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ABSTRACT

HANA LEE: MARGINAL STRUCTURAL COX MODELS WITH
CASE-COHORT SAMPLING

(Under the direction of Drs. Dr. Michael G Hudgens and Dr. Jianwen Cai)

A common objective of biomedical cohort studies is assessing the effect of a time-varying

treatment or exposure on a survival time. In the presence of time-varying confounders,

marginal structural models fit using inverse probability weighting can be employed to obtain

a consistent and asymptotically normal estimator of the causal effect of a time-varying treat-

ment. This document considers estimation of parameters in the semiparametric marginal

structural Cox model (MSCM) from a case-cohort study. Case-cohort sampling entails

assembling covariate histories only for cases and a random subcohort, which can be cost

effective, particularly in large cohort studies with low outcome rates. Following Cole et al.

[2012], we consider estimating the causal hazard ratio from a MSCM by maximizing a

weighted-pseudo-partial-likelihood. The estimator is shown to be consistent and asymp-

totically normal under certain regularity conditions. Computation of the estimator using

standard survival analysis software is discussed and results from a simulation study are

presented.

In the standard (associational) case-cohort Cox analysis, various methods have been pro-

posed to improve efficiency from maximum pseudolikelihood estimators of Prentice [1986a]

or Self and Prentice [1988]. As the presented theory of MSCM parameter estimator is

developed based on Self and Prentice [1988] we briefly review those methods and discuss

extension of the methods to the MSCM analysis. In addition, we proposed a new method to

improve efficiency of the case-cohort MSCM analysis from a biomedical study that aims to

evaluate the causal effect of treatment on a time to event. We seek to improve the efficiency

by multiple imputation method which can make fuller use of covariate information that are

available from full cohort. The proposed method is applied to the Multicenter AIDS Cohort

Study (MACS) and the Women’s Interagency HIV Study (WIHS).
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Chapter 1

Introduction

Biomedical cohort studies are often conducted with the goal of assessing the effect of a

time-varying treatment (or exposure) on a survival time. In such studies there may exist

time-dependent covariates which are simultaneously (i) confounders and (ii) affected by

prior treatment on the causal pathway from treatment to disease. In the presence of time-

varying confounders affected by prior treatment, standard methods such as Cox regression

modeling with time-varying covariates do not in general yield consistent estimators of the

causal effect of treatment [Robins, 1986, 1998; Robins and Rotnitzky, 1992; Hernán, Brum-

back and Robins, 2001]. On the other hand, marginal structural models (MSMs) fit using

inverse probability weighting can be employed to obtain consistent estimators of the causal

effect of a time-varying treatment on an outcome of interest, even if there are time-varying

confounders affected by prior treatment [Robins, 1999].

For example, consider the Multicenter AIDS Cohort Study (MACS), an observational

study of HIV-positive homosexual men. Using data from MACS, Hernán, Brumback and

Robins [2001] showed that (i) current CD4 count and Pneumocystis carinii pneumonia

(PCP) status were independent risk factors for death and were predictive of subsequent

treatment with zidovudine (AZT) and prophylaxis therapy (i.e., confounders), and (ii) pro-

phylaxis therapy was a protective risk factor for the development of PCP subsequently.

Thus, to assess the effect of AZT and prophylaxis therapy on mortality in MACS, a method

is required that can appropriately account for time-varying confounders affected by prior

treatment (in particular, PCP status). Applying standard (i.e., unweighted) Cox regres-

sion with time-dependent covariates to the MACS data, Hernán, Brumback and Robins

[2001] reported an estimated hazard ratio of 1.85 (95% CI 1.49, 2.30) for AZT users versus



nonusers, suggesting that treatment increases the risk of death in HIV-positive homosex-

ual men, contrary to results from randomized clinical trials. On the other hand, fitting

a marginal structural Cox model (MSCM) with inverse probability weighting yielded an

estimated hazard ratio for AZT of 0.67 (95% CI 0.46, 0.98), in agreement with results from

randomized trials of AZT. The difference in hazard ratio estimates between the unweighted

Cox regression model and the MCSM with inverse probability weighting is not surprising

given the aforementioned established results about the (in)consistency of these estimators

in the presence of time-varying confounders affected by prior treatment.

Recently, Cole et al. [2012] considered fitting MSCMs via inverse probability weighting

in the presence of case-cohort sampling. The case-cohort study design is a cost-efficient

approach to estimate treatment effects in large cohorts with low event rates, when treatment

or covariate information is expensive. The design entails randomly selecting a subcohort

from the entire cohort. Covariate information is then collected only from the random

subcohort and from individuals that are observed to experience an event (i.e., cases), saving

cost and effort relative to obtaining covariate information from the full cohort. In addition to

being cost efficient, the case-cohort design enjoys other benefits. For instance, the subcohort

can serve as a basis for real time covariate monitoring during the course of the study.

Also, because the subcohort is chosen randomly, survival times to different diseases can be

analyzed using the same subcohort [Self and Prentice, 1988].

In the presence of case-cohort sampling, Cole et al. [2012] considered estimating the

causal hazard ratio of a MSCM via inverse probability weighting. Simulation studies indi-

cated the estimator proposed by Cole et al. [2012] can perform well empirically, however no

formal justification for their estimator has been developed to date. Therefore, following Cole

et al. [2012], we consider estimating the causal hazard ratio of a MSCM via inverse probabil-

ity weighting in case-cohort studies and establish consistency and asymptotic normality for

the estimator that maximizes a weighted-pseudo-partial-likelihood (WPPL) under certain

regularity conditions.

The approach utilized in this proposal entails standard counting process and martingale

theory. Using this formulation readily enables practical implementation of the methods

using existing survival analysis software. Framing the problem using counting processes

may also be helpful in future work, e.g., in fitting MSCMs to data from nested case-control
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studies or in the presence of competing risks. In the special situation that the subcohort

equals the full cohort, the proposed inverse probability weighted estimator is asymptotically

equivalent to the estimator in Robins [1999]. Moreover, in this case our proof gives an

alternative consistency and normality proof to Robins [1999], who did not utilize the usual

counting process framework.

The outline of the remainder of this document is as follows. Chapter 2 begins with an

introduction to methods for survival analysis primarily focusing on Cox models. A review

of case-cohort studies is next. Then we introduce MSCMs on the basis of causal inference

and potential outcome framework. This Chapter concludes with a review of some statistical

methods devised to improve efficiency in the standard Cox regression analysis with case-

cohort sampling. In Chapter 3 the estimator of the hazard ratio of a MSCM in the presence

of case-cohort sampling is introduced, and proofs of consistency of the parameter estimators

under the full and the case-cohort settings are shown. Also, we establish full distributional

theories of the parameter estimators under the full cohort and the case-cohort settings

in the same Chapter. How to implement a MSCM using existing software such as R or

SAS is described in Chapter 3.5, along with the simulation study results. Details to show

asymptotic distributional theory of the case-cohort MSCM parameter estimate are provided

in 3.6. In Chapter 4 we propose a new method that can improve efficiency in the case-

cohort MSCM analysis. We start from a review of general methods for MSCM case-cohort

estimators, including our proposed methods introduced in Chapter 3, and demonstrate

why the discussed methods devised to improve efficiency in the standard case-cohort Cox

regression analysis may not be applicable to the causal setting. We propose a new method

which aim to utilize all subject in the estimation and show numerical study results. The

proposed method is applied to a real observational HIV study data composed of two data

sets, the Multicenter AIDS Cohort Study and the Women’s Interagency HIV Study.
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Chapter 2

Literature Review

2.1 Cox Models

Here, we assume a study consists of n unique individuals who are indexed by i = 1, ..., n.

Let Ti denote failure (or survival) time of a subject i in a study, where T = 0 represents

the time of initiation of follow-up and τ represents study end point. We essentially as-

sume that the failure time is on continuous basis. Let Ci denote the time of censoring

and Xi = min(Ti,Ci) denote the observed time from the subject i. δ(Xi) = I{Ti < Ci} is

an event indicator where I{⋅} is an usual indicator function. In addition, let p × 1 vector

of Zi(Xi) = (Z1i(Xi), ...,Zpi(Xi)) denote time-dependent covariates information collected

from the subject i. Throughout we assume (Xi, δi,Zi)(i = 1, ..., n) be n independent repli-

cates of (T, δ,Z) that Z is bounded. Also, let Ni(t) be a stochastic process which denote the

number of failures of subject i by time t. We use the notation dNi(t) to indicate the number

of events of the subject i occurred in [t, t+ dt) for sufficiently small dt. Since failures occur

in continuous time, we only allow jumps of size 1 and no simultaneous jumps can occur in

[t, t + dt) for the process Ni(t). Let Yi(t) = I{Ti ≥ t,Ci ≥ t} denote whether an individual

is still alive and being able to be observed (to fail) at time t, having a left-continuous sam-

ple paths. This process is called “at risk” process. Then the data for the ith participant

(Xi, δi,Zi) can be rewritten as {Ni(u), Yi(u),Zi(u) ∶ 0 ≤ u ≤ t}.
In biomedical studies, we are often interested in identifying/quantifying risk (or prognos-

tic) factors related to response. Cox regression models, including Cox proportional hazards

models, introduced by Cox [1972] are the most commonly used approach to explore (or

adjust) for the effect of covariates that may be associated with that outcome. Let λ(t∣Z(t))



denote the hazard (or risk) of being failed associated with Z(t), i.e.,

λ(t∣Z(t)) = lim
dt→0

Pr(t ≤ T ≤ t + dt∣T ≥ t,Z(t))/dt.

Then Cox models are given by

λ(t∣Z(t)) = λ0(t) exp{β′0Z(t)} (2.1)

where λ0(t∣Z(t)) is an unknown baseline hazard and β0 = (β0,1, ..., β0,p) is a set of unknown

regression parameters. λ0(⋅) describing how the hazard changes over time at baseline levels

of covariates, i.e., Z(t) = 0 for all t ≥ 0. β0 describes the effect of covariates on the hazard

changes over time. Under this model, we can compare two hazards under different covariate

levels (e.g., treated or untreated) in the logarithm scale. For instance, consider two obser-

vations i and i∗ that differ in their covariate values at time t by Z(t) and Z∗ respectively.

Then the hazard ratio for two observations is

exp{β′0Z(t))}/ exp{β′0Z∗(t)} = exp{β′0(Z(t) −Z∗(t))},

and therefore the log of the hazard ratio β′
0
(Z(t)−Z∗(t)) can be explained by the parameter

β0. When Z(t) ≡ Z for all t ≥ 0 then this models are also referred to as the proportional

hazards models since the hazard ratio at any time t is independent of time t. Explicitly, the

hazard ratio for two observations i and i∗ in the above example is

exp{β′0Z}/ exp{β′0Z∗} = exp{β′0(Z −Z∗)}

which is constant over time t.

λ0(⋅) is an unknown function and parametric distributional assumptions such as uni-

form, exponential, weibull on λ0(⋅) is available. Other than distributional assumption, a

monotonic or step function assumption can also be made. However, Cox [1975] proposes a

partial likelihood approach which enables to estimate the parameter of interest β0 in (2.1)

while the λ0(⋅) remains unspecified. Consistent estimator for β0 can be obtained by using

the partial likelihood score function

5



U(β) =
n

∑
i=1

δi{Zi(Xi) − S
(1)(β0,Xi)
S(0)(β,Xi)

} (2.2)

where S(k)(β,Xi) = n−1∑n
i=1 Yi(Xi)Z⊗ki (Xi) exp{β′Z(Xi)} for k = 0,1,2 under standard

independent censoring assumption. Here, we define a⊗0 ≡ 1,a⊗1 ≡ a, and a⊗2 = a′a which is

defined by the p×p matrix with (i, j)th element aiaj for p×1 vectors a. The maximum par-

tial likelihood estimator β̂, defined as the solution to the score equation U(β̂) = 0, is shown
to converge in distribution to Normal with mean zero and a covariance matrix which can

consistently be estimated by −{∂U(β)/∂β∣
β=β̂
}−1 based on martingale formulation (Ander-

sen and Gill [1982]). Using an integral representation, log-likelihood function corresponding

to (2.2) can be written by

l(β) =
n

∑
i=1
∫

τ

0

β′Zi(u) − log[
n

∑
l=1

Yl(u) exp{β′Zl(u)}]dNi(u). (2.3)

The theory and application of the Cox models almost always assumes an exponential

form for the relative risk function on regression variables, however, other regression forms

such as a linear relative risk function (e.g., 1 + β′
0
Z) are more natural to use in some

applications. Prentice and Self [1983] addresses that a linear relative risk regression model

may provide a more convenient framework for studying epidemiologic risk factor interactions

than an exponential relative risk regression. Using the same counting process formulation of

Andersen and Gill [1982] but with some more stability and regularity assumptions, Prentice

and Self [1983] establishes asymptotic distribution theory for a class of intensity function

regression models in which the usual exponential regression form is relaxed. In Prentice

and Self [1983], (2.1) is extended by

λ(t∣Z(t)) = λ0(t)r{β′0Z(t)} (2.4)

and (2.3) is modified by

l(β) =
n

∑
i=1
∫

τ

0

β′Zi(u) − log[
n

∑
l=1

Yl(u)r{β′Zl(u)}]dNi(u), (2.5)
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where r{⋅} is a generalized relative risk function, which is an arbitrary non-negative twice

differentiable function assumed to be locally bounded away from zero in some neighbor-

hood of β0. Estimators obtained by solving ∂l(β)/∂β = 0 is shown to be consistent and

asymptotically normal, based on asymptotic normality of the score function along with con-

sistency of the observed information matrix −n∂2l(β)/∂β2. Some stability and regularity

conditions, beyond those of Andersen and Gill [1982], are required to show the consistency

of the observed information matrix.

2.2 Causal Inference and Marginal Structural Cox Models

The purpose of this chapter is to review causal inference on the basis of potential outcome

framework, relevant notation and assumptions, and finally to review the MSCMs. Before

we start reviewing what the causal inference is, we address that under what circumstances

standard statistical methods may fail to provide causal inference.

The term time-varying confounder is commonly used for time-varying risk factors of

an outcome of interest that also predicts the subsequent exposure (or treatment). Post-

treatment variables potentially affected by treatment and also affecting the response are

referred to as intermediate variables. Unlike randomized clinical trials, many observational

studies with long-term follow-up period often incorporate time-dependent covariates which

are simultaneously confounders and intermediate variables on the causal pathway from

exposure to disease. As a result, it may not be possible to obtain causal interpretation

from the parameter estimator obtained using standard statistical methods. It is also true

when the time-to-event response is considered. Standard methods of using the ordinary

Cox models (2.1) or (2.4) adjusting for the time-dependent covariates may fail to provide

appropriate causal effect of the exposure on an outcome of interest.

In the presence of such time-varying confounders, marginal structural models (MSMs,

Robins [1999]), or marginal structural Cox models when the failure time is of interest,

are powerful tools for assessing causal effects of time-varying treatments on an outcome of

interest. MSMs are used increasingly to provide semi-parametric estimates of total (Bodnar

et al. [2004]), joint (Robins, Hernán and Brumback [2000]; Hernán, Brumback and Robins

[2000]), and direct/indirect (VanderWeele [2009b]) causal effects of exposures on an outcome

7



in epidemiologic studies.

In following sections, we give introduction to causal inference with relevant concepts,

notation, and assumptions to understand MSMs as tools to draw causal inference. Hereafter

we assume an observational study wherein confounding effect exists, which interested in

evaluating treatment effect on a participant’s failure time such as HIV studies for example.

2.2.1 Causal Inference and Potential Outcomes

Most causal inferences are based on the idea of potential outcomes under all possible

treatment assignments, introduced by Neyman [1923]. The potential outcomes, which in-

clude observed and unobserved outcomes, are sometimes called counterfactual outcomes

(or simply counterfactuals) since these outcomes could have happened contrary to what we

actually observed. In this framework, causal inference can be considered as a missing data

problem letting the potential outcomes as missing data, especially the unobserved outcomes

to be the missing outcomes.

Below we modify some of the notation introduced from earlier section to be more suitable

to a hypothetical biomedical study and to the causal inference framework. Capital letters

represents random variables and lower case letters represents values of the random variables

or constants, the same as before. Now, let Ai(t) be the treatment vector of subject i where

t denotes the time since the beginning of the subject’s follow-up. Let Li(t) denote a vector

of assembled covariates such as CD4 counts and PCP level from subject i at time t. The

subscript i will sometimes be suppressed in our notation since we assume Ai(t) and Li(t)
are random vectors for each subject drawn independently from a distribution common to

all subjects. Let V represent baseline covariates which can be a part of L(0). A(t) and
L(t) are defined to be zero when t < 0. Note that a p × 1 covariate vector Z(t) introduced
from earlier section equals to {A(t),L(t)}.

Potential (Counterfactual) Outcomes In the context of causal inference, overbars

are used to represent history up to and including time t such that A(t) = {A(u); 0 ≤ u ≤ t}
and L(t) is defined analogously, assuming that decisions related to treatment at t is made

after obtaining the covariate information at t, i.e., L(t) is temporally earlier than A(t). Let
⊥⊥ denote statistical independence; for example, A ⊥⊥ B∣C denotes A is independent of B

8



given C.

a represents each possible treatment plan; a = {a(t) ∶ 0 ≤ t ≤ τ} where τ is the study

end point, same as before. Each possible value of a can be interpreted as a pre-specified

treatment plan. Practical examples of a might be never treated (i.e., a(t) = 0 for all

t ∈ [0, τ]), treated starting at a pre-specified time t1 (i.e., a(t) = I[t > t1]), treated from

baseline (i.e., a(t) = 1 for all t ∈ [0, τ]), etc. Then Ta represents a random variable implying

a subject’s potential failure time had (possibly contrary to what we observe from actual

study) the subject been treated with history a. For example, one can use notation T
0
(t) to

represent a subject’s potential failure time if he had treated from baseline, Tt1(t) if he had

treated since time t1 > 0, and T∞ if he had never treated. At each time-to-event t such as

death or disease occurrence time, a set of three different failure times (T
0
(t), Tt1(t), T∞(t))

comprises potential outcomes.

Assumptions Most causal models that are based on the idea of potential outcomes rely

on the following four assumptions.

1. Consistency In reality, we only observe the outcome T with a subject’s actual

treatment history A, i.e., T = T
a=A
= T

A
. This identity is called the fundamental

“consistency” assumption that links the potential failure times Ta to the observed

data (T
A
,A).

2. No unmeasured confounders There are no unmeasured confounders for the effect of

A(t) on T if, for all a,

Ta ⊥⊥ A(t)∣A(t−),L(t) (2.6)

holds (Robins [1999] and Hernán, Brumback and Robins [2000]).

3. Positivity We say that positivity assumption holds if Pr[A(t) = a∣L(t) = l] > 0 for

all a ∈ {0,1} and l such that Pr[L(t) = l] ≠ 0.

4. No misspecification of the model As we always assume that the model we employ

is a correct model to analyze data, a causal model to estimate the effect of treatment

is assumed to be correctly specified.

9



Informally, consistency means that the outcome for every treated individual equals to the

subject’s outcome if he/she had received treatment, and the outcome for every untreated

individual equals to his/her outcome had the subject remained untreated. No unmeasured

confounders means that the risk of failure under the potential treatment history a among

the treatment group equals to the risk under the same potential treatment history among

untreated group for each a. Therefore the treated and untreated groups are exchangeable

as in a randomized trial. For this reason, the assumption is also called “exchangeability”

or “sequential randomized assumption” in some articles since it implies that potential out-

comes are exchangeable regardless of treatment history given all relevant confounder history

as if in a randomized trial. However, if there exists any unmeasured confounder that pre-

dicts A(t) at time t then the potential outcomes are no longer independent of treatment

history. Positivity simply means that the conditional probability of receiving every value of

treatment is greater than zero. No missspecification of the model assumption is the natural

assumption to make any statistical inference and may be tested using sensitivity analysis.

In general, the no unmeasured confounders assumption is a crucial assumption to draw

causal inference using some causal models but is not statistically testable. A more complete

studies on these condition and causal inference can be traced back to Rubin [1974], Rubin

[1976], Rubin [1980], Robins [1986], Greenland and Robins [1986], and Robins [1987].

Causal and Statistical Exogeneity Informally, a treatment process is referred to be

a “causally exogenous” process if the conditional probability of receiving a treatment A(t)
given past treatment and (measured and unmeasured) prognostic factor history depends

only on past history of treatment history A(t−). Mathematical definition of causal exogene-

ity may vary across different articles. Definitions of presented in this proposal are adopted

from Hernán, Brumback and Robins [2001]. The article defines a treatment process to be

“causally exogenous” if

Ta ⊥⊥ A(t)∣A(t−) (2.7)

for all treatment plans a, which is equivalent to state that Ta is independent of A(t). Also,
definition of “statistically exogenous” of treatment process is adopted from the same article
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which is given by

L(t) ⊥⊥ A(t)∣A(t−). (2.8)

This implies that conditioning on treatment history before time t, probability of receiving

treatment at time t does not depend on the history of measured time-dependent prognostic

factors up to t. It can be seen that (2.8) is a necessary condition for A(t) to be causally

exogenous, but (2.8) does not imply (2.7) due to the possibility of unmeasured confounders.

Following Robins et al. [1992], Hernán, Brumback and Robins [2001] also defined that there

are no unmeasured confounders for the effect of A(t) on T if, for all a,

Ta ⊥⊥ A(t)∣A(t−),L(t) (2.9)

holds.

Robins [1999] showed that statistical exogeneity implies causal exogeneity under the

assumption of (2.9). Also it is well recognized that treatment parameters of a correctly

specified association model have causal interpretation if the treatment process is causally

exogenous. Therefore, causal inference can be drawn from using standard association models

if condition (2.8) is true assuming that (2.9) holds.

2.2.2 Marginal Structural Cox Models

Robins [1999] introduced MSMs combined with inverse-probability-treatment-weights

(IPTW) as a method to draw causal inference in the presence of confounding, which rely

on the potential outcome framework. IPTW can be considered a type of inverse sampling

weights to account for missing data or sampling bias problem. By weighting observations via

IPTW, we can reflect back the balanced design from observational data having confounding

effect (under the assumptions described from Chapter 2.2.1).

We first review IPTW and then describe MSCMs after.

Inverse-Probability-Treatment-Weighting Suppose that we can correctly model the

probability of receiving treatment at time t given past treatment history and covariate his-

tory, i.e., Pr[A(t)∣A(t−),L(t)]. Then we could measure the degree of statistical exogeneity
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of the treatment process through time t by calculating a following weight at t:

W T (t) =∏
k≤t

Pr[A(k)∣A(k−)]
Pr[A(k)∣A(k−),L(k)] , (2.10)

which is referred to as inverse-probability-of-treatment-weights (IPTW). Under the four

assumptions of consistency, no unmeasured confounders, positivity, and no misspecification

of the model to estimate the weights, we can create a hypothetical population by weighting

each subject at risk at each failure time with (2.10). This hypothetical or weighted study

population is known as the pseudo-population. Robins [1999] and Lemma A.1 of Hernán,

Brumback and Robins [2001] proved that L(t) no longer predicts A(t) in each pseudo-

population created at each failure time t (note that (2.10) equals to 1 at any time t if L(t)
does not predict A(t)∣A(k−), i.e., the treatment process is statistically exogenous). Then it

follows that the treatment process is causally exogenous in the pseudo-population under the

assumption of no unmeasured confounders. Thereby one can employ standard association

models to estimate the treatment effect which can further be interpreted as a causal effect.

As the same manner, we can effectively adjust bias occurred by censoring due to loss to

follow-up when time-to-event data is considered. This can be done by considering inverse-

probability-of-censoring-weights (IPCW), say WC , where

WC(t) =∏
k≤t

Pr[C(k) = 0∣C(k−) = 0,A(k−)]
Pr[C(k) = 0∣C(k−) = 0,A(k−),L(k)] , (2.11)

under the assumptions of independent censoring and no unmeasured confounders for cen-

soring. Here, C(k) = 0 means a subject remains uncensored prior to time k and C(k) = 1
means censored at that time.

Robins [1997] first introduced IPTW, which is called unstablized weights, as a tool to

adjust non-ancillary treatment process in the observational study, however, it has a slightly

different form than (2.10). Stablized weights has the same denominator as in (2.10) but the

numerator in (2.10) is always 1 regardless of time t. Therefore it is a nondecreasing function

of t since the product of probabilities in the denominator decreases over time. Robins,

Hernán and Brumback [2000] suggests stabilized weights which is the IPTW shown in (2.10)

as a substitute of the unstablized weights, and this is by far the most widely used IPTW.
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Besides this, truncated (Cole and Hernán [2008]) and normalized (Xiao, Abrahamowicz and

Moodie [2010]) weights are also introduced and these weights can be considered as types of

stablized weighs as they all aim to adjust variability of IPTW and make it stable over time.

Stablized weights are generally recommended to employ in practice as they lead to, often

remarkably, more efficient estimators of causal treatment effect.

When survival data is considered, inverse-probability-weights (IPW) defined by W (t) ≡
W T (t) ×WC(t) are the stabilized weights. For estimation of random weights W (t) see

Hernán, Brumback and Robins [2000], Hernán, Brumback and Robins [2001], and Cole and

Hernán [2008]. Since investigators should assume that the model to estimate IPW (e.g., a

logistic model), sensitivity analysis results with different model specifications will help to

see validity of the correct model assumption in practice.

Marginal Structural Cox Models Marginal Structural Cox Models (MSCMs) are

given by

λTa
(t) = λ0(t) exp{β′0f(a(t))} (2.12)

where λTa
(t) is the hazard of failure at time t if all subjects in a study population had

followed treatment history a through time t, λ0(⋅) is an unspecified baseline hazard func-

tion corresponding to the hazard if all subject had been untreated, and β0 is an unknown

parameter vector. If we are interested in current treatment effect of zidovudine on AIDS

so that f(a(t)) in (4.1) becomes a(t), and exp(β0) has a causal interpretation such as the

ratio of the hazard of getting AIDS at any time t if all subjects had been continuously

exposed to zidovudine compared with the hazard rate at t had all subjects remained un-

exposed. This model is a causal model for the marginal distribution of the variables Ta

which is the potential outcomes that are generally unobserved. Hence estimation of the

causal log rate ratio β0 cannot be made directly through this model. In the absence of

confounding, association implies causation thereby we can use the standard Cox regression

model to obtain causal estimates. As mentioned the above, Robins [1999] showed that we

can create a psuedo-population via IPW at each failure time t in which time-dependent

prognostic factors no longer predict treatment history. Robins [1999] also proved that the

causal relationship between treatment and hazard in the psuedo-population is the same as
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in the original study population, and the estimator of treatment effect obtained by using

the standard Cox regression model based on the psuedo-population converges in probability

to β0 in (4.1). Therefore the estimator of treatment effect obtained by using the ordinary

time-dependent Cox model adjusting (only) for the treatment, after weighting each individ-

ual at each failure time by IPW, can have causal interpretation as it converges in probability

to β in (4.1).

2.3 Cox Models with Case-cohort Sampling

The case-cohort study proposed by Prentice [1986a] and Self and Prentice [1988] is a

cost-effective design particularly when large epidemiologic cohort studies with rare disease or

infrequent event such as HIV studies are considered. This design involves random selection

of a subcohort (or a stratified random sample) from the entire cohort and all participants

who experience the event of interest, henceforth cases. By monitoring covariate information

only for a random subcohort and for all cases we can gain cost and effort saving. The

subcohort constitutes the comparison set of cases occurring at a range of failure times as

well as a basis for covariate monitoring during the course of cohort follow-up (Self and

Prentice [1988]).

Prentice [1986a] considers Cox modeling on time-to-response case-cohort data. Suppose

that a random subcohort C̃ of size ñ is selected from the entire cohort C of size n. Then the

log partial likelihood is modified by

l∗(β) =
n

∑
i=1
∫

τ

0

β′Zi(u) − log[ ∑
l∈C̃∪{i}

Yl(u)r{β′Zl(u)}]dNi(u). (2.13)

in the presence of case-cohort sampling, which is termed a log pseudolikelihood by Prentice

[1986a].

Self and Prentice [1988] provides a full range of asymptotic theory for parameter estima-

tors of the Cox models in the presence of the case-cohort sampling using a slightly different

log partial likelihood form

l̃(β) =
n

∑
i=1
∫

τ

0

β′Zi(u) − log[∑
l∈C̃

Yl(u)r{β′Zl(u)}]dNi(u). (2.14)
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Estimators obtained by solving ∂l̃(β)/∂β = 0 are shown to converge in probability to β0

and asymptotically normally distributed via same techniques as in Andersen and Gill [1982]

and Prentice and Self [1983], i.e., by showing asymptotic normality of the score function

along with consistency of the observed information matrix. It is also shown that estimators

obtained by solving ∂l∗(β)/∂β = 0 and ∂l̃(β)/∂β = 0 converge in probability to the same

quantity, β0, in Self and Prentice [1988].

Several other authors such as Binder [1992] and Lin and Ying [1993] expand the idea

of the case-cohort design and provide estimating equations to obtain estimators in more

general settings. Binder [1992] describes how to create a family of survey-related sampling

plans, and provided a procedure for fitting the proportional hazards models to survey data

with complex sampling designs including the case-control sampling. Estimating equation

proposed in the article is an extension of the standard score function equation in (2.2), with

incorporating probability of being sampled. In particular, Binder [1992] proposes a score

function given by

U∗(β) =
n

∑
i=1

wiδi{Zi(Xi) − S
∗(1)(β0,Xi)
S∗(0)(β,Xi)

},

where now the statistics were modified by

S∗(r)(β,Xi) = n−1
n

∑
i=1

wiYi(Xi)Z⊗ki (Xi) exp{β′Z(Xi)}

for k = 0,1,2, and wi is the inclusion probability for the subject i, i.e., wi = 1/πi if the sub-

ject i is selected in the sample and 0 otherwise. Estimators obtained by solving U(β) = 0
are then shown to be asymptotically normally distributed. Lin and Ying [1993] provides a

general solution to the problem of missing covariate data under the Cox models, considering

case-cohort data as a possible example of missing covariate data. The estimating function

proposed in the article is an approximation to the partial likelihood score function with

full covariate measurements, which reduces to the score function of Self and Prentice [1988]

in the special setting of the case-cohort designs. The approximate partial likelihood score

function is given by
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Ũ(β) =
n

∑
i=1

δiHi(Xi){Zi(Xi) − S̃
(1)(β0,Xi)
S̃(0)(β,Xi)

}

where Hi is a p × p diagonal matrix with indicator functions {H1i(⋅), ...,Hpi(⋅)} as the

diagonal element with H1i(Xi) being an indicator whether Zji(Xi) is available at failure

time Xi, S̃
(k)(β,Xi) are defined by n−1∑n

i=1H0i(Xi)Yi(Xi)Z⊗ki (Xi) exp{β′Z(Xi)} for k =
0,1,2 with H1i(Xi) being an indicator I{Hji(Xi) = 1} for all j = 1, ..., p. Then approximate

partial likelihood estimators (APLE) are the root to the estimating equation Ũ(β) = 0. The
resulting parameter estimators are consistent and asymptotically normal with a covariance

matrix for which a simple and consistent estimator is provided. Also, the asymptotic theory

of the APLE are established on regularity conditions that are much simpler to interpret and

check than those in Self and Prentice [1988].

Despite the efficiency of the sampling methods, applications of the case-cohort designs

had been limited because of perceived analytic complexity, especially on the variance com-

putation proposed from Self and Prentice [1988]. Self and Prentice [1988] variance estimator

is not easy to implement as it includes computation of covariances between score contri-

butions from pairs of different risk sets. Simple robust variance estimators are proposed

by Lin and Ying [1993] and Barlow [1994] as a solution to the computational challenges

in variance computation, and also practical implementation of the Cox models to the real

case-cohort data is addressed by Therneau and Li [1999] and Barlow et al. [1999]. Therneau

and Li [1999] describes how to obtain Self and Prentice [1988], Barlow [1994], and Lin and

Ying [1993] parameter estimators along with their variance estimators using standard soft-

ware packages, with SAS and S-Plus as particular examples. Barlow et al. [1999] illustrates

weighting methods as model fitting techniques and provides a SAS macro that computes

the weighted estimates and the robust covariance matrix.

2.4 Statistical Methods to Improve Efficiency

In the standard associational case-cohort Cox analysis, various methods have been pro-

posed to improve efficiency from maximum pseudolikelihood estimators of Prentice [1986a]

or Self and Prentice [1988]. In this chapter, we briefly review some of these methods who
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seek to improve efficiency of the hazard ratio estimation compared to Prentice [1986a] and

Self and Prentice [1988].

Unweighted Psuedo-Partial Likelihood Estimators As described in 2.3, Prentice

[1986a] proposed a pseudo-likelihood approach for the hazard ratio parameter estimation in

the Cox model along with heuristic procedures for parameter estimation when the case-

cohort design is applied. Asymptotic distribution theory of the case-cohort maximum

pseudo-likelihood estimator was developed by Self and Prentice [1988] using martingale

technique and finite population convergence results. Both Prentice [1986a] and Self and

Prentice [1988] do not accommodate case sampling or stratified sampling of controls, i.e.,

they considered unweighted pseudo-likelihoods.

Unweighted Psuedo-Partial Likelihood Estimators After Prentice [1986a] and

Self and Prentice [1988], various methods have been proposed as means of improving the

efficiency of the hazard ratio estimation (compared to Prentice [1986a] and Self and Pren-

tice [1988]) in the standard (associational) case-cohort Cox regression analysis. Chen and

Lo [1999] studied a different class of estimating equations than Prentice [1986a] and Self

and Prentice [1988] by constructing different risk sets in the estimating equations. They

proposed to utilize complete information of all cases when calculating ratio of weighted av-

erages based on risk set information inside the estimating equations. In particular, authors

proposed three different estimating equations which all use the empirical distribution of

covariate Z among cases to the conditional joint distributions of (Z,X) among cases, but

use different estimators of p = pr{δ(Xi) = 1}. Chen et al. [2001] found an optimal sample

reuse method via local averaging, and proposed a unified weighted estimating equation,

that can be used in various sampling design, to improve efficiency.

Time-Varying Inverse-Sampling-Weights Barlow [1994] and Barlow et al. [1999] con-

sidered estimators based on weighted pseudo-likelihood estimation. At each failure time,

contribution of cases and nonfailures (controls) at risk are weighted by either fixed or time-

varying inverse-sampling-weights (ISW) to account for subcohort sampling.

Using All Available Covariate Data from Full Fohort Later, methods that seek

to utilize some of the phase 1 covariate information were proposed. Borgan et al. [2000]

considered a stratified sampling by a phase 1 variable which is a correlate of exposure,

to incorporate statum-specific ISW in the estimating equation. Stratum-specific ISW can
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be calculated using empirical sampling fraction within each stratum. He proposed three

different estimating equations by considering different types of weights. Simulation studies

suggested that the stratified estimator II with time-varying ISW, referred to as BII estimator

from herein, is the most efficient among the existing estimators. Kulich and Lin [2004]

established asymptotic theory for the BII type of estimators. In addition they developed a

class of weighted estimators which utilize all available covariate information from the full

cohort data. Proposed weighted estimators are 1) doubly weighted (DW) estimator and 2)

combined doubly weighted (CDW) estimator which involve general time-varying ISW. The

methods involve a modeling step for prediction of the values of each partially missing phase 2

variables, and is likely of greatest use when there are only 1 or 2 such variables. The authors

suggest to use CDW estimator in practice as DW estimator is efficient only if a model to

predict the phase 2 variables given all the phase 1 variables is correct. Numerical studies

indicated that the CDW estimator is more efficient then other existing estimators such as

Chen and Lo [1999], Borgan et al. [2000], and Chen et al. [2001]. The efficiency gain for the

phase 2 covariates depends on the ability of the first-phase data to predict the true values

of the partially missing variables. Later, Breslow et al. [2009a] and Breslow et al. [2009b]

considered calibration or estimation of ISW by making use of phase 1 covariate information.

Calibration method adjusts ISW to be as close as possible to the sampling weights subject

to a certain constraint. Estimation methods uses ISW as inverse of inclusion probabilities

estimated from a logistic regression model that predicts which cohort subjects are sampled

at phase 2. Simulation study and real data analysis reported by Breslow et al. [2009b]

showed that such adjustment on ISW can dramatically improve precision of the baseline

hazard ratios, which are estimated for baseline covariates, i.e., a part of phase 1 variables.

They also showed that the methods can improve precision for the phase 2 covariates when

their values may be imputed with reasonable accuracy for the non-subcohort controls.

In Chapter 4 we demonstrate how we can extend some of the aforementioned methods

might be extended to the causal setting and discuss why some of the methods might not be

useful to improve efficiency in the case-cohort MSCM analysis.
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Chapter 3

Marginal Structural Cox Models with Case-cohort Sampling

3.1 Introduction

Biomedical cohort studies are often conducted with the goal of assessing the effect of a

time-varying treatment (or exposure) on a survival time. In such studies there may exist

time-dependent covariates which are simultaneously (i) confounders and (ii) affected by

prior treatment. In the presence of time-varying confounders affected by prior treatment,

standard methods such as Cox regression modeling with time-varying covariates do not in

general yield consistent estimators of the causal effect of treatment Robins [1986, 1998];

Robins and Rotnitzky [1992]; Hernán, Brumback and Robins [2001]. On the other hand,

marginal structural models (MSM) fit using inverse probability weighting can be employed

to obtain consistent estimators of the causal effect of a time-varying treatment on an out-

come of interest, even if there are time-varying confounders affected by prior treatment

Robins [1999].

For example, consider the Multicenter AIDS Cohort Study (MACS), an observational

study of HIV-positive homosexual men. Using data from MACS, Hernán, Brumback and

Robins [2001] showed that (i) current CD4 count and Pneumocystis carinii pneumonia

(PCP) status were independent risk factors for death and were predictive of subsequent

treatment with zidovudine (AZT) and prophylaxis therapy, and (ii) prophylaxis therapy

was a protective risk factor for the development of PCP subsequently. Thus, to assess

the effect of AZT and prophylaxis therapy on mortality in MACS, a method is required

that can appropriately account for time-varying confounders affected by prior treatment (in

particular, PCP status). Applying standard (i.e., unweighted) Cox regression with time-

dependent covariates to the MACS data, Hernán, Brumback and Robins [2001] reported an



estimated hazard ratio of 1.85 (95% CI 1.49, 2.30) for AZT users versus nonusers, suggesting

that treatment increases the risk of death in HIV-positive homosexual men, contrary to

results from randomized clinical trials. On the other hand, fitting a marginal structural

Cox model (MSCM) with inverse probability weighting yielded an estimated hazard ratio

for AZT of 0.67 (95% CI 0.46, 0.98), in agreement with results from randomized trials of

AZT. The difference in hazard ratio estimates between the unweighted Cox regression model

and the MSCM with inverse probability weighting is not surprising given the aforementioned

established results about the (in)consistency of the standard estimators in the presence of

time-varying confounders affected by prior treatment.

Recently, Cole et al. [2012] considered fitting MSCMs via inverse probability weighting

in the presence of case-cohort sampling. The case-cohort study design is a cost-efficient

approach to estimate treatment effects in large cohorts with low event rates, when treatment

or covariate information is expensive. The design entails randomly selecting a subcohort

from the entire cohort. Covariate information is then collected only from the random

subcohort and from individuals that are observed to experience an event (i.e., cases), saving

cost and effort relative to obtaining covariate information from the full cohort. In addition to

being cost efficient, the case-cohort design enjoys other benefits. For instance, the subcohort

can serve as a basis for real time covariate monitoring during the course of the study.

Also, because the subcohort is chosen randomly, survival times to different diseases can be

analyzed using the same subcohort Self and Prentice [1988].

In the presence of case-cohort sampling, Cole et al. [2012] considered estimating the

causal hazard ratio of a MSCM via inverse probability weighting. Simulation studies indi-

cated the estimator proposed by Cole et al. [2012] can perform well empirically, however no

formal justification for their estimator has been developed to date. Therefore, following Cole

et al. [2012], we consider estimating the causal hazard ratio of a MSCM via inverse probabil-

ity weighting in case-cohort studies and establish consistency and asymptotic normality for

the estimator that maximizes a weighted-pseudo-partial-likelihood (WPPL) under certain

regularity conditions.

The approach utilized in this paper entails standard counting process and martingale

theory. This formulation readily enables practical implementation of the methods using

existing survival analysis software. Framing the problem using counting processes may also
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be helpful in future work, e.g., in fitting MSCMs to data from nested case-control studies or

in the presence of competing risks. In the special situation that the subcohort equals the full

cohort, the proposed inverse probability weighted estimator is asymptotically equivalent to

the estimator in Robins [1999]. In this case our proof gives an alternative consistency and

normality proof to Robins [1999], who did not utilize the usual counting process framework.

We also derive a new variance estimator that arises from the counting process formulation

under both full and case-cohort settings. Empirical results presented in this paper indicate

that in certain scenarios the proposed variance estimator may be preferred to the so-called

“robust” variance estimator Lin and Ying [1993] employed in Cole et al. [2012].

The outline of the remainder of this paper is as follows. In §3.2, estimators of the

hazard ratio of a MSCM in the presence of case-cohort sampling are introduced, including

the estimator proposed by Cole et al. [2012]. Consistency and asymptotic normality are

established in §3.3 and §3.4, respectively. §3.5 explains how one can directly obtain the

proposed inverse probability weighted estimators using standard survival analysis software,

and presents a simulation study.

3.2 Marginal Structural Cox Model Estimators

3.2.1 Notation, Assumptions, and Model

Capital letters will represent random variables and lower case letters will represent values

of the random variables or constants. Consider an observational cohort study where the

outcome of interest is a survival time T , based on the time from study entry until some

particular outcome occurs. Throughout we assume T is continuous so that there are no

tied failure times between individuals. During the course of the study individuals may

dropout or discontinue participation in the study, such that T is not observed but rather

right censored at the last time the individual was under study. Suppose individuals may

or may not elect to receive treatment at various points of time during the study. Let Ai(t)
indicate whether subject i is on treatment at time t. If more than one treatment is available,

then Ai(t) is a vector of treatment indicator variables corresponding to the joint treatment

levels. In the sequel we assume Ai(t) is a p × 1 vector and treatment variation is irrelevant

VanderWeele [2009a]. The subscript i will often be suppressed, when there is no ambiguity,
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because we assume random vectors are drawn independently from a distribution common

to all subjects. Let L(t) denote a vector of covariates, such as CD4 count or PCP status,

at time t. Let L(0) represent baseline covariates. Overbars are used to represent history up

to and including time t such that A(t) = {A(u) ∶ 0 ≤ u ≤ t} and L(t) is defined analogously.

Assume that decisions related to treatment at t are made after obtaining the covariate

information at t, i.e., L(t) is temporally prior to A(t). For a case-cohort study, the time

varying covariates L(t) and treatment A(t) are by design observed only for the cases and

individuals in the random subcohort (while under study); L(t) and A(t) are missing for all

other individuals. Corresponding to the subcohort, let C̃ denote the set of indices of size

ñ ≤ n that are randomly selected without replacement from the set {1, . . . , n} corresponding
to the entire cohort.

Let a denote a possible (static) treatment plan, i.e., a = {a(t) ∶ 0 ≤ t ≤ τ} where τ is the

study duration. Assume τ = 1 hereafter without loss of generality. Each possible value of

a can be interpreted as a prespecified treatment plan. Assuming a single treatment (i.e.,

p = 1), practical examples of a might be never treat (i.e., a(t) = 0 for all t ∈ [0,1]), treat
starting at a prespecified time t1 < 1 (i.e., a(t) = I{t ≥ t1} where I{⋅} is the usual indicator

function), treat from baseline (i.e., a(t) = 1 for all t ∈ [0,1]), etc. Define Ta to be a subject’s

potential failure time had (possibly contrary to what was observed in the actual study) the

subject been treated according to a. Let ⊥⊥ denote statistical independence; e.g., A ⊥⊥ B∣C
denotes A is independent of B given C. Assume

T = Ta ∀a such that a(t) = A(t) ∀t ≤ T, (3.1)

Ta ⊥⊥ A(t)∣A(t−),L(t) ∀a, (3.2)

pr[A(t)∣A(t−),L(t)] > 0 ∀t ∈ [0,1] such that pr[A(t−),L(t)] > 0 (3.3)

which are referred to as the causal consistency, conditional exchangeability, and positivity

assumptions, respectively. Assumption (3.1) states that, in the absence of censoring, the

observed failure time T equals the potential failure time Ta for all treatment plans a consis-

tent (i.e., compatible) with the observed treatment up to time T . Assumption (3.2) states

that conditional on treatment and covariate histories, treatment at time t is independent of

the potential survival time under a (i.e., no unmeasured confounding). Assumption (3.3)
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states that the conditional probability of receiving any particular treatment is greater than

zero. Of these three assumptions, only (3.3) can be tested empirically. Sensitivity analysis

may be useful in assessing the robustness of inference drawn to violations of assumption

(3.2) Robins, Rotnitzky and D [1999].

Consider the MSCM

λTa
(t) = λ0(t) exp{β′0f(a(t))}

where λTa
(t) is the hazard of failure at time t if all individuals in the population had

followed treatment plan a through time t, λ0(t) is an unspecified baseline hazard function

corresponding to the hazard if all individuals had been untreated through time t, f(a(t))
is a specified function of treatment history up to time t, and β0 is an unknown parameter

vector. Hereafter, we consider the MSCM

λTa
(t) = λ0(t)r{β′0a(t)} (3.4)

where for notational convenience we let r{⋅} = exp{⋅}. For example, if we are interested in

the causal effect of current AZT treatment on mortality of HIV-positive homosexual men,

then r(β0) is the ratio of the hazard of death at time t had all subjects in the population

alive at time t been exposed to AZT compared to had the subjects been unexposed at time

t. Note (3.4) focuses on the effect of current treatment status only; however, the results

presented below are valid for any specified f(a(t)).
In this paper the counting process framework is employed to study the large sample

behavior of estimators of β0. Note that all processes discussed hereafter refer to observed

processes. Let (Ω,F ,P) be a complete probability space and let {Ft ∶ t ∈ [0,1]} be an

increasing right-continuous family of sub σ-algebras of F consisting of failure times, co-

variates and treatment histories up to time t, and censoring histories up to time t+ for

all subjects in a cohort of size n. That is, the filtration with respect to the probability

space is the same as the usual filtration, except that treatment histories are now separated

from covariate histories. Let Ni(⋅) be a counting process adapted to Ft representing the

number of failures of subject i by time t such that dNi(t) indicates the number of events of
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subject i that occurred in [t, t + dt) for sufficiently small dt. Because failures are assumed

to occur in continuous time, we only allow jumps of size 1 and no simultaneous jumps can

occur in [t, t + dt). Let Ci(t) = 0 indicate that subject i remained uncensored prior to time

t and Ci(t) = 1 otherwise. The treatment process Ai(⋅) and the censoring process Ci(⋅)
are assumed to be piece-wise constant point processes with cadlag (right-continuous with

left-hand limits) step-function sample paths. The processes A(⋅) and C(⋅) are assumed to

have jumps that can occur at no more than a finite number of time points. Informally, this

means that all participants follow (approximately) the same visit schedule. This assump-

tion should be reasonable in studies with regularly scheduled follow-up visits (e.g., every six

months) and good study compliance. We refer to censoring as ignorable (or noninformative)

if the cause-specific hazard of being censored at t among subjects alive and uncensored does

not depend on the failure times Ta given prior treatment/covariate history A(t−) and L(t−)
(Hernán, Brumback and Robins [2001]). Let Yi(t) = I{Ni(t) = Ci(t) = 0} denote whether

an individual is at-risk of being observed to fail at time t, having left-continuous sample

paths, and assume pr[Y (1) > 0] > 0.

3.2.2 Inverse Probability Weights

Suppose that we can correctly model the probability of receiving treatment at time t

given the past treatment history and covariate history. Then we can consistently estimate

the following weights

W T (t) =∏
k≤t

pr[A(k)∣A(k−)]
pr[A(k)∣A(k−),L(k)] , (3.5)

which will be referred to as inverse-probability-of-treatment-weights (IPTWs). Note that we

can consistently estimate the numerator probabilities in (4.2) based on sample proportions

because A(⋅) is assumed to have at most a finite number of jumps over the study period.

Under (3.2) to (3.3), in the absence of censoring, Robins [1999] showed that a consistent

estimator of the unknown parameter β0 in (3.4) can be obtained by fitting an ordinary time-

dependent Cox model with the contribution of subject i to the risk set at time t weighted

by estimates of (4.2). Informally we can think of the analysis via IPTWs as reweighting the

observed data set such that it has the same properties as a random sample, with respect to
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the measured confounders L, from a population where L(t) ⊥⊥ A(t)∣A(t−) holds at time t.

The weighted study population is sometimes called a pseudo-population.

Dropout (i.e., right censoring) may introduce selection bias if dropout is associated with

exposure and dropout is associated with the outcome. In the presence of such censoring, we

still can obtain a consistent estimator of β0 by fitting the ordinary Cox model but weighting

a subject alive and uncensored at time t by estimates of W T (t) ×WC(t), where

WC(t) =∏
k≤t

pr[C(k) = 0∣C(k−) = 0,A(k−)]
pr[C(k) = 0∣C(k−) = 0,A(k−),L(k)] , (3.6)

under the assumption of no unmeasured confounders for censoring, an analogous assump-

tion to (3.3) for censoring, and assuming that we can correctly model the denominator

probabilities in (3.6) Robins [1999]. Here the weighted study population can be thought

of as a pseudo-population in which there is no confounding due to measured covariates

or selection bias due to censoring. In §3.2.3, we will make use of the (stabilized) weights

defined by W (t) ≡W T (t) ×WC(t) after modifying (4.2) by adding C(k) = 0 to the condi-

tioning events in both the numerator and the denominator Hernán, Brumback and Robins

[2000]. Hereafter W (t) will be referred to as inverse-probability-weights (IPWs). Note that

(4.2) and (3.6) are finite products. In addition, (3.3) ensures non-zero probabilities in the

denominators of (4.2) and (3.6) and hence the IPWs at all t are bounded.

Results presented in this article are not limited to a specific form of the weights W (t).
The proposed methods are applicable to different inverse probability weighting analysis

provided that the IPWs (or IPTWs in the absence of censoring) are bounded, such as when

truncated [Cole and Hernán, 2008] and normalized [Xiao, Abrahamowicz and Moodie, 2010]

weights are employed. Under the assumption of finite support of the treatment and censor-

ing processes, unstabilized weights [Hernán, Brumback and Robins, 2001] are also bounded.

However, unstabilized weights are known to be highly variable and are by design mono-

tone increasing functions of t. Other weights such as stabilized, truncated, and normalized

weights are generally recommended in practice as they lead to more efficient estimators of

the causal treatment effect.

We now briefly describe estimation of the random weights W (t), denoted by Ŵ (t).
One may specify a pooled logistic model (treating each person-visit as an observation) to
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estimate the probability in denominators of (4.2) and (3.6) at each time (for example, at

each visit), then plug in the estimated probabilities to (4.2) and (3.6) Hernán, Brumback

and Robins [2000, 2001]. We assume throughout that the model to estimate denominator

probabilities in the IPWs is correctly specified. In practice, investigators may want to

explore the sensitivity of the regression coefficients to different model specifications for

estimating the weights.

3.2.3 Weighted-Psuedo-Partial-Likelihood

In this section we consider two weighted-pseudo-partial-likelihoods (WPPLs) which form

the basis for obtaining consistent estimators of β0 in the presence of case-cohort sampling.

TheWPPLs are formed by weighting individual contributions to the usual partial likelihoods

by Wi(t) assuming that Wi(t) is known. In the case-cohort setting, we consider a set of

individuals C̃ of size ñ ≤ n that is randomly selected without replacement from the entire

cohort {1, . . . , n}.
The log-WPPL created by individual-time-specific weights at time t under the full cohort

setting is given by

l(β, t;W ) = (3.7)

n

∑
i=1
∫

t

0

Wi(u)[β′Ai(u) − log
n

∑
l=1

Wl(u)Yl(u)r{β′Al(u)}]dNi(u),

which is motivated by the weighted estimating equations proposed by Robins [1993].

The log-WPPL in the case-cohort setting is

l̃(β, t;W ) = (3.8)

n

∑
i=1
∫

t

0

Wi(u)[β′Ai(u) − log∑
l∈C̃

Wl(u)Yl(u)r{β′Al(u)}]dNi(u).

Note (3.8) is slightly different from the log-WPPL proposed by Cole et al. [2012], which is

l∗(β, t;W ) = (3.9)

n

∑
i=1
∫

t

0

Wi(u)[β′Ai(u) − log ∑
l∈C̃∪{i}

Wl(u)Yl(u)r{β′Al(u)}]dNi(u).
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The log-WPPLs (3.8) and (3.9) differ only in whether a case outside the subcohort C̃
contributes to the risk set. In the absence of weights, i.e., Wi(u) = 1 for all i and u, (3.8)

reduces to the log-likelihood considered by Self and Prentice [1988] and (3.9) reduces to the

log-likelihood considered by Prentice [1986b]. Estimators that maximize (3.8) or (3.9) will

be shown to converge in probability to β0.

Note that under (3.1) each (observed) counting process Ni(⋅)(i = 1, ..., n) can be uniquely

decomposed into the sum of its intensity process λi and a local square integrable martingale

Mi, i.e.,

Ni(t) = ∫
t

0

λi(u)du +Mi(t), t ∈ [0,1], (3.10)

where the intensity process is given by

λi(t) = Yi(t)r{β′0Ai(t)}λ0(t), (3.11)

which embodies the same parameters as in (3.4).

Define β̂, β̃, and β∗ to be solutions to ∂l(β,1;Ŵ )/∂β = 0, ∂l̃(β,1;Ŵ )/∂β = 0, and

∂l∗(β,1;Ŵ )/∂β = 0, respectively. Consider the following processes

X(β, t;W ) = n−1{l(β, t;W ) − l(β0, t;W )} (3.12)

= n−1
n

∑
i=1
∫

t

0

Wi(u)[(β − β0)′Ai(u)

− log ∑
n
l=1Wl(u)Yl(u)r{β′Al(u)}
∑n

l=1Wl(u)Yl(u)r{β′0Al(u)}
]dNi(u),

X̃(β, t;W ) = n−1{l̃(β, t;W ) − l̃(β0, t;W )} (3.13)

= n−1∑
i∈C
∫

t

0

Wi(u)[(β − β0)′Ai(u)

− log ∑l∈C̃Wl(u)Yl(u)r{β′Al(u)}
∑l∈C̃Wl(u)Yl(u)r{β′0Al(u)}

]dNi(u)

corresponding to (3.7) and (3.8) respectively. We will first show that X(β, t;Ŵ ) and (3.12)

are asymptotically equivalent, and so are X̃(β, t;Ŵ ) and (3.13). Thus, further technical

developments will be made based on (3.12) and (3.13). We then show that (3.12) and

(3.13) at t = 1 converge in probability to functions of β which are concave with a unique
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maximum β0 under certain conditions. Using the same argument as in Andersen and Gill

[1982], it follows that β̂ →p β0 and β̃ →p β0. That β∗ →p β0 can be shown analogously by

using X∗(β, t;W ) = n−1{l∗(β, t;W ) − l∗(β0, t;W )}. Asymptotic normality of β̂ and β̃ will

be shown via asymptotic normality of score statistics corresponding to (3.7) and (3.8).

3.3 Consistency

For a p × 1 column vector c, let c⊗0 = 1, c⊗1 = c, and c⊗2 = cc′, ci denote i-th element

of c, and cij denote (i, j) element of c⊗2. Norms are defined by ∣∣c⊗2∣∣ = supi,j ∣cij ∣, ∣∣c∣∣ =
supi ∣ci∣, and ∣c∣ = (∑ c2i )1/2 = (c′c)1/2. Also let r(0){β′A(t)} = r{β′A(t)}, r(1){β′A(t)} =
A(t)r{β′A(t)}, and r(2){β′A(t)} = A(t)⊗2r{β′A(t)}.

CONDITIONS.

A (Uniform consistency of estimated weights)

sup
i∈{1,...,n}
t∈[0,1]

∣Ŵi(t) −Wi(t)∣ ≡MŴ
→p 0.

Along with the assumption of no misspecification of the model used to estimate denom-

inator probabilities in W (⋅), the finite number of jumps assumption on the treatment and

censoring processes are sufficient for this condition to hold. From a practical point of view,

having a finite number of time points when treatment status can change or when censoring

might occur may be reasonable to assume in many settings. For instance, studies often

have planned visits at finite discrete intervals when a patient may have treatment altered.

Similarly, the censoring time for a subject is often assumed to be the last observed visit

time before the subject became lost-to-follow-up.

B (Stability of weights) Individual time-specific weights Wi(t) and the corresponding es-

timators Ŵi(t) are strictly positive and bounded, i.e., there exist positive real numbers

M1 and M2 such that

sup
i∈{1,...,n}
t∈[0,1]

Wi(t) ≤M1, and sup
i∈{1,...,n}
t∈[0,1]

Ŵi(t) ≤M2.

28



Note that Ŵ (⋅) and W (⋅) are assumed to be predictable with respect to the filtration

Ft because weights are determined by predictable processes: A(⋅), L(⋅), and their histories.

All weights discussed in §3.2.2 satisfy the conditions A and B under any circumstances,

except the unstabilized weights. Unstabilized weights satisfy conditions A and B under the

assumption of finite support of A(⋅) and C(⋅).

C (Finite interval) ∫ 1

0
λ0(t)dt <∞

D (Asymptotic stability)

(i) There exists a neighborhood B0 of β0 and functions s(0), s(1), and s(2) defined on

B0 × [0,1] such that

sup
β∈B0
t∈[0,1]

∣∣S(j)(β, t) − s(j)(β, t)∣∣ →p 0, j = 0,1,2

where S(j)(β, t) = n−1∑n
i=1 Yi(t)r(j){β′Ai(t)} for j = 0,1,2, which are the same

quantities as given in Andersen and Gill [1982] with covariates Zi(t) being replaced

by the treatment process Ai(t).

(ii) Let S
(j)
W(k)

= n−1∑n
i=1Wi(t)kYi(t)r(j){β′Ai(t)} for j = 0,1,2 and k = 1,2. There

exists a neighborhood B of β0, B ⊆ B0, and functions s
(j)
W(k)

defined on B×[0,1] such
that

sup
β∈B

t∈[0,1]

∣∣S(j)W(k)
(β, t) − s(j)W(k)

(β, t)∣∣ →p 0, j = 0,1,2;k = 1,2

(iii) S
(0)
W(1)
(β0, t) converges in distribution to a mean zero Gaussian random variable

uniformly in t, i.e.,

n1/2{S(0)
W(1)
(β0, t) − s(0)W(1)

(β0, t)} →d N(0, σ2(t)), uniformly in t ∈ [0,1],

for some σ2(t).
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E (Lindeberg condition) For any ǫ > 0, j = 1, ..., p

n−1∫
1

0

n

∑
i=1

Wi(u)2[Aij(u) −EW(1)(β0, u)j]2Yi(u)r{β′0Ai(u)}

× I{n−1/2Wi(u)∣Aij(u) −EW(1)(β0, u)j ∣ > ǫ}λ0(u)du →p 0

where E = S(1)/S(0), EW(k) = S
(1)
W(k)
/S(0)W(k)

, and in general cj denotes the jth component

of any p × 1 vector c.

If the treatment process A(⋅) is bounded (as assumed throughout this paper) and Con-

ditions B and F are satisfied, then Condition E holds trivially.

F (Asymptotic regularity conditions) s(j)(β, t) and s(j)W(k)
(β, t) are continuous functions of

β ∈ B uniformly in t ∈ [0,1] that are bounded on B × [0,1] for j = 0,1,2 and k = 1,2. For

all (β, t) ∈ B × [0,1], define

s(m+1)(β, t) = ∂s
(m)(β, t)
∂β

, s
(m+1)
W(k)

(β, t) =
∂s
(m)
W(k)
(β, t)

∂β

for m = 0,1, and e = s(1)/s(0), eW(k) = s
(1)
W(k)
/s(0)W(k)

, v = s(2)/s(0) − e⊗2, vW(k) = s(2)W(k)
/s(0)W(k)

−
e⊗2
W(k)

, and VW(k) = S
(2)
W(k)
/S(0)

W(k)
− E⊗2

W(k)
for k = 1,2. Assume that s(0) and s

(0)
W(k)

are

bounded away from zero and the matrices

Σ = ∫
1

0

v(β0, t)s(0)(β0, t)λ0(t)dt, and

ΣW(k) = ∫
1

0

vW(k)(β0, t)s
(0)
W(k)
(β0, t)λ0(t)dt

are positive definite.

Note eW(k) can be interpreted as the weighted average of a treatment function with the

weights taking an exponential form. The positive definite condition on Σ in Andersen and

Gill [1982] can easily be extended to the ΣW(k) assumingW (t) are bounded away from zero

on t ∈ [0,1].
Conditions A-F are sufficient to prove consistency of β̂. To prove the consistency of

β̃ and β∗, the following additional condition is required to ensure asymptotic behavior of

certain subcohort averages.
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G (Stability of subcohort average) Define

S̃
(j)
W(k)
(β, t) = ñ−1∑

i∈C̃

Wi(t)kYi(t)r(j){β′Ai(t)},

and ẼW(k) = S̃
(1)
W(k)
/S̃(0)

W(k)
for j = 0,1,2 and k = 1,2.

(i) (Nontrivial subcohort) ñn−1 →p α for some α ∈ (0,1].

(ii) (Asymptotic normality of subcohort averages at β0) For any ǫ > 0

sup
t∈[0,1]

n−1
n

∑
i=1

Wi(t)2Yi(t)r{β′0Ai(t)}2I{n−1/2Wi(t)Yi(t)r{β′0Ai(t)} > ǫ}→p 0,

sup
t∈[0,1]

n−1
n

∑
i=1

Wi(t)2Yi(t)∣∣r(1){β′0Ai(t)}∣∣2I{n−1/2Wi(t)Yi(t)∣∣r(1){β′0Ai(t)}∣∣ > ǫ}

→p 0,

and the sequences of distributions of n1/2{Ẽ(β0, t) − E(β0, t)} are tight on the

product space of cadlag functions equipped with the product Skorohod topology

and so are n1/2{ẼW(1)(β0, t) −EW(1)(β0, t)}.

(iii) (Asymptotic stability and regularity of covariance function) There exists a neigh-

borhood B of β0 and functions q(j)(β, t, u) for j = 0,1,2, defined on B × [0,1]2 such

that q(j)(β, t, u) are continuous functions of β ∈ B uniformly in (t, u) ∈ [0,1]2, the
q(j) are bounded on B × [0,1]2 and

sup
β∈B

(t,u)∈[0,1]2

∣∣Q(j)(β, t, u) − q(j)(β, t, u)∣∣ →p 0, j = 0,1,2, where

Q(0)(β, t, u) = n−1
n

∑
i=1

Wi(t)Yi(t)r{β′0Ai(t)}Wi(u)Yi(u)r{β′0Ai(u)},

Q(1)(β, t, u) = n−1
n

∑
i=1

Wi(t)Yi(t)r(1){β′0Ai(t)}Wi(u)Yi(u)r(1){β′0Ai(u)}′,

Q(2)(β, t, u) = n−1
n

∑
i=1

Wi(t)Yi(t)r{β′0Ai(t)}Wi(u)Yi(u)r(1){β′0Ai(u)}.

Moreover, supn≥1 E[Q(j)(β, t, u)] for j = 0,1,2 are bounded sequences where E
denote expectation.
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(iv) (Asymptotic stability of subcohort averages) Let Q̃(j)(β, t, u) be covariance func-

tions based on subcohort members i = 1, ..., ñ. Then

sup
β∈B

t∈[0,1]

∣∣S̃(0)
W(k)
(β, t) − s(0)

W(k)
(β, t)∣∣ →p 0 k = 1,2,

i.e., the subcohort average converges to the mean of the full cohort, and

sup
β∈B

(t,u)∈[0,1]2

∣∣Q̃(j)(β, t, u) − q(j)(β, t, u)∣∣ →p 0, j = 0,1,2.

i.e., the subcohort covariance functions converge in probability to the full cohort

covariance functions. In addition, S̃
(0)
W(1)
(β0, ⋅) converges in distribution to a mean

zero Gaussian random variable uniformly in t, i.e.,

n1/2{S̃(0)
W(1)
(β0, t) − s(0)W(1)

(β0, t)} →d N(0, σ̃2(t)), uniformly in t ∈ [0,1]

for some σ̃2(t).

Condition G is the same as condition G in Self and Prentice [1988], incorporating

individual-specific time-varying weights Wi(t)(i = 1, ..., n).

Theorem 3.3.1. (Consistency of β̂ under full cohort) Under conditions A-F, β̂ →p β0.

Proof. Consider the process X(β, t;W ) given by (3.12) and its compensator counterpart

K(β, t;W ) which is given by

K(β, t;W ) = n−1
n

∑
i=1
∫

t

0

Wi(u)[(β − β0)′Ai(u) − log {
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}]λi(u)du

where λi(t) is given as in (3.11). We start by showing that

∣{X(β, t;Ŵ ) −K(β, t;Ŵ )} − {X(β, t;W ) −K(β, t;W )}∣ →p 0 (3.14)

so that we can consider the asymptotic behavior of X(β, t;W ) − K(β, t;W ) instead of

X(β, t;Ŵ ) − K(β, t;Ŵ ) to prove consistency of β̂. To prove (3.14), first note the term
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∣{X(β, t;Ŵ ) −K(β, t;Ŵ )} − {X(β, t;W ) −K(β, t;W )}∣ in (3.14) equals

∣n−1
n

∑
i=1
∫

1

0

[Ŵi(u)(β − β0)′Ai(u) − Ŵi(u) log {
S
(0)

Ŵ(1)
(β,u)

S
(0)

Ŵ(1)
(β0, u)

}]dMi(u)

− n−1
n

∑
i=1
∫

1

0

[Wi(u)(β − β0)′Ai(u) −Wi(u) log {
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}]dMi(u)∣.

Replacing Wi(u) in front of log{S(0)
W(1)
(β,u)/S(0)

W(1)
(β0, u)} with Wi(u)− Ŵi(u)+ Ŵi(u) and

rearranging terms yields

∣n−1
n

∑
i=1
∫

1

0

{Ŵi(u) −Wi(u)}(β − β0)′Ai(u)dMi(u) (3.15)

− n−1
n

∑
i=1
∫

1

0

{Ŵi(u) −Wi(u)} log {
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}dMi(u)

− n−1
n

∑
i=1
∫

1

0

Ŵi(u) log {
S
(0)

Ŵ(1)
(β,u)

S
(0)

Ŵ(1)
(β0, u)

/
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}dMi(u)∣.

Each term in (3.15) is a local square integrable martingale since g(Wi(⋅),Ai(⋅)) is predictable
for any continuous function g(⋅) due to predictableness of Wi(⋅) and Ai(⋅). Because Ŵi(⋅)
is also bounded and predictable, the same argument can be made for g1(Ŵi(⋅),Ai(⋅)) and
g2(Wi(⋅), Ŵi(⋅)) for any continuous functions g1(⋅) and g2(⋅). We will show that the variance

process of each martingale in (3.15) converges in probability to zero, thus proving (3.14).

Let B1(β, t) be the variance process of the first martingale in (3.15). Then

B1(β, t) = n−2
n

∑
i=1
∫

t

0

{Ŵi(u) −Wi(u)}2(β − β0)′Ai(u)⊗2(β − β0)λi(u)du

= n−2
n

∑
i=1
∫

t

0

{Ŵi(u) −Wi(u)}2(β − β0)′Yi(u)r(2){β′0Ai(u)}(β − β0)λ0(u)du

≤ n−1∫
t

0

M
2

Ŵ
(β − β0)′[n−1

n

∑
i=1

Yi(u)r(2){β′0Ai(u)}](β − β0)λ0(u)du

= n−1M2

Ŵ ∫
t

0

(β − β0)′S(2)(β0, u)(β − β0)λ0(u)du

which converges in probability to zero due to conditions A, B, D, and F. The second equal-

ity is owing to (3.11), and the inequality comes from replacing {Ŵi(u) −Wi(u)}2 by its
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supremum value M
2

Ŵ
. Let B2(β, t) be the variance process of the second martingale term

in (3.15). Then

B2(β, t) =n−2
n

∑
i=1
∫

t

0

{Ŵi(u) −Wi(u)}
2

{logS(0)
W(1)
(β,u) − logS(0)

W(1)
(β0, u)}

2

λi(u)du

≤n−1∫
t

0

M
2

Ŵ
{logS(0)W(1)

(β,u) − logS(0)W(1)
(β0, u)}

2

S(0)(β0, u)λ0(u)du

which converges to zero due to conditions A, B, D, and F. Lastly, let the variance of the

third martingale term in (3.15) be B3(β, t). Then

B3(β, t) = n−2
n

∑
i=1
∫

t

0

Ŵi(u)2[{logS(0)
Ŵ(1)
(β,u) − logS(0)

W(1)
(β,u)}

− {logS(0)
Ŵ(1)
(β0, u) − logS(0)W(1)

(β0, u)}]
2

λi(u)du

= n−1∫
1

0

[{logS(0)
Ŵ(1)
(β,u) − logS(0)

W(1)
(β,u)}

− {logS(0)
Ŵ(1)
(β0, u) − logS(0)W(1)

(β0, u)}]
2

S
(0)

Ŵ(2)
(β0, u)λ0(u)du

≤ n−1∫
1

0

[ sup
β,u

∣ logS(0)
Ŵ(1)
(β,u) − logS(0)

W(1)
(β,u)∣2

+ 2 sup
β,u

∣ logS(0)
Ŵ(1)
(β,u) − logS(0)

W(1)
(β,u)∣ sup

u
∣ logS(0)

Ŵ(1)
(β0, u) − logS(0)W(1)

(β0, u)∣

+ sup
u
∣ logS(0)

Ŵ(1)
(β0, u) − logS(0)W(1)

(β0, u)∣2]S(0)
Ŵ(2)
(β0, u)λ0(u)du

which converges in probability to zero due to conditions A, B, D, F, and by the continuous

mapping theorem. It follows that X(β, t;Ŵ ) −K(β, t;Ŵ ) and X(β, t;W ) −K(β, t;W ) in
(3.14) are asymptotically equivalent processes. Thereby we proceed to describe asymptotic

behavior of the process X(β, t;W ) − K(β, t;W ). Hereafter for notation convenience we

suppress W when writing X(β, t;W ) and K(β, t;W ).
Now consider X(β, t) −K(β, t), which equals to

n−1
n

∑
i=1
∫

t

0

Wi(u)[(β − β0)′Ai(u) − log {
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}]dMi(u),

which is a martingale. After some calculation, it can be shown that its variance process

B(β, t) can be simplified as
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n−1∫
1

0

[(β − β0)′S(2)W(2)
(β0, u)(β − β0) (3.16)

− 2(β − β0)′S(1)W(2)
(β0, u) log {

S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}

+
⎧⎪⎪⎪⎨⎪⎪⎪⎩
log (

S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

2

S
(0)
W(2)
(β0, u)]λ0(u)du

where each term inside the integral converges in probability to a function of finite quantities

s
(j)
W(k)

on β ∈ B in view of conditions D and F. Therefore, (3.16) converges in probability to

zero. It follows that X(β, t) and K(β, t) converge in probability to the same limit by the

Lenglart inequality, i.e., that pr[supt,β ∣∣X(β, t) −K(β, t) > η∣∣] ≤ δ/η2 + pr[B(β,1) > δ] for
all δ, η > 0.

Therefore, to investigate asymptotic properties of X(β,1), consider asymptotic properties

of K(β,1) instead:

K(β,1) →p ∫
1

0

[(β − β0)′s(1)W(1)
(β0, u) − log {

s
(0)
W(1)
(β,u)

s
(0)
W(1)
(β0, u)

}s(0)
W(1)
(β0, u)]λ0(u)du

by (3.11). Let Kl(β,1) be the limiting quantity shown in the above. Then

∂Kl(β,1)
∂β

= ∫
1

0

[s(1)
W(1)
(β0, u) −

s
(1)
W(1)
(β,u)

s
(0)
W(1)
(β,u)

s
(0)
W(1)
(β0, u)]λ0(u)du

which is zero at β = β0. In addition, ∂2Kl(β,1)/∂β2 is

−∫
1

0

[
s
(2)
W(1)
(β,u)s(0)W(1)

(β,u) − s(1)W(1)
(β,u)⊗2

s
(0)
W(1)
(β,u)2

]s(0)
W(1)
(β0, u)λ0(u)du

= −∫
1

0

vW(1)(β,u)s
(0)
W(1)
(β0, u)λ0(u)du

which equals to −ΣW(1) and is negative definite when β = β0 based on condition F. Therefore

K(β,1) converges to a concave function having unique maximum at β0. This enables us to

make use of Theorem II.1 in Andersen and Gill [1982] that proves in probability convergence
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of X(β,1) to the same concave function of β as does K(β,1), with a unique maximum at

β = β0. Then β̂ →p β0.

Consistency of β̃ can be shown using similar arguments as in Theorem 3.3.1. It can

immediately be seen that X̃(β, t;Ŵ ) is asymptotically equivalent to X̃(β, t;W ) by condition

A. Therefore, we can show that X̃(β, t) converges in probability to K(β, t) so that the same

argument as in the proof of Theorem 3.3.1 can be made. In particular, ∣X̃(β, t) −K(β, t)∣
will be decomposed into two terms, ∣X(β, t) − K(β, t)∣ plus a term that will converge in

probability to zero.

Theorem 3.3.2. (Consistency of β̃ under the case-cohort) Under conditions A-G, β̃ →p β0.

Proof. First, ∣X̃(β, t) −K(β, t)∣ can be rewritten as

∣n−1∫
t

0

n

∑
i=1

Wi(u)(β − β0)′Ai(u)dMi(u)

− n−1∫
t

0

n

∑
i=1

Wi(u) log {
S̃
(0)
W(1)
(β,u)

S̃
(0)
W(1)
(β0, u)

}dNi(u)

+ n−1∫
t

0

n

∑
i=1

Wi(u) log {
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

}λi(u)du∣

≤∣X(β, t) −K(β, t)∣

+ ∣n−1∫
t

0

n

∑
i=1

Wi(u){ log (
S̃
(0)
W(1)
(β,u)

S̃
(0)
W(1)
(β0, u)

) − log (
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

)}dNi(u)∣.

We have shown that ∣X(β, t) −K(β, t)∣ →p 0. The remaining term can be decomposed as

∣n−1∫
t

0

[
n

∑
i=1

Wi(u){ log (
S̃
(0)
W(1)
(β,u)

S̃
(0)
W(1)
(β0, u)

) − log (
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

)}dMi(u)] (3.17)

+ n−1∫
t

0

n

∑
i=1

[Wi(u){ log (
S̃
(0)
W(1)
(β,u)

S̃
(0)
W(1)
(β0, u)

) − log (
S
(0)
W(1)
(β,u)

S
(0)
W(1)
(β0, u)

)}λi(u)du]∣.

Then the second term in (3.17) can easily be shown to converge in probability to zero in

view of conditions C, D, F and G(iv). Also the martingale in (3.17) converges in probability

to zero because its variance process is
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∣n−2∫
t

0

n

∑
i=1

Wi(u)2[{ log S̃(0)W(1)
(β,u) − logS(0)W(1)

(β,u)}

− { log S̃(0)
W(1)
(β0, u) − logS(0)W(1)

(β0, u)}]
2

λi(u)du∣

≤∣n−1∫
t

0

[ sup
β,u

∣ log S̃(0)W(1)
(β,u) − logS(0)W(1)

(β,u)∣

+ sup
u
∣ log S̃(0)W(1)

(β0, u) − logS(0)W(1)
(β0, u)∣]

2

S
(0)
W(2)
(β0, u)λ0(u)du∣

which converges in probability to zero, again by (3.11) with conditions C, D, F and G(iv).

Note that sum of supremums in the integrand (which can be taken outside the integral)

converges in probability to zero by conditions D and G(iv).

It is straightforward to show that the estimator based on (3.9) converges in probability

to the same limit as β̃. An individual case’s contribution to C̃ at its failure time (which

is weighted by its IPWs) is asymptotically negligible in the sense that IPWs are bounded

at all times and weighted subcohort averages are asymptotically stable (conditions B and

G(iv)). This is formally stated in the following Theorem.

Theorem 3.3.3. Under conditions A-G, β̃ − β∗ →p 0.

Proof. We sketch a proof of Theorem 3.3.3. Consider the following process

X∗(β, t) = n−1{l∗(β, t) − l∗(β0, t)}.

Then X∗(β, t) = n−1{l̃(β, t)− l̃(β0, t)}+op(1) because n−1l∗(β, t) = n−1l̃(β, t)+op(1). There-
fore, X∗(β, t) and X̃(β, t) are asymptotically equivalent processes and we can repeat the

proof of Theorem 3.3.2 using X∗(β, t) instead of X̃(β, t).

3.4 Asymptotic Normality

To prove asymptotic normality of β̃, we first prove asymptotic normality of the score

process of the log WPPL for the full cohort setting.

Theorem 3.4.1. (Asymptotic normality of the full cohort MSCM score statistic) Under
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conditions A-F,

n−1/2U(β0,1) →d N(0,ΣU )

where ΣU = ΣW(2) +∆W(1),W(2) with

∆W(1),W(2) = ∫
1

0

{eW(2)(β0, u) − eW(1)(β0, u)}⊗2s(0)W(2)
(β0, u)λ0(u)du. (3.18)

Proof. We will refer to the score process under the full cohort setting as the full cohort

MSCM score process. Let U(β0, t) be the full cohort MSCM score process at time t. Then

n−1/2U(β0, t) = n−1/2∂l(β, t)/∂β∣
β=β0

(3.19)

= n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −
S
(1)
W(1)
(β0, u)

S
(0)
W(1)
(β0, u)

]dNi(u)

= n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −EW(1)(β0, u)]dMi(u)

The third equality follows from (3.10) and the fact that

n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −EW(1)(β0, u)]λi(u)du = 0 (3.20)

based on (3.11). Set Hi(t) = n−1/2Wi(t)[Ai(t)−EW(1)(β0, t)] for i = 1, ..., n. This is a locally

bounded predictable process. Therefore, (3.19) is a local square integrable martingale.

To apply the martingale central limit theorem to the local square integrable martingale,

we show that n−1/2U(β0,1) = ∑n
i=1 ∫ 1

0
Hi(t)dMi(t) satisfies (i) ∫ 1

0 ∑n
i=1Hij(t)2I{∣Hij(t)∣ >

ǫ}λi(t)dt →p 0 for any ǫ > 0 (the Lindeberg condition), and that (ii) variance process

of (3.19) evaluated at t = 1 converges in probability to a finite quantity. Condition (i) is

satisfied because of condition E. To see if condition (ii) is satisfied, consider variance process

of n−1/2U(β0,1),

n

∑
i=1
∫

1

0

Hi(u)⊗2λi(u)du

=∫
1

0

n−1
n

∑
i=1

Wi(u)2[Ai(u) −EW(1)(β0, u)]
⊗2
λi(u)du
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=∫
1

0

n−1
n

∑
i=1

[Wi(u)2Yi(u)r(2){β′0Ai(u)} − 2Wi(u)2Yi(u)r(1){β′0Ai(u)}{EW(1)(β0, u)}′

+Wi(u)2Yi(u)r{β′0Ai(u)}EW(1)(β0, u)⊗2]λ0(u)du

=∫
1

0

[S(2)W(2)
(β0, u) − 2S(1)W(2)

(β0, u){EW(1)(β0, u)}′ + S(0)W(2)
(β0, u)EW(1)(β0, u)⊗2]λ0(u)du

=∫
1

0

[
S
(2)
W(2)
(β0, u)

S
(0)
W(2)
(β0, u)

− 2
S
(1)
W(2)
(β0, u)

S
(0)
W(2)
(β0, u)

{
S
(1)
W(1)
(β0, u)

S
(0)
W(1)
(β0, u)

}
′ + {

S
(1)
W(1)
(β0, u)

S
(0)
W(1)
(β0, u)

}
⊗2
]S(0)W(2)

(β0, u)λ0(u)du

=∫
1

0

[{
S
(2)
W(2)
(β0, u)

S
(0)
W(2)
(β0, u)

− (
S
(1)
W(2)
(β0, u)

S
(0)
W(2)
(β0, u)

)
⊗2
} + {(

S
(1)
W(2)
(β0, u)

S
(0)
W(2)
(β0, u)

)
⊗2

− 2
S
(1)
W(2)
(β0, u)

S
(0)
W(2)
(β0, u)

(
S
(1)
W(1)
(β0, u)

S
(0)
W(1)
(β0, u)

)
′ + (

S
(1)
W(1)
(β0, u)

S
(0)
W(1)
(β0, u)

)
⊗2
}]S(0)

W(2)
(β0, u)λ0(u)du

=∫
1

0

[VW(2)(β0, u) + {EW(2)(β0, u) −EW(1)(β0, u)}⊗2]S
(0)
W(2)
(β0, u)λ0(u)du.

Finally we can see that the variance process of n−1/2U(β0,1) converges in probability to

ΣW(2) +∆W(1),W(2) ≡ ΣU (3.21)

where ∆W(1),W(2) is given in (3.18). Based on conditions C and F, (3.21) is a finite quantity.

Therefore, the full cohort MSCM score statistic converges in distribution to a Gaussian

process with mean zero and the limiting covariance process ΣU by the martingale central

limit theorem. When Wi(t) ≡ 1 for all i = 1, ..., n and t ∈ [0,1], ∆W(1),W(2) becomes zero

and (3.21) equals to Σ which is the asymptotic variance of the score process under the full

cohort.

The score process corresponding to (3.8), which will be referred to as case-cohort MSCM

score process, is defined by

n−1/2Ũ(β0, t) =n−1/2∂l̃(β, t)/∂β∣
β=β0

(3.22)

=n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) − ẼW(1)(β0, u)]dNi(u).

Replacing ẼW(1)(β0, u) in (3.22) with EW(1)(β0, u) + ẼW(1)(β0, u) −EW(1)(β0, u), we obtain
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n−1/2Ũ(β0, t) = n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −EW(1)(β0, u)]dMi(u) (3.23)

− n1/2∫
t

0

[ẼW(1)(β0, u) −EW(1)(β0, u)]S
(0)
W(1)
(β0, u)λ0(u)du

− n−1/2
n

∑
i=1
∫

t

0

Wi(u)[ẼW(1)(β0, u) −EW(1)(β0, u)]dMi(u).

(3.23) is equivalent to

n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −EW(1)(β0, u)]dMi(u) (3.24)

− ∫
t

0

Dn(u)λ0(u)du

− ∫
t

0

Dn(u){S(0)W(1)
(β0, u)/S̃(0)W(1)

(β0, u) − 1}λ0(u)du

+ ∫
t

0

n1/2{EW(1)(β0, u) − eW(1)(β0, u)}{S̃(0)W(1)
(β0, u) − S(0)W(1)

(β0, u)}

× S(0)
W(1)
(β0, u)/S̃(0)W(1)

(β0, u)λ0(u)du

− n−1/2
n

∑
i=1
∫

t

0

Wi(u)[ẼW(1)(β0, u) −EW(1)(β0, u)]dMi(u),

where

Dn(t) = n1/2[{S̃(1)W(1)
(β0, t) − S(1)W(1)

(β0, t)} − eW(1)(β0, t){S̃(0)W(1)
(β0, t) − S(0)W(1)

(β0, t)}].

The equivalence between (3.23) and (3.24) can be shown by rewriting n1/2[EW(1)(β0, u) −
eW(1)(β0, u)}]S

(0)
W(1)
(β0, u) in the second term of (3.23) as follows:

n1/2[ẼW(1)(β0, t) −EW(1)(β0, t)]S
(0)
W(1)
(β0, t)

=n1/2[
S̃
(1)
W(1)
(β0, t)

S̃
(0)
W(1)
(β0, t)

−
S
(1)
W(1)
(β0, t)

S
(0)
W(1)
(β0, t)

]S(0)
W(1)
(β0, t)

=n1/2[{
S̃
(1)
W(1)
(β0, t)

S̃
(0)
W(1)
(β0, t)

−
S
(1)
W(1)
(β0, t)

S̃
(0)
W(1)
(β0, t)

}

+ {
S
(1)
W(1)
(β0, t)

S̃
(0)
W(1)
(β0, t)

−
S
(1)
W(1)
(β0, t)

S
(0)
W(1)
(β0, t)

}]S(0)
W(1)
(β0, t)
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=n1/2[ 1

S̃
(0)
W(1)
(β0, t)

{S̃(1)W(1)
(β0, t) − S(1)W(1)

(β0, t)}

+
S
(1)
W(1)
(β0, t)

S̃
(0)
W(1)
(β0, t)S(0)W(1)

(β0, t)
{S(0)

W(1)
(β0, t) − S̃(0)W(1)

(β0, t)}]S(0)W(1)
(β0, t)

=n1/2[{S̃(1)
W(1)
(β0, t) − S(1)W(1)

(β0, t)} −EW(1)(β0, t){S̃
(0)
W(1)
(β0, t) − S(0)W(1)

(β0, t)}]

× S(0)
W(1)
(β0, t)/S̃(0)W(1)

(β0, t)

=Dn(t) +Dn(t){S(0)W(1)
(β0, t)/S̃(0)W(1)

(β0, t) − 1}

− n1/2{EW(1)(β0, u) − eW(1)(β0, u)}{S̃(0)W(1)
(β0, u) − S(0)W(1)

(β0, u)}S(0)W(1)
(β0, u)/S̃(0)W(1)

(β0, u).

Integrand of the fourth term in (3.24) can be shown to converge to in probability to zero,

uniformly in t as its integrand converges to zero uniformly in t, in view of the stability

conditions D and G(iv), combined with the Slutsky’s theorem. The fifth term in (3.24) is a

local square integrable martingale with variance process

∫
1

0

[ẼW(1)(β0, u) −EW(1)(β0, u)]
⊗2
S
(0)
W(2)
(β0, u)λ0(u)du

which converges in probability to zero by conditions C, D, and G(iv). Therefore, if we can

show that the first term in (3.24) and Dn(u) converge jointly in distribution to independent

Gaussian random variables then it implies that Dn(u) converges in distribution to a Gaus-

sian. This further implies that the third term in (3.24) converges in probability to zero and

that the first two terms in (3.24) converge jointly in distribution to independent Gaussian

random variables, which is the desired property. We start showing the joint in distribution

convergence of the first term in (3.24) and Dn(u) through the following Proposition taken

from Self and Prentice [1988].

Proposition 3.4.1. (Self and Prentice [1988]) Let Xn = (X1n, ...,Xnn) and δn = (δ1n, ..., δnn)
be independent random variables such that:

(I) δn is a vector of ñ ones and n− ñ zeros, each possible configuration of zeros and ones is

equally likely and ñ/n→p α ∈ (0,1).
(II) For some scalar functions of Xn, fin(Xn), and for any ǫ > 0,
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n−1
n

∑
i=1

[fin(Xn) − f⋅n(Xn)]2I{∣fin(Xn) − f⋅n(Xn)∣ > n1/2ǫ}→p 0,

and S2

fn
→p σ

2

f > 0, where f⋅n(Xn) = n−1∑n
i=1 fin(Xn) and

S2

fn
= n−1

n

∑
i=1

[fin(Xn) − f⋅n(Xn)]2.

(III) The scalar functions of Xn, gn(Xn), converge in distribution to a Gaussian random

variable with mean zero and variance σ2g .

Let hn(Xn,δn) = n1/2[ñ−1∑n
i=1 δinfin(Xn) − f⋅n(Xn)], then {gn(Xn), hn(Xn,δn)} con-

verge in distribution to a bivariate Gaussian random variable with mean zero and covariance

matrix given by
⎡⎢⎢⎢⎢⎢⎣

σ2g 0

0 (1 − α)α−1σ2f

⎤⎥⎥⎥⎥⎥⎦
.

We can show asymptotic normality of the MSCM case-cohort score statistics via Propo-

sition 3.4.1 as shown below.

Theorem 3.4.2. (Asymptotic normality of the case-cohort MSCM score statistic) Under

conditions A-G,

n−1/2Ũ(β0,1) →d N(0,ΣŨ )

where ΣŨ = ΣU +∆α,

∆α = ∫
1

0
∫

1

0

G(β0, x, v)λ0(x)λ0(v)dxdv, (3.25)

and G(β0, x, v) is given in the proof below.

Proof. We briefly describe some necessary steps to prove Theorem 3.4.2. Details of the proof

and the calculation of the limiting covariance function are provided in the supplemental

material (§ 3.6).

Our goal can be achieved by showing the first and the second term in (3.24) converge

jointly to independent Gaussian random variables, so that we can claim that the limiting

covariance function of the case-cohort MSCM score process is given by the sum of each

of the limiting covariances. We already have in distribution convergence of the first term,
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which is the full cohort MSCM score function from Theorem 4, but not that of the second

term in (3.24). To show in distribution convergence of the second term to a Gaussian, we

first show in distribution convergence of Dn(⋅).
Consider application of Proposition 1 to Dn(t). In particular, Xin represents {Wi(u),

Yi(u),Ni(u),Ai(u);u ∈ [0,1]}, fin(Xn) represents a linear combination of elements of

Wi(t)Yi(t)r{β′0Ai(t)} and Wi(t)Yi(t)r(1){β′0Ai(t)}. Specifically, fin(Xn) equals to

p

∑
j=1

dj[Wi(tj)Yi(tj)r(1)j {β′0Ai(tj)} − eW(1),j(β0, tj)Wi(tj)Yi(tj)r{β′0Ai(tj)}],

for any constants dj , where j = 1, ..., p. Note that time index can vary by component index

j = 1, ..., p. Condition (I) in Proposition 1 is satisfied by condition G(i) and the fact that

the subcohort is selected by the simple random sampling without replacement. The first

subcondition of condition (II) of Proposition 1 follows from the inequality used by Andersen

and Gill [1982] and Self and Prentice [1988],

∣a − b∣2I{∣a − b∣ > ǫ} ≤ 4∣a∣2I{∣a∣ > ǫ/2} + 4∣b∣2I{∣b∣ > ǫ/2}, (3.26)

by letting n−1/2fin(Xn) be a and n−1/2f⋅n(Xn) be b, combined with conditions D and

G(ii). The second subcondition also follows from bounded property of limiting quantities

implied by D, and stability and regularity property of subcohort covariance function implied

by G(iii). Finally, gn(Xn) represents linear combinations of elements of the full cohort

MSCM score process all evaluated at a finite number of fixed time points in [0,1]. It can

easily be seen that, for any such gn(Xn), condition (III) is satisfied due to the convergence

of the full cohort MSCM score process to a Gaussian process with mean zero and finite

covariance function. It follows that {gn(Xn), hn(Xn, δn)} converges jointly in distribution

to independent Gaussian processes equipped with aforementioned fin(Xn) and gn(Xn).
Then we have joint convergence of the finite dimensional distributions of the MSCM full

cohort score process and a linear combination of elements ofDn(⋅) to Gaussian distributions.

It follows that Dn(⋅) converges in distribution to a multidimensional mean zero Gaussian

random variable by the Cramer-Wold device. As in Self and Prentice [1988], the fact that

linear functionals of the Gaussian processes are Gaussian, combined with the fact that λ0(⋅)
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is absolutely continuous with respect to the Lebesque measure, leads to the conclusion that

the second term in (3.24) converges to a Gaussian random variable. Note that the tightness

condition G(ii) implies weak convergence of the process Dn(⋅) Self and Prentice [1988].

The limiting covariance function of Dn(⋅), say G(β0, x, v), can be shown by straightforward

algebra to equal

G(β0, x, v) = (1 −α)α−1[h(1)(β0, x, v) − eW(1)(β0, x)h(2)(β0, x, v)′ (3.27)

− h(2)(β0, v, x)eW(1)(β0, v)′ + eW(1)(β0, x)eW(1)(β0, v)′h(0)(β0, x, v)]

under conditions D, F, G(i), G(iii), and G(iv), where h(j)(β,x, v) are given by

h(0)(β,x, v) = q(0)(β,x, v) − s(0)
W(1)
(β,x)s(0)

W(1)
(β, v)

h(1)(β,x, v) = q(1)(β,x, v) − s(1)
W(1)
(β,x)s(1)

W(1)
(β, v)′

h(2)(β,x, v) = q(2)(β,x, v) − s(0)
W(1)
(β,x)s(1)

W(1)
(β, v).

Then it can be seen that the covariance function of the limiting process for the second term

in (3.24) conditional on F(1) is given by (3.25) Finally, it follows that the sum of first

two terms in expression (3.24) converge in distribution to a Gaussian random variable with

mean zero and covariance given by Σ
Ũ
≡ ΣU +∆α due to independence.

Note S
(j)
W(k)

in condition D equals S(j) for all j = 0,1,2 and k = 1,2 when the IPWs are

equal to 1 (i.e., no weights are considered). Specifically, ΣW(k) equals Σ and (3.25) equals

∆ in Self and Prentice [1988], and hence, ΣŨ ≡ Σ +∆ in the absence of IPWs.

Theorem 3.4.3. (Asymptotic normality of β̃) Under conditions A-G,

n1/2(β̃ − β0)→d N(0,Σ−1W(1)ΣŨΣ
−1

W(1)
)

where Σ
Ũ

is given in the Theorem 3.4.2.

Proof. A Taylor expansion of the MSCM case-cohort score process around β0 evaluated at

β̃ and t = 1 gives
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n−1/2Ũ(β0,1) = { − n−1∂
2 l̃(β̇,1)
∂β2

}n1/2(β̃ − β0) (3.28)

for any β̇ on the line segment between β̃ and β0. It is clear that we need to show (in

probability) convergence of −n−1∂2 l̃(β̇,1)/∂β2, for any β̇ in between β̃ and β0. First, let

n−1Ĩ(β, t) = −n−1∂2 l̃(β, t)/∂β2, and (3.29)

n−1I(β, t) = −n−1∂2l(β, t)/∂β2. (3.30)

Here, we consider asymptotic properties of (3.30) instead of (3.29) because the two pro-

cesses converge in probability to the same quantity. To see this, note

sup
β,t

∣n−1{I(β, t) − Ĩ(β, t)}∣ (3.31)

≤n−1
n

∑
i=1
∫

1

0

sup
β,u

∣Wi(u){ṼW(1)(β,u) − VW(1)(β,u)}∣dNi(u)

≤M1∫
1

0

sup
β,u

∣{ṼW(1)(β,u) − VW(1)(β,u)}∣n−1
n

∑
i=1

dNi(u) →p 0

for any (β, t) ∈ B × [0,1] due to conditions B, D, F, G(iv), by the continuous mapping

theorem, and the fact that the total number of jumps are bounded by n. Here, ṼW(1) =

S̃
(2)
W(1)
/S̃(0)W(1)

− (S̃(1)W(1)
/S̃(0)W(1)

)⊗2. Therefore, it is sufficient to show that n−1I(β,1) converges
in probability to a fixed matrix. Using (3.10), decompose n−1I(β0,1) by

n−1
n

∑
i=1
∫

1

0

Wi(u)[
S
(2)
W(1)
(β0, u)S(0)W(1)

(β0, u) − {S(1)W(1)
(β0, u)}⊗2

S
(0)
W(1)
(β0, u)2

]dMi(u)

+ ∫
1

0

[
S
(2)
W(1)
(β0, u)S(0)W(1)

(β0, u) − {S(1)W(1)
(β0, u)}⊗2

S
(0)
W(1)
(β0, u)2

]S(0)
W(1)
(β0, u)λ0(u)du.

The elements of the first term are local square integrable martingale with variance process

for the (i, j) element equals

n−1∫
1

0

{VW(1)(β,u)}
2

ij
S
(0)
W(2)
(β0, u)λ0(u)du
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which converges in probability to zero by virtue of the stability, regularity, and boundedness

conditions A-F. It follows that

n−1I(β,1) →p∫
1

0

vW(1)(β0, u)s
(0)
W(1)
(β0, u)λ0(u)du = ΣW(1) (3.32)

for any β ∈ B, and therefore n−1I(β̇,1) →p ΣW(1) for any β̇ in between β̃ and β0. Then

Theorem 3.4.2 along with (3.28) complete the proof. In particular, the covariance matrix

Σ−1W(1)ΣŨΣ
−1

W(1)
has a form

Σ−1W(1)(ΣU +∆α)Σ−1W(1) = Σ
−1

W(1)
(ΣW(2) +∆W(1),W(2) +∆α)Σ−1W(1)

where ΣU = ΣW(2) +∆W(1),W(2) as in Theorem 3.4.1 and the explicit form of ∆α is given by

(3.25).

Note (3.32) converges to Σ when Wi(t) = 1 for all i and t. Then n1/2(β̃ − β0) converges
to mean zero Gaussian vector with the same variance matrix as in Self and Prentice [1988].

Based on Theorem 3.4.3, we propose a new variance estimator

v̂ar(β̃) = n−1Σ̂−1W(1)(Σ̂W(2) + ∆̂W(1),W(2) + ∆̂α)Σ̂−1W(1) , (3.33)

where

Σ̂W(1) = n
−1Ĩ(β̃,1;W = Ŵ ), (3.34)

Σ̂W(2) = n
−1Ĩ(β̃,1;Ŵ 2), (3.35)

∆̂W(1),W(2) = n
−1

n

∑
i=1
∫

1

0

Ŵi(u)2[Ẽ{W(2)=Ŵ 2}(β̃, u) (3.36)

− Ẽ{W(1)=Ŵ}(β̃, u)]
⊗2

dNi(u), and

∆̂α = n
−2∫

1

0
∫

1

0

Ĝ(β̃, x, v)S̃(0)
W (1)
(β̃, x)−1 (3.37)

× S̃(0)
W (1)
(β̃, v)−1dN

Ŵ
(x)dN

Ŵ
(v),

where Ŵ or Ŵ 2 means that the IPWs are replaced by Ŵ or squared values of Ŵ , Ẽ{W(2)=Ŵ 2}

and Ẽ{W(1)=Ŵ}
denote that the IPWs in ẼW(2) and ẼW(1) are replaced by Ŵ , N

Ŵ
(t) is
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defined by ∑i Ŵi(t)Ni(t), and Ĝ(β̃, ⋅, ⋅) is (3.27) with h(j)(β0, ⋅), eW(1)(β0, ⋅), and s(0)W(1)
(β0, ⋅)

replaced by H̃(j)(β̃, ⋅), ẼW(1)(β̃, ⋅), and S̃(0)W(1)
(β̃, ⋅). Estimators (3.34), (3.35), and (3.36) are

consistent estimators of ΣW(1) , ΣW(2) , and ∆W(1),W(2) in view of (3.31) and (3.32) along

with condition A. Estimator (3.37) is a consistent estimator of ∆α in view of conditions A,

G(ii), that n−1N
Ŵ
(t) uniformly converges to ∫ t

0
s
(0)
W(1)
(β0, u)λ0(u)du, and that n−1N

Ŵ
(1)

is bounded in probability.

The proposed variance estimator (3.33) is different from the robust estimator proposed

by Lin and Ying (LY,Lin and Ying [1993]) that is used in most MSM analyses. Both (3.33)

and the LY estimator are sandwich-type estimators where the “bread” of sandwich (Σ̂−1W(1))

is the same. The difference comes from the “meat”. The proposed variance estimator

requires calculation of ∆̂α which reflects covariance among score components induced by

the subcohort sampling. The covariance matrix of the MSCM case-cohort score statistic

ΣŨ +∆α is estimated without explicit estimation of ∆α if the LY estimator is used. It can

be seen that calculation of the LY estimator is based on (weighted) score residuals. When

sample size is small, the score residuals will be correlated due to the substitution of β̃ or β∗

for β, which might lead to underestimation of the true variance. Simulation results reported

in §3.5.2 below indicate that (3.33) may be more accurate when the size of subcohort is

small.

3.5 Implementation and Simulation

We have shown that we can obtain a consistent and asymptotically normally distributed

estimator of treatment effect in the case-cohort setting by fitting a MSCM via inverse

probability weighting. This provides theoretical justification for simulation results shown in

Cole et al. [2012]. In this section we (i) describe how a MSCM can easily be fit via inverse

probability weighting for either the full cohort or case-cohort setting using standard survival

analysis software, such as R or SAS, and (ii) present results from a simulation study.

3.5.1 Implementation

To fit a MSCM via inverse probability weighting for a full cohort, first create a data set in

which each person-visit corresponds to one row. Specifically, let each row contain a subject
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identifier, visit (or date) information, treatment and time-varying confounder information

at the corresponding visit/date time, and baseline covariates. Depending upon the user-

defined models to estimate Wi(t), the data set may be augmented by treatment/covariate

histories in each row as well. For example, one might fit pooled logistic models to obtain

the estimated probability of receiving treatment at time t by regressing the log-odds of

receiving treatment A(t) on prior treatment status (say, A(t−)) alone (for the numerator

in (4.2)), or with current covariate information L(t) (for the denominator in (4.2)) Hernán,

Brumback and Robins [2001]. Analogously, the estimated probability of being uncensored

at time t can be obtained by regressing the log-odds of being uncensored (C(t) = 0) on

current treatment status (A(t)) alone, or with L(t). For such models flexible functional

forms (e.g., splines) are often used for continuous confounders Cole and Hernán [2008]; Cole

et al. [2012, 2003]. Predicted values of the denominator and numerator probabilities in (4.2)

and (3.6) can then be used to calculate Ŵi(t) for all participants i = 1, ..., n and all study

visit times t. Then Ŵi(t) needs to be added to the data set to fit the MSCM. Finally, the

data set should be prepared in the counting process type format whereby each row contains

the start and stop times corresponding to the previous and current visits, along with an

event status indicator for the current visit. Then standard software can be used to fit the

MSCM via inverse probability weighting. For instance, using the survival package in R

[Therneau, 2012], the following code can be used:

coxph(Surv(start, stop, delta) ~ trt, weight=w)

where delta is the event indicator having value 1 if an event occurred at stop and 0

otherwise, trt indicates whether an individual received treatment (assuming treatment is

a scalar) over the interval (start, stop], and w is Ŵi(t). The same model can be fit in

SAS by using the following code:

proc phreg data = dataname covout;

model (start,stop)*delta(0)=trt;

weight w;

run;

Fitting a MSCM in the case-cohort setting can be accomplished with some additional

data modifications. First, prepare a reduced data set including the randomly selected ñ
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subcohort members and all cases. Second, estimate the individual-time-specific weights

Wi(t) based on the user-specified model as before (e.g., logistic regression), except with

individuals in the subcohort that are not cases weighted by n/ñ [Cole et al., 2012]. After

adding the estimated individual-time-specific weights Ŵi(t) to each person-visit row, modify

each nonsubcohort case to contribute only one line of data with start time tj − ǫ and stop

time tj where tj is the event time for that individual and ǫ is chosen to be very small,

for instance ǫ = 0.0001. This insures that nonsubcohort cases appear only in the risk set

when they fail. One should make sure that the start times for nonsubcohort cases are

positive, such that tj − ǫ > 0 for your choice of ǫ. This modification of the data set for the

nonsubcohort cases is sufficient to obtain β∗, and the same R/SAS code as above can be

employed using the modified data set. Obtaining β̃ can be accomplished with an additional

data step wherein a dummy variable is coded equal to a relatively small negative value

(e.g., -20) for nonsubcohort cases and 0 otherwise [Therneau and Li, 1999]. Then, β̃ can be

obtained as follows in R:

coxph(Surv(start, stop, delta) ~ trt + offset(dummy), weight=w)

or in SAS:

proc phreg data = dataname covout;

model (start,stop)*delta(0)=trt/offset=dummy;

weight w;

run;

The offset term enforces a relative weight of exp(−20) < 10−8, assuming -20 is used for the

dummy value, to the nonsubcohort cases so that they effectively do not contribute to the

sum of the log (inside the integral) in (3.8). Therneau and Li [1999] suggested using -100

(exp(−100) < 10−40) for the dummy variable value, however, we found that sometimes the

coxph function in R did not converge when dummy = −100; this convergence problem was

observed when the event rate was very low, say 3-4%. Therefore, we recommend several

dummy values be considered to ensure robustness of analysis results. The choice of dummy

= −20 yielded reasonable analysis results under average event rate ≥5% in our simulation

study.
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The proposed variance estimator (3.33) requires computation of four components: Σ̂−1W(1) ,

Σ̂W(2) , ∆̂W(1),W(2), and ∆̂α. The naive variance estimator obtained by fitting the Cox model

with the weight option is the inverse of minus the second derivative of l̃(β,1) evaluated
at β̃ (i.e., Ĩ−1(β̃,1), the inverse of the observed information matrix) which is n−1 times

Σ̂−1W(1) . Therefore, Σ̂
−1

W(1)
can be obtained by multiplying n times the naive variance estimate.

Likewise, Σ̂W(2) can be obtained by multiplying n−1 times the inverse of the naive variance

estimate obtained by fitting the Cox model with the variable weight equal to the square of

the original weight variable. Unfortunately, it does not seem that ∆̂W(1),W(2) and ∆̂α can be

obtained as simply as Σ̂W(1) or Σ̂W(2). One can create vectors/matrices of S̃
(j)

Ŵk

(β̃, ⋅), and then

calculate Ẽ
Ŵk
(β̃, ⋅), Q̃(j)(β̃, ⋅), and H̃(j)(β̃, ⋅) to obtain ∆̂W(1),W(2) and ∆̂α. Alternatively,

one may want to apply the LY estimator in practice [Cole et al., 2012]. The LY estimator

appears to perform well empirically if we have moderate subcohort size and event rate (Cole

et al. [2012], §3.5.2 below), and is computationally straightforward to implement. The LY

estimator associated with β̃ can be obtained by using the following R or SAS code:

coxph(Surv(start, stop, delta) ~ trt + offset(dummy)

+ cluster(id), weight=w)

proc phreg data = dataname covs(aggregate) covout;

id id;

model (start,stop)*delta(0)=trt/offset=dummy;

weight w;

run;

The LY estimator corresponding to β∗ can be obtained by deleting offset(dummy) or

/offset=dummy.

3.5.2 Simulation

A simulation study was conducted to examine the finite sample bias of β̃ and β∗, and

performance of the proposed variance estimator (3.33) as well as the LY variance estimator.

Simulations were conducted similar to Cole et al. [2012]. Briefly, potential survival times

were generated according to the MSCM (3.4), and observed survival times were generated

by stochastically generating time varying exposures and confounders for cohorts of size
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Table 3.1: Summary of simulation study

Sub- Event Esti- Bias ESE ASE Coverage
cohort(%) rate(%) mator proposed LY proposed LY

5 5 † β∗ -0.12 0.49 0.55 0.42 0.97 0.91

β̃ -0.20 0.68 0.66 0.47 0.96 0.90
25 β∗ -0.03 0.37 0.36 0.31 0.94 0.91

β̃ -0.04 0.44 0.37 0.35 0.92 0.91

10 5 β∗ -0.05 0.40 0.42 0.37 0.97 0.94

β̃ -0.06 0.44 0.43 0.39 0.96 0.94
25 β∗ -0.02 0.27 0.26 0.26 0.93 0.93

β̃ -0.02 0.29 0.26 0.26 0.93 0.93

20 5 β∗ -0.02 0.35 0.36 0.34 0.96 0.95

β̃ -0.02 0.36 0.36 0.35 0.96 0.95
25 β∗ -0.01 0.21 0.20 0.20 0.94 0.94

β̃ -0.01 0.21 0.20 0.20 0.94 0.94

Bias denotes the empirical bias of the different estimators of β0. ASE denotes the average
estimated standard errors. ESE denotes the empirical standard errors. Coverage denotes
the empirical coverage of 95% Wald-type confidence intervals using either (3.33) or the LY
variance estimator. † Of the 5000 estimates of β∗ and β̃, one was excluded because some

of the unstabilized IPWs were greater than 106.

n = 1,000 (see Cole et al. [2012] for details). While Cole et al. [2012] considered only one

scenario having a 25% event rate (i.e., 25% of individuals were cases) and a 20% subcohort

fraction (i.e., ñn−1×100), we considered 36 scenarios by varying both the subcohort fraction

and the event rate from 5 to 30% (in increments of 5%). Censoring times were generated

from uniform distributions with support chosen to achieve the desired event rate. We did

not incorporate IPCWs when calculating IPWs because the censoring times were generated

independent of the exposure and potential survival times. Following Cole et al. [2012],

unstabilized weights were used to calculate IPWs. For each scenario 5,000 data sets were

generated under the null β0 = 0 and the alternative β0 = log(1/2).
Results from the simulation study are summarized in Table 1. Only results obtained

from six scenarios under the null are presented; results from other scenarios and under the

alternative were similar. For all scenarios, under both the null and alternative, β̃ and β∗

were nearly unbiased; that the two estimators performed similarly is not surprising in light of

Theorem 3. Under the null, the proposed variance estimator was always less biased than the

LY variance estimator when the subcohort fraction was only 5%, regardless of the event rate.

Similarly, (3.33) was less biased regardless of the subcohort fraction when the event rate
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was 5%. Both the proposed and the LY variance estimators were approximately unbiased

when the subcohort fraction and event rate were both greater than 15%. Wald confidence

intervals (CIs) using the LY variance estimator tended to undercover when the subcohort

fraction was 5%, whereas Wald CIs using (3.33) exhibited coverage close to the nominal level

for all scenarios considered. In summary, both β̃ and β∗, along with the proposed variance

estimator and CIs, exhibited good finite sample properties for the scenarios considered,

while performance of the LY variance estimator depended on subcohort size and event

rate.

3.6 Supplemental Material

This supplementary material contains three parts: § 3.6 provides detailed steps to apply

Proposition 1 to show asymptotic normality of the MSCM case-cohort score process (Theo-

rem 3.4.2). § 3.6 justifies the application of Proposition 1 by showing that fin(Xn) satisfies
conditions in Proposition 1. § 3.6 shows detailed calculations to obtain limiting covariance

function of the MSCM case-cohort score process.

Application of Proposition 1

Our goal is to show that the difference of the first two terms in (3.24), which is given by

n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −EW(1)(β0, u)]dMi(u) − ∫
t

0

Dn(u)λ0(u)du

=Bn(t) − ∫
t

0

Dn(u)λ0(u)du

=Bn(t) −Cn(t)

converges in distribution to a finite dimensional Gaussian random variable where Bn(⋅),
Cn(⋅), and Dn(⋅) are defined by

Bn(t) = n−1/2
n

∑
i=1
∫

t

0

Wi(u)[Ai(u) −EW(1)(β0, u)]dMi(u), (3.38)

Cn(t) = ∫
t

0

Dn(u)λ0(u)du, and (3.39)
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Dn(u) = n1/2[{S̃(1)W(1)
(β0, u) − S(1)W(1)

(β0, u)} − eW(1)(β0, u) (3.40)

× {S̃(0)
W(1)
(β0, u) − S(0)W(1)

(β0, u)}]S(0)W(1)
(β0, u).

Let gn(Xn) be a linear combination of elements of the MSCM full cohort score process

(Bn), i.e., for any constants cj (j = 1, .., p),

gn(Xn) = n−1/2
n

∑
i=1

p

∑
j=1

cj ∫
t

0

Wi(u)[Ai,j(u) −EW(1),j(β0, u)]dMi(u)

where the subscript j denotes the jth component of a vector. Also, let hn(Xn, δn) be a

linear combination of elements of Dn, i.e., for any constants dj(j = 1, .., p), fin(Xn) is given
by

fin(Xn) =
p

∑
j=1

dj[Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)} (3.41)

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}].

Then (3.41) leads to the desired form of hn(Xn, δn):

hn(Xn, δn) =n1/2[ñ−1
n

∑
i=1

δinfin(Xn) − f⋅n(Xn)]

=n1/2[
p

∑
j=1

dj{S̃(1)W(1),j
(β0, uj) − eW(1),j(β0, uj)S̃(0)W(1)

(β0, uj)}

−
p

∑
j=1

dj{S(1)W(1),j
(β0, uj) − eW(1),j(β0, uj)S(0)W(1)

(β0, uj)}]

=n1/2
p

∑
j=1

dj[{S̃(1)W(1),j
(β0, uj) − S(1)W(1),j

(β0, uj)}

− eW(1),j(β0, uj){S̃(0)W(1)
(β0, uj) − S(0)W(1)

(β0, uj)}]

which is a linear combination of elements of Dn where each jth component can be evaluated

at possibly different time points uj, i.e.,

hn(Xn, δn) =
p

∑
j=1

djDn,j(uj)

Assume that fin(Xn) and gn(Xn) satisfy conditions stated in Proposition 1, which will
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be shown in the Part II later in the supplementary material. Then by varying cj and dj ,

we can show that any chosen elements of Bn and Dn jointly converge in distribution to

an independent bivariate Gaussian process by application of Proposition 1. For example,

consider c1 = d1 = 1 and c2 = ... = cp = d2 = ... = dp = 0. Then Proposition 1 states that

the first element of Bn and the first element of Dn converge jointly in distribution to an

independent bivariate Gaussian. In iterative fashion, we can show that jth element of

Bn and kth element of Dn converge in distribution to an independent bivariate Gaussian

for all combinations of (j, k) ∈ [1,2, ..., p] × [1,2, ..., p]. Therefore, Bn and Dn converge in

distribution to independent processes. We have shown that Bn, the MSCM full cohort score

process, converges in distribution to a Gaussian process. Therefore, what we have left to

show is that Dn converges in distribution to a Gaussian process (and later to show that Cn

converges in distribution to a Gaussian process).

In the above arguments we have shown that, for any dj (j = 1, ..., p), ∑p
j=1 djDn,j con-

verges in distribution to a univariate Gaussian because fin(Xn) satisfies conditions in Propo-

sition 1 for any dj (which, as we mentioned above, will be shown in the Part II). Therefore,

it follows that Dn converges in distribution to a multidimensional mean zero Gaussian ran-

dom variable by the Cramer-Wold device. As in Self and Prentice [1988], the fact that

linear functionals of the Gaussian processes are Gaussian combined with the fact that λ0(⋅)
is absolutely continuous with respect to the Lebesque measure leads to that Cn converges

to a Gaussian random variable, say C. Then it follows that Bn − Cn converges to a mean

zero Gaussian random variable with covariance ΣU +∆α, as the limiting covariance of Cn

will be shown to equal ∆α later in the Part II.

In the next two parts, we verify that fin(Xn) and gn(Xn) satisfy conditions in Propo-

sition 1, and show the explicit form of limiting covariance structure of Cn respectively.
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Condition (II) in Proposition 1

Recall that condition (II) of Proposition 1 has the following two subconditions:

For any ǫ > 0,

n−1
n

∑
i=1

[fin(Xn) − f⋅n(Xn)]2I{∣fin(Xn)−f⋅n(Xn)∣>n1/2ǫ} →p 0, and (3.42)

S2

fn
= n−1

n

∑
i=1

[fin(Xn) − f⋅n(Xn)]2 →p σf . (3.43)

To show (3.42) based on the inequality (3.26), we need to show that for any ǫ > 0,

n−1
n

∑
i=1

∣fin(Xn)∣2I{∣fin(Xn)∣ > n1/2ǫ/2}→p 0, and (3.44)

n−1∣f⋅n(Xn)∣2I{∣f⋅n(Xn)∣ > n1/2ǫ/2}→p 0. (3.45)

To show (3.44), recall condition G(ii): For any ǫ > 0

sup
t
n−1

n

∑
i=1

Wi(t)2Yi(t)r{β′0Ai(t)}2 (3.46)

× I{n−1/2Wi(t)Yi(t)r{β′0Ai(t)} > ǫ}→p 0,

sup
t
n−1

n

∑
i=1

Wi(t)2Yi(t)∣∣r(1){β′0Ai(t)}∣∣2 (3.47)

× I{n−1/2Wi(t)Yi(t)∣∣r(1){β′0Ai(t)}∣∣ > ǫ}→p 0,

where (3.46) implies

sup
t
n−1

n

∑
i=1

Wi(t)2Yi(t)r{β′0Ai(t)}2∣∣eW(1)(β0, t)∣∣2 (3.48)

× I{n−1/2Wi(t)Yi(t)r{β′0Ai(t)}∣∣eW(1)(β0, t)∣∣ > ǫ}→p 0.

It can be shown that (3.47) and (3.48) imply (3.44), by repeatedly applying (3.26).

Also, we can rewrite

f⋅n(Xn) =
p

∑
j=1

dj[S(1)W(1),j
(β0, t) − eW(1),j(β0, t)S(0)W(1)

(β0, t)].
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Then (3.45) can immediately be seen by the stability property implied by condition D.

To show (3.43), note that S2

fn
can be rewritten as

S2

fn
= n−1

n

∑
i=1

[fin(Xn) − f⋅n(Xn)]2 (3.49)

= n−1
n

∑
i=1

fin(Xn)2 − {f⋅n(Xn)}2.

For notational and calculational convenience, let

fin(Xn) =
p

∑
j=1

dj(aj − bj)

by letting

aj =Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}, and

bj = eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}

then calculate the form of each term in (3.49). First term in (3.49) can be written as follows:

n−1
n

∑
i=1

fin(Xn)2 = n−1
n

∑
i=1

[
p

∑
j=1

dj(aj − bj)]
2

=n−1
n

∑
i=1

[
p

∑
j=1

d2j(aj − bj)2 + 2∑
j<k

djdk(aj − bj)(ak − bk)]

=n−1
n

∑
i=1

[
p

∑
j=1

d2j{Wi(uj)2Yi(uj)r(1)j {β′0Ai(uj)}2

− 2Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}

+ eW (1),j(β0, uj)2Wi(uj)2Yi(uj)r{β′0Ai(uj)}2}

+ 2∑
j<k

djdk{Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}Wi(uk)Yi(uk)r(1)k
{β′0Ai(uk)}

−Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}eW (1),k(β0, uk)Wi(uk)Yi(uk)r{β′0Ai(uk)}

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}Wi(uk)Yi(uk)r(1)k
{β′0Ai(uk)}

+ eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}eW (1),k(β0, uk)Wi(uk)Yi(uk)

× r{β′0Ai(uk)}}]

Then using Q(j)(j = 0,1,2) notation defined in condition G(iii), the above equation can be
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abbreviated as

n−1
n

∑
i=1

fin(Xn)2 =
p

∑
j=1

d2j{Q(1)(j,j)(β0, uj , uj) − 2eW (1),j(β0, uj)Q(2)j (β0, uj , uj)

+ eW (1),j(β0, uj)2Q(0)(β0, uj , uj)}

+2∑
j<k

djdk{Q(1)(j,k)(β0, uj , uk) − eW (1),k(β0, uk)Q(2)j (β0, uk, uj)

− eW (1),j(β0, uj)Q(2)k
(β0, uj , uk)

+ eW (1),j(β0, uj)eW (1),k(β0, uk)Q(0)(β0, uj , uk)}.

Now it can be seen that the above equation converges in probability to a fixed quantity in

view of stability properties of Q(⋅) stated in condition G(iii). The convergence of f⋅n(Xn)
can be shown using the same manner as the above. In particular, let

f⋅n(Xn) =
p

∑
j=1

dj(aj − bj)

where

aj = S
(1)
W(1),j

(β0, uj), and

bj = eW (1),j(β0, uj)S(0)W(1)
(β0, uj),

then

{f⋅n(Xn)}2 =
p

∑
j=1

d2j{S(1)W(1),j
(β0, uj)2 − 2S(1)W(1),j

(β0, uj)eW (1),j(β0, uj)S(0)W(1)
(β0, uj)

+ eW (1),j(β0, uj)2S(0)W(1)
(β0, uj)2}

+ 2∑
j<k

djdk{S(1)W(1),j
(β0, uk)S(1)W(1),k

(β0, uk)

− S(1)
W(1),j

(β0, uj)eW (1),k(β0, uk)S(0)W(1)
(β0, uk)

− eW (1),j(β0, uj)S(0)W(1)
(β0, uj)S(0)W(1)

(β0, uk)

+ eW (1),j(β0, uj)S(0)W(1)
(β0, uj)eW (1),k(β0, uk)S(0)W(1)

(β0, uk)}
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Then without further calculation, it can be seen that the above equation also converges to

a fixed quantity by conditions D and G(iii), and therefore we prove that (3.43) holds.

Limiting Covariance function

Now we need to show the limiting covariance function of Cn. First we will show the

limiting covariance function of Dn.

Let hn(Xn, δn) = Dn,j(uj) + Dn,k(uk) (i.e., let dj = dk = 1 and dl = 0 for all l ≠ j in

∑p
j=1 djDn,j(uj)). Covariance between Dn,j(uj) and Dn,k(uk) is given by

Cov(Dn,j(uj),Dn,k(uk)) (3.50)

= {Var(hn(Xn, δn)) −Var(Dn,j(uj)) −Var(Dn,k(uk))}/2.

Then the limiting values of (3.50) will lead to the (j, k)th components of the limiting

covariance, i.e.,

lim
n→∞

Cov(Dn,j(uj),Dn,k(uk)) (3.51)

= lim
n→∞
{Var(hn(Xn, δn)) −Var(Dn,j(uj)) −Var(Dn,k(uk))}/2.

By Proposition 1, we can obtain limiting values of Var(hn(Xn, δn)), Var(Dn,j(uj)) and

Var(Dn,k(uk)) using sample covariances calculated based on corresponding fin(Xn) equipped
with condition G(iii) and G(iv). Note that condition G(iii) ensures the convergence of the

finite sample covariance function to that of the limiting distribution. For notational conve-

nience, let

Fin,j(Xn) = [Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}], and

F⋅n,j(Xn) = n−1
n

∑
i=1

Fin,j(Xn); j = 1, ..., p.
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Now, straightforward calculation based on Proposition 1 yields that

lim
n→∞

{Var(hn(Xn, δn)) −Var(Dn,j(uj)) −Var(Dn,k(uk))}

=(1 − α)α−1 lim
n→∞

n−1
n

∑
i=1

[Fin,j(Xn) +Fin,k(Xn) − {F⋅n,j(Xn) +F⋅n,k(Xn)}]
2

− (1 −α)α−1 lim
n→∞

n−1
n

∑
i=1

[Fin,j(Xn) −F⋅n,j(Xn)]
2

− (1 −α)α−1 lim
n→∞

n−1
n

∑
i=1

[Fin,k(Xn) −F⋅n,k(Xn)]
2

=(1 − α)α−1{ lim
n→∞

n−1
n

∑
i=1

[Fin,j(Xn) +Fin,k(Xn) − {F⋅n,j(Xn) +F⋅n,k(Xn)}]
2

− lim
n→∞

n−1
n

∑
i=1

[Fin,j(Xn) −F⋅n,j(Xn)]
2

− lim
n→∞

n−1
n

∑
i=1

[Fin,k(Xn) −F⋅n,k(Xn)]
2

}.

The whole term after (1 −α)α−1 can be simplified as follows:

lim
n→∞

n−1
n

∑
i=1

[{Fin,j(Xn)2 + 2Fin,j(Xn)Fin,k(Xn) +Fin,k(Xn)2}

− 2{Fin,j(Xn) +Fin,k(Xn)}{F⋅n,j(Xn) +F⋅n,k(Xn)}

+ {F⋅n,j(Xn)2 + 2F⋅n,j(Xn)F⋅n,k(Xn) +F⋅n,k(Xn)2}]

− lim
n→∞

n−1
n

∑
i=1

[Fin,j(Xn)2 − 2Fin,j(Xn)F⋅n,j(Xn) +F⋅n,j(Xn)2]

− lim
n→∞

n−1
n

∑
i=1

[Fin,k(Xn)2 − 2Fin,k(Xn)F⋅n,k(Xn) +F⋅n,k(Xn)2]

= lim
n→∞

n−1
n

∑
i=1

2[Fin,j(Xn)Fin,k(Xn) −Fin,j(Xn)F⋅n,k(Xn) −Fin,k(Xn)F⋅n,j(Xn)

+F⋅n,j(Xn)F⋅n,k(Xn)]

= lim
n→∞

2[n−1
n

∑
i=1

Fin,j(Xn)Fin,k(Xn) −F⋅n,j(Xn)F⋅n,k(Xn)],
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where the first term inside the bracket is given by

n−1
n

∑
i=1

Fin,j(Xn)Fin,k(Xn)

=n−1
n

∑
i=1

[Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}Wi(uk)Yi(uk)r(1)k
{β′0Ai(uk)}

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}Wi(uk)Yi(uk)r(1)k
{β′0Ai(uk)}

−Wi(uj)Yi(uj)r(1)j {β′0Ai(uj)}Wi(uk)Yi(uk)r{β′0Ai(uk)}eW (1),k(β0, uk)

+ eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}Wi(uk)Yi(uk)r{β′0Ai(uk)}eW (1),k(β0, uk)]

=Q
(1)

(j,k)
(β0, uj , uk) − eW (1),j(β0, uj)Q(2)k

(β0, uj , uk)

−Q(2)j (β0, uk, uj)eW (1),k(β0, uk) + eW (1),j(β0, uj)Q(0)(β0, uj , uk)eW (1),k(β0, uk),

and the second term inside the bracket is given by

F⋅n,j(Xn) −F⋅n,k(Xn) =S(1)W(1),j
(β0, uj)S(1)W(1),k

(β0, uk)

− eW (1),j(β0, uj)S(0)W(1)
(β0, uj)S(1)W(1),k

(β0, uk)

− S(1)
W(1),j

(β0, uj)eW (1),k(β0, uk)S(0)W(1)
(β0, uk)

+ eW (1),j(β0, uj)S(0)W(1)
(β0, uj)S(0)W(1)

(β0, uk)eW (1),k(β0, uk).

Then limn→∞ 2[n−1∑n
i=1Fin,j(Xn)Fin,k(Xn) −F⋅n,j(Xn)F⋅n,k(Xn)] can be rewritten as

lim
n→∞

2[{Q(1)
(j,k)
(β0, uj , uk) − S(1)W(1),j

(β0, uj)S(1)W(1),k
(β0, uk)}

− eW (1),j(β0, uj){Q(2)k
(β0, uj , uk) − S(0)W(1)

(β0, uj)S(1)W(1),k
(β0, uk)}

− {Q(2)j (β0, uk, uj) − S(0)W(1)
(β0, uk)S(1)W(1),j

(β0, uj)}eW (1),k(β0, uk)

+ eW (1),j(β0, uj){Q(0)(β0, uj , uk) − S(0)W(1)
(β0, uj)S(0)W(1)

(β0, uk)}eW (1),k(β0, uk)]

= lim
n→∞

2[H(1)
(j,k)
(β0, uj , uk) − eW (1),j(β0, uj)H(2)k

(β0, uj , uk)

−H(2)j (β0, uk, uj)eW (1),k(β0, uk) + eW (1),j(β0, uj)H(0)(β0, uj , uk)eW (1),k(β0, uk)],
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where

H(0)(β,x, v) = Q(0)(β,x, v) − S(0)W(1)
(β,x)S(0)W(1)

(β, v)

H(1)(β,x, v) = Q(1)(β,x, v) − S(1)
W(1)
(β,x)S(1)

W(1)
(β, v)′

H(2)(β,x, v) = Q(2)(β,x, v) − S(0)
W(1)
(β,x)S(1)

W(1)
(β, v).

It follows that (3.51) is the (j, k)th element of G(β0, uj , uk) in view of convergence property

implied by conditions D and G(iii). Then it can be seen that the limiting covariance function

of Dn is given by G, and therefore we complete showing the in distribution convergence

of (3.40) to a Gaussian random variable. By applying the basic properties of covariance

matrix, we obtain the limiting covariance function of Cn given by ∆α.
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Chapter 4

Efficient Inference of Case-Cohort Marginal Structural Cox Models

4.1 Introduction

Marginal structural models (MSMs) are useful tools to make causal inference from longi-

tudinal observational studies in the presence of time-varying confounders; time-dependent

variables that predict subsequent treatment. MSMs are made upon the notion of po-

tential outcome introduced by Neyman [1923] and Rubin [1974]. The method for ob-

taining MSM estimators accounts for confounding by incorporating inverse-probability-of-

treatment-weights (IPTW) and enables to study causal relationship between exposures and

outcome. In this paper, we focus on evaluating causal effect of treatment on time to disease

occurrence in longitudinal observational studies, in the presence of confounding.

Recently, Cole et al. [2012] considered employing the case-cohort design to the MSCM

analysis as a cost-efficient approach. The case-cohort study involves two-phase sampling:

simple random sampling without replacement to form a full cohort from an infinite su-

perpopulation at phase 1, and random sampling a subcohort from the full cohort as well

as sampling all subjects who experience a predefined event (henceforth, cases) at phase 2.

Subcohort and cases will form case-cohort sample. We refer variables that are observed

from the full cohort to as phase 1 variables, and refer variables only available for the case-

cohort sample to as phase 2 variables. We can achieve cost and effort saving by restricting

collection of expensive variables based upon phase 2 subjects only. For example, high cost

associated with determination of covariate information such as CD4 counts or viral load

from biomarkers in HIV studies, or the cost associated with genotyping a large number of

subjects in genetic studies can be avoid by employing the case-cohort design.



Prentice [1986a] described a pseudo-likelihood approach for the hazard ratio parame-

ter estimation in the Cox model along with heuristic procedures for parameter estimation

when the case-cohort design is applied. Asymptotic distribution theory of the case-cohort

maximum pseudo-likelihood estimator was developed by Self and Prentice [1988] using mar-

tingale technique and finite population convergence results. Both Prentice [1986a] and Self

and Prentice [1988] do not accommodate inverse weights accounting for sampling of sub-

jects, i.e., they considered unweighted pseudo-likelihoods.

After Prentice [1986a] and Self and Prentice [1988], various methods have been pro-

posed as means of improving the efficiency of the hazard ratio estimation (compared to

Prentice [1986a] and Self and Prentice [1988]) in the standard (associational) case-cohort

Cox regression analysis. Barlow [1994] and Barlow et al. [1999] considered estimators based

on weighted pseudo-likelihood estimation. At each failure time, contribution of cases and

nonfailures (controls) at risk are weighted by either fixed or time-varying inverse-sampling-

weights (ISW) to account for subcohort sampling.

Later, methods that seek to utilize some of the phase 1 covariate information were pro-

posed. Borgan et al. [2000] considered a stratified sampling by a phase 1 variable which

is a correlate of exposure, to incorporate statum-specific ISW in the estimating equation.

Stratum-specific ISW can be calculated using empirical sampling fraction within each stra-

tum. They proposed three different estimating equations by considering different types of

weights. Simulation studies suggested that the stratified estimator II with time-varying

ISW, referred to as BII estimator from herein, is the most efficient among the existing esti-

mators. Kulich and Lin [2004] established asymptotic theory for the BII type of estimators.

In addition they proposed a new class of weighted estimators with general time-varying

ISW; doubly weighted (DW) estimator and combined doubly weighted (CDW) estimator.

The methods involve a modeling step for prediction of the values of each partially missing

phase 2 variables, and is likely of greatest use when there are only 1 or 2 such variables.

The authors suggest to use CDW estimator in practice as DW estimator is efficient only if

a model to predict the phase 2 variables given all the phase 1 variables is correct. Briefly,

the CDW estimator can be calculated through five steps:

1. Stratify by a correlate (referred to as surrogate in Kulich and Lin [2004], which is
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a part of phase 1 variable) of a phase 2 variable. Stratification can be done using

non-surrogate phase 1 variables as well, however, the stratification must incorporate

a surrogate.

2. Develop models using subcohort controls data for prediction of the phase 2 variables

and obtain estimated values of the missing phase 2 variables.

3. Evaluate time-varying ISW for all subjects.

4. Obtain BII estimator and estimate several covariance functions evaluated at the value

of BII estimator to obtain a weight matrix which will affect on efficiency of CDW

estimator.

5. Iteratively solve a proposed estimating equation with plugging-in BII estimator as an

initial value. The proposed estimating equation involves the weight matrix mentioned

above.

Numerical studies indicated that the CDW estimator is more efficient than other existing

estimators such as Chen and Lo [1999], Borgan et al. [2000], and Chen et al. [2001]. The

efficiency gain for the phase 2 covariates depends on the ability of the first-phase data to

predict the true values of the partially missing variables. Later, Breslow et al. [2009a] and

Breslow et al. [2009b] considered adjustment of ISW by calibration or estimation which

making use of phase 1 covariate information. Calibration method adjusts ISW to be as

close as possible to the sampling weights subject to a constraint that the cohort total of

V equals to its weighted sum among sampled subjects. Estimation methods uses ISW as

inverse of inclusion probabilities estimated from a logistic regression model that predicts

which cohort subjects are sampled at phase 2. Simulation study and real data analysis

reported by Breslow et al. [2009b] showed that such adjustment on ISW can dramatically

improve precision of estimation for baseline covariates effects (i.e., a part of phase 1 variables

that are known for all) on an outcome. They also showed that the methods can improve

precision of estimation for phase 2 covariates effects when there exists a strong surrogate

for the partially missing covariates.

While Barlow [1994] and Barlow et al. [1999] considered only time-varying ISW to

improve efficiency, the rest of methods seek to make better use of information that are
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available from all subjects by stratification using phase 1 variables that are correlated with

the phase 2 variables. However, aforementioned methods showed efficiency improvement

for either baseline or phase 2 hazard ratio estimation. Under a biomedical observational

study in the presence of confounding, we are in slightly different situation that we have

primary exposure (typically, treatment) which is available from all subjects but missing

confounders information at phase 2. Primary interest lies on evaluating effect of time-

varying treatment on a predefined outcome while marginal effect of phase 2 variables on the

outcome is less important. Rather, the phase 2 variable information is used to account for

confounding. Therefore, some of the methods described above may not be applicable (or

useful) to improve efficiency of hazard ratio estimation of treatment in MSCM case-cohort

analysis.

In this paper we describe how the aforementioned methods that are developed in the

standard associational context can be extended to the causal setting, and discuss why some

of the methods cannot be readily applicable to the causal setting. In addition, we propose

a new method to improve efficiency in the MSCM case-cohort analysis, which incorporates

use of all subject in the full cohort. The rest of this paper is organized as follows: In §4.2,

we describe general methods to obtain consistent and asymptotically normally distributed

MSCM estimators under both the full and the case-cohort settings [Lee et al., 2013]. In

§4.3, we demonstrate how the general methods can be combined with some of the discussed

methods in this section, and why some of the discussed methods cannot be applicable to

the causal setting. A new method to improve efficiency is discussed. In §4.4, we report the

results of our simulation studies, and illustrate the proposed methods with an example. We

finalize this paper with discussion in §4.5.

4.2 General Methods for MSCM Case-Cohort Estimators

We assume a study comprised of n different individuals indexed by i, which aims to

evaluate the effect of treatment on a time to event outcome. Capital letters will represent

random variable and lower letters will represent values of variables or constants. Subject

index i may be suppressed when there is no ambiguity. Let T be a failure time, C be a

censoring time, and ∆ = I(T ≤ C). Define observed time X = min(T,C), counting process
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N(t) = I(X ≤ t,∆ = 1), and at risk process Y (t) = I(X ≥ t). A subject whose failure time is

observed (i.e., ∆i = 1 andXi = Ti) is referred to as a case, and a censored subject (i.e., ∆i = 0

and Xi = Ci) is referred to as a control. Let A(⋅) be a p-vector of treatment process, let L(⋅)
be a p-vector of covariate process, and let V be baseline covariates which may be a part of

L(0). Consider a study conducted from time 0 to time 1 where measurements are collected at

c different times. Assume L(t) is temporally prior to A(t), i.e., decision of treatment is made

after obtaining covariate information at time t ∈ [0,1]. We use overbar notation to represent

history up to and including time t; A(t) = {A(u) ∶ 0 ≤ u ≤ t}, L(t) = {L(u) ∶ 0 ≤ u ≤ t}, etc.
Let a denote each possible static treatment plan, i.e., a = {a(t) ∶ 0 ≤ t ≤ 1}. Define Ta to be

a subject’s potential failure time had the subject been treated according to the plan a, and

C(⋅) to be a censoring process so that Ci(t) is a censoring indicator, i.e., Ci(t) = 0 means

that subject i is alive at time t and Ci(t) = 1 means that subject i is not alive at time t.

Suppose that C(t) is conditionally independent of T
a,C(1)=0 given A(t−) and L(t−). Under

the usual causal assumptions such that causal consistency, conditional exchangeability, and

positivity, we can obtain the causal effect of a function of treatment using MSCMs, which

are given by

λTa
(t) = λ0(t) exp{β′0f(a(t))}

where λTa
(t) is the hazard of failure at time t if all individuals in the population had

followed treatment plan a through time t, λ0(t) is an unspecified baseline hazard function

corresponding to the hazard if all individuals had been untreated through time t, f(a(t))
is a user-specified function of treatment history up to time t, and β0 is an unknown relative

risk parameter vector. For notational convenience, consider the following MSCMs,

λTa
(t) = λ0(t)r{β′0a(t)}, (4.1)

i.e., let us focus on the causal effect of current treatment a(t), using notation r{⋅} instead of

exp{⋅}. In the presence of confounding, we consider weight process W (⋅) the form of which

at time t is given by

W T (t) =∏
k≤t

pr[A(k)∣A(k−)]
pr[A(k)∣A(k−),L(k)] .
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Under the assumptions of conditional exchangeability and positivity, W can consistently

be estimated at any time t ∈ [0,1]. In the presence of censoring, we can further account

for the bias due to censoring via weighting a subject alive and uncensored at time t using

estimates of W T (t) ×WC(t), where

W T (t) =∏
k≤t

pr[A(k)∣A(k−),C(k−) = 0]
pr[A(k)∣A(k−),L(k),C(k−) = 0], and

WC(t) =∏
k≤t

pr[C(k) = 0∣C(k−) = 0,A(k−)]
pr[C(k) = 0∣C(k−) = 0,A(k−),L(k)] .

From now on, consider the following weight process

W (t) =W T (t) ×WC(t), (4.2)

which is referred to as inverse-probability-weights (IPWs). By further assuming the posi-

tivity on censoring, (4.2), can consistently be estimated.

With full data, β0 in (4.1) would be estimated by solving the following weighted esti-

mating equation:

UF (β) =
n

∑
i=1
∫

1

0

Wi(t)[Ai(t) −EW(1)(t, β)]dNi(t) = 0, (4.3)

which is the weighted partial likelihood score function, where for j = 0,1,2, and k = 1,2,

EW(1)(t, β) = S
(1)
W(1)
(t, β)/S(0)

W(1)
(t, β),

S
(j)
W(k)
(β, t) = n−1

n

∑
l=1

Wl(t)kYl(t)r(j){β′Al(t)},

r(j){β′Al(t)} = Al(t)⊗jr{β′0Al(t)},

and c⊗j are defined by c⊗0 = 1, c⊗1 = c, c⊗2 = cc′ for a p × 1 vector c.

Consider a set of individuals C̃ of size ñ that is randomly selected without replacement

from the full cohort of size n(≥ ñ), i.e., C̃ is a subcohort. With the case-cohort data, we

can consistently estimate β0 in (4.1) by solving either of the following weighted estimating
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equations:

Ũ(β) =
n

∑
i=1
∫

1

0

Wi(t)[Ai(t) − ẼW(1)(t, β)]dNi(t) = 0, (4.4)

U∗(β) =
n

∑
i=1
∫

1

0

Wi(t)[Ai(t) −E∗W(1)(t, β)]dNi(t) = 0 (4.5)

where for j = 0,1,2, and k = 1,2,

ẼW(1)(t, β) = S̃
(1)
W(1)
(t, β)/S̃(0)W(1)

(t, β),

E∗W(1)(t, β) = S
∗(1)
W(1)
(t, β)/S∗(0)W(1)

(t, β)

S̃
(j)
W(k)
(β, t) = ñ−1∑

l∈C̃

Wl(t)kYl(t)r(j){β′Al(t)},

S
∗(j)
W(k)
(β, t) = ñ−1 ∑

l∈C̃∪{i}

Wl(t)kYl(t)r(j){β′Al(t)}.

Asymptotic theories of the full and the case-cohort MSCM estimators obtained by solving

(4.3) - (4.5) have been established by Lee et al. [2013]. As Lee et al. [2013] have shown

that (4.4) and (4.5) are asymptotically equivalent, we mainly focus on adjusting (4.4) to

improve efficiency. Similar arguments can be made based on (4.5).

Cole et al. [2012] used (4.5) to obtain MSCM parameter estimator in simulation studies

and real data analysis. Both simulation and real data analysis results demonstrated that

the case-cohort MSCM parameter estimator is less efficient than the full cohort MSCM

parameter estimator. This is inevitable because we only makes use of partial data due to

phase 2 variables in the case-cohort analysis. In the next section, we describe how existing

methods can be extended to the MSCM case-cohort analysis and why application of some

of the methods would be limited in the causal setting. Then we propose a new method to

improve efficiency in the MSCM case-cohort analysis.

4.3 Improving Efficiency of the Estimation

Let ξ be a binary random variable that indicates the selection of a subject into the

subcohort, and α be the selection probability, i.e., pr(ξ = 1) = α, where α > 0. α is a known

probability as α = ñ/n, however, we can estimate sampling probability at each failure time
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using observed data. For example, we can use α̂(t) = ∑ñ
i=1 Yi(t)/∑n

i=1 Yi(t), i.e., number of

subcohort members who are at risk at time t divided by number of full cohort members

who are at risk at time t.

4.3.1 Time-Varying Inverse Sampling Weights

Following Barlow [1994], Barlow et al. [1999], and Borgan et al. [2000], we may improve

efficiency of the MSCM hazard ratio estimation in the case-cohort analysis by solving the

following doubly-weighted estimating equation:

ŨB(β) =
n

∑
i=1
∫

1

0

̺i(t)Wi(t)[Ai(t) − ẼBW(1)(t, β)]dNi(t) = 0, (4.6)

where

̺i(t) =∆i + (1 −∆i)ξi/α̂(t), (4.7)

ẼBW(1)(t, β) = S̃
(1)
BW(1)

(t, β)/S̃(0)
BW(1)

(t, β),

S̃
(j)
BW(k)

(β, t) = ñ−1∑
l∈C̃

̺l(t)Wl(t)kYl(t)r(j){β′Al(t)}.

(4.7) assigns weight of 1 if subject i is being a case at time t, and assigns weight of α̂(t)−1

if subject i remains a subcohort control at time t. Consider new IPWs incorporating ̺i(t),

W
†
i (t) = ̺i(t) ×Wi(t),

then (4.6) becomes (4.4) where W †
i (t) substitutes for Wi(t). Therefore, we can use the

variance estimator proposed by Lee et al. [2013] or the robust variance estimator by Lin

and Ying [1993] as both of them are shown to perform well in Lee et al. [2013]. When

subcohort size is small, the variance estimator proposed by Lee et al. [2013] is preferable.

Efficiency gain comes from using an estimated sampling probability α̂ rather than using

the known true sampling probability α at a given time [Robins, Rotnitzky and Zhao, 1994].

However, in MSCM analysis, variability coming from adding ̺ to IPWs may attenuate the

efficiency gain due to increase of bias. Simulation results reported by Barlow et al. [1999]

69



also indicated that the unweighted analysis using Prentice-type [Prentice, 1986a] likelihood

(which corresponds to (4.5) in causal context) may be preferable due to increase of bias. Our

small simulation study result in §4.4 implies that variability coming from adding another

inverse probability may attenuate efficiency.

Most literature regarding efficiency improvement in the standard case-cohort analysis

seek to make use of various types of ISWs. As described in §4.1, methods proposed by

Borgan et al. [2000]; Kulich and Lin [2004]; Breslow et al. [2009a,b] all make use of time-

varying ISWs as means of improving efficiency. Therefore, application of these method may

not useful to improve efficiency in MSCM case-cohort analysis, especially in the presence

of informative censoring (that IPW involves IPCW as well as IPTW). However, it will be

an interesting project to compare efficiencies of different MSCM case-cohort parameters

obtained based on these methods.

As previously developed methods to improve efficiency in the standard case-cohort anal-

ysis may not be advantageous in the causal setting, we propose a new method that can

improve efficiency in MSCM case-cohort analysis.

4.3.2 Imputation Method

We propose to adopt the multiple imputation (MI) method to improve efficiency in

MSCM case-cohort analysis. One strategy to handling missing data is substituting missing

values using simple imputation and treat imputed values as if they are observed. However,

single imputation does not account for the uncertainty about the predictions of missing

values and estimated variances of the parameter estimates are known to be biased toward

zero. MI replaces each missing value using a set of plausible values reflecting uncertainty of

the imputation model which leads to a valid statistical inference. MI has been recognized

as a practical and flexible method for handling missing data as it becomes widely available

in most statistical packages such as R, SAS, and STATA.

Case-cohort studies can be viewed as a special type of incomplete data, where phase 2

covariates are missing at random (MAR). Therefore, we restrict our interest in imputation

of missing phase 2 covariates, and do not consider missing treatment/outcome. Briefly

speaking, MAR assumes that probability of missingness depends only on observed data

(and is independent of unobserved part of data). This is true for the case-cohort design,
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as phase 2 covariates are missing by (i) failure status which is the observed variable, and

by (ii) subcohort inclusion/exclusion status which is determined by a random mechanism.

In this section we describe MI with MSCM case-cohort studies and present corresponding

maximum likelihood estimator. We also present asymptotic theory of MI estimator based

on two papers, by Wang and Robins [1998] and Robins and Wang [2000]. Chapter 14 of

Tsiatis [2006] is an excellent reference to study large sample theories for MI estimators in

both frequentist and Bayesian perspectives. In what follows, we consider a Bayesian type

estimator, which was referred to as Type A or proper imputation estimator in Wang and

Robins [1998] and Tsiatis [2006].

Notation First, note that A and observed time X are available in practice. Therefore,

we assume that L represents the phase 2 variables and that only L is missing (for non-

subcohort controls) in case-cohort data. Note that L is required to calculate (4.2), but not

to obtain estimator of β0 in (4.1). Let the full cohort data be denoted by Z = {Z1, ..,Zn}
where Zi is assumed iid with density fZ(z, β). Here we slightly abuse notation and Zi can

be written as Zi(1) to be consistent with the previous notation discussed in § 4.2. Let

Ri = 1 if Li(1) is observed and Ri = 0 otherwise, i.e., R denote the indicator of a complete

data (i.e., case-cohort sample inclusion indicator) which is time-invariant. Therefore, the

observed data at the end of study period t = 1 (i.e., case-cohort data) can be expressed as

{Ri,Zi; i = 1, ...n}. More generally, the observed data can be written as

{Ri,GRi
(Zi)}, i = 1, ..., n.

where GR is a known function associated with the data coarsening variable R. Hereafter, we

slightly change notation UF (β) given in (4.3), which denote the full cohort score function,

to UF (z, β). We use UF (z, β) notation for imputed full cohort score function as well. In

similar fashion, let U{Ri,GRi
(Zi), β} be the observed case-cohort score function, i.e., we

use notation U{Ri,GRi
(Zi), β} rather than Ũ(β) or U∗(β) in (4.4) or (4.5).

Assumptions We assume that time-varying confounders are continuous. There may be a

case that one of time-varying confounders is binary or categorical. In that case, we assume

that there exists continuous variable that can be mapped to the binary/categorical variable.
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We assume that a (continuous) time-varying confounder is a repeated measurement. In

particular, with a study of τ visits we assume that

Li = (Li(1), ...,Li(τ)) ∼ N(Diψ,Σi) (4.8)

where Di is the design matrix for an individual i based on all available information such

as baseline covariates, treatment history, event/censoring time, with time information for

a fitted repeated measures model. ψ is the regression coefficients and Σi is the covariance

matrix for Li which includes variance-covariance parameters for the model.

MI estimator Assuming a time-varying confounder is a repeated measurement, imple-

mentation of Bayesian MI to a (longitudinal) observational case-cohort study as follows:

We randomly sample each missing value m times from the conditional distribution

fZ ∣Ri,GRi
{z∣Ri,GRi

, ψ(j)} (4.9)

where ψ(j) itself is sampled from some distribution, say f{ψ∣Ri,GRi
}. Therefore, we first

draw ψ(j) from f{ψ∣Ri,GRi
} in the j-th imputation and then draw missing Zi from the

posterior distribution (4.9) evaluated at ψ(j). Simulation of (4.9) is easy if missing pattern

is monotone, i.e., missing Lj for individual i implies that all subsequent variables Lk, k ≥ j

are missing for that individual. In such setting imputation strategy could be flexible and one

can implement regression, propensity [Rubin, 1987], or predictive mean matching [Heitjan

and Little, 1991; Schenker and Taylor, 1996]. Monotone missing assumption is satisfied if

no case-cohort subjects miss any study visits (i.e., there is no missing for the case-cohort

subjects). This could be true if a study has small number of study visits. In our simulation

study, we assume that a time-varying confounder is measured at two consecutive time points

(or three time points if baseline is considered). We consider missing phase 2 variables for

non-subcohort controls only, and therefore we could assume monotone missing pattern (e.g.,

if Li(1) is missing then Li(2) should be missing). If missing pattern is not monotone, the

posterior distribution can be simulated using Markov chain Monte Carlo (MCMC) algorithm

[Schafer, 1997]. In MACS and WHIS studies, case-cohort subjects missed some of semi-

annual visits due to the long term follow-up periods. Therefore, we implement MCMC to
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simulate posterior distribution. All methods and algorithms are implemented in proc mi

procedure in SAS version 9.3.

Let Zij be covariate information of i-th individual in the j-th imputed full data where

j = 1, ...,m, i.e., Zij = Zi if Ri = 1 and Zij is a sampled value from posterior distribution

of the missing data if Ri = 0. Let β̂j be the solution to the j-th imputed full data score

equation:

n

∑
i=1

UF{Zij(ψ(j)), β̂j} = 0. (4.10)

Then the MI estimator based on m imputed data sets is defined by

β̂m =m
−1

m

∑
j=1

β̂j (4.11)

and corresponding variance estimator of β̂m proposed by Rubin [1987] is given by

Tm = V̄m + {1 +m−1}Bm, (4.12)

where V̄m = m
−1∑m

j=1 Vj, Vj represents standard error associated with β̂j , and Bm = (m −
1)−1∑m

j=1(β̂j − β̂m)2 with j = 1, ...,m being the imputation index. The term {1 +m−1}Bm

is associated with between-imputation variance reflecting uncertainty due to sampling vari-

ability. MI procedure based on score equation (4.10) is referred to as proper impuation

by Rubin [1987]. SAS proc mianalyze provides MI estimator (4.11) and corresponding

variance estimate (4.12).

Asymptotic Distribution of MI estimator Under the assumptions of i) proper imputa-

tion, ii) correct model specification for both imputation/analysis models, and iii) with large

samples (i.e., when n goes to infinity), Rubin [1987] (p.86) showed asymptotic distribution

of MI estimator and corresponding variance estimator in Bayesian context; i.e., he showed

asymptotic posterior distribution of β̂∞ − β0 given observed data follows mean zero normal

distribution, where β̂∞ = limm→∞ β̂m. In this paper, we present large sample frequentist

property of the Bayesian MI estimator. Results presented in this paragraph are mainly

taken from Chapter 14 of Tsiatis [2006].
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Under the same assumption as in Rubin [1987], (4.11) is consistent and asymptotically

normally distributed estimator of β0 in the sense that

n1/2(β̂m − β0)→d N(0,Tm),

where Tm is composed of information matrices evaluated at β0. In particular,

Tm =IF (β0)−1 + (m + 1
m
)IF (β0)−1{IF (β0) − I(β0)}IF (β0)−1 (4.13)

+(m + 1
m
)IF (β0)−1{IF (β0) − I(β0)}var[q{Ri,GRi

(Zi)}]{IF (β0) − I(β0)}IF (β0)−1.

where I(β) = −E[∂U{Ri,GRi
(Zi), β}/∂β′]β=β0

and IF (β) = −E[∂UF (z, β)/∂β′]β=β0
which

denote information matrices based on the observed and the (imputed) full data, respectively,

and q{Ri,GRi
(Zi)} is the influence function of initial estimator of β0 (Tsiatis [2006], p.369).

Rubin’s MI variance estimator (4.12) converges in expectation to Tm when n goes to

infinity. In addition, when m goes to infinity, (4.12) is a consistent and asymptotically

unbiased estimator of limm→∞ Tm (Tsiatis [2006], p.370-371).

Caution When we refer asymptotic properties (i.e., asymptotic bias, consistency, etc) from

herein, we assume that n goes to infinity but m can be finite unless otherwise stated.

Rubin’s variance estimator is asymptotically unbiased (i.e., converge in expectation to

its asymptotic variance) when MI is done using Bayesian approach. It is important to

distinguish this approach with frequentist approach of MI. Frequentist approach fixes ψ(j)

in (4.10) at maximum likelihood estimator of ψ, say ψ̂, and sample at random from the

conditional distribution fZ ∣Ri,GRi
{z∣Ri,GRi

, ψ̂} to obtain random quantities Zij , j = 1, ...,m.

This approach was referred to as improper imputation by Rubin. Bayesian MI introduces

additional variability coming from sampling ψ(j) from its posterior distribution at each

imputation and is less efficient than frequentist MI approach. Therefore, Rubin’s variance

estimator will be biased when missing data is filled by improper imputation. Wang and

Robins [1998] and Robins and Wang [2000] showed asymptotic distribution theories of im-

proper imputation estimators and described estimation of asymptotic variance. Although

frequentist MI is more efficient approach with finite m, no statistical packages or built-in

procedures are available to obtain variance estimator of the MI estimator. In addition,
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application of Wang and Robins [1998] or Robins and Wang [2000] on longitudinal study

data requires calculation of score function with respect to the variance-covariance param-

eters associated with repeated measurements to evaluate influence function. This involves

highly complex analytic form when repeated measurement is considered. As difference be-

tween frequentist and Bayesian asymptotic variance disappears as m goes to infinity we

recommend implementing Bayesian MI approach with as big m as software and computing

time allows. Chapter 14 (p.366- 369) of Tsiatis [2006] is a great reference to see asymptotic

property of Rubin’s variance estimator (4.12) and to see it compared to that of frequentist

MI estimator.

Rubin [1987] stated that it is important to include all variables that are likely to be used

in final analysis model (which is in this case, MSCM); leaving out some variables that are

believed to be weak predictors implies that (we are certain that) those variables have no

relation with the missing data. In MSCM MI analysis, we know that variables associated

with time-to-event outcome (such as baseline covariates, treatment status, and confounders

themselves) induce the missing data. Therefore, we include all available information that are

used to model to calculate IPW and used in MSCM when imputation model is considered.

As MI requires a correct imputation model specification Rubin [1987], sensitivity analysis

for different model specifications or different imputation methods might be of interest to

check the model assumption. Regression and MCMC methods discussed above assume

multivariate normality (4.8). However, it is known that inference based on MI can be

robust to departure from the assumption when missing fraction is not large [Schafer, 1997].

Therefore, departure from (4.8) assumption may be ignorable with high subcohort fraction.

4.4 Results

Below, we present simulation study and real data analysis results.

4.4.1 Simulation Studies

First, we show a small simulation study result based on doubly-weighted method using

time-varying ISW, (4.6), in Table 4.1. Performance of the estimator based on (4.6) was

compared to Lee et al. [2013]’s estimator which is based on estimating equation (4.4). As
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W † is still predictable, variance formula proposed in Lee et al. [2013] was employed to

calculate standard error.

To compare performance of doubly-weighted estimator and Lee et al. [2013]’s estimator,

we adopt the same simulation setting as in Cole et al. [2012], except censoring mechanism.

Cole et al. [2012] generated censoring times according to administrative censoring mech-

anism, while we generated censorings from uniform distributions with support chosen to

achieve the desired event rates. For details of the simulation setting, see Cole et al. [2012].

Briefly, we generated potential survival times when never exposed to treatment T∞, when

treated from baseline T0, and when treated from t1, Tt1 , by following Cole et al. [2012], with

baseline hazard being 1 and t1 being 0.1, for cohorts of size n = 1,000. Then we generated

baseline treatment status, say A0, from Bernoulli(1/3). Then two time varying confounders,

say L1 and L2 were generated; L1 was generated from Bernoulli with probability dependent

on A0 and T∞ where marginal probability equals 0.5. A second time-varying confounder

was generated from standard normal distribution dependent on A0 and T∞. Note that, L1

is a binary and L2 is continuous variable respectively. Finally, we generated a time-varying

exposure at time t1 = 0.1, say A3, from Bernoulli with probability dependent on L1 and L2,

where marginal probability equals 0.5, for the two-thirds of subjects who were unexposed

at baseline.

We set event rate to be 20% and randomly sampled 20% of subjects to form a subcohort.

We generated 200 datasets under the null β0 = 0 and the alternative β0 = log(1/2) ≈ −0.693;
β denotes the treatment effect parameter. Table 4.1 shows that the doubly-weighted es-

timating equation worsened the efficiency compared to (4.4). ESEs under the null and

the alternative were bigger than those based on (4.4), and MSEs were bigger as well. As

mentioned in §4.3.1, the simulation result may imply that variability coming from adding

another inverse probability may attenuate efficiency in MSCM case-cohort analysis.

To see performance of the proposed MI estimator (4.11), we considered several different

scenarios by varying subcohort fraction 10, 20, and 30%, and event rates from 10, 15, 20,

and 25%. At each scenario, we generated 1,000 datasets under the null β0 = 0 and the

alternative β0 = log(1/2).
In this simulation we combined simulation settings in Cole et al. [2012] and Moodie et al.

[2008]. Moodie et al. [2008] compared different methods to handle missing exposure data
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Table 4.1: Simulation studies to compare performance of estimators

Null Bias ASE ESE MSE Cover Power

(4.4) -0.029 0.236 0.206 0.056 0.975 0.020
(4.6) -0.032 0.253 0.217 0.065 0.970 0.025

Alternative

(4.4) -0.044 0.236 0.236 0.057 0.955 0.880
(4.6) -0.099 0.250 0.23 0.072 0.940 0.895

Simulation studies to compare performance of estimators based on (4.6) with (4.4) when
event rate and subcohort fraction equaled to 20%. Bias denotes the empirical bias of the
different estimators based on (4.6) and (4.4). ASE denotes average of estimated standard
errors. ESE denotes the empirical standard errors (i.e., average standard error of the

estimators). MSE denotes the mean squared error calculated by {Bias2 +ASE2}. Cover
denotes the empirical coverage of 95% Wald-type confidence intervals using Lee et al.
[2013]’s variance estimator. Size/power denotes the proportion of simulated data sets

where the hypothesis β0 = 0 was rejected.

in marginal structural models, which is different missing data type than what we consider

in this article. Potential survival times T∞, T0, and Tt1 were generated as described above

with baseline hazard set to be 1 and t1 set to be 0.1, for cohorts of size n = 1,000. Then we

generated time-varying confounders and time-varying treatment by mimicking Cole et al.

[2012] and Moodie et al. [2008]. A baseline covariate, say L0, was drawn from Normal(3,

1) and a first time-varying confounder L1 was drawn from Normal(10, 1). Then treatment

status at time 0 (A0) was generated from Bernoulli with probability dependent on L1 where

marginal probability equals 1/3. A second time-varying confounder L2 was drawn from

Normal(L1 + β0A0, 1). Treatment status at time 1 (A1) was generated from Bernoulli with

probability dependent on L2 and A0, where marginal probability equals 0.5, for the two-

thirds of subjects who were unexposed at baseline. Censoring times were from uniform

distributions. For more details about the simulation setting, see Cole et al. [2012] and

Moodie et al. [2008].

We assumed that A0 and A1 were available from all subjects in the study. To impute

missing phase 2 covariates L1 and L2 for non-subcohort controls, we used all available in-

formation L0,A0,A1, and observed time X from subcohort controls. We choose small m

(m = 5) because we considered 15 different scenarios which required us extensive computa-

tion time. However in the real data analysis, we considered number of imputation m = 100.

All MI analyses were done using proc mi and mianalyze procedures in SAS 9.3.

Table 4.2 - 4.4 show simulation results when subcohort sampling rates range from 10 to
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30%. Numerical studies indicate that the proposed method can improve efficiency compared

to Cole et al. [2012]. Empirical standard errors obtained by MI analysis are smaller than

those of the case-cohort analysis and are close to those of the full cohort analysis in all

scenarios. Bias based on MI are sometimes bigger than the case-cohort analysis, especially

when event rate is relatively high (e.g., see bias when subcohort fraction is 10 or 20%

and event rate 25%). Nonetheless, MSE values indicate that increase of bias are offset

by efficiency gain. All three analysis methods exhibit correct coverage and power in all

settings. Due to the efficiency gain, MI analysis is more powerful than the case-cohort and

is as powerful as the full analysis.

4.4.2 Real Data Analysis

Study Cohort

We applied the proposed imputation method to a (combined) dataset comprised of

HIV positive patient collected from the Multicenter AIDS Cohort Study (MACS) and the

Women’s Interagency HIV study(WIHS). The full cohort data analysis is consistent with

that of Cole et al. [2012]. Readers who are interested in detailed information about study

cohort is referred to Cole et al. [2012]. Briefly, participants in both studies were followed-up

approximately every 6 months. While average years of follow-up was approximately 8 years,

maximum years of follow-up was 12 years and thus maximum number of visits was 24. At

each semiannual study visit, participants went through a physical examination, provided a

blood sample, and completed a questionnaire about use of antiretroviral therapy, etc.

In the real data analysis, we aimed to estimate the effect of highly active antiretroviral

therapy (HAART) initiation with acquired immunodeficiency syndrome (AIDS) incidence

or death while adjusting for (confounding) effects of CD4 counts and HIV-1 RNA viral

loads. To this end, we constructed a full cohort from the MACS and WIHS data which

includes 950 HIV-1-seropositive men and women who were alive and not using antiretroviral

therapies in April 1995 (because the first highly active regimen was approved on December

6, 1995). There were 211 incident AIDS or death (henceforth cases, 22%) in the full cohort.

We selected a 20% random sample without replacement from the full cohort size of 950 using

the same seed number as in Cole et al. [2012]. Among the 190 subcohort subjects, there

were 47 cases (25%). The case-cohort consisted of 354 subjects, defined by 190 subcohort

78



Table 4.2: Simulation studies to compare performance of estimators when α = .1

Null Subcohort Event Bias ASE ESE MSE Cover Size/
fraction (%) rate (%) Bias Power

Full 10 10 -0.004 0.212 0.218 0.045 0.949 0.051
Imputation -0.003 0.213 0.219 0.045 0.952 0.058
Case-Cohort -0.021 0.291 0.294 0.085 0.948 0.052

15 -0.002 0.170 0.173 0.029 0.945 0.055
-0.001 0.172 0.173 0.030 0.947 0.053
-0.011 0.257 0.254 0.066 0.954 0.046

20 -0.002 0.146 0.146 0.021 0.956 0.044
0.000 0.148 0.146 0.022 0.957 0.043
-0.006 0.242 0.239 0.059 0.952 0.048

25 -0.002 0.130 0.129 0.017 0.961 0.039
0.001 0.133 0.129 0.018 0.963 0.037
-0.003 0.235 0.235 0.055 0.948 0.052

Alternative

Full 10 10 -0.020 0.239 0.249 0.058 0.954 0.873
Imputation -0.019 0.240 0.250 0.058 0.952 0.868
Case-Cohort -0.024 0.307 0.319 0.095 0.946 0.640

15 -0.017 0.185 0.189 0.035 0.945 0.977
-0.014 0.188 0.190 0.035 0.952 0.971
-0.013 0.266 0.269 0.071 0.953 0.749

20 -0.014 0.156 0.159 0.024 0.948 0.993
-0.010 0.159 0.160 0.025 0.952 0.991
-0.006 0.249 0.250 0.062 0.959 0.799

25 -0.013 0.137 0.140 0.019 0.949 0.999
-0.010 0.140 0.140 0.020 0.951 0.997
-0.004 0.241 0.240 0.058 0.950 0.819

Simulation studies to compare performance of estimators based on full cohort score
equation (4.3), multiple imputation, and case-cohort score equation (4.5) when subcohort
fraction equals 10%. Bias denotes the empirical bias of the different estimators of β0. ASE
denotes average estimated standard error. ESE denotes the empirical standard errors,

which is defined by standard deviations of 1,000 log hazard ratio estimates. MSE denotes
the mean squared error calculated by {Bias2 +ESE2}. Cover denotes the empirical
coverage of 95% Wald-type confidence intervals using the robust variance estimator.

Size/power denotes the proportion of simulated data sets where the hypothesis β0 = 0 was
rejected.
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Table 4.3: Simulation studies to compare performance of estimators when α = .2

Null Subcohort Event rate Bias ASE ESE MSE Cover Power

Full 20 10 -0.011 0.207 0.217 0.043 0.954 0.046
Imputation -0.010 0.207 0.217 0.043 0.952 0.048
Case-Cohort -0.020 0.246 0.269 0.061 0.916 0.084

15 -0.013 0.171 0.174 0.029 0.948 0.052
-0.012 0.171 0.174 0.029 0.948 0.052
-0.020 0.214 0.224 0.046 0.928 0.072

20 -0.012 0.146 0.142 0.021 0.960 0.040
-0.011 0.147 0.142 0.022 0.958 0.042
-0.008 0.195 0.193 0.038 0.956 0.044

25 -0.010 0.130 0.127 0.017 0.964 0.036
-0.009 0.131 0.127 0.017 0.966 0.034
-0.015 0.185 0.188 0.034 0.942 0.058

Alternative

Full 20 10 -0.006 0.230 0.232 0.053 0.946 0.886
Imputation -0.006 0.231 0.232 0.053 0.948 0.878
Case-Cohort -0.013 0.264 0.249 0.070 0.964 0.806

15 -0.002 0.185 0.190 0.034 0.946 0.974
-0.001 0.186 0.190 0.034 0.944 0.972
-0.005 0.225 0.215 0.050 0.960 0.904

20 0.012 0.155 0.156 0.024 0.946 0.988
0.013 0.156 0.156 0.025 0.948 0.988
0.011 0.202 0.194 0.041 0.966 0.944

25 0.008 0.136 0.143 0.019 0.946 1
0.010 0.137 0.143 0.019 0.950 1
0.009 0.190 0.187 0.036 0.954 0.962

Simulation studies to compare performance of estimators based on full cohort score
equation (4.3), multiple imputation, and case-cohort score equation (4.5) when subcohort

fraction equals 20%.
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Table 4.4: Simulation studies to compare performance of estimators when α = .3

Null Subcohort Event rate Bias ASE ESE MSE Cover Power

Full 30 10 -0.004 0.212 0.218 0.045 0.949 0.051
Imputation -0.004 0.212 0.219 0.045 0.948 0.052
Case-Cohort -0.005 0.235 0.243 0.055 0.947 0.053

15 -0.002 0.170 0.173 0.029 0.945 0.055
-0.002 0.171 0.173 0.029 0.946 0.054
-0.002 0.197 0.197 0.039 0.942 0.058

20 -0.002 0.146 0.146 0.021 0.956 0.044
-0.001 0.146 0.146 0.021 0.958 0.042
0.000 0.176 0.175 0.031 0.958 0.042

25 -0.002 0.130 0.129 0.017 0.961 0.039
-0.001 0.130 0.129 0.017 0.963 0.037
0.001 0.164 0.161 0.027 0.965 0.035

Alternative

Full 30 10 -0.020 0.239 0.249 0.058 0.954 0.873
Imputation -0.020 0.239 0.249 0.058 0.956 0.873
Case-Cohort -0.024 0.259 0.270 0.067 0.945 0.810

15 -0.017 0.185 0.189 0.035 0.945 0.977
-0.017 0.186 0.189 0.035 0.949 0.977
-0.017 0.209 0.214 0.549 0.948 0.928

20 -0.014 0.156 0.159 0.024 0.948 0.993
-0.013 0.156 0.159 0.025 0.951 0.993
-0.014 0.185 0.189 0.034 0.949 0.968

25 -0.013 0.137 0.140 0.019 0.949 0.999
-0.012 0.137 0.140 0.019 0.951 0.999
-0.013 0.170 0.172 0.029 0.951 0.985

Simulation studies to compare performance of estimators based on full cohort score
equation (4.3), multiple imputation, and case-cohort score equation (4.5) when subcohort

fraction equals 30%.
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subjects plus the 164 cases that were not selected in the subcohort. The outcome of interest

was time to AIDS or death from any cause and the time-varying confounders were CD4

counts and HIV-1 RNA viral loads. Full cohort data included 9,172 person-visit records

in total and case-cohort collected about 32% of the full cohort data (2,911 person-visit

records), which lead to impute about 68% (6,261) of missing CD4 and viral load records

along the course of study.

In the MI analysis, missing CD4 and viral load information for non-subcohort controls

was imputed 100 times using proc mi procedure in SAS 9.3. As in simulation studies, we

only used subcohort controls to build the posterior predictive distribution of missing data.

We assumed that baseline CD4 or viral load information was available from all subjects, and

used all available information such as treatment history (ever exposed to ART (yes/no)),

gender, race, age (at study entry), and CD4 and viral load at baseline in MI analysis. Results

based on m = 100 imputation results were summarized by proc mianalyze procedure in

SAS 9.3, which makes use of Rubin’s variance formula (4.12).

As a sensitivity analysis, we randomly selected subcohort 100 times by varying seed

number from 1 to 100 using SAS 9.3. In this analysis, we aimed to account for sampling

variability of subcohort in addition to checking against the robustness of the MI and the

case-cohort analyses.

Results

Full cohort subjects characteristic is the same as in Cole et al. [2012] as we used the

same dataset. The dataset consists of 61% women, 59% African American. The mean age

of the full cohort participants at study entry was 39 years with standard deviation (SD)

of 8, a CD4 cell count of 498 cells/mm3 with SD of 279, and a log of HIV-1 RNA level

(henceforth log of viral load) of 4.5 copies/mL with SD of 0.7 for detectable viral load

values; there were 26% of missing in viral load values. The subcohort subjects had similar

baseline characteristics at study entry (Table 4.5).

The full cohort analysis result is consistent with the previously reported result of Cole

et al. [2012]. The inverse probability weighted hazard ratio for incident of AIDS or death

was 0.41, with 95% confidence interval (CI) (0.26, 0.65). Standard error for log hazard

ratio obtained by using the robust standard error was 0.23. In the MI analysis with 100
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Table 4.5: Baseline characteristics of the full and the 50% subcohort subjects

Baseline Characteristic cohort (n=950) Subcohort (n=475)
% Mean (SD) No. % Mean (SD) No.

Mean age (years) 39 (8) 39 (8)
Female sex 61 578 58 111
African-American race 59 560 59 113
Mean CD4 cell 498 (279) 500 (260)
(no. of cells/mm3)
Mean log10viral load 4.5 (0.7) 3.9 (1.1)
(no. of copies/mL)

Baseline characteristics of the full and the 50% subcohort participants at study entry.

Table 4.6: Full cohort, 20% subcohort with MI, and case-cohort MSCM analyses

Analysis Hazard Ratio 95% Confidence Interval (CI) Standard Error (SE)

Full Cohort 0.41 0.26, 0.65 0.23
MI 0.48 0.30, 0.78 0.24

Case-Cohort 0.47 0.26, 0.83 0.29

Full cohort, 20% subcohort with MI, and case-cohort MSCM analyses of the causal effect
of HAART initiation and incident AIDS or death among 950 men and women infected

with HIV type 1 in the MACS and WIHS study, 1996-2007.

imputations, estimated hazard ratio was 0.48 with 95% CI (0.30, 0.78) and standard error

of the log hazard ratio was 0.24; increase of standard error compared to the full cohort

analysis was only 0.01, and width of the CI was slightly wider than that of the full cohort

analysis (0.48 compared to 0.39). Estimated hazard ratio using the case-cohort analysis was

0.47, with standard error of the log hazard ratio 0.29. Compared to the full cohort analysis,

increase in standard error of the case-cohort analysis was 0.07, and width of 95% CI was

0.57, which is about 1.5 times and 1.24 times wider than those of the full cohort and the

MI analyses. As expected, analysis results for the MI MSCM analysis recovered much of

the precision lost in the case-cohort analysis.

Table 4.7 shows sensitivity analysis of MI and the case-cohort analyses results using

100 randomly selected (20%) subcohorts. Reported estimates for case-cohort and for im-

putation analyses are averaged estimates. Considering full cohort result a gold standard,

estimated hazard ratios based on imputation method and case-cohort analyses are slightly

biased. Standard error based on the MI analysis with 100 imputations was about 1.21 times

(0.29/0.24) smaller than that of the case-cohort analysis, yielding 1.27 times narrower 95%

CI. Difference in standard errors of the full cohort and the MI analyses is only 0.1. Results
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Table 4.7: Sensitivity analysis of case-cohort and multiple imputation

Analysis Hazard Ratio 95% Confidence Interval (CI) Standard Error (SE)

Full Cohort 0.41 0.26, 0.65 0.23
MI 0.50 0.32, 0.81 0.24

Case-Cohort 0.50 0.28, 0.90 0.30

Sensitivity analysis of case-cohort and multiple imputation (with 100 imputation) based
on 100 random subcohorts sampled by varying seed number 1 to 100 in SAS. CI denote
95% Wald confidence interval. Standard error for multiple imputation was calculated

based on Rubin’s formula (1987) through MI analyze procedure in SAS.

in Table 4.7 implies that we could recover much of the precision lost from the case-cohort

sampling by implementing the MI method.

4.5 Discussion

The proposed method is valid for a special type of primary exposure such that it can

readily be obtained from existing study data repository. When treatment is the primary

exposure, treatment assignment status or level of the treatment information given to a par-

ticipant can be obtained with relatively less much cost and efforts than expensive covariate

information. However, the proposed method is not suitable for studies in the presence of

missing primary exposure in addition to phase 2 variables. For example, consider a study

that aims to evaluate genetic variant on time to event response. One cannot readily obtain

the genetic information from repository as much cost is required to validate the genetic

information from the blood sample.

The proposed method aims to utilize information on all subjects in the estimating equa-

tion, and therefore it seeks to fill in missing IPWs for non-subcohort controls by imputing

missing phase 2 covariates. Intuitively, this method is valid as the subcohort is selected

at random from the full cohort; the phase 2 variables are missing completely at random.

Therefore, estimated values of partially missing covariates based on the random sample of

the full cohort should not deviate too much from the true values if (1) the sampling was

truly done in random fashion, and (2) imputation model is a correct model when parametric

model is used, or nonparamteric estimation is used. Simulation results indicated that para-

metric methods to estimate missing phase 2 variables can easily fail to improve efficiency

when phase 2 variables are continuous.
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The imputation method differs from the previously developed methods (in the standard

associational context) which seek to utilize information available from the full cohort. In

addition, we seek to make use of all subjects in the estimating estimation to improve effi-

ciency in the case-cohort analysis. We do not require separate surrogate measurements of

phase 2 variables as in Borgan et al. [2000]; Kulich and Lin [2004]; Breslow et al. [2009a,b],

but time-varying confouders themselves can serve as surrogates (e.g., baseline CD4 or viral

load can serve as surrogate of the following CD4 or viral load information).

The proposed estimator would be more efficient than estimators based on (4.4) or (4.5),

because we use all subjects in the estimation step. Further, it could sometimes be more

efficient than the full cohort estimator if imputed values are less variable than the true

values (this is possible in some range of covariates). Nonetheless, bias would become bigger

in such cases so MSE compared to the full cohort analysis would be larger.
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Chapter 5

Summary and Future Research

In summary, we considered estimating the causal hazard ratios of MSCMs via inverse

probability weighting in full cohort and the case-cohort studies. We established asymp-

totic theories for estimators that maximize corresponding WPPLs under certain regularity

conditions, via martingale and counting process formulation. In addition we proposed new

variance estimators which could be more accurate than the robust variance estimators when

sample size is small. Framing the problem using standard counting process and martingale

theory readily enables practical implementation of the methods using existing survival anal-

ysis software. However, implementing MSCM for the case-cohort design was shown to be

not fully efficient. Therefore, we explored an imputation method that could lead to more

efficient inference in the case-cohort MSCM analysis.

As we framed the problem of estimating the causal hazard ratios of MSCMs using

counting processes and martingales, we may consider fitting MSCMs to data from nested

case-control studies or in the presence of competing risks as next projects. Also, researchers

have found that a main challenge of implementing MSMs in practice is difficulty in esti-

mating inverse probability weights [Cole and Hernán, 2008; Howe et al., 2011; Kang and

Schafer, 2007; Lefebvre, Delaney and Platt, 2008; Mortimer et al., 2005]. It has been shown

that results of using MSMs via inverse-probability-weighting could be highly sensitive to

model misspecification of treatment assignment model, when even number of study visits

is moderate. Therefore, doubly-robust-estimation of the causal hazard ratio of MSCMs in

the presence of case-cohort sampling, or combining covariate balancing propensity score

method proposed by Imai and Ratkovic [2014] in the inverse-probability-weighted estima-

tion of MSCM hazard ratio could be a topic of future work.
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