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Abstract
EVIN UZUN JACOBSON: Scheduling on Service Systems with Impatient Customers and Insights on

Mass-casualty Triage
(Under the supervision of Nilay Tanık Argon)

In this research, we study a resource allocation problem among competing customers who may differ

in their tolerance for wait. If a customer waits longer than his/her tolerance for wait (which we call the

“lifetime”), then he/she leaves the system without receiving any service. On the other hand, if a customer

enters service, a random reward is earned. The decision maker knows the type of the customer, which

determines the lifetime, service time, and reward distributions for that customer. The objective is to

obtain dynamic scheduling priority policies that maximizethe total (or average) reward collected.

Our motivation for this study is a resource allocation problem commonly observed in the aftermath

of mass-casualty events, where the medical resources are overwhelmed with the nearly simultaneous

arrivals of large numbers of patients. In such situations, the common practice is to first triage the

casualties, i.e., categorize them into priority groups based on only the type of the injuries. In this

dissertation, we study the benefits of taking into account the number of patients, the available resources,

and the changes that occur with time while giving prioritization decisions during a mass-casualty event.

We formulate the problem as a priority assignment problem for a queueing system with multiple types

of impatient jobs (patients). We study the problem under twomain scenarios: (i) the case with a fixed

number of jobs to be cleared (no future arrivals), (ii) the case with job arrivals. In either case, the

objective is to maximize the reward (either total or long-run average). For the clearing problem, we

consider the multi-server case under the assumption that service times are identically distributed, and

when we relax this assumption, we restrict our attention to the single server case. In the analysis of both

cases, we use sample path methods and stochastic dynamic programming to characterize structures of

“good” scheduling policies. For example, we show that a job is prioritized irrespective of the number of

other jobs, if it comes from the job type that brings the highest reward and that has the shortest lifetime in

some stochastic sense. We also provide analytical results that show how the optimal policy might depend

on the state of the system when such conditions do not hold. Based on these partial characterizations
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of the optimal policy, we develop state-dependent and state-independent heuristic policies, and test

the performance of these policies by a numerical study. Finally, we extend the clearing model by

considering job arrivals after time zero and allowing jobs to change type while waiting in the queue.
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CHAPTER 1

Introduction

Many service systems give prioritization decisions on a regular basis for the allocation of scarce

resources among their customers to fulfill one or more objectives. In service systems such as call centers

and health care systems where customers may renege if they wait too long, the tolerance for wait can

be different for different customer groups. Taking into account these differences for delay intolerance

as well as other customer characteristics (such as expectedrewards brought) while assigning priorities

could enhance the overall performance of the service system. In this research, we study the priority

assignment problem for such service systems by modeling them as queueing systems with multiple

classes of impatient customers.

In our most general queueing model, there are multiple identical parallel servers, each serving one

customer at a time. Each customer has a certain tolerance forwait, which we call the lifetime of that

customer. If customers wait longer than their lifetimes, then they abandon the system without receiving

any service. The lifetimes of the customers are unknown to the decision maker, but the decision maker

knows the type of the customers which determines the servicetime and lifetime distributions. A cus-

tomer that is taken into service brings a random reward, and the reward distribution is type-dependent

as well. We study this problem under two main scenarios:(i) the case with a fixed number of customers

to be cleared (no future arrivals),(ii) the case with customer arrivals. In the first case, the problem is

essentially a stochastic job scheduling problem, whereas in the second case the problem is more of a

queueing control problem. In both cases, our objective is todetermine optimal or near-optimal policies

that maximize the reward (either total or long-run average)that the customers bring to the system.

The main motivation behind this research is a basic resourceallocation problem that is commonly

encountered in the aftermath of a mass-casualty event. In the aftermath of mass-casualty events and



disasters, critical resources such as ambulances, rescue vehicles, operating rooms, and physicians are

typically overwhelmed by the sudden jump in demand for theirservices. In a matter of minutes to

hours, these resources become insufficient in numbers to provide immediate relief to all that are in need

and therefore their efficient allocation is essential for the eventual success of the emergency response

effort. However, making these allocation decisions is a very difficult task as it requires simultaneous

consideration of multiple factors. Furthermore, one needsto act fast as there is only a short period of

time during which lives can be saved. The first step of a response effort is typically to determine (at least

roughly) the urgency of different “jobs” to which the resources need to be assigned. (Here a job could

be a single patient, a group of patients, or a rescue mission involving a large number of individuals.)

Once that is done, one reasonable policy could be to start from the most urgent jobs and move onto less

urgent ones as resources become available. However, what complicates the problem is that normally, the

expected “payoff” from jobs at different urgency levels aredifferent from each other. For example, in

the case of mass-casualty incidents with traumatic injuries, most patients with shorter life expectancies

have lower chances of going through a successful operation,i.e., lower expected payoffs. Furthermore,

the service times of jobs at different urgency levels could be different as well. One of the objectives

of this thesis is to investigate these trade-offs between urgency, payoff, and faster service and identify

“good” resource allocation policies that are simple enoughto be implemented during chaotic situations.

Triage, the practice of rationing medical resources depending on the severity of the patients’ condi-

tions, dates back to Napoleonic Wars. Since then it has been widely adopted not only in wars but also

in civilian life in case of mass-casualty events or even in daily emergencies. In the medical literature,

triage is defined as a brief clinical assessment that determines the order in which patients should be seen

in the Emergency Department or, if in the field, the speed of transport and choice of hospital destination

[65]. (In this research, we define triage as the decision processassociated with determining the order

which patients be served based on the information about the system.) There are several proposed and

adopted triage systems in the emergency medicine literature. One common mass-casualty triage method

is Simple Triage And Rapid Treatment (START), which separates the injured into four groups based on

the type of the injury with each group marked by a color; see, e.g., Nocera and Garner [54]. However,

to our knowledge, there has not been any comprehensive studyon whether or not using these systems

improves the outcome of emergency response efforts. In fact, more recently, adopted practices have

been criticized for being too short-sighted. Several researchers from the emergency medicine commu-
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nity have argued that when making prioritization decisions, unlike the current practice, scarcity of the

resources should be taken into account and called for more research on how that should be done (see,

e.g., Frykberg [29] and Sacco [66]).

With this thesis, we aim to contribute to this discussion by providing insights on how resource

limitations can be taken into account when determining patient priorities in mass-casualty events and

the associated potential benefits. We do not attempt to develop a decision support tool that can readily be

used in real time. The goal rather is to develop a relatively simple model that captures the most essential

components of the decision problem, identify basic principles and rules-of-thumb that work well, and

provide some guidance to the emergency response community in their efforts to devise practical and

efficient policies.

Since the nature of the system under consideration includesfactors that are hard to quantify such

as loss of life, it is not easy to find an appropriate performance measure for the analysis of the under-

lying queuing model. Most of the Operations Research work that considers allocation of resources in

health care systems defines the performance measure as the average utilization of resources or the queue

waiting times. In the aftermath of a large-scale emergency event where the decision may involve life

or death, these performance measures may not be appropriate. Therefore, we decided to let our perfor-

mance measure be the expected reward that can be earned by serving patients. The reward associated

with each patient can have various interpretations. If the objective of the emergency response effort is

to save as many patients as possible, then the reward for a patient can be seen as the probability that

the patient will survive when the required resource is provided. If the objective is to maximize the to-

tal QALY (Quality Adjusted Life Year) score, then the rewardcan be seen as the expected QALY that

would be gained by allocating the resource to the patient. Incase of prioritizing rescue missions, if the

objective is to maximize the number of survivors, then the reward can be the number of disaster victims

who would survive as a result of the associated rescue mission.

Although the triage problem is our main motivation, prioritization decisions can arise at various

other applications and our results in this thesis are not exclusive to any specific setting. These appli-

cations include communication systems where data need to betransmitted by a given time [12]; and

call centers where impatient customers change their patterns of waiting, e.g., customers may decide to

abandon the queue before they receive service if their waiting time exceeds a certain threshold [17].

Hence, to keep the general appeal of our results, we adopt a general terminology throughout the thesis,
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which also allows us to emphasize the relevance of our findings to the classical scheduling literature.

For example, we use “jobs” that are impatient instead of patients with finite lifetimes and “servers” that

provide service to these jobs instead of ambulances or operating rooms. However, throughout the thesis,

we will interpret our results and provide insights mainly within the context of prioritization decisions

during emergency response to a disaster or a mass-casualty incident.

The outline and a brief summary of this dissertation are as follows. In Chapter2, we provide a review

of the literature on scheduling in clearing systems with andwithout deadlines, queues with reneging,

and relevant work in emergency response. In this review, we observe that although the literature on

queueing systems with impatient customers is vast, there are only a handful of articles on the dynamic

prioritization of different classes of customers with different reneging patterns. In Chapter3, we present

our clearing model with multiple identical servers and a fixed number of impatient jobs that are initially

present in the system. We consider two main trade-offs in theanalysis of the clearing model:(i) lifetime

vs. reward (urgency vs. payoff), and(ii) lifetime vs. service time (urgency vs. fast service). In Chapter

3, we study the first trade-off by assuming that service times are identically distributed for all jobs. This

is a reasonable assumption for the patient triage problem when the service constitutes the transportation

of the patients from the field to the hospitals. The analysis of the second trade-off is more challenging,

but we were able to consider both trade-offs in the same modelby restricting the number of servers to

one. Our work on this is presented in Chapter4.

In the theoretical analysis of our clearing model, we use sample path arguments, stochastic orders,

and stochastic dynamic programming to characterize structures of “good” scheduling policies. In par-

ticular, we identify conditions under which some simple state-independent policies are optimal, and for

the cases when these conditions are not satisfied, we show howthe optimal policy depends on the sys-

tem state. For example, one of our analytical results shows that when there are two types of customers

with identical service times distributions, it is optimal to serve the class of customers who brings higher

rewards when the total number of customers exceeds a certainthreshold value. Based on the knowledge

obtained from such analytical results, we develop easy-to-implement state-dependent heuristic policies

that can be used effectively for patient triage. By means of numerical experiments, we compare these

heuristics to the common practice and other proposed heuristics from the literature.

In Chapter5, we study two main extensions to our base clearing model. Firstly, we allow arrival

of jobs after time zero. Secondly, we consider the model where each customer’s lifetime consists of
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multiple stages and the decision maker knows which stage each customer is in at any given time. We

use an approach similar to that used for the clearing model toobtain insights on efficient prioritization

policies. Finally, we present our concluding remarks in Chapter6.

5



CHAPTER 2

Literature review

In this chapter, we review the related literature in four main categories. Although some of the papers

that we review fall into more than one of these categories, wewill discuss them in only one category.

2.1 Scheduling in clearing systems

There is a vast literature on stochastic scheduling in clearing systems, where the objective is to

determine the order of the processing of jobs that are all available at time zero so as to optimize certain

performance measures. We here review only the most relevantwork and refer the interested reader

to a popular textbook on scheduling by Pinedo [60] for an overview of deterministic and stochastic

scheduling in clearing systems and issues about implementing these models. Within the stochastic

scheduling literature, we are aware of only four papers thatdiscuss scheduling in a clearing system with

impatient jobs. These articles are Argon, Ziya, and Righter[2], Glazebrook, Ansell, Dunn, and Lumley

[31], Li and Glazebrook [51], and Childers, Visagamurthy, and Taaffe [21]. As we do in this thesis,

these four articles seek a solution to the problem of allocating service capacity to impatient jobs in a

setting where all jobs are present at time zero and no additional jobs are expected to arrive. However,

our work differs from these four articles in a number of ways.One common difference is that they all

consider models with a single resource while we allow the number of resources to be possibly more

than one. This is an important generalization since in many emergency response settings there is usually

more than one resource available (e.g., when the resources are ambulances). We next review these four

related articles in more detail.

Among these four articles, the closest to our work is the one by Argon et al. [2]. The authors consider

a formulation where patients who belong to one of two different types (which determine their lifetime



and service time distributions) receive service from a single server. The objective is to determine the

optimal policy that maximizes the total expected number of survivors. Along with a number of analytical

results that characterize the optimal policy, the authors propose two state-dependent heuristic policies

that give priority to jobs with smaller mean service times but longer mean lifetimes when the system is

heavily congested. In this thesis, we consider formulations that generalize the model of Argon et al. [2]

in several ways making it a much more realistic representation of the actual system. First, as we stated

before, the number of servers can be greater than one. Second, patients can belong to more than two

different types. Third, unlike in the model of Argon et al. [2] not all patients who receive service bring

the same reward; the rewards may depend on the type of the patient. This generalization significantly

enriches the model. For example, it allows us to incorporatesurvival probabilities that differ across

patient types.

Although not motivated by priority decisions during emergency response, Glazebrook et al. [31]

study a model that is highly relevant. Specifically, the authors consider a general job-scheduling for-

mulation of a multi-class single server clearing system with impatient jobs having exponential lifetimes

under the objective of maximizing the expected total rewardaccumulated. They propose a simple state-

independent policy resembling the “cµ rule” and prove that this policy is asymptotically optimal in the

class of non-preemptive policies as the death rates approach to zero, i.e., as the mean lifetimes go to

infinity. The authors also provide a brief numerical study onthe performance of the suggested policy.

However, as Argon et al. [2] and Li and Glazebrook [51] demonstrate later, this simple policy does not

perform well when death rates are sufficiently large.

Li and Glazebrook [51] consider a formulation that is very similar to that of Argonet al. [2] ex-

cept that they allow more than two patient types. The objective of the work is developing a heuristic

method that could be executed in real-time to produce a near-optimal solution. With this objective,

the authors use the idea of applying a single-step of the policy improvement algorithm (for Markov

decision processes) on the state-dependent policy proposed by Glazebrook et al. [31]. They also use

a fluid approximation for computing value functions needed in the policy improvement algorithm. By

a numerical study, the authors show that this method produces a solution that is close to the optimal

performance.

In a numerical study, Childers et al. [21] consider a similar job-scheduling problem with impatient

jobs with the motivation of ordering patients for transportin case of a health-care facility evacuation. In
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their model, the patients are classified into two types (critical and non-critical) and there is a final due

date common to all patients. They study the problem under twoobjectives: maximizing the number of

lives saved and minimizing the holding cost of patients. Consistent with the results by Argon et al. [2],

Childers et al. [21] conclude that when the resources are severely limited, theevacuation should start

with non-critical patients first and switch to critical patients as the number of patients in need decreases.

Finally, there are many other articles on traditional job scheduling problems but with jobs that do not

renege from the system after their due date. See, for example, Boxma and Forst [15], Coffman, Flatto,

Garey, and Weber [23], Emmons and Pinedo [27], Righter [63], Weber, Varaiya, and Walrand [74], and

Weiss and Pinedo [76]. The articles by Boxma and Forst [15] and Emmons and Pinedo [27] are the

most relevant as their models also have multiple servers andtheir objective is to minimize the weighted

number of tardy jobs (i.e., jobs for which the deadline expires while waiting in the queue). In these

models, “weights” can be seen as “rewards” in our formulation, but unlike our work, the weights of

jobs are deterministic. Furthermore, the work by Boxma and Frost [15] differs from ours in that they

consider only static policies under the assumption that thedue dates are independent and identically

distributed (i.i.d.). As only static policies are considered, all jobs are scheduled at time zero, and hence

a tardy job can be taken into service although it is not optimal to do so. One of the results by Boxma and

Frost [15] shows that if all due dates are i.i.d. and processing times are stochastically ordered, then the

jobs with stochastically shortest processing times shouldbe processed first. Emmons and Pinedo [27],

on the other hand, consider dynamic scheduling policies as we do in this thesis. One of their results

states that if the processing times are i.i.d., and the due dates are either i.i.d. or have the same value, then

the optimal non-preemptive dynamic policy is to process thejob with the largest weight. In Chapter3,

we prove a similar result but without the assumption on i.i.d. due dates and deterministic weights. They

also investigate the system under preemptive service discipline. They prove that if the processing times

are i.i.d. exponential random variables, and the due dates are independent and can be ordered according

to their failure rates, then the optimal preemptive dynamicpolicy is to process the jobs in the increasing

order of their failure rates.
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2.2 Scheduling in queueing systems with deadlines

In this section, we first review five relevant papers that consider scheduling in multi-class queueing

systems with deadlines. The main difference of this sectionfrom Section2.1 is the arrival of customers

after time zero. Bhattacharya and Ephremides [11, 13] assume that the stochastic due date of a job is

announced upon the arrival of the job and show that a form of the “shortest-time-to-extinction” policy

is optimal under certain conditions. Moreover, Pandelis and Teneketzis [56] establish sufficient condi-

tions under which serving one type of job is optimal at all decision epochs. The studies of Bhattacharya

and Ephremides [11, 13] and Pandelis and Teneketzis [56] differ from our work as the due dates are

announced upon arrival and their performance measure of interest is the (expected) discounted tardiness

(and/or earliness) and/or long-run average tardiness (and/or earliness) per customer. Finally, Liu [53]

investigates the scheduling of a multi-class queueing system with deterministic deadlines by consider-

ing fixed and dynamic prioritization policies with preemption, and the performance measure is server

utilization. In addition to the difference in the performance measure of interest, our work also differs

from Liu [53] since we consider random deadlines (i.e., lifetimes).

Among the studies on scheduling in a single-class queueing system with random deadlines, the

papers by Bhattacharya and Ephremides [12], Panwar, Towsley and Wolf [57] and Pinedo [59] are the

most relevant to our problem mainly because the performancemeasure of interest in these papers is the

(weighted) number of tardy jobs. Bhattacharya and Ephremides [12] show that under the assumption

of i.i.d. lifetimes, i.i.d. service times, and i.i.d. interarrival times (that are all mutually independent), the

“earliest-arrival” policy is optimal if the lifetime distribution has a non-decreasing failure rate. Panwar et

al. [57] show that a form of the “shortest-time-to-extinction” policy is optimal under certain conditions

if the due date of a job is known upon arrival, and they comparethe performance of the “shortest-time-

to-extinction” policy with the first-come, first-served policy for various scenarios. Pinedo [59] considers

only list scheduling policies, i.e., the decision maker arranges all jobs into a list at time zero, and is not

allowed to change this list thereafter. Hence, when a list scheduling policy is applied, all jobs (even

those jobs that are tardy) are processed. It is shown that if the processing times of jobs are independent

and exponentially distributed, their release dates (i.e.,the times that the jobs are available for processing)

are random, and their due dates are identically distributed, then the optimal static list policy sequences

jobs in increasing order of mean processing times when the system has a single server.
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2.3 Queueing systems with reneging

There is a vast literature on the analysis of queueing systems with impatient customers (reneging or

abandonments). The most relevant one is the study by Down, Koole and Lewis [26]. They consider a

single server Markovian queueing system with two types of customers and both types of customers have

equal service rates. They analyze both the discounted holding cost minimization and the long-run aver-

age reward maximization problems, and they formulate each of the two problems as a continuous-time

MDP. One of their objectives is to identify the cases where a static policy is optimal. Their main result

states that if type 1 jobs have higher reneging rates and rewards, then it is optimal to serve type 1 jobs.

We obtain a similar result for our clearing problem in Chapters 3 and4, but our results hold with more

generality as we allow more than two types of jobs, general lifetime and service time distributions, and

multiple servers in Chapter3, and type-dependent service rates in Chapter4. By means of a numerical

study, they identify the conditions under which thecµ-rule’s deviation from optimality is significant.

We are also aware of three studies on heavy traffic approximations of the multi-server multi-type

queueing systems with impatient customers; namely, Atar, Giat and Shimkin [6], Ghamami and Ward

[30], and Perry and Whitt [58]. Under the Markovian assumption, Atar et al. [6] propose a policy

called “cµ/θ rule,” wherec, µ, andθ denote the holding cost rate, the service rate, and the abandonment

rate, respectively. They show that thecµ/θ rule is asymptotically optimal for the long-run average

cost minimization problem. They also provide a counterexample that shows that thecµ/θ rule is not

necessarily asymptotically optimal for a finite horizon version of the cost function. Ghamami and Ward

[30] consider the dynamic control of a system with two job types and two parallel servers, one of which,

namely server 2, can serve both types of jobs, and server 1 canonly serve type 1 jobs. (This system is

usually called the N-system.) Customers from each class arrive according to a renewal process and the

lifetime of a customer is exponentially distributed. The main result shows the asymptotic optimality of

a two-threshold policy that uses one threshold on the total number of customers and another threshold

on type 1 jobs to determine which job server 2 should serve. Their objective is to minimize the expected

infinite horizon discounted holding and reneging cost of jobs. Finally, Perry and Whitt [58] consider a

multi-class Markovian queueing problem, where each class has a separate queue that is served by a pool

of multiple servers. They approximate the problem by a deterministic fluid model and propose a policy

that balances the workload by sharing a server pool among various queues when the workload is high.
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They test the performance of the proposed policy using simulation.

There are other papers that examine queueing systems with two classes of customers, where only

class-1 customers are impatient and have higher priority over the class-2 customers, see, e.g., [17, 19,

22, 40, 3, 4]. These papers assume preemptive service, and therefore the dynamics of class-1 customers

are not affected by class-2 customers. Thus, the dynamics ofclass-1 customers reduce to a single class

of customers with impatience, which is well investigated byseveral authors (partly as special cases

of more general models), see, e.g., [7, 8, 9, 14, 16, 18, 37, 73] and references therein. Moreover, in

some of these studies, a customer may abandon the system not only while waiting for service, but also

during his/her service, see, e.g., [9, 22, 37]. In that case, some of the service will not be useful. Among

the work that examines the characteristics of class-2 customers, Choi et al. [22] study anM/M/1

queueing system, where class-1 customers have impatience of constant duration. The main results are

on the stability condition, the probability generating function of the distribution of number of class-

2 customers, and Laplace-Stieltjes transform of the sojourn time of class-2 customers. Brandt and

Brandt [19] generalize this model by considering impatience with a general distribution. They obtain

the distribution of the number of customers in service or in class-1 queue. They develop an approximate

method for obtaining the moments of the number of customers in class-2 queue. Furthermore, Brandt

and Brandt [17] analyze the case where class-1 customers may join the class-2 queue or leave the system

if the random maximal waiting time exceeds a given deterministic time. They propose a birth-and-death

queueing model for a call center with impatient class-1 customers and patient class-2 customers. If

class-1 customers wait in the queue beyond a given threshold, they become class-2 customers. Class-2

customers are served when no class-1 customers are waiting and the number of idle agents exceeds a

threshold. Iravani and Balcıoğlu [40] consider three separate problems. In the first problem, alljobs are

impatient and the server follows a preempt-resume policy, and in the second problem, only the high-

priority class customers are impatient and their service isperformed in a non-preemptive manner. In

the third problem, there are multiple servers and in addition to leaving the system due to reneging, a

customer can leave the system without joining the queue (balking) if he/she knows his/her prospective

waiting time upon arrival, and this time exceeds the maximalwaiting time. Our work differs from the

studies reviewed in this paragraph, as they analyze the performance measures of interest for a fixed

policy, whereas we aim to characterize the optimal policy for the performance measure of interest.

Similar to the third problem in [40], the articles by Armony and Maglaras [3, 4] consider a multiple-
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server problem where the system provides information aboutwaiting times upon arrival, and after re-

ceiving the information, customers can balk, join the high-priority queue, or request a call-back. The

information provided upon arrival includes the waiting time in the high-priority queue and a guaranteed

amount time within which the system will call them back. Withan objective of minimizing the delay

in the high-priority queue, Armony and Maglaras [3] show that the proposed policy is better than the

policy that only gives the information on the waiting time inthe high-priority queue asymptotically.

Furthermore, Armony and Maglaras [3] investigate the optimal staffing levels that satisfies a setof con-

straints on the system performance under heavy traffic regime. Finally, in addition to two-class priority

queueing models that are discussed in [40, 3, 4], there are other queueing systems in the literature where

customer balking is investigated, see, e.g., [5, 44, 77]. Additionally, other types of departures from the

system without service completion can be due to admission and expulsion decisions. For examples of

this work, see [20, 42, 45, 64, 78, 79, 80] and the references therein.

2.4 Operations Research work on emergency response management

Even though patient triage has long been practiced, interestingly, there has not appeared any com-

prehensive study on how useful existing triage systems are or in fact whether or not triage is useful

at all (Jenkins et al. [41] and Lerner et al. [50]). More recently, a number of authors (e.g., Frykberg

[29]) discussed the limitations of existing practices and argued in support of making triage and priority

decisions while taking into account resource limitations.However, to the best of our knowledge, there

is only one work from the emergency medicine literature (Sacco et al. [66, 67]) that proposes a pri-

oritization method (called theSacco Triage Method(STM)) that takes into account system conditions.

More specifically, Sacco and his coauthors propose a linear-programming-based method for determin-

ing priorities when dispatching patients to the hospitals.In their model, patients are categorized into

twelve criticality levels upon arrival, the planning horizon is divided into a fixed number of periods,

and a decision about which patients to transport to the hospital is made at the beginning of each time

period. Transportation times are deterministic and patients become deterministically more critical with

time. The survival probability of a patient depends on the criticality level at the given time. The idea

is to solve a linear program at the beginning of the response effort and perhaps repeatedly thereafter as

the conditions change. Then, the results are compared to START by means of a numerical study. Their
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results show that the difference in the performance of the proposed method and START is very small

when patients are not very critical but the difference becomes significant when patients become more

critical. Moreover, when the resources are overwhelmed, the less critical patients with higher survival

probabilities should be given priority. Then, their main conclusions state that the current procedures of

triage do not take into account resource limitations and have too few categories, so patients have very

different survival probabilities within a category, and they point out that a method that better predicts

the condition of the patient and considers resource limitations while giving prioritization decisions is

needed to improve the expected number of survivors. In addition to the fact that STM largely ignores

the randomness inherent in the actual system, the method hasbeen criticized as being impractical as it

suggests using a real-time solution, which might differ drastically from one event to the other, and it

highly relies on perfect system information and communication within the disaster area; see Cone and

MacMillan [24]. Our objective is not to propose a real-time solution method like STM, but instead to

identify basic rules and principles that the emergency response community can use in the development

of simple and effective prioritization policies.

Although not very relevant, we would like to mention that in the context of emergency response

planning, excluding patient triage, there is also some early work that used multi-server queueing models

for optimal dispatching of police patrols in New York City, see [32, 33, 35, 48, 68, 69]. Green [32] pro-

poses a multiple-car dispatch model. The model is a multi-server, multi-priority Markovian queueing

model, and the number of servers needed by each type of service call is given by a probability distribu-

tion. The service times are assumed to be i.i.d., and the performance measures of interest include the

probability of delay, mean delay for each type of call, and the average number of available servers. The

comparison of this model with several other queueing modelsis discussed in Green and Kolesar [33].

Furthermore, in the study by Green and Kolesar [35], the validity of this model is tested. Schack and

Larson [68, 69] also consider a multi-server, multi-priority queueing system motivated by dispatching

of police patrol cars, assuming that the service times are i.i.d. They derive some system statistics includ-

ing the waiting time distributions for each type of calls. Another study by Larson [48] investigates the

effects of increasing the service area of police patrols andconcludes that travel times do not necessarily

increase when the service area increases, especially at themedium utilization of police patrols.

For comprehensive reviews of the Operations Research work on emergency response, the interested

reader is referred to [1, 36, 46, 49, 72].

13



CHAPTER 3

Scheduling of impatient customers in a clearing system with

multiple servers and i.i.d. service times

In this chapter, we investigate a problem that is similar to atraditional job scheduling problem

although with some important differences. Very broadly, the problem can be described as follows:

There are different types of jobs each having a stochastic due date, which is unknown to the decision-

maker, and an associated expected reward that will be earnedif the job is taken into service before its

due date. Each job has a stochastic processing time distributed identically for all jobs. The objective is

to maximize the total expected reward by dynamically determining the order according to which jobs

will be processed.

The outline of the chapter is as follows. We start with our model description in Section3.1. In

Section3.2, we use a sample-path argument to show that urgent jobs that bring high rewards should

be prioritized at all times. In the absence of such a condition, we need to make other simplifying

assumptions for analytical tractability. Hence, in Sections 3.3 and 3.4, we assume that service time

and lifetime (time until the due date) for each job are exponentially distributed, and then formulate the

problem as a stochastic dynamic program. Using this formulation, we prove several structural results

that characterize the optimal policy under certain conditions. These analytical results not only help us

generate useful insights on the characteristics of “good” policies but also provide analytical support

for the development of three heuristic methods that we propose in Section3.5. Finally, in Section3.6,

we test the performance of our heuristic policies by means ofa numerical study and observe that it is

possible to design simple policies that perform well.



3.1 Model description

In our model, we assume that at time zero there areN jobs that are in need of receiving service from

one of theM identical parallel servers, whereN > M ≥ 1. (The problem is trivial whenN ≤ M .)

Jobs are impatient in the sense that if a job’s waiting time inthe queue exceeds its “lifetime,” it reneges,

i.e., it leaves the system without receiving any service. Jobs that enter service do not renege while in

service. We assume that there will not be any future job arrivals so that the problem is over as soon as

all of theN jobs in the system are cleared either after they receive service or after their lifetime expires.

A job that is taken into service brings a random reward.

In the context of a mass casualty event, jobs can refer to any group of tasks that require the same

set of scarce resources during an emergency response effort. For example, in case of a bombing, jobs

can be injured patients who are waiting to be transported to ahospital; or in case of a natural disaster,

they can be already hospitalized patients who are waiting tobe transferred to safer locations from areas

affected by the disaster. In these two examples, the scarce resource would be ground or air transportation

vehicles. Similarly, jobs can be patients with traumatic injuries that are brought to a hospital following

an emergency event and the scarce resource can be the operating rooms of the hospital. In each one

of these cases, there is a random due date for each job since patients can die before they are safely

transported and/or provided with the required medical care. Moreover, the reward of a job can be seen

as the probability that the patient will survive after the given service or the patient’s QALY. In the case

of prioritization of rescue missions, where a limited resource needs to be allocated among several rescue

missions, the reward can be seen as the number of potential survivors associated with the mission.

Each job in the system is characterized by its lifetime and reward distribution. We assume that the

service times for all jobs are i.i.d. One setting where this assumption would be perfectly reasonable

is when determining priorities for patients who need to be dispatched to a specific hospital from the

disaster area via ambulances. In such a situation, transportation times are not expected to depend on the

type of patients. We also assume that the service is performed in a non-preemptive manner, i.e., once a

server starts processing a job, it cannot start working on another job before completing the processing

of the job that is already in service.

Let Yi be the lifetime of jobi at time zero,Zi be the non-negative reward earned when jobi is

taken into service, andSi be the service time for jobi for i = 1, . . . , N . We assume that{Yi}Ni=1,

15



{Zi}
N
i=1, and{Si}Ni=1 are sequences of independent random variables and that these three sequences

are independent from each other. We also assume that{Si}
N
i=1 is a sequence of identically distributed

random variables. We letΠ be the set of all dynamic and non-preemptive scheduling (prioritization)

policies. Here, a dynamic prioritization policy is a collection of rules that determine which job is taken

into service at any given decision epoch based on the state ofthe system, i.e., the time of the decision

epoch and the collection of jobs in the system. We also defineCπ(t) to be the total reward earned by

time t ≥ 0 when policyπ ∈ Π is applied. Our objective is to identify characteristics ofpolicies that

either maximizeCπ(t) stochastically or its expectation by the time the system is cleared.

In Sections3.2, 3.3, and3.4, we study the characteristics of the solution to this optimization problem.

Before we proceed with the analysis, we first note an intuitive result, which is proved in the Appendix.

Proposition 3.1.1. Any idling policy is suboptimal in the sense of maximizingCπ(t) along any given

sample path.

Based on Proposition3.1.1, in the rest of the chapter, we only consider non-idling policies. Note that

since idling can never be optimal and preemption is not allowed, the decision epochs for our dynamic

control problem are time zero and service completion instants. At time zero, allN servers are available

and hence the decision is to assign all these servers to jobs.From then on, new jobs are allocated at

service completion instants, i.e., at times when servers become available.

3.2 When more urgent jobs have higher rewards

We first study settings where jobs with earlier lifetimes (and thus are more urgent) have higher

associated rewards. In this section, we do not make any distributional assumptions on service times,

lifetimes, and rewards, and our objective is to maximizeCπ(t) stochastically. We start by providing the

definitions of three stochastic orders used throughout thisdissertation.

Suppose thatX andY are two random variables that are either discrete or continuous. IfPr{X >

u} ≤ Pr{Y > u}, for all u ∈ (−∞,∞), thenX is said to be smaller thanY in the sense ofusual

stochastic orders(denoted byX ≤st Y ). On the other hand, ifPr{X − v > u|X > v} ≤ Pr{Y − v >

u|Y > v}, for all u, v ≥ 0, thenX is said to be smaller thanY in the sense ofhazard rate orders

(denoted byX ≤hr Y ). Finally, letf(t) andg(t) be the densities or probability mass functions ofX
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andY , respectively. Iff(t)/g(t) is decreasing int over the union of the supports ofX andY , thenX

is said to be smaller thanY in the sense oflikelihood ratio orders(denoted byX ≤lr Y ). Note that

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y . For more on these stochastic orders, see Shaked and Shanthikumar

(2007).

Proposition 3.2.1. Consider a decision epocht0 ≥ 0 at which jobsi andj are available for service. If

Yi ≤hr Yj andZi ≥lr Zj, then a policyπ ∈ Π that serves jobj at timet0 can be improved (in the sense

of stochastically increasingCπ(t) for all t ≥ t0) by serving jobi instead of jobj at timet0.

Proposition3.2.1, which is proved in the Appendix, states that if the lifetimes and rewards of any

two jobs can be ordered according to the hazard rate and likelihood ratio orders respectively, then giving

priority to the job with a shorter lifetime and larger rewardincreases the total reward stochastically, and

as a result, also in expectation. Thus, when determining which job to serve next, a job can be eliminated

from consideration if it is dominated by another job whose lifetime is longer in the sense of hazard rate

ordering and whose reward is smaller in the sense of likelihood ratio ordering. If these two orderings

hold for any job pair, then the optimal policy can be completely characterized. Hence, Proposition3.2.1

directly leads to the following result.

Corollary 3.2.1. If Y1 ≤hr Y2 ≤hr · · · ≤hr YN andZ1 ≥lr Z2 ≥lr · · · ≥lr ZN , then a non-idling

policy that prioritizes the job with the smallest index at every decision epoch maximizesCπ(t) in the

sense of usual stochastic orders for everyt ≥ 0.

Corollary 3.2.1 indicates that giving priority to the job with the shortest lifetime (in the sense of

hazard rate orders) maximizes the total reward earned if that job also brings the highest reward (in the

sense of likelihood ratio orders).

Both Proposition3.2.1and Corollary3.2.1make intuitive sense as it is reasonable to believe that

high-reward jobs with short patience times (e.g., patientswith shorter life expectancies and higher sur-

vival probabilities) should get higher priority. These results are important in that they provide specific

ordering conditions under which this intuition holds. In the context of emergency response, the results

imply that if a group of patients have a higher chance of survival but a shorter life expectancy in terms

of the stochastic orders given in Proposition3.2.1and Corollary3.2.1, then that group should receive

priority no matter how many resources (e.g., ambulances) are available and how many patients there are
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at any point in time during the response effort. However, at least in the case of mass-casualty triage,

the situations where these conditions hold are not common since survival probabilities for patients with

longer life expectancies are typically higher (see, e.g., Sacco et al. 2005). Therefore, in the following

sections, we mainly focus on cases where more urgent jobs bring lower rewards.

3.3 When more urgent jobs have lower rewards

In most mass-casualty incidents, patients who have shorterlife expectancies also have smaller

chances of survival. Thus, investigating priority decisions for the case where more urgent jobs bring

lower rewards is crucial. However, in this case, even a partial characterization of the optimal policy

appears to be very difficult if not impossible for general service time and lifetime distributions. If we

assume that service times and lifetimes are exponentially distributed, then we can obtain partial char-

acterizations of optimal policies and gain insights into policies that perform well. Furthermore, these

characterizations lead to simple heuristic policies that can be used in non-exponential settings as well.

Our claim here is not that in reality (at least in scheduling problems that arise during emergency

response efforts) service times or lifetimes are exponentially distributed. Although, to the best of our

knowledge, no prior work has studied what particular distributions would be good fits, there is also no

reason to expect that the exponential distribution would bea good choice neither for lifetimes nor service

times. However, the assumption of exponentially distributed lifetimes and service times (which we refer

to as the Markovian assumption) allows some mathematical analysis and helps us develop insights into

what kind of policies are likely to work well in practice. In fact, as we demonstrate in Section3.6, the

heuristic methods that are developed based on our analysis of the Markovian case perform well even

under settings when the exponential assumptions do not hold. Thus, the main insights that come out

of our analysis appear to be valid under conditions that are more general than the Markovian setup we

assume here.

In the following, we assume that jobs are classified intoK different job types, each type being

characterized by its mean lifetime and reward, where2 ≤ K ≤ N . These job types can be seen as

triage classes for patients with different injury characteristics or more generally patients with different

health conditions. Letµ > 0 be the service rate for all jobs. Also, fori = 1, . . . ,K, let ri > 0 be

the abandonment rate (i.e., the reciprocal of the mean lifetime) andαi > 0 be the expected reward for
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a typei job. Finally, if we letZi denote the reward of a typei job for i = 1, . . . ,K, we assume that

Zi comes from a distribution such thatαi ≤ αj implies thatZi ≤lr Zj for all i, j ∈ {1, . . . ,K}.

We let Dπ(m1, . . . ,mK) be the expected total reward accumulated after all jobs are cleared when

prioritization policyπ ∈ Π is applied andmi jobs from typei ∈ {1, . . . ,K} are initially in the system,

where
∑K

i=1mi = N . We use a dynamic programming formulation to characterize the solution of the

optimization problem, which is stated as

max
π∈Π

Dπ(m1, . . . ,mK).

We define the state of the system with the vector(q; s), whereq := (q1, . . . , qK), qi is the number

of type i jobs waiting (excluding the ones in service), ands is the number of jobs in service. The

decision epochs are time zero and service completion times at which there exist at least two job types

say i and j such thatqi, qj ≥ 1. At time zero, the state of the system is(m1, . . . ,mK ; 0) and the

decision is to determine the number of servers to be allocated to each job type, i.e., to determine the

vectorn := (n1, . . . , nK), whereni ∈ {0, 1, . . . ,mi} for i = 1, . . . ,K and
∑K

j=1 nj = M . On the

other hand, at service completion times at which there is at least one job waiting for service,s will be

equal toM − 1 and the decision is to determine the type of job to be allocated to the available server

among those types for whichqi > 0 for i = 1, . . . ,K. We next present the dynamic programming

equations.

Let V (q; s) be the value function at state(q; s), i.e., the maximum expected total reward starting

from state(q; s). Also letei denote the vector with a one in theith position and zeroes elsewhere andIA

denote the indicator function of eventA, i.e.,IA = 1 if A is true, andIA = 0 otherwise. The dynamic

programming equations are given as follows:

V (m1, . . . ,mK ; 0) = max
(n1,...,nK)∈Φ

{
K∑

i=1

αini + V (m1 − n1, . . . ,mK − nK;M)

}
, (3.3.1)

where

Φ =

{
(n1, . . . , nK) : ni = 0, 1, . . . ,mi, i = 1, . . . ,K;

K∑

j=1

nj =M

}
.
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Forq ∈ {(q1, . . . , qK) : qi = 0, 1, . . . ,mi, i = 1, . . . ,K;
∑K

j=1 qj ≤ N −M}, we have

V (q;M − 1) = max
i=1,...,K

{I{qi≥1}αi + V (q− ei;M)} and (3.3.2)

V (q;M) =
MµV (q;M − 1) +

∑K
i=1 qiriV (q− ei;M)

Mµ+
∑K

i=1 qiri
. (3.3.3)

Finally, we letV (q; s) = 0 if min {q1, . . . , qK , s} < 0, or qi = 0 for all i = 1, . . . ,K and s =

0, 1, . . . ,M .

In the remainder of this section, we use this dynamic programming formulation to obtain results on

the characteristics of optimal policies. Without loss of generality, assume thatα1 ≤ α2 ≤ · · · ≤ αK .

From Corollary3.2.1, we already know that ifα1 ≤ α2 ≤ · · · ≤ αK andr1 ≤ r2 ≤ · · · ≤ rK , i.e.,

when the expected rewards and abandonment rates are agreeably ordered, then it is optimal to prioritize

typeK jobs. What if jobs with higher rewards do not necessarily have shorter lifetimes? How should

we set priorities in that case? In this section and Section3.4, we will provide some answers to these

questions.

3.3.1 Structure of the optimal policy

In order to give the reader some idea about how the optimal policies look like in general we start

with two examples. First, suppose that there are two types ofjobs and two servers. Figure3.1presents

the shape of the optimal policy for a specific example whereα2 > α1 andr2 < r1, i.e., type 2 jobs have

higher expected rewards and longer lifetimes. We selected this particular example since it demonstrates

the general structure for the optimal policy that we observed from several numerical examples.

Figure3.1(a) shows the optimal allocation of the two servers at time zero for various values ofm1

andm2. Figure3.1(b) demonstrates the optimal allocation of the server at a service completion instant

for different values ofq1 andq2. As it can be seen from both plots, the optimal policy gives priority

to less time-critical jobs that bring a higher reward (i.e.,type 2 jobs) when the number of jobs waiting

is sufficiently large. To better understand the reason behind this, it might help to think of the extreme

hypothetical case where there is an infinite supply of type 1 and type 2 jobs. In this case, one can see that

it is always preferable to serve high-reward (type 2) jobs since there is simply no advantage in serving a
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(a) The optimal policy at time zero (b) The optimal policy after a
service completion

Figure 3.1: The optimal policy for the case whereM = K = 2, α1 = 1.000, α2 = 1.001, µ = 0.9009,
r1 = 0.9091, andr2 = 0.9009.

type 1 job instead. When there are fewer jobs however, delaying service to type 2 jobs becomes a better

strategy since one can “afford” to serve at least some of the type 1 jobs before switching to type 2 jobs,

which have longer lifetimes. In the context of emergency response, this observation suggests that giving

priority to less time-critical patients with a higher survival probability might be better when there are

many patients in need of treatment. When the number of casualties is significantly high and it is clear

that a large percentage of them is likely to die because of resource limitations, it makes more sense to

use the resources to serve those with higher rewards, e.g., those who are more likely to go through a

successful service. However, when there are so few patients, then it makes more sense to give priority

to those with shorter life expectancies even though the chances of saving them are smaller since there is

enough time to get back to less time-critical patients later.

The optimal policy shown in Figure3.1does not possess some of the desired monotonicity properties

that would make describing and determining optimal policies easier. In particular, for a fixed number of

type 2 jobs, the optimal policy is not monotone in the number of type 1 jobs. For example, if there are

25 type 2 jobs, as the number of type 1 jobs decreases, the optimal decision switches from serving type

2 jobs to serving type 1 jobs and then back to serving type 2 jobs again.

For the second example, suppose that there are three job types, two servers,α3 > α2 > α1, and

r3 < r2 < r1. Thus, type 3 jobs bring the largest expected rewards and have the longest mean lifetimes
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while type 1 jobs bring the lowest expected rewards and have the shortest mean lifetimes. Figure3.2

gives a rough description of the optimal policy for this example. As the reader can observe from the

figure, the state space is divided into three regions. The first region is shaded in grey and is a polyhedron

defined by corner points A, B, C, and O. The second region is another polyhedron defined by the corner

points A, B, C, D, and E. Finally, the third region includes all the other remaining points in the state

space. The optimal policy for this case prioritizes typei jobs at the end of every service completion if

the state falls in theith region, fori = 1, 2, 3. Hence, as in the previous example, when the number

of jobs is large, the optimal policy prefers jobs with largerexpected rewards and longer lifetimes, and

when the number of jobs is small, the optimal policy prefers jobs with smaller expected rewards and

shorter lifetimes.
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Figure 3.2: The structure of the optimal decisions at service completion instants for the case where
M = 2, K = 3, α1 = 1.0000, α2 = 1.0018, α3 = 1.0020, µ = 0.9009, r1 = 0.9091, r2 = 0.9009,
andr3 = 0.9001.

As the two examples clearly demonstrate, when the expected rewards and abandonment rates are

not agreeably ordered, the optimal policy may be a state-dependent policy, i.e., a policy where the pri-

oritization decisions depend on the number of jobs from eachtype that are waiting to receive service.

However, even though the numerical computation of the optimal policy is straightforward, its structure
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can be quite complex, and therefore coming up with a completecharacterization of the optimal policy

appears to be a significant challenge. We can however show that the optimal policy possesses a partic-

ular type of monotonic structure under certain conditions.This structure is rigorously described in the

following proposition, which is proved in the Appendix.

Proposition 3.3.1. Consider a job typej ∈ {1, . . . ,K} and a state(q;M − 1), whereqj ≥ 1. Suppose

that for all k ∈ {1, . . . ,K} \ {j} such thatqk ≥ 1, an optimal action in state(q − ek;M − 1) is to

serve a typej job, and ifqj ≥ 2, an optimal action in state(q− ej;M − 1) is to serve a typej job. If

(αjrj − αiri)

K∑

k=1

qkrk + (ri − rj)

K∑

k=1

αkqkrk ≥ αiri(Mµ− rj)− αjrj(Mµ− ri) (3.3.4)

and

ri ≥ rj (whenK ≥ 3) (3.3.5)

for everyi ∈ {1, . . . ,K} \ {j} such thatqi ≥ 1, then an optimal action in state(q;M − 1) is to serve

a typej job.

Proposition3.3.1 essentially says that under Conditions (3.3.4) and (3.3.5), it is optimal to give

priority to a job of typej in a given state if it is also optimal to give priority to a typej job in all states

with one less job of any particular type. Proposition3.3.1is important not only because it gives a partial

characterization of the optimal policy but also because it serves as a backbone for the proofs of a number

of insightful results on the structure of optimal policies (Propositions3.4.1 and 3.4.2 in particular),

which in turn form the basis for one of our heuristic methods described in Section3.5. Furthermore,

Proposition3.3.1leads to more sufficient conditions under whichindex policiesare optimal, specifically

Corollaries3.3.1and3.3.2, and Proposition3.4.4.

3.3.2 Optimality of index policies

An index policyis a set of state-independent decision rules that assign priorities based only on job

types at any given state. Index policies have clear practical advantages over state-dependent policies.

They are easier to implement since under such policies the priority relation among types of jobs does

not change with time and system state, and also there is no need to keep track of the number of jobs

from each type. In this section, we study index policies moreclosely.
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In Proposition3.2.1, we identified a set of conditions under which a job type should be prioritized

over another regardless of the system state. For the Markovian case, these conditions imply that if

αi ≤ αj andri ≤ rj, then jobj should receive higher priority than jobi at all decision epochs. We now

identify a condition under which a job with the smallest abandonment rate receives the highest priority

independently of the system state. Proofs of all propositions presented in this section are deferred to the

Appendix.

Proposition 3.3.2. Suppose that there exists a job typej ∈ {1, . . . ,K} such thatri ≥ rj andαiri ≤

αjrj for all i = 1, . . . ,K. Then, the optimal policy gives priority to typej jobs at all decision epochs.

According to Proposition3.3.2, non-urgent jobs can receive priority at all decision epochs regardless

of the system state if their rewards are sufficiently high. This means that in the context of emergency

response, if there is a particular type of patients, say typej, who have long life expectancies (i.e.,rj ≤ ri

for all i = 1, . . . ,K), they should nevertheless get the highest priority regardless of the system state if

their expected reward is significantly large (i.e.,αj ≥ αiri/rj for all i = 1, . . . ,K).

Proposition 3.3.3. Suppose that there exists a job typej ∈ {1, . . . ,K} such thatαi ≤ αj andαiri ≤

αjrj for all i = 1, . . . ,K. Then, the optimal policy gives priority to typej jobs at all decision epochs.

Proposition3.3.3 states that jobs with the highest reward should receive priority at all decision

epochs regardless of the system state if they also abandon the system at a sufficiently high rate. In the

context of emergency response, this means that the type of patients, say typej, who bring the highest

expected reward (i.e.,αj ≥ αi for all i = 1, . . . ,K) should get the highest priority regardless of the

system state if their life expectancies are significantly short (i.e.,rj ≥ αiri/αj for all i = 1, . . . ,K).

Propositions3.3.2and3.3.3also lead to complete characterizations of the optimal policy under two

sets of conditions. More specifically, applying Propositions 3.3.2and3.3.3multiple times, we obtain

Corollaries3.3.1and3.3.2, respectively.

Corollary 3.3.1. If r1 ≥ r2 ≥ · · · ≥ rK andα1r1 ≤ α2r2 ≤ · · · ≤ αKrK , then a non-idling policy

that prioritizes the type of jobs with the highest index at every decision epoch is optimal.

Corollary 3.3.2. If α1 ≤ α2 ≤ · · · ≤ αK andα1r1 ≤ α2r2 ≤ · · · ≤ αKrK , then a non-idling policy

that prioritizes the type of jobs with the highest index at every decision epoch is optimal.
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Corollaries3.2.1, 3.3.1, and 3.3.2 provide us three sets of sufficient conditions that lead to the

optimality of index policies. They are not necessary conditions however, and index policies might be

optimal even when none of these conditions hold. Although itdoes not appear to be possible to identify

necessary conditions, by applying a simple argument, we cancharacterize the structure of the “best”

index policy given that there is an index policy that is optimal among all policies inΠ.

Proposition 3.3.4. If an index policy is optimal among all policies inΠ, then it must give priority to the

job with the largest value ofαiri/(Mµ + ri).

Proposition3.3.4describes the optimal policy under the condition that thereis an index policy that

is optimal. This condition does not hold in general as it can be clearly observed from Figures3.1 and

3.2. However, this index policy can still perform well and thus can be used as a heuristic policy even

though it may not be optimal. One important reason for expecting a reasonably good performance from

this policy is that it is “myopically” optimal. To be specific, note that if a particular job is not taken into

service at a decision epoch then the probability that it willnot be available at the next decision epoch is

ri/(Mµ+ri) if it is of type i. Consequently,αiri/(Mµ+ri) can be seen as the “immediate opportunity

cost” of not providing service to that particular job. The index policy given in Proposition3.3.4simply

gives priority to the job with the largest immediate opportunity cost.

Remark 3.3.1. The index policies described in Corollaries3.2.1, 3.3.1, and3.3.2all agree with the

index policy identified in Proposition3.3.4.

3.4 When more urgent jobs have lower rewards: The case with two types

of jobs

In this section, we study a special Markovian case where jobsare categorized into two classes, i.e.,

K = 2. This simplification helps us push the analytical results further, get a better understanding of

optimal policies, and develop heuristic methods of assigning priorities. More importantly, priority deci-

sions during emergency response mainly concern two groups of jobs/patients. For example, according

to START – a widely adopted triage system – the casualties arecategorized into four groups but the

most important decision concerns the priority ordering between critically injured patients who need to

be taken care of as soon as possible (classified asimmediate) and those who also have serious injuries but
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can wait a little longer (classified asdelayed). Other patients, i.e., those with minor injuries (classified

asminor) and those with injuries that are so severe that chances of survival are almost zero (classified

asexpectant), have the lowest priority. It is clear that as long as patients are correctly classified, there is

no point in giving priority to either minor patients or expectant patients. However, the priority decision

between the immediate and delayed patients is not clear at all. Even though the general understanding

(and the current practice) is that immediate patients should have a higher priority than delayed patients,

some in the emergency response community (e.g., Frykberg 2002) have suggested that this decision

should ideally depend on the number of casualties and the scarcity of the available resources.

We start by assuming without loss of generality thatα2 ≥ α1. Whenα2 = α1, Proposition3.2.1

implies that it is optimal to serve the job with the highest abandonment rate, and hence it is sufficient

to only consider the case whereα2 > α1. Proposition3.2.1also characterizes the optimal policy when

α2 > α1 andr2 ≥ r1. Hence, in this section, we will only focus on the case whereα2 > α1 and

r2 < r1, i.e., type 1 jobs have shorter life expectancies and thus are in more critical condition and their

expected rewards are smaller.

Figure3.1 presents a typical shape for the optimal policy whenK = 2. The figure suggests that

in general the optimal policy divides the state space into two regions separated by a single curve. A

complete characterization of this curve, i.e., a complete description of the optimal policy, does not seem

to be possible under all cases. Therefore, our objective here is to identify some structural properties of

the optimal policy, with the ultimate goal of developing heuristic policies that nicely approximate the

optimal policy, i.e., the curve that separates the two regions in Figure3.1. Now, since it appears that the

optimal policy has a lot to do with the total number of jobs waiting to be processed, a reasonable and

also easy-to-implement policy would be of the form: serve a type 1 job if the total number of patients

q1+q2 is less than or equal to some threshold and serve a type 2 job otherwise. It is clear from Figure3.1

that such a policy is not optimal in general. However, one canalso see that if that threshold is carefully

chosen, such a policy has the potential to be a reasonable alternative to the optimal policy. With this

motivation, we next identify conditions under which the optimal action can be determined by simply

comparing the total number of jobs with a threshold value.

In the following two propositions, we show that optimal actions at time zero and at service comple-

tion instants can be partially characterized by two thresholds. We first present the threshold result for

service completion instants. The proofs of all our results in this section are provided in the Appendix.
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Proposition 3.4.1. Suppose thatK = 2 andα2 > α1.

(i) There exists a threshold

T1 =
Mµ(α1r1 − α2r2)

(α2 − α1)r1r2
+ 1 (3.4.1)

such that at all states(q;M − 1), whereq1 + q2 ≤ T1 andq1, q2 ≥ 1, type 1 jobs are prioritized under

the optimal policy.

(ii) If there exists a positive integerT ≥ T1 such that at all states(q;M − 1), whereq1 + q2 = T and

q1, q2 ≥ 1, it is optimal to give priority to type 2 jobs, then it is also optimal to prioritize type 2 jobs at

all states(q;M − 1) such thatq1 + q2 > T andq1, q2 ≥ 1.

To see how Proposition3.4.1partially characterizes the optimal policy, we first define

T2 = inf{T : T ≥ T1;α1 + V (q− e1;M − 1) ≤ α2 + V (q− e2;M − 1),

∀q1, q2 ≥ 1, q1 + q2 = T}, (3.4.2)

with the convention thatinf ∅ = ∞. In other words,T2 is the smallestT that satisfies the condition

given in part (ii) of Proposition3.4.1if there exists suchT ; otherwiseT2 is set to infinity. Note thatT2

is always larger than or equal toT1. We can now see that Proposition3.4.1 implies that the optimal

policy can be characterized partially by at most two thresholds: When the total number of jobs is

below T1, giving priority to type 1 jobs is optimal; and when it exceeds T2, giving priority to type

2 jobs becomes optimal. Only when the total number of jobsq1 + q2 is betweenT1 andT2, we do not

know what the optimal action is. Hence, Proposition3.4.1partially characterizes the optimal structure

observed in Figure3.1 (b), whereT1 is approximately equal to17.06 andT2 = 59. More importantly,

Proposition3.4.1provides analytical support to our observation that when the number of patients in

need of treatment is large and resources are highly loaded, giving priority to patients who have higher

chances of survival might be more preferable.

We can also obtain a similar threshold result for the decision given at time zero, which partially

characterizes the structure of the optimal policy observedin Figure3.1(a).

Proposition 3.4.2. Suppose thatK = 2 andα2 > α1.

(i) If N ≤ T1+M −1, whereT1 is given by Equation (3.4.1), then the optimal policy allocates as many

servers as possible to type 1 jobs at time zero.
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(ii) If N ≥ T2 +M − 1, whereT2 is given by Equation (3.4.2), then the optimal policy allocates as

many servers as possible to type 2 jobs at time zero.

Propositions3.4.1and3.4.2provide partial yet simple characterizations of the optimal policy pro-

viding insights into patient prioritization decisions. The results clearly show that optimal priority deci-

sions can be dependent on the scale of the mass-casualty incident, i.e., the total number of patients in

need of treatment. Even though these characterizations do not describe the optimal policy completely,

they could be very useful in practice due to their simplicity. For example, in the immediate aftermath

of a mass-casualty event, it would be much easier and faster for emergency responders to estimate the

total number of casualties rather than the number of casualties at each criticality level. Furthermore,

as we demonstrate in Section3.6, a heuristic policy developed based on Propositions3.4.1and3.4.2,

which simply use the total number of jobs to determine priority levels, performs surprisingly well. (See

Section3.5 for the description of this heuristic policy and others.)

In the remainder of this section, we present two sets of conditions under which we can completely

characterize optimal policies, both of which turn out to be index policies. We first provide a suffi-

cient condition on the total number of jobs in the system at time zero under which the optimal policy

prioritizes type 1 jobs at all decision epochs.

Proposition 3.4.3. Suppose thatK = 2 andα2 > α1. If N ≤ T1 +M − 1, then the optimal policy

prioritizes type 1 jobs at all decision epochs.

Proposition3.4.3 essentially provides a threshold value such that if the total number of patients

immediately after the event is below this threshold, patients with smaller chances of survival should get

the higher priority at all times. Thus, the standard ordering of the START triage method, which always

gives priority toimmediatepatients with lower chances of survival, is reasonable whenthe scale of the

event is relatively small.

Finally, we provide a sufficient condition under which the optimal policy always prioritizes type 2

jobs regardless of the number of jobs waiting for service.

Proposition 3.4.4. Suppose thatK = 2 andα2 > α1. If

α2r2
Mµ+ r2

≥
α1r1

Mµ+ r1
, (3.4.3)
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then the optimal policy gives priority to type 2 jobs at all decision epochs.

Similar to Proposition3.3.3, Proposition3.4.4implies that the jobs with the larger expected reward

should receive higher priority regardless of the system state if they abandon the system at a rate high

enough that Condition (3.4.3) holds. Note however that this condition on the abandonmentrate of the

job type with the highest expected reward is weaker than the one provided in Proposition3.3.3. Finally,

we would like to point out a subtle but important difference between Propositions3.3.4 and 3.4.4.

Proposition3.3.4states thatif there is an index policy that is optimal, then priorities are determined by

the indicesαiri/(Mµ + ri). On the other hand, Proposition3.4.4does not assume that the optimal

policy is an index policy; it says that ifK = 2 and the index policy described in Proposition3.3.4is

agreeable with the highest expected reward rule, then it is optimal.

3.5 Heuristic policies

In Sections3.2, 3.3, and3.4, we obtained partial characterizations of the optimal policy and also

identified conditions under which simple state-independent policies are optimal. For the remaining

cases where the optimal policy is not characterized completely, we develop simple heuristic rules that

are expected to perform well under a variety of conditions. To be more specific, in this section, we pro-

pose two state-dependent heuristic policies, namely the2-stepandthreshold heuristics. These heuristics

are designed based on our dynamic programming formulation and structural results (particularly Propo-

sition 3.4.1) presented in Sections3.3 and 3.4. We also propose an index policy, which we call the

myopic policy, based on Propositions3.3.4 and 3.4.4. We finally discuss two other index policies,

namely theαrµ-rule and time-critical-first rule, which will later serve as benchmark policies in our

numerical study.

Below, we describe these heuristic policies under the assumption that the service times and lifetimes

are exponentially distributed. However, as we explain later in Section3.6, they can be also applied

in more general settings. When describing the heuristics inthe following, we assume, without loss of

generality, thatmi ≥ 1 andqi ≥ 1 for all i ∈ {1, . . . ,K} because when the number of jobs is zero for

a job type, then the problem essentially reduces to a problemwith one less job type.

1. 2-step policy: At every decision epoch, this heuristic maximizes the expected total reward over

the next two periods. (Here, the period means the time between two consecutive event completion
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times.) More precisely, to obtain this heuristic, we solve the dynamic programming equations

(3.3.1), (3.3.2), and (3.3.3) assuming that the problem horizon is of two periods length.This

gives us the following policy: At time zero, pick the allocation (n∗1, . . . , n
∗
K) that attains the

following maximum:

max
(n1,...,nK)∈Φ

{
K∑

i=1

αini +
Mµmaxj∈{1,...,K}

{
I{mj−nj≥1}αj

}

Mµ+
∑K

j=1(mj − nj)rj

}
.

Similarly, at a service completion, i.e., when the system isin state(q;M − 1), serve typei∗ such

that

i∗ = arg max
i∈{1,...,K}

{
αi +

Mµmax
{
I{qi≥2}αi,maxj∈{1,...,K}\{i}{αj}

}

Mµ− ri +
∑K

j=1 qjrj

}
.

(In case of ties, we arbitrarily leti∗ be the smallest index that attains the maximum.)

Figure3.3 shows the structure of the 2-step heuristic for the same experimental setting used in

Figure3.1. From the figure, we observe that for larger numbers of type 1 and 2 jobs, the heuristic

prioritizes type 2 jobs, which is consistent with the optimal policy. Note however that the structure

of the curves separating the state space differs between the2-step heuristic and the optimal policy.

Indeed, we can show that the curve that separates the state space into two regions under the 2-step

policy at a service completion instant is a non-increasing function ofq1 whenK = 2 andr1 > r2

(as in Figure3.3(b)), which is not true for the optimal policy as shown in Figure 3.1(b).

2. Threshold policy: A quick examination of Figures3.1 and3.2 suggests that the optimal policy

can possibly be approximated by a set of threshold values on the total number of jobs. For

example, in Figure3.1, a line that passes through points(q1 = 0, q2 = 50) and(q1 = 50, q2 = 0)

could be used as the boundary between the set of states in which type 1 jobs are served and those

in which type 2 jobs are served. This policy is clearly not optimal but it is expected to perform

well.

More generally, the heuristic policy we propose is described by (at most)K − 1 thresholds

{T1, . . . ,TK−1}, whereT1 ≤ T2 ≤ · · · ≤ TK−1. It is specifically designed for the case where

α1 ≤ α2 ≤ · · · ≤ αK andr1 ≥ r2 ≥ · · · ≥ rK although it is possible to use it in other parameter

regions as well. The heuristic works as follows: At a servicecompletion, forj = 1, . . . ,K, type

j jobs are prioritized ifTj−1 <
∑K

i=1 qi ≤ Tj, whereT0 = −∞ andTK = ∞. Similarly, at time
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(a) 2-step heuristic at time zero (b) 2-step heuristic at a
service completion

Figure 3.3: A sample structure for the 2-step heuristic whenα1 = 1.000, α2 = 1.001, µ = 0.9009,
r1 = 0.9091, r2 = 0.9009, andM = K = 2.

zero, the threshold policy gives priority to typej jobs if Tj−1 +M − 1 < N ≤ Tj +M − 1,

for j = 1, . . . ,K. To be more specific, if typej is the preferred type based on the thresholds,

thenM type j jobs are taken into service at time zero ifmj ≥ M . Otherwise, the remaining

M −mj servers are allocated to the job types with the closest index, starting from typej +1 and

continuing with typej − 1, typej + 2, and so on.

Now, the question is how one should pick the thresholds. We propose two different methods. In

the first method, for each pair of job typesi andj, wherej = 2, . . . ,K andi = 1, . . . , j − 1, we

compute

Ti,j =
Mµ(αiri − αjrj)

(αj − αi)rirj
+ 1, (3.5.1)

which is identical to the threshold expression given in Proposition3.4.1. Then, we let

Tj = min{Tj+1, max
i∈{1,...,j}

{Ti,j+1}}, for j = 1, . . . ,K − 1. (3.5.2)

In the second method, we use the 2-step policy to obtainTi,j ’s. To be specific, consider the 2-step

policy when there are two types of jobs, namely typei and typej jobs. Then, the equation of the
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switching curvefor the 2-step policy is given by

αi +
Mµmax

{
I{qi≥2}αi, αj

}

Mµ+ (qi − 1)ri + qjrj
− αj −

Mµmax
{
αi, I{qj≥2}αj

}

Mµ+ qiri + (qj − 1)rj
= 0, (3.5.3)

for qi, qj ≥ 1. We letqi = 1 in Equation (3.5.3) and solve forqj (the largest solution is denoted

by q∗j ); and similarly, we letqj = 1 in the same equation and solve forqi (the largest solution is

denoted byq∗i ). If a solution is found for both equations, then we letTi,j = max{q∗i , q
∗
j} based on

our observation that the 2-step policy tends to underestimate the area under the switching curve

for the optimal policy whenK = 2. If a solution does not exist for one of the two equations, then

we letTi,j = 0. Finally, thresholdsTj ’s are determined using (3.5.2) as in the first method.

Thus, we have two different threshold-type policies depending on which method is used when

computing the thresholds. When they are calculated using (3.5.1) [(3.5.3)], we call the policy the

Threshold-1 [Threshold-2] heuristic.

One nice property of the threshold heuristic is its simple structure as it is completely characterized

by at mostK − 1 thresholds and the only required information is the total number of jobs in the

system. In order to see the basic idea behind this heuristic,consider the simplest case where

K = 2. Given Proposition3.4.1, it would be reasonable to expect a relatively good performance

from a policy that gives priority to more urgent jobs when thetotal number of jobs is below a

certain threshold and to less urgent ones otherwise. This isprecisely what the threshold policy

does. WhenK = 2, the policy is defined by a single threshold valueT1 = T1,2 that divides

the state space into two regions. As shown in Figure3.4, the structure of the threshold policy is

similar to that of the optimal policy in that the heuristic gives priority to type 2 jobs when the

number of jobs in the system is large. The threshold policy simply generalizes this basic structure

to anyK ≥ 2.

3. Myopic policy: This index policy, which is based on Proposition3.3.4, prioritizes typei∗ at all

decision epochs where

i∗ = arg max
i∈{1,...,K}

{
αiri

Mµ + ri

}
.

This policy can be seen as prioritizing the job with the largest “immediate opportunity cost” of

not providing service. For more on the justification of this policy, see our discussion following
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Figure 3.4: A sample structure for the Threshold-1 heuristic whenα1 = 1.000, α2 = 1.001, µ =
0.9009, r1 = 0.9091, r2 = 0.9009, andM = K = 2.

Proposition3.3.4.

4. αrµ-rule: This index policy, which is proposed by Glazebrook et al. (2004), prioritizes typei∗

such that

i∗ = arg max
i∈{1,...,K}

{αiriµi},

whereµi is the service rate for typei jobs. Glazebrook et al. show that when the lifetimes are

exponentially distributed and there is a single server, theαrµ-rule is asymptotically optimal as

abandonment rates approach zero. More specifically, if the abandonment rates are defined as

ri = θνi for all i = 1, . . . ,K, then theαrµ-rule is asymptotically optimal asθ → 0. For our case,

whereµi = µ for all i = 1, . . . ,K, theαrµ-rule essentially becomes theαr-rule. Furthermore,

when the service rates are equal for all jobs, theαrµ-rule and the myopic policy behave similarly

under some additional conditions. To see this, consider theratio ofαiriµi to αiri/(Mµ + ri):

αiriµ

αiri/(Mµ + ri)
=Mµ2 + riµ,

for i = 1, . . . ,K. This shows that theαrµ-rule and the myopic policy will behave similarly when

ri’s are either very close to each other or very close to zero forall i = 1, . . . ,K. Moreover, using

the asymptotic optimality of theαrµ-rule for smallθ, we can conclude that the performance of
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the myopic policy will be very close to that of the optimal policy for smallθ under the assumption

thatM = 1 and the lifetimes are exponentially distributed.

5. Time-Critical-First (TCF) rule: This index policy is based on the common practice for patient

triage during daily emergencies that always gives priorityto the most time-critical patients. To be

more precise, this heuristic prioritizes typei∗ such that

i∗ = arg max
i∈{1,...,K}

{ri}.

Although this rule is expected to perform poorly in general,we still include it in our numerical

analysis due to its common use in daily triage.

Among the five heuristics described in this section, the TCF rule is likely to be the easiest to imple-

ment as it simply requires an ordering of the patients with respect to their remaining life expectancies.

Theαrµ-rule and the myopic policies are also simple policies although in addition to life expectancies

these heuristics require estimates on “rewards” such as survival probabilities. In comparison, the 2-step

and the threshold policies are more sophisticated since they both prescribe state-dependent rules. How-

ever, they are also relatively easy to implement, arguably among the simplest state-dependent policies

which can be expected to perform well. One of the desirable aspects of these policies is that they do not

use any distributional properties other than the mean values of remaining lifetimes and rewards, which

means that they can be immediately adapted to settings whereMarkovian assumptions do not hold. The

threshold policies are even simpler in that they only need tokeep track of the total number of patients

as opposed to the number of patients of each type.

Finally, in this section, we present a result that shows thatall of the heuristics proposed in this

chapter (i.e., the 2-step, Threshold-1, Threshold-2, and myopic policies) agree with the optimal policy

for all conditions under which these heuristics are defined and we were able to characterize the optimal

policy. The proof of Proposition3.5.1is provided in the Appendix.

Proposition 3.5.1. Suppose that the Markovian assumption holds.

(i) If r1 ≤ r2 ≤ · · · ≤ rK andα1 ≤ α2 ≤ · · · ≤ αK , then the 2-step policy, myopic policy,αrµ-rule,

and TCF rule are optimal.1

1Threshold policies are not defined for these conditions.
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(ii) If r1 ≥ r2 ≥ · · · ≥ rK andα1r1 ≤ α2r2 ≤ · · · ≤ αKrK , then the 2-step policy, Threshold-1 and

Threshold-2 policies, myopic policy, andαrµ-rule are optimal.

(iii) If α1 ≤ α2 ≤ · · · ≤ αK andα1r1 ≤ α2r2 ≤ · · · ≤ αKrK , then the 2-step policy, Threshold-1 and

Threshold-2 policies, myopic policy, andαrµ-rule are optimal.

(iv) If K = 2, α1 < α2, andα1r1/(Mµ + r1) ≤ α2r2/(Mµ + r2), then the 2-step, Threshold-1,

Threshold-2, and myopic policies are optimal.

3.6 Numerical results

In this section, we present our numerical results on the performance of the heuristics discussed in

Section3.5. We consider two cases: (i) the case where lifetimes and service times are exponentially

distributed; and (ii) the case where lifetimes come from a Weibull distribution and service times are

deterministic. In both settings, we can compute the performance of the optimal policy and compare it

with those of the heuristic policies.

3.6.1 Exponential lifetimes and service times

In the first part of our numerical analysis, service times areexponentially distributed with rate one

(i.e.,µ = 1) and lifetimes are exponentially distributed with rateri > 0 for type i ∈ {1, . . . ,K} jobs.

In order to test the heuristics under a variety of conditions, we generated some of the system parameters

randomly. More specifically, we generated the initial numbers of jobsmi, for i = 1, . . . ,K, indepen-

dently and uniformly over the set{1, 2, . . . , 100} and the rewardsαi, for i = 1, . . . ,K, independently

from a uniform distribution with range[0, 1]. We considered five subsets of experiments depending

on the range of the abandonment ratesri, for i = 1, . . . ,K, which are generated independently from

a uniform distribution with ranges[2.0, 5.0], [0.5, 2.0], [0.1, 0.5], [0.01, 0.1], and[0.005, 0.001]. (The

first [last] subset corresponds to the case where jobs are most [least] time-critical.) For each subset, we

generated 5,000 random scenarios whereα1 < · · · < αK andr1 > · · · > rK . For every scenario,

we calculated the expected total reward collected under allsix heuristic policies and the optimal policy.

Then, we computed the percentage deviation of the expected total reward under each heuristic from that

under the optimal policy. Based on these 5,000 percentage deviations, we constructed a95% confidence

interval (C.I.) on the mean and determined the median and themaximum percentage deviation. We also
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calculated the number of times each heuristic provided the best performance among the six heuristics in

each subset. The results forM = K = 2 andM = K = 3 are presented in Table3.1.

Table 3.1: Performance of the heuristic policies (in terms of the percentage deviation from the opti-
mal performance) when the service times and lifetimes are exponentially distributed andmi ∼ Uni-
form{1,. . . ,100} for i = 1, . . . ,K.

M = K = 2 M = K = 3
Heuristic 95% C.I. Median Maximum # of times 95% C.I. Median Maximum # of times

best best

ri ∼Uniform[2.0,5.0]
2-step 0.03± 0.00 0.00 3.30 4423 0.13± 0.01 0.00 4.31 2573

Threshold-1 0.02± 0.00 0.00 1.95 4097 0.06± 0.00 0.02 3.47 2023
Threshold-2 0.44± 0.01 0.34 12.11 232 0.33± 0.01 0.21 5.40 40

Myopic 0.50± 0.05 0.00 14.42 4345 2.56± 0.11 0.31 20.49 2238
αrµ 2.39± 0.15 0.00 36.71 3667 9.89± 0.23 7.99 39.28 261
TCF 35.81± 0.72 32.62 98.35 90 36.93± 0.56 34.64 93.70 8

ri ∼Uniform[0.5,2.0]
2-step 0.22± 0.02 0.00 11.29 3679 0.66± 0.03 0.10 11.58 1018

Threshold-1 0.04± 0.01 0.00 4.55 4164 0.15± 0.01 0.01 6.30 3404
Threshold-2 0.35± 0.02 0.18 7.75 294 0.66± 0.03 0.18 10.21 38

Myopic 1.54± 0.10 0.00 21.39 3792 5.11± 0.17 2.72 29.13 1374
αrµ 2.80± 0.16 0.00 31.64 3385 8.66± 0.22 6.60 36.33 579
TCF 27.81± 0.63 22.95 95.64 308 27.71± 0.45 25.70 87.86 37

ri ∼Uniform[0.1,0.5]
2-step 0.83± 0.06 0.00 15.85 3115 1.83± 0.07 0.62 16.33 472

Threshold-1 0.08± 0.01 0.00 5.68 4465 0.23± 0.01 0.02 5.19 3908
Threshold-2 0.78± 0.05 0.03 13.81 468 1.78± 0.07 0.60 15.47 66

Myopic 1.32± 0.09 0.00 22.98 3749 3.64± 0.13 1.56 23.01 1574
αrµ 1.55± 0.10 0.00 25.54 3656 4.22± 0.14 2.06 23.78 1371
TCF 19.11± 0.52 13.26 86.46 743 17.47± 0.36 14.95 77.68 202

ri ∼Uniform[0.01,0.1]
2-step 2.06± 0.10 0.00 21.98 2666 3.21± 0.10 1.79 22.68 320

Threshold-1 0.04± 0.01 0.00 2.39 4631 0.07± 0.01 0.00 2.27 3996
Threshold-2 1.99± 0.10 0.00 21.36 2091 3.17± 0.10 1.77 21.72 270

Myopic 0.23± 0.03 0.00 11.48 4432 0.43± 0.03 0.00 9.45 3187
αrµ 0.24± 0.03 0.00 12.49 4421 0.46± 0.03 0.00 9.45 3147
TCF 6.86± 0.27 1.87 60.78 1888 4.87± 0.17 2.37 45.82 849

ri ∼Uniform[0.005,0.01]
2-step 0.19± 0.01 0.00 5.11 3931 0.49± 0.02 0.27 4.47 387

Threshold-1 0.00± 0.00 0.00 0.15 4930 0.00± 0.00 0.00 0.34 4475
Threshold-2 0.18± 0.01 0.00 5.11 3706 0.49± 0.02 0.27 4.47 383

Myopic 0.00± 0.00 0.00 0.76 4893 0.02± 0.00 0.00 0.79 4159
αrµ 0.00± 0.00 0.00 0.76 4892 0.02± 0.00 0.00 0.79 4147
TCF 4.04± 0.14 2.09 27.74 1029 2.91± 0.09 1.56 18.97 481

From Table3.1, we observe that Threshold-1 achieves the best performanceamong all heuristic

policies and across all parameters with a significant marginin some cases. The only exception is the case

whereri ∈ [2.0, 5.0], i.e., when jobs are very time-critical. In this case, the 2-step policy has the smallest

median and the 2-step and myopic policies yield the best performance in slightly higher numbers of

scenarios. However, the Threshold-1 policy still providesa better average performance mainly because

when the 2-step and myopic policies deviate from the optimalperformance, the deviation is significant
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enough that their average performances are worse than that of Threshold-1. When we consider all the

scenarios in this analysis, the Threshold-1 policy is at most 6.3% worse than the optimal policy. Thus,

Threshold-1 policy not only performs well on the average butalso appears to be robust with respect to

changes in the system parameters.

Considering the other state-dependent heuristics, namelythe 2-step and Threshold-2 policies, we

see that they perform similar to one another for small abandonment rates but the 2-step policy is in

general better when jobs are time-critical. However, neither of these two heuristic policies come close

to the superior performance of the Threshold-1 policy (except in the first subset when jobs are very

time-critical).

Among the three index policies considered, the myopic policy is the best across all parameter sets,

and it is significantly better than the other two when jobs aretime-critical. As expected, theαrµ-rule

and the myopic policy provide near-optimal performances when the abandonment rates approach to

zero.

In summary, Table3.1suggests that it is possible to find a simple and very effective policy (such as

the Threshold-1 policy) that achieves a near-optimal performance across a variety of parameter regions

by only using the information on the total number of jobs. It is especially important to use such a state-

dependent policy when jobs are time-critical, i.e., their abandonment rates are high. When jobs are not

time-critical, all policies (except for TCF) yield a performance similar to the optimal performance since

regardless of which policy is used few jobs reach the end of their life while waiting to get service. Hence,

when the abandonment rates are high, one could as well use oneof the simple state-independent policies

such as the myopic policy. Finally, if conditions do not allow using a state-dependent policy, regardless

of whether or not abandonment rates are high, it might be bestto choose the myopic policy since its

performance is either comparable to or better (in some casessignificantly better) than the performances

of the alternative index policies.

3.6.2 Weibull lifetimes and deterministic service times

In this section, we test the performance of the heuristics discussed in Section3.5 under a non-

exponential setting. We assume that the lifetimes come froma Weibull distribution with shape parameter

θi > 0 and scale parameterβi > 0. (Weibull is a commonly used distribution for modeling the lifetimes

of humans; see, e.g., Section 2.2.2 in Hougaard 2000.) Then,the abandonment rates are given by
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ri = θi/[βiΓ(1/θi)] for i = 1, . . . ,K, whereΓ(·) is the gamma function. We assume that the service

times are deterministic withµ = 1, i.e., each service takes exactly one unit of time. The deterministic

service time assumption allows us to compute the performance of the optimal policy.

We next discuss how we adapt the heuristics we described in Section 3.5 to this non-exponential

setting. When lifetimes are not exponentially distributed, the abandonment rates change with time.

When implementing the heuristics, one can either ignore that and simply use the abandonment rates of

time zero at all times, or update them with time. In this study, we use the updated rates as in Argon et

al. (2008). It can be shown that the updated abandonment ratefor job typei ∈ {1, . . . ,K} at timet ≥ 0

is given by

ri(t) :=
θi

βiΓ(1/θi, (t/βi)θi)
e−(t/βi)θi ,

whereΓ(a, b) :=
∫∞
b ua−1e−udu, for a > 0 and b ≥ 0, is the incomplete gamma function. At

each decision epoch after time zero, these updated abandonment rates are used instead of the initial

abandonment rateri. (Note thatri(0) = ri.) Also, since the service times are equal to one time unit

for all jobs, the decision epochs take place at times0, 1, 2, . . ., and all servers become available at every

decision epoch. Hence, at all decision epochs where there are more thanM jobs in queue, the decision

is to determine whichM jobs will be taken into service. Thus, in this deterministic-service setting, the

heuristics use time-zero server allocation decisions (as described in Section3.5) at every decision epoch.

For the numerical experiments, we set the initial number of jobsmi to ten and letθi = 1.5 for all i =

1, . . . ,K. (Unfortunately, due to the computational complexity of this non-exponential case, we could

not use the same experimental setting of Section3.6.1.) We then generated the initial abandonment rate

ri(0) from a uniform distribution with five different ranges:[2.0, 5.0], [0.5, 2.0], [0.1, 0.5], [0.01, 0.1],

and[0.005, 0.001]. For each of these five subsets of experiments, we generated 5,000 random scenarios

whereα1 < · · · < αK andr1(0) > · · · > rK(0). (Since the shape parameter is the same for all types

of jobs, havingri(0) > rj(0) implies thatri(t) ≥ rj(t) for all t ≥ 0, i, j ∈ {1, . . . ,K}.) We computed

the performance of each heuristic as in Section3.6.1 and summarized the results for the cases with

M = K = 2 andM = K = 3 in Table3.2. We also repeated the experiments for the Markovian case

with exponentially distributed service times and lifetimes under the same parameter settings in order to

observe the effects of distributional assumptions on the performances of the policies. These results are

presented in Table3.3.
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Table 3.2: Performance of the heuristic policies (in terms of the percentage deviation from the optimal
performance) when the service times are deterministic, lifetimes come from a Weibull distribution, and
mi = 10 for i = 1, . . . ,K.

M = K = 2 M = K = 3
Heuristic 95% C.I. Median Maximum # of times 95% C.I. Median Maximum # of times

best best

ri ∼Uniform[2.0,5.0]
2-step 0.02± 0.01 0.00 3.47 4922 0.10± 0.02 0.00 6.71 4672

Threshold-1 0.01± 0.00 0.00 2.56 4116 0.02± 0.00 0.00 2.87 3895
Threshold-2 0.08± 0.01 0.00 3.57 1184 0.10± 0.01 0.00 6.71 1448

Myopic 0.35± 0.04 0.00 15.45 4628 0.92± 0.08 0.00 22.76 1085
αrµ 2.42± 0.18 0.00 40.68 3731 3.99± 0.23 0.00 45.18 1150
TCF 44.00± 0.75 43.56 99.10 78 58.44± 0.64 62.17 99.10 7

ri ∼Uniform[0.5,2.0]
2-step 0.41± 0.04 0.00 9.74 4458 1.31± 0.07 0.03 15.50 3197

Threshold-1 0.25± 0.01 0.00 2.75 3559 0.68± 0.03 0.16 7.16 2337
Threshold-2 1.53± 0.03 1.33 5.76 74 2.90± 0.06 2.32 15.08 6

Myopic 1.02± 0.08 0.00 19.74 4173 2.09± 0.07 1.18 14.30 1506
αrµ 2.79± 0.15 0.00 29.14 3438 3.01± 0.10 1.83 23.93 999
TCF 32.84± 0.64 31.41 87.88 308 29.38± 0.46 30.08 74.28 190

ri ∼Uniform[0.1,0.5]
2-step 0.77± 0.07 0.00 19.22 4394 1.97± 0.08 0.58 17.98 2868

Threshold-1 0.86± 0.05 0.00 10.74 3695 1.16± 0.05 0.27 9.34 3013
Threshold-2 0.75± 0.05 0.09 10.52 606 2.22± 0.07 1.28 14.57 361

Myopic 2.13± 0.14 0.00 25.67 3882 1.78± 0.05 1.10 12.20 1722
αrµ 2.82± 0.16 0.00 29.51 3675 1.95± 0.06 1.17 12.20 1640
TCF 28.63± 0.60 26.89 79.99 606 17.04± 0.27 16.75 49.16 300

ri ∼Uniform[0.01,0.1]
2-step 0.22± 0.02 0.00 8.38 4812 0.07± 0.00 0.01 1.71 4049

Threshold-1 3.94± 0.20 0.00 39.14 3122 4.34± 0.17 0.14 31.47 2372
Threshold-2 0.20± 0.02 0.00 6.59 4397 0.28± 0.01 0.09 2.44 684

Myopic 4.79± 0.23 0.00 41.98 3083 4.59± 0.18 0.18 36.12 866
αrµ 4.94± 0.23 0.00 41.98 3051 4.66± 0.18 0.24 36.12 864
TCF 24.96± 0.47 23.22 61.35 188 23.37± 0.31 23.21 58.81 0

ri ∼Uniform[0.005,0.01]
2-step 0.00± 0.00 0.00 0.00 5000 0.00± 0.00 0.00 0.05 4202

Threshold-1 0.80± 0.07 0.00 20.38 4171 0.66± 0.05 0.00 14.03 3884
Threshold-2 0.01± 0.00 0.00 1.24 4864 0.04± 0.00 0.00 1.90 161

Myopic 0.86± 0.07 0.00 22.77 4162 0.67± 0.05 0.01 14.43 781
αrµ 0.86± 0.07 0.00 22.86 4159 0.67± 0.05 0.01 14.43 782
TCF 26.22± 0.47 24.53 59.77 0 23.72± 0.32 23.56 59.14 0

One of the most important conclusions from Table3.2 is that the state-dependent heuristics that

are developed for the exponential case also perform reasonably well in a non-exponential setting. In

particular, the 2-step policy and at least one of the threshold policies perform significantly better than

the state-independent policies for all the parameters tested. To be more specific, when the jobs are time-

critical, one of the 2-step or the Threshold-1 policies provides the best performance; when the jobs are

not very time critical, either the 2-step policy or the Threshold-2 policy is the best heuristic. This is

different than the Markovian case, where Threshold-1 is thebest policy across all parameter sets (see

Tables3.1and3.3).
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Table 3.3: Performance of the heuristic policies (in terms of the percentage deviation from the optimal
performance) when the service times and lifetimes are exponentially distributed andmi = 10 for i =
1, . . . ,K.

M = K = 2 M = K = 3
Heuristic 95% C.I. Median Maximum # of times 95% C.I. Median Maximum # of times

best best

ri ∼Uniform[2.0,5.0]
2-step 0.08± 0.01 0.00 3.37 4383 0.37± 0.02 0.02 5.11 2366

Threshold-1 0.04± 0.00 0.00 1.32 4021 0.14± 0.01 0.04 2.82 1819
Threshold-2 0.82± 0.02 0.77 2.84 161 0.74± 0.02 0.53 5.46 25

Myopic 0.36± 0.04 0.00 13.09 4473 1.80± 0.08 0.00 16.93 2682
αrµ 2.19± 0.14 0.00 33.34 3755 8.47± 0.22 6.30 36.33 568
TCF 34.77± 0.70 31.94 88.36 233 35.16± 0.54 33.13 78.91 20

ri ∼Uniform[0.5,2.0]
2-step 0.54± 0.04 0.00 8.43 3604 1.60± 0.06 0.46 12.68 849

Threshold-1 0.06± 0.01 0.00 1.98 4116 0.26± 0.01 0.02 3.68 3013
Threshold-2 0.73± 0.03 0.46 5.33 213 1.55± 0.06 0.52 9.84 19

Myopic 0.87± 0.07 0.00 16.95 4066 2.79± 0.11 0.70 19.19 2088
αrµ 1.94± 0.12 0.00 26.99 3650 5.54± 0.17 3.14 26.33 1208
TCF 24.49± 0.58 20.28 76.76 633 22.62± 0.40 21.32 61.75 153

ri ∼Uniform[0.1,0.5]
2-step 1.54± 0.08 0.00 14.70 3049 2.84± 0.09 1.74 17.38 278

Threshold-1 0.04± 0.00 0.00 1.01 4494 0.11± 0.01 0.00 1.87 3900
Threshold-2 1.37± 0.07 0.04 13.28 159 2.69± 0.08 1.66 15.01 17

Myopic 0.32± 0.03 0.00 9.13 4348 0.85± 0.04 0.03 8.66 2726
αrµ 0.45± 0.04 0.00 11.48 4242 1.11± 0.05 0.12 10.47 2482
TCF 12.50± 0.37 8.08 55.50 1403 9.27± 0.23 7.27 36.75 532

ri ∼Uniform[0.01,0.1]
2-step 1.48± 0.06 0.00 11.62 2533 1.90± 0.05 1.24 10.71 129

Threshold-1 0.00± 0.00 0.00 0.15 4913 0.00± 0.00 0.00 0.17 4674
Threshold-2 1.37± 0.06 0.00 11.29 2292 1.82± 0.05 1.19 10.20 159

Myopic 0.01± 0.00 0.00 1.29 4853 0.02± 0.00 0.00 0.87 4413
αrµ 0.01± 0.00 0.00 1.94 4838 0.02± 0.00 0.00 1.01 4368
TCF 2.40± 0.10 0.18 25.76 2387 1.32± 0.05 0.53 14.63 1303

ri ∼Uniform[0.005,0.01]
2-step 0.07± 0.00 0.00 0.93 3808 0.16± 0.00 0.12 0.88 79

Threshold-1 0.00± 0.00 0.00 0.00 4990 0.00± 0.00 0.00 0.01 4897
Threshold-2 0.06± 0.00 0.00 0.92 3927 0.15± 0.00 0.11 0.80 210

Myopic 0.00± 0.00 0.00 0.03 4983 0.00± 0.00 0.00 0.02 4831
αrµ 0.00± 0.00 0.00 0.03 4982 0.00± 0.00 0.00 0.02 4820
TCF 1.06± 0.03 0.78 4.26 1195 0.67± 0.02 0.50 2.72 624

Among all the index policies considered, myopic policy is the best and theαrµ-rule performs sim-

ilarly well for small abandonment rates as in the Markovian case. However, when compared with the

performances under the Markovian case reported in Table3.3, the overall performances of the index

policies are relatively worse.

One needs to be careful about carrying over every insight from our numerical study to practice

directly as the actual problem in emergency response is morecomplicated than any mathematical model

that can be analyzed. For example, without further study, itwould not be reasonable to claim any one

of the heuristic policies to be superior than the others for practical purposes or that their performances
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will actually be as close to optimality as the numerical study suggests. Nevertheless, we believe that

our numerical study suggests a number of general insights that can be useful for emergency response

practitioners. First, there can be significant benefits of taking resource limitations and casualty numbers

into account while giving prioritization decisions, especially when patients’ life expectancies are short.

Second, these state-dependent policies need not be very complex; policies that simply keep track of

the total number of patients and prioritize patients accordingly (as in our threshold policy) can perform

quite well. Finally, when patients’ conditions are not verycritical, state-independent policies perform

reasonably well and thus can be preferred over state-dependent policies because of their simplicity.

However, the choice of the state-independent policy is important as the superiority of the myopic policy

across all parameter regions, particularly over the TCF policy, clearly indicates.
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CHAPTER 4

Scheduling of impatient customers in a clearing system with

a single server and type-dependent service times

In this chapter, we extend the problem in Chapter3 such that jobs differ not only in their lifetime

and reward distributions but also in their service time distributions. The notation and the modeling as-

sumptions of Chapter3 are still valid in this chapter unless they are redefined. LetSi be the service time

for job i ∈ {1, . . . , N}. We assume that{Yi}Ni=1, {Zi}
N
i=1, and{Si}Ni=1 are sequences of independent

random variables and that these three sequences are independent from each other. One can see from the

proof of Proposition3.1.1in the Appendix that idling is still suboptimal when the service times are type-

dependent. Hence, the decision epochs are time zero and the service completion instants. Our objective

is to identify characteristics of policies that maximizeCπ(t) stochastically, and thereby maximize its

expected value.

We briefly outline the contents of this chapter. In Section4.1, a sample-path argument is used to

show that if urgent jobs are also faster to serve and bring higher rewards, then they should always be

prioritized in a system with a single server. Without such a condition, other simplifying assumptions are

needed to ensure analytical tractability. Therefore, in Sections4.2 and4.3, we assume that the service

time and lifetime for each job are exponentially distributed random variables, and prove a number of

structural results for the optimal policy. Finally, based on these analytical results, we propose some

heuristic policies in Section4.4, and present a numerical study on the performances of these heuristic

policies in Section4.5.



4.1 When more urgent jobs have higher rewards and shorter service

times

In this section, we investigate the case in which jobs with shorter lifetimes also have shorter service

times but higher rewards. Our objective is to maximizeCπ(t) stochastically. Throughout this section

we do not make any distributional assumptions on service times, lifetimes, or rewards. The following

proposition is the main result of this section and it generalizes Proposition3.2.1 to type-dependent

service times but under the condition that there is a single server. The proof for this result is given in the

Appendix.

Proposition 4.1.1. Suppose thatM = 1 and consider a decision epocht0 ≥ 0 at which jobsi and j

are available for service. IfYi ≤hr Yj, Si ≤lr Sj , andZi ≥lr Zj , then a policyπ ∈ Π that serves job

j at timet0 can be improved (in the sense of stochastically increasingCπ(t) for all t ≥ t0) by serving

job i instead of jobj at timet0.

Proposition4.1.1 can be used to partially characterize the optimal policy when there is a single

server and at least two jobs that satisfy the “agreeability”conditions on service times, lifetimes, and

rewards. More specifically, Proposition4.1.1implies that serving a job that has a shorter service time

(in the sense of likelihood ratio orders), a shorter lifetime (in the sense of hazard rate orders), and a

higher reward (in the sense of likelihood ratio orders) increases the total reward (in the sense of usual

stochastic orders). In the special case where all jobs are agreeably ordered, Proposition4.1.1gives a

complete characterization of the optimal policy as stated in the following corollary.

Corollary 4.1.1. If M = 1, Y1 ≤hr Y2 ≤hr · · · ≤hr YN , S1 ≤lr S2 ≤lr · · · ≤lr SN , andZ1 ≥lr

Z2 ≥lr · · · ≥lr ZN , then a non-idling policy that prioritizes the job with the smallest index at every

decision epoch maximizesCπ(t) in the sense of usual stochastic orders at everyt ≥ 0.

Note that Corollary4.1.1generalizes Theorem 1 in Argon et al. [2] by relaxing the assumption on

deterministic rewards. One may expect that Proposition4.1.1and Corollary4.1.1may also hold for

M ≥ 2. The following example shows that this is not true in general.

Example 4.1.1. Consider a clearing system with two parallel servers and fivejobs at time zero. Suppose

that the service times of jobs 1 and 2 are equal to1 time unit and the service times of jobs 3, 4, and 5
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are equal to 2 time units; the lifetime for each job is5/2 time units; and the reward for each job is equal

to 1. If a policyπ follows the policy described in Proposition4.1.1and takes jobs 1 and 2 into service

at time zero, then at most four jobs could be taken into service by any given timet, i.e.,Cπ(t) ≤ 4 for

all t ≥ 0. On the other hand, policyγ that assigns jobs 1, 2, and 3 (in the given order) to one server, and

jobs 4 and 5 to the other server, will yieldCγ(t) = 5 for t ≥ 2.

This example shows that when the service times are not i.i.d.for all jobs, then optimally assigning

multiple servers to jobs can be complex and it may involve some not-so-intuitive actions. Thus, in this

chapter, we will only focus on the single-server case (M = 1).

4.2 When more urgent jobs have lower rewards and longer service times

In the aftermath of a mass-casualty event, patients whose conditions are more urgent are expected

to have a longer service time and a lower chance of successfully completing their treatment. Therefore,

investigating priority decisions for this case, that is, the case where more urgent jobs bring lower rewards

and have longer service times, is crucial. However, characterizing the optimal policy for this case is

difficult under general service time and lifetime distributions. Therefore, in this section, we assume that

service times and lifetimes are exponentially distributedto obtain partial characterizations of the optimal

policy that will lead to insights into policies that performwell. The issues related to this assumption in

the context of patient triage are discussed in detail in Chapter 3, and hence will not be repeated here.

We categorize jobs intoK types based on their service times, lifetimes, and rewards,where2 ≤

K ≤ N . For i = 1, . . . ,K, let µi > 0, ri > 0, andαi > 0 be the service rate, abandonment rate, and

the expected reward for a typei job, respectively. Similar to Chapter3, we letZi denote the reward of a

typei job for i = 1, . . . ,K, and we assume thatZi comes from a distribution such thatαi ≤ αj implies

thatZi ≤lr Zj for all i, j ∈ {1, . . . ,K}.

Next, we letDπ(m1, . . . ,mK) be the expected total reward accumulated when scheduling (prioriti-

zation) policyπ ∈ Π is applied andmi jobs from typei ∈ {1, . . . ,K} are initially in the system, where
∑K

j=1mj = N . We will use dynamic programming to characterize the solution of the optimization

problem stated as

max
π∈Π

Dπ(m1, . . . ,mK)
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for the model with a single server and type-dependent service times. The state of the system is defined

with the vector(q;Q), whereq := (q1, · · · , qK), qi is the number of typei jobs in queue, andQ ∈

{P1, . . . , PK , R} is the status of the server. Here,Q = Pi indicates that the server is busy processing a

job of typei ∈ {1, . . . ,K}, andQ = R indicates that the server is idle and ready to begin processing a

new job. The decision epochs are time zero and service completion times. At a decision epoch, that is,

whenQ is equal toR, the possible actions are allocating the server to a job fromtype i ∈ {1, . . . ,K}

such thatqi > 0. We next present the dynamic programming equations.

Let V (q;Q) be the maximum expected reward earned starting from state(q;Q). Then, using the

convention thatV (q;Q) = 0 if qi = 0 for all i ∈ {1, . . . ,K} or min{q1, . . . , qK} < 0 for all Q ∈

{P1, . . . , PK , R}, we have:

V (q;R) = max
i=1,...,K

{I{qi>0}αi + V (q− ei;Pi)}, (4.2.1)

V (q;Pi) =
µiV (q;R) +

∑K
j=1 qjrjV (q− ej ;Pi)

µi +
∑K

j=1 qjrj
,

∀ q ∈

{
(q1, · · · , qK) : qi = 0, 1, . . . ,mi, i = 1, . . . ,K;

K∑

j=1

qj ≤ N

}
. (4.2.2)

We next use this dynamic programming formulation to obtain conditions under which the optimal

policy can be characterized for the single-server case withtype-dependent service times. Note that

Proposition4.1.1and Corollary4.1.1already provide some sufficient conditions under which the op-

timal policy is characterized. In particular, Corollary4.1.1 says that ifαK ≤ αK−1 ≤ · · · ≤ α1,

µK ≤ µK−1 ≤ · · · ≤ µ1, andrK ≤ rK−1 ≤ · · · ≤ r1, then it is optimal to prioritize type1 jobs.

In other words, if the most urgent job has the highest reward and the shortest mean service time, then

it is optimal to serve that job regardless of the system state. However, the more interesting and realis-

tic case is when more urgent jobs have smaller rewards and longer mean service times, that is, when

αK ≥ αK−1 ≥ · · · ≥ α1, µK ≥ µK−1 ≥ · · · ≥ µ1, andrK ≤ rK−1 ≤ · · · ≤ r1. Hence, in the

remainder of this section, we will focus on this case.

We next present Proposition4.2.1, which gives a set of conditions for the monotonicity of the policy

in the number of jobs in the queue. To be more specific, it follows from Proposition4.2.1that under

certain conditions it is optimal to serve a typej job at(q;R) if it is optimal to serve a typej job in states

(q − ek;R) for all k = 1, . . . ,K. Proposition4.2.1is an extension of Proposition 3 in Argon et al. [2]
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to more than two job types and type-dependent rewards. The proof of Proposition4.2.1as well as all

the other propositions presented in this section are provided in the Appendix.

Proposition 4.2.1. Consider a job typej ∈ {1, . . . ,K} and a state(q;R), whereqj ≥ 1. Suppose that

an optimal action in state(q − ek;R) is to serve a typej job for all k ∈ {1, . . . ,K} \ {j} such that

qk ≥ 1 and also fork = j if qj ≥ 2. If

(αjrj − αiri)
K∑

k=1

qkrk + (ri − µi − rj + µj)
K∑

k=1

αkqkrk ≥ αiri(µj − rj)− αjrj(µi − ri), (4.2.3)

(µj − µi)

[
(ri − µi)qjrj + (rj − µj)(µi − ri +

K∑

k=1,k 6=j

qkrk)

]
≥ 0, (4.2.4)

ri − µi ≥ rj − µj (whenK ≥ 3), and (4.2.5)

µi = µ (whenK ≥ 3) (4.2.6)

for someµ > 0 and everyi ∈ {1, . . . ,K} \ {j} such thatqi ≥ 1, then an optimal action in state(q;R)

is to serve a typej job.

Proposition4.2.1and Proposition3.3.1are similar results but neither one follows from the other as

Proposition4.2.1considers the problem with a single server but type-dependent service times, whereas

Proposition3.3.1considers the problem with multiple parallel servers but equal service rates. On the

other hand, they are consistent because if we letµj = µ in Proposition4.2.1, then the conditions in

Proposition4.2.1diminish to the conditions for the case withM = 1 in Proposition3.3.1.

We next use Proposition4.2.1to determine sufficient conditions for the optimality of simple state-

independent policies. Furthermore, later in Section4.3, we will use Proposition4.2.1to partially char-

acterize the structure of optimal policies that are possibly state-dependent.

Proposition 4.2.2. Suppose that there exists a typej ∈ {1, . . . ,K} such thatrj ≥ µj > µi, αj ≥ αi,

andαjrj ≥ αiri for all i ∈ {1, . . . ,K}\{j}, whereµi = µ for someµ > 0 and everyi ∈ {1, . . . ,K}\

{j}. Then, the optimal policy gives priority to typej jobs at all decision epochs.

Similar to Proposition4.1.1, Proposition4.2.2 provides conditions under which one type of job

should always have priority over the others. In particular,Proposition4.2.2implies that if the job with

the highest reward also has the fastest service and a sufficiently fast abandonment rate (which can pos-

sibly be smaller than the rates for other jobs), then it is optimal to give priority to that job. Furthermore,
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together with Corollary3.3.2, the partial characterization in Proposition4.2.2 immediately yields a

complete characterization for the optimal policy, which isan index policy, under certain conditions:

Corollary 4.2.1. If αK ≥ αK−1 ≥ · · · ≥ α1, rK ≥ µK > µK−1 = · · · = µ1, and αKrK ≥

αK−1rK−1 ≥ · · · ≥ α1r1, then the optimal policy gives priority to the jobs with the highest index at all

decision epochs.

Recall that an index policy is a set of state-independent decision rules that assigns priorities based

only on job types at any given state. The main advantage of index policies over state-dependent policies

is the ease in implementation since the priority relation among types of jobs does not change with time

and system state. Therefore, Corollaries4.1.1and4.2.1are important as they provide conditions under

which we can safely apply these simple policies. Our next result identifies other potentially good index

policies for two special cases.

Proposition 4.2.3. Suppose that there is an optimal policy among the set of all index policies.

(i) If αi = α for someα > 0 and for all i = 1, . . . ,K, then the optimal policy gives priority to the job

with the largest value ofriµi.

(ii) If ri = r for somer > 0 and for all i = 1, . . . ,K, then the optimal policy gives priority to the job

with the largest value ofαi(µi + r).

Proposition4.2.3characterizes the best index policy when it is known that an index policy is optimal

in Π. In particular, it tells thatrµ-rule andα(µ+ r)-rule are the optimal index rules given that an index

policy is optimal whenαi = α and ri = r, respectively, for alli = 1, . . . ,K. Note that, since

αi ≥ αj , µi ≥ µj, andri ≥ rj imply thatαiri ≥ αjrj andαi(µi + r) ≥ αj(µj + r), Proposition

4.2.3is consistent with Proposition4.1.1and Corollary4.1.1. Moreover, Proposition4.2.3(i) extends

Proposition 2 of Argon et al. [2] to multiple types of jobs.

4.3 The case with two types of jobs

We now study the special case where jobs are categorized intotwo types, i.e.,K = 2. This sim-

plification helps us obtain more analytical results and get abetter understanding of the structure of the

optimal policy. These results are later used in the development of effective heuristic policies for the case

with K > 2.
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First of all, we assume thatµ2 ≥ µ1 without loss of generality. Moreover, as the case withµ2 = µ1

is considered in Chapter3, we will focus on the case whereµ2 > µ1 in this section. We start our

discussion by first observing the structure of the optimal policy for a specific example, whereα2 > α1

andr2 < r1, i.e., type 2 jobs that have shorter mean service times also have higher expected rewards

and longer mean lifetimes. This example is selected as it demonstrates the most general structure for

the optimal policy that we observed in a wide range of numerical examples.
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Figure 4.1: The optimal policy for the case whereK = 2, α1 = 1.00, α2 = 1.10, µ1 = 1.10, µ2 = 1.22,
r1 = 1.11, andr2 = 1.10.

Figure4.1 illustrates the optimal allocation of the server at a decision epoch for various values of

q1 andq2. Similar to Figure3.1, the optimal policy gives priority to less time-critical type 2 jobs that

bring a higher reward when the number of jobs waiting is sufficiently large, with the addition that type

2 jobs have also shorter service times. Considering the emergency response context, one interpretation

of this observation is that, when there are many patients in need of treatment, it is best to give priority to

faster to treat patients with a higher survival probability, even though those patients are less time-critical.

However, if the number of patients is small, giving priorityto more urgent patients makes more sense

even though they are slower to treat and the chances of savingthem are smaller, as there will be enough

time to get back to less time-critical patients later.

We next present a result that partially characterizes the structure of the optimal policy that is ob-

served in Figure4.1under certain conditions.
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Proposition 4.3.1. Suppose thatα1 ≤ α2.

(i) If r1 ≤ µ1, then for everyq1 ≥ 1, the optimal policy has a threshold

t(q1) = I{r1>r2}

[
α2r2(r1 − µ1)− α1r1(r2 − µ2)

r2[r1(α2 − α1) + α2(µ2 − µ1)]
− q1

r1[r2(α2 − α1) + α1(µ2 − µ1)]

r2[r1(α2 − α1) + α2(µ2 − µ1)]

]
(4.3.1)

such that for allq2 ≤ t(q1), it is optimal to serve a type 1 job.

(ii) If r2 ≥ µ2, then there exists a threshold̃t(q1), which is greater than or equal tot(q1) and possibly

infinite, such that it is optimal to serve a type 2 job for allq2 ≥ t̃(q1) andq2 ≥ 1.

Proposition4.3.1 implies that under certain conditions, when the number of type 2 jobs is lower

than a threshold, it is optimal to give priority to type 1 jobsthat are slower to serve and that bring a

lower reward; and when the number of type 2 jobs is higher thananother threshold, it is optimal to give

priority to type 2 jobs that are faster to serve and that bringa higher reward. Note that parts (i) and

(ii) of Proposition4.3.1generalize Propositions 6 and 4 in Argon et al. [2] to type-dependent rewards,

respectively.

Our next proposition provides conditions under which an index policy is optimal.

Proposition 4.3.2. If α1r1(µ1 + r2) ≤ α2r2(µ2 + r1), αi(µ1 − µ2) ≤ (α2 − α1)r3−i, andµi ≤ ri for

i = 1, 2, then the optimal policy gives priority to type2 jobs at all decision epochs.

Note that Proposition4.3.2generalizes Proposition 5 in Argon et al. [2] to type-dependent rewards.

Furthermore, by Proposition4.3.2, we can obtain the following corollary that implies that if type 2 jobs,

which have faster service by definition, also bring a higher expected reward, have a higherαrµ value,

and abandon the system at a sufficiently fast rate, then it is optimal to give priority to them at every

decision epoch.

Corollary 4.3.1. If α1 ≤ α2, α1r1µ1 ≤ α2r2µ2, andµ2 ≤ r2, then the optimal policy gives priority to

type2 jobs at all decision epochs.

Corollary 4.3.1 implies that we should give priority to jobs with higher reward and faster service

if their abandonment rate is sufficiently high (not necessarily higher than the abandonment rate of the

other type). Finally, for the case withK = 2, we provide a result that characterizes the optimal index

policy when it is known that an index policy is optimal inΠ.
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Proposition 4.3.3. If there is an optimal policy among the set of all index policies, then it gives priority

to the job with the largest value ofαiriµi + αir1r2.

Proposition4.3.3generalizes Proposition 2 in Argon et al. [2] to type-dependent rewards, which

states that therµ-rule is optimal if there is an optimal index policy. It is interesting to see that theαrµ-

rule is not the policy that generalizes Argon et al.’s result. We test the performances of both the index

given in Proposition4.3.3and theαrµ-rule in Section4.5.

4.4 Heuristic policies

In Chapter3, for the multiple-server problem with equal service rates,we developed three heuristic

policies and also considered two index policies from the literature as benchmark policies. In this section,

we modify the three heuristics developed in Chapter3 for the single-server problem with type-dependent

service rates using our dynamic programming formulation and structural results presented in Section

4.3.

Below, we describe these heuristic policies under the assumption that the service times and lifetimes

are exponentially distributed. Note, however, that they can also be applied in more general settings as we

explain later in Section4.5. Also, since the problem essentially reduces to a problem with one less job

type whenqi is zero for a job typei, when describing our heuristics we will, without loss of generality,

assume thatqi ≥ 1 for all i = 1, . . . ,K.

1. 2-step policy: At every decision epoch, this heuristic chooses an action that maximizes the ex-

pected total rewards over the next two periods. Hence, in order to obtain this policy, we solve the

dynamic programming equations (4.2.1) and (4.2.2) assuming that the problem horizon is of two

periods length. This gives us the following policy. At a decision epoch, serve typei∗ such that

i∗ = arg max
i∈{1,...,K}

{
αi +

µimax
{
I{qi≥2}αi,maxj∈{1,...,K}\{i}{αj}

}

µi − ri +
∑K

j=1 qjrj

}
.

(We arbitrarily leti∗ be the smallest index that attains the maximum in case of ties.)

2. Threshold policy: Threshold heuristic is described by (at most)K−1 thresholds{T1, . . . ,TK−1},

whereT1 ≤ T2 ≤ · · · ≤ TK−1. For the case whereα1 ≤ α2 ≤ · · · ≤ αK , µ1 ≤ µ2 ≤ · · · ≤ µK ,
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andr1 ≥ r2 ≥ · · · ≥ rK , this heuristic can be described as follows: At any decisionepoch, type

j jobs are prioritized ifTj−1 <
∑K

i=1 qi ≤ Tj for j = 1, . . . ,K, whereT0 = −∞ andTK = ∞.

We use Proposition4.3.1in defining the thresholds{T1, . . . ,TK−1}. More precisely, for any pair

of job typesi andj, for i = 1, . . . ,K−1 andi = 1, . . . , j, we consider the equationti,j(qi) = qj,

where

ti,j(qi) =
αjrj(ri − µi)− αiri(rj − µj)

rj [ri(αj − αi) + αj(µj − µi)]
− qi

ri[rj(αj − αi) + αi(µj − µi)]

rj[ri(αj − αi) + αj(µj − µi)]
.

First, we letqi = 1 in this equation and solve forqj (the solution is denoted byq∗j ); and similarly,

we letqj = 1 in the same equation and solve forqi (the solution is denoted byq∗i ). We get

q∗i =
µj(αiri − αjrj)

ri[rj(αj − αi) + αi(µj − µi)]
and q∗j =

µi(αiri − αjrj)

rj [ri(αj − αi) + αj(µj − µi)]
.

Then, we letTi,j = max{q∗i , q
∗
j }. Finally, we obtain our thresholds as follows:

Tj = min{Tj+1, max
i∈{1,...,j}

{Ti,j+1}}, for j = 1, . . . ,K − 1.

3. Myopic policy: Proposition4.3.3states that, for the case withK = 2, the policy which gives

priority to the job with the largest value ofαiriµi + αir1r2 index is optimal given that there is

an optimal index policy. Myopic policy generalizes the index given in Proposition4.3.3to more

than two types, that is, it prioritizes typei∗ at all decision epochs where

i∗ = arg max
i∈{1,...,K}



αiriµi + αi

K∏

j=1

rj



 .

Note that theαrµ-rule and the myopic policy will behave similarly when the abandonment rate

of at least one type is very close to zero.

4.5 Numerical results

In this section, we test the performance of the heuristic policies discussed in Section4.4 under the

assumption that, for typei ∈ {1, . . . ,K} jobs, service times and lifetimes are exponentially distributed
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with rateµi > 0 andri > 0, respectively. In order to cover as many different scenarios as possible,

we used random samples of the system parameters. More specifically, we generated the initial numbers

of jobsmi independently and uniformly over the set{1, 2, . . . , 100} for i = 1, . . . ,K. Moreover, for

i = 1, . . . ,K, we generated the expected rewardsαi and service ratesµi independently from a uniform

distribution with ranges[0, 1] and[0.5, 2.0], respectively. Based on the range of abandonment ratesri,

for i = 1, . . . ,K, we conducted five subsets of experiments, and the first subset corresponds to the

case where jobs are most time-critical, asri’s are generated independently from a uniform distribution

with range[2.0, 5.0], followed by the other four subsets in decreasing time-criticality order with ranges

[0.5, 2.0], [0.1, 0.5], [0.01, 0.1], and[0.005, 0.001]. For each subset, we generated 5,000 random scenar-

ios whereα1 < · · · < αK , µ1 < · · · < µK , andr1 > · · · > rK . For each scenario, we calculated the

expected total reward collected under each of the five heuristic policies and the optimal policy. Then,

we computed the percentage deviation of the expected total reward of each heuristic from that of the

optimal policy, constructed a95% confidence interval (C.I.) on the mean of these 5,000 percentage de-

viations, and calculated the median and the maximum percentage deviation. Finally, we calculated the

number of times each heuristic provided the best performance among the five heuristics. The results for

K = 2 andK = 3 are presented in Table4.1.

From Table4.1, we observe that, across all parameters, state-dependent policies perform very well

and they are significantly better than the index policies when jobs are time-critical, especially in terms

of the worst performance. Among the five subsets that we consider, the only subset where a state-

dependent policy does not perform best is whenri ∼Uniform[0.005,0.001], i.e., when jobs are least

time-critical. In this case, theαrµ-rule and the myopic policy perform slightly better than thestate-

dependent policies, but all policies (except for TCF) perform very well, being at most5.30% worse than

the optimal policy.

Comparing the two state-dependent heuristics, namely the 2-step policy and Threshold policy, we

see that Threshold policy performs better across all parameters. Comparing the three index policies, the

myopic policy performs the best for all parameters, and the difference is significant when jobs are time-

critical. When the abandonment rates approach to zero, theαrµ rule and the myopic policy provide

near-optimal performances as expected.

Overall, similar to Chapter3, by examining Table4.1, we conclude that using a simple state-

dependent policy such as the Threshold policy may improve the system performance significantly. This
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Table 4.1: Performance of the heuristic policies (in terms of the percentage deviation from the opti-
mal performance) when the service times and lifetimes are exponentially distributed andmi ∼ Uni-
form{1,. . . ,85} for i = 1, . . . ,K.

K = 2 K = 3
Heuristic 95% C.I. Median Maximum # of times 95% C.I. Median Maximum # of times

best best

ri ∼Uniform[2.0,5.0]
2-step 0.00± 0.00 0.00 0.47 4973 0.00± 0.00 0.00 0.49 4920

Threshold 0.00± 0.00 0.00 0.47 4995 0.00± 0.00 0.00 0.22 4995
Myopic 0.15± 0.04 0.00 22.62 4908 0.05± 0.02 0.00 17.20 4784
αrµ 1.23± 0.13 0.00 36.19 4615 1.24± 0.13 0.00 36.88 4219
TCF 49.19± 0.62 50.35 99.19 106 64.65± 0.47 67.25 96.51 0

ri ∼Uniform[0.5,2.0]
2-step 0.01± 0.00 0.00 6.96 4843 0.01± 0.00 0.00 2.91 4654

Threshold 0.00± 0.00 0.00 4.82 4987 0.01± 0.00 0.00 1.31 4960
Myopic 0.85± 0.10 0.00 28.63 4641 0.81± 0.09 0.00 35.28 4246
αrµ 2.18± 0.18 0.00 38.93 4339 2.46± 0.18 0.00 39.62 3715
TCF 42.56± 0.58 42.87 97.77 114 55.99± 0.47 57.49 93.73 4

ri ∼Uniform[0.1,0.5]
2-step 0.08± 0.02 0.00 13.55 4588 0.10± 0.02 0.00 11.31 4215

Threshold 0.04± 0.01 0.00 5.77 4943 0.06± 0.01 0.00 6.99 4800
Myopic 1.25± 0.11 0.00 29.05 4383 1.97± 0.14 0.00 30.29 3681
αrµ 1.76± 0.14 0.00 30.65 4244 2.17± 0.15 0.00 30.97 3629
TCF 32.52± 0.53 31.63 92.50 168 45.23± 0.46 46.05 88.12 10

ri ∼Uniform[0.01,0.1]
2-step 0.52± 0.05 0.00 20.50 4238 0.53± 0.05 0.00 18.64 3579

Threshold 0.40± 0.04 0.00 15.76 4485 0.43± 0.04 0.00 13.91 4216
Myopic 0.57± 0.05 0.00 18.42 4386 1.09± 0.07 0.00 21.33 3679
αrµ 0.61± 0.06 0.00 22.15 4365 1.09± 0.07 0.00 21.33 3679
TCF 13.96± 0.35 11.25 74.22 644 22.75± 0.36 21.77 69.65 97

ri ∼Uniform[0.005,0.01]
2-step 0.03± 0.01 0.00 5.30 4842 0.04± 0.01 0.00 3.65 4656

Threshold 0.03± 0.01 0.00 5.29 4849 0.04± 0.01 0.00 3.65 4663
Myopic 0.02± 0.00 0.00 3.76 4897 0.01± 0.00 0.00 2.26 4824
αrµ 0.02± 0.00 0.00 3.76 4892 0.01± 0.00 0.00 2.26 4824
TCF 9.64± 0.23 7.67 47.68 258 17.29± 0.27 16.36 49.85 15

difference is especially high when jobs are time-critical,that is, when their abandonment rates are high.

However, when jobs are not time-critical, since few jobs reach the end of their life while waiting to get

service, all five policies that we consider perform similarly (except for TCF). Hence, the selection of

the heuristic policy becomes less important in this case, and the index policies, preferably the myopic

policy, can also be chosen. The future work includes testingthe performance of the heuristics under

a non-exponential setting and generalizing our heuristicsto multiple servers, hence combining the two

problems in this chapter and in Chapter3.
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CHAPTER 5

Extensions

In this chapter, we study two extensions to the base clearingmodel studied in Chapters3 and4. In

Section5.1, we discuss the case where the arrivals of jobs after time zero are allowed. In Section5.2,

we consider the case where a job goes through multiple stagesof its lifetime while waiting for service,

and at the end of the last stage of its lifetime, it reneges from the system. In each section, we redefine

the notation and obtain conditions under which simple state-independent policies are optimal.

5.1 Job arrivals

We consider a single server queueing system where jobs are impatient and classified intoK ≥

2 types based on their lifetime and service time distributions as well as the rewards that they bring.

The lifetime of a typei job, which begins at the time of its arrival to the system, is independent and

exponentially distributed with rateγi > 0, for i = 1, . . . ,K. The service is performed in a preemptive

manner and the service time of a typei job is exponentially distributed with rateµi, for i = 1, . . . ,K.

Jobs from typei arrive to the system according to a Poisson process with rateλi > 0, for i = 1, . . . ,K.

We let 0 ≤ Ri < ∞ be the expected reward earned when a typei job completes service, fori =

1, . . . ,K. We formulate this problem as a MDP and we seek dynamic policies that determine which

jobs should be prioritized for service to maximize the long-run average expected reward.

The extended queueing model is inspired by resource allocation problems observed in the aftermath

of mass-casualty events such as bioterror attacks, pandemics, or nuclear attacks, in which new patients

may arrive to the system as time passes. We relax the assumption that all patients are available at time

zero since in such events with longer effects, patients may need medical attention days after the initial

event. Hence, together with our analysis of the clearing problem, we can distinguish between mass-



casualty events such as bombings that do not involve a significant number of future arrivals of patients

after the incident, and mass-casualty events such as a bioterror attack that would involve ongoing arrivals

of patients after the initial outburst. The expected arrival interval of all victims in such events is longer

than that in mass trauma events like bombings and earthquakes, where the majority of the cases require

care within hours of the initial event, but is shorter than that of daily emergency cases which can be

modeled as a (possibly non-stationary) stochastic processin steady-state.

We first studied the model described above under a non-preemptive discipline and found quickly

that this case is quite difficult to analyze. To demonstrate,consider the following example:

Example 5.1.1. Suppose that jobs 1 and 2 are in the system at time zero, and jobs 3, 4, and 5 arrive

at 5, 7, and 9 hours after time zero, respectively. No arrivals are observed after 9 hours. Suppose that

the service time of each job is equal to4 hours; and the reward for serving each job is equal to 1. The

lifetime for jobs 1, 3, and 5 is1 hour and the lifetime for jobs 2 and 4 is10 hours. Under a policy that

takes job 1 into service at time zero (job 1 has a shorter lifetime than job 2), the service of a total of

three jobs could be completed. On the other hand, under a policy that assigns job 2 at time zero, idles as

there is no one in the system during time interval [4, 5] hours, and serves jobs 3, 5, and 4 (in the given

order), the total number of service completions be four, which is optimal.

Example5.1.1 shows that the policy given in Proposition4.1.1 is no longer optimal, even for a

simple deterministic system with equal service times and equal rewards. It rather involves a more

complex structure that is counterintuitive in that it givespriority to a less time-critical job. Therefore,

we will consider the case where preemption is allowed, that is, the service of a job can be interrupted.

Since preemption is allowed in our model, one can show that idling is suboptimal by a simple sample

path argument (see Down, Koole, and Lewis [26]). Because for any policy that idles, we can construct

a non-idling policy that takes all the same actions at the same time as the idling policy, and serves a job

waiting in the queue during the idling periods. Then, the non-idling policy will serve all the jobs served

under the idling policy or more. Therefore, in the remainderof this section, we only consider non-idling

policies.

Remark 5.1.1. We made several attempts to obtain structural results usingsample-path arguments.

Initially, we considered our problem with no distributional assumptions on lifetimes, service times,

and interarrival times. First, we had to restrict our attention to the preemptive service discipline since
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even simple models under non-preemptive service discipline had very complicated and counter-intuitive

optimal policies as illustrated in Example5.1.1. On the other hand, we also observed that the sample-

path analysis of problems under preemptive service discipline can be complicated. Hence, we focused

on the Markovian case, which still requires non-trivial arguments due to the addition of arrivals.

We next define our problem more rigourously. LetΠ be the set of prioritization policies under

consideration. For allπ ∈ Π andt ≥ 0, we letDπ(t) be the total reward andΓπ(t) = E[Dπ(t)]/t be the

expected average reward up to timet underπ. We are interested in solving the following optimization

problem:

max
π∈Π

lim
t→∞

Γπ(t). (5.1.1)

For allπ ∈ Π andt ≥ 0, we letXπ(t) = (Xπ,1(t), . . . ,Xπ,K(t)), whereXπ,i(t) denotes the number of

typei jobs in the system at timet underπ for i = 1. . . . ,K. It is clear that for a fixedπ ∈ Π, Xπ(t) is

a continuous-time Markov chain.

In an attempt to specify the optimal policy for our continuous-time problem, we consider a discrete-

time equivalent, applying uniformization in the spirit of Lippman [52]. In order to apply uniformization,

we need to be able to identify a finite uniformization constant, we will achieve this by limiting the num-

ber of jobs in the system. Hence, for technical reasons, we consider two types of capacity restrictions,

namely, a capacity on the number of each type of job and a capacity on the total number of jobs. For

the sake of briefness, in this section, we explain our model with a system capacity on the number of

each type only and we explain the model with a capacity on the total number of jobs in the Appendix.

Hence, we assume that capacity for the number of typei jobs is equal toCi < ∞, for i = 1, . . . ,K.

In other words, if a typei job arrives to the system when there areCi typei jobs already in the system,

then that job is lost. After uniformization, the times between transitions are exponentially distributed

with a constant rate and transitions that do not result in a change of state are allowed. Letψ denote the

uniformization constant, which is given by

ψ =
K∑

i=1

λi + max
i=1,...,K

µi +
K∑

i=1

Ciγi.

Without loss of generality, we assume that the uniformization constant is equal to one, thus the tran-
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sition rates (arrival, service, and reneging rates) can be interpreted as probabilities. We letYπ(n) =

(Yπ,1(n), . . . , Yπ,K(n)), whereYπ,i(n) denotes the number of typei jobs in the system at period

n ∈ {0, 1, . . .} underπ, for i = 1, . . . ,K. Then{Yπ(n)} is a discrete-time Markov chain for each

policy π obtained by uniformizing{Xπ(t)} with the finite state spaceS, which is given by

S = { s = (s1, · · · , sK) : si ∈ {0, 1, . . . , Ci} for i = 1, . . . ,K} ,

wheresi is the number of typei jobs in the system.

For the infinite horizon average reward optimality problem given by (5.1.1) after uniformization, the

set of all feasible actions consists of serving a typei job, wherei = 1, . . . ,K. Note that the action space

is finite as the number of job typesK is finite, andA(s), the set of all admissible actions when the state

of the system iss, is given by

A(s) = { ai : si > 0, s = (s1, · · · , sK) ∈ S},

whereai is the action of serving a typei job, for i = 1, . . . ,K. As proved in Theorem9.18 in Puterman

[61], there exists a stationary policy for the MDP under consideration, since the state space and the action

space are finite. Hence, for the remainder of this section, weassume that the classΠ of prioritization

policies under consideration consists of all Markovian stationary deterministic policies.

A policy π = {d1, d2, . . .} is defined as a sequence of decision rules, where a decision rule is a

mapping from state space to action space, so thatdn(s) ∈ A(s), wheredn(s) is the action to be taken

at periodn ∈ {0, 1, . . .} and s ∈ S. Then, a stationary policyπ ∈ Π is a sequence of decisions

π = {d, d, . . .}, wheredn(s) = d(s) for all n ∈ {0, 1, . . .} ands ∈ S. Moreover, the random reward

function is denoted byrn(s, a), which is the total reward earned at periodn ∈ {0, 1, . . .} starting at

states ∈ S and taking actiona ∈ A(s). The reward function is additive in the sense that the reward

incurred at periodn accumulates over time. Then, the expected long-run averagereward per period for

policy π is

Jπ(s0) = lim
N→∞

1

N
E

[
N−1∑

n=0

r(Yπ(n), d(Yπ(n)))

]
,

where the system is in states0 ∈ S at the first decision epoch. Therefore, the optimal average expected
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reward is given by

J(s0) = min
π∈Π

Jπ(s0).

Bellman’s optimality equation for the above problem takes the form:

g + v(s) = min
ai∈A(s)

{v(s, ai)},

whereg is the optimal long-run average reward per period, andv(s) can be interpreted as a relative or

differential reward for each states ∈ S. Let ei be a row vector ofK components consisting of zeros

except for a one in theith position and1{si<Ci} be the indicator function of the set{si < Ci}, for

i = 1, . . . ,K. Then, Bellman’s equation is given by:

g + v(s) =

K∑

j=1

1{sj<Cj}λjv(s+ ej) +

K∑

j=1

sjγjv(s − ej)

+

[
1−

K∑

j=1

1{sj<Cj}λj −
K∑

j=1

sjγj

]
v(s) + max

ai∈A(s)
{M(s, ai)},

where

M(s, ai) = Riµi + (γi − µi)

[
v(s)− v(s − ei)

]
, for i = 1, . . . ,K.

Using these equations, we obtain Propositions5.1.1and5.1.2, which are proved in the Appendix.

Proposition 5.1.1. Suppose that there is a capacity restriction on the number ofeach type of jobs. Then,

in the class of Markovian stationary deterministic policies Π, the policy that serves typei jobs, where

i = 1, . . . ,K, is the optimal solution to Problem (5.1.1) if γi ≥ µi, andRiµi ≥ Rjµj andµj ≥ γj for

all j = 1, . . . ,K andj 6= i.

We can obtain the following insights from Proposition5.1.1:

1. Equal rewards: ForRi = Rj, ∀i, j ∈ {1, . . . ,K}, the conditions given in Proposition5.1.1

diminish toγi ≥ µi ≥ µj ≥ γj. Note that this result is consistent with Proposition4.1.1as the

job that has a shorter service time and lifetime is given priority under the optimal policy.

2. Equal abandonment rates: When we letγj := γ for all j ∈ {1, . . . ,K}, the conditions given
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in Proposition5.1.1diminish to the conditionµj ≥ γ ≥ µi ≥
Rj

Ri
µj , which means that it is

optimal to serve typei jobs at all decision epochs ifRi ≥ Rj, µi ∈ [
Rj

Ri
µj , µj], andγ ∈ [µi, µj ].

This implies that a job with a sufficiently large reward and a slow service (compared to abandon-

ments) should be given priority over a job with a smaller reward and a faster service (compared

to abandonments).

3. Equal service rates: Down, Koole, and Lewis [26] consider a reward model for two types of jobs

with equal service rates, and Proposition5.1.1is consistent with their main result, which states

that if Ri ≥ Rj andγi ≥ γj , it is optimal to serve typei jobs, for i, j ∈ {1, 2}. When we let

µi = µj, the conditions given in Proposition5.1.1becomeRi ≥ Rj andγi ≥ µ ≥ γj . Hence,

both results are consistent with each other but neither one implies the other. Moreover, our result

is also consistent with Proposition3.2.1as the job that has a higher reward and a shorter lifetime

is given priority under the optimal policy.

Proposition 5.1.2. Suppose that there is a capacity restriction on the total number of jobs andK = 2.

In the class of Markovian stationary deterministic policies Π, the policy that serves typei jobs, where

i = 1, 2, is the optimal solution to Problem (5.1.1) if µi ≥ γi,R1µ1 = R2µ2, andγi−γj ≥ µi−µj ≥ 0

for j = 1, 2 andj 6= i.

Note that, forµ2 ≥ µ1, the conditions of Proposition5.1.2imply that ifR1 ≥ R2 (so thatR1µ1 =

R2µ2), γ2 ≥ γ1, and0 ≥ γ2 − µ2 ≥ γ1 − µ1, then type 2 jobs should be prioritized. For the patient

triage problem, this corresponds to the case where urgent patients are faster to serve but have lower

chances of survival. Then, those patients are given priority if they abandon the system at a faster rate

than their service and this difference is larger than the other type. One important remark is that no

condition involving the arrivals is needed for Propositions 5.1.1and5.1.2.

5.2 Multiple stages of lifetime

In this part of our research, we assume that the lifetime of a job consists of multiple stages that may

affect the service time and reward distributions. A job thatgoes through all stages of its lifetime while

still in queue reneges from the system before receiving any service. Furthermore, we assume that jobs

are monitored so that their classification is continuously updated according to their current condition. In

59



the context of patient triage, this corresponds to the patients’ going through various stages of a disease

or a condition with unique care requirements. Patients passto the next stage of their lifetime as time

passes, and that changes the chance of survival and time required for their treatment. It is important to

take into account the changes in the patients’ condition with time. For example, after the Oklahoma City

Bombing in 1995, the critical patients were given higher priority to be dispatched to hospitals, but as

time passed the condition of the so called non-critical patients started to deteriorate, and unfortunately

these patients did not receive treatment for many hours as they were labeled “non-critical” during the

initial triage.

The lifetime of a job hasK ≥ 2 stages, each of which is independent and exponentially distributed

with rate γi > 0, for i = 1, . . . ,K. Jobs which are in theith stage of their lifetime arrive to the

system according to a Poisson process with rateλi > 0, for i = 1, . . . ,K. If a job is in theith stage

of its lifetime at the start of its service, then the service time is exponentially distributed with rateµi,

for i = 1, . . . ,K. Moreover, fori = 1, . . . ,K, we let0 ≤ Ri < ∞ be the expected reward earned

when a job in theith stage of its lifetime completes its service. Similar to Section 5.1, we assume that

there is a single server, the service is performed in a preemptive manner, and and jobs do not renege

while they are in service. Finally, we assume that the systemcapacity for the number of jobs at theith

stage of their lifetime is equal toCi < ∞, that is, if the capacity for the number of jobs at a particular

stage is reached, jobs arriving to that stage exogenously and from the previous stage are lost. We seek

dynamic policies that determine which jobs are prioritizedfor service with the objective of maximizing

the long-run average reward.

Let Π̃ be the set of prioritization policies under consideration.For all π ∈ Π̃ and t ≥ 0, we let

Dπ(t) denote the total reward andΓπ(t) = E[Dπ(t)]/t be the expected average reward up to timet

under policyπ. We are interested in solving the following optimization problem:

max
π∈Π̃

lim
t→∞

Γπ(t). (5.2.1)

For all π ∈ Π̃ and t ≥ 0, we let X̃π(t) = (X̃π,1(t), . . . , X̃π,K(t)), whereX̃π,i(t) denotes the

number of jobs in the system at theith stage of its lifetime at timet under policyπ for i = 1, . . . ,K.

It is clear that for a fixedπ ∈ Π̃, {X̃π(t)} is a continuous-time Markov chain with the state spaceS,
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which is given by

S = { s = (s1, · · · , sK) : si ∈ {0, 1, . . . , Ci} for i = 1, . . . ,K} .

As in Section5.1, we uniformize this chain with a uniformization constant

ψ =

K∑

i=1

λi + max
i=1,...,K

µi +

K∑

i=1

Ciγi <∞.

Without loss of generality, we assume that the uniformization constant is equal to one. We letỸπ(n) =

(Ỹπ,1(n), . . . , Ỹπ,K(n)), whereỸπ,i(n) denotes the number of jobs in the system at theith stage of their

lifetimes at periodn under policyπ, for i = 1, . . . ,K. Then{Ỹπ(n)} is a discrete-time Markov chain

for each policyπ obtained by uniformizing{X̃π(t)}.

For the infinite horizon average reward optimality problem given by (5.2.1) after uniformization, the

set of all feasible actions consists of serving a job at theith stage of its lifetime, wherei = 1, . . . ,K.

Note that the action space is finite, andA(s), the set of all admissible actions when the state of the

system iss, is given by

A(s) = { ai : si > 0, s = (s1, · · · , sK) ∈ S},

whereai is the action of serving a job at theith stage, fori = 1, . . . ,K. Again by Theorem9.18

in Puterman [61], there exists a stationary policy for the MDP under consideration. Hence, for the

remainder of this section, we assume that the classΠ̃ of prioritization policies under consideration

consists of all Markovian stationary deterministic policies.

Bellman’s optimality equation for the average reward problem takes the form:

g + v(s) = min
ai∈A(s)

{v(s, ai)},

whereg is the optimal average reward per period, andv(s) can be interpreted as a relative or differential

reward for each states ∈ S. Again using the notation thatei is a row vector ofK components consisting

of zeros except for a one in theith position and1{si<Ci} is the indicator function of the set{si < Ci},

61



for i = 1, . . . ,K, Bellman’s equations are given by:

g + v(s) =
K∑

j=1

1{si<Ci}λjv(s + ej) +
K−1∑

j=1

sjγjv(s − ej + ej+1) + sKγKv(s− eK)

+


1−

K∑

j=1

1{si<Ci}λj −
K∑

j=1

sjγj


 v(s) + max

ai∈A(s)
{M(s, ai)},

where

M(s, ai) =





Riµi + γi [v(s)− v(s− ei + ei+1)]− µi [v(s)− v(s − ei)] for i = 1, . . . ,K − 1;

RKµK + (γK − µK) [v(s)− v(s − eK)] for i = K.

Using these equations, we obtain Proposition5.2.1, which is proved in the Appendix.

Proposition 5.2.1. In the class of Markovian stationary deterministic policies Π̃, the policy that serves

jobs at stageK is the optimal solution to Problem (5.2.1) if γK ≥ µK , andRKµK ≥ Rjµj andµj ≥ γj

for all j = 1, . . . ,K − 1.

The insights obtained from Proposition5.1.1are still valid for Proposition5.2.1as the required con-

ditions are similar for both results except that Proposition 5.2.1provide conditions for the optimality of

jobs at the last stage of their lifetime whereas Proposition5.1.1provide conditions for the optimality of

all types of jobs. We need this restriction as this problem with jobs going through stages of their life-

times is harder to analyze, as the lifetime of a job is not an exponential random variable anymore, instead

it is the sum of exponential random variables. Hence, a better approach might be to test some simple

policies (such as the heuristic policies that we consideredfor the clearing problem) using simulation.
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CHAPTER 6

Conclusions

In service systems where customers may leave the system without receiving service if their wait

exceeds their tolerance, dynamically allocating the limited resources to enhance performance can be a

complicated problem. In this thesis we model such systems asqueueing systems with multiple classes of

impatient customers with the objective of finding effectivedynamic scheduling policies that maximize

the rewards collected.

Inspired by the debates about response efforts to recent mass-casualty events such as Hurricane Ka-

trina in 2005, our main motivation is a resource allocation problem that may arise in the aftermath of

a mass-casualty event. While assigning priorities to injured patients for limited resources, the common

practice only uses the time-criticality information of patients. Researchers in the medical community

have recognized the potential benefits of also considering the resource limitations in giving prioritiza-

tion decisions. In this dissertation, we mathematically support the benefits of taking into account the

availability of resources, the number of patients, and the type of their injuries in order to optimally al-

locate limited resources. Although we do not expect preciseanswers from our mathematical analysis,

insights that we obtain from our stylized models can serve asbuilding blocks for policies that can be

used in practice.

In our mathematical analysis, the base model is a clearing system where a finite number of jobs are

available at the time of the incident (as it would be the case in a mass-trauma event such as a plane

crash or bombing in an open space). For the clearing problem,we first consider the multi-server case

under the assumption that service times are identically distributed. We later relax this assumption but

then restrict our attention to the single server case. For both cases, we used sample-path arguments and

dynamic programming to obtain characterizations of the best policies that maximize the expected total



reward. In particular, we first identify several conditionsunder which the system-state information, i.e.,

the number of available resources and patient counts, can beignored when determining priorities. For

example, when all service times are identically distributed, we showed that if a job with the highest

reward (in the sense of likelihood ratio orders) also has theshortest lifetime (in the sense of hazard rate

orders), then that job should be prioritized irrespective of the number of other jobs. Second, we partially

characterize the optimal policy in cases where the optimal decisions could depend on the system-state.

For instance, for the single-server problem, we provide conditions under which giving priority to the

type that is faster to serve is optimal if the number of jobs from the type that is slower to serve is less

than a threshold value. Third, we demonstrate that one can develop “good” prioritization policies and

rules of thumb that only consider the total number of patients as opposed to considering numbers from

each type of patient. In particular, with our numerical analysis for the multi-server and single-server

problems, we show that a threshold-type policy, which givespriority to time-critical patients if the total

number of patients is below a threshold and to less urgent patients otherwise, can perform quite well.

We also provide some possible directions for how this threshold can be set. Furthermore, by extending

our model to the case with arrivals, we distinguish between mass-casualty events such as bombings that

do not involve a significant number of future arrivals after the incident, and mass-casualty events such

as a bioterror attack using anthrax or smallpox, that would involve ongoing arrivals of patients after the

initial outburst. Moreover, the second extension of our clearing model, in which the criticality levels

of patients change with time, corresponds to the case where patients go through multiple stages with

unique care requirements which also affects the chance of their survival and the time required for their

treatment.

We believe this dissertation provides a common platform of knowledge from which emergency

responders (physicians as well as managers) and operationsresearchers together can build a sound

emergency response plan. Moreover, building such a plan requires extensive testing using realistic

simulation models, hence, one important future research direction is the development of a simulation

test-bed for priority decisions in emergency response, which to the best of our knowledge does not

exist at the moment. A realistic simulation model would be ofimmense practical value to emergency

responders around the world in saving more lives in moments of crisis. Part of such a project would also

require data gathering on lifetimes for various injury types, as this data would be critical to ensuring

both realistic simulation scenarios and to developing effective life-saving policies.
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Appendix

In this Appendix, we provide the proofs of our results in the order presented in the thesis.

Proof of Proposition 3.1.1: Assume that a server (say serveri) under policyπ idles τ time units

starting att0, while there is at least one job waiting for service. Letγ be another policy and we couple

all lifetimes, service times and rewards of all the jobs under bothγ andπ. All servers underγ follow

policy π except that starting att0, serveri underγ takes the actions that it takes underπ starting at

t0 + τ . This is possible since the service completion times of jobsthat are taken into service by server

i after t0 underγ areτ units of time earlier than those underπ after t0. Let τ ′ be the time that serveri

stops serving jobs underπ. If there are any jobs available at timeτ ′ − τ underγ, serveri serves them in

any order until the system is cleared. Thus, we have shown that Cγ(t)− Cπ(t) ≥ 0 for all t ≥ 0. 2

The following lemma is needed to prove Proposition3.2.1.

Lemma A.0.1. (Righter 1994, Lemma 13.D.1; among others) LetX andY be two independent random

variables. Then,X ≤lr Y if and only if(X|min{X,Y } = m,max{X,Y } = m) ≤st (Y |min{X,Y } =

m,max{X,Y } = m) for all m ≤ m.

LemmaA.0.1can equivalently be stated as follows: Givenm = min{X,Y } andm = max{X,Y },

we have thatX ≤lr Y if and only ifPr{X = m|m,m} = Pr{Y = m|m,m} ≥ Pr{X = m|m,m} =

Pr{Y = m|m,m}.

Proof of Proposition 3.2.1: We will use a coupling argument to prove this result. LetM̃ be the total

number of servers available at timet0, where1 ≤ M̃ ≤M . If M̃ is greater than or equal to the number

of jobs seeking service at timet0, then all jobs should be taken into service since idling is suboptimal.

Otherwise, letSρ be the set of jobs taken into service at timet0 under policyρ. Suppose policyπ

takes jobj into service att0 while job i is in the queue, i.e.,j ∈ Sπ and i /∈ Sπ. We will construct

a policy γ which follows policyπ between time zero andt0, but serves jobi instead ofj at t0 (i.e.,

Sγ = Sπ \ {j} ∪ {i}), and for whichCπ(t) ≤ Cγ(t) for all t ≥ 0 along any given sample path.

Let Y ρ
l denote the remaining lifetime of jobl at t0 under policyρ, wherel ∈ {i, j} andρ ∈ {π, γ}.

Note that by the stochastic ordering relation among the remaining lifetimes of jobs, we can couple the

random variables so thatY π
i = yi ≤ yj = Y γ

j . Because policyπ(γ) serves jobj(i) at t0, and the job
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that is in service will not abandon, we do not needY π
j or Y γ

i . LetY γ
l = Y π

l for all l 6= i, j. Let alsoSρ
l

denote the service time of jobl under policyρ ∈ {π, γ}, and letSγ
l = Sπ

l for all l 6= i, j. We can couple

(Sπ
i , S

π
j ) with (Sγ

i , S
γ
j ) such thatSπ

j = Sγ
i := a andSπ

i = Sγ
j := b. Finally, letZρ

l denote the reward of

taking jobl into service under policyρ ∈ {π, γ}, and letZγ
l = Zπ

l for all l 6= i, j. Then, we can couple

(Zπ
i , Z

π
j ) with (Zγ

i , Z
γ
j ) so thatmin{Zπ

i , Z
π
j } = min{Zγ

i , Z
γ
j } ≤ max{Zπ

i , Z
π
j } = max{Zγ

i , Z
γ
j }

and eitherZπ
j = Zγ

i andZπ
i = Zγ

j or Zπ
j = Zγ

j ≤ Zπ
i = Zγ

i . Such a coupling is possible from Lemma

A.0.1 and the condition thatZj ≤lr Zi. Let τ be the timeπ takes jobi into service (τ = ∞ if job i is

not taken into service). The following cases exhaust all possibilities:

Case I:We first consider the case whereτ < ∞. γ follows π at all decision epochs aftert0 except that

it replaces jobj with job i atτ . This is possible becauseyi ≤ yj and all decision epochs afterτ underπ

andγ take place at the same time with the same set of jobs availablefor both policies except for jobsi

andj. Hence, we haveCγ(t) = Cπ(t) for all t < t0,Cγ(t)−Cπ(t) = Zγ
i −Zπ

j ≥ 0 for all t0 ≤ t < τ ,

andCγ(t)− Cπ(t) = Zγ
i + Zγ

j − Zπ
i − Zπ

j = 0 for all t ≥ τ .

Case II:Now suppose thatτ = ∞. γ follows π after t0 except that it serves jobj last (let the service

start time beτ ′), if it is still available after all other jobs are cleared. Then, we haveCγ(t) = Cπ(t)

for all t < t0, Cγ(t) − Cπ(t) = Zγ
i − Zπ

j ≥ 0 for all t0 ≤ t < τ ′, and if τ ′ < ∞, Cγ(t) − Cπ(t) =

Zγ
i − Zπ

j + Zγ
j ≥ 0 for all t ≥ τ ′. 2

Proof of Proposition 3.3.1: We will show thatαj + V (q − ej ;M) ≥ I{qi≥1}αi + V (q − ei;M) for

all i = 1, . . . ,K under the given conditions. Fori ∈ {1, . . . ,K} such thatqi = 0, this holds trivially.

Hence, we only consider the types of jobs for whichqi ≥ 1. Fori ∈ {1, . . . ,K} \ {j} such thatqi ≥ 1,

we have

V (q− ej;M)

=
MµV (q− ej ;M − 1) + (qj − 1)rjV (q− 2ej ;M) +

∑K
k=1,k 6=j qkrkV (q− ek − ej ;M)

Mµ− rj +
∑K

k=1 qkrk

≥
Mµαi + (αi − αj)((qj − 1)rj +

∑K
k=1,k 6=i,j qkrk)

Mµ− rj +
∑K

k=1 qkrk

+
(Mµ + qiri + (qj − 1)rj)V (q− ei − ej;M) +

∑K
k=1,k 6=i,j qkrkV (q− ek − ei;M)

Mµ− rj +
∑K

k=1 qkrk
,(A.0.1)

where the inequality follows, because, for the first term,V (q− ej ;M − 1) ≥ αi + V (q− ei − ej;M),
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for the second term, eitherqj = 1, so the inequality is trivial, orV (q − 2ej ;M) ≥ αi − αj + V (q −

ei − ej;M), and for the last term, eitherqk = 0, so the inequality is trivial, orV (q − ek − ej;M) ≥

αi − αj + V (q− ek − ei;M), for k ∈ {1, . . . ,K} \ {i, j}. Similarly,

V (q− ei;M)

=
MµV (q− ei;M − 1) + (qi − 1)riV (q− 2ei;M) +

∑K
k=1,k 6=i qkrkV (q− ek − ei;M)

Mµ− ri +
∑K

k=1 qkrk

≤
Mµαj + (αj − αi)(qi − 1)ri

Mµ− ri +
∑K

k=1 qkrk
+
Mµ+ (qi − 1)ri + qjrj

Mµ− ri +
∑K

k=1 qkrk
V (q− ei − ej;M)

+

∑K
k=1,k 6=i,j qkrkV (q− ek − ei;M)

Mµ− ri +
∑K

k=1 qkrk
, (A.0.2)

where the inequality follows, because, for the first term,V (q− ei;M − 1) = αj + V (q− ei − ej;M),

and for the second term, eitherqi = 1, so the inequality is trivial, orV (q−2ei;M) ≤ αj −αi+V (q−

ei − ej ;M).

Now, from (A.0.1) and (A.0.2), we get

αj + V (q− ej ;M)− αi − V (q− ei;M)

≥ αj − αi +
Mµαi + (αi − αj)((qj − 1)rj +

∑K
k=1,k 6=i,j qkrk)

Mµ− rj +
∑K

k=1 qkrk
−
Mµαj + (αj − αi)(qi − 1)ri

Mµ − ri +
∑K

k=1 qkrk

+

(
Mµ+ qiri + (qj − 1)rj

Mµ− rj +
∑K

k=1 qkrk
−
Mµ+ (qi − 1)ri + qjrj

Mµ− ri +
∑K

k=1 qkrk

)
V (q− ei − ej ;M)

+

(
1

Mµ− rj +
∑K

k=1 qkrk
−

1

Mµ− ri +
∑K

k=1 qkrk

)
K∑

k=1,k 6=i,j

qkrkV (q− ek − ei;M)

=
Mµ(αjrj − αiri) + (αj − αi)((qi + qj − 1)rirj + ri

∑K
k=1,k 6=i,j qkrk)

(Mµ− rj +
∑K

k=1 qkrk)(Mµ − ri +
∑K

k=1 qkrk)

+

(ri − rj)
∑K

k=1,k 6=i,j qkrk

(
V (q− ei − ej;M)− V (q− ek − ei;M)

)

(Mµ− rj +
∑K

k=1 qkrk)(Mµ − ri +
∑K

k=1 qkrk)

=
(αjrj − αiri)

∑K
k=1 qkrk + (ri − rj)

∑K
k=1 αkqkrk − αiri(Mµ− rj) + αjrj(Mµ− ri)

(Mµ − rj +
∑K

k=1 qkrk)(Mµ − ri +
∑K

k=1 qkrk)

+

(ri − rj)
∑K

k=1,k 6=i,j qkrk

(
αj + V (q− ei − ej ;M)− αk − V (q− ek − ei;M)

)

(Mµ− rj +
∑K

k=1 qkrk)(Mµ− ri +
∑K

k=1 qkrk)
≥ 0,
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where the last inequality holds because, for the first term, Condition (3.3.4) holds and for the second

term, eitherK = 2 or qk = 0 so that the inequality is trivial, or Condition (3.3.5) holds andαj +V (q−

ei − ej ;M) ≥ αk + V (q− ek − ei;M) for all k ∈ {1, . . . ,K} \ {i, j}. 2

Proof of Proposition 3.3.2: We first use Proposition3.3.1 to prove the result for decision epochs at

which a service completion takes place andqj ≥ 1. For i ∈ {1, . . . ,K} \ {j}, we rewrite Condition

(3.3.4) as

(αjrj − αiri)

(
Mµ+ (qj − 1)rj +

K∑

k=1,k 6=j

qkrk

)
+ (ri − rj)

(
αj(qj − 1)rj +

K∑

k=1,k 6=j

αkqkrk

)
≥ 0.

(A.0.3)

Sincerj ≤ ri andαjrj ≥ αiri for all i = 1, . . . ,K, andqj ≥ 1, Condition (A.0.3) is satisfied for all

i ∈ {1, . . . ,K} \ {j}. Hence, Conditions (3.3.4) and (3.3.5) are satisfied for alli ∈ {1, . . . ,K} \ {j}

such thatqi ≥ 1.

We will now apply induction on
∑K

i=1 qi. First, consider the case where
∑K

i=1 qi = 1 such that

qj ≥ 1, i.e., q = ej . In this case, the result holds trivially. Now, suppose thatthe result is true for

all feasibleq such that
∑K

i=1 qi = a ≥ 1 andqj ≥ 1. Then, for anyq′ = (q′1, . . . , q
′
K) such that

∑K
i=1 q

′
i = a + 1 andq′j ≥ 1, we haveV (q′;M − 1) = αj + V (q′ − ej ;M) by Proposition3.3.1

since Conditions (3.3.4) and (3.3.5) are satisfied. This shows that at all service completion times where

qj ≥ 1, job j should receive the highest priority.

We next show that the result also holds for the decision givenat time zero. Define

H(n) =
K∑

k=1

αknk + V (m− n;M),

wheren = (n1, . . . , nK) and m = (m1, . . . ,mK), so that Equation (3.3.1) can be rewritten as

V (m; 0) = maxn∈ΦH(n). For a givenn ∈ Φ, whereni ≥ 1 andnj < min{M,mj}, let ∆i(n) =

H(n+ ej − ei)−H(n) for i ∈ {1, . . . ,K} \ {j}. Then, for a fixedi ∈ {1, . . . ,K} \ {j} and a given

n ∈ Φ, whereni ≥ 1 andnj < min{M,mj}, ∆i(n) ≥ 0 if and only if

αj + V (m− n+ ei − ej;M) ≥ αi + V (m− n;M). (A.0.4)

But in the first part of this proof, we already showed that it isoptimal to serve a typej job in all states
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(q;M−1), which implies that Condition (A.0.4) holds and hence∆i(n) ≥ 0 for all i ∈ {1, . . . ,K}\{j}

andn ∈ Φ such thatni ≥ 1 andnj < min{M,mj}. This shows that allocating as many resources as

possible to typej is optimal at time zero.2

Proof of Proposition 3.3.3: DefineC1 ⊂ {1, . . . ,K} to be the set of all types of jobsi such thatri < rj

and letC2 ⊆ {1, . . . ,K} be the set of all types of jobsi such thatri ≥ rj . Note thatC1 ∪ C2 =

{1, . . . ,K} andC1 can be an empty set whereasC2 is never an empty set because it always includes

typej. By Proposition 1, we know that typej jobs should be prioritized against all types inC1 since for

all i ∈ C1 αi ≤ αj andri < rj . Hence, whenever there is at least one job from typej in the system, we

can ignore all other types inC1. This reduces the problem to the one where the only types of jobs are

those inC2. But for all types inC2 we haveri ≥ rj and alsoαiri ≤ αjrj , and hence by Proposition3.3.2

typej should receive higher priority than all types inC2. This shows that typej jobs should receive the

highest priority among all types1, . . . ,K. 2

Proof of Proposition 3.3.4: First, note that if the optimal policy is an index policy, then it is sufficient

to show that a typei job will be served under the optimal policy at state(ei + ej ;M − 1) if and only

if αiri/(Mµ + ri) ≥ αjrj/(Mµ + rj), for i, j ∈ {1, . . . ,K}. Using Equations (3.3.2) and (3.3.3)

multiple times, we obtain

αi + V (ej;M) − αj − V (ei;M) = αi +
Mµαj

Mµ+ rj
− αj −

Mµαi

Mµ+ ri
=

αiri
Mµ + ri

−
αjrj

Mµ+ rj
.

Hence,V (ei + ej;M − 1) = αi + V (ej ;M) if and only if αiri/(Mµ + ri) ≥ αjrj(Mµ + rj) for all

i, j ∈ {1, . . . ,K}, which completes the proof.2

Proof of Proposition 3.4.1: (i) First, note that ifT1 < 2, there does not exist a state that would satisfy

the condition thatq1 + q2 ≤ T1 andq1, q2 ≥ 1. Thus, consider the case whereT1 ≥ 2. We will next use

Proposition3.3.1and induction onq1 + q2 to prove the result.

Whenq1 + q2 = 2, the only state that satisfies the conditions thatq1 + q2 ≤ T1 andq1, q2 ≥ 1 is

(1, 1;M − 1). In this state, serving a type 1 job is optimal if and only ifT1 ≥ 2 = q1+ q2 (see Equation

(3.3.2)), which shows that the result holds whenq1 + q2 = 2. Next, suppose that it is optimal to serve a

type 1 job in states(q1, q2;M−1) such thatq1+q2 = b, for some integerb, 2 ≤ b ≤ T1, andq1, q2 ≥ 1.

Then, Proposition3.3.1 implies that it is also optimal to serve a type 1 job at states(q′1, q
′
2;M − 1),
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whereq′1 + q′2 = b+ 1 andq′1, q
′
2 ≥ 1, if q′1 + q′2 ≤ T1. To see this, consider state(q′1, q

′
2;M − 1) with

q′1 + q′2 = b+ 1 andq′1, q
′
2 ≥ 1. By the induction hypothesis we know that it is optimal to serve a type

1 job in states(q′1 − 1, q′2;M − 1) (if q′1 ≥ 2) and(q′1, q
′
2 − 1;M − 1) sinceq′1 + q′2 − 1 = b. Thus, if

q′1 + q′2 ≤ T1 (i.e., Condition (3.3.4) for i = 2 andj = 1 is satisfied), then Proposition3.3.1tells that it

is also optimal to serve a type 1 job in state(q′1, q
′
2;M − 1).

(ii) Suppose that there exists an integerT ≥ T1 such that at all states(q;M − 1), whereq1 + q2 = T

andq1, q2 ≥ 1, it is optimal to serve a type 2 job. Then, Proposition3.3.1 implies that at all states

(q′1, q
′
2;M − 1), whereq′1 + q′2 = T + 1 andq′1, q

′
2 ≥ 1, it is optimal to serve a type 2 job. To see this,

consider states(q′1, q
′
2;M − 1), whereq′1 + q′2 = T + 1 andq′1, q

′
2 ≥ 1. It is given that serving a type 2

job is optimal in states(q′1 − 1, q′2;M − 1) and(q′1, q
′
2 − 1;M − 1) (if q′2 ≥ 2) sinceq′1 + q′2 − 1 = T .

Furthermore, Condition (3.3.4) is satisfied forj = 2 andi = 1 sinceq′1 + q′2 = T + 1 > T1. Thus,

Proposition3.3.1tells that it is optimal to serve a type 2 job in states(q′1, q
′
2;M − 1), whereq′1 + q′2 =

T + 1 andq′1, q
′
2 ≥ 1. Using the same argument successively shows that it is optimal to serve a type 2

job in all states(q′1, q
′
2;M − 1) such thatq′1 + q′2 ≥ T + 1 andq′1, q

′
2 ≥ 1. 2

Proof of Proposition 3.4.2: The optimal decision at time zero is trivial whenN = m1 + m2 ≤ M ,

m1 = 0, orm2 = 0. Hence, consider the case whereN ≥ M + 1, m1 ≥ 1, andm2 ≥ 1. We first

rewrite Equation (3.3.1) as

V (m1,m2; 0) = max
n≤n≤n

G(n),

wheren = max{0,M −m1}, n = min{M,m2}, and

G(n) = α1(M − n) + α2n+ V (m1 −M + n,m2 − n;M).

Heren is a decision variable that denotes the number of servers allocated to type 2 jobs at time zero.

Note thatn < n (sinceN ≥ M + 1, m1 ≥ 1, andm2 ≥ 1), which implies that there are at least two

values thatn can take. Now let

∆(n) = G(n+ 1)−G(n), for n ≤ n ≤ n− 1.

Using Equation (3.3.2), we make the following observation.

Observation:For a fixedn ∈ {n, . . . , n− 1}, ∆(n) ≥ 0 if and only if serving a type 2 job is optimal in
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state(m1 −M + n+ 1,m2 − n;M − 1). Also,∆(n) = 0 if and only if serving either a type 1 or type

2 job is optimal in state(m1 −M + n+ 1,m2 − n;M − 1).

We next use this observation together with Proposition3.4.1to complete the proof.

(i) By Proposition3.4.1, if m1 + m2 − M + 1 ≤ T1, then serving a type 1 job is optimal in states

(m1 −M + n+1,m2 −n;M − 1) for all n ≤ n ≤ n− 1, which is equivalent to having∆(n) ≤ 0 for

all n ≤ n ≤ n − 1. This implies that at time zero the optimal policy setsn = n, i.e., allocates as many

servers as possible to type 1 jobs.

(ii) By Proposition3.4.1, if m1 + m2 −M + 1 ≥ T2, then serving a type 2 job is optimal in states

(m1 −M + n+1,m2 −n;M − 1) for all n ≤ n ≤ n− 1, which is equivalent to having∆(n) ≥ 0 for

all n ≤ n ≤ n − 1. This implies that at time zero the optimal policy setsn = n, i.e., allocates as many

servers as possible to type 2 jobs.2

Proof of Proposition 3.4.3: First note that for a givenN , all feasible states(q;M − 1) satisfy the

condition thatq1 + q2 ≤ N −M . Hence, ifT1 ≥ N −M , then by part (i) of Proposition3.4.1, type

1 jobs should be prioritized at each state(q;M − 1), whereq ∈ {(q1, q2) : q1 = 1, . . . ,m1, q2 =

1, . . . ,m2; q1 + q2 ≤ N −M}. Combining this with part (i) of Proposition3.4.2completes the proof.

2

Proof of Proposition 3.4.4: We first show that the result holds for all decision epochs at which a

service completion takes place. Condition (3.4.3) implies that it is optimal to serve a type 2 job in state

(1, 1;M − 1), see Equation (3.3.2). Condition3.4.3also implies thatT1 ≤ 2. Hence, there exists an

integerT , whereT ≥ T1, such that at all states(q;M − 1), whereq1 + q2 = T andq1, q2 ≥ 1, it is

optimal to serve a type 2 job. Then from the proof of part (ii) of Proposition3.4.1, we conclude that

at all states(q;M − 1), whereq1, q2 ≥ 1, it is optimal to serve a type 2 job. This also implies that

the optimal policy allocates as many servers as possible to type 2 jobs at time zero. To see this, note

that∆(n), which is defined in the proof of Proposition3.4.2, is greater than or equal to zero for alln

by using the observation made in the proof of Proposition3.4.2and the fact that serving a type 2 job is

optimal in all states(q;M − 1), whereq1, q2 ≥ 1. This completes the proof.2

Proof of Proposition 3.5.1: (i) Consider a decision epoch such that jobs from type1, 2, . . . , j are

available for service wherej ≥ 2. Suppose thatr1 ≤ r2 ≤ · · · ≤ rj andα1 ≤ α2 ≤ · · · ≤ αj . By

Corollary 3.2.1, type j receives the highest priority under the optimal policy. We next show that the
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2-step policy, myopic policy,αrµ-rule, and TCF rule all prioritize typej jobs.

1. 2-step policy: Fori = 1, . . . , j − 1, let

Λij(q) = αj +
Mµmaxj(q)

Mµ − rj +
∑K

k=1 qkrk
− αi −

Mµmaxi(q)

Mµ − ri +
∑K

k=1 qkrk
, (A.0.5)

wheremaxk(q) := max
{
I{qk≥2}αk,maxl∈{1,...,K}\{k}{I{ql≥1}αl}

}
for qi, qj ≥ 1. We next

show thatΛij(q) ≥ 0 for all i < j, which implies that typej jobs are preferred over typei

jobs under the 2-step policy at every service completion instant whenqi, qj ≥ 1. First, note that

αi ≤ αj implies that0 ≤ maxi(q) −maxj(q) ≤ αj − αi for all q such thatqi, qj ≥ 1. Using

this inequality together withri ≤ rj andαi ≤ αj , we have

Λij(q) = αj − αi −
Mµ(maxi(q)−maxj(q))

Mµ− ri +
∑K

k=1 qkrk

+
Mµmaxj(q)(rj − ri)

(Mµ− rj +
∑K

k=1 qkrk)(Mµ − ri +
∑K

k=1 qkrk)
(A.0.6)

≥ αj − αi −
Mµ(αj − αi)

Mµ− ri +
∑K

k=1 qkrk

=
(αj − αi)(−ri +

∑K
k=1 qkrk)

Mµ− ri +
∑K

k=1 qkrk
≥ 0. (A.0.7)

Hence, the 2-step policy behaves the same as the optimal policy at all service completions. We

next show that typej jobs are preferred over typei jobs at time zero. Let

Q(n) =

K∑

k=1

αknk +
Mµmaxk∈{1,...,K}{I{mk−nk≥1}αk}

Mµ+
∑K

k=1(mk − nk)rk
,

wherem := (m1, . . . ,mK) is the vector of number of jobs for each type in the system at time

zero andn = (n1, . . . , nK) is the vector of the number of servers allocated to each job type at

time zero, wheren ∈ Φ. Then, allocating a server to a typej job instead of a typei job is preferred

under the 2-step policy at time zero if and only ifQ(n+ej−ei) ≥ Q(n) for all n ∈ Φ,mj−nj ≥

1 andni ≥ 1. From Equation (A.0.5), we haveΛij(m− n+ ei) = Q(n+ ej − ei) −Q(n) for

n ∈ Φ, mj − nj ≥ 1, andni ≥ 1. Thus, by (A.0.7), we haveQ(n + ej − ei) ≥ Q(n) for all

i < j such thatmj − nj ≥ 1, ni ≥ 1, andn ∈ Φ, which implies that typej jobs are preferred

over typei jobs also at time zero.
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2. Myopic policy: For anyi < j, we have

αjrj
Mµ+ rj

−
αiri

Mµ+ ri
=
Mµ(αjrj − αiri) + rirj(αj − αi)

(Mµ+ rj)(Mµ+ ri)
≥ 0

sinceαiri ≤ αjrj andαi ≤ αj , which implies that the myopic policy prefers typej jobs over

typei jobs.

3. αrµ-rule: For anyi < j, theαrµ-rule will prefer typej jobs over typei jobs becauseαiri ≤ αjrj.

4. TCF rule: For anyi < j, the TCF rule will prefer typej jobs over typei jobs sinceri ≤ rj.

(ii) Consider a decision epoch such that jobs from type1, 2, . . . , j are available for service wherej ≥ 2.

Suppose thatr1 ≥ r2 ≥ · · · ≥ rj andα1r1 ≤ α2r2 ≤ · · · ≤ αjrj (and henceα1 ≤ α2 ≤ · · · ≤ αj).

By Corollary3.3.1, typej receives the highest priority under the optimal policy. Clearly, the TCF rule

is not consistent with this result as it gives priority to thejobs with the largest abandonment rate. On the

other hand, theαrµ-rule is consistent because it gives priority to the jobs with the largestαr value. We

next show that the remaining four heuristics are consistentwith Corollary3.3.1.

1. 2-step policy: For anyi < j, we have

Λij(ei + ej) = αj +
Mµαi

Mµ+ ri
− αi −

Mµαj

Mµ+ rj

=
Mµ(αjrj − αiri) + rirj(αj − αi)

(Mµ+ rj)(Mµ+ ri)
≥ 0 (A.0.8)

sinceαi ≤ αj andαiri ≤ αjrj . Next, from Equation (A.0.6), we observe thatΛij(q) is increas-

ing in qk for any k ∈ {1, . . . ,K} asαi ≤ αj (and hencemaxi(q) − maxj(q) ≥ 0 for all q

such thatqi, qj ≥ 1) andri ≥ rj. Combining this with (A.0.8), we conclude thatΛij(q) ≥ 0 for

anyq such thatqi, qj ≥ 1, and therefore the 2-step policy is consistent with Corollary 3.3.1at

all service completions. Furthermore, similar to the proofof the consistency with Corollary3.2.1

at time zero, we haveΛij(m − n + ei) = Q(n + ej − ei) − Q(n) ≥ 0 for all i < j such that

mj − nj ≥ 1, ni ≥ 1, andn ∈ Φ, which implies that typej jobs are preferred over typei jobs at

time zero.

73



2. Threshold-1 policy: For anyi < j, we have

Ti,j =
Mµ(αiri − αjrj)

(αj − αi)rirj
+ 1 ≤ 1

sinceαiri ≤ αjrj andαi < αj . This implies thatTi ≤ 1,and hence typej jobs are preferred over

typei jobs at all decision epochs.

3. Threshold-2 policy: For anyi < j, we will consider two cases. First, assume thatαi = αj and

ri = rj, i.e., the two types are essentially identical. In this case, the consistency follows trivially.

Next, assume that the two types are not identical. Then, from(A.0.8), we haveΛij(ei + ej) > 0.

Furthermore, from Equation (A.0.6) and the conditions thatαi ≤ αj (and hencemaxi(q) −

maxj(q) ≥ 0 for all q such thatqi, qj ≥ 1) and ri ≥ rj , Λij(q) is increasing inqk for any

k ∈ {1, . . . ,K}. Then, we conclude thatΛij(q) > 0 for anyq such thatqi, qj ≥ 1. Hence, when

we solveΛij(q) = 0 for qj [qi], by letting qk = 0 for all k 6= i, j andqi = 1 [qj = 1], any

solution must be less than one. Therefore,Ti < 1 for all i < j, which implies that typej jobs are

preferred over typei jobs at all decision epochs.

4. Myopic policy: Same proof as in the proof of part (i) also applies here.

(iii) Consider a decision epoch such that jobs from type1, 2, . . . , j are available for service wherej ≥ 2.

Suppose thatα1 ≤ α2 ≤ · · · ≤ αj andα1r1 ≤ α2r2 ≤ · · · ≤ αjrj . By Corollary3.3.2, typej receives

the highest priority under the optimal policy. Clearly, theTCF rule is not consistent with this result as it

is possible to haveri ≥ rj for somei = 1, . . . , j−1, in which case it will prioritize typei jobs over type

j jobs. We can however show that the remaining five heuristics are consistent with Corollary3.3.2as

serving a typej job instead of a typei job is the preferred action for alli < j under these five policies.

For any fixedi < j, consider the following cases:

Case 1 (ri ≤ rj): The result follows from the arguments used in the proof of part (i).

Case 2 (ri > rj): The result follows from the arguments used in the proof of part (ii).

(iv) Suppose that the conditions of Proposition3.4.4hold, and hence it is optimal to give priority to type

2 jobs. Under these conditions, theαrµ-rule [TCF rule] is not necessarily consistent with Proposition

3.4.4as it is possible to haveα1r1 ≥ α2r2 [r1 ≥ r2], in which case it gives priority to type 1 jobs. On

the other hand, the myopic policy agrees with the optimal policy under the conditions of Proposition
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3.4.4by definition. We next show that the remaining three heuristics are consistent with Proposition

3.4.4as serving a type2 job instead of a type1 job is the preferred action under these heuristics. Two

cases exhaust all possible scenarios:

Case 1 (r2 ≥ r1): The result trivially follows from the proof of part (i).

Case 2 (r2 < r1):

1. 2-step policy: By Condition (3.4.3), we have

Λ12(1, 1) = α2 +
Mµα1

Mµ+ r1
− α1 −

Mµα2

Mµ+ r2
=

α2r2
Mµ + r2

−
α1r1

Mµ+ r1
≥ 0. (A.0.9)

Furthermore, from the proof of part (ii), we know thatΛ12(q1, q2) is increasing inq1 and q2

whenα2 > α1 and r2 < r1. Hence, we conclude thatΛ12(q1, q2) ≥ 0 for any q1, q2 ≥ 1,

which implies that the 2-step policy is consistent with Proposition3.4.4whenr2 < r1 at service

completion instants. In order to show that the policy agreeswith Proposition3.4.4also at time

zero, we use an argument similar to that used in the proof of part (i). In particular, we have

Λ12(m1 − n1 + 1,m2 − n2) = Q(n1 − 1, n2 + 1) −Q(n1, n2) ≥ 0 for m2 − n2 ≥ 1, n1 ≥ 1,

and(n1, n2) ∈ Φ, which implies that type2 jobs are preferred over type1 jobs at time zero.

2. Threshold-1 policy: Under the conditions of Proposition3.4.4, we can show that

T1,2 =
Mµ(α1r1 − α2r2)

(α2 − α1)r1r2
+ 1 ≤ 2.

Furthermore, inequality (A.0.9) shows that type 2 jobs are prioritized whenq1 = q2 = 1. Com-

bining these two facts, we conclude thatT1 ≤ 1, and hence type2 jobs are preferred over type1

jobs at all decision epochs.

3. Threshold-2 policy: First of all, from (A.0.9), we know thatΛ12(1, 1) ≥ 0. Furthermore, from

Equation (A.0.6) and the conditions thatα2 > α1 andr2 < r1, we haveΛ12(q1, q2) is strictly

increasing inq1 andq2 for q1, q2 ≥ 1. Then, we conclude thatΛ12(q1, q2) > 0 for anyq such

that at least one ofq1 andq2 is strictly greater than 1. Hence, any solution toΛ12(q1, 1) = 0

andΛ12(1, q2) = 0 must be at most one. Therefore,T1 ≤ 1, which implies that type2 jobs are

preferred over type1 jobs at all decision epochs.2
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Proof of Proposition 4.1.1: We will again use a coupling argument to prove the result. Suppose policy

π takes jobj into service att0 while job i is in the queue. Without loss of generality, assume thatt0 = 0.

We will construct a policyγ which serves jobi at time0, and for whichCπ(t) ≤ Cγ(t) for all t ≥ 0

along any given sample path.

Let Y ρ
l denote the remaining lifetime of jobl at time0 under policyρ, wherel ∈ {i, j} andρ ∈

{π, γ}. Note that by the stochastic ordering relation among the remaining lifetimes of jobs, we can

couple the random variables so thatY π
i = yi ≤ yj = Y γ

j . Because policyπ(γ) serves jobj(i) at

time zero and the job in service will not abandon, we do not need Y π
j andY γ

i . Let Y γ
l = Y π

l for all

l 6= i, j. Let alsoSρ
l denote the service time of jobl under policyρ ∈ {π, γ}, and letSγ

l = Sπ
l for all

l 6= i, j. We can couple(Sπ
i , S

π
j ) with (Sγ

i , S
γ
j ) so thatm := min{Sπ

i , S
π
j } = min{Sγ

i , S
γ
j } ≤ m :=

max{Sπ
i , S

π
j } = max{Sγ

i , S
γ
j } and eitherSπ

j = Sγ
i := a ∈ {m,m} andSπ

i = Sγ
j := b ∈ {m,m}\{a}

(Case I) orSπ
i = Sγ

i = m ≤ Sπ
j = Sγ

j = m (Case II). Note that such a coupling is possible from

LemmaA.0.1and the condition thatSi ≤lr Sj. Finally, letZρ
l denote the reward of serving jobl under

policy ρ ∈ {π, γ} and letZγ
l = Zπ

l for all l 6= i, j. Then, we can couple(Zπ
i , Z

π
j ) with (Zγ

i , Z
γ
j )

so thatmin{Zπ
i , Z

π
j } = min{Zγ

i , Z
γ
j } ≤ max{Zπ

i , Z
π
j } = max{Zγ

i , Z
γ
j }, and eitherZπ

j = Zγ
i and

Zπ
i = Zγ

j or Zπ
j = Zγ

j ≤ Zπ
i = Zγ

i . Such a coupling is possible from LemmaA.0.1 and the condition

thatZj ≤lr Zi. Let τ be the time instanceπ takes jobi into service (τ = ∞ if job i is not taken into

service). The following cases exhaust all possibilities:

Case I:

(a) We first consider the case whereτ < ∞. Note that, under Case I, the fist decision epoch after time

zero is at timea for bothπ andγ. γ follows π during [a, τ), and at timeτ , whenπ takes jobi into

service,γ takes jobj. This is possible becauseyi ≤ yj . At time τ + b, the states will be the same under

both policies andγ follows π from then on. Hence, we haveCγ(t) − Cπ(t) = Zγ
i − Zπ

j ≥ 0 for all

0 ≤ t < τ , andCγ(t)− Cπ(t) = Zγ
i + Zγ

j − Zπ
i − Zπ

j = 0 for all t ≥ τ .

(b) Now suppose thatτ = ∞. Then,γ follows π at all decision epochs after time zero except that it

serves jobj last (let the service start time beτ ′) if it is still available after all other jobs are cleared.

Hence, we haveCγ(t) − Cπ(t) = Zγ
i − Zπ

j ≥ 0 for all 0 ≤ t < τ ′, and ifτ ′ < ∞, Cγ(t) − Cπ(t) =

Zγ
i − Zπ

j + Zγ
j ≥ 0 for all t ≥ τ ′.

Case II:
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(a) We again first consider the case whereτ < ∞. γ follows π at every decision epoch during[m, τ −

m + m) and serves jobj at timeτ − m + m whenπ serves jobi (at timeτ ). This is possible since

yi ≤ yj and the service completion times underγ arem −m units of time earlier than those underπ

betweenm andτ . The states underπ andγ become the same at timem+ τ , andγ follows π from then

on. Hence, we haveCγ(t)−Cπ(t) = Zγ
i −Zπ

j ≥ 0 for all 0 ≤ t < m, Cγ(t)−Cπ(t) ≥ Zγ
i −Zπ

j ≥ 0

for all m ≤ t < τ −m+m, Cγ(t) − Cπ(t) ≥ Zγ
i − Zπ

j + Zγ
j ≥ 0 for all τ −m+m ≤ t < τ , and

Cγ(t)− Cπ(t) = Zγ
i + Zγ

j − Zπ
i − Zπ

j = 0 for all t ≥ τ .

(b) We now consider the case whereτ = ∞. γ follows π starting at timem, except that it serves

job j last (let the service start time beτ ′) if it is still available when all other jobs are cleared. As in

Case II(a), this is possible since the service completion times underγ arem −m units of time earlier

than those underπ afterm. Then, we haveCγ(t) − Cπ(t) = Zγ
i − Zπ

j ≥ 0 for all 0 ≤ t < m,

Cγ(t)−Cπ(t) ≥ Zγ
i −Z

π
j ≥ 0 for allm ≤ t < τ ′, and ifτ ′ <∞,Cγ(t)−Cπ(t) = Zγ

i −Z
π
j +Z

γ
j ≥ 0

for all t ≥ τ ′.

Thus, we have shown thatCγ(t) ≥ Cπ(t) for all t ≥ 0 along any sample path.2

In the proof of Proposition4.2.1, we use the following lemma, which states that for a fixed number

of jobs in queue, we prefer to have the job in service be a job with a smaller mean service time. This

makes sense because the remaining lifetime of the job in service and the associated reward for that job

are no longer relevant.

Lemma A.0.2. If µj ≤ (=) µi for any pair(i, j), i, j = 1, . . . ,K, thenV (q;Pj) ≤ (=) V (q;Pi).

Proof: We first prove the inequality part. Couple the processing times of the jobs in service for the

two states such thatS′
i ≤ S′

j with probability one, whereS′
l denotes the processing time of the type

l job in service,l ∈ {i, j}. Let V0(q;Pi) be the value function when the starting state is(q;Pi) and

we idle from timeS′
i to S′

j and then follow the optimal policy. Then, from Proposition 1, we have

V (q;Pi) ≥ V0(q;Pi) = V (q;Pj).

We next prove the equality part. Couple the processing timesof the jobs in service for the two states

such thatS′
i = S′

j with probability one. Then, starting from states(q;Pi) and(q;Pj), the processes

reach the same state after the service completion of the job in service, i.e., atS′
i = S′

j . Hence, we have

V (q;Pi) = V (q;Pj). 2
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Proof of Proposition 4.2.1: We will show thatαj + V (q − ej ;Pj) ≥ I{qi≥1}αi + V (q − ei;Pi) for

all i = 1, . . . ,K under the given conditions. Fori ∈ {1, . . . ,K} such thatqi = 0, this holds trivially.

Hence, we only consider the types of jobs for whichqi ≥ 1.

For a fixedi ∈ {1, . . . ,K} \ {j} such thatqi ≥ 1, we have

V (q − ej;Pj) =
µjV (q − ej;R) +

∑K
k=1,k 6=j qkrkV (q − ek − ej;Pj) + (qj − 1)rjV (q − 2ej ;Pj)

µj − rj +
∑K

k=1 qkrk

≥
1

µj − rj +
∑K

k=1 qkrk

{
µj(αi + V (q − ei − ej ;Pi)) +

K∑

k=1,k 6=i,j

qkrk(V (q − ek − ei;Pi) + αi − αj)

+ qiriV (q − ei − ej;Pj) + (qj − 1)rj(V (q − ei − ej;Pi) + αi − αj)

}

=
1

µj − rj +
∑K

k=1 qkrk

{
αjµj + (αi − αj)(µj − rj +

K∑

k=1,k 6=i

qkrk) + qiriV (q − ei − ej;Pj)

+
K∑

k=1,k 6=i,j

qkrkV (q − ei − ek;Pk) + (µj + (qj − 1)rj)V (q − ei − ej;Pi)

}
, (A.0.10)

where the inequality follows because, for the first term,V (q − ej ;R) ≥ αi + V (q − ej − ei;Pi);

for the second term,V (q − ek;R) = αj + V (q − ek − ej;Pj) for all k ∈ {1, . . . ,K} \ {j} such

that qk ≥ 1; and for the last term, eitherqj = 1, so the inequality is trivial or by the condition that

αj + V (q − 2ej;Pj) ≥ αi + V (q − ej − ei;Pi) for qj ≥ 2. Furthermore, Equation (A.0.10) holds

becauseV (q − ei − ek;Pi) = V (q − ei − ek;Pk) for all i, k ∈ {1, . . . ,K} \ {j} by Condition (4.2.6)

and LemmaA.0.2.

Similarly, for a fixedi ∈ {1, . . . ,K} \ {j} such thatqi ≥ 1, we have

V (q − ei;Pi) =
µiV (q − ei;R) + (qi − 1)riV (q − 2ei;Pi) +

∑K
k=1,k 6=i qkrkV (q − ek − ei;Pi)

µi − ri +
∑K

k=1 qkrk

≤
1

µi − ri +
∑K

k=1 qkrk

{
µi(αj + V (q − ei − ej ;Pj)) + (qi − 1)ri(V (q − ei − ej;Pj) + αj − αi)

+

K∑

k=1,k 6=i,j

qkrkV (q − ek − ei;Pi) + qjrjV (q − ei − ej;Pi)

}

=
1

µi − ri +
∑K

k=1 qkrk

{
(αj − αi)qiri + αjµi − (αj − αi)ri + (µi + (qi − 1)ri)V (q − ei − ej ;Pj)

+
K∑

k=1,k 6=i,j

qkrkV (q − ei − ek;Pk) + qjrjV (q − ei − ej ;Pi)

}
, (A.0.11)
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where the inequality follows because, for the first and second terms,V (q − ei;R) = αj + V (q −

ei − ej;Pj); and Equation (A.0.11) holds becauseV (q − ei − ek;Pi) = V (q − ei − ek;Pk) for all

i, k ∈ {1, . . . ,K} \ {j} by Condition (4.2.6) and LemmaA.0.2.

Now, from (A.0.10) and (A.0.11), we get

αj + V (q − ej ;Pj)− αi − V (q − ei;Pi)

≥ (αj − αi)

(
1−

µj − rj +
∑K

k=1,k 6=i qkrk

µj − rj +
∑K

k=1 qkrk
−

qiri

µi − ri +
∑K

k=1 qkrk

)

+
αjµj(µi − ri +

∑K
k=1 qkrk) + ((αj − αi)ri − αjµi)(µj − rj +

∑K
k=1 qkrk)

(µj − rj +
∑K

k=1 qkrk)(µi − ri +
∑K

k=1 qkrk)

+

(
qiri

µj − rj +
∑K

k=1 qkrk
−

µi + (qi − 1)ri

µi − ri +
∑K

k=1 qkrk

)
V (q − ei − ej ;Pj)

+

(
1

µj − rj +
∑K

k=1 qkrk
−

1

µi − ri +
∑K

k=1 qkrk

)
K∑

k=1,k 6=i,j

qkrkV (q − ei − ek;Pk)

+

(
µj + (qj − 1)rj

µj − rj +
∑K

k=1 qkrk
−

qjrj

µi − ri +
∑K

k=1 qkrk

)
V (q − ei − ej ;Pi) (A.0.12)

≥

(
1

µj − rj +
∑K

k=1 qkrk
−

1

µi − ri +
∑K

k=1 qkrk

)
(αj − αi)qiri

+
((αj − αi)ri + αj(µj − µi))

∑K
k=1 qkrk + αiri(rj − µj)− αjrj(ri − µi)

(µj − rj +
∑K

k=1 qkrk)(µi − ri +
∑K

k=1 qkrk)

+

(
qiri

µj − rj +
∑K

k=1 qkrk
−

µi + (qi − 1)ri

µi − ri +
∑K

k=1 qkrk

)
V (q − ei − ej ;Pj)

+

(
1

µj − rj +
∑K

k=1 qkrk
−

1

µi − ri +
∑K

k=1 qkrk

)
K∑

k=1,k 6=i,j

qkrk (V (q − ei − ej ;Pj) + αj − αk)

+

(
µj + (qj − 1)rj

µj − rj +
∑K

k=1 qkrk
−

qjrj

µi − ri +
∑K

k=1 qkrk

)
V (q − ei − ej ;Pi)

=
(ri − µi − rj + µj)

∑K
k=1,k 6=j αkqkrk + (αjrj − αiri)

∑K
k=1,k 6=j qkrk

(µj − rj +
∑K

k=1 qkrk)(µi − ri +
∑K

k=1 qkrk)

+
qjrj((αj − αi)ri + αj(µj − µi)) + αiri(rj − µj)− αjrj(ri − µi)

(µj − rj +
∑K

k=1 qkrk)(µi − ri +
∑K

k=1 qkrk)

+

(
µj + (qj − 1)rj

µj − rj +
∑K

k=1 qkrk
−

qjrj

µi − ri +
∑K

k=1 qkrk

)
(V (q − ei − ej;Pi)− V (q − ei − ej;Pj))

=

∑K
k=1 qkrk[αjrj − αiri + αk(ri − µi − rj + µj)]− αjrj(ri − µi) + αiri(rj − µj)

(µj − rj +
∑K

k=1 qkrk)(µi − ri +
∑K

k=1 qkrk)
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+
(ri − µi)qjrj + (rj − µj)(µi − ri +

∑K
k=1,k 6=j qkrk)

(µj − rj +
∑K

k=1 qkrk)(µi − ri +
∑K

k=1 qkrk)

× (V (q − ei − ej ;Pj)− V (q − ei − ej;Pi)), (A.0.13)

where the second inequality follows because for the fourth term of (A.0.12) eitherK = 2 so the in-

equality holds trivially or it follows from Condition (4.2.5) and the condition thatV (q − ei;R) =

αj + V (q − ei − ej ;Pj) for all i ∈ {1, . . . ,K} \ {j} such thatqi ≥ 1. Finally, Equation (A.0.13)

is greater than or equal to zero, because, for the first term, Condition (4.2.3) holds; and for the second

term, Condition (4.2.4) holds and we haveV (q − ei − ej ;Pi) ≤ (≥)V (q − ei − ej;Pj) if µi ≤ (≥)µj

by LemmaA.0.2.2

Proof of Proposition 4.2.2: First of all, whenrj ≥ ri for i ∈ {1, . . . ,K}, Proposition4.1.1states

that it is optimal to give priority to typej jobs over typei jobs at all decision epochs sinceαj ≥ αi

andµj > µi for all i ∈ {1, . . . ,K}, i.e.,αj + V (q − ej;Pj) ≥ αi + V (q − ei;Pi) for all jobs with

rj ≥ ri. Therefore, in the rest of the proof, we only consider typei ∈ {1, . . . ,K} jobs whererj < ri.

Let C = {i : i = 1, . . . ,K; rj < ri}. Note thatC ⊂ {1, . . . ,K} andj 6∈ C. As ri > rj ≥ µj > µi, we

getri − µi > rj − µj ≥ 0 for all i ∈ C. Hence, Conditions (4.2.4) and (4.2.5) are satisfied for alli ∈ C

andqi, qj ≥ 1. Next, fori ∈ C, we rewrite Condition (4.2.3) as

K∑

k=1

qkrk[αjrj − αiri + αk(ri − µi − rj + µj)]− αjrj(ri − µi) + αiri(rj − µj) ≥ 0

⇔
K∑

k=1,k 6=i,j

qkrk[αjrj − αiri + αk(ri − µi − rj + µj)] + (qi − 1)ri[rj(αj − αi) + αi(µj − µi)]

+(qj − 1)rj [ri(αj − αi) + αj(µj − µi)] + rirj(αj − αi) + αjrjµj − αiriµi ≥ 0. (A.0.14)

Since we haveαi ≤ αj , µi < µj, αiri ≤ αjrj (and henceαiriµi ≤ αjrjµj), ri − µi > rj − µj for all

i ∈ C, andqi, qj ≥ 1, Condition (A.0.14) is satisfied for alli ∈ C. Thus, we have shown that under the

given conditions in Proposition4.2.2, Conditions (4.2.3), (4.2.4), (4.2.5), and (4.2.6) are satisfied for all

i ∈ C such thatqi ≥ 1.

We will now apply induction on
∑K

i=1 qi. First, consider the case where
∑K

i=1 qi = 1 such that

qj ≥ 1, i.e.,q = ej. In this case, the result holds trivially. Now, suppose thatthe result is true for all

feasibleq such that
∑K

i=1 qi = a, for some integera ≥ 1 andqj ≥ 1. Then, for anỹq = (q̃1, . . . , q̃K)
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such that
∑K

i=1 q̃i = a + 1 and q̃j ≥ 1, we haveV (q̃;R) = αj + V (q̃ − ej ;Pj) by Proposition4.2.1

since Conditions (4.2.3), (4.2.4), (4.2.5), and (4.2.6) are satisfied for alli ∈ C such thatq̃i ≥ 1. This

shows that for alli ∈ C whereqj ≥ 1, job j should receive the highest priority.2

Proof of Proposition 4.2.3: First, note that if the optimal policy is an index policy, then it is sufficient

to show that a typei job will be served under the optimal policy at state(ei + ej;R) if and only if the

required condition holds.

(i) Given thatαi = αj = α for all i, j ∈ {1, . . . ,K}, using Equations (4.2.1) and (4.2.2) multiple times,

we obtain

V (ej;Pi)− V (ei;Pj) =
µiα

µi + rj
−

µjα

µj + ri
=

α(riµi − rjµj)

(µi + rj)(µj + ri)
, ∀ i, j = 1, . . . ,K,

Hence,V (ej ;Pi) ≥ V (ei;Pj) if and only if riµi ≥ rjµj, for i, j ∈ {1, . . . ,K}, given thatαi = αj = α,

which completes the proof for this case.

(ii) Given thatri = rj = r for all i, j ∈ {1, . . . ,K}, using Equations (4.2.1) and (4.2.2) multiple times,

we obtain

αi + V (ej;Pi)− αj − V (ei;Pj) = αi +
µiαj

µi + r
− αj −

µjαi

µj + r
=
αiri(µi − r)− αj(µj + r)

(µi + r)(µj + r)
.

Hence,αi + V (ej;Pi) ≥ αj + V (ei;Pj) if and only ifαi(µi + r) ≥ αj(µj + r), for i, j ∈ {1, . . . ,K},

given thatri = rj = r, which completes the proof.2

Proof of Proposition 4.3.1: First, note that whenr1 ≤ r2, using Proposition4.1.1together with the

conditionsα1 ≤ α2 andµ1 < µ2 we conclude that serving type 2 jobs is optimal at all decision epochs.

This is consistent with Proposition4.3.1, ast(q1) = 0 for r1 ≤ r2. Therefore, we focus on the case

wherer1 > r2 in the rest of the proof.

(i) Let K = 2, i = 2, andj = 1 in Proposition4.2.1. Then, givenr1 > r2, α1 ≤ α2, andµ1 < µ2,

Condition (4.2.3) diminishes toq2 ≤ t(q1). Moreover, givenµ1 < µ2, we rewrite Condition (4.2.4) as

r1(r2 − µ2)q1 + r2(r1 − µ1)q2 ≤ (r1 − µ1)(r2 − µ2). (A.0.15)

Note that, forr2 < r1 ≤ µ1 < µ2, Condition (A.0.15), and hence Condition (4.2.4), is satisfied for all
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q1, q2 ≥ 0.

We next use induction onq1 to prove the result. Forq1 = q2 = 1, the condition thatq2 ≤ t(q1)

diminishes toα1r1(µ1 + r2) ≥ α2r2(µ2 + r1), which is the necessary and sufficient condition for

the optimality of serving a type 1 job at state(1, 1;R); see Equations (4.2.1) and (4.2.2). Then, by

Proposition4.2.1, it is optimal to serve a type 1 job at states(1, q2;R) such thatq2 ≤ t(1). Now,

suppose that forq1 = a, wherea ≥ 1 is an integer, it is optimal to serve type 1 jobs at states(a, q2;R)

such thatq2 ≤ t(a). Then, applying Proposition4.2.1, we conclude that it is optimal to serve type 1

jobs at states(a+ 1, q2;R) such thatq2 ≤ t(a+ 1) sincet(q1) is non-increasing inq1.

(ii) LetK = 2, i = 1, andj = 2 in Proposition4.2.1. Similar to part (i), givenr1 > r2, α1 ≤ α2, and

µ1 < µ2, Condition (4.2.3) diminishes toq2 ≥ t(q1). Moreover, givenµ1 < µ2, we rewrite Condition

(4.2.4) as

r1(r2 − µ2)(q1 − 1) + r2(r1 − µ1)(q2 − 1) ≥ µ1µ2 − r1r2. (A.0.16)

Note that forr1 > r2 ≥ µ2 > µ1, Condition (A.0.16), and hence Condition (4.2.4), is satisfied for all

q1, q2 ≥ 1.

We next use induction onq1 to prove the result. We start with the case whereq1 = 1. Proposition

4.2.1implies that if there is a state(1, b;R), whereb ≥ t(1) and serving a type 2 job is optimal, then

it is also optimal to serve type 2 jobs in all states(1, q2;R) such thatq2 ≥ b. Next, suppose that

serving a type 2 job is optimal in states(a, q2;R) for all q2 ≥ t̃(a) ≥ t(a), wherea ≥ 1 is an integer.

If there exists a state(a + 1, d) whered ≥ t̃(a) − 1 and serving a type 2 job is optimal, then by

Proposition4.2.1, it is also optimal to serve type 2 jobs in all states(a + 1, q2;R) such thatq2 ≥ d.

(Note thatt(q1) in non-increasing inq1, hence Condition (4.2.3) is satisfied for(a + 1, d + 1;R) as

d+ 1 ≥ t̃(a) ≥ t(a) ≥ t(a+ 1).) This completes the proof.2

Proof of Proposition 4.3.2: LetK = 2, i = 1, andj = 2 in Proposition4.2.1. Then, forq1 = q2 = 1,

Condition (4.2.3) is satisfied as it diminishes toα1r1(µ1 + r2) ≤ α2r2(µ2 + r1). Next, we rewrite

Condition (4.2.3) as

q1r1[(α2 − α1)r2 + α1(µ2 − µ1)] + q2r2[(α2 − α1)r1 + α2(µ2 − µ1)] ≥ α2r2(r1 − µ1)− α1r1(r2 − µ2).

(A.0.17)
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Note that, for(α2 − α1)r2 ≥ α1(µ1 − µ2) and (α2 − α1)r1 ≥ α2(µ1 − µ2), the left-hand side

of Condition (A.0.17) is non-decreasing inq1 andq2, and hence Condition (4.2.3) is satisfied for all

q1, q2 ≥ 1. Moreover, givenµ1 < µ2, we rewrite Condition (4.2.4) as Condition (A.0.16), which

is satisfied for allq1, q2 ≥ 1 becauser1 ≥ µ1 and r2 ≥ µ2. Finally, the necessary and sufficient

condition for the optimality of serving a type 2 job at state(1, 1;R) is satisfied as it diminishes to

α1r1(µ1 + r2) ≤ α2r2(µ2 + r1); see Equations (4.2.1) and (4.2.2). Then, by Proposition4.2.1, it is

optimal to serve a type 2 job at states(q1, 1;R) for all q1 ≥ 1. Furthermore, since it is also optimal to

serve a type 2 job at states(0, q2;R) for all q2 ≥ 1, applying Proposition4.2.1multiple times completes

the proof.2

Proof of Corollary 4.3.1: Note that whenr1 ≤ r2, using Proposition4.1.1together with the conditions

α1 ≤ α2 andµ1 < µ2 we conclude that serving type 2 jobs is optimal at all decision epochs. Hence,

we focus on the case wherer1 > r2. Now, since we haver1 > r2 ≥ µ2 > µ1, α1 ≤ α2, and

α1r1µ1 ≤ α2r2µ2, the conditions required in Proposition4.3.2are all satisfied, which completes the

proof.2

Proof of Proposition 4.3.3: Similar to the proof of Proposition4.2.3, as the optimal policy is an index

policy, it is sufficient to show that a typei job will be served under the optimal policy at state(1, 1;R)

if and only if the required condition holds. Note that using Equations (4.2.1) and (4.2.2) multiple times,

we obtain

α1 + V (0, 1;P1)− α2 + V (1, 0;P2) = α1 +
µ1α2

µ1 + r2
− α2 −

µ2α1

µ2 + r1

=
α1r1(µ1 + r2)− α2r2(µ2 + r1)

(µ1 + r2)(µ2 + r1)
.

Hence,α1 + V (0, 1;P1) ≥ α2 + V (1, 0;P2) if and only if α1r1(µ1 + r2) ≥ α2r2(µ2 + r1), which

completes the proof.2

In order to prove Propositions5.1.1and5.1.2, we consider the following finite horizon problem:

max
π∈Π

Γπ(T ) for fixed T <∞, (A.0.18)

Our discrete-time MDP is again defined by the state spaceS, action spaceA, a set of known transition
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probabilities, and a reward function. Then, the total reward for this finite horizon problem is

rN (s) +
N−1∑

n=0

rn(s, dn(s)),

whererN (s) is a terminal reward incurred at the end of the planning horizon which we set to zero.

Let Jπ,N (s0) denote the expected average reward over theN -period decision making horizon if

policy π is used and the system is in states0 at time zero. Then, forπ ∈ Π, we have

Jπ,N (s0) =
1

N
E

[
rN (Yπ(N)) +

N−1∑

n=0

rn(Yπ(n), dn(Yπ(n)))

]
,∀s0 ∈ S.

The optimal reward is given by

JN (s0) = max
π∈Π

Jπ,N (s0).

Let vn(s, ai) represent the average reward over the periods ranging fromn toN , where system is in

states and actionai is chosen in periodn, and the optimal action is chosen in periodsn + 1 toN . Let

alsovn(s) be the optimal average reward from periodn toN , when the system is in states in periodn.

Then, for alls ∈ S andn = 0, . . . , N − 1, we have

vn(s) = max
ai∈A(s)

{vn(s, ai)}.

In order to prove Proposition5.1.1, we need the following lemma.

Lemma A.0.3. For all k = 1, . . . ,K, v(s) ≥ v(s − ek), wheres ∈ S andsk ≥ 1.

Proof of Lemma A.0.3: Fix k ∈ {1, . . . ,K}. We first consider the finite horizon problem for which

we will prove thatvn(s) ≥ vn(s− ek) for all periodsn = 0, . . . , N and all statess ∈ S, wheresk ≥ 1.

To prove this result, we will consider two sample paths.

In the first sample path, suppose that the state iss− ek, wheres ∈ S andsk ≥ 1 in periodn, where

n = 0, . . . , N . Suppose that this sample path is governed by an optimal policy, which we call policy

π. In the second sample path, suppose that the state iss in periodn, wheren = 0, . . . , N . We will

next construct a policy, which we call policyπ0, and apply this policy in the second sample path. Then,

using induction onn, we will show thatvn(s− ek) ≤ v
(0)
n (s), wherev(0)n (s) is the value function under

policy π0. Sinceπ0 is not necessarily an optimal policy, this will imply thatvn(s− ek) ≤ vn(s) for all
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n ∈ {0, . . . , N} ands ∈ S.

First consider periodN . In this case, we havev(0)N (s) = vN (s) = 0 for all s ∈ S and hence

the result holds trivially. Next, suppose thatvn+1(s − ek) ≤ v
(0)
n+1(s) for some periodn + 1, where

n ∈ {0, . . . , N − 1}, and alls ∈ S, wheresk ≥ 1, if π0 does the same action in periodn+1 (with state

s) thatπ takes in periodn+ 1 (with states− ek). We will show that this also holds forn.

Case 1 (sk < Ck): At periodn, the probability of the next event being an arrival, a service completion,

or an abandonment for a typei job, wherei 6= k, is the same for both sample paths. On the other hand,

the probability of next event being the abandonment of a typek job is larger in the second sample path,

which means that the probability of staying in the same state(due to uniformization) is smaller in the

second sample path. Hence, when we can couple both sample paths, either both sample paths reach

the same state in periodn + 1, i.e.,s − ek, or the state under the first sample path iss′ − ek in period

n + 1 whereas it iss′ under the second sample path, wheres′ ∈ S. In the first situation,π0 follows π

exactly. This means thatvn+1(s) = v
(0)
n+1(s) for all s ∈ S, which implies thatvn(s − ek) ≤ v

(0)
n (s).

In the second situation,π0 takes the same action under the second sample path thatπ takes under the

first sample path. Hence, by the inductive hypothesis, we have vn(s − ek) ≤ v
(0)
n (s) for all s ∈ S and

sk ≥ 1.

Case 2 (sk = Ck): At periodn, the probabilities of next events are the same as in Case 1. Hence, the

results for Case 1 also apply here. The only difference is that, if the next event is the arrival of a type

k job, then that job is lost under the second sample path, whereas it will be admitted in the first sample

path. Hence, both sample paths will reach the same state in period n+1, i.e.,s. In this case,π0 follows

π exactly, which implies thatvn+1(s) = v
(0)
n+1(s) for all s ∈ S, and hencevn(s− ek) ≤ v

(0)
n (s).

Above we have proved thatvn(s− ek) ≤ v
(0)
n (s) ≤ vn(s) for all n = 0, . . . , N , s ∈ S, andsk ≥ 1.

LettingN → ∞, we getv(s− ek) ≤ v(s), which completes the proof.2

Proof of Proposition 5.1.1: To prove the result, we show thatM(s, ai) ≥ M(s, aj) for all j ∈

{1, . . . ,K} \ {i}. j ∈ {1, . . . ,K} \ {i}, we have

M(s, ai)−M(s, aj) = Riµi −Rjµj + (γi − µi)

[
v(s)− v(s − ei)

]
− (γj − µj)

[
v(s)− v(s − ej)

]

≥ Riµi −Rjµj

≥ 0,
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where the first inequality holds from LemmaA.0.3 and the conditions thatγi ≥ µi and γj ≤ µj

j ∈ {1, . . . ,K}\{i}, and the second inequality holds becauseRiµi ≥ Rjµj. This completes the proof.

2

In order to prove Proposition5.1.2, we consider a capacity restriction on the total number of jobs,

and we letC <∞ denote that capacity. Then, the state spaceS is given by

S =



 s = (s1, · · · , sK) : si ∈ {0, 1, . . . , C} for i = 1, . . . ,K,

K∑

j=1

sj ≤ C



 ,

wheresi is the number of typei jobs in the system. Furthermore, the uniformization constant is now

given by

ψ =

K∑

i=1

λi + max
i=1,...,K

µi + (C − 1) max
i=1,...,K

γi.

Moreover, letC(s) denote the total number of jobs in the system when it is in state s = (s1, . . . , sK) ∈

S, i.e., C(s) =
∑K

i=1 si, and1{C(s)<C} be the indicator function of the set{C(s) < C}. Then,

considering the finite horizon problem, for allai ∈ A(s), s ∈ S, i = 1, . . . ,K andn = 0, . . . , N − 1,

we have:

vn(s, ai) = Riµi + 1{C(s)<C}

K∑

j=1

λjvn+1(s+ ej) +
K∑

j=1

sjγjvn+1(s − ej)

+(µi − γi)vn+1(s− ei)

+


1− 1{C(s)<C}

K∑

j=1

λj −
K∑

j=1

sjγj − (µi − γi)


 vn+1(s).

Then, fors ∈ S, the Bellman’s average reward optimality equations are given by

vN (s) = 0,

vn(s) = 1{C(s)<C}

K∑

j=1

λjvn+1(s+ ej) +

K∑

j=1

sjγjvn+1(s− ej)

+

[
1− 1{C(s)<C}

K∑

j=1

λj −
K∑

j=1

sjγj

]
vn+1(s) + max

ai∈A(s)
{Mn+1(s, ai)},
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for n = 0, . . . , N − 1, where

Mn+1(s, ai) = Riµi + (γi − µi)

[
vn+1(s)− vn+1(s− ei)

]
, for i = 1, . . . ,K.

Next, for theK = 2 case, before we introduce new notation, we redefine the period n as the

number of periods left to reachN for simplicity of notation. Forn = 1, . . . , N ands1, s2 ≥ 1 where

(s1, s2) ∈ S, we letMn(s1, s2) = maxi=1,2{Mn(s1, s2; ai)}. Then, we have

Mn(s1, s2) = max

{
R1µ1 +(γ1 − µ1) [vn(s1, s2)− vn(s1 − 1, s2)] ,

R2µ2 +(γ2 − µ2) [vn(s1, s2)− vn(s1, s2 − 1)]

}
.

Next, we let∆(1)
n (s1, s2) = vn(s1, s2)− vn(s1 − 1, s2) and∆(2)

n (s1, s2) = vn(s1, s2)− vn(s1, s2 − 1).

Then,∀(s1, s2) ∈ S andn = 1, . . . , N , we get

Mn(s1, s2) = max

{
R1µ1 + (γ1 − µ1)∆

(1)
n (s1, s2), R2µ2 + (γ2 − µ2)∆

(2)
n (s1, s2)

}
.

Next, fors1 ≥ 1, we have

∆(1)
n (s1, s2) = 1{s1+s2<C}

[
λ1∆

(1)
n−1(s1 + 1, s2) + λ2∆

(1)
n−1(s1, s2 + 1)

]

+ (s1 − 1)γ1∆
(1)
n−1(s1 − 1, s2) + s2γ2∆

(1)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)

]
∆

(1)
n−1(s1, s2)

+ 1{s2>0}

(
Mn−1(s1, s2)− 1{s1>1}Mn−1(s1 − 1, s2)

− 1{s1=1}

[
R2µ2 + (γ2 − µ2)∆

(2)
n−1(s1 − 1, s2)

])

+ 1{s2=0}

([
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1, s2)

]

− 1{s1>1}

[
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1 − 1, s2)

])

+ 1{s1+s2=C}λ2 [vn−1(s1, s2)− vn−1(s1 − 1, s2 + 1)] .
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Similarly, for s2 ≥ 1, we have

∆(2)
n (s1, s2) = 1{s1+s2<C}

[
λ1∆

(2)
n−1(s1 + 1, s2) + λ2∆

(2)
n−1(s1, s2 + 1)

]

+ s1γ1∆
(2)
n−1(s1 − 1, s2) + (s2 − 1)γ2∆

(2)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)

]
∆

(2)
n−1(s1, s2)

+ 1{s1>0}

(
Mn−1(s1, s2)− 1{s2>1}Mn−1(s1, s2 − 1)

− 1{s2=1}

[
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1, s2 − 1)

])

+ 1{s1=0}

([
R2µ2 + (γ2 − µ2)∆

(2)
n−1(s1, s2)

]

− 1{s2>1}

[
R2µ2 + (γ2 − µ2)∆

(2)
n−1(s1, s2 − 1)

])

+ 1{s1+s2=C}λ1 [vn−1(s1, s2)− vn−1(s1 + 1, s2 − 1)] .

Let∆n(s1, s2) = ∆
(1)
n (s1, s2)−∆

(2)
n (s1, s2) = vn(s1, s2 − 1)− vn(s1 − 1, s2) for s1 ≥ 1 ands2 ≥ 1.

Then, fors1, s2 ≥ 1, we have

∆n(s1, s2) = 1{s1+s2−1<C} [λ1∆n−1(s1 + 1, s2) + λ2∆n−1(s1, s2 + 1)]

+ (s1 − 1)γ1∆n−1(s1 − 1, s2) + (s2 − 1)γ2∆n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)

]
∆n−1(s1, s2)

− γ1∆
(2)
n−1(s1 − 1, s2) + γ2∆

(1)
n−1(s1, s2 − 1)

+ 1{s2>1}Mn−1(s1, s2 − 1) + 1{s2=1}

[
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1, s2 − 1)

]

− 1{s1>1}Mn−1(s1 − 1, s2)− 1{s1=1}

[
R2µ2 + (γ2 − µ2)∆

(2)
n−1(s1 − 1, s2)

]
.

(A.0.19)

Finally, we need the following lemma to prove Proposition5.1.2.

Lemma A.0.4. If R1µ1 = R2µ2, γ1 ≤ µ1, and γ1 − γ2 ≥ µ1 − µ2 ≥ 0, then, for all n ≥ 0,

∆
(2)
n (s1, s2) ≥ 0 for s2 ≥ 1, andMn(s1, s2) = R1µ1 + (γ1 − µ1)∆

(1)
n (s1, s2) and∆n(s1, s2) ≤ 0 for

s1 ≥ 1 ands2 ≥ 1.

Proof of Lemma A.0.4: The proof is by induction onn. By definition v0(s) = 0, ∀s ∈ S. Thus,
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∆
(1)
0 (s1, s2) = ∆

(2)
0 (s1, s2) = 0 andM0(s) = R1µ1 = R2µ2. Then, by the definition of∆(2)

n (s1, s2),

∆n(s1, s2) andMn(s1, s2), and as1{s1>0} + 1{s1=0} = 1 for s1 ≥ 0, 1{s1>1} + 1{s1=1} = 1 for

s1 ≥ 1, 1{s2>1} + 1{s2=1} = 1 for s2 ≥ 1, we have∆(1)
1 (s1, s2) = ∆

(2)
1 (s1, s2) = 0, Mn(s1, s2) =

R1µ1 = R2µ2, and∆1(s1, s2) = 0 for s1 ≥ 1 ands2 ≥ 1 and∆(2)
1 (s1, s2) = 1{s1=0,s2=1}R2µ2 ≥ 0

for s2 ≥ 1. Thus, the result holds forn = 1. Next suppose that the result holds forn − 1. We will

show that it also holds forn. Note that we haveMn−1(s1, s2) = R1µ1 + (γ1 − µ1)∆
(1)
n−1(s1, s2) from

the induction hypothesis. We first prove that for∆
(2)
n (s1, s2) ≥ 0 for s2 ≥ 1. The following two cases

exhaust all possibilities:

Case 1:s1 ≥ 1

∆(2)
n (s1, s2) = 1{s1+s2<C}

[
λ1∆

(2)
n−1(s1 + 1, s2) + λ2∆

(2)
n−1(s1, s2 + 1)

]

+ (s1 − 1)γ1∆
(2)
n−1(s1 − 1, s2) + γ1∆

(2)
n−1(s1 − 1, s2) + (s2 − 1)γ2∆

(2)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)

]
∆

(2)
n−1(s1, s2)

+
[
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1, s2)

]
−
[
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1, s2 − 1)

]

+ 1{s1+s2=C}λ1 [vn−1(s1, s2)− vn−1(s1 + 1, s2 − 1)]

= 1{s1+s2<C}

[
λ1∆

(2)
n−1(s1 + 1, s2) + λ2∆

(2)
n−1(s1, s2 + 1)

]

+ (s1 − 1)γ1∆
(2)
n−1(s1 − 1, s2) + (s2 − 1)γ2∆

(2)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1 − 1)γ1 − s2γ2 − µ1

]
∆

(2)
n−1(s1, s2)

+ γ1

[
∆

(2)
n−1(s1 − 1, s2) + ∆

(1)
n−1(s1, s2)−∆

(1)
n−1(s1, s2 − 1)−∆

(2)
n−1(s1, s2)

]

+ µ1

[
∆

(1)
n−1(s1, s2 − 1)−∆

(1)
n−1(s1, s2) + ∆

(2)
n−1(s1, s2)

]

− 1{s1+s2=C}λ1∆n−1(s1 + 1, s2)

= 1{s1+s2<C}

[
λ1∆

(2)
n−1(s1 + 1, s2) + λ2∆

(2)
n−1(s1, s2 + 1)

]

+ (s1 − 1)γ1∆
(2)
n−1(s1 − 1, s2) + (s2 − 1)γ2∆

(2)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1 − 1)γ1 − s2γ2 − µ1

]
∆

(2)
n−1(s1, s2)

+ µ1∆
(2)
n−1(s1 − 1, s2)− 1{s1+s2=C}λ1∆n−1(s1 + 1, s2) ≥ 0,

where the inequality holds because∆
(2)
n−1(s1, s2) ≥ 0 and∆n−1(s1 +1, s2) ≤ 0 for s1 ≥ 0 ands2 ≥ 1

and all coefficients of∆(2)
n−1(s1, s2) are non-negative.

89



Case 2:s1 = 0

∆(2)
n (0, s2) = 1{s2<C}

[
λ1∆

(2)
n−1(1, s2) + λ2∆

(2)
n−1(0, s2 + 1)

]
+ (s2 − 1)γ2∆

(2)
n−1(0, s2 − 1)

+
[
1− 1{s2−1<C}(λ1 + λ2)− s2γ2

]
∆

(2)
n−1(0, s2)

+ R2µ2 + (γ2 − µ2)∆
(2)
n−1(0, s2)− 1{s2>1}

[
R2µ2 + (γ2 − µ2)∆

(2)
n−1(0, s2 − 1)

]

+ 1{s2=C}λ1 [vn−1(0, s2)− vn−1(1, s2 − 1)]

= 1{s2<C}

[
λ1∆

(2)
n−1(1, s2) + λ2∆

(2)
n−1(0, s2 + 1)

]

+
[
1− 1{s2−1<C}(λ1 + λ2)− (s2 − 1)γ2 − µ2

]
∆

(2)
n−1(0, s2)

+ 1{s2>1}

[
(s2 − 2)γ2∆

(2)
n−1(0, s2 − 1) + µ2∆

(2)
n−1(0, s2 − 1)

]

+ 1{s2=1}R2µ2 − 1{s2=C}λ1∆n−1(1, s2) ≥ 0,

where the inequality holds because∆(2)
n−1(0, s2) ≥ 0 and∆n−1(1, s2) ≤ 0 for s2 ≥ 1 and all coeffi-

cients of∆(2)
n−1(0, s2) are non-negative.

Now, we show that∆n(s1, s2) ≤ 0 for s1 ≥ 1 ands2 ≥ 1 for the following two cases:

Case 1:s1 > 1 From Equation (A.0.19), we have

∆n(s1, s2) = 1{s1+s2−1<C} [λ1∆n−1(s1 + 1, s2) + λ2∆n−1(s1, s2 + 1)]

+ (s1 − 1)γ1∆n−1(s1 − 1, s2) + (s2 − 1)γ2∆n−1(s1, s2 − 1)

− γ1∆
(2)
n−1(s1 − 1, s2) + γ2∆

(1)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)

]
∆n−1(s1, s2)

+ R1µ1 + (γ1 − µ1)∆
(1)
n−1(s1, s2 − 1)−

[
R1µ1 + (γ1 − µ1)∆

(1)
n−1(s1 − 1, s2)

]

= 1{s1+s2−1<C} [λ1∆n−1(s1 + 1, s2) + λ2∆n−1(s1, s2 + 1)] + (s1 − 2)γ1∆n−1(s1 − 1, s2)

+ (s2 − 1)γ2∆n−1(s1, s2 − 1)− γ1∆
(2)
n−1(s1 − 1, s2) + γ2∆

(1)
n−1(s1, s2 − 1)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)− µ1

]
∆n−1(s1, s2)

+ γ1

[
∆

(1)
n−1(s1, s2 − 1) + ∆n−1(s1 − 1, s2)−∆

(1)
n−1(s1 − 1, s2)

]

+ µ1

[
∆n−1(s1, s2)−∆

(1)
n−1(s1, s2 − 1) + ∆

(1)
n−1(s1 − 1, s2)

]

= 1{s1+s2−1<C} [λ1∆n−1(s1 + 1, s2) + λ2∆n−1(s1, s2 + 1)]

+ [(s1 − 2)γ1 + µ1]∆n−1(s1 − 1, s2) + γ1∆n−1(s1, s2)
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+ (s2 − 1)γ2∆n−1(s1, s2 − 1) + (γ2 − γ1)∆
(2)
n−1(s1 − 1, s2) + γ2∆n−1(s1, s2)

+
[
1− 1{s1+s2−1<C}(λ1 + λ2)− (s1γ1 + s2γ2)− µ1

]
∆n−1(s1, s2) ≤ 0,

where the inequality holds because∆n−1(s1, s2) ≤ 0 and∆(2)
n−1(s1−1, s2) ≥ 0 for s1 ≥ 1 ands2 ≥ 1,

γ2 − γ1 ≤ 0, and all coefficients of∆n−1(s1, s2) are non-negative.

Case 2:s1 = 1 From Equation (A.0.19), we have

∆n(1, s2) = 1{s2<C} [λ1∆n−1(2, s2) + λ2∆n−1(1, s2 + 1)] + (s2 − 1)γ2∆n−1(1, s2 − 1)

+
[
1− 1{s2<C}(λ1 + λ2)− (γ1 + s2γ2)

]
∆n−1(1, s2)− γ1∆

(2)
n−1(0, s2) + γ2∆

(1)
n−1(1, s2 − 1)

+ R1µ1 + (γ1 − µ1)∆
(1)
n−1(1, s2 − 1)−

[
R2µ2 + (γ2 − µ2)∆

(2)
n−1(0, s2)

]

= 1{s2<C} [λ1∆n−1(2, s2) + λ2∆n−1(1, s2 + 1)]

+ (s2 − 1)γ2∆n−1(1, s2 − 1) +R1µ1 −R2µ2 + (µ2 − µ1)∆
(2)
n−1(0, s2)

+
[
1− 1{s2<C}(λ1 + λ2)− (s2 − 1)γ2 − µ1

]
∆n−1(1, s2) ≤ 0,

where the inequality holds because∆n−1(1, s2) ≤ 0 and∆(2)
n−1(0, s2) ≥ 0 for s2 ≥ 1, R1µ1 = R2µ2,

µ2 − µ1 ≤ 0, and all coefficients of∆n−1(1, s2) are non-negative.

Finally, using the definition ofMn(s1, s2), we have

Mn(s1, s2) = R2µ2 + (γ2 − µ2)∆
(2)
n (s1, s2)

+ max{0, R1µ1 −R2µ2 + (γ1 − µ1)∆
(1)
n (s1, s2)− (γ2 − µ2)∆

(2)
n (s1, s2)}.

Note that

R1µ1 −R2µ2 + (γ1 − µ1)∆
(1)
n (s1, s2)− (γ2 − µ2)∆

(2)
n (s1, s2)

≥ (γ1 − µ1)∆
(1)
n (s1, s2)− (γ1 − µ1)∆

(2)
n (s1, s2)

= (γ1 − µ1)∆n(s1, s2) ≥ 0.

where the first inequality holds becauseR1µ1 = R2µ2, 0 ≥ γ1 − µ1 ≥ γ2 − µ2, and∆(2)
n (s1, s2) ≥ 0

for s2 ≥ 1, and the second inequality holds becauseγ1 ≤ µ1 and∆n(s1, s2) ≤ 0 for s1 ≥ 1 ands2 ≥ 1.
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Therefore,

Mn(s1, s2) = R1µ1 + (γ1 − µ1)∆
(1)
n (s1, s2).

This completes the proof.2

Proof of Proposition 5.1.2: Proof of Proposition5.1.2follows immediately from LemmaA.0.4 since

the result in LemmaA.0.4 implies that type 1 customers are prioritized for theN -period problem.

LettingN → ∞ completes the proof.2

Similar to the proof of Proposition5.1.1, we need the following lemma to prove Proposition5.2.1.

Lemma A.0.5. For all k = 1, . . . ,K, v(s) ≥ v(s − ek), wheres ∈ S andsk ≥ 1.

Proof of Lemma A.0.5: For all k ∈ {1, . . . ,K}, we follow the following argument. We first consider

the finite horizon problem for which we will prove thatvn(s) ≥ vn(s−ek) for all periodsn = 0, . . . , N

and all statess ∈ S, wheresk ≥ 1. To prove this result, we will consider two sample paths.

In the first sample path, suppose that the state iss− ek, wheres ∈ S andsk ≥ 1 in periodn, where

n = 0, . . . , N . Suppose that this sample path is governed by an optimal policy, which we call policy

π. In the second sample path, suppose that the state iss in periodn, wheren = 0, . . . , N . We will

next construct a policy, which we call policyπ0, and apply this policy in the second sample path. Then,

using induction onn, we will show thatvn(s− ek) ≤ v
(0)
n (s), wherev(0)n (s) is the value function under

policy π0. Sinceπ0 is not necessarily an optimal policy, this will imply thatvn(s− ek) ≤ vn(s) for all

n ∈ {0, . . . , N} ands ∈ S.

First consider periodN . In this case, we havev(0)N (s) = vN (s) = 0 for all s ∈ S and hence

the result holds trivially. Next, suppose thatvn+1(s − ek) ≤ v
(0)
n+1(s) for some periodn + 1, where

n ∈ {0, . . . , N − 1}, and alls ∈ S, wheresk ≥ 1, if π0 does the same action in periodn+1 (with state

s) thatπ takes in periodn+ 1 (with states− ek). We will show that this also holds forn.

Case 1 (sk < Ck): At periodn, the probability of the next event being an arrival, a service completion,

or a departure of a job from stagei, wherei 6= k, is the same for both sample paths. On the other

hand, the probability of next event being the departure fromstagek is larger in the second sample path,

which means that the probability of staying in the same state(due to uniformization) is smaller in the

second sample path. Hence, when we couple both sample paths,there can be two possible situations.

Firstly, consider the situation where the next event is staying in the same state for the first sample path,
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and the next event is the departure of a job from stagek for the second sample path. Ifk = K, both

sample paths reach the same state in periodn + 1, i.e.,s − eK , and thenπ0 follows π exactly. Hence,

vn+1(s) = v
(0)
n+1(s) for all s ∈ S, which implies thatvn(s − ek) ≤ v

(0)
n (s). Otherwise, the state under

the first sample path iss − ek in periodn + 1 whereas it iss − ek + ek+1 under the second sample

path. In other words, lettings′ := s − ek + ek+1, the state under the first sample path iss′ − ek+1 in

periodn + 1 whereas it iss′ under the second sample path. As the inductive hypothesis holds for all

k ∈ {1, . . . ,K} ands ∈ S, we havevn+1(s
′ − ek+1) ≤ v

(0)
n+1(s

′), and hencevn(s − ek) ≤ v
(0)
n (s) for

all s ∈ S andsk ≥ 1. For the events not covered in first situation, the state under the first sample path is

s′ − ek in periodn+ 1 whereas it iss′′ under the second sample path, wheres′′ ∈ S. π0 takes the same

action under the second sample path thatπ takes under the first sample path. Hence, by the inductive

hypothesis, we havevn(s− ek) ≤ v
(0)
n (s) for all s ∈ S andsk ≥ 1.

Case 2 (sk = Ck): At periodn, the probabilities of next events are the same as in Case 1. Hence, the

results for Case 1 also apply here. The only difference is that, if the next event is the arrival of a job to

stagek, then that job is lost under the second sample path, whereas it will be admitted in the first sample

path. Hence, both sample paths will reach the same state in period n+1, i.e.,s. In this case,π0 follows

π exactly, which implies thatvn+1(s) = v
(0)
n+1(s) for all s ∈ S, and hencevn(s− ek) ≤ v

(0)
n (s).

Above we have proved thatvn(s− ek) ≤ v
(0)
n (s) ≤ vn(s) for all n = 0, . . . , N , s ∈ S, andsk ≥ 1.

LettingN → ∞, we getv(s− ek) ≤ v(s), which completes the proof.2

Proof of Proposition 5.2.1: To prove the result, we show thatM(s, aK) ≥ M(s, aj) for all j =

1, . . . ,K − 1. For allj = 1, . . . ,K − 1, we have

M(s, aK)−M(s, aj) = RKµK −Rjµj + (γK − µK)

[
v(s)− v(s − eK)

]

− γj

[
v(s)− v(s− ej + ej+1)

]
+ µj

[
v(s)− v(s− ej)

]

≥ RKµK −Rjµj + (γK − µK)

[
v(s)− v(s − eK)

]
− (γj − µj)

[
v(s)− v(s − ej)

]

≥ RKµK −Rjµj

≥ 0,

where the first and second inequalities hold from LemmaA.0.5and the fact thatγK ≥ µK andγj ≤ µj
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for all j = 1, . . . ,K−1, and the third inequality holds becauseRKµK ≥ Rjµj for all j = 1, . . . ,K−1.

This completes the proof.2
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