete characterizations of the optimatpalnder two

sets of conditions. More specifically, applying Proposisi®.3.2and3.3.3multiple times, we obtain

Corollaries3.3.1and3.3.2 respectively.

Corollary 331 Ifry > ro > -+ > rgandajr; < asre < -+ < agrg, then a non-idling policy

that prioritizes the type of jobs with the highest index argwecision epoch is optimal.

Corollary 3.32. If a1 < as < -+ < agandajr; < asry < --- < agrg, then a non-idling policy

that prioritizes the type of jobs with the highest index arg\decision epoch is optimal.
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Corollaries3.2.1, 3.3.1, and 3.3.2 provide us three sets of sufficient conditions that lead & th
optimality of index policies. They are not necessary coadg however, and index policies might be
optimal even when none of these conditions hold. Althougloés not appear to be possible to identify
necessary conditions, by applying a simple argument, wecharacterize the structure of the “best”

index policy given that there is an index policy that is ogtiramong all policies inl.

Proposition 3.3.4. If an index policy is optimal among all policies i, then it must give priority to the

job with the largest value af;r; /(M u + r;).

Proposition3.3.4describes the optimal policy under the condition that theen index policy that

is optimal. This condition does not hold in general as it carclearly observed from Figurésl and
3.2 However, this index policy can still perform well and thuendoe used as a heuristic policy even
though it may not be optimal. One important reason for expga reasonably good performance from
this policy is that it is “myopically” optimal. To be specifinote that if a particular job is not taken into
service at a decision epoch then the probability that it moll be available at the next decision epoch is
ri/(Mp+r;) ifitis of type i. Consequentlyy;r; /(M p+1;) can be seen as the “immediate opportunity
cost” of not providing service to that particular job. Thel@x policy given in Propositio.3.4simply

gives priority to the job with the largest immediate oppaity cost.

Remark 3.3.1. The index policies described in Corollari82.1, 3.3.1, and 3.3.2all agree with the

index policy identified in Propositio8.3.4

3.4 When moreurgent jobshavelower rewards: Thecasewith two types

of jobs

In this section, we study a special Markovian case wheregobgategorized into two classes, i.e.,
K = 2. This simplification helps us push the analytical resultshier, get a better understanding of
optimal policies, and develop heuristic methods of asampiriorities. More importantly, priority deci-
sions during emergency response mainly concern two groujobs/patients. For example, according
to START — a widely adopted triage system — the casualtiexategorized into four groups but the
most important decision concerns the priority orderingMeein critically injured patients who need to

be taken care of as soon as possible (classifiedm&diate and those who also have serious injuries but
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can wait a little longer (classified aglayed. Other patients, i.e., those with minor injuries (classifi
asminor) and those with injuries that are so severe that chancesnaf/aliare almost zero (classified
asexpectanyt, have the lowest priority. It is clear that as long as pasieme correctly classified, there is
no point in giving priority to either minor patients or expaat patients. However, the priority decision
between the immediate and delayed patients is not cleak. d&\an though the general understanding
(and the current practice) is that immediate patients shioave a higher priority than delayed patients,
some in the emergency response community (e.g., Frykbeédg) 2tave suggested that this decision
should ideally depend on the number of casualties and thieitscaf the available resources.

We start by assuming without loss of generality that> «;. Whenas = «1, Proposition3.2.1
implies that it is optimal to serve the job with the highesaatbonment rate, and hence it is sufficient
to only consider the case whetig > «4. Proposition3.2.1also characterizes the optimal policy when
as > «p andry > r1. Hence, in this section, we will only focus on the case where> «; and
ro < r1, i.e., type 1 jobs have shorter life expectancies and theignanore critical condition and their
expected rewards are smaller.

Figure 3.1 presents a typical shape for the optimal policy whén= 2. The figure suggests that
in general the optimal policy divides the state space into tagions separated by a single curve. A
complete characterization of this curve, i.e., a completedption of the optimal policy, does not seem
to be possible under all cases. Therefore, our objective isdp identify some structural properties of
the optimal policy, with the ultimate goal of developing histic policies that nicely approximate the
optimal policy, i.e., the curve that separates the two megio Figure3.1 Now, since it appears that the
optimal policy has a lot to do with the total number of jobs tivey to be processed, a reasonable and
also easy-to-implement policy would be of the form: servgpetl job if the total number of patients
q1+q2 is less than or equal to some threshold and serve a type 2jebwase. Itis clear from Figurg.1
that such a policy is not optimal in general. However, onealaa see that if that threshold is carefully
chosen, such a policy has the potential to be a reasonablaaite to the optimal policy. With this
motivation, we next identify conditions under which theioml action can be determined by simply
comparing the total number of jobs with a threshold value.

In the following two propositions, we show that optimal acs at time zero and at service comple-
tion instants can be partially characterized by two thriihoWe first present the threshold result for

service completion instants. The proofs of all our resultihis section are provided in the Appendix.
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Proposition 3.4.1. Suppose thak’ =2 anday > a;.

() There exists a threshold
T Mp(air — agrg)
1 —_—
(a2 —aq)rire

+1 (3.4.1)

such that at all statesq; M — 1), whereq; + g2 < T andqi, g2 > 1, type 1 jobs are prioritized under
the optimal policy.

(i) If there exists a positive integ@f > 77 such that at all stateéq; M — 1), whereq; + g2 = T and
q1,q2 > 1, itis optimal to give priority to type 2 jobs, then it is alsptonal to prioritize type 2 jobs at

all states(q; M — 1) such thatg; + g2 > T"andq;, g2 > 1.

To see how PropositioB.4.1partially characterizes the optimal policy, we first define

T2 = inf{T:Tle;ozl—FV(q—el;M—1) §a2+V(q—e2;M—1),

Vo, 2 > L1 + 2 =T}, (3.4.2)

with the convention thainf ) = co. In other wordsI5 is the smallesfl” that satisfies the condition
given in part (ii) of Propositior8.4.1if there exists sucli’; otherwiseTs is set to infinity. Note thais
is always larger than or equal 5. We can now see that Propositi@M.1limplies that the optimal
policy can be characterized partially by at most two thré&doWhen the total number of jobs is
below T3, giving priority to type 1 jobs is optimal;, and when it exceékh, giving priority to type
2 jobs becomes optimal. Only when the total number of jpbs$ ¢- is betweeril}; and7T5, we do not
know what the optimal action is. Hence, Proposit&d.1partially characterizes the optimal structure
observed in Figur8.1 (b), whereT; is approximately equal td7.06 and7> = 59. More importantly,
Proposition3.4.1 provides analytical support to our observation that whenrthmber of patients in
need of treatment is large and resources are highly loadd@dggpriority to patients who have higher
chances of survival might be more preferable.

We can also obtain a similar threshold result for the degigiwen at time zero, which partially

characterizes the structure of the optimal policy obsemddgure3.1(a).

Proposition 3.4.2. Suppose thak’ = 2 anday > a;.
) If N <Ty+ M —1,whereT is given by Equation3.4.1), then the optimal policy allocates as many

servers as possible to type 1 jobs at time zero.
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(i) If N > Ty + M — 1, whereTs is given by Equation3.4.2, then the optimal policy allocates as

many servers as possible to type 2 jobs at time zero.

Propositions3.4.1and3.4.2provide partial yet simple characterizations of the optipwicy pro-
viding insights into patient prioritization decisions. &tesults clearly show that optimal priority deci-
sions can be dependent on the scale of the mass-casuatlgnici.e., the total number of patients in
need of treatment. Even though these characterizationstddescribe the optimal policy completely,
they could be very useful in practice due to their simpliclpr example, in the immediate aftermath
of a mass-casualty event, it would be much easier and fast@niergency responders to estimate the
total number of casualties rather than the number of cassait each criticality level. Furthermore,
as we demonstrate in Secti@r6, a heuristic policy developed based on Propositiddsland3.4.2
which simply use the total number of jobs to determine piydevels, performs surprisingly well. (See
Section3.5for the description of this heuristic policy and others.)

In the remainder of this section, we present two sets of ¢immdi under which we can completely
characterize optimal policies, both of which turn out to hdex policies. We first provide a sulffi-
cient condition on the total number of jobs in the systemrmattzero under which the optimal policy

prioritizes type 1 jobs at all decision epochs.

Proposition 3.4.3. Suppose thall’ = 2 andas > «;. If N < T} + M — 1, then the optimal policy

prioritizes type 1 jobs at all decision epochs.

Proposition3.4.3 essentially provides a threshold value such that if thd tmianber of patients
immediately after the event is below this threshold, pasievith smaller chances of survival should get
the higher priority at all times. Thus, the standard ordgohthe START triage method, which always
gives priority toimmediatepatients with lower chances of survival, is reasonable vtherscale of the
event is relatively small.

Finally, we provide a sufficient condition under which thediol policy always prioritizes type 2

jobs regardless of the number of jobs waiting for service.

Proposition 3.4.4. Suppose thak’ =2 andag > a;. If

aT9 > [O5KAT
Mp+ry = Mp+r’

(3.4.3)
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then the optimal policy gives priority to type 2 jobs at altdgon epochs.

Similar to Propositior8.3.3 Proposition3.4.4implies that the jobs with the larger expected reward
should receive higher priority regardless of the systerte stahey abandon the system at a rate high
enough that Condition3(4.3 holds. Note however that this condition on the abandonmegstof the
job type with the highest expected reward is weaker thaniegooovided in PropositioB.3.3 Finally,
we would like to point out a subtle but important differencetvibeen Proposition8.3.4 and 3.4.4
Proposition3.3.4states thaif there is an index policy that is optimahen priorities are determined by
the indicesa;r; /(M p + r;). On the other hand, Propositid4.4does not assume that the optimal
policy is an index policy; it says that ik = 2 and the index policy described in PropositigrB.4is

agreeable with the highest expected reward rule, then fitisnal.

3.5 Heuristic policies

In Sections3.2, 3.3, and3.4, we obtained partial characterizations of the optimalgyoéind also
identified conditions under which simple state-indepehdgmiicies are optimal. For the remaining
cases where the optimal policy is not characterized cowrlyleive develop simple heuristic rules that
are expected to perform well under a variety of conditiorssb& more specific, in this section, we pro-
pose two state-dependent heuristic policies, namel@-tiepandthreshold heuristicsThese heuristics
are designed based on our dynamic programming formulatidrs&uctural results (particularly Propo-
sition 3.4.1) presented in Sectior3.3 and 3.4 We also propose an index policy, which we call the
myopic policy based on Proposition3.3.4 and 3.4.4 We finally discuss two other index policies,
namely thearu-rule andtime-critical-first rule which will later serve as benchmark policies in our
numerical study.

Below, we describe these heuristic policies under the aggamthat the service times and lifetimes
are exponentially distributed. However, as we explainrlateSection3.6, they can be also applied
in more general settings. When describing the heuristi¢dherfollowing, we assume, without loss of
generality, thatn; > 1 andg; > 1 foralli € {1,..., K} because when the number of jobs is zero for

a job type, then the problem essentially reduces to a problgimone less job type.

1. 2-step policy: At every decision epoch, this heuristic maximizes the etquetotal reward over

the next two periods. (Here, the period means the time betive® consecutive event completion
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times.) More precisely, to obtain this heuristic, we sollre tynamic programming equations
(3.3.9, (3.3.2, and @.3.3 assuming that the problem horizon is of two periods lendthis
gives us the following policy: At time zero, pick the allowat (n],...,n}) that attains the

following maximum:

K
My max ; L —po>11 005
max Zamz‘—i- K JE{L“}{K}{{ 421} ]} :
o iea | 2= Myt S (s — ng)r;

Similarly, at a service completion, i.e., when the systein &tate(q; M — 1), serve type* such

that

1 =arg max

o M ppmax {H{inQ}aiy mane{l,...,K}\{i}{aj}}
i1,k | '

Mp—ri+ Y5 g5

(In case of ties, we arbitrarily lét be the smallest index that attains the maximum.)

Figure 3.3 shows the structure of the 2-step heuristic for the samerigmpetal setting used in
Figure3.1 From the figure, we observe that for larger numbers of typedi2gobs, the heuristic
prioritizes type 2 jobs, which is consistent with the optipalicy. Note however that the structure
of the curves separating the state space differs betweéhgtep heuristic and the optimal policy.
Indeed, we can show that the curve that separates the sta ispo two regions under the 2-step
policy at a service completion instant is a non-increasimgfion ofg; whenK = 2 andr; > ry

(as in Figure3.3 (b)), which is not true for the optimal policy as shown in Fig3.1 (b).

. Threshold palicy: A quick examination of Figure8.1 and3.2 suggests that the optimal policy
can possibly be approximated by a set of threshold valueheriatal number of jobs. For
example, in Figur@.1, a line that passes through poiiits = 0, g2 = 50) and(q; = 50, g2 = 0)
could be used as the boundary between the set of states ih typie 1 jobs are served and those
in which type 2 jobs are served. This policy is clearly notimjad but it is expected to perform

well.

More generally, the heuristic policy we propose is describg (at most)K — 1 thresholds
{Ti,..., Tk—1}, whereT; < 7o < --- < Tg_1. Itis specifically designed for the case where
ap <ag <--- < agandry >ry > --- > rg although itis possible to use it in other parameter
regions as well. The heuristic works as follows: At a serdompletion, forj = 1,..., K, type

j jobs are prioritized if7;_1 < .1, ¢; < T;, whereTy = —oo and T = oco. Similarly, at time
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(a) 2-step heuristic at time zero (b) 2-step heuristic at a
service completion

Figure 3.3: A sample structure for the 2-step heuristic wher= 1.000, as = 1.001, . = 0.9009,
r1 = 0.9091, r, = 0.9009, andM = K = 2.

zero, the threshold policy gives priority to tyggobs if 7,1 + M —1 < N < T; + M — 1,
forj = 1,..., K. To be more specific, if typg is the preferred type based on the thresholds,
then M type j jobs are taken into service at time zeranif, > M. Otherwise, the remaining
M —m; servers are allocated to the job types with the closest irstexting from type + 1 and

continuing with typej — 1, typej + 2, and so on.

Now, the question is how one should pick the thresholds. Wpgse two different methods. In
the first method, for each pair of job typeandj, wherej =2,... Kandi=1,...,j — 1, we
compute

Mulcr: — cirs
T, = puleviri — arj)

T, (3.5.1)
(aj = ay)rir;

which is identical to the threshold expression given in Beijoon 3.4.1 Then, we let

T; = min{Tj41, ?fax _}{Ti,jﬂ}},forj =1,..., K —1. (3.5.2)
1€11,...

(3]

In the second method, we use the 2-step policy to olifajis. To be specific, consider the 2-step

policy when there are two types of jobs, namely ty@ad typej jobs. Then, the equation of the

31



switching curveor the 2-step policy is given by

Mpmax {Ig,, >0y, o } Mpmax {a;, Ly >0y05 )
Mp+ (q; — 1)r; + gjr; Mp+ qiri + (g5 — 1)r;

0, (3.5.3)

for ¢;,q; > 1. We letg; = 1 in Equation 8.5.3 and solve forg; (the largest solution is denoted
by ¢;); and similarly, we letj; = 1 in the same equation and solve fgr(the largest solution is
denoted byj;). If a solution is found for both equations, then welg} = max{q;, ¢; } based on
our observation that the 2-step policy tends to underestirtinee area under the switching curve
for the optimal policy wher = 2. If a solution does not exist for one of the two equationsnthe

we letT; ; = 0. Finally, thresholds;’s are determined usin@(5.9 as in the first method.

Thus, we have two different threshold-type policies depapadn which method is used when
computing the thresholds. When they are calculated uSiriglf [(3.5.3], we call the policy the
Threshold-1 [Threshold-2] heuristic.

One nice property of the threshold heuristic is its simplecitire as it is completely characterized
by at mostK — 1 thresholds and the only required information is the totathbar of jobs in the
system. In order to see the basic idea behind this heuristicsider the simplest case where
K = 2. Given Propositior8.4.1, it would be reasonable to expect a relatively good perfoicea
from a policy that gives priority to more urgent jobs when tbtal number of jobs is below a
certain threshold and to less urgent ones otherwise. ThigeiEsely what the threshold policy
does. WhenK = 2, the policy is defined by a single threshold vallie = 77 » that divides
the state space into two regions. As shown in Fighike the structure of the threshold policy is
similar to that of the optimal policy in that the heuristiosgs priority to type 2 jobs when the
number of jobs in the system is large. The threshold poligypst generalizes this basic structure

toanyK > 2.

. Myopic policy: This index policy, which is based on Propositi8r8.4 prioritizes type:* at all

decision epochs where
s { ;T }
7 = ar max —_— .
gie{l,...J{} Mup+r;

This policy can be seen as prioritizing the job with the latgégmmediate opportunity cost” of

not providing service. For more on the justification of thdigy, see our discussion following
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(a) Threshold-1 heuristic at time zero (b) Threshold-1 heuristic at a
service completlon

Figure 3.4: A sample structure for the Threshold-1 hewrigthena; = 1.000, s = 1.001, p =
0.9009, r; = 0.9091, r9 = 0.9009, andM = K = 2.

Proposition3.3.4

4. arp-rule: This index policy, which is proposed by Glazebrook et al.02)0 prioritizes type™
such that

i* =arg max {oyri
ie{l,...,K}{ iTifti},

wherey; is the service rate for typgjobs. Glazebrook et al. show that when the lifetimes are
exponentially distributed and there is a single server,athe-rule is asymptotically optimal as
abandonment rates approach zero. More specifically, if lmdonment rates are defined as
r; =0y foralli = 1,..., K, then thewrp-rule is asymptotically optimal as— 0. For our case,
wherey;, = pforalli = 1,..., K, thearu-rule essentially becomes the-rule. Furthermore,
when the service rates are equal for all jobs,dhg-rule and the myopic policy behave similarly
under some additional conditions. To see this, considerati@ of cv;r; 11; t0 a1 /(M pu + 15):

T
oy /(M +17)

= My’ +rip,

fori=1,..., K. This shows that tharu-rule and the myopic policy will behave similarly when
r;'S are either very close to each other or very close to zeralfaor= 1, ..., K. Moreover, using

the asymptotic optimality of theru-rule for smalld, we can conclude that the performance of
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the myopic policy will be very close to that of the optimal jpglfor smalld under the assumption

thatM = 1 and the lifetimes are exponentially distributed.

5. Time-Critical-First (TCF) rule: This index policy is based on the common practice for patient
triage during daily emergencies that always gives pridatthe most time-critical patients. To be

more precise, this heuristic prioritizes tygesuch that

1" =arg ma it
8 e (i}

Although this rule is expected to perform poorly in genevas, still include it in our numerical

analysis due to its common use in daily triage.

Among the five heuristics described in this section, the T@e& is likely to be the easiest to imple-
ment as it simply requires an ordering of the patients wiipeet to their remaining life expectancies.
The arp-rule and the myopic policies are also simple policies algtoin addition to life expectancies
these heuristics require estimates on “rewards” such as/aliprobabilities. In comparison, the 2-step
and the threshold policies are more sophisticated singebtbidn prescribe state-dependent rules. How-
ever, they are also relatively easy to implement, argualnigrey the simplest state-dependent policies
which can be expected to perform well. One of the desiralpeds of these policies is that they do not
use any distributional properties other than the mean sadfieemaining lifetimes and rewards, which
means that they can be immediately adapted to settings Whemlevian assumptions do not hold. The
threshold policies are even simpler in that they only neelkktp track of the total number of patients
as opposed to the number of patients of each type.

Finally, in this section, we present a result that shows #ladf the heuristics proposed in this
chapter (i.e., the 2-step, Threshold-1, Threshold-2, aypdpic policies) agree with the optimal policy
for all conditions under which these heuristics are defimathvae were able to characterize the optimal

policy. The proof of PropositioB.5.1is provided in the Appendix.

Proposition 3.5.1. Suppose that the Markovian assumption holds.
DIfry <ryg<--- <rganda; < as < --- < ag, then the 2-step policy, myopic poliey; u-rule,

and TCF rule are optimat.

Threshold policies are not defined for these conditions.
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(i) Ifry >ry>--->rgandayr, < asre < --- < agrg, then the 2-step policy, Threshold-1 and
Threshold-2 policies, myopic policy, ana p-rule are optimal.
(i) fag <as <--- <agandayr; < asry < --- < agrg, then the 2-step policy, Threshold-1 and
Threshold-2 policies, myopic policy, and y-rule are optimal.
(iv) If K =2, 01 < ag, andagry/(Mp + 1) < agry/(Mp + r2), then the 2-step, Threshold-1,

Threshold-2, and myopic policies are optimal.

3.6 Numerical results

In this section, we present our numerical results on theop@idnce of the heuristics discussed in
Section3.5. We consider two cases: (i) the case where lifetimes andcsetimes are exponentially
distributed; and (ii) the case where lifetimes come from a@ble distribution and service times are
deterministic. In both settings, we can compute the perdowce of the optimal policy and compare it

with those of the heuristic policies.

3.6.1 Exponential lifetimesand service times

In the first part of our numerical analysis, service timesexqgonentially distributed with rate one
(i.e.,n = 1) and lifetimes are exponentially distributed with rate> 0 for type: € {1,..., K} jobs.
In order to test the heuristics under a variety of conditiaves generated some of the system parameters
randomly. More specifically, we generated the initial nurshkaf jobsm;, fori = 1,..., K, indepen-
dently and uniformly over the séil,2,...,100} and the rewards;, fori = 1, ..., K, independently
from a uniform distribution with rang€), 1]. We considered five subsets of experiments depending
on the range of the abandonment ratgsfor i = 1,..., K, which are generated independently from
a uniform distribution with rangeR.0, 5.0], [0.5,2.0], [0.1,0.5], [0.01,0.1], and[0.005,0.001]. (The
first [last] subset corresponds to the case where jobs are[least] time-critical.) For each subset, we
generated 5,000 random scenarios where< --- < ax andry > --- > rg. For every scenario,
we calculated the expected total reward collected undeixalieuristic policies and the optimal policy.
Then, we computed the percentage deviation of the expeati@déward under each heuristic from that
under the optimal policy. Based on these 5,000 percentagatid®s, we constructed®% confidence

interval (C.1.) on the mean and determined the median anchtheémum percentage deviation. We also
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calculated the number of times each heuristic provided disé frerformance among the six heuristics in

each subset. The results fof = K = 2andM = K = 3 are presented in TabR1

Table 3.1: Performance of the heuristic policies (in terrhthe percentage deviation from the opti-
mal performance) when the service times and lifetimes aperentially distributed andr; ~ Uni-
form{1,...,10Q fori =1,..., K.

M=K=2 M=K=3
Heuristic 95% C.I. Median | Maximum | # of times 95% C.I. Median | Maximum | # of times
best best
r; ~Uniform[2.0,5.0]
2-step 0.03 £ 0.00 0.00 3.30 4423 0.13 +0.01 0.00 4.31 2573
Threshold-1{| 0.02 £ 0.00 0.00 1.95 4097 0.06 + 0.00 0.02 3.47 2023
Threshold-2 || 0.44 £ 0.01 0.34 12.11 232 0.33 £ 0.01 0.21 5.40 40
Myopic 0.50 £ 0.05 0.00 14.42 4345 2.56 +0.11 0.31 20.49 2238
arpy 2.39+0.15 0.00 36.71 3667 9.89 + 0.23 7.99 39.28 261
TCF 35.81 +0.72 32.62 98.35 90 36.93 + 0.56 34.64 93.70 8
r; ~Uniform[0.5,2.0]
2-step 0.22 +0.02 0.00 11.29 3679 0.66 + 0.03 0.10 11.58 1018
Threshold-1|| 0.04 £ 0.01 0.00 4.55 4164 0.15 + 0.01 0.01 6.30 3404
Threshold-2 || 0.35 £ 0.02 0.18 7.75 294 0.66 + 0.03 0.18 10.21 38
Myopic 1.54 +0.10 0.00 21.39 3792 5.11 +0.17 2.72 29.13 1374
arpy 2.80 £0.16 0.00 31.64 3385 8.66 + 0.22 6.60 36.33 579
TCF 27.81 +0.63 22.95 95.64 308 27.71 £ 0.45 25.70 87.86 37
r; ~Uniform[0.1,0.5]
2-step 0.83 £+ 0.06 0.00 15.85 3115 1.83 £0.07 0.62 16.33 472
Threshold-1|| 0.08 £ 0.01 0.00 5.68 4465 0.23 +0.01 0.02 5.19 3908
Threshold-2 || 0.78 £ 0.05 0.03 13.81 468 1.78 £0.07 0.60 15.47 66
Myopic 1.32 +0.09 0.00 22.98 3749 3.64 +0.13 1.56 23.01 1574
arpy 1.55+0.10 0.00 25.54 3656 4.22+0.14 2.06 23.78 1371
TCF 19.11 £ 0.52 13.26 86.46 743 17.47 £ 0.36 14.95 77.68 202
r; ~Uniform[0.01,0.1]
2-step 2.06 +£0.10 0.00 21.98 2666 3.21 £0.10 1.79 22.68 320
Threshold-1|| 0.04 £ 0.01 0.00 2.39 4631 0.07 £ 0.01 0.00 2.27 3996
Threshold-2 || 1.99 +0.10 0.00 21.36 2091 3.17+0.10 1.77 21.72 270
Myopic 0.23 £ 0.03 0.00 11.48 4432 0.43 +0.03 0.00 9.45 3187
arpy 0.24 +£0.03 0.00 12.49 4421 0.46 + 0.03 0.00 9.45 3147
TCF 6.86 + 0.27 1.87 60.78 1888 4.87+0.17 2.37 45.82 849
r; ~Uniform[0.005,0.01]
2-step 0.19 £ 0.01 0.00 511 3931 0.49 + 0.02 0.27 4.47 387
Threshold-1 || 0.00 =+ 0.00 0.00 0.15 4930 0.00 + 0.00 0.00 0.34 4475
Threshold-2 || 0.18 £ 0.01 0.00 511 3706 0.49 + 0.02 0.27 4.47 383
Myopic 0.00 £ 0.00 0.00 0.76 4893 0.02 + 0.00 0.00 0.79 4159
arpy 0.00 £+ 0.00 0.00 0.76 4892 0.02 £ 0.00 0.00 0.79 4147
TCF 4.04 +£0.14 2.09 27.74 1029 2.91 +0.09 1.56 18.97 481

From Table3.1, we observe that Threshold-1 achieves the best performamosg all heuristic
policies and across all parameters with a significant manggome cases. The only exception is the case
wherer; € [2.0,5.0], i.e., when jobs are very time-critical. In this case, th&té) policy has the smallest
median and the 2-step and myopic policies yield the besbpaegnce in slightly higher numbers of
scenarios. However, the Threshold-1 policy still providdsetter average performance mainly because

when the 2-step and myopic policies deviate from the optpealormance, the deviation is significant
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enough that their average performances are worse thanftiareshold-1. When we consider all the
scenarios in this analysis, the Threshold-1 policy is attri@$% worse than the optimal policy. Thus,
Threshold-1 policy not only performs well on the averagedisd appears to be robust with respect to
changes in the system parameters.

Considering the other state-dependent heuristics, nathel2-step and Threshold-2 policies, we
see that they perform similar to one another for small abamémt rates but the 2-step policy is in
general better when jobs are time-critical. However, meeitf these two heuristic policies come close
to the superior performance of the Threshold-1 policy (pkde the first subset when jobs are very
time-critical).

Among the three index policies considered, the myopic gasiche best across all parameter sets,
and it is significantly better than the other two when jobstane-critical. As expected, theru-rule
and the myopic policy provide near-optimal performancemthe abandonment rates approach to
zero.

In summary, Tabl&.1suggests that it is possible to find a simple and very effegidicy (such as
the Threshold-1 policy) that achieves a near-optimal perémce across a variety of parameter regions
by only using the information on the total number of jobsslespecially important to use such a state-
dependent policy when jobs are time-critical, i.e., thba@donment rates are high. When jobs are not
time-critical, all policies (except for TCF) yield a perfoance similar to the optimal performance since
regardless of which policy is used few jobs reach the endeif lifie while waiting to get service. Hence,
when the abandonment rates are high, one could as well us# tireesimple state-independent policies
such as the myopic policy. Finally, if conditions do not allasing a state-dependent policy, regardless
of whether or not abandonment rates are high, it might be tbestoose the myopic policy since its
performance is either comparable to or better (in some age#icantly better) than the performances

of the alternative index policies.

3.6.2 Waelbull lifetimes and deter ministic servicetimes

In this section, we test the performance of the heuristissudised in SectioB.5 under a non-
exponential setting. We assume that the lifetimes come &d¥eibull distribution with shape parameter
0; > 0 and scale parametgf > 0. (Weibull is a commonly used distribution for modeling tifetimes

of humans; see, e.g., Section 2.2.2 in Hougaard 2000.) Tthenabandonment rates are given by
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r; = 6;/[6:;T(1/6;)] fori = 1,..., K, wherel'(-) is the gamma function. We assume that the service
times are deterministic with = 1, i.e., each service takes exactly one unit of time. The detestic
service time assumption allows us to compute the performahthe optimal policy.

We next discuss how we adapt the heuristics we describeddtmo86.5 to this hon-exponential
setting. When lifetimes are not exponentially distribytéte abandonment rates change with time.
When implementing the heuristics, one can either ignoreahd simply use the abandonment rates of
time zero at all times, or update them with time. In this siwdy use the updated rates as in Argon et

al. (2008). It can be shown that the updated abandonmerforgteb typei € {1,..., K} attimet > 0

is given by
0, 0;
ri(t) = ! e~ (t/51) ‘
A VRO
whereT'(a,b) := b°° u*le~%dy, for a > 0 andb > 0, is the incomplete gamma function. At

each decision epoch after time zero, these updated abaedbmaties are used instead of the initial
abandonment rate. (Note thatr;(0) = r;.) Also, since the service times are equal to one time unit
for all jobs, the decision epochs take place at tifhds 2, . . ., and all servers become available at every
decision epoch. Hence, at all decision epochs where thenmare than\/ jobs in queue, the decision
is to determine which\/ jobs will be taken into service. Thus, in this determinist@rvice setting, the
heuristics use time-zero server allocation decisions€asribed in SectioB.5) at every decision epoch.
For the numerical experiments, we set the initial numbeolo$jn; to ten and led; = 1.5 for all i =
1,..., K. (Unfortunately, due to the computational complexity aéthon-exponential case, we could
not use the same experimental setting of Se@iénl) We then generated the initial abandonment rate
r;(0) from a uniform distribution with five different range$.0, 5.0], [0.5,2.0], [0.1,0.5], [0.01,0.1],
and[0.005,0.001]. For each of these five subsets of experiments, we genergeéd andom scenarios
wherea; < -+ < ax andr1(0) > --- > rg(0). (Since the shape parameter is the same for all types
of jobs, havingr;(0) > r;(0) implies thatr;(t) > r;(t) forallt > 0,4,j € {1,..., K}.) We computed
the performance of each heuristic as in SecBof.1 and summarized the results for the cases with
M=K =2andM = K = 3in Table3.2 We also repeated the experiments for the Markovian case
with exponentially distributed service times and lifetsnender the same parameter settings in order to
observe the effects of distributional assumptions on timopeaances of the policies. These results are

presented in Tabld.3
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Table 3.2: Performance of the heuristic policies (in terrthe percentage deviation from the optimal
performance) when the service times are deterministigtjriies come from a Weibull distribution, and
m; =10fori=1,... K.

M=K=2 M=K=3
Heuristic 95% C.I. Median | Maximum | # of times 95% C.I. Median | Maximum | # of times
best best
r; ~Uniform[2.0,5.0]
2-step 0.02 £+ 0.01 0.00 3.47 4922 0.10 £ 0.02 0.00 6.71 4672
Threshold-1{| 0.01 £ 0.00 0.00 2.56 4116 0.02 £+ 0.00 0.00 2.87 3895
Threshold-2 || 0.08 +0.01 0.00 3.57 1184 0.10 £ 0.01 0.00 6.71 1448
Myopic 0.35+ 0.04 0.00 15.45 4628 0.92 £ 0.08 0.00 22.76 1085
arp 2.42 +0.18 0.00 40.68 3731 3.99 £ 0.23 0.00 45.18 1150
TCF 44.00 £ 0.75 43.56 99.10 78 58.44 £ 0.64 62.17 99.10 7
r; ~Uniform[0.5,2.0]
2-step 0.41 £+ 0.04 0.00 9.74 4458 1.31 +£0.07 0.03 15.50 3197
Threshold-1{| 0.25 £ 0.01 0.00 2.75 3559 0.68 £+ 0.03 0.16 7.16 2337
Threshold-2 || 1.53 +0.03 1.33 5.76 74 2.90 £ 0.06 2.32 15.08 6
Myopic 1.02 £+ 0.08 0.00 19.74 4173 2.09 £ 0.07 1.18 14.30 1506
arp 2.79 +0.15 0.00 29.14 3438 3.01 £0.10 1.83 23.93 999
TCF 32.84 +0.64 31.41 87.88 308 29.38 £ 0.46 30.08 74.28 190
r; ~Uniform[0.1,0.5]
2-step 0.77 £ 0.07 0.00 19.22 4394 1.97 +0.08 0.58 17.98 2868
Threshold-1{| 0.86 & 0.05 0.00 10.74 3695 1.16 4+ 0.05 0.27 9.34 3013
Threshold-2 || 0.75 + 0.05 0.09 10.52 606 2.22 £0.07 1.28 14.57 361
Myopic 2.13+0.14 0.00 25.67 3882 1.78 + 0.05 1.10 12.20 1722
arp 2.82+0.16 0.00 29.51 3675 1.95 4+ 0.06 1.17 12.20 1640
TCF 28.63 + 0.60 26.89 79.99 606 17.04 +£0.27 16.75 49.16 300
r; ~Uniform[0.01,0.1]
2-step 0.22 £+ 0.02 0.00 8.38 4812 0.07 £+ 0.00 0.01 1.71 4049
Threshold-1{| 3.94 £ 0.20 0.00 39.14 3122 4.34 £0.17 0.14 31.47 2372
Threshold-2 || 0.20 £ 0.02 0.00 6.59 4397 0.28 £+ 0.01 0.09 2.44 684
Myopic 4.79+0.23 0.00 41.98 3083 4.59 +£0.18 0.18 36.12 866
arp 4.94 +0.23 0.00 41.98 3051 4.66 + 0.18 0.24 36.12 864
TCF 24.96 + 0.47 23.22 61.35 188 23.37 £0.31 23.21 58.81 0
r; ~Uniform[0.005,0.01]
2-step 0.00 £ 0.00 0.00 0.00 5000 0.00 £ 0.00 0.00 0.05 4202
Threshold-1{| 0.80 & 0.07 0.00 20.38 4171 0.66 £ 0.05 0.00 14.03 3884
Threshold-2{| 0.01 £ 0.00 0.00 1.24 4864 0.04 £+ 0.00 0.00 1.90 161
Myopic 0.86 + 0.07 0.00 22.77 4162 0.67 £ 0.05 0.01 14.43 781
arp 0.86 + 0.07 0.00 22.86 4159 0.67 £ 0.05 0.01 14.43 782
TCF 26.22 + 0.47 24.53 59.77 0 23.72 £0.32 23.56 59.14 0

One of the most important conclusions from TaBI@ is that the state-dependent heuristics that
are developed for the exponential case also perform rebgonell in a non-exponential setting. In
particular, the 2-step policy and at least one of the threspolicies perform significantly better than
the state-independent policies for all the parametersdedio be more specific, when the jobs are time-
critical, one of the 2-step or the Threshold-1 policies [es the best performance; when the jobs are
not very time critical, either the 2-step policy or the Threlsl-2 policy is the best heuristic. This is
different than the Markovian case, where Threshold-1 isoés policy across all parameter sets (see

Tables3.1and3.3).
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Table 3.3: Performance of the heuristic policies (in terrthe percentage deviation from the optimal
performance) when the service times and lifetimes are exgally distributed andn; = 10 for i =

1,..., K.
M=K=2 M=K=3
Heuristic 95% C.I. Median | Maximum | # of times 95% C.I. Median | Maximum | # of times
best best
r; ~Uniform[2.0,5.0]
2-step 0.08 £+ 0.01 0.00 3.37 4383 0.37 £ 0.02 0.02 5.11 2366
Threshold-1{| 0.04 £ 0.00 0.00 1.32 4021 0.14 £ 0.01 0.04 2.82 1819
Threshold-2 || 0.82 4+ 0.02 0.77 2.84 161 0.74 £ 0.02 0.53 5.46 25
Myopic 0.36 + 0.04 0.00 13.09 4473 1.80 4+ 0.08 0.00 16.93 2682
arp 2.19+0.14 0.00 33.34 3755 8.47 £0.22 6.30 36.33 568
TCF 34.77 £ 0.70 31.94 88.36 233 35.16 £ 0.54 33.13 78.91 20
r; ~Uniform[0.5,2.0]
2-step 0.54 £+ 0.04 0.00 8.43 3604 1.60 & 0.06 0.46 12.68 849
Threshold-1{| 0.06 & 0.01 0.00 1.98 4116 0.26 £+ 0.01 0.02 3.68 3013
Threshold-2 || 0.73 +0.03 0.46 5.33 213 1.55 + 0.06 0.52 9.84 19
Myopic 0.87 +0.07 0.00 16.95 4066 2.79 £0.11 0.70 19.19 2088
arp 1.94 4+ 0.12 0.00 26.99 3650 5.54 £ 0.17 3.14 26.33 1208
TCF 24.49 + 0.58 20.28 76.76 633 22.62 £ 0.40 21.32 61.75 153
r; ~Uniform[0.1,0.5]
2-step 1.54 +0.08 0.00 14.70 3049 2.84 £+ 0.09 1.74 17.38 278
Threshold-1{| 0.04 £ 0.00 0.00 1.01 4494 0.11 £ 0.01 0.00 1.87 3900
Threshold-2 || 1.37 +0.07 0.04 13.28 159 2.69 £ 0.08 1.66 15.01 17
Myopic 0.32 +0.03 0.00 9.13 4348 0.85 £+ 0.04 0.03 8.66 2726
arp 0.45 + 0.04 0.00 11.48 4242 1.11 4+ 0.05 0.12 10.47 2482
TCF 12.50 4+ 0.37 8.08 55.50 1403 9.27 £0.23 7.27 36.75 532
r; ~Uniform[0.01,0.1]
2-step 1.48 +0.06 0.00 11.62 2533 1.90 4 0.05 1.24 10.71 129
Threshold-1{| 0.00 £ 0.00 0.00 0.15 4913 0.00 £ 0.00 0.00 0.17 4674
Threshold-2 || 1.37 & 0.06 0.00 11.29 2292 1.82 4+ 0.05 1.19 10.20 159
Myopic 0.01 + 0.00 0.00 1.29 4853 0.02 £ 0.00 0.00 0.87 4413
arp 0.01 + 0.00 0.00 1.94 4838 0.02 £ 0.00 0.00 1.01 4368
TCF 2.40 +0.10 0.18 25.76 2387 1.32 £ 0.05 0.53 14.63 1303
r; ~Uniform[0.005,0.01]
2-step 0.07 £ 0.00 0.00 0.93 3808 0.16 £+ 0.00 0.12 0.88 79
Threshold-1{| 0.00 £ 0.00 0.00 0.00 4990 0.00 £ 0.00 0.00 0.01 4897
Threshold-2{| 0.06 & 0.00 0.00 0.92 3927 0.15 £+ 0.00 0.11 0.80 210
Myopic 0.00 £ 0.00 0.00 0.03 4983 0.00 £ 0.00 0.00 0.02 4831
arp 0.00 £ 0.00 0.00 0.03 4982 0.00 £ 0.00 0.00 0.02 4820
TCF 1.06 £+ 0.03 0.78 4.26 1195 0.67 £ 0.02 0.50 2.72 624

Among all the index policies considered, myopic policy is test and theru-rule performs sim-
ilarly well for small abandonment rates as in the Markoviasee However, when compared with the
performances under the Markovian case reported in Tal3ethe overall performances of the index
policies are relatively worse.

One needs to be careful about carrying over every insighm foorr numerical study to practice
directly as the actual problem in emergency response is owonglicated than any mathematical model
that can be analyzed. For example, without further studypiild not be reasonable to claim any one

of the heuristic policies to be superior than the others factcal purposes or that their performances
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will actually be as close to optimality as the numerical gtsdggests. Nevertheless, we believe that
our numerical study suggests a number of general insightscdn be useful for emergency response
practitioners. First, there can be significant benefitskihtaresource limitations and casualty numbers
into account while giving prioritization decisions, espdlg when patients’ life expectancies are short.
Second, these state-dependent policies need not be veglecqnpolicies that simply keep track of
the total number of patients and prioritize patients adogigl (as in our threshold policy) can perform
quite well. Finally, when patients’ conditions are not veritical, state-independent policies perform
reasonably well and thus can be preferred over state-depemwlicies because of their simplicity.
However, the choice of the state-independent policy is nt@mb as the superiority of the myopic policy

across all parameter regions, particularly over the TClepatlearly indicates.
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CHAPTER 4

Scheduling of impatient customersin a clearing system with

asingle server and type-dependent servicetimes

In this chapter, we extend the problem in Cha@euch that jobs differ not only in their lifetime
and reward distributions but also in their service timertbstions. The notation and the modeling as-
sumptions of Chapte3 are still valid in this chapter unless they are redefined.d;&te the service time
forjobi € {1,...,N}. We assume thatY;}Y ,, {Z;}}Y,, and{S;}}, are sequences of independent
random variables and that these three sequences are idéep&mm each other. One can see from the
proof of Propositior8.1.1in the Appendix that idling is still suboptimal when the Seettimes are type-
dependent. Hence, the decision epochs are time zero anertheescompletion instants. Our objective
is to identify characteristics of policies that maximi@g (¢) stochastically, and thereby maximize its
expected value.

We briefly outline the contents of this chapter. In Sectloh a sample-path argument is used to
show that if urgent jobs are also faster to serve and bringenigewards, then they should always be
prioritized in a system with a single server. Without suclvadition, other simplifying assumptions are
needed to ensure analytical tractability. Therefore, ictiBes4.2 and4.3, we assume that the service
time and lifetime for each job are exponentially distritbit@andom variables, and prove a number of
structural results for the optimal policy. Finally, basau these analytical results, we propose some
heuristic policies in Sectiod.4, and present a numerical study on the performances of tlesestic

policies in Sectiord.5,



4.1 When more urgent jobs have higher rewards and shorter service
times

In this section, we investigate the case in which jobs witbrtgh lifetimes also have shorter service
times but higher rewards. Our objective is to maximizg(t) stochastically. Throughout this section
we do not make any distributional assumptions on servicedjrtifetimes, or rewards. The following
proposition is the main result of this section and it gerneeal Propositior3.2.1to type-dependent
service times but under the condition that there is a sirgiees. The proof for this result is given in the

Appendix.

Proposition 4.1.1. Suppose thal/ = 1 and consider a decision epo¢h > 0 at which jobsi and j
are available for service. IfY; <;, Y;, S; <; S;, andZ; >;,. Z;, then a policyr < II that serves job
j attimet, can be improved (in the sense of stochastically increaéipg) for all ¢t > t,) by serving

job i instead of joby at timet,.

Proposition4.1.1 can be used to partially characterize the optimal policy mwtiere is a single
server and at least two jobs that satisfy the “agreeabibityfiditions on service times, lifetimes, and
rewards. More specifically, Propositignl.limplies that serving a job that has a shorter service time
(in the sense of likelihood ratio orders), a shorter lifetifin the sense of hazard rate orders), and a
higher reward (in the sense of likelihood ratio orders) @ases the total reward (in the sense of usual
stochastic orders). In the special case where all jobs ameably ordered, Propositichl.1gives a

complete characterization of the optimal policy as stateithé following corollary.

Corollary 411 fM =1, 1 <hr Yo <pp oot Zpp YN, 51 <pp S2 gy -0 <pp SN, and 7, Zir
Zy >, -+ > Zn, then a non-idling policy that prioritizes the job with thmallest index at every

decision epoch maximizé€s; (¢) in the sense of usual stochastic orders at every0.

Note that Corollaryt.1.1generalizes Theorem 1 in Argon et a2] py relaxing the assumption on
deterministic rewards. One may expect that Proposiidnl and Corollary4.1.1 may also hold for

M > 2. The following example shows that this is not true in general

Example4.1.1. Consider a clearing system with two parallel servers anddbg at time zero. Suppose

that the service times of jobs 1 and 2 are equadl tone unit and the service times of jobs 3, 4, and 5
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are equal to 2 time units; the lifetime for each jol5j2 time units; and the reward for each job is equal
to 1. If a policy 7 follows the policy described in Propositighl.1and takes jobs 1 and 2 into service
at time zero, then at most four jobs could be taken into servicany given time, i.e.,C(t) < 4 for

all ¢ > 0. On the other hand, policy that assigns jobs 1, 2, and 3 (in the given order) to one semdr

jobs 4 and 5 to the other server, will yiedd, (¢) = 5 for ¢t > 2.

This example shows that when the service times are notforall jobs, then optimally assigning
multiple servers to jobs can be complex and it may involve esomt-so-intuitive actions. Thus, in this

chapter, we will only focus on the single-server cake£ 1).

4.2 When moreurgent jobs have lower rewardsand longer servicetimes

In the aftermath of a mass-casualty event, patients whasgitems are more urgent are expected
to have a longer service time and a lower chance of succhsstuhpleting their treatment. Therefore,
investigating priority decisions for this case, that ig tiase where more urgent jobs bring lower rewards
and have longer service times, is crucial. However, charaabg the optimal policy for this case is
difficult under general service time and lifetime distribus. Therefore, in this section, we assume that
service times and lifetimes are exponentially distributedbtain partial characterizations of the optimal
policy that will lead to insights into policies that perfonvell. The issues related to this assumption in
the context of patient triage are discussed in detail in @&y and hence will not be repeated here.

We categorize jobs intd types based on their service times, lifetimes, and rewavlisye2 <
K < N.Fori=1,...,K,lety; >0,r; >0, anda; > 0 be the service rate, abandonment rate, and
the expected reward for a typgob, respectively. Similar to Chapt8r we letZ; denote the reward of a
typeijobfori =1,..., K, and we assume that, comes from a distribution such that < o; implies
thatZ; <;. Z; foralli,j € {1,...,K}.

Next, we letD,(mq, ..., mg) be the expected total reward accumulated when schedulifayi(ip
zation) policyr € 11 is applied andn; jobs from type: € {1,..., K} are initially in the system, where
Zle m; = N. We will use dynamic programming to characterize the sofutf the optimization
problem stated as

max Dy (my,...,mg)
mell
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for the model with a single server and type-dependent setiites. The state of the system is defined
with the vector(q; @), whereq := (¢1,- - ,qx), ¢; iS the number of typé jobs in queue, and) <
{Py,..., Pg, R} is the status of the server. He@,= P, indicates that the server is busy processing a
job of typei € {1,..., K}, and@Q = R indicates that the server is idle and ready to begin protgssi
new job. The decision epochs are time zero and service ctioiplimes. At a decision epoch, that is,
whenq is equal toR, the possible actions are allocating the server to a job tygrai € {1,..., K}
such thaig; > 0. We next present the dynamic programming equations.

Let V(q; @) be the maximum expected reward earned starting from &gat@). Then, using the
convention that/(q; Q) = 0if ¢ = 0O foralli € {1,..., K} ormin{q,...,qx} < Oforall Q €
{P1,...,Px, R}, we have:

V(g R) = max {Ifgop0i + V(g —e; B}, (4.2.1)

piV (g R) + Y1 qiriVig — € )
Vig;P) = K )
pit 2 5m1 457

K
j=1

We next use this dynamic programming formulation to obtainditions under which the optimal
policy can be characterized for the single-server case tyjiR-dependent service times. Note that
Proposition4.1.1and Corollary4.1.1already provide some sufficient conditions under which the o
timal policy is characterized. In particular, Corolladyl.1 says that ifax < ax 1 < -+ < ag,
g < pr—1 < - < pp,andrg < rgq < --- < rq, then it is optimal to prioritize typé jobs.

In other words, if the most urgent job has the highest rewaddthe shortest mean service time, then
it is optimal to serve that job regardless of the system stdt®vever, the more interesting and realis-
tic case is when more urgent jobs have smaller rewards amgtlanean service times, that is, when
Qg > Qg1 > - > o1, K > k-1 = o > py, andrg < rgogp < -0 <. Hence, in the
remainder of this section, we will focus on this case.

We next present Propositigh2.1, which gives a set of conditions for the monotonicity of thudigy
in the number of jobs in the queue. To be more specific, it fadldrom Propositiord.2.1that under
certain conditions it is optimal to serve a typ@b at(q; R) if it is optimal to serve a typg job in states

(q—ey; R)forall k =1,..., K. Propositior4.2.1is an extension of Proposition 3 in Argon et &] [
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to more than two job types and type-dependent rewards. Tow pf Propositiond.2.1as well as all

the other propositions presented in this section are peovid the Appendix.

Proposition 4.2.1. Consider a job typg € {1,..., K} and a state(q; R), whereg; > 1. Suppose that
an optimal action in statéq — ey; R) is to serve a typg job for all k£ € {1,..., K} \ {j} such that

qr > 1 andalso fork = j if g; > 2. If

K K
(ors — 0iri) Y aquri + (ri — i = 15+ 1) Y ow@urk = airi(pg — 1) — ogri(pi — i), (4.2.3)

k=1 k=1

K
(15 — p14) |:(Ti — pa)ggry + (ry — i) —ri + ka)} >0, (4.2.4)
k=1k#j
TP — i > i — My (WhenK > 3), and (4.2.5)
wi = 1 (whenk > 3) (4.2.6)

for someu, > 0 and everyi € {1,..., K} \ {j} such thaty; > 1, then an optimal action in statey; R)

is to serve a typé job.

Proposition4.2.1and Propositior8.3.1are similar results but neither one follows from the other as
Proposition4.2.1considers the problem with a single server but type-depersivice times, whereas
Proposition3.3.1 considers the problem with multiple parallel servers butaégervice rates. On the
other hand, they are consistent because if weujet= 1. in Proposition4.2.1, then the conditions in
Proposition4.2.1diminish to the conditions for the case with = 1 in Proposition3.3.1

We next use Propositiofh.2.1to determine sufficient conditions for the optimality of i@ state-
independent policies. Furthermore, later in Sectd) we will use Propositior.2.1to partially char-

acterize the structure of optimal policies that are pogsitite-dependent.

Proposition 4.2.2. Suppose that there exists a type {1,..., K} such thatr; > p; > p;, oj > oy,
andajr; > agrforalli e {1,..., K}\{j}, whereu; = pfor someu > 0and everyi € {1,..., K}\

{j}. Then, the optimal policy gives priority to typgobs at all decision epochs.

Similar to Propositiord.1.1, Proposition4.2.2 provides conditions under which one type of job
should always have priority over the others. In particifagposition4.2.2implies that if the job with
the highest reward also has the fastest service and a soffficfast abandonment rate (which can pos-

sibly be smaller than the rates for other jobs), then it isnogltto give priority to that job. Furthermore,
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together with Corollary3.3.2 the partial characterization in Propositidi2.2 immediately yields a

complete characterization for the optimal policy, whickgndex policy under certain conditions:

Corollary 4.2.1. If ag > ag—1 > -+ > a1, T'x > UK > Ug—1 = -+ = u1, andagrg >
aig_1rx-1 > -+ > aqry, then the optimal policy gives priority to the jobs with thghrest index at all

decision epochs.

Recall that an index policy is a set of state-independenisibecrules that assigns priorities based
only on job types at any given state. The main advantage ekipdlicies over state-dependent policies
is the ease in implementation since the priority relatioroagtypes of jobs does not change with time
and system state. Therefore, Corollade$.1and4.2.1are important as they provide conditions under
which we can safely apply these simple policies. Our nextltédentifies other potentially good index

policies for two special cases.

Proposition 4.2.3. Suppose that there is an optimal policy among the set of déxrpolicies.

(@) If a; = afor somex > 0 and for alli = 1, ..., K, then the optimal policy gives priority to the job
with the largest value aof; ;.

(é2) If r; = r for somer > 0 and for alli = 1, ..., K, then the optimal policy gives priority to the job

with the largest value aof;; (1; + 7).

Propositiord.2.3characterizes the best index policy when it is known thahdex policy is optimal
in IT. In particular, it tells that p-rule anda(u + r)-rule are the optimal index rules given that an index
policy is optimal wheno; = « andr; = r, respectively, for ali = 1,..., K. Note that, since
a; > aj, pi > pj, andr; > r; imply thata;r; > ajr; anda;(p; + ) > a;(p; + r), Proposition

4.2.3is consistent with Propositiof.1.1and Corollary4.1.1 Moreover, Propositiod.2.3(i) extends

Proposition 2 of Argon et al.2] to multiple types of jobs.

4.3 Thecasewith two types of jobs

We now study the special case where jobs are categorizedwottypes, i.e. X = 2. This sim-
plification helps us obtain more analytical results and dettéer understanding of the structure of the
optimal policy. These results are later used in the devedpirof effective heuristic policies for the case

with K > 2.
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First of all, we assume that, > 11 without loss of generality. Moreover, as the case with= 111
is considered in Chapte3, we will focus on the case wheyg > p; in this section. We start our
discussion by first observing the structure of the optiméicpdor a specific example, whewe, > oy
andre < rq, i.e., type 2 jobs that have shorter mean service times a¢e higher expected rewards
and longer mean lifetimes. This example is selected as ibdetrates the most general structure for

the optimal policy that we observed in a wide range of nunatezamples.
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Figure 4.1: The optimal policy for the case whéfe= 2, a; = 1.00, as = 1.10, 1 = 1.10, o = 1.22,
ry = 1.11, andry = 1.10.

Figure4.lillustrates the optimal allocation of the server at a decigpoch for various values of
q1 andgs. Similar to Figure3.1, the optimal policy gives priority to less time-criticalpy 2 jobs that
bring a higher reward when the number of jobs waiting is sieffitty large, with the addition that type
2 jobs have also shorter service times. Considering theganey response context, one interpretation
of this observation is that, when there are many patiente@dof treatment, it is best to give priority to
faster to treat patients with a higher survival probahiktyen though those patients are less time-critical.
However, if the number of patients is small, giving prioritymore urgent patients makes more sense
even though they are slower to treat and the chances of sthéngare smaller, as there will be enough
time to get back to less time-critical patients later.

We next present a result that partially characterizes thetsire of the optimal policy that is ob-

served in Figure.lunder certain conditions.
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Proposition 4.3.1. Suppose that; < as.

(@) If 11 < 1, then for every, > 1, the optimal policy has a threshold

_ agra(ry —pu) —auri(ra —p2)  rafra(ae — o) +ai(pe — )]
t(ql) - H{r1>1“2} o [7”1 (042 — 041) + 042(#2 — ,ul)] q1 7'2[7'1(042 — 041) T Oég(ug — Ml)] (431)

such that for allg; < t(¢1), it is optimal to serve a type 1 job.
(43) If ro > po, then there exists a threshol¢y; ), which is greater than or equal tt{q;) and possibly

infinite, such that it is optimal to serve a type 2 job for@ll> #(q;) andgz > 1.

Proposition4.3.1implies that under certain conditions, when the number pétg jobs is lower
than a threshold, it is optimal to give priority to type 1 jaist are slower to serve and that bring a
lower reward; and when the number of type 2 jobs is higher #renther threshold, it is optimal to give
priority to type 2 jobs that are faster to serve and that berggher reward. Note that partd @nd
(7i) of Proposition4.3.1generalize Propositions 6 and 4 in Argon et d].tp type-dependent rewards,
respectively.

Our next proposition provides conditions under which areingolicy is optimal.

Proposition 4.3.2. If ayry (1 + 1r2) < agra(ug + 1), a1 — p2) < (ag — aq)rs—;, andp; < r; for

1 = 1,2, then the optimal policy gives priority to tygobs at all decision epochs.

Note that Propositiod.3.2generalizes Proposition 5 in Argon et &] fo type-dependent rewards.
Furthermore, by Propositioh 3.2 we can obtain the following corollary that implies thatyipe 2 jobs,
which have faster service by definition, also bring a highgreeted reward, have a higheru value,
and abandon the system at a sufficiently fast rate, then pptisnal to give priority to them at every

decision epoch.

Corollary 4.3.1. If a1 < a9, arip < asraus, andus < 79, then the optimal policy gives priority to

type2 jobs at all decision epochs.

Corollary 4.3.1implies that we should give priority to jobs with higher redand faster service
if their abandonment rate is sufficiently high (not necagsaigher than the abandonment rate of the
other type). Finally, for the case withh = 2, we provide a result that characterizes the optimal index

policy when it is known that an index policy is optimallih
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Proposition 4.3.3. If there is an optimal policy among the set of all index p@s;ithen it gives priority

to the job with the largest value of;r;11; + c;ri79.

Proposition4.3.3 generalizes Proposition 2 in Argon et &] fo type-dependent rewards, which
states that they-rule is optimal if there is an optimal index policy. It is @resting to see that the- -
rule is not the policy that generalizes Argon et al.’s res\We test the performances of both the index

given in Propositiord.3.3and thearp-rule in Sectiond.5.

4.4 Heuristic policies

In Chapter3, for the multiple-server problem with equal service rates,developed three heuristic
policies and also considered two index policies from therditure as benchmark policies. In this section,
we madify the three heuristics developed in Chaptir the single-server problem with type-dependent
service rates using our dynamic programming formulatiost stnuctural results presented in Section
4.3

Below, we describe these heuristic policies under the aggsamthat the service times and lifetimes
are exponentially distributed. Note, however, that theyalao be applied in more general settings as we
explain later in Sectiod.5. Also, since the problem essentially reduces to a probletim evie less job
type wheny; is zero for a job typ&, when describing our heuristics we will, without loss of geality,

assume thag;, > 1 foralli =1,..., K.

1. 2-step policy: At every decision epoch, this heuristic chooses an actiahrttaximizes the ex-
pected total rewards over the next two periods. Hence, iardodobtain this policy, we solve the
dynamic programming equation4.2.1) and @.2.2 assuming that the problem horizon is of two

periods length. This gives us the following policy. At a dganh epoch, serve typé such that

pi max { Ly, >0y maxjeqn, (il }

¥ =arg max o + e
{ Hi = Ti+ Y51 4T

(We arbitrarily leti* be the smallest index that attains the maximum in case of ties

2. Threshold policy: Threshold heuristic is described by (at madst)-1 thresholdg 71, ..., Tk -1},

where7T; <73 < --- < Tx_1. Forthe case where; < ag < - < ag, pu1 < po < -+ < ug,
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andr; > ro > --- > rg, this heuristic can be described as follows: At any decisipoch, type

Jj jobs are prioritized if7;_; < Zfil ¢ <Tjforj=1,...,K,whereTy = —oo andTx = oc.
We use Propositiod.3.1in defining the threshold§Ty, . .., Tx—1}. More precisely, for any pair
ofjobtypes: andj, fori =1,..., K —1andi =1, ..., j, we consider the equatian;(¢;) = g;,
where

ajrj(ri — pi) —oari(ry —py) — rilrjloy — on) + oy — i)

43 ) = 3 ey — a0 T as (g — )] “slritay — aa) + ozl — o)l

First, we letg; = 1 in this equation and solve far; (the solution is denoted b;g); and similarly,

we letg; = 1 in the same equation and solve fgr(the solution is denoted ky'). We get

pilQiri — a;ry)
rilri(ay — i) + (g — )]

0 = pi(Qiri — ajry)
Corilri(ag = aq) + iy — )]

* —
and g; =
Then, we letl; ; = max{q;, ¢; }. Finally, we obtain our thresholds as follows:

T, = min{7}+1,i€?117a“>.<7j}{7},j+1}},forj =1,...,. K - 1.

3. Myopic policy: Proposition4.3.3states that, for the case witki = 2, the policy which gives
priority to the job with the largest value of;r;u; + «;r172 index is optimal given that there is
an optimal index policy. Myopic policy generalizes the irdgven in Propositiord.3.3to more
than two types, that is, it prioritizes typé at all decision epochs where

K

%
1" =arg max QT + o H T
1e{l,...,K} i !

Note that thexru-rule and the myopic policy will behave similarly when theaadonment rate

of at least one type is very close to zero.

45 Numerical results

In this section, we test the performance of the heuristiicigd discussed in Sectigh4 under the

assumption that, for typee {1,..., K} jobs, service times and lifetimes are exponentially disted
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with ratey; > 0 andr; > 0, respectively. In order to cover as many different sceaai® possible,
we used random samples of the system parameters. More saligifive generated the initial numbers
of jobs m; independently and uniformly over the gt 2,...,100} fori = 1,..., K. Moreover, for
i=1,..., K, we generated the expected rewangsind service rateg; independently from a uniform
distribution with range$0, 1] and[0.5, 2.0], respectively. Based on the range of abandonment rates
fori = 1,..., K, we conducted five subsets of experiments, and the first sgbsesponds to the
case where jobs are most time-critical,rgs are generated independently from a uniform distribution
with range[2.0, 5.0], followed by the other four subsets in decreasing timeaeality order with ranges
[0.5,2.0], [0.1,0.5], [0.01,0.1], and[0.005, 0.001]. For each subset, we generated 5,000 random scenar-
ios wherea; < -+ < ag, 1 < -+ < pg, andr; > --- > rg. For each scenario, we calculated the
expected total reward collected under each of the five heupslicies and the optimal policy. Then,
we computed the percentage deviation of the expected ®igrd of each heuristic from that of the
optimal policy, constructed 5% confidence interval (C.l.) on the mean of these 5,000 peaigende-
viations, and calculated the median and the maximum pexgerdeviation. Finally, we calculated the
number of times each heuristic provided the best perforemantong the five heuristics. The results for
K =2andK = 3 are presented in Tablel

From Tabled.1, we observe that, across all parameters, state-depenadl@iep perform very well
and they are significantly better than the index policiesmjobs are time-critical, especially in terms
of the worst performance. Among the five subsets that we densthe only subset where a state-
dependent policy does not perform best is wher-Uniform[0.005,0.001], i.e., when jobs are least
time-critical. In this case, theru-rule and the myopic policy perform slightly better than giate-
dependent policies, but all policies (except for TCF) perfeery well, being at mosi.30% worse than
the optimal policy.

Comparing the two state-dependent heuristics, namely-8te®2policy and Threshold policy, we
see that Threshold policy performs better across all parmseComparing the three index policies, the
myopic policy performs the best for all parameters, and tfierdnce is significant when jobs are time-
critical. When the abandonment rates approach to zeroyitperule and the myopic policy provide
near-optimal performances as expected.

Overall, similar to ChapteB, by examining Tablet.1, we conclude that using a simple state-

dependent policy such as the Threshold policy may improgesyistem performance significantly. This
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Table 4.1: Performance of the heuristic policies (in terrhghe percentage deviation from the opti-
mal performance) when the service times and lifetimes apementially distributed andh; ~ Uni-
form{1,...,83 fori=1,..., K.

K=2 K=3
Heuristic 95% C.I. Median | Maximum | # of times 95% C.I. Median | Maximum | # of times
best best
r; ~Uniform[2.0,5.0]
2-step 0.00 £ 0.00 0.00 0.47 4973 0.00 £ 0.00 0.00 0.49 4920
Threshold 0.00 £ 0.00 0.00 0.47 4995 0.00 £ 0.00 0.00 0.22 4995
Myopic 0.15+0.04 0.00 22.62 4908 0.05 £+ 0.02 0.00 17.20 4784
Qarp 1.23£0.13 0.00 36.19 4615 1.24 £0.13 0.00 36.88 4219
TCF 49.19 + 0.62 50.35 99.19 106 64.65 + 0.47 67.25 96.51 0
r; ~Uniform[0.5,2.0]
2-step 0.01 £0.00 0.00 6.96 4843 0.01 £0.00 0.00 291 4654
Threshold 0.00 £ 0.00 0.00 4.82 4987 0.01 £0.00 0.00 1.31 4960
Myopic 0.85£0.10 0.00 28.63 4641 0.81 £0.09 0.00 35.28 4246
arp 2.18 £0.18 0.00 38.93 4339 2.46 +£0.18 0.00 39.62 3715
TCF 42.56 + 0.58 42.87 97.77 114 55.99 4+ 0.47 57.49 93.73 4
r; ~Uniform[0.1,0.5]
2-step 0.08 £ 0.02 0.00 13.55 4588 0.10 £0.02 0.00 11.31 4215
Threshold 0.04 £0.01 0.00 5.77 4943 0.06 £0.01 0.00 6.99 4800
Myopic 1.254+0.11 0.00 29.05 4383 1.974+0.14 0.00 30.29 3681
arpy 1.76 £ 0.14 0.00 30.65 4244 2.17+£0.15 0.00 30.97 3629
TCF 32.52 4+ 0.53 31.63 92.50 168 45.23 + 0.46 46.05 88.12 10
r; ~Uniform[0.01,0.1]
2-step 0.52 £0.05 0.00 20.50 4238 0.53 £0.05 0.00 18.64 3579
Threshold 0.40 £0.04 0.00 15.76 4485 0.43 £0.04 0.00 13.91 4216
Myopic 0.57 £0.05 0.00 18.42 4386 1.09 +0.07 0.00 21.33 3679
arpy 0.61 £ 0.06 0.00 22.15 4365 1.09 +0.07 0.00 21.33 3679
TCF 13.96 £ 0.35 11.25 74.22 644 22.75 4+ 0.36 21.77 69.65 97
r; ~Uniform[0.005,0.01]
2-step 0.03 +0.01 0.00 5.30 4842 0.04 £0.01 0.00 3.65 4656
Threshold 0.03 +0.01 0.00 5.29 4849 0.04 £0.01 0.00 3.65 4663
Myopic 0.02 £ 0.00 0.00 3.76 4897 0.01 £0.00 0.00 2.26 4824
arpy 0.02 £ 0.00 0.00 3.76 4892 0.01 £0.00 0.00 2.26 4824
TCF 9.64 £0.23 7.67 47.68 258 17.29 £0.27 16.36 49.85 15

difference is especially high when jobs are time-critithdt is, when their abandonment rates are high.
However, when jobs are not time-critical, since few jobschetihe end of their life while waiting to get
service, all five policies that we consider perform simylaigxcept for TCF). Hence, the selection of
the heuristic policy becomes less important in this casd,the index policies, preferably the myopic
policy, can also be chosen. The future work includes testiegperformance of the heuristics under
a non-exponential setting and generalizing our heuristicaultiple servers, hence combining the two

problems in this chapter and in Chap8r
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CHAPTER 5

Extensions

In this chapter, we study two extensions to the base cleaniogel studied in Chaptesand4. In
Section5.1, we discuss the case where the arrivals of jobs after tine aer allowed. In Sectioh.2,
we consider the case where a job goes through multiple stdgtsslifetime while waiting for service,
and at the end of the last stage of its lifetime, it renegem fitke system. In each section, we redefine

the notation and obtain conditions under which simple stalependent policies are optimal.

5.1 Jobarrivals

We consider a single server queueing system where jobs gqa&tient and classified int& >
2 types based on their lifetime and service time distribigias well as the rewards that they bring.

The lifetime of a typei job, which begins at the time of its arrival to the system,ndejpendent and

exponentially distributed with ratg; > 0, fori = 1,..., K. The service is performed in a preemptive
manner and the service time of a typb is exponentially distributed with raje;, fori = 1,..., K.
Jobs from type arrive to the system according to a Poisson process with\fate0, fori =1,..., K.

We let0 < R; < oo be the expected reward earned when a tyjpeb completes service, far =
1,..., K. We formulate this problem as a MDP and we seek dynamic galittiat determine which
jobs should be prioritized for service to maximize the long-average expected reward.

The extended queueing model is inspired by resource albocptoblems observed in the aftermath
of mass-casualty events such as bioterror attacks, paosleaninuclear attacks, in which new patients
may arrive to the system as time passes. We relax the assumtipét all patients are available at time
zero since in such events with longer effects, patients neayg medical attention days after the initial

event. Hence, together with our analysis of the clearindplera, we can distinguish between mass-



casualty events such as bombings that do not involve a signtfnumber of future arrivals of patients
after the incident, and mass-casualty events such as arbicatack that would involve ongoing arrivals
of patients after the initial outburst. The expected ahimgerval of all victims in such events is longer
than that in mass trauma events like bombings and earthguakere the majority of the cases require
care within hours of the initial event, but is shorter thaattbf daily emergency cases which can be
modeled as a (possibly non-stationary) stochastic pranetsady-state.

We first studied the model described above under a non-pteengiscipline and found quickly

that this case is quite difficult to analyze. To demonstredesider the following example:

Example 5.1.1. Suppose that jobs 1 and 2 are in the system at time zero, aa®Bjoh and 5 arrive

at 5, 7, and 9 hours after time zero, respectively. No agieaé observed after 9 hours. Suppose that
the service time of each job is equal4diours; and the reward for serving each job is equal to 1. The
lifetime for jobs 1, 3, and 5 i3 hour and the lifetime for jobs 2 and 4 i hours. Under a policy that
takes job 1 into service at time zero (job 1 has a shorteiirfiethan job 2), the service of a total of
three jobs could be completed. On the other hand, under eydblat assigns job 2 at time zero, idles as
there is no one in the system during time interval [4, 5] hpargl serves jobs 3, 5, and 4 (in the given

order), the total number of service completions be fourclis optimal.

Example5.1.1shows that the policy given in Propositighnl.1lis no longer optimal, even for a
simple deterministic system with equal service times angakecewards. It rather involves a more
complex structure that is counterintuitive in that it giy@#ority to a less time-critical job. Therefore,
we will consider the case where preemption is allowed, #hahe service of a job can be interrupted.

Since preemption is allowed in our model, one can show tliagits suboptimal by a simple sample
path argument (see Down, Koole, and Lew2§]). Because for any policy that idles, we can construct
a non-idling policy that takes all the same actions at theestame as the idling policy, and serves a job
waiting in the queue during the idling periods. Then, the-ilimg policy will serve all the jobs served
under the idling policy or more. Therefore, in the remainafethis section, we only consider non-idling

policies.

Remark 5.1.1. We made several attempts to obtain structural results usangple-path arguments.
Initially, we considered our problem with no distributioressumptions on lifetimes, service times,

and interarrival times. First, we had to restrict our aitanto the preemptive service discipline since
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even simple models under non-preemptive service diseiplad very complicated and counter-intuitive
optimal policies as illustrated in Exampiel.1 On the other hand, we also observed that the sample-
path analysis of problems under preemptive service diseiglan be complicated. Hence, we focused

on the Markovian case, which still requires non-trivialargents due to the addition of arrivals.

We next define our problem more rigourously. Uétbe the set of prioritization policies under
consideration. For alt € IT andt > 0, we letD,(t) be the total reward and,. (¢) = E[D.(t)]/t be the
expected average reward up to timenders. We are interested in solving the following optimization

problem:

max lim T'(¢). (5.1.1)

mell t—oo

Forallr € ITandt > 0, we let X (t) = (X, 1(t),..., X+ k(t)), whereX, ;(t) denotes the number of
typei jobs in the system at timeunderr for i = 1...., K. Itis clear that for a fixedr € I, X.(¢) is
a continuous-time Markov chain.

In an attempt to specify the optimal policy for our contingdime problem, we consider a discrete-
time equivalent, applying uniformization in the spirit aplppman p2]. In order to apply uniformization,
we need to be able to identify a finite uniformization constam will achieve this by limiting the num-
ber of jobs in the system. Hence, for technical reasons, wsider two types of capacity restrictions,
namely, a capacity on the number of each type of job and a tgpacthe total number of jobs. For
the sake of briefness, in this section, we explain our mod#l & system capacity on the number of
each type only and we explain the model with a capacity ondte# humber of jobs in the Appendix.
Hence, we assume that capacity for the number of fyjobs is equal ta’; < oo, fori = 1,..., K.

In other words, if a typé job arrives to the system when there &fgetype jobs already in the system,
then that job is lost. After uniformization, the times beémetransitions are exponentially distributed
with a constant rate and transitions that do not result insagh of state are allowed. Letdenote the

uniformization constant, which is given by
K K
) = Z A, max i + Z Ci%:.
i=1 i=1
Without loss of generality, we assume that the uniformirattonstant is equal to one, thus the tran-
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sition rates (arrival, service, and reneging rates) camtepreted as probabilities. We &} (n) =
(Yzi(n),..., Yz k(n)), whereY, ;(n) denotes the number of typejobs in the system at period
n € {0,1,...} underm, for: = 1,..., K. Then{Y;(n)} is a discrete-time Markov chain for each

policy = obtained by uniformizind X (¢)} with the finite state spacg, which is given by

S:{S:(Sl,"',SK):SZ'E{0,1,...,Ci}f0r’i:1,...,K},

wheres; is the number of type jobs in the system.

For the infinite horizon average reward optimality problereg by (.1.1) after uniformization, the
set of all feasible actions consists of serving a tyjmb, wherei = 1,..., K. Note that the action space
is finite as the number of job typds is finite, andA(s), the set of all admissible actions when the state

of the system is, is given by

A(s)={a;:5 >0, s=(s1,-++,sK) € S},

wherea; is the action of serving a typgob, fori = 1,..., K. As proved in Theorerfi.18 in Puterman
[61], there exists a stationary policy for the MDP under consitien, since the state space and the action
space are finite. Hence, for the remainder of this sectionasgeme that the class of prioritization
policies under consideration consists of all Markoviatistery deterministic policies.

A policy 7 = {di,ds,...} is defined as a sequence of decision rules, where a decid®isra
mapping from state space to action space, sodh@t) € A(s), whered,,(s) is the action to be taken
at periodn € {0,1,...} ands € S. Then, a stationary policy € II is a sequence of decisions
m = {d,d,...}, whered,(s) = d(s) foralln € {0,1,...} ands € S. Moreover, the random reward
function is denoted by, (s, a), which is the total reward earned at periode {0, 1,...} starting at
states € S and taking actiomn € A(s). The reward function is additive in the sense that the reward

incurred at perioch accumulates over time. Then, the expected long-run aveesggad per period for

policy 7 is
L=
Jas0) = Jim 7B | 3 ri¥e(m) d(¥e(m) |

where the system is in statg € S at the first decision epoch. Therefore, the optimal averageaed
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reward is given by

J(s0) = min Jx(s0).
mell

Bellman’s optimality equation for the above problem takesform:

g+uv(s) = min {vlsa)},

whereg is the optimal long-run average reward per period, af¥d can be interpreted as a relative or
differential reward for each statee S. Lete; be a row vector o’ components consisting of zeros

except for a one in théth position andly,, ,, be the indicator function of the sét; < C;}, for

i=1,..., K. Then, Bellman’'s equation is given by:
g+ (s Zl{s,<c yAjU(s + ej) Zs]fyj
7=1
K
+{1 — Zl{sj<cj})\ Zs]’yj} +algix {M(s,a;)},
i=1 A
where

M(s,a;) = Ripi + (vi — 1ui) [v(s) —v(s — ei)], fori=1,...,K.

Using these equations, we obtain Propositibrisland5.1.2 which are proved in the Appendix.

Proposition 5.1.1. Suppose that there is a capacity restriction on the numbeach type of jobs. Then,
in the class of Markovian stationary deterministic polgié, the policy that serves typgobs, where
i=1,...,K,is the optimal solution to Problen®(1.1) if v; > p;, and R;u; > R;p; and p; > ~; for
all j=1,..., Kandj # .

We can obtain the following insights from Propositibri.1

1. Equal rewards: For R; = Rj, Vi,j € {1,..., K}, the conditions given in Propositiof1.1
diminish to~; > u; > p; > ;. Note that this result is consistent with Propositii.1as the

job that has a shorter service time and lifetime is givenrgtyiainder the optimal policy.

2. Equal abandonment rates. When we lety; := v for all j € {1,..., K}, the conditions given
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in Proposition5.1.1diminish to the condition:; > v > pu; > %uj, which means that it is
optimal to serve type jobs at all decision epochs R; > R, u; € [%uj,pj], andy € [ui, pjl.
This implies that a job with a sufficiently large reward andasservice (compared to abandon-
ments) should be given priority over a job with a smaller n@hand a faster service (compared

to abandonments).

3. Equal servicerates: Down, Koole, and LewisZ6] consider a reward model for two types of jobs
with equal service rates, and Propositerd.lis consistent with their main result, which states
that if R, > R; andy; > ~;, it is optimal to serve type jobs, fori,j € {1,2}. When we let
wi = pj, the conditions given in Propositidhil.1becomeR; > R; and~y; > p > ;. Hence,
both results are consistent with each other but neitherropéés the other. Moreover, our result
is also consistent with Propositidh2.1as the job that has a higher reward and a shorter lifetime

is given priority under the optimal policy.

Proposition 5.1.2. Suppose that there is a capacity restriction on the total Ineinof jobs andiK” = 2.
In the class of Markovian stationary deterministic poliié, the policy that serves typdobs, where
i = 1,2, is the optimal solution to Problen®(1.1) if 11; > ~;, Rij11 = Ropa, andy; —v; > p;—p; >0
forj=1,2andj #i.

Note that, forus > 1, the conditions of Propositiod.1.2imply that if R; > Rs (so thatR;u =
Rapa), v2 > v1, and0 > o — uo > 1 — p1, then type 2 jobs should be prioritized. For the patient
triage problem, this corresponds to the case where urgdignpaare faster to serve but have lower
chances of survival. Then, those patients are given pyidrithey abandon the system at a faster rate
than their service and this difference is larger than therthpe. One important remark is that no

condition involving the arrivals is needed for Proposii@nl.1land5.1.2

5.2 Multiple stages of lifetime

In this part of our research, we assume that the lifetime obapnsists of multiple stages that may
affect the service time and reward distributions. A job the¢s through all stages of its lifetime while
still in queue reneges from the system before receiving anyice. Furthermore, we assume that jobs

are monitored so that their classification is continuouglgaied according to their current condition. In
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the context of patient triage, this corresponds to the petigoing through various stages of a disease
or a condition with unique care requirements. Patients fmafise next stage of their lifetime as time
passes, and that changes the chance of survival and timieecdor their treatment. It is important to
take into account the changes in the patients’ conditioh tinte. For example, after the Oklahoma City
Bombing in 1995, the critical patients were given higheopty to be dispatched to hospitals, but as
time passed the condition of the so called non-criticalgrasi started to deteriorate, and unfortunately
these patients did not receive treatment for many hoursegsviiere labeled “non-critical” during the
initial triage.

The lifetime of a job hag{ > 2 stages, each of which is independent and exponentiallyitaittd
with rate~; > 0, fori = 1,..., K. Jobs which are in théh stage of their lifetime arrive to the
system according to a Poisson process with kate- 0, fori = 1,..., K. If a job is in theith stage
of its lifetime at the start of its service, then the serviceetis exponentially distributed with raje,
fori = 1,..., K. Moreover, fori = 1,..., K, we let0 < R; < oo be the expected reward earned
when a job in theth stage of its lifetime completes its service. Similar t@t®m 5.1, we assume that
there is a single server, the service is performed in a preeenmanner, and and jobs do not renege
while they are in service. Finally, we assume that the systgpacity for the number of jobs at tlithn
stage of their lifetime is equal 0; < oo, that is, if the capacity for the number of jobs at a particula
stage is reached, jobs arriving to that stage exogenouslyram the previous stage are lost. We seek
dynamic policies that determine which jobs are prioritifeidservice with the objective of maximizing
the long-run average reward.

Let II be the set of prioritization policies under consideratidior all 7 € Il andt > 0, we let
D, (t) denote the total reward arid; (t) = E[D,(t)]/t be the expected average reward up to time

under policyr. We are interested in solving the following optimizatiomipiem:

max lim T'(¢). (5.2.1)

rell t—o00

Forallx € Il andt > 0, we let X, (t) = (X;1(t),..., X»x(t)), where X, ;(t) denotes the
number of jobs in the system at thih stage of its lifetime at time under policyr fori = 1,..., K.

It is clear that for a fixedr e II, {X,(t)} is a continuous-time Markov chain with the state sp&ce
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which is given by
S:{S: (81,"' ,SK) 185 € {0,1,...,Cz-}fori: 1,...,K}.
As in Section5.1, we uniformize this chain with a uniformization constant

K K
) = ; N + Jnax, g + ; Ciri < 0.
Without loss of generality, we assume that the uniformirationstant is equal to one. We lé;(n) =
(Yr1(n), ..., Yz x(n)), whereYy ;(n) denotes the number of jobs in the system atithestage of their
lifetimes at periodn under policyr, fori = 1,..., K. Then{Y,(n)} is a discrete-time Markov chain
for each policyr obtained by uniformizing X (t)}.

For the infinite horizon average reward optimality problereg by 6.2.1) after uniformization, the
set of all feasible actions consists of serving a job atithestage of its lifetime, where=1,... K.
Note that the action space is finite, aids), the set of all admissible actions when the state of the

system iss, is given by
A(s)={a;:5 >0, s=(s1,---,sx) € S},

whereq; is the action of serving a job at théh stage, fori = 1,..., K. Again by TheorenD.18
in Puterman 1], there exists a stationary policy for the MDP under consitlen. Hence, for the
remainder of this section, we assume that the classf prioritization policies under consideration
consists of all Markovian stationary deterministic p@i

Bellman’s optimality equation for the average reward peabtakes the form:

g+ u(s) = airé]il(ls){’l}(s, a;)},

whereg is the optimal average reward per period, afi€) can be interpreted as a relative or differential
reward for each statec S. Again using the notation that is a row vector ofk’ components consisting

of zeros except for a one in thith position andl (,, .} is the indicator function of the s¢t; < C;},
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fori=1,..., K, Bellman’s equations are given by:

K K—1
g+u(s) = Z 1, <onAjv(s +e5) + Z sjvv(s —ej +ejt1) + skvrv(s — ex)
Jj=1 j=1
K
+ Zl{SKC‘i})‘ 23]7] u( —|—a116133(< {M(s,a;)},
j=1 !
where
Ripi + i [v(s) —v(s — e+ eipr)] — pi[o(s) —v(s —e;)] for i=1,... . K—1;
M(s,a;) =

Ripr + (vk — pr) [v(s) — v(s — ex)] for i=K.

Using these equations, we obtain PropositaR 1, which is proved in the Appendix.

Proposition 5.2.1. In the class of Markovian stationary deterministic policfé, the policy that serves
jobs at stagek is the optimal solution to Problen(2.1) if vx > pug, andRipux > Ry andp; > ;

forall j=1,..., K — 1.

The insights obtained from Propositiéril.1are still valid for Propositiors.2.1as the required con-
ditions are similar for both results except that Proposis®.1provide conditions for the optimality of
jobs at the last stage of their lifetime whereas Proposhidnl provide conditions for the optimality of
all types of jobs. We need this restriction as this problerhgdbs going through stages of their life-
times is harder to analyze, as the lifetime of a job is not groegntial random variable anymore, instead
it is the sum of exponential random variables. Hence, abafproach might be to test some simple

policies (such as the heuristic policies that we considéethe clearing problem) using simulation.
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CHAPTER 6

Conclusions

In service systems where customers may leave the systerouwiteceiving service if their wait
exceeds their tolerance, dynamically allocating the Bahitesources to enhance performance can be a
complicated problem. In this thesis we model such systemaeaseing systems with multiple classes of
impatient customers with the objective of finding effectiygmamic scheduling policies that maximize
the rewards collected.

Inspired by the debates about response efforts to recestcaasalty events such as Hurricane Ka-
trina in 2005, our main motivation is a resource allocatioobem that may arise in the aftermath of
a mass-casualty event. While assigning priorities to egypatients for limited resources, the common
practice only uses the time-criticality information of jgsits. Researchers in the medical community
have recognized the potential benefits of also considehagdsource limitations in giving prioritiza-
tion decisions. In this dissertation, we mathematicallgpsrt the benefits of taking into account the
availability of resources, the number of patients, and ype of their injuries in order to optimally al-
locate limited resources. Although we do not expect prearsavers from our mathematical analysis,
insights that we obtain from our stylized models can servbuilgling blocks for policies that can be
used in practice.

In our mathematical analysis, the base model is a clearisig@isywhere a finite number of jobs are
available at the time of the incident (as it would be the casa mass-trauma event such as a plane
crash or bombing in an open space). For the clearing probAeniirst consider the multi-server case
under the assumption that service times are identicallyilised. We later relax this assumption but
then restrict our attention to the single server case. Fibr tases, we used sample-path arguments and

dynamic programming to obtain characterizations of the pekcies that maximize the expected total



reward. In particular, we first identify several conditiamsder which the system-state information, i.e.,
the number of available resources and patient counts, cagnbeed when determining priorities. For
example, when all service times are identically distridutee showed that if a job with the highest
reward (in the sense of likelihood ratio orders) also hastuwetest lifetime (in the sense of hazard rate
orders), then that job should be prioritized irrespectine number of other jobs. Second, we partially
characterize the optimal policy in cases where the optiraeisibns could depend on the system-state.
For instance, for the single-server problem, we provideditams under which giving priority to the
type that is faster to serve is optimal if the number of jolosrfrthe type that is slower to serve is less
than a threshold value. Third, we demonstrate that one caglafe“good” prioritization policies and
rules of thumb that only consider the total number of pasierst opposed to considering numbers from
each type of patient. In particular, with our numerical gsi for the multi-server and single-server
problems, we show that a threshold-type policy, which gparity to time-critical patients if the total
number of patients is below a threshold and to less urgergrnatotherwise, can perform quite well.
We also provide some possible directions for how this tholesban be set. Furthermore, by extending
our model to the case with arrivals, we distinguish betweasgrtasualty events such as bombings that
do not involve a significant number of future arrivals aftee incident, and mass-casualty events such
as a bioterror attack using anthrax or smallpox, that wauldlie ongoing arrivals of patients after the
initial outburst. Moreover, the second extension of ouakiey model, in which the criticality levels
of patients change with time, corresponds to the case wtaents go through multiple stages with
unique care requirements which also affects the chancesofgbirvival and the time required for their
treatment.

We believe this dissertation provides a common platform rafwkedge from which emergency
responders (physicians as well as managers) and operatisaarchers together can build a sound
emergency response plan. Moreover, building such a plamresgextensive testing using realistic
simulation models, hence, one important future reseanatctitin is the development of a simulation
test-bed for priority decisions in emergency responseclwio the best of our knowledge does not
exist at the moment. A realistic simulation model would benafnense practical value to emergency
responders around the world in saving more lives in momedrigsis. Part of such a project would also
require data gathering on lifetimes for various injury typas this data would be critical to ensuring

both realistic simulation scenarios and to developingctife life-saving policies.
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Appendix

In this Appendix, we provide the proofs of our results in thdey presented in the thesis.

Proof of Proposition 3.1.1: Assume that a server (say senig¢runder policyr idles = time units
starting att(, while there is at least one job waiting for service. hdie another policy and we couple
all lifetimes, service times and rewards of all the jobs urutgh v and . All servers undery follow
policy m except that starting dt, serveri under~ takes the actions that it takes undestarting at
to + 7. This is possible since the service completion times of jbbs are taken into service by server
1 afterty undery arer units of time earlier than those undemftert,. Let 7’ be the time that server
stops serving jobs undet. If there are any jobs available at timme— 7 under-, server; serves them in

any order until the system is cleared. Thus, we have showrCth@) — C(t) > 0 forall ¢t > 0. O
The following lemma is needed to prove Proposit®a.1

LemmaA.0.1l. (Righter 1994, Lemma 13.D.1; among others) KeandY be two independent random
variables. ThenX <. Yifandonly if(X| min{X,Y} = m,max{X,Y} =m) <y (Y|min{X,Y} =

m, max{X,Y} =m) for all m < m.

LemmaA.0.1can equivalently be stated as follows: Given= min{X,Y } andm = max{X,Y},
we have thatX <;. Y ifand only if Pr{X = m|m,m} = Pr{Y = m|m,m} > Pr{X =m|m,m} =
Pr{Y = m|m,m}.

Proof of Proposition 3.2.1: We will use a coupling argument to prove this result. Détbe the total
number of servers available at timyg wherel < M < M. If Mis greater than or equal to the number
of jobs seeking service at tinig, then all jobs should be taken into service since idling sogtimal.
Otherwise, letS, be the set of jobs taken into service at timgeunder policyp. Suppose policyr
takes jobj into service at, while job i is in the queue, i.ej € S, andi ¢ S,. We will construct
a policy v which follows policy m between time zero ang), but serves joh instead ofj at ¢ (i.e.,
S, =S\ {j} U {i}), and for whichC(t) < C,(t) for all t > 0 along any given sample path.

LetY;” denote the remaining lifetime of jakat ¢, under policyp, wherel € {i,j} andp € {m,~}.
Note that by the stochastic ordering relation among the i@nwlifetimes of jobs, we can couple the

random variables so thaf™ = y; < y; = Yj”. Because policyr(v) serves jobj(i) atty, and the job
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that is in service will not abandon, we do not néétlor Y;”. LetY;” = Y™ foralll # i,j. LetalsoSy
denote the service time of jdlunder policyp € {m,~}, and letS; = ST for all I # i, j. We can couple
(SF, ST)with (S], S}) suchthatST = S} := aandST = S} := b. Finally, letZ denote the reward of
taking job! into service under policy € {r,~}, and letZ] = Z] for all | # i, j. Then, we can couple
(Zi’r,Z;-r) with (Z;’,Z;Y) SO thatmin{ZZT,Z;T} = min{ZZ,Z]} < maX{ZZT,Z;T} = maX{ZZ,Z;f}
and eitherZ] = Z andZ] = Z] or ZF = Z] < ZT = Z;. Such a coupling is possible from Lemma
A.0.1and the condition thak; <;. Z;. Letr be the timer takes jobi into service ¢ = oo if job ¢ is

not taken into service). The following cases exhaust alsinigies:

Case |:\We first consider the case where< co. ~ follows 7 at all decision epochs afteg except that
it replaces joly with job ¢ at. This is possible becauge < y; and all decision epochs afterunderr
and~ take place at the same time with the same set of jobs availabboth policies except for jobs
andj. Hence, we havé’, (t) = C(t) forall t < to, C(t) — Cx(t) = Z; — Z7 > 0foralltg <t <,

andCy(t) — Cx(t) = 2] + Z] — ZF — ZF = Oforall t > .

Case Il:Now suppose that = co. ~ follows 7 aftert, except that it serves joplast (let the service
start time ber’), if it is still available after all other jobs are clearedhén, we have’, (t) = C(t)
forallt < to, C\(t) — Cr(t) = Z] — ZF > O0forallto <t < 7', and if 7' < oo, Cy(t) — Cx(t) =

z] - Z7r+Zz] > 0forallt > 7.0

Proof of Proposition 3.3.1: We will show thata; + V(q — €;; M) > I, >1y00 + V(g — €; M) for
alli =1,..., K under the given conditions. Fere {1,..., K} such thay; = 0, this holds trivially.
Hence, we only consider the types of jobs for whigh> 1. Fori € {1,..., K} \ {j} such thay; > 1,

we have

V(g —ej;M)
MpV (q — ej; M — 1) + (q; — 1)r;V(a — 265 M) + Y4 s aeriV (4 — ex — €5 M)
Mp =1+ S5 @
Mpa; + (ai = a;)((aj = Vrj + 5y opig @7e)
My —rj+ Y0 air
(Mp+giri + (qj — V)rj)V(a — & — €3 M) + Zf:l,k;si,j eV (d — & — e;; M)
Mp—rj+ Yoy G

L(A.0.1)

where the inequality follows, because, for the first teviig — e;; M — 1) > o; + V(q — € — €;; M),
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for the second term, either = 1, so the inequality is trivial, o¥ (q — 2e;; M) > o; — a; + V(q —
e — €;; M), and for the last term, eithe, = 0, so the inequality is trivial, oV (q — ex — €;; M) >

a—a;+V(qg—ex—e; M), forke{l,...,K}\ {i,5}. Similarly,

V(g —e;M)
MpV(q—e; M — 1) + (¢ — DV (a — 265 M) + Y4y sy 7V (Q — & — €53 M)
Mp =1+ Y i

Mupoj + (o —oq)(qi — D)y Mp+ (i — 1)ri + g4y

pey + (a; Ig(q Jri | My (g )K UTS (g — & — 5; M)

My =i+ 3 1 QiTk Mp =i+ 3 k1 Gk
St Wk V(A — € — ex; M)

- , (A.0.2)
Mp—ri+ 3 k1 GTk

IN

where the inequality follows, because, for the first teviig — e;; M — 1) = a; + V(q — & — €;; M),
and for the second term, eithgr= 1, so the inequality is trivial, oV’ (q —2e;; M) < a; —o; +V(q —
& —e; M).

Now, from (A.0.1) and @A.0.2), we get

aj +V(g—e;M)—a;—V(q—e;M)
K
Mpoi + (o — ) (@5 = 1)rj + Doy oot j W) - Mpaoy + (o — ai)(gi — Dry
Mp =y + Y4y @i My =7y + 35, arrw

> o —a;+

Mp+qiri +(q¢j — )y Mp+ (g — 1)r; + qjr;
+ T qiTy (qu{ ) J 1% (QZ )Kz q;7; V(q—e;—ej;M)
Mp —rj+ 3 01 Tk Mp—ri 4+ 1 Tk
K

1 1
+ < ) > areV(a— e — e M)

K o K
M:u -7y + Zk:l qkTk Miu — T+ Zk:l qkTk k=1k=i,j

K
Mup(ayry — airi) + (o — i) (g + @ — V)rirg + 13 Dk s j G6TE)
(Mp—rj+ ZkK:I akre)(Mp — i + ZkK:1 QTk)

(ri = 75) Yk o) BTk <V(q — & —€&; M) —V(qg—e& —ej M)>

_|_
(Mp—rj+ 0y aern) (M — i+ 402, qary)
_ (ajrj — airi) 25:1 Qi+ (ri — ;) Zszl Qe — oiri(Mp —ry) + ary(Mp — ;)
(M =+ 3ky k) (Mp = 7+ 3k a7)
(i = 75) YRt o KT <ij +V(a—e—e;M)—ar—V(qg—e —ej; M))
+ >0,

(Mp—rj+ Sy qeri)(Mp — i + Y r ure)
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where the last inequality holds because, for the first terondtion 3.3.4 holds and for the second
term, either’’ = 2 or ¢;, = 0 so that the inequality is trivial, or Conditio8.8.9 holds andv; + V' (q —
&—e;M)>a,+V(q—e,—e; M)forallk e {1,... K} \{i,j}. O

Proof of Proposition 3.3.2: We first use PropositioB.3.1to prove the result for decision epochs at
which a service completion takes place apo> 1. Fori € {1,..., K} \ {j}, we rewrite Condition

(3.3.9 as

K K
(ajrj — airy) (M,u g =D+ Y qkrk> + (r; — 1)) (aj(qj ~Drj+ > aqurk> > 0.
k=1,k#j k=1,k#j
(A.0.3)
Sincer; < r; anda;r; > a4r; foralli = 1,..., K, andg; > 1, Condition A.0.3) is satisfied for all
ie{l,...,K}\{j}. Hence, Conditions3.3.4 and @.3.9 are satisfied forall € {1,..., K} \ {j}
such thayy; > 1.

We will now apply induction oy X | ¢;. First, consider the case wheye/* | ¢; = 1 such that
qg; > 1,1.e.,q = e;. In this case, the result holds trivially. Now, suppose that result is true for
all feasibleq such thathi1 ¢ = a > landg; > 1. Then, for anyq’ = (q,...,¢}) such that
Zfil ¢; = a+1landq; > 1, we haveV(q; M — 1) = a; + V(q' — &;; M) by Proposition3.3.1
since Conditions3.3.4 and (3.3.5 are satisfied. This shows that at all service completioresimhere

g; > 1, job j should receive the highest priority.

We next show that the result also holds for the decision gatdéime zero. Define

K
H(n) = Zaknk +V(m-—-n; M),
k=1

wheren = (n1,...,ng) andm = (mq,...,mg), SO that Equation3.3.1) can be rewritten as
V(m;0) = maxpep H(n). For a giverm € ®, wheren; > 1 andn; < min{M,m;}, let A;(n) =
H(n+e;—e;) — H(n)forie {1,...,K}\ {j}. Then, forafixed € {1,..., K} \ {;j} and a given

n € ®, wheren; > 1 andn; < min{M,m;}, A;(n) > 0if and only if
aj+V(m—-—n+e —e;M)>a;+V(m—n;M). (A.0.4)

But in the first part of this proof, we already showed that bgimal to serve a typg job in all states
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(q; M —1), which implies that ConditionX.0.4) holds and hencd;(n) > Oforalli € {1,..., K}\{j}
andn € ® such that; > 1 andn; < min{M,m;}. This shows that allocating as many resources as

possible to typeg is optimal at time zerod

Proof of Proposition 3.3.3: DefineC; C {1,..., K} to be the set of all types of jobsuch that; < r;

and letC, C {1,...,K} be the set of all types of jobssuch that; > r;. Note thatC; U Cy =
{1,..., K} and(C; can be an empty set where@sis never an empty set because it always includes
typej. By Proposition 1, we know that typejobs should be prioritized against all typesinsince for
alli € C; a; < o andr; < 7. Hence, whenever there is at least one job from typethe system, we
can ignore all other types if},. This reduces the problem to the one where the only typeshsfgoe
those inCy. But for all types inC, we haver; > r; and alsay;r; < a7, and hence by Propositidh3.2
typej should receive higher priority than all typesdp. This shows that typg jobs should receive the

highest priority among all typek ..., K. O

Proof of Proposition 3.3.4: First, note that if the optimal policy is an index policy, thi is sufficient
to show that a type job will be served under the optimal policy at stag + e;; M — 1) if and only
if a;ri/(Mp+ 1) > ajrj/(Mp+rj), fori,j € {1,...,K}. Using Equations3.3.2 and @.3.3
multiple times, we obtain

M,uozj M,uozl- ;T Oéj’l"j

Ve M) —as — V(e M) =aqr + P2 o _ _ )
a; + (]ﬂ ) Qj (ew ) o + M,M—F""j Qj MM"‘Ti M/L—F’I"i M,Uz+7‘j

Hence,V (e +e; M — 1) = a; + V(e;; M) if and only if o1 /(M p + ;) > ajrj(Mp + ;) for all

i,7 € {1,..., K}, which completes the proofJ

Proof of Proposition 3.4.1: (i) First, note that if/; < 2, there does not exist a state that would satisfy
the condition that;; + g2 < 77 andqi, g2 > 1. Thus, consider the case whére> 2. We will next use
Proposition3.3.1and induction ory; + ¢» to prove the result.

Wheng; 4+ g2 = 2, the only state that satisfies the conditions that- ¢ < 77 andqy, g2 > 1is
(1,1; M —1). In this state, serving a type 1 job is optimal if and onl#if> 2 = ¢; + ¢» (See Equation
(3.3.9), which shows that the result holds wh@n+ ¢2 = 2. Next, suppose that it is optimal to serve a
type 1 job in statesg;, g2; M — 1) such thay; + g2 = b, for some integeb, 2 < b < 77, andq;, g2 > 1.

Then, Propositior8.3.1implies that it is also optimal to serve a type 1 job at stdtgsqg,; M — 1),
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whereq| + ¢, = b+ 1andq), ¢, > 1, if ¢} + ¢4, < T1. To see this, consider stat¢, ¢5; M — 1) with
¢y + ¢4 = b+ 1andg}, ¢, > 1. By the induction hypothesis we know that it is optimal toveea type
ljobin stategq) — 1,q¢5; M — 1) (if ¢f > 2) and(¢},¢5 — 1; M — 1) sinceq] + ¢4 — 1 = b. Thus, if
¢y + ¢4 < T (i.e., Condition 8.3.4 for i = 2 andj = 1 is satisfied), then Propositich3.1tells that it
is also optimal to serve a type 1 job in stéig, ¢5; M — 1).

(i) Suppose that there exists an integée> T3 such that at all stateg;; M — 1), whereq; + g2 = T
andqi,q2 > 1, it is optimal to serve a type 2 job. Then, Proposit®3.1implies that at all states
(¢},q5; M — 1), whereg} + ¢5 = T + 1 andq}, ¢, > 1, itis optimal to serve a type 2 job. To see this,
consider state§y), ¢5; M — 1), whereg] + ¢, = T + 1 andgq}, ¢4 > 1. Itis given that serving a type 2
job is optimal in state$q] — 1,q4; M — 1) and(q}, ¢ — 1; M — 1) (if ¢4 > 2) sinceq) + ¢4 — 1 ="T.
Furthermore, Condition3(3.4 is satisfied forj = 2 andi = 1 sinceq} + ¢, = T +1 > T;. Thus,
Proposition3.3.1tells that it is optimal to serve a type 2 job in states, ¢5; M — 1), whereg) + ¢, =
T + 1 andg}, ¢4 > 1. Using the same argument successively shows that it is aptorserve a type 2

jobin all stateqq}, ¢h; M — 1) such thaiy] + ¢5 > T+ 1 andq}, ¢, > 1. O

Proof of Proposition 3.4.2: The optimal decision at time zero is trivial whéVh = m1 + mo < M,
mq = 0, ormy = 0. Hence, consider the case whé¥e> M + 1, m; > 1, andmy > 1. We first
rewrite Equation3.3.7) as

V(mi,mo;0) = max G(n),

n<n<n

wheren = max{0, M —m; }, 7 = min{M, mo}, and

G(n) =a1(M —n)+agn+V(mi — M +n,mg —n; M).

Heren is a decision variable that denotes the number of servarssatdid to type 2 jobs at time zero.
Note thatn < 7 (sinceN > M + 1, mq; > 1, andmsy > 1), which implies that there are at least two

values that: can take. Now let

An)=Gn+1)—G(n), forn<n<n-1.

Using Equation 3.3.2, we make the following observation.

Observationfor a fixedn € {n,...,m— 1}, A(n) > 0 if and only if serving a type 2 job is optimal in
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state(m; — M +n+1,mg —n; M — 1). Also, A(n) = 0 if and only if serving either a type 1 or type
2 job is optimal in statém; — M +n + 1,mgy —n; M — 1).

We next use this observation together with Proposi8cghlto complete the proof.

() By Proposition3.4.1, if m; + me — M + 1 < T3, then serving a type 1 job is optimal in states
(mi—M+n+1,me—n; M —1)foralln <n <7 — 1, which is equivalent to having\(n) < 0 for
alln <n <m— 1. This implies that at time zero the optimal policy sets- n, i.e., allocates as many
servers as possible to type 1 jobs.

(ii) By Proposition3.4.1 if my + me — M 4+ 1 > T5, then serving a type 2 job is optimal in states
(my—M+n+1,me—n; M —1)foralln <n <m-— 1, which is equivalent to having\(n) > 0 for
alln <n <m— 1. This implies that at time zero the optimal policy sets- 7, i.e., allocates as many

servers as possible to type 2 jobs.

Proof of Proposition 3.4.3: First note that for a giverV, all feasible state$q; M/ — 1) satisfy the
condition thatg; + ¢ < N — M. Hence, ifl7 > N — M, then by part (i) of PropositioB.4.1, type
1 jobs should be prioritized at each stétg M — 1), whereq € {(¢1,42) : 1 = 1,...,m1,q2 =
1,...,m2;q1 + g2 < N — M}. Combining this with part (i) of PropositioB.4.2completes the proof.

|

Proof of Proposition 3.4.4: We first show that the result holds for all decision epochs laickva
service completion takes place. Conditi@¥4(3 implies that it is optimal to serve a type 2 job in state
(1,1; M — 1), see Equation3(3.9. Condition3.4.3also implies thafl; < 2. Hence, there exists an
integerT’, whereT > Ti, such that at all stateg;; M — 1), whereq; + ¢o = T andqy,q2 > 1, itis
optimal to serve a type 2 job. Then from the proof of part (fifPeoposition3.4.1 we conclude that
at all stateqq; M — 1), whereq;, g2 > 1, it is optimal to serve a type 2 job. This also implies that
the optimal policy allocates as many servers as possiblgpt® 2 jobs at time zero. To see this, note
that A(n), which is defined in the proof of Propositié4.2 is greater than or equal to zero for all
by using the observation made in the proof of Proposi8gh2and the fact that serving a type 2 job is

optimal in all stategq; M — 1), whereg;, g2 > 1. This completes the proofJ

Proof of Proposition 3.5.1: (i) Consider a decision epoch such that jobs from typ2,...,; are
available for service wherg > 2. Suppose that; < rp < --- < r; anda; < ap < --- < ;. By

Corollary 3.2.1, type j receives the highest priority under the optimal policy. Véxtrshow that the
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2-step policy, myopic policyyru-rule, and TCF rule all prioritize typg jobs.
1. 2-step policy: Foi =1,...,5 — 1, let

M pmax;(q) o M pmax;(q)

- 7 5 (A05)
MM—TJ'"’_ZkK:l qkTk MM—Ti+ZkK:1 qKTk

Aij(a) = a; +

Wheremaxk(q) = max {H{qkzg}ak,maxle{l,___vK}\{k}{H{qel}al}} for qi, qj > 1. We next
show thatA;;(q) > 0 for all ¢ < j, which implies that typej jobs are preferred over type
jobs under the 2-step policy at every service completiotaiisvheng;, ¢; > 1. First, note that

a; < o implies that0 < max;(q) — max;(q) < a; — «; for all g such that;, ¢; > 1. Using

this inequality together with; < r; anda; < o, we have

~ Mp(max;(q) — max;(q))
Mup —r; + ZkK:I qkTk
M pimax;(q)(r; — ;)

Aij(a)

Oéj—Oéi

+ — = (A.0.6)
(Mp—rj+ > ey @ere) (Mp — i+ 32—y Gr7k)
> Q- Mo, _I?i)
Mp =i+ 3 k1 GTk
K
(g —ai)(=ri+ 3 awrr) >0. (A0.7)

Mp— 7+ S0 qrr

Hence, the 2-step policy behaves the same as the optimal/ [dlall service completions. We

next show that typg jobs are preferred over typgobs at time zero. Let

Mpmaxpeqy, .yt my, —ng>13%
M+ S0 (my — )

)

K
Q(n) = Z apng +
k=1

wherem := (my,...,mg) is the vector of number of jobs for each type in the systemnag ti
zero andn = (ny,...,ng) is the vector of the number of servers allocated to each jpb &t
time zero, whera € ®. Then, allocating a server to a typ@b instead of a typeéjob is preferred
under the 2-step policy at time zero if and onlgifn+e;—e;) > Q(n) foralln € ®,m;—n; >
1 andn; > 1. From Equation4.0.5), we haveA;;(m —n + €;) = Q(n + e; — ;) — Q(n) for
n € &, m; —n; > 1,andn; > 1. Thus, by A.0.7), we haveQ(n + e; — ;) > Q(n) for all
i < jsuchthatn; —n; > 1, n; > 1, andn € ®, which implies that typg jobs are preferred

over typei jobs also at time zero.
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2. Myopic policy: For anyi < j, we have

Ty :M,u(ozjrj—airi)—l—rirj(aj—ai)>0
Mp+r;  Mp+r; (Mp+r;)(Mp+73) -

sinceq;r; < ajrj anda; < «j, which implies that the myopic policy prefers tygpgobs over

typei jobs.
3. arp-rule: Forany: < j, thearp-rule will prefer typej jobs over type jobs because;r; < o;r;.

4. TCF rule: Forany < j, the TCF rule will prefer typg jobs over type jobs sincer; < r;.

(ii) Consider a decision epoch such that jobs from tygg . . . , j are available for service whejje> 2.
Suppose that; > 7o > --- > rj andair; < agrg < --- < o7 (@nd hencey; < ap < -+ < «y).

By Corollary 3.3.], type j receives the highest priority under the optimal policy. &lg the TCF rule

is not consistent with this result as it gives priority to jbbs with the largest abandonment rate. On the
other hand, thevru-rule is consistent because it gives priority to the jobsilie largestvr value. We

next show that the remaining four heuristics are consistéht Corollary 3.3.1
1. 2-step policy: For any < j, we have

M pey; ‘ M po
My + 7 Y Mp+r;
Mu(ajrj — oqr;) + rirj(a; — o)

- Glirr)Qprr) 20 (A.08)

Aij(ei+ej) = o+

sinceq; < a; anda;r; < or;. Next, from Equation4.0.6), we observe that;;(q) is increas-
ing in g, foranyk € {1,...,K} aso; < «; (and hencenax;(q) — max;(q) > 0 for all q
such thay;, ¢; > 1) andr; > r;. Combining this with A.0.8), we conclude thad;;(q) > 0 for
any q such thatg;,¢; > 1, and therefore the 2-step policy is consistent with Corgl&3.1at
all service completions. Furthermore, similar to the prafahe consistency with Corollar§.2.1
at time zero, we hava;j;(m —n +e;) = Q(n+e; —e;) — Q(n) > 0forall i < j such that
m; —n; > 1,n; > 1, andn € ®, which implies that typg jobs are preferred over typgobs at

time zero.
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2. Threshold-1 policy: For any< j, we have

T, = p(or; — or;)

(aj — ai)rir;

sincea;r; < a;rj anda; < o. This implies thatf; < 1,and hence typg jobs are preferred over

typei jobs at all decision epochs.

3. Threshold-2 policy: For any < j, we will consider two cases. First, assume that= a; and
r; = rj, i.e., the two types are essentially identical. In this cése consistency follows trivially.
Next, assume that the two types are not identical. Then, {@0.8), we haveA;;(e; + e;) > 0.
Furthermore, from EquationA(0.6) and the conditions that; < «; (and hencemax;(q) —
max;(q) > 0 for all q such thatg;,q; > 1) andr; > r;, A;;(q) is increasing ing, for any
ke {1,...,K}. Then, we conclude thal;;(q) > 0 for anyq such that;, ¢; > 1. Hence, when
we solveA;;(q) = 0 for ¢; [¢;], by letting g, = 0 for all k& # i,j andg; = 1 [¢; = 1], any
solution must be less than one. Therefdfex 1 for all i < j, which implies that typg jobs are

preferred over type jobs at all decision epochs.
4. Myopic policy: Same proof as in the proof of part (i) alsqpkgs here.

(iif) Consider a decision epoch such that jobs from typ® . . . , j are available for service wheje> 2.
Suppose thaty; < ay < --- < aj andair; < agre < -+ < ayr;. By Corollary3.3.2 typej receives
the highest priority under the optimal policy. Clearly, théF rule is not consistent with this result as it
is possible to have; > r; forsomei = 1,...,j—1, in which case it will prioritize type jobs over type

j jobs. We can however show that the remaining five heuristiesansistent with Corollarg.3.2as
serving a type job instead of a typé job is the preferred action for all< j under these five policies.
For any fixedi < j, consider the following cases:

Case 1 (r; < rj): The result follows from the arguments used in the proof of Gar

Case 2 (r; > r;): The result follows from the arguments used in the proof of Ogr

(iv) Suppose that the conditions of Proposit#d.4hold, and hence it is optimal to give priority to type
2 jobs. Under these conditions, theu-rule [TCF rule] is not necessarily consistent with Proponsi
3.4.4as it is possible to haver; > asrs [r1 > 2], iIn Which case it gives priority to type 1 jobs. On

the other hand, the myopic policy agrees with the optimaicgalnder the conditions of Proposition
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3.4.4by definition. We next show that the remaining three hewssére consistent with Proposition
3.4.4as serving a type job instead of a typé job is the preferred action under these heuristics. Two
cases exhaust all possible scenarios:

Case 1 (ry > rq): The result trivially follows from the proof of part (i).

Case2(rq < 11):
1. 2-step policy: By Condition3/4.3, we have

M,ua1 M,uozg . a1 [O5KAT
Mp+mr

>0. (A.0.9)

A 1,1 = g + o — = _ >
12(1,1) 2 ! M+ 1o Mup+re Mp+mr

Furthermore, from the proof of part (ii), we know thAfs(q1, ¢2) is increasing ing; and g,
whenay > o3 andre < 1. Hence, we conclude thats(q1,92) > 0 for any g1,q2 > 1,
which implies that the 2-step policy is consistent with Rrgifion 3.4.4whenry < r1 at service
completion instants. In order to show that the policy agre#is Proposition3.4.4also at time
zero, we use an argument similar to that used in the proof df(pa In particular, we have
Aa(mi —ng + 1,mg —n2) = Q(n1 — Lng + 1) — Q(n1,n2) > 0formg —ng > 1,07 > 1,

and(ni,n2) € ®, which implies that typ& jobs are preferred over tydejobs at time zero.

2. Threshold-1 policy: Under the conditions of Propositi4.4 we can show that

Mp(airy — agrg)
(ag — a1)rire

Furthermore, inequalityX.0.9) shows that type 2 jobs are prioritized whgn= ¢» = 1. Com-
bining these two facts, we conclude tlat< 1, and hence typé jobs are preferred over type

jobs at all decision epochs.

3. Threshold-2 policy: First of all, fromA(.0.9), we know thatA;5(1,1) > 0. Furthermore, from
Equation A.0.6) and the conditions that, > «; andre < r1, we haveAi2(q1, g2) is strictly
increasing ing; andg, for g1,q2 > 1. Then, we conclude that;»(q;, g2) > 0 for any q such
that at least one of; andq, is strictly greater than 1. Hence, any solutionAg,(¢1,1) = 0
andAi2(1,¢2) = 0 must be at most one. Therefofg, < 1, which implies that type jobs are

preferred over typé jobs at all decision epochsl

75



Proof of Proposition 4.1.1: We will again use a coupling argument to prove the resultp8se policy
w takes jobyj into service aty while job1 is in the queue. Without loss of generality, assumetat 0.
We will construct a policyy which serves jola at time0, and for whichC(t) < C,(¢t) forall ¢ > 0
along any given sample path.

Let Y}” denote the remaining lifetime of jabat time 0 under policyp, wherel € {i,j} andp €
{m,~}. Note that by the stochastic ordering relation among theaneimg lifetimes of jobs, we can
couple the random variables so thgt = y; < y; = Yj”. Because policyr(y) serves jobj(i) at
time zero and the job in service will not abandon, we do notdriég andY;’. LetY;” = Y/ for all
l #14,j. LetalsoS; denote the service time of jdbunder policyp € {7, ~}, and letS] = ST for all
I #i,5. We can coupldST, ST) with (S7, S]) so thatm := min{S], ST} = min{S],S]} <m :=
max{ST, ST} = max{S;, S} and eitheiST = S := a € {m,m} andS} = S := b € {m,m}\{a}
(Case l) orST = 5] = m < ST = S} = m (Case Il). Note that such a coupling is possible from
LemmaA.0.1and the condition that; <;, S;. Finally, letZ denote the reward of serving jélunder
policy p € {7} and letZ] = Z for all I # i,j. Then, we can coupléZ[, ZT) with (2], Z})
so thatmin{Z7, Z7} = min{Z/, Z]} < max{Z],Z7} = max{Z/, Z]}, and eitherZ] = Z; and
Zf =7z orzZ7 = Z] < ZT = Z]. Such a coupling is possible from LemrAz0.1and the condition

that Z; <;. Z;. LetT be the time instance takes jobi into service ¢ = oo if job 7 is not taken into

service). The following cases exhaust all possibilities:

Case :

(a) We first consider the case where< oo. Note that, under Case |, the fist decision epoch after time
zero is at timeu for both = and~. ~ follows 7 during [a, 7), and at timer, whenr takes jobi into
service,y takes jobj. This is possible becauge < y;. Attime 7 + b, the states will be the same under
both policies andy follows 7 from then on. Hence, we havg,(t) — C.(t) = Z] — Z7 > 0 for all

0<t<r,andCy(t) - Cr(t)=Z] + Z] — Z[ — ZT = Oforallt > 7.

(b) Now suppose that = co. Then,~ follows 7 at all decision epochs after time zero except that it
serves joby last (let the service start time bé) if it is still available after all other jobs are cleared.
Hence, we have’,(t) — Cx(t) = Z] — ZF > 0forall0 <t < 7/, and if 7" < oo, C,(t) — Cr(t) =

Z]—Z;.T+Z]720forallt27’.

Case ll:

76



(a) We again first consider the case where co. v follows 7 at every decision epoch duringe, 7 —
m + m) and serves joh at timer — m + m whenr serves jolky (at time 7). This is possible since
y; < y; and the service completion times undearem — m units of time earlier than those under
betweerim andr. The states under and~ become the same at time + 7, and~ follows 7 from then
on. Hence, we have, (t) — Cx(t) = Z] — Z7 > 0forall 0 <t <m, C,(t) - Cx(t) > Z = ZT >0
forallm <t <71 —m+m, Cy(t) — Cr(t) > Z]—Z;-UrZ] >0forallr—m+m<t< T, and

Cy(t) = Cx(t) = 2] +Z] — ZT — ZT = 0forallt > .

(b) We now consider the case where= oo. ~ follows 7 starting at timem, except that it serves
job j last (let the service start time bé) if it is still available when all other jobs are cleared. As i
Case lI(a), this is possible since the service completimesi undery arem — m units of time earlier
than those under after m. Then, we haveC,(t) — Cr(t) = Z] — ZF > Oforall 0 < t < m,
Cy(t) = Cr(t) > 2] =27 > 0forallm < t < 7/, and ifr’ < oo, C,(t) = Cx(t) = Z] = ZT +Z] > 0
forallt > 7.

Thus, we have shown thét, (t) > C,(t) for all t > 0 along any sample pati]

In the proof of Propositiod.2.1, we use the following lemma, which states that for a fixed neimb
of jobs in queue, we prefer to have the job in service be a jab wismaller mean service time. This
makes sense because the remaining lifetime of the job inceeand the associated reward for that job

are no longer relevant.
LemmaA.0.2. If u; < (=) p; for any pair(i,5),i,j = 1,..., K, thenV(q; P;) < (=) V(q; ).

Proof: We first prove the inequality part. Couple the processingsiraf the jobs in service for the
two states such tha; < S’ with probability one, wheres; denotes the processing time of the type
[ job in service,l € {i,j}. LetVy(q; P;) be the value function when the starting statédsP;) and
we idle from timeS; to S} and then follow the optimal policy. Then, from Propositionwle have
Vig; P) > Vo(a; P) = V(a; Py).

We next prove the equality part. Couple the processing twhée jobs in service for the two states
such thatS} = S with probability one. Then, starting from stat@g; 7;) and (q; P;), the processes
reach the same state after the service completion of thajservice, i.e., af; = S;. Hence, we have

Vig; 7)) = V(q; ). O
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Proof of Proposition 4.2.1: We will show thata; + V(q — €;; Pj) > Ig>130; + V(g — &; P;) for
alli = 1,..., K under the given conditions. Ferc {1,..., K} such thaty; = 0, this holds trivially.
Hence, we only consider the types of jobs for whigh> 1.

For afixedi € {1,..., K} \ {j} such thay; > 1, we have

V(0 — €5 R) + 31y oy iV (A — € — €5 P)) + (q; — 1)V (9 — 255 P)

V(ig—e;P;) =
Y 1 =T+ ey G
K
1
% {#g(aﬂr‘/(q e—eiP)+ Y are(V(d-e —e;P)+ai—a)
g =75+ D k=1 KTk k=1 k#i,j

+ qriV(d—e& —e;P)+ (¢ — Drj(V(d—e —e; B )+a2—ay)}

K
1
- = {aj,uj—l-(ai_aj)(ﬂj it > arE) V(4 — e —e; Py
i =75+ D k1 kT k=1 ki
K
+ Y anVA—e—enP) + (4 (¢ — Dry)V(d— e —ej; H‘)}’ (A.0.10)
k=1 ki,

where the inequality follows because, for the first tefi{g — e;; R) > o; + V(q — € — &; P);
for the second termV(q — e;;R) = a; + V(q — e, —e;; P;) forall k € {1,...,K}\ {j} such
thatg, > 1; and for the last term, either; = 1, so the inequality is trivial or by the condition that
a; +V(q—2e;P) > a; +V(q— e —e;F;) for ¢; > 2. Furthermore, EquationA(0.10 holds
becausd’ (g — e —e; P) =V(q—e —e; P foralli,k € {1,..., K} \ {j} by Condition 4.2.6
and LemmaA.0.2

Similarly, for a fixedi € {1,..., K} \ {j} such thay; > 1, we have

pV (G — €3 R) + (g — V)riV (0 — 2655 P) + Yk s awreV (Q — €, — €55 P)

Va-e;B) =
@ ) [t — T+ S qkTk

1
i
Wi — 75+ D q QkTE

{m(%’ +V(Q—e—e;P)))+ (g —Dri(V(a—e —e;Pj) +a; — o)

K
+ Z eV (d — e —€; F;) +qir;V(d— € —¢€; P, )}

k=1,k#i,j
1
= 7 (aj — ag)qirs + o — (a5 — i)y + (s + (s — D)) V(Q — & — €55 F))
Wi —Ti+ Dy QTR
K
+ ) areV(d—e — e Pe) + g V(d— e —e; P )}, (A.0.11)
k=1,ki,j
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where the inequality follows because, for the first and sédenms,V(q — e; R) = «; + V(q —

ei_e]a
ik e{l,...

’); and Equation4.0.11) holds becaus& (q — & — &; P,

, K} \ {j} by Condition 4.2.§ and Lemma&A.0.2

Now, from (A.0.10) and @A.0.11), we get

aj +V(d—e;P) —a—V(qd—e; D)
K
[ = Tj + D k1 kti QETk qir;
> (aj—a)(1— e - 7
B =75+ D k=1 QETE i — Tt D kg QkTk

— i+ k) + (o —

;)i — — 7+ ey i)

i) (g

_l’_

qiT;

K
(j =i+ Sopy aerw) (i — 75 + Sy GTs)

wi + (gi — 1)r;

1

- _
g = Tj + D ey GTE

V(q—e —ej;P;)
i — 75+ Zszl qm%) 7

pi+ (g5 — D

K
1
28 ) Z qeriV (0 — € — e Pr)

i — 1+ Zk:l qkTk k=1,k+i,j

1

v

- _
g = Tj + D ey GTk

i
— V(g—e —e;P)
Wi — T+ D QT

1

! <M e

- _
i = Tj D e Tk

(e — a)ri + (= 1)) Sy @i + i (1 — ) —

)(aj — Q) q;T;

[t — i+ SR Gk
; 7’]( Nz)

qim;

(g — 5+ fo:l arri) (i

—rit 21{3{:1 KTk

K
g = Tj + D ey QTk

i+ (g — Dry
i + (g K) V(g—e—ej;P,)
Wi — i+ > g kT

py+ (g —Dr;

1 K
K > Z qm
k=

1
+ - -
i = Tj + D e Tk

- _
i = Tj + D 1 Tk

V(g—e—
Wi — 7T+ > g QT e
G
e V(g—e —e;P)
Wi =T+ D QT

- (ri = i — 15 + ) Z{f:l,k;&j e + (s — airy) ZkK:Lk;éj qkT'k
(1 = 5+ Sy @) (i = 7 + 4y aurn)
q;75((0y — cvi)ri + a(pg — pa)) + aari(rj — pg) — ayrj(rs — i)

(g — 75 + ey aure) (i

— T+ ZkK:I QTk)

+ i + (g )T
Hj

- _
=75+ D k1 Tk

K
D k1 GETElOG T —

airi + a(ri — pi

) = V(q — & — e; Py) for all

(A.0.12)

&j; ) + o — ag)

CkE )( (G—&—e€;P)—V(d—e—e;P))

i — 75+ Zszl qkTk
— Ty +Nj)] _O‘jrj( — J4;) +0‘z7‘1( NJ)

(15

K
=1+ D g1 GTk) (R

— i S )
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(ri = pa)agry + (rj = 1) (s = 7+ Dok gty T
(i — 75+ Sy aerw) (i — T+ Sy a7
x (V(a—e —e;P)—V(ad—e —e;B)), (A.0.13)

where the second inequality follows because for the fowgtmtof (A.0.12) either K = 2 so the in-
equality holds trivially or it follows from Condition4.2.5 and the condition that'(q — e;; R) =
a; +V(q—e —e;P)foralli e {1,...,K}\ {j} such thaty; > 1. Finally, Equation A.0.13
is greater than or equal to zero, because, for the first teomdi@on @.2.3 holds; and for the second
term, Condition 4.2.4 holds and we hav¥’ (q — e, — €;; P;) < (>)V(q— e —€;; P)) if p; < (>)p;
by LemmaA.0.2.0

Proof of Proposition 4.2.2: First of all, whenr; > r; fori € {1,..., K}, Proposition4.1.1states
that it is optimal to give priority to typg jobs over typei jobs at all decision epochs sineg > «o;

andp; > p;foralli € {1,..., K}, i.e,a; +V(q—e;;P;) > a; + V(q — &; P;) for all jobs with
r; > r;. Therefore, in the rest of the proof, we only consider type{1,..., K} jobs wherer; < r;.

LetC={i:i=1,...,K;r; <r;}. NotethatC C {1,...,K}andj ¢ C. Asr; > r; > p; > p;, we
getr; — u; > r; —p; > 0foralli € C. Hence, Conditions4(2.4 and @.2.5 are satisfied for all € C

andg;, g; > 1. Next, fori € C, we rewrite Condition4.2.3 as

K

Z Grrloyry — ouri + aw(rs — pa — 5+ )] — agri(re — ) + oari(ry — pg) >0
k=1

K
A Z rik[aﬁ] oty + o(ri — i — 1+ 1)) + (6 — Drifrj (o — aq) + ai(py — )]

k
—|—(Qj — I)T‘j [Ti(()éj — Oéi) + ozj(,uj — ,ul)] + rirj(ozj — Oéi) + QT — QyTifhG > 0. (A014)

Since we havey; < aj, pu; < pj, agry < ajry (@nd henceyrip; < orjpg), i — g > rj — py forall
i € C, andg;,q; > 1, Condition A.0.14) is satisfied for ali € C. Thus, we have shown that under the
given conditions in Propositiof.2.2 Conditions 4.2.3, (4.2.9, (4.2.5, and @.2.6 are satisfied for all
1 € C such thay; > 1.

We will now apply induction ory_X | ¢;. First, consider the case wheye* | ¢; = 1 such that
g; > 1,i.e.,q = e;. In this case, the result holds trivially. Now, suppose thatresult is true for all

feasibleq such thatzfil ¢; = a, for some integer > 1 andq; > 1. Then, for anyg = (1, . . ., ¢Kk)
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such thaty" X | ¢ = a + 1 andg; > 1, we haveV (§; R) = oy + V(q — €;; P;) by Proposition4.2.1
since Conditions4.2.3, (4.2.4, (4.2.5, and @.2.6 are satisfied for all € C such thatg; > 1. This

shows that for alf € C whereg; > 1, job 5 should receive the highest priority

Proof of Proposition 4.2.3: First, note that if the optimal policy is an index policy, thi is sufficient
to show that a type job will be served under the optimal policy at staée + e;; R) if and only if the
required condition holds.

(7) Giventhat; = a; = aforall i, j € {1,..., K}, using Equations4.2.1) and @.2.2 multiple times,

we obtain

i pjor aripi — k) -
Ve P)—V(e; P) = — = , Vij=1,...,K,
(€ 71 (€5 55) pitry o opgtre (et 1) ()

HenceV (e;; ;) > V (e; P;) ifand only ifr;p; > rjp;, fori, j € {1,..., K}, giventhaty; = o = o,
which completes the proof for this case.
(it) Given thatr; = r; = rforall4,j € {1,..., K}, using Equations4.2.1) and @.2.2 multiple times,
we obtain

Hi pioi airi(p —r) —oy(py +7)

o+ V(e B) —a; = V(e Py) =a; + ——— —aj — =
(& F2) = ey = V(& ) pitr g (i +7) (15 +7)

Hencea; +V(ej; P;) > o+ V(e; Py) ifand only if o (i +7) > oj(p + 1), fori, j € {1,... K},
given thatr; = r; = r, which completes the proofJ

Proof of Proposition 4.3.1: First, note that whem; < o, using Propositior.1.1together with the
conditionsa; < ap andpy < e We conclude that serving type 2 jobs is optimal at all deaigipochs.
This is consistent with Propositioh3.1, ast(q;) = 0 for r1 < ro. Therefore, we focus on the case
wherer; > ry in the rest of the proof.

(?) Let K = 2,47 = 2, andj = 1 in Proposition4.2.1 Then, givenr; > 79, a1 < awo, anduy < po,

Condition @.2.3 diminishes tay, < t(q1). Moreover, givenu; < ug, we rewrite Condition4.2.4 as

r1(re — p2)qr +r2(r1 — p1)g2 < (r1 — p1)(re — p2). (A.0.15)

Note that, forry < r1 < p1 < pe, Condition @A.0.15), and hence Conditiord(2.4), is satisfied for all
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q1,q2 = 0.

We next use induction oty to prove the result. Faj; = ¢, = 1, the condition that, < t(q1)
diminishes toayr (1 + r2) > aora(pe + r1), which is the necessary and sufficient condition for
the optimality of serving a type 1 job at state 1; R); see Equations4(2.1) and @.2.2. Then, by
Proposition4.2.1, it is optimal to serve a type 1 job at statéls ¢o; R) such thatgs < #(1). Now,
suppose that fog; = a, wherea > 1 is an integer, it is optimal to serve type 1 jobs at stétegs; R)
such thatgs < t(a). Then, applying Propositiod.2.1 we conclude that it is optimal to serve type 1
jobs at statesa + 1, ¢2; R) such thayys < ¢(a + 1) sincet(q;) is non-increasing im; .

(7)) Let K = 2,47 =1, andj = 2 in Proposition4.2.1 Similar to part {), givenr; > ry, a1 < ao, and
1 < pe, Condition @.2.3 diminishes tags > t(q1). Moreover, giveru; < s, we rewrite Condition

(4.2.9 as

ri(ry — p2) (g1 — 1) +ro(r1 — 1) (g2 — 1) > papo — r172. (A.0.16)

Note that forr; > r9 > ue > pq, Condition A.0.16), and hence Conditior4(2.4), is satisfied for all
qQ1,q2 > 1.

We next use induction ogy, to prove the result. We start with the case whgre= 1. Proposition
4.2.1implies that if there is a statd, b; R), whereb > t(1) and serving a type 2 job is optimal, then
it is also optimal to serve type 2 jobs in all statdsq,; R) such thatgs > b. Next, suppose that
serving a type 2 job is optimal in statés, ¢2; R) for all g2 > t(a) > t(a), wherea > 1 is an integer.

If there exists a statéa + 1,d) whered > #(a) — 1 and serving a type 2 job is optimal, then by
Proposition4.2.1, it is also optimal to serve type 2 jobs in all states+ 1, ¢o; R) such thatg, > d.
(Note thatt(g;) in non-increasing iry;, hence Condition4.2.3 is satisfied for(a + 1,d + 1; R) as

d+1>t(a) > t(a) > t(a + 1).) This completes the proof!

Proof of Proposition 4.3.2: Let K = 2,7 = 1, and;j = 2 in Propositiord.2.1 Then, forg; = ¢2 = 1,
Condition @.2.3 is satisfied as it diminishes ;71 (1 + r2) < asra(pe + r1). Next, we rewrite

Condition @.2.3 as

qri[(oe — ai)ra + a1 (pe — p1)] + @araf(ce — a1)ry + as(pe — p1)] > agra(r — p1) — arri(re — pe).

(A.0.17)
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Note that, for(ay — a1)re > aq(pu1 — p2) and (ag — aq)r1 > ao(pr — pe), the left-hand side
of Condition A.0.17) is non-decreasing ip; and g2, and hence Conditiom(2.3 is satisfied for all
q1,q2 > 1. Moreover, givenu; < pue, we rewrite Condition 4.2.4 as Condition £.0.16), which

is satisfied for allg;, g2 > 1 because; > u; andry > us. Finally, the necessary and sufficient
condition for the optimality of serving a type 2 job at stdfe1; R) is satisfied as it diminishes to
a1 (p1 + r2) < agre(pe + 71); See Equations4(2.]) and @.2.9. Then, by Propositiod.2.], it is
optimal to serve a type 2 job at stateg, 1; R) for all ¢; > 1. Furthermore, since it is also optimal to

serve atype 2 job at statés, ¢o; R) for all g2 > 1, applying Propositiod.2.1multiple times completes

the proof.O

Proof of Corollary 4.3.1: Note that whemn; < r9, using Propositiod.1.1together with the conditions
a1 < ag andpuy < uo we conclude that serving type 2 jobs is optimal at all deaigipochs. Hence,
we focus on the case wherg > r5. Now, since we have; > ro > us > u1, a3 < «s, and
a1rip < asros, the conditions required in Propositign3.2are all satisfied, which completes the

proof. O

Proof of Proposition 4.3.3: Similar to the proof of Propositiod.2.3 as the optimal policy is an index
policy, it is sufficient to show that a typiob will be served under the optimal policy at st@tel; R)
if and only if the required condition holds. Note that usinguBtions 4.2.7) and @.2.2 multiple times,

we obtain

102 H20i
a1 +V(0,1;P) —as+ V(1,0 ) = a1+ — Qo —
( ) ( ) B+ 12 p2 + 11

arr(p1 + o) — agra(pge + 1)
(1 +72)(p2 +71)

Hence,a; + V(O, I;Pl) > a9 + V(l,O;Pg) if and onIy if alrl(,ul + 7'2) > QQTQ(/LQ + 7‘1), which

completes the proofd

In order to prove Propositiors1.1and5.1.2 we consider the following finite horizon problem:
max ' (T) forfixed T < oo, (A.0.18)

mell

Our discrete-time MDP is again defined by the state spa@etion spaced, a set of known transition
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probabilities, and a reward function. Then, the total relrfar this finite horizon problem is

N-1

rn(s) + Z Tn(8,dn(s)),

n=0

wherery (s) is a terminal reward incurred at the end of the planning looriwhich we set to zero.
Let Jr n(sp) denote the expected average reward overNhperiod decision making horizon if

policy 7 is used and the system is in stateat time zero. Then, for € II, we have

N-1
T (50) = 2B [ v (Ve () 3 ra(Ya(n), du(Va(m)) | V30 € 8.
n=0

The optimal reward is given by

JIn(s0) = max Iz N (80)-

Letwv, (s, a;) represent the average reward over the periods ranging/irtmnV, where system is in
states and actionu; is chosen in perioa, and the optimal action is chosen in periods- 1to N. Let
alsov, (s) be the optimal average reward from periotb N, when the system is in statan periodn.

Then, foralls € Sandn =0,..., N — 1, we have

vp(s) = ailgi}(i){v"(s’ a;)}.

In order to prove Propositioh.1.1 we need the following lemma.
LemmaA.03. Forall k =1,..., K, v(s) > v(s — ex), wheres € S and s, > 1.

Proof of Lemma A.0.3: Fix k € {1,..., K}. We first consider the finite horizon problem for which
we will prove thatv,,(s) > v, (s — ey) for all periodsn = 0,..., N and all states € S, wheres;, > 1.
To prove this result, we will consider two sample paths.

In the first sample path, suppose that the state-is:;, wheres € S ands; > 1 in periodn, where
n = 0,...,N. Suppose that this sample path is governed by an optimaypelhich we call policy
m. In the second sample path, suppose that the staténiperiodn, wheren = 0,..., N. We will
next construct a policy, which we call polieyy, and apply this policy in the second sample path. Then,
using induction om, we will show thatv,, (s — ex) < Ugm(s), whereu”) (s) is the value function under

policy my. Sincen is not necessarily an optimal policy, this will imply that(s — e) < v,,(s) for all
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n € {0,...,N}ands € S.

First consider periodV. In this case, we havegg)(s) = vn(s) = 0 for all s € S and hence
the result holds trivially. Next, suppose that, (s — ex) < v,(f)ll(s) for some periodh + 1, where
n € {0,...,N —1},and alls € S, wheres;, > 1, if 7y does the same action in periadt 1 (with state
s) thatr takes in period: + 1 (with states — e;). We will show that this also holds for.

Case 1§, < Cy): At periodn, the probability of the next event being an arrival, a sendgompletion,

or an abandonment for a typgob, wherei # k, is the same for both sample paths. On the other hand,
the probability of next event being the abandonment of a tyjod is larger in the second sample path,
which means that the probability of staying in the same tite to uniformization) is smaller in the
second sample path. Hence, when we can couple both sampke piher both sample paths reach
the same state in period+ 1, i.e., s — e, or the state under the first sample patk’is- ¢, in period

n + 1 whereas it iss’ under the second sample path, where S. In the first situations follows 7
exactly. This means that, ;;(s) = v}, (s) for all s € S, which implies that, (s — ex) < v (s).

In the second situationg, takes the same action under the second sample path ta&es under the
first sample path. Hence, by the inductive hypothesis, we hais — e;) < v,(f))(s) forall s € S and

s > 1.

Case 2§, = C}): At period n, the probabilities of next events are the same as in Case ce;éhe

results for Case 1 also apply here. The only difference is théne next event is the arrival of a type
k job, then that job is lost under the second sample path, \@hkétsvill be admitted in the first sample
path. Hence, both sample paths will reach the same stateiotpe+ 1, i.e., s. In this caser, follows
m exactly, which implies that,,;(s) = vﬂl(s) forall s € S, and hencey,, (s — ej) < Ugm(s).

Above we have proved that, (s — ej) < v,ﬁo)(s) <wy(s)foralln=0,...,N,s €S, ands; > 1.
Letting N — oo, we getv(s — ex) < v(s), which completes the proof]
Proof of Proposition 5.1.1: To prove the result, we show that/(s,a;) > M(s,a;) for all j €

(1,...,KY\ {i}. j € {1,...,K}\ {4}, we have

M(s,a;) — M(s,a;) = Ripi — Rjpj + (vi — ) [v(S) — (s — Ez)] ) [v(S) — (s — eg')]

> Ripi — Rjp;

v

0,
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where the first inequality holds from Lemn#a0.3 and the conditions thay; > u; andvy; < p;
je{l,...,K}\{i}, and the second inequality holds becaisg; > R;;. This completes the proof.

|

In order to prove Propositioh.1.2 we consider a capacity restriction on the total number lo$ jo

and we let” < oo denote that capacity. Then, the state spaicggiven by

K
S{8(81,"',SK):SiG{O,l,...,C}fOFi1,...,K, Zsj<0},
j=1

wheres; is the number of typé jobs in the system. Furthermore, the uniformization cartsgnow
given by

Z/\ + max wi+(C—=1) max ;.
Z 1 b b

Moreover, letC(s) denote the total number of jobs in the system when it is irestat (sq,...,sk) €
S, ie,C(s) = YK s, and 1{c(s)<cy be the indicator function of the s¢C(s) < C}. Then,
considering the finite horizon problem, for all € A(s),s € S,i=1,...,Kandn=0,...,N — 1,

we have;

K
Un(S, az’) = Riju; + 1{C(s)<0} Z /\jvn+1(s + ej) + Z Sj’}/j’l)n+1(8 — ej)
j=1 j=1

+(pi — vi)vn+1(s — €;)

K K
+ {1 — Lycw<cy DN — > siv — (i — %)] Vpt1(S).
j=1

j=1

Then, fors € S, the Bellman’s average reward optimality equations arergly

un(s) =0,
K
Un( ) - 1{C )<C} Z)‘ Un-i—l s+ 6] ZSJ’Yjvn—i-l )
7=1
+ [1 — Lic(s)<cy Z Aj — Z Sﬂ]} Unt1(8) + a%ﬁﬁ){MnH(& ai)},

J=1
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forn=0,...,N — 1, where

Myi1(s,a;) = Ripi + (vi — pa) [vn+1(3) —Vny1(s —e)|, fori=1,... K.

Next, for the K = 2 case, before we introduce new notation, we redefine the ¢erias the
number of periods left to reacN for simplicity of notation. Fom = 1,..., N andsy, so > 1 where
(81, 82) €S, we |etMn(81, 82) = maxizl,g{Mn(sl, S92; al)} Then, we have

M, (s1,s2) = maX{ Ripr +(y1 — ) [vn(s1,82) — vp(s1 — 1, 82)],

Ropiz  +(v2 — p2) [vn (81, 82) — vn(s1, 82 — 1)] }

Next, we IetAS)(sl, S9) = vn(81,82) —vn(s1—1,82) andAﬁf)(sl, $9) = Un(81,82) — vn(s1,82 — 1).

Then,V(s1,s2) € Sandn =1,..., N, we get

M, (s1,s2) = max {Rlul + (71 — 1) AW (51, 82), Ropia + (y2 — pa) AP (s4, 32)}-

Next, fors; > 1, we have

AP (s1,82) = 14600y [MASL(& +1,52) + AAY (51,50 + 1)]
+ (51— 1)71A511_)1(81 —1,52) + 82’Y2A£21(31, 59— 1)
(1= T smmtecy M+ A2) = (5171 + 5272)] AL (51, 82)

+ 10 (Mn—l(sl, s2) = Lyg sy Mn—1(s1 — 1, 82)

- ly-n [sz + (2 — ,Uz)Ale(«ﬁ -1, 82)] )
+ 1{52=0}< [Rlﬂl + (= m)AY (s, 32)]

— Ly [le +(n - Ml)ASL(Sl - 1,82)] )

+ 1{31—1—32:0}/\2 [Un-1(81,82) — Un—1(s1 — 1,82 + 1)].
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Similarly, for s > 1, we have

Af)(sl, 82) = 1{31+32<C} |:/\1A( ) (81 +1 82) + /\QA( ) (81, So + 1)]
+ swlA( ) (81 —1,89) + (s2 — 1)’}’2A( ) (81, s9 —1)
(1= 1 ssmmteey A+ A2) = (5171 + 5272)] AP (51, 82)

+ 150 (Mn 1(s1,82) — Lgyny Mp—1(s1, 82 — 1)
-1 R AW ~1

(so=1} | Bipa + (71 — 1) (51,82 — 1)
+ 1g- 0}( [R2M2 + (72 — Mz)A(Q) (51, 32)]

— 1oy {Rzuz + (92 — Mz)A(z) (51,82 — 1)} >

+ s 4se=c3M [Un—1(51,82) — vn—1(s1 + 1,52 — 1)].

Let A, (s1,82) = Ag)(sl, S9) — Ag)(sl, S9) = (81,82 — 1) —v,(s1 —1,s9) for s; > 1andsy > 1.

Then, forsy, so > 1, we have

An(s1,82) = Lggqs-1<0y [MAn-1(s1+1,82) + AaAp_1(s1,52 + 1)]
+ (51— DmAn_1(s1 — 1,82) + (s2 — 1)y2A,_1(s1,82 — 1)
+ [ =L ism1<op(A + A2) — (5171 + 5272) | Ap_1(s1, 52)
— AP (51— 1,89) + 1AW (51,50 — 1)
+ Loy Mp—1(s1,82 — 1) + 16—y [le + (=) A (51,80 — 1)}
— LygsyMpo1(s1 — 1,82) — 16 -1y [R2M2 + (2 — p2) AL (51 - 1, 82)} :

(A.0.19)

Finally, we need the following lemma to prove Proposit®.2

Lemma A.04. If Rlﬂl = RQ,UQ, 7 < p1, and Y1 — Yo = 1 — 2 > 0, then, for alln > 0,
Af)(sl, 82) > 0 for sy > 1, andMn(sl, 82) = Rl,ul + (’71 ,ul)A( )(81, 82) andAn(sl, 82) < 0 for

s1 > landsy > 1.

Proof of Lemma A.0.4: The proof is by induction om. By definitionvy(s) = 0, Vs € S. Thus,
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Al (s1,59) = AP (s1,50) = 0 andMy(s) = Rypiy = Raopr. Then, by the definition oA (sy, s,),
Ap(s1,82) and M, (s1, s2), and aslyy sy + 1gs,—0y = 1for sy > 0, 15551y + 1g5,—1y = 1 for
5121, Tgny + 11y = 1forsy > 1, we haveAgl)(Sl,SQ) = A§2)(81,32) =0, My(s1,82) =
Ripy = Ropg, andAq(sq,s2) = 0fors; > 1andss > 1 andA§2)(sl,32) = 1{5,—0,60=1} F2p12 > 0
for s > 1. Thus, the result holds fot = 1. Next suppose that the result holds for- 1. We will
show that it also holds for. Note that we havé/,,_(s1,s2) = Rip1 + (y1 — ul)A( ) 1(s1,s2) from
the induction hypothesis. We first prove that mﬁz)(sl,@) > 0 for sy > 1. The following two cases
exhaust all possibilities:

Casels; >1

A1(’Lz)(81782) 1{81+82<C} [AIA( ) (81 +1 32) + )\QA( ) (81732 + 1):|

+ (51— D1A? (51— 1,82) + AP (51 = 1, 89) + (52— 1)712A2 (51,50 — 1)
+ [ = 1pgssm1<op (A + A2) — (5171 + 5272) ] AP (s1,59)

+ {Run + (11— p)AY (1, 82)} - [le + (1 — ) A (1,80 — 1)]

+ g 4=y [Un-1(81,52) — vp—1(s1 + 1,52 — 1)]

= 1{te<C) [AlA( ) (514 1,50) + AAP (51,50 + 1)}

+ (51— DmA? (51— 1,59) + (52 — D1AP) (51,50 — 1)

+ [ =L asm1cor A+ A2) — (51— 1)1 — 52792 — pua | AP | (s1,52)

+ m [A@) (s1—1,82) + AS)1(31, s2) — ASL(SI, s2—1) — Agjﬂslv 52)

+ M [AS_)1(81,82 —1) =AY (s1,59) + A (81782)}

— L=y MAn—1(51 + 1, 52)

S PR [AlA( ) (5141, 52) + AP (51,55 + 1)}

+ (51— DmA? (51— 1,0) + (52 — 1) AP (s1,52 — 1)

+ [T =g ssm1cop A+ A2) — (51— 1)1 — 5272 — pua | AP (s1,99)

+ mA? (51 —1,89) — 1 pop—ctMAn—1(s1 + 1,52) > 0,

where the inequality holds becatﬁéﬁl(sl, s9) > 0andA,,_1(s1 +1,s2) <0fors; > 0andsy > 1

and all coefficients oﬁfﬂl(sl, s2) are non-negative.
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Case 251 =0

ARO53) = Ligeoy MAT (Ls2) + A2A (0,50 + 1)| + (52— 192417, (0.5, = 1)
+ [I=1 1c0p (M + X2) — s972) AP (0, 50)
+ Rops + (72 — M2)A£L221(07 52) — Ligy>1) [R2M2 + (2 — Mz)A( ) 1(0, 59 — 1)]
+ 1=y [Un—1(0, 82) — vp—1(1, 89 — 1)]
= l,<0) [/\1A( )11, 52) + %A (0,55 + 1)]
+ 1= Toreer A+ A2) = (52— Dz — 2] A (0, 52)
+ g1} {(32 - 2)72A£L221(07 sy — 1)+ M2A£L2_)1(0, Sg — 1)]

+ L=y Rope — Lig—cyMAn—1(1,52) >0,

where the inequality holds becauﬁéh (0,s2) > 0andA,,_1(1,s2) < 0for se > 1 and all coeffi-
cients ofA,gll(O, s9) are non-negative.
Now, we show that\,,(s1, s2) < 0 for s; > 1 ands, > 1 for the following two cases:

Case 1is; > 1 From EquationA.0.19), we have

Ap(s1,82) = Lggys-1<c) [MAn—1(s1+1,52) + AaAp_1(s1,52 + 1)]
+ (51 = D)mAp_1(s1 —1,52) + (52 — 1)72Apn_1(s1,52 — 1)
- 'YlAS_)l(Sl —1,59) +’Y2AS_)1(81782 —1)

+ 1= Lpgasm1<orA + A2) — (5171 + 5272) | Ap_i(s1, 52)

+

R + (11— p) AW (51,80 — 1) — [RMM + (= ) AN (51— 1,59)

1 4so—t1<cy MAR—1(51 + 1,52) + XAy 1(s1,820 + 1)] + (51 — 2)114n-1(s1 — 1, 52)
(52— 1)7128n_1(s1,50 — 1) = AP (51 = 1, 59) +79AN (51,80 — 1)

[1 = 1 sp1<cp (A1 + A2) = (5171 + 5272) — 1] Ani(s1, 52)

" [A( )1(31,32 — D)+ An1(s1 —1,89) — Asll_)l(sl — 1,32)]

M1 [An—l(81782) - ASZ (51,80 — 1)+ A( ) 1(s1— 1,82)}

+ o+ o+ o+

1o ts0—1<cy [MAR—1(s1 +1,52) + A2Ap1(s1,82 + 1)]

+ [(s1 = 2)y1 + p1]An—1(s1 — 1, 82) + 11 An—1(s1,52)
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+ (52— )2ln_1(s1,80 — 1) + (12 — 1)AP (51 — 1, 80) + 720 _1(s1, 52)

+ [ =L as1<or A+ A2) — (5171 + s272) — p1] Ap—1(s1,82) <0,

where the inequality holds becaudg_1(s1,s2) <0 andAf_)l(sl —1,s9) > 0fors; > 1andsy > 1,
v2 —v1 < 0, and all coefficients of\,,_(s1, s2) are non-negative.

Case 2:s1 = 1 From EquationA.0.19, we have

An(l,82) = lggeoy [MAR—1(2,52) + XA 1(1, 82 + 1)] + (52 — 1)92A,1(1, 52 — 1)
+ [I=1cor A+ X2) — (71 + s272)] An—1(1,52) — N AP (0,50) + 7AW (1,5 — 1)
+ Rip+ (m — Nl)ASZl(L sg—1) — [R2M2 + (72 — Mz)Ang(O, s52)
1oy MAn1(2,52) + AoAn (1,52 + 1))
+ (52— D)12n-1(1,82 — 1) + Ripus — Ropiz + (2 — 1) A1 (0, 52)

+ 1= Lcor(A+ A2) — (52— 1)y2 — 1] An—i(1,52) <0,

where the inequality holds becaudg, _1(1,s2) <0 andAfﬂl(O, s9) > 0for sy > 1, Rijuy = Rapo,
e — p1 < 0, and all coefficients ofA,,_1 (1, s3) are non-negative.

Finally, using the definition of,,(s1, s2), we have

My(s1,s2) = Ropig + (72 — ,Uz)Ang)(Sl, 52)

+ max{0, Ry — Ropg + (71 — 1) AW (51, 89) — (72 — p2) AP (51, 52) .

Note that

Ripn — Ropia + (71 — p1) A (51, 82) — (72 — p2) AP (51, 82)
> (= ) AP (s1,82) — (11 — 1) AP (51, 52)

= (71— p1)An(s1,82) > 0.

where the first inequality holds becauBeuy = Raopa, 0 > 1 — 1 > 2 — o, andAf)(sl, S9) >0

for s, > 1, and the second inequality holds becaysec 1; andA,,(s1,s2) < 0fors; > 1 andsg > 1.
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Therefore,

M, (s1,82) = Ry + (1 — #1)A1(@1)(51>82)-

This completes the proof
Proof of Proposition 5.1.2: Proof of Propositiorb.1.2follows immediately from Lemma\.0.4 since
the result in LemmaA.0.4 implies that type 1 customers are prioritized for tNeperiod problem.

Letting N — oo completes the proofd

Similar to the proof of Propositio.1.1, we need the following lemma to prove Propositma.1
LemmaA.05. Forall k =1,...,K,v(s) > v(s — e), wheres € S ands; > 1.

Proof of LemmaA.0.5: Forallk € {1,..., K}, we follow the following argument. We first consider
the finite horizon problem for which we will prove that(s) > v, (s —ex) for all periodsn = 0,..., N
and all states € S, wheres;, > 1. To prove this result, we will consider two sample paths.

In the first sample path, suppose that the state-is:;, wheres € S ands; > 1 in periodn, where
n = 0,...,N. Suppose that this sample path is governed by an optimatypaelihich we call policy
m. In the second sample path, suppose that the staténiperiodn, wheren = 0,..., N. We will
next construct a policy, which we call poliay, and apply this policy in the second sample path. Then,
using induction om, we will show thatv,, (s — e;) < vﬁlo)(s), wherey) (s) is the value function under
policy my. Sincer is not necessarily an optimal policy, this will imply that(s — ex) < v,,(s) for all
n € {0,...,N}ands € S.

First consider periodV. In this case, we havegg)(s) = vn(s) = 0 forall s € S and hence
the result holds trivially. Next, suppose that, (s — ex) < v,(f)ll(s) for some periodh + 1, where
n € {0,...,N—1},and alls € S, wheres;, > 1, if 7y does the same action in peried 1 (with state

s) thatr takes in period: + 1 (with states — e;). We will show that this also holds for.

Case 1§, < Cy): At periodn, the probability of the next event being an arrival, a sendgompletion,

or a departure of a job from stagewherei # k, is the same for both sample paths. On the other
hand, the probability of next event being the departure fstagek is larger in the second sample path,
which means that the probability of staying in the same tite to uniformization) is smaller in the
second sample path. Hence, when we couple both sample fgaths,can be two possible situations.

Firstly, consider the situation where the next event isiatain the same state for the first sample path,
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and the next event is the departure of a job from sta¢mr the second sample path. #f= K, both
sample paths reach the same state in petiadl, i.e.,s — ek, and thenr follows = exactly. Hence,
Unt1(s) = ’Uﬂl(s) for all s € S, which implies thaw,, (s — e;) < v,(LO)(s). Otherwise, the state under
the first sample path is — e in periodn + 1 whereas it iss — e + e;.1 under the second sample
path. In other words, letting’ := s — e; + e 1, the state under the first sample path’is- e, in
periodn + 1 whereas it iss’ under the second sample path. As the inductive hypothesis far all
ke{l,...,K}ands € S, we havev,+1(s' — ex41) < fuﬂl(s’), and hence,, (s — ej) < v,(f))(s) for

all s € S ands;, > 1. For the events not covered in first situation, the state uth@efirst sample path is

s’ — ey in periodn + 1 whereas it i under the second sample path, whéfte= S. 7y takes the same
action under the second sample path thaakes under the first sample path. Hence, by the inductive

hypothesis, we have, (s — e;) < v,ﬁo)(s) forall s € S ands;, > 1.

Case 2§, = C}): At period n, the probabilities of next events are the same as in Case dceiéhe

results for Case 1 also apply here. The only difference is thifne next event is the arrival of a job to
stagek, then that job is lost under the second sample path, wheredkhie admitted in the first sample
path. Hence, both sample paths will reach the same stateiotpe+ 1, i.e., s. In this caserg follows
w exactly, which implies that,, ;1 (s) = v"), (s) for all s € S, and hence, (s — ex) < v\ (s).

Above we have proved that, (s — ej) < v,ﬁo)(s) <wy(s)foralln=0,...,N,s €S, ands; > 1.
Letting N — oo, we getv(s — ex) < v(s), which completes the proof]

Proof of Proposition 5.2.1: To prove the result, we show that/ (s,ax) > M(s,a;) for all j =

1,...,K—1.Forallj=1,..., K —1,we have

M(s,ar) — M(s,a;) = Riux — Ripj+ (Vi — pix)

v(s) —v(s — eK)]

— j|vls) —v(s —ej+ejpn) | + 1y

v(s) —v(s - 6j)]

> Rgpx — Rjpj + (Y& — pr) |v(s) —v(s — €K)] - (’Yj — 1) [’0(3) — (s — 63’)]
> Riprx — Rjpg
2 07

where the first and second inequalities hold from Len#a5 and the fact thay > px andy; < p;
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forallj =1,..., K —1, and the third inequality holds becauBe ;i > R;u;forallj =1,..., K—1.

This completes the proof
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