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ABSTRACT 

 

 

 

Secondary Organic Aerosol (SOA) Formation from Monoterpene Ozonolysis in the Presence of 
Inorganic Aerosols: Acid effects on SOA yields 

 

 

Traditionally SOA formation has been predicted using a thermodynamic partitioning theory 

which does not take into consideration the presence of inorganic aerosols although SOA mass has 

been shown to be affected by the presence inorganic acidic aerosols.  Acid particles are able to 

catalyze the formation of higher molecular weight structures within SOA and alter the 

thermodynamic partitioning equilibrium. The equilibrium is reestablished when additional mass 

partitions the aerosols increasing the particulate mass formed.   

 The effects of preexisting acidic particles on the SOA formation of a series of biogenic 

precursor gases has been investigated experimentally using an indoor smog chamber and modeled 

using mathematical models describing the gas, and particle phase chemistry.  The model predicts the 

total SOA mass and the fraction of heterogeneous acid-catalyzed aerosol mass formed.  The effect of 

varying acidity and relative humidity on the heterogeneous acid-catalyzed aerosol mass produced is 

also captured.  Thermal gravimetric analysis was used to quantify the fraction of heterogeneous acid 

catalyzed aerosol mass in SOA, and to evaluate model predictions.  The developed model more 

accurately describes the SOA formation process as it occurs in the ambient atmosphere by including 

the influence of inorganic aerosols.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Environmental and Health Effects of PM2.5  

 Air pollution is composed 

of both gas phase and particle 

phase components which can pose 

health risks for humans.  The risks 

linked to particles in particular, 

have been linked to concentration, 

composition, and particle size 

through epidemiological studies 

(Pope  et al. 2004; Laden  et al. 

2000).  Due to the deleterious 

health effects of air pollution the United States Environmental Protection Agency (USEPA) regulates 

ambient concentrations of six criteria pollutants including particulate matter (PM).   

 Particulate matter in the ambient atmosphere is divided into two size modes, particulate 

matter with diameters less than 2.5µm (PM2.5) and particulate matter with diameters less than 10µm 

(PM10).  PM2.5, the fine mode of particulate matter, has been found to have very serious health 

effects which are directly related to size. Fine particulate matter is able to transverse the bends in the 

upper airway and able to deposit deep into the lungs, while the coarse mode (PM10) typically impacts 

at the back of the nasal passage and is cleared through the mucocilliary elevator.  The ability of 

PM2.5 to deposit into the deep lungs increases its ability to cause damage.  PM2.5 has been shown to 

increase the incidences of bronchitis, asthma, decreased lung function and other respiratory illnesses 

27%

3%
13%1%

5%

39%

4%
8%

Ammonium nitrate Earth's Crust
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Oil Combustion Marine and Industrial Salts
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as well as increased risk to both morbidity and mortality (Laden et al. 2000; Neuberger et al. 2004; 

Pope et al. 2004).   

 Beyond health risks, particulate matter also affects environmental conditions such as 

visibility, cloud condensation nuclei, and radiative forcing.  PM is able to alter the light and solar 

radiation which reaches the Earth’s surface (Kogan et al.1997; Schulz et al. 2007).  The ability of PM 

to absorb and reflect solar radiation alters the radiative forcing of the earth which may have 

consequences for global climate change.  The fine portion of PM may also act as cloud condensation 

nuclei, enhancing cloud formation (Fitzgerald and Spyers-Duran 1973).  Cloud formation can also 

indirectly affect radiative forcing as clouds reflect solar radiation (Ghan and Easter 2007; Kaufman 

2007).  Both the health and environmental effects of particulate matter are rationales for the USEPA 

regulations of ambient PM2.5.   

1.1.2 Sources of PM2.5 

 Regulating concentrations of PM2.5 is harder than simply controlling emissions.  Particulates 

are emitted directly into the atmosphere and formed in the atmosphere through secondary processes.  

Primary sources of particulate matter include emissions of organic and elemental carbon particulate 

from coal fired power plants, and automobile exhausts.  Figure 1.1 contains the results from a source 

apportionment study of primary PM2.5 in Charlotte, NC (Office of Air Quality Planning and 

Standards Emissions, Monitoring, and Analysis Division USEPA). Coal combustion and mobile 

sources are the two largest sources followed by oil combustion which is indicative of industrial 

processing.   

 Many of the sources responsible for emitting primary particulate matter also emit volatile 

organic carbon gases (VOCs), which have the ability to react in the atmosphere with photo 

chemically produced oxidants such as hydroxyl radicals (OH·) and nitrogen oxide (NO) as well as 

ozone (O3).  The products of these gas phase reactions have lower vapor pressures than the original 

precursor VOCs providing them the ability to be present in both the gas and particle phase through 

thermodynamic partitioning.   When oxidized products partition to the particle phase or self-nucleate 
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the aerosol mass is called secondary organic aerosols (SOA).   Sources of VOCs are not limited to 

anthropogenic processes such as those named above but also include biogenic sources.  Biogenic 

VOCs are emitted from vegetation and are comprised of several classes including isoprene (C5H10), 

monoterpenes (C10H16), sesquiterpenes (C15H24) and oxygenated terpenes (e.g., C10H18O, C10H12O).  

The average total mixing ratio of ambient terpenes has been measured to be as high as 0.5 ppm 

(Sakulyanontvittaya, 2007). Of the biogenic VOCs the monoterpenes are largest contributors to 

atmospheric concentrations of SOA.  Lathiere et al. (2006) estimated the total monoterpene emissions 

to be approximately 117 Tg of carbon per year which is ~16% of the total biogenic emissions.  The 

monoterpenes include Δ3-carene, d-limonene, myrcene, α-pinene, β-pinene, sabinene, camphene, β-

phellandrene, α-thujene, terpinolene, α-terpinene, γ-terpinene, ρ-cymene, and ocimene.  The structure 

of the terpene varies by plant species, as does the emission rates.  The atmospheric concentrations and 

the subsequent aerosol yields also vary by terpene.  

 Ambient aerosols are composed of both anthropogenic and biogenically derived SOA, 

primary particulates as well as inorganic compounds and elemental components.  Figures 1.2a and 

1.2b provide a chemical characterization of ambient aerosols collected from Queens, NY (Drewnick 

et al. 2004) and Houston, TX (Russell et al. 2004) respectively. The aerosol characterizations 

highlight the significant concentrations of both organic carbon and inorganic species in both cities.  

Although aerosol compositions vary from city to city the relative concentrations of organic carbon to 

inorganic compounds is expected to be similar.  The organic fraction of ambient aerosols is composed 

of both biogenic and anthropogenic fractions.  Measuring the biogenic fraction of ambient aerosols is 

vital because natural sources create the background concentrations of ambient particulate matter and 

can influence anthropogenic PM regulations.  Carbon dating techniques have been used to deduce the 

fraction of biogenic SOA from the total organic mass of ambient aerosols.  Anthropogenic carbon has 

an older carbon date than biogenic carbon.  In Zurich, during the summer when biogenic emissions 

are at a maximum, Szidat et al. (2006) determined the biogenic fraction of aerosols with an maximum 
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aerodynamic diameter of 10μm (PM10) to be as much as 60% while fossil fuels contributed 30% of 

the organic carbon fraction throughout the year.  Lewis et al. (2004) reported that 60-71% of the 

PM2.5 organic fraction of ambient aerosols collected near Nashville, TN during a summer 

investigation was of biogenic origin.  Such large fractions of biogenic carbon present in ambient 

aerosols indicate the importance of biogenic VOCs in modeling atmospheric organic aerosols in both 

urban and remote areas.  

29.6%
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1.1.2.1 SOA Formation from Thermodynamic Partitioning 

 The oxidized products from both biogenic and anthropogenic VOCs both partition to pre-

existing aerosols and also self nucleate.  Partitioning is a thermodynamically governed process which 

determines how much of a gas phase compound becomes incorporated into a liquid aerosol phase.  

The equilibrium is described by an absorptive thermodynamic partitioning coefficient (Kom,i) derived 

by Pankow (1994).  Equation 1.1 provides a mathematical description of the expected ratio of gas 

phase to aerosol phase concentrations.   

 
gas

aerosol

L
i

om
i

om

om
iom C

C
pMW

RTf
K ==

09, 10
501.7

γ
  (m3/μg)  (1.1) 

R is the ideal gas phase constant (8.314 J/mol K), T is the temperature, fom is the fraction of organic 

matter present in the aerosol, MWom is the average molecular weight of the aerosol phase organic 

matter, iγom is the activity coefficient of the organic phase and ipo
L is the saturated vapor pressure of 

Figure 1.2b, Average daily PM2.5 aerosol 
composition in Houston TX Russell et al, 2004.   

Figure1.2a, Average daily PM2.5 aerosol 
composition in Queens, NY Drewnick et al, 
2004a.   
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compound i. The absorptive partitioning coefficient is inversely proportional to the saturated vapor 

pressure of the compound of interest.  Thus compounds with high vapor pressures have smaller 

partitioning coefficients, and compounds with lower vapor pressures have higher partitioning 

coefficients. 

 Thermodynamic partitioning theory describes the absorption of a molecule into a liquid 

particle, and assumes that once a product partitions it remains as a monomer and no further reactions 

occur in the particle phase.  The assumption of no further reactions has been used to model the 

formation of ambient SOA mass (Chen and Griffin 2005; Griffin et al. 2005; Jenkin 2004; Pun et al. 

2002).  Atmospheric particulate models are used by the USEPA to be able to estimate how changes to 

emission regulations will affect the ambient aerosol load, with the goal of improving human health.  

One flaw in the sole use of thermodynamic partitioning to describe aerosol formation is that it 

excludes formation of SOA mass from other processes, which may cause underestimations, as well as 

failure to properly identify possible trends leading to increased aerosol mass.  Particle phase reactions 

have been shown to be an additional process leading to SOA mass formation.  Recent studies our lab 

(Jang et al. 2002; Jang et al. 2003; Jang et al. 2004; Northcross and Jang 2007), have shown that the 

concentration of aerosol mass formed through secondary processes is affected by the presence of 

inorganic aerosols.  A better understanding of the processes occurring in mixed aerosols will allow 

atmospheric aerosol models to predict aerosol formation under conditions similar which are more 

representative of atmospheric conditions.      

1.1.2.2 SOA Formation from Heterogeneous Reactions 

 Particle phase reactions have been hypothesized to occur through the carbonyl structures 

present on many of the organic oxidized products which partition to aerosols.  Particle phase reactions 

have been shown to form oligomers (Kalberer et al.2004 ;Tolocka et al. 2004) and organic sulfates 

(Iinuma et al. 2007; Liggio and Li 2006; Romero and Oehme 2005; Surratt et al. 2007).   The 

formation of organic sulfates within atmospheric aerosols is a very new discovery; quantification and 

formation process are still being determined, organic sulfates are not considered in the research 
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presented here.  Examples of the particle phase reactions responsible for oligomer formation may 

consist of but may not be limited to hydration, acetal/hemi-acetal formation, trioxane formation, adol 

condensation, and oligomer formation.  The products have many names in the literature (humic like 

substances (HULIS), oligomers, polymers, and high MW structures); however they, all refer to the 

same processes and will be called oligomers in this work. 

 Particle phase reactions are catalyzed by the presence of inorganic acidity.  Under acidic 

conditions free protons are able to protonate carbonyl species.  Protonated carbonyls react more 

readily with hydrates, unprotonated carbonyls, water, and alcohols than carbonyls in their 

unprotonated form.  Thus, acid acts as a catalyst and increases oligomer formation and SOA yields.  

Figure 1.3 shows hypothesized mechanisms for acid catalyzed heterogeneous reactions. Once organic 

carbonyls are transformed by particle phase reactions the previously formed thermodynamic 

equilibrium established between the aerosol and the gas phase is disturbed.  Thus, the oxidized 

products continue to partition to the 

aerosol to compensate for the disturbance 

to the equilibrium aerosol concentrations.  

This process does not occur indefinitely.  

Increased oligomer formation changes 

the aerosol phase from a liquid phase to a 

more solid-like aerosol.  The physical 

changes in aerosol affect the partitioning 

coefficient by altering the solubility of 

partitioning organics, and increasing the 

average molecular weight of the aerosol 

media.   
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Also, the formation of organic sulfate may lower the particle acidity also reducing oligomer 

formation. 

 It is important to note that oligomers are not formed exclusively in SOA created in the 

presence of inorganic aerosols.  Kalberer et al. (2004) and other researchers have reported the 

presence of oligomers in aerosols created in smog chambers in the absence of inorganic seed aerosol.  

The formation of oligomers in the presence of inorganic aerosols is enhanced, and acidic conditions 

have larger SOA yields than neutral conditions (Czoschke et al. 2003; Jang et al. 2004; Northcross 

and Jang 2007). 

 Identification of oligomers in aerosols has been achieved by researchers (Gao et al. 2004; 

Gross et al. 2006; Bahreini et al. 2005).  Tolocka et al. (2004) measured oligomers using MALDI 

mass spectrometry in SOA created from α-pinene ozonolysis in the presence of acidic seed aerosol.  

A repeating peak pattern containing molecular weights much higher than any of the expected 

products of α-pinene with ozone was reported.  This pattern was typical of oligomers.  Iinuma et al. 

(2004) showed a 40% increase in particle phase organics when α-pinene was reacted with ozone in 

the presence of preexisting acidic inorganic aerosols emphasizing the effect of an acid catalyst on 

heterogeneous reactions.   

 Studies of ambient aerosols have also shown oligomer presence.  The characterization of 

ambient aerosol from the south-eastern United States by Zhang et al. (2006) showed an 18% increase 

in ambient aerosol mass when acidity, measured as the ratio of NH4+/SO4
2-, increased.  It is suggested 

that the increase in aerosol mass by aerosol acidity is due to acid catalyzed heterogeneous aerosol 

reactions.  Brock et al. (2003) and Chu (2004) both measured increases in aerosol mass within air 

parcels at higher sulfuric acid and VOC concentrations.  More direct evidence has been reported by 

Kiss et al. (2002) and Krivacsy et al. (2001) who measured an oligomeric fraction of the ambient 

aerosols comprising as much as 30%.   
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 Field studies which evaluate the influence of particle acidity on SOA formation are extremely 

complicated due to interference from various factors such as light, emission profiles, meteorology, 

and changes in VOC compositions.   In general, the trends of the relationships between acidity and 

aerosol mass have been shown by researchers.  However, the specific responses of aerosol mass to the 

many variables present in the environment are not known.   Thus, laboratory studies are necessary to 

systematically examine the effects of changing parameters and atmospheric environments on aerosols 

under controlled conditions. 

1.2 Motivation 

 The formation of organic oligomers within SOA may alter the current explanation of the 

SOA atmospheric processes.  The radiative balance of solar radiation may be very different for 

aerosol containing oligomers.  Misclassifications of aerosol composition may also affect global 

climate change model results.  Atmospheric aerosol concentrations are also modeled on the urban and 

regional scale.  Currently in regional models inorganic and organic aerosol mass is modeled 

separately assuming that the no interaction occurs between the two groups.  This assumption may not 

accurately represent the processes occurring by atmospheric aerosols.  The formation of oligomers by 

acid catalyzed particle phase reactions within aerosols is a prime example of interaction between the 

inorganic and organic constituents of the aerosols.  Ignoring this process may cause an 

underestimation of the total atmospheric mass predicted by aerosol models.  Also important 

relationships between emitted gases and SOA mass formation may not be fully defined.   

 The description of how particles cause adverse health effects is strongly dependent on an 

accurate characterization of the chemical and physical processes of the particles.  Because secondary 

organic aerosols have been assumed to be composed of monomers the current understanding of the 

interaction between particles and health effects is based on an inaccurate model.  Particle phase 

reactions may influence change our understanding of the mechanism of injury.   
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1.3 Objective 

 This dissertation aims to study oligomer formation in SOA from monoterpenes in the 

presence of inorganic aerosols through laboratory experimentation and by the use of mathematical 

models in order to better understand the formation of oligomers in particles by acid catalyzed particle 

phase reactions due to the presence of inorganic aerosols.  

1.4 Project description 

This study is divided into three separate studies which are presented in Chapters 2-4.  The 

first study focused on quantifying the increase in aerosol mass formed by the ozonolysis of 

monoterpenes in the presence of inorganic aerosols.  The second study developed a method using 

thermal gravimetric analysis to quantify the fraction of oligomer mass in aerosols samples of SOA 

and inorganic aerosols. The third study developed the modeling framework to estimate the particle 

phase oligomer mass as well as the total SOA mass from terpene ozonolysis in the presence of 

inorganic aerosols. 

 In order to confirm that a measurable increase in aerosol yield was observed in the presence 

of inorganic acidity, and to be able to determine the relevant parameters need to accurately model 

SOA mass mathematically a series of smog chamber reactions were carried out.  Six monoterpenes 

were reacted individually with ozone in the absence and presence of inorganic aerosols of varying 

acidities and relative humidities in a 2m3 indoor Teflon smog chamber. The results confirmed that 

under the most acidic conditions the aerosol mass formed for each terpene system was the highest and 

the mass decreased as acidity decreases.  Also as seed mass increased so did the aerosol mass formed, 

thus aerosol yield (Y) is not constant for each terpene, and 

also shows that seed mass is important in determining SOA 

formation.  The study is further discussed in Chapter 2. 

 The results from the aerosol yield study were used to 

choose three terpenes for further analysis and modeling: α-
Figure 1.4. Molecular structures for 
terpenes used in modeling study 

α-pinene d-limonene  terpinolene 
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pinene, terpinolene and d-limonene (Figure 1.4).  α-Pinene was chosen due to the large amount of 

literature available.  Also α-pinene is typically used as a surrogate for the terpene class in 

atmospheric regional scale models SAPRC (Carter 2000) and CAM (Andreani-Aksoyoglu et al. 

2003)) and is the most emitted terpene in the monoterpene class.  d-Limonene is emitted from citrus 

trees and forms the largest fraction of the monoterpene derived SOA.  Limonene is also used as a 

compound in many cleaning products; thus it is has consequences for indoor aerosol concentrations as 

well.  Terpinolene composes the largest fraction of tea tree oil and comes from the tea tree.  It was 

included in the modeling study due to the molecular structure.  Although ozonolysis at the exocyclic 

double bond which has the largest reactivity will cause the loss of three carbons leading to products 

with higher vapor pressure than α-pinene and limonene the aerosol yields formed are comparable. 

This suggests that oligomer formation may be larger in terpinolene than α-pinene and limonene.   

 In Chapter 3 a method developed to quantify the fraction of oligomers within an aerosol 

experimentally is presented.  Thermal gravimetric analysis (TGA) utilizes temperature to understand 

the bulk phase composition of a sample. By compensating for effects of the inorganic seed, aerosol 

monomer mass is volatilized leaving the oligomer fraction of the aerosol remaining.  This method 

represents the first approach to quantify the oligomeric fraction in SOA.  The experimental results are 

compared with the modeling results and reveal a model which is able to estimate oligomer aerosol 

mass within 25% of the measured oligomeric fraction.   

 The SOA model development and validation study is contained in Chapter 4.  Three models 

were needed to estimate SOA mass; a gas phase model, a thermodynamic aerosol partitioning model, 

and an acid catalyzed particle phase oligomer formation model. The gas phase model used was the 

master chemical mechanism (MCM) developed by Jenkin et al. (2004) at the University of Leeds in 

England.  MCM utilizes structural reactivity relationships to determine the reaction mechanisms.  It 

provides a near explicit product distribution which allows the analysis of the products to be 

approached from both ability to partition and oligomer forming potential.  A mechanism for α-pinene 
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had previously been published and was used as published.  The mechanisms for terpinolene and d-

limonene were developed using the MCM protocol.  The product distribution estimated by MCM is 

lumped based on a protocol of vapor pressure and reactivity.  Aerosol mass for each representative 

lumped group is estimated using two models.   

 Jang et al. (2006) developed a method to estimate oligomer mass which incorporates the 

effects of seed mass, acidity, relative humidity, partitioning and particle phase reactivity.  Oligomer 

mass is estimated for each lumped product group.  The mass attributable to only thermodynamic 

partitioning is estimated using a modified version of the secondary organic aerosol model 

(SOGRAM) model developed by Schell et al. (2001) at the University of California at Davis. This 

model uses a mass balance approach where the oligomer mass and gas phase concentration are 

subtracted from the total product group formed with the remaining mass being the aerosol mass 

formed solely from thermodynamic partitioning.  The eloquence of this approach is that it divides the 

aerosol mass into monomers and oligomers which may have different chemical and physical 

properties, as well as different health effects.   

Conclusions are contained in Chapter 5 which provides a summary of results and highlights the 

interesting and important results of this research project. 
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ABSTRACT 

 

 The secondary organic aerosol (SOA) yield of a series of monterpenes was investigated to 

determine the relative amounts of organic mass which can be attributed to mass produced by 

heterogeneous acid catalyzed reactions.  Five monoterpenes (α-pinene, terpinolene, d-limonene, Δ2-

carene, β-pinene) were studied using a 2m3 indoor Teflon chamber and SOA was created in the 

presence of both acidic and neutral inorganic seed aerosol.  The relative humidity was varied to create 

differing acidic seed environments.  The heterogeneous aerosol production was influenced by the 

seed mass concentration, the acidity of the inorganic seed aerosol, and also molecular structure of the 

monoterpene ozonolysis products.  This study also can be incorporated with our previously presented 

model of the kinetic expression for SOA mass production from heterogeneous acid catalyzed 

reactions.  

 

Keywords:  Monoterpenes, SOA, Heterogeneous Reactions, Acid Catalyst, Ozonolysis 
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2.1. Introduction 

 Terpenes are ever-present atmospheric organic compounds of biogenic origin (Rasmussen 

1972), which are susceptible to oxidation by OH radicals, as well as ozone in the atmosphere because 

of the unsaturated carbon-carbon double bonds present in these compounds (Atkinson and Arey 2003; 

Calogirou et al.1999; Hakola et al.1994).  Due to the large amounts of biogenics emitted into the 

atmosphere (Müeller 1992; Guenther 1995), the secondary organic aerosol (SOA) burden on the total 

organic aerosol mass may be significant (Andreae and Crutzen 1997).   

 The formation of SOA has often been attributed to the partitioning of oxidation products of a 

VOC to existing aerosols (Colville and Griffin 2004; Griffin et al. 1999; Kamens et al. 1999; Odum et 

al.1996) and to a lesser extent, from the new particle formation via nucleation of oxidation products 

(Kavouras and Stephanou 2002).  Recently aerosol growth through particle phase heterogeneous 

reactions has been proposed (Gao et al. 2004; Jang et al. 2006; Jang and Kamens 2001; Kalberer et al. 

2004; Tolocka et al. 2004) as another pathway for the formation of SOA. Atmospheric acidic particle 

surfaces can accelerate heterogeneous reactions of secondary organic products created from the gas-

phase oxidation reactions of reactive volatile organic carbons (VOCs).  Atmospheric particles have 

been measured to have pH values as low as 0.25 (Pathak et al. 2004), which falls within the range of 

particle acidity used to study acid catalyzed heterogeneous reactions.  Thus it is extremely important 

to understand the contributions of heterogeneous acid catalyzed reactions on SOA flux, as the 

occurrence of these reactions in the atmosphere is accelerated due to the acidity of atmospheric 

particles.   

 This study aims to further our understanding of the aerosol yield increases by heterogeneous 

acid catalyzed reactions through determining how this increase varies with the initial terpene 

structure.  Terpenes, which produce products that are more reactive for heterogeneous reactions in 

aerosols, should have higher increases in SOA when in the presence of acidic seed as compared to 

neutral seed as acid acts a catalyst increasing oligomer formation (Jang et al. 2002; Czoschke et al. 

2003). 
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 The major goals of this study were threefold: 1) investigate the relationship between 

the molecular structures of a series of monoterpenes that took place in ozonolysis reactions 

and the subsequent SOA yield due to heterogeneous acid catalyzed reactions; 2) determine 

the influences of preexisting seed aerosols on SOA yields; and 3) quantify the SOA yield 

increase for various monoterpenes at a range of different humidities and acidities of seed 

aerosols.  

2.2. Experimental Section 

 The SOA yield study was carried out in an indoor 2.16 m3 chamber constructed of Teflon.  

All experiments were conducted in the dark to prevent photochemical reactions of VOCs.  The 

chamber was filled with clean air from two clean air generators: a Whatman FT-IR purge gas 

generator (model 75-52) and an Aadco 737 pure air generator. The percent relative humidity (%RH) 

was controlled by bubbling clean air through distilled water and was measured by a Hanna 

instruments thermo hygrometer HI 9160C, which was also used to measure temperature. Seed aerosol 

was generated using a TSI constant output Atomizer model 3076.  The acidic seed solution was 

composed of a 2:3 volume ratio of H2SO4 to NH4HSO4 of 0.01M aqueous solutions.  The neutral seed 

solution was composed of a 1:1 volume ratio of 0.01M (NH4)2SO4 solution to H2O.  The particle 

concentration and population was monitored by a TSI scanning mobility particle sizer (SMPS) 

(Model 3080) in series with a TSI condensation nuclei counter (CNC) (Model, 3025A).  The scanning 

time of aerosol through the internal plumbing column of the SMPS was three minutes with a sheath 

flow rate of 2 L/min.  The SMPS measured particle size data over a size range of 20 nm to 835 nm.  

 Ozone was added to the chamber by passing clean air past a Jelight UV lamp model 600, 

before entering the chamber.  Ozone levels were measured using a Thermo Electron Instruments UV 

Photometric O3 analyzer model 49.  The terpenes used in this investigation are shown in Figures 2.1A 

and 2.1B, they were purchased from Sigma Aldrich with a purity of >98%.  The terpenes were 

injected into the chamber by volatilization using a gentle stream of clean air through a heated 
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manifold. The concentration of terpene in the chamber was measured using a gas chromatograph with 

a flame ionization detector.  Table 2.1 tabulates the experimental conditions used for the experimental 

data presented here.  More detailed information about the experimental methods is contained in 

Appendix A.  
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Figure 2.1 A. α- pinene, β-pinene Δ2-carene and major ozonolysis products a: total molar yield (Yu et al. 1999), b: 
aerosol  phase molar yield (Grosjean et al. 1993), c: gas phase molar yield (Hakola et al. 1994) B. Terpinolene and 
Limonene and major ozonolysis products  B. a: total molar yield (Yu et al. 1999), b: aerosol phase molar yield 
(Grosjean et al. 1993), c: gas phase molar yield (Hakola et al. 1994), d: structural reference (Glasius et al. 2000) 
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ROG [ROG] 
(μg/m3) 

initial [O3]a 
(ppm) %RH 

[initial seed] 

 (µg/m3) 
acidY c 

20% RH 

neutralY d 

20% RH 

acidY c 

40% RH 

neutralY  d 

40% RH 

α-pineneb 325(avg.) 0.22 16-19 125-443 n.a. n.a. n.a. n.a. 

α-pinene 995.4 0.34-0.43 22-53 91-226 0.23±0.032 0.14±0.008 0.22±0.017 0.13±0.006 

β-pinene 995.4 0.32-0.59 21-48 109-207 0.14±0.013 0.10±0.027 0.11±0.016 0.14±0.007 

Δ2-carene 497.7 0.32-0.48 21-46 102-310 0.46±0.001 0.25±0.001 0.35±0.054 0.30±0.015 

terpinolene 697.8 0.31-0.45 19-46 180-181 0.44±0.013 0.25±0.005 0.37e 0.33±0.073 

d-limonene 697.8 0.30-0.49 20-48 73-183 0.49±0.054 0.36±0.095 0.55±0.04 0.49±0.061 

Table 2.1. Experimental Conditions and average SOA yields for neutral ( )neutralY  and acidic seed ( )acidY   
experiments at 20% and 40% RH.  [ROG] is the mass concentration of reactive oxygenated gas (terpene) reacted. 
a: Initial ozone concentrations. 
b: α-pinene data used to determine relationship between seed mass and aerosol yield. Figure 2.2. 
c. Average Y of acidic seed experiments for a given relative humidity. 
d. Average Y of neutral seed experiments for a given relative humidity. 
e. One experiment was conducted 
n.a.: not applicable 
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2.3. Results and Discussion 

2.3.1 Aerosol yields 

 The most common way to determine the SOA yield has been defined by Odum et al. (1996) 

as, Y= ΔM/ΔHC measuring the change in aerosol mass ΔM (μg/m3) and dividing by the amount of 

hydrocarbons reacted ΔHC (μg/m3).  In our study, the SOA yields for the neutral particles are 

consistent with yields from previous studies (Grosjean et al.1993; Hakola et al. 1994; Keywood et al. 

2004) where reactions were conducted under excess ozone conditions.  In this study the highest yield 

in the neutral system was limonene followed in order by terpinolene, Δ2-carene, α-pinene, and β-

pinene (Table 2.1).  This order was consistent at both 20%RH and 40%RH showing that the 

partitioning processes were similar at the various %RH in systems where heterogeneous reactions are 

not acid-catalyzed.  The neutral seeded experiments are used as a standard to measure effects of 

particle acidity on SOA formation in acidic seeded experiments. 

 In order to investigate the aerosol mass contribution from acid catalyzed heterogeneous 

reactions, we define the heterogeneous acid catalyzed yield aerosol yield (ΔY*), equation 2.1.       

  
acidseed

neutralacid

M
YY

Y
_

*
−

=Δ   (2.1) 

where Yacid  is the aerosol yield in the acidic system and neutralY  is the average aerosol yield in the 

neutral system.  ΔY* is calculated by dividing the difference between Yacid and neutralY  for each 

terpene system by the amount of acidic seed aerosol (Mseed_acid) (μg/m3) present at the beginning of the 

experiment, at a given %RH and terpene.  This difference of yields can be used to estimate the SOA 

mass increase (OMH-A) due to heterogeneous acid catalyzed reactions (Jang et al 2006).  Mass formed 

by heterogeneous reactions can also take place in neutral inorganic seeded experiments (Jonsson et al 

2006; Kalberer et al. 2004; Tolocka et al. 2004), to a lesser extent.  Our focus in this study, is to 
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quantify the additional yield increase due to the presence of acid, so heterogeneous reactions without 

an acid catalyst are not included in ΔY*.   

 Unlike the common method for reporting SOA yield (Y), ΔY* (equation 2.1) contains a 

normalization of the acid/neutral yield difference by Mseed_acid.  The normalization is required to 

compensate for experimental differences in seed mass.   Higher concentrations of Mseed_acid at a given 

humidity and seed composition increases the amount of available protons.  This study shows that the 

amount of heterogeneous acid catalyzed mass formed is dependant on acidity as well as  Mseed_acid.  In 

Figure 2.2 as the Mseed_acid increases the SOA yield increases despite the fact the ozone and terpene 

(α-pinene) concentrations are held constant.   
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 In order to have an accurate comparison between acidic and neutral seeded experiments the 

inorganic seed particles should be liquid.  Thus, we have chosen to use the yield of neutral seeded 

experiments at %RH = 40 for all calculations using equation 2.1 to ensure that the neutral seed is 

liquid: the efflorescence point of ammonium sulfate is 34%RH (Wise et al. 2005). All acidic seed 

systems are liquid in our experimental conditions.   

Figure 2.2 SOA aerosol yield (Y) from ozonolysis of α-pinene in the presence of inorganic acidic seed 
aerosol vs. inorganic seed aerosol mass (Mseed_acid).  Y= ΔM/ΔHC measuring the change in aerosol mass 
ΔM (μg/m3) and dividing by the amount of hydrocarbons reacted ΔHC (μg/m3).  %RH = 16-19 and 
temperature = 297 K.   
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 The concentrations for ozone and the initial terpene are held constant for both non-acidic and 

acidic experiments allowing comparison of the yields between the neutral and the acidic 

environments without large variation in either the gas phase oxidation reactions or the composition of 

secondary products.  Increased %RH may lead to variations in the product distribution for products 

formed through the stabilized Criegee Intermediate (CI) reactions with water (Jonsson et al. 2006).  

Products formed through the CI include aldehydes, ketones and organic acids and their formation may 

be influenced by higher %RH (Calvert et al. 2000). The difference in products formed at different 

relative humidities may cause an underestimation of the enhanced yield formation due to the presence 

of acid catalyzed reactions.   

2.3.2 Acidity and Inorganic Aerosols 

 Seed particle acidity can be quantified using the mass percent of proton concentration, 

[H+]mass% which is estimated using an inorganic thermodynamic computational algorithm (e.g., 

ISORROPIA Nenes et al. 1998).  The variation in the seed particle acidity with respect to H2SO4 can 

also be described using excess acidity (X), as expressed in our previous studies (Jang et al. 2006; Jang 

et al. 2002).  Both X and the [H+]mass% describes the effect of acidity in different ways.   

 X describes the ability of a weak base (e.g., carbonyl) to be protonated by a strong acid, and 

takes into consideration the non-ideality of the system due to non-dilute conditions.  The focus of X  

is the activity coefficient of the protonated carbonyl, which becomes an intermediate species in the 

acid catalyzed heterogeneous reaction in the formation of oligomers.  In comparison pH assumes an 

activity of 1 (ideal conditions) for the proton.  The inorganic seed aerosols in this study have a small 

water concentration possibly causing non-ideal conditions, thus both X and [H+]mass% are needed to 

fully describe the particle acidity.  

2.3.3 Acidity Effect on SOA Yields 

 All terpenes tested had a higher yield for the acidic seeded experiments in comparison to the 

neutral seeded experiments at 20% RH and 21-26°C (Table 2.1).  The additional mass formed in the 

experiments using acidic seed can be attributed to acid catalyzed heterogeneous reactions.  Similar to 
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previous studies (Czoschke et al. 2003; Jang et al. 2006) the yield of the acidic seed experiments was 

largest for the most acidic seed aerosol.  
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Figure 2.3 shows the ΔY* resulting from differences in OMH-A production for the studied terpenes at 

differing %RH.  Larger values for ΔY* indicate that more mass is being produced from heterogeneous 

acid catalyzed reactions.  The values for ΔY* were different for each system.  At 20 %RH, the Δ2-

carene system produced the most mass from acid catalyzed heterogeneous reactions followed in order 

by terpinolene, α-pinene, d-limonene and lastly β-pinene.  The amount of acid catalyzed 

heterogeneous SOA produced at 40 %RH was less than that at 20 %RH.  β-Pinene has a negative ΔY* 

value.  A possible explanation for the negative value of β-pinene has not been determined.  

 ΔY* for Δ2-carene, terpinolene, and α-pinene are very close in value at 40 %RH.    At more 

acidic conditions (20 %RH) the terpenes produce differing amounts of OMH-A suggesting that for 

weakly acidic aerosols the acid catalyst effect is more dependent on the acidity and not strongly 

dependent on the structure of the partitioned product (see Section 2.3.4).  This result could possibly 

Figure 2.3. Normalized SOA yield difference *)( YΔ between acid and neutral at %RH = 20 and 40.  

acidseed

neutralacid

M
YY

Y
_

*
−

=Δ , where acidY  is the SOA yield with acidic seed and neutralY  is the average SOA 

yield with neutral seed at %RH = 40. Errors were calculated using standard deviation from experimental 
SOA data. 
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be important on aerosol models.  The answer to the question- Should heterogeneous acid catalyzed 

reactions be included in aerosol models?-  is not a direct yes or no answer, but may depend on the 

acidity of the particles.  

 The high acidity results are also supported by the  work of Jang et al. (2005) which showed 

that SOA yield attributed to heterogeneous acid catalyzed reactions (ΔY* ) is proportional to the 

apparent reaction rate constant for oligomerization through polyacetal formation and aldol 

condensation. The rate of formation for heterogeneous yields occurs through a second order reaction 

expressed as ΔY*=Σ k’app,i t[Bi]/(1+ k’app,i t[Bi]), where t is time, [Bi] is the concentration of the 

various oxidation products and k’app  is the rate constant.  We have assumed that the log (ΔY*) is 

directly proportional to the log(k’app ).  This assumption is only valid when the log of the denominator 

varies much less with acidity than the log of the numerator. This is a reasonable assumption under 

these experimental conditions.  The rate constant (k’app) for compound i as shown in equation 2.2, is 

dependant on X and the  concentration of the proton (CH+) (Jang et al. 2005; Jang et al. 2006).     

 log k’app,i = log(Khyd/KBH+) + m’m*X + log CH+ + log aw  (2.2) 

Three of the terms in equation 2.2, CH+, X, and aw, are associated with the inorganic seed aerosol and 

the relative humidity.  These environmental terms are fixed for given experimental conditions, while 

Khyd and KBH+ depend on the gas phase oxidation product (i).  The protonation equilibrium constant 

(KBH+) of a simple base (B) is commonly given by, where aB, aBH+, and aH+ are the activity of the base 

(B), protonated base (BH+), and proton (H+) in a given inorganic medium. 

 
+

+
+ =

BH

HB
BH a

aaK  (2.3) 

The hydration equilibrium constant (Khyd) of a carbonyl is described by Khyd = ahydrate/(aBaw) where 

ahydrate, aB and aw are the activities of a hydrate, a carbonyl, and water.  The Khyd/KBH+ ratio represents 

the reliance of the rate constant on the concentration of the hydrated and protonated carbonyls, as Khyd 

is directly proportional to the activity of the hydrated carbonyl and KBH+ is the inversely proportional 
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to the activity of the protonated carbonyl.  The coefficients m’m* are compound and reaction specific 

variable which describe how X changes with different reaction systems.  CH+ and X are directly 

related to the particle acidity.   

 The change in acid catalyzed heterogeneous SOA yield due to the acidity of the seed particles 

is different for each system.  Equation 2.2 predicts that aerosol yield will increase as acidity increases 

given that the other variables are constant.  Figure 2.4 plots log(ΔY*) - log(aw) to illustrate the 

relationship between acid catalyzed SOA yield and particle acidity.  aw is subtracted from ΔY* to 

isolate the variables which represent particle acidity as the independent variables in the linear 

regression.  The activity of water does not vary widely within this study.  The particle acidity is 

mostly represented by [m’m*X + (log CH+)]. 

 Figure 2.4 shows that log(ΔY*)- log(aw) increases as excess acidity increases which is 

accomplished in this study by lowering the %RH while the acidic seed composition remains constant.   
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Figure 2.4. (log ΔY* - log aw) vs. X (excess acidity) for ozonolysis of various terpenes in the 
presence of an acid catalyst. Inorganic seed composition was 2:3 mole ratio of H2SO4 to 

NH4HSO4. Regression line equations: β−pinene = 0.50X - 5.13, α−pinene = 1.37X - 6.31  
(R2 = 0.84), Δ2-carene = 0.99X - 5.30 (R2=0.66), terpinolene = 0.70X - 4.65 (R2= 0.79). aw 
(water activity) was calculated using ISORROPIA (1998). 
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It appears that a strong correlation occurs between X and the subsequent heterogeneous acid catalyzed 

SOA yield which is expected as predicted by equation 2.2. The correlation coefficients for the shown 

regression curves vary between 0.75 and 0.87.   Excess acidity is strongly correlated to the proton 

concentration, so it is expected that a similar trend would exist for log(ΔY*)- log(aw) versus CH+. 

 The reactivity of the SOA’s components for acid catalyzed heterogeneous reactions 

corresponds to the y-intercept of Figure 2.4.  Equation 2.2 shows that for a constant seed aerosol 

composition the y-intercept varies only by log(Khyd/KBH+).  Each terpene has a unique value for 

log(Khyd/KBH+).  This value is the sum of the individual log(Khyd/KBH+) for each terpene ozonolysis 

product which partitions to the aerosol.  The overall value gives a measure of which ozonolysis 

systems are more sensitive for acid catalyzed heterogeneous reactions.  For example Δ2-carene and 

terpinolene are the most sensitive followed by α-pinene and β-pinene as demonstrated by their 

intercept values in Figure 2.4 and also the ΔY* values in Figure 2.3.  The correlations in Figure 2.4 

are not perfectly linear, but do show a strong correlation.  The deviation from linearity can be 

attributed to experimental error associated with SMPS data, the transition of organic matter from a 

liquid like to a solid like phase, and changes in the water content of the aerosol.  Another source of 

error is the assumption that acid catalyzed yield is directly proportional to the rate constant. A more 

complete model estimation for the heterogeneous aerosol yield will include the full reaction rate. Due 

to nucleation the results for d-limonene is not included in Figure 2.4.   

2.3.4 Molecular Structure of Oxidation Products and Reactivity  

 The increase in ΔY* depends upon the acidity of the aerosol (X and CH+), molecular structures 

of oxidation products (KHYD and KBH+), and the ratio of ΔHC to inorganic seed. The ability for the 

oxidized products (e.g., carbonyl) to be transformed into the hydrated or the protonated carbonyl 

forms in the particle phase directly affects ΔY*, as the concentration of the hydrate and protonated 

carbonyl in the aerosol phase determine the rate constant for the formation of acid catalyzed oligomer 

mass.  The formation of such hydrated and protonated species of an oxidized product is reliant on the 
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molecular structure of the oxidized product.  For example, Khyd=0.85 for propionaldehyde (Guthrie 

1975), while acetone, which has the same molecular formula, has Khyd=0.008 (Guthrie 1975).  In 

general Khyd for aldehydes is higher than those of ketones.  A similar trend holds for protonation of 

the carbonyl structures.  Thus products containing aldehydes produce higher heterogeneous SOA 

production than ketones (Jang et al. 2003).   

 Our experimental results (Table 2.1) show significant differences in the overall SOA yields 

between the different terpenes systems.  We assert that the varying yields are caused by the 

differences in the gas phase ozonolysis products which partition to the preexisting aerosols to form 

SOA.  Unlike aldehydes and ketones, carboxylic acid products strongly partition to existing aerosols 

but react less for acid catalyzed heterogeneous reactions.  Reported molar yields for the major 

oxidation products of the terpenes studies are shown in Figures 2.1A and 2.1B.  The molecular 

structures of oxidation products are directly related to the structure of the terpenes.  Although only a 

portion of the total products produced by ozonolysis are shown in Figures 2.1A and 2.1B, these are 

the major products, and additional products should be analogous to these with the exception of the 

addition of an OH radical to some of the products.  Possible acid catalyzed heterogeneous reactions 

include the hydration of aldehydes, hemiacetal/acetal formation, aldol condensation, and 

polymerization of hydrated aldehydes.  Equation 2.2 assumes that the hydration and basicity constants 

represent the ability of a carbonyl to undergo hydration, hemiacetal/acetal formation, and aldol 

condensation. In addition to these reactions which form high molecular weight structures, three and 

four membered exo-carbonyl products also result from cis/trans isomerizations, and structural 

rearrangement by ring opening reactions in the presence of an acid catalyst.     

2.3.4.1 α-pinene vs. β-pinene  

 α -pinene and β-pinene have similar structures in that both are bicyclic alkenes (Figure 2.1A).  

However, α-pinene has an endocyclic double bond while β-pinene has an exocyclic double bond.  

Table 2.1 shows that α-pinene produces larger SOA yield in both the neutral and acidic seed 
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conditions as compared to β-pinene.  The difference in total aerosol yields for the neutral aerosol is 

mainly due to differences in partitioning.  In the case of acid catalyzed reactions, the reactivity of 

partitioned products to oligomers, in part, determines the organic mass formed by heterogeneous acid 

catalyzed reactions.   

 The differences in ozonolysis products result from the location of the reactive double bonds. 

The ozonolysis of the endocyclic double bond in α-pinene retains all ten carbons of the monoterpene 

and produces aldehydes among other carbonyl compounds, while the exocyclic double bond in β-

pinene leads to the loss of carbons from the original terpene structure and also creates exocyclic 

ketones as shown in Figure 2.1A.  

 Figure 2.1A shows that nopinone, an exocyclic-ketone, is by far the most abundant 

ozonolysis product of β-pinene with yields of 15.8%, and 17.0% reported in the gas phase (Yu et al. 

1999), and trace amounts measured in the aerosol phase.  Overall nopinone from ozonolysis of β-

pinene does not strongly partition to the aerosol phase, nor does it strongly react for heterogeneous 

acid catalyzed reaction once this product is present in the particle phase.  In comparison α-pinene 

produces ring opening structures which have lower vapor pressures due to the presence of carboxylic 

acid groups in comparison to β-pinene products.  One of major ozonolysis products from the α-

pinene system is pinonaldehyde with yields of 5.7%-19.0% in the gas phase and 0.3% to 1.1% in the 

aerosol phase (Yu et al. 1999).  Pinonaldehyde, an aldehyde is reactive for heterogeneous acid-

catalyzed reactions.   

2.3.4.2 α-pinene vs. Δ2-carene  

 α -pinene and  Δ2-carene have similar structures in that both are bicyclic endo-alkenes 

(Figure 2.1A).  The major difference is the bicyclic structure: Δ2-carene has a cyclo-propane ring 

while α-pinene has a cyclo-butane ring.  In comparing the products from ozonolysis of α-pinene and 

Δ2-carene (it was assumed that the products of Δ2-carene are analogous to Δ3-carene’s products, due 
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to the lack of product information available for Δ2-carene), the products are similar except for the 

cyclobutane ring in the α-pinene products and the cyclopropane ring of the Δ2-carene products.   

 Although the ozonolysis products of α-pinene and Δ2-carene are both cyclic and oxygenated, 

significant differences are observed between the average SOA yield in the presence of acid ( )acidY  

and neutral seeds ( )neutralY  as well as for ΔY* (Table 2.1).  The large differences can be partially 

explained by the difference of the ring size in these systems, and the location of the carbonyl groups 

in relation to the rings.  

 The rings present in the oxidized products help to delocalize the positive charge of the 

protonated carbonyl through ring opening reactions which help to push the equilibrium towards the 

protonated carbonyl.  In general, a three membered ring is more reactive for ring opening reactions 

through carbocation rearrangement than a four membered ring (Scheme 2.1) due to its double bond 

character, which increases ring opening reactions through protonation of carbonyl next to the ring 

(Scheme 2.1).  The smaller cyclopropane ring present in Δ2-carene products also has a higher ring 

strain energy than the cyclobutane ring in many of the α-pinene products, 28.1 kcal/mol and 26.3 

kcal/mol respectively (Carey and Sundberg, 2000) which also aides to the ring opening reactions.  

Although the ring size difference may not account for all of the difference in the acid catalyzed 

heterogeneous mass formation it does help to explain the large difference in the response to the acid 

catalyst. 

2.3.4.3 Terpenes with two double bonds.   

 Both terpinolene and d-limonene have two double bonds and potentially consume more 

ozone than α-pinene, β-pinene, and Δ2-carene.  The first generation ozonolysis products of 

terpinolene and d-limonene can be further oxidized when the excess amounts of ozone are injected to 

the chamber in our experimental conditions as shown Figure 2.1A.  For example, the first generation 

ozonolysis products of terpinolene are mostly 4-methyl-3-cyclohexenone (40% of the gas products) 

(Hakola et al.1994).  This major product is not enough to explain the significant SOA aerosol yield 
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increases in the presence of an acid catalyst. The gas phase yield of reactive terpinaldehyde for the 

heterogeneous acid catalyzed reaction (via aldehyde protonation and tautermerization) is also too low 

to cause the observed SOA yield increases.  The large secondary yield for terpinolene in our 

experimental conditions is explained by reaction of two double bonds with excess amounts of ozone, 

as well as the OH radicals which are byproducts from ozonolysis.  Thus the secondary organic 

products create 2,5-dioxo-heptanal as a major product.  This 2,5-dioxo-heptanal is much more 

reactive than 4-methyl-3-cyclohexenone for heterogeneous reactions.  Similarly, the secondary 

oxidation products of d-limonene (Figure 2.1B) can better explain the high increase in SOA yield in 

acidic conditions.   

 The increase in SOA yield for d-limonene is not as sensitive to the presence of acidic seed as 

terpinolene.  This may be attributable to particle nucleation in the limonene system.  The relative 

order of  ΔY* for the different terpenes tested should be the same at different %RH, however this is 

not the case for d-limonene (Table 2.1).  The experimental condition of excess concentrations of 

ozone may be the cause of this inconsistency.   

 d-Limonene reacts much faster than α-pinene due to high reaction rate with ozone .  The 

increased sites for oxidation (2 double bonds) and the fast reaction rate produce a large concentration 

of low vapor pressure products quickly, leading to increased nucleation.  This decreases the products 

available for heterogeneous reactions on inorganic seed aerosol, and subsequently affects the amount 

of mass created by acid catalyzed reactions.  The amount of nucleation differs between acid and 

neutral experiments, with more nucleation in the neutral experiments.  This difference in nucleation 

creates uncertainty in the determination of ΔY*.   

 Terpinolene, which also has two double bonds, (both an exo and an endo double bond), reacts 

faster than limonene due to the highly substituted exo-double bond.  However, in terpinolene 

oxidation of the exo-double bond, which is more reactive than the endo-double bond causes the loss 

of three carbons which decreases the vapor pressures of the products, and much less nucleation is 
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seen in the terpinolene system as compared to the d-limonene system.  Experiments at lower ozone 

mixing ratios and at a higher initial seed concentrations help to minimize nucleation in d-limonene.  

Thus the SOA yield of terpenes with more than one double bond is also dependant on the ratio of 

ozone to terpenes, and the comparison of yield data should be conducted with caution. 

 The d-limonene data presented here illustrates that both Y and ΔY* is strongly dependent on 

partitioning.  Despite the fact that the products produced from d-limonene should be very reactive for 

heterogeneous acid catalyzed reactions, their partitioning and subsequently nucleation ability proceed 

in importance for our experimental conditions.  However the results from d-limonene shown here still 

demonstrate that the presence of acid increases the SOA mass in comparison to neutral compositions 

regardless of the mass formed by nucleation. 

2.4. Conclusion 

 This study has shown that the amount of SOA associated with heterogeneous reactions is 

directly related to particle acidity, amounts of inorganic seed aerosol, and the molecular structure of 

the oxidation products of the terpenes studied here.  We have also demonstrated the usefulness of 

both partitioning theory and kinetics of heterogeneous acid catalyzed reactions (Jang et al. 2005) to 

quantify the SOA yield for various monoterpenes in the presence of inorganic acid.  Further study 

needs to be done to better understand the fraction of the particle that becomes polymerized and how 

other atmospheric VOCs participate in these processes and is linked to SOA production.   
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ABSTRACT 

 Secondary organic aerosols are composed of hundreds of oxidized products from the gas 

phase reactions of volatile organic carbons.  The aerosol phase oxidized products are not inert and are 

able to react within the particle phase to form oligomers.  The particle phase reactions are catalyzed 

by the presence of inorganic acidity which is ubiquitous in the ambient atmosphere.  The presence of 

oligomer mass within SOA can alter the chemical and physical properties from those of a 

theoretically inert particle.   

 Quantifying the fraction of oligomer mass formed within SOA under differing inorganic 

acidities is essential for SOA formation models, estimating radiative forcing, and better understanding 

the implications of SOA on health.  This study quantifies the oligomer fraction in produced from the 

ozonolysis of terpenes (α-pinene and terpinolene) in the presence of inorganic seed aerosols 

(ammonium sulfate, ammonium bisulfate, and sulfuric acid) using an indoor Teflon chamber. The 

change in mass of SOA samples as a function of temperature was measured using a thermal 

gravimetric analyzer (TGA).  By exploiting the relationship between vapor pressure and structural 

properties of the organic compounds in SOA, the mass fraction of oligomers present in the SOA was 

determined by analysis of TGA data. 

 The measured oligomer fraction is used to describe the relationship between SOA increases 

due to the presence of inorganic aerosols, as well as describe the impact of varying inorganic acidities 

on oligomer formation from α-pinene and terpinolene SOA.  The effect of charring on the 

determination of the fraction of oligomers in SOA was also studied.    

 

 

 

 

      

KEYWORDS: SOA, thermal gravimetric analysis, oligomers, particle phase reactions, particle 

acidity 
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3.1. Introduction  

 Secondary organic aerosols (SOA) traditionally have been described using the 

thermodynamic partitioning theory under the assumption that the particle phase organics are inert.  

However in the presence of inorganic acidic aerosols, which are ubiquitous to the ambient 

atmosphere, molecules in the particle phase react through acid catalyzed heterogeneous reactions.  

Researchers have proposed possible mechanisms (Iinuma et al. 2004; Tolocka et al. 2004; Jang et al. 

2003), elucidated chemical structures of oligomers (Gao et al. 2004a; Kalberer et al 2004), and have 

measured SOA yields influenced acid catalyzed oligomer formation (Czoschke et al. 2003; Jang et al. 

2002).  However the exact process of oligomer formation has not been determined, but the presence 

of inorganic acidity has been shown to catalyze the formation of oligomers.   

 Oligomers have different chemical and physical properties than the unreacted organics.  For 

example particle phase molecules in the monomer form within an aerosol are semi-volatile, while 

oligomers are nonvolatile due to their very low vapor pressures.  Oligomers are less soluble in water 

as monomers suggesting that particles with larger fractions of oligomers may be less likely to act as 

cloud condensation nuclei. Also the oligomers and monomers may have very different optical 

properties which are used to determine the radiative forcing of atmospheric aerosols.  Finally the 

thermal properties of oligomers and monomers are very different.  The boiling points of oligomers are 

much higher than monomers making them distinguishable through thermal analysis.       

 The limitations of the current characterization techniques for the quantification of oligomer 

mass within SOA requires the development of a method which directly quantifies the fraction of the 

oligomers in the aerosol bulk phase as opposed to analyzing each individual compound.  In this study 

thermal gravimetric analysis (TGA) is used to determine the fraction of semi-volatile organic and 

oligomeric matter associated with SOA.  TGA exploits the differences in the physical properties of 

oligomers, inorganic constituents, and organic monomers to measure the oligomeric fraction in the 

aerosol.  TGA has been used in other fields to study fuels, polymers, catalysts, pyrolysis, and 

chemical synthesis. 
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 Thermal denuders are another analytical technique which exploit the varying volatility of 

aerosol constituents to investigate the composition of aerosols and determines the nonvolatile fraction 

of an aerosol.  Aerosols are passed through a heated tube, and the aerosol volume changes are 

measured before and after the heated tube.  By changing the temperature valuable information is 

gained as to the content of the aerosol composition.  The use of temperature to volatilize components 

from aerosols is similar to the TGA technique.  The major difference between the two techniques is 

that thermal denuders are on online process which provides information about the change in volume 

of the aerosol passing through the denuder with respect to a fixed denuder temperature.  TGA is an 

offline method which directly measures the mass changes of aerosol as a function of temperature and 

allows for the study of the thermal behavior of individual components (e.g., inorganics, semi-

volatiles, and nonvolatile organic matter) within a mixed organic/inorganic aerosol.   

 The large difference in the molecular weights between the oligomers and monomers within 

SOA make these particles a prime candidate for a TGA study. Studies analyzing SOA generated from 

the ozonolysis of α-pinene using single particle mass spectrometers (Bahreini et al. 2005), report that 

the majority of monomers in terpene systems have molecular weights which fall into the range of 

150-230 g/mol (Yu et al. 1999).  In general, oligomers have much higher molecular weights than 

monomers.  For example, Tolocka et al. (2004) showed the presence of oligomers in SOA from 

ozonolysis of α-pinene with mass units ranging from 200-900 mass units.  The oligomers identified 

by Iinuma et al. (2004) in SOA from α-pinene ozonolysis had molecular weights of 354 and 370 mass 

units and those identified by Gao et al. (2004b) had molecular weights which ranged from 250–1600 

mass units.  Oligomers and semi-volatile organics within SOA formed from the ozonolysis of 

terpenes have molecular weight differences of at least 100 mass units causing them to volatilize or 

decompose at different temperatures.   

 This study analyzed SOA created from the ozonolysis of α-pinene and terpinolene using an 

indoor Teflon film chamber.  We hypothesize that the oligomeric fraction in the aerosol is influenced 
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by the differing responses to particle acidity by the two different terpene systems.  For example, a 

recent study by Northcross and Jang (2007) has shown that terpinolene has larger increases than α-

pinene in SOA mass when formed in the presence of inorganic acidic aerosols as compared to neutral 

inorganic aerosol strongly suggesting that oligomer formation is larger in the terpinolene system in 

comparison to the α-pinene system.   

3.2. Experimental Methods  

3.2.1 Chamber Operation 

 
A 2 m3 indoor Teflon film chamber was used to conduct all SOA experiments.  The chamber has been 

described in previous studies (Northcross and Jang 2007, Czoschke and Jang 2006).  Neutral and 

acidic seed aerosols were created from aqueous solutions.  The acidic seed solution was composed of 

0.01M of sulfuric acid (H2SO4) (Sigma Aldrich, 95-98%) and 0.01M ammonium bisulfate 

(NH4HSO4) (Aldrich, 98%) in a 2:3 mole ratio.  The neutral seed solution was composed of 0.01M of 

ammonium sulfate (NH4)2SO4) (Sigma Aldrich, ≥ 99%).  Seed aerosol was produced using a TSI 

constant output Atomizer (model 3076).  

 SOA was produced from the ozonolysis of α-pinene (Sigma Aldrich, > 98%) and terpinolene 

(Sigma Aldrich, > 98%).  Ozone was added to the chamber using an ozone generator (Jelight UV 

lamp model 600), and measured using an ozone monitor (Thermo Electron Instruments UV 

Photometric O3 analyzer model 49).  Ozone concentrations ranged from 0.49 to 0.72 ppm (Table 3.1).  

Terpene # of 
experiments 

Terpene Conc. 
ppm 

Mseed 
μg/m3 

O3 
ppm %RH Mseed/ΔHC Yield 

(Y) 
α-pinene 3 0.43 neutral, 850 0.49 58 0.35 0.79 

α-pinene 2 0.76 no seed 0.72 15 N/A 0.61 

α-pinene 2 0.43 acidic, 180 0.56 20 0.07 0.62 

α-pinene 2 0.43 acidic, 600 0.72 23 0.25 1.32 

terpinolene 3 0.43 acidic, 243 0.46 26 0.10 0.61 

terpinolene 3 0.43 acidic, 253 0.55 21 0.11 0.65 

Table 3.1. Experimental Conditions for TGA analysis of SOA T constant at 23ºC.  All values are 
average for experimental conditions. 
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The terpene was volatilized into the chamber using a gentle stream of clean air (Whatman FT-IR 

purge gas generator (model 75-52); Aadco 737 pure air generator) through a heated manifold.  All 

experiments were conducted in the dark to prevent photochemical reactions.   

 The particle concentration and population was monitored by a scanning mobility particle 

sizer (SMPS) (TSI, Model 3080) in series with a condensation nuclei counter (TSI, Model, 3025A) 

during the course of the experiments the particle size ranged from 19.8 nm to 835.4 nm.  The aerosol 

data was corrected for particle losses to the chamber walls using a first order wall loss model based 

on the number of particles (McMurray and Grosjean 1985).   

3.2.2 Aerosol Sampling 

 Once the ozonolysis reactions were completed, the aerosol mass in the chamber was collected 

on 13 mm diameter Pallflex tissuquartz 2500 QAT-UP 25mm quartz fiber filters.  The small filter size 

was used due to size restrictions of the TGA sampling pan.  Prior to use each filter was baked at 

400ºC for 60 minutes to remove any contaminants.  Filters were weighed before and after sampling to 

determine the mass collected on the filter and ensure enough sample mass was present to increase the 

accuracy of the analysis.  A pump (Gast, DOA-P704-AA) was used to sample SOA from the 

chamber.  The collected aerosol mass varied from 400μg to 1mg (Table 3.1).  Gas phase adsorption to 

the filter is minimized by the using a small filter which decreases the available surface area for 

adsorption.  

3.2.3 Thermal Gravimetric Analysis 

 SOA filter samples, inorganic aqueous solutions which represent the inorganic seed aerosols, 

and pure organics compounds were analyzed using TGA.  Inorganic aerosol solutions were spiked 

onto filters and analyzed using TGA (Pyris 1, Perkin Elmer).  SOA filter samples were immediately 

analyzed after sampling.  The organic model compounds and inorganic aqueous aerosol solutions 

were placed directly in TGA Pt sample pan for analysis. Samples were analyzed with a TGA heating 

rate of 10°C/minute from 25°C to 600°C, as well as at isothermal conditions where temperature was 
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held at 70°C for 80 minutes and then ramped to 600°C at 10°C/min.  600°C as a final temperature 

was found to be excessive, most data produced from the analysis was used at temperatures lower that 

300°C.  Dry nitrogen (99.998%, National Welders) flowed past the sampling boat at 20L/min 

throughout the run.  Mass measurements were taken at a rate of at least 1 per second.   

3.2.4 FTIR Analysis of TGA Samples 

 Fourier Transform Infrared (FTIR) spectroscopy analysis was performed for samples of pure 

pinonic acid and mixtures of pinonic acid and seed solutions composed to represent strongly acidic 

and mildly acidic aerosols equilibrated at 20%RH conditions as estimated by the Aerosol Inorganic 

Model developed by Clegg et al. (1998).  The mildly acidic seed contained 16g NH4HSO4, 8mL H2O 

and 5mL of H2SO4, the sample was composed of 2.3mg pinonic acid and 9.4mg of seed solution.  The 

strongly acidic sample contained 4.8mg of pinonic acid and 8.5 mg of the strongly acidic seed 

solution, which was made of 1g of NH4HSO4, 1mL of H2O, and 1.5mL of H2SO4 (95%, Sigma 

Aldrich).  FTIR samples were taken using a Nicolet Magna-IR 560 Spectrometer equipped with a 

magnetic circular dichroism (MCD) detector.  The instrument was operated in the reflectance mode, 

the signal to noise ratio was 3.  The purpose of the FTIR analysis was to identify changes in the 

chemical structure of the sample components and not measure concentrations of the components.  The 

mixture samples containing pinonic acid and the inorganic seed solutions were analyzed using FTIR 

both before and after TGA.  The TGA temperature program increased from 25°C to 250°C at a rate of 

10°C/min.   

3.3. Theory 

3.3.1. Classification of Chemical Species in Aerosols 

 The temperature increase during TGA causes the compounds in the sample to volatilize 

and/or thermally decompose leading to decreases in the sample mass.  The temperature at which 

volatilization occurs is dependent on the boiling point of the compound.  However, mass loss during 

TGA typically occurs before the boiling point due to the vapor pressure increasing with sample 
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temperature as well as the nitrogen stream blowing over the sample which prevents the volatilized 

molecule from being reabsorbed to the sampled aerosol.   

 TGA data interpretation requires knowledge of the compound classes present within the 

sampled SOA. The aerosol components are divided into four classes of chemical compounds: 

inorganic compounds, organic semi-volatiles, organic sulfate and oligomers.  Organic semi-volatiles 

are oxidized products of the precursor terpene which partition to an aerosol but are not transformed 

into oligomers through particle phase reactions.  A complete chemical characterization of the 

ozonolysis products of either α-pinene or terpinolene has not been conducted. Structural reactivity 

relationships (Saunders et al., 2003) have been used to estimate a near explicit distribution for the 

ozonolysis α-pinene and terpinolene.  The average boiling point temperature was estimated (Joback 

and Reid 1987; Stein and Brown 1994) for the products and to be lower than 330°C for α-pinene and 

400°C for terpinolene although volatilization will occur at much lower temperatures.   

 In this study (NH4)2SO4, NH4HSO4 and H2SO4 are used to represent ambient inorganic 

species and are referred to as inorganic seed aerosols.  The third class of compounds is organic sulfate 

which is produced from the reaction of sulfuric acid and organic species within an aerosol and is an 

identified constituent of SOA (Liggio et al. 2005; Surratt et al. 2007; Iinuma et al. 2007).  Organic 

oligomers are compounds that are formed from two or more organic monomers due to particle phase 

reactions.  Oligomer mass is increased when SOA is formed in the presence of acidic seed aerosols by 

acid catalyzed reactions.  For example, Tolocka et al. (2004) measured oligomers in SOA formed 

from α-pinene ozonolysis in the presence of both acidic and neutral aerosols.  The mass to charge 

ratio was ten times higher in the presence of acidic seed aerosols than those with neutral seed 

aerosols.  Estimated boiling points of the dimers present in SOA formed from the α-pinene 

ozonolysis (Iinuma et al. 2004) range from 440˚C to 500˚C using the group combination method of 

Joback and Reid (1987) with modified parameters by Stein and Brown (1994).  The theoretical 

boiling point of dimers formed form the aldol condensation of the major semi-volatile SOA products 
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from terpinolene ozonolysis would be higher than 500˚C.  The estimations indicate that boiling points 

of high molecular weight oligomers are distinguishable from those of semi-volatile organics and that 

the masses will evolve at different temperatures.  

3.3.2 TGA Data Analysis  

 A TGA thermogram shows the weight percent wt%(T) (eq. 3.1) (Figure 3.1) of an aerosol  

 
masssampleinitial

)T(masssamplemeasuredTGA
)T%(wt =  (3.1) 

sample as a function of temperature.  The shape of the thermogram depends on the thermal properties 

of products, the volume of a sample, the temperature program, and the sample gas (N2) flow rate.  

The characteristic temperature for vaporization or thermal decomposition of a specific species is 

visible in the thermogram as an inflection point, the point where the curvature changes signs.  The 

wt%(T) at an inflection point is used to determine the fraction of components remaining at a given 

temperature.  The position and the number of inflection points in a TGA thermogram can be detected 

by differential temperature analysis (DTA), which is the first order derivation of the TGA 

thermogram and defines the volatilization rate of compounds leaving the sample.  A peak in a DTA 

thermogram corresponds to the inflection points in a TGA thermogram, making it easier to determine 

the temperature of maximum volatilization. 

 The volatilization rate of each component is fastest at its characteristic inflection point.  The 

aerosol has characteristic inflection points associated with water vaporization, semi-volatile organic 

vaporization, and decomposition of organic sulfate and the inorganic seed aerosol.  This specific 

pattern of a thermogram is a “fingerprint” and present for each component in the sample.  As the 

compound begins to volatilize change in the slope and curvature of the thermogram create the 

fingerprint.   For example, in Figure 3.1 the thermogram of pure (NH4)2SO4 and the thermograms of 

SOA from the ozonolysis of α-pinene in the presence and absence of (NH4)2SO4 are shown.   
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The fingerprint of (NH4)2SO4 thermogram is visible in the SOA seeded with (NH4)2SO4.  When the 

thermogram of SOA from α-pinene ozonolysis without seed is compared to the seeded SOA, the 

(NH4)2SO4 fingerprint becomes even more recognizable, illustrating the characteristic temperatures of 

SOA compounds and (NH4)2SO4.  

 The TGA thermogram of a mixture can be decoupled into the thermogram of each component 

when the original thermogram is additive for the components.  Although the fingerprints of the 

components in the thermogram are distinguishable, the characteristic temperatures in the thermogram 

of each pure component may appear to be shifted in a mixture.  Temperature shifts occur due to 

sulfonation reactions when (NH4)2SO4 is physically mixed with polystyrene (Zhu et al. 1997).  The 

shift of the characteristic temperatures in thermogram can be also detected by DTA thermograms.  

 

Figure 3.1. Thermograms of simulated (NH4)2SO4 seed, NH4HSO4-H2SO4 aqueous solution, neutral 
seeded α-pinene SOA, self-nucleated α-pinene SOA.  The temperatures for inflection points are shown 
for each system. Inflection points at 240ºC and 340º C are for (NH4)2SO4 seed.  Inflection points at 60ºC, 
240ºC, and 328ºC are for aqueous acidic seed solution (H2SO4:NH4HSO4 = 2:3). 
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3.3.3 Thermogram of Inorganic Seed Aerosol 

 The first step in analyzing SOA thermograms is decoupling the total aerosol mass into the 

organic and inorganic fractions.  In order to properly decouple the aerosol mass, it is essential to 

understand the thermal properties of pure inorganic aerosol.  Thermograms were observed for 10μL 

of aqueous inorganic solutions spiked on to a filter to simulate the inorganic species of the seed 

aerosols (Figure 3.1).   

The acidic aqueous solution (H2SO4-NH4HSO4) and the neutral aqueous solution ((NH4)2SO4) 

presented very different thermograms as shown in Figure 3.1.  The thermogram of the neutral solution 

follows the decomposition mechanism as described by Kiyoura and Urano (1970).  The thermogram 

of (NH4)2SO4 has two major inflection points at 240ºC and 340ºC (Figure 3.1) corresponding to the 

thermal decomposition.  (NH4)2SO4 decomposes into NH4HSO4 with the loss of ammonia gas.  Next, 

NH4HSO4 decomposes into water and sulfamic acid which then immediately further decomposes into 

various volatile gases.  The temperatures at which the inflections points occur slightly differ from the 

literature values.  This is attributed to the difference of the ratio of sample volume to N2 flow rate.   

 The thermogram of the aqueous acidic seed solution has three major inflection points at 

temperatures of 60ºC, 240ºC, and 328ºC (Figure 3.1).  At 60ºC water is volatilizing from the sample.  

The inflection point at 240ºC is due to the NH4HSO4 decomposition, as well as the decomposition of 

H2SO4 to SO2 and water.  The inflection point at 328ºC is caused by sulfamic acid reacting with 

excess NH4HSO4 to form ammonium pyrosulfate, which undergoes a host of reactions leading 

ultimately to decomposition and the release of volatile gases including NH3, SO3, H2SO4, hydrogen, 

nitrogen, and water vapor (Kiyoura and Urano 1970).  

3.3.4 Thermograms of Organics in the Presence of Inorganics 

 The effects of temperature and inorganic species on organic stability, oligomer formation, 

organic sulfate formation, and charring have been studied using nonanol and pinonic acid.  Pinonic 

acid is one of the major identified SOA products from α-pinene ozonolysis. Nonanol was chosen to 
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study the thermal behavior of aerosol organic sulfate; a recent study has reported the formation of 

organic sulfate from the reaction of alcohol and sulfuric acid in aerosols (Iinuma et al. 2007).  Figure 

3.2 shows the thermograms for a series of pinonic acid experiments where pinonic acid is mixed with 

nonanol, acidic seed solution, or water.   
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 The thermogram of pure pinonic acid (boiling point = ~300 °C) shows volatilization at 257 

°C (Figure 3.2).  However when pinonic acid is mixed with water or nonanol it volatilizes at a 

temperature much lower than 257°C.  The volatilization of pinonic acid at lower temperatures in 

mixtures than the pure compound occurs due to the physical state of compounds.  Solubilized pinonic 

acid in a liquid mixture requires less energy to volatilize as opposed to the crystalline form of pure 

pinonic acid.  Pinonic acid is more soluble in nonanol than in water, and correspondingly volatilizes 

at lower temperatures in nonanol as opposed to water.  The bimodal nature of both the pinonic acid–

nonanol and the pinonic acid–water thermograms occurs due to the volatilization of nonanol in the 

first mode and non-crystalline pinonic acid in the latter.  Nonanol (boiling point = 215 °C) volatilizes 

Figure 3.2. Thermograms of pinonic acid (2.2mg), and pinonic acid (0.5 mg) with nonanol (3.0 
μL), water, and acid seed solution (207mg NH4HSO4, 2mL H2SO4, 2ml H2O). 
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by 150 °C and liquid-like pinonic acid, by 172 °C (section 3.3.1). Low temperature volatilization will 

also occur in the SOA samples which are multi component systems comprising carboxylic acids, 

carbonyls, alcohols, and water.   

 Pinonic acid in the acid seed solution did not completely volatilize illustrating the formation 

of oligomers in the sample.  Both pinonic acid and the acid seed solution (Figure 3.1) completely 

volatilize when analyzed separately.  However the mixture of pinonic acid and the acid seed solution 

have remaining mass that is nonvolatile.  The nonvolatile mass is due to the formation of higher 

molecular weight oligomers that formed through acid catalyzed reactions.  

 

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600T   C

w
ei

gh
t %

 re
m

ai
ni

ng

acid seed nonanol and acid seed nonanol  

 
 Isothermal analysis using pure nonanol, acidic seed solution, and nonanol with acidic seed 

solutions were conducted to ensure that oligomers were not formed by compounds at elevated 

temperatures which do not form oligomers at room temperatures.  Figure 3.3 shows that when held at 

70°C nonanol completely volatilizes.  The mass lost during the isothermal temperature analysis for 

the acidic seed solution can be mostly attributed to the water evaporation.  The water content was 

34% and the mass lost during the isothermal analysis was 30%.  The water content in the mixture of 

Figure 3.3. Isothermal analysis thermograms of nonanol (1.7 mg), acid seed solution (composition: 207 mg 
NH4HSO4, 2 mL H2SO4, 2 ml H2O), and nonanol (1.71mg) with acid seed solution (7.4 mg) Isothermal 
temperature program was 80 minutes at 70ºC and then ramped from 70ºC to 600ºC at 10ºC/min.  

° 
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nonanol and acidic seed was about 28%.  Figure 3.3 shows that the mass loss in the isothermal 

analysis of this mixture is mainly by water evolution.  It is assumed that most nonanol was converted 

into organic sulfate in the presence of excess amounts of highly acidic sulfuric acid, as suggested by 

Iinuma et al. (2007).  More importantly, the resulting organic sulfate is decomposed before 200°C.  

The thermogram of nonanol with acidic seed solution also shows only 2% of mass is not volatile 

which slightly increases the error of the oligomer mass determination.  

 In comparison a set of experiments was conducted with a mixture of pinonic acid-aqueous 

acidic seed solution.  Pinonic acid is a crystal at room temperature and not volatile therefore an 

isothermal analysis of the pure compound was not conducted.  Unlike nonanol the pinonic acid 

system produced oligomers in the acidic environment, which is expected due to the presence of a 

ketone on the molecule.   

 The differences between two different systems can be seen in the DTA for the two systems 

(Figure 3.4) which highlights the temperatures where the maximum volatilization occurred as peaks.  
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Figure 3.4. DTA thermograms of acidic seed solution and nonanol (65%wt), and acid seed 
solution and pinonic acid (15%wt), and acidic seed solution.  
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The nonanol-acid seed system shows a large peak between 130ºC and 200ºC, which corresponds to 

the volatilization of nonanol and the decomposition of organic sulfate.  The thermal evolution of 

semi-volatile organics, sulfuric acid and organic sulfate is at 155°C-240°C for the pinonic acid-acid 

seed system.  The shift in the peak temperature is consistent with the difference in volatilization 

temperatures for the solubilized compounds.  The peak between 240°C and 325°C corresponds to the 

decomposition of the oligomers in the pinonic acid-acid seed system.  The final peak (270-356°C) in 

the acid seed thermogram is the decomposition of inorganic species.   

 As the temperature increases the organic compounds in the absence of inorganics volatilized 

completely.  Unlike samples without inorganic seed, in the presence of acidic inorganics both pinonic 

acid and nonanol produced char.  Nonanol only formed 2% of the total mass as char (Figure 3.3), 

while this fraction was higher for the pinonic acid system.   

3.3.5 FTIR Spectral Analysis of TGA Samples 

 In order to further investigate changes in the composition of a sample due to the increasing 

temperature of TGA, pinonic acid mixed with acid seed solution was analyzed by TGA followed by 

FTIR spectrometry.  Samples composed of pinonic acid with mildly acidic and strongly acidic seed 

solutions were analyzed. The C=O bond is used to identify pinonic acid, which contains both a ketone 

and a carboxylic acid functional group.  The C=O of carboxylic acid absorbs sharply at 1730 cm-1 and 

the C=O of the ketone stretches at 1683 cm-1 (Figure 3.5A).  The inorganic fraction of the sample also 

contains strong characteristic peaks.  NH4 in ammonium hydrogen sulfate stretches appear at 3240, 

3090, 2890, and 1420 cm-1 and SO4
2- stretches near 1200, 1090, 850, and 588 cm-1. 

  The FTIR spectra of samples containing both pinonic acid and acidic seed solution are shown 

in Figures 3.5B and 3.5C.  The FTIR spectra taken prior to TGA analysis reveal the presence of both 

the inorganic seed solution and the organic acid in both the mildly acidic and strongly acidic samples.  

Initially the mixture samples have FTIR spectra peaks for the organics which are broader than the 

pure pinonic acid due to hydrogen bonding, oligomerization, and the formation of new products 

associated through various reaction pathways such as aldol condensation, ring opening, and 
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carbocation rearrangement.  Comparing the spectra taken before TGA analysis to the spectra taken 

after the sample was heated to 250ºC confirms the volatilization of semi-volatiles (e.g., pinonic acid 

and ring rearrangement products) as well as additional organic oligomeric mass remaining in the 

sample.  The sample after heating was a thick dark tar like substance. The sharp peaks corresponding 

to the C=O bonds of the carboxylic acid and ketones at 1730 and 1680 cm-1 are no longer present 

while a peak centered near 1705 cm-1 remained (Figure 3.5D).  The carboxylic OH stretching ranged 

from 2400 to 3700 cm-1 in the sample after TGA, although the absorbance was smaller compared to 

the original mixture before TGA.  Thus after TGA pinonic acid has volatilized confirmed by the mass 

loss by TGA and the remaining organic mass is concluded to be due to oligomers remaining in the 

sample.  

 Direct quantitative comparison of the mildly acidic and strongly acidic spectra is difficult as 

the ratio of organic to inorganic compounds varies between the two samples.  However, the FTIR 

spectra taken after TGA analysis are very similar, implying that the sample composition remaining at 

250ºC is very comparable.  Overall the FTIR analysis and TGA data (Figure 3.4) support our claim 

that semi-volatile organics will volatilize below 250ºC.  Changes to the sample above 250ºC does not 

effect interpretation of thermograms as the goal is to measure to semi-volatile fraction of aerosols and 

the oligomeric mass determined through a mass balance.  
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Figure 3.5. FTIR spectra of pinonic acid and mixtures of pinonic acid with acidic seed solutions before and after TGA 
analysis. A. pure pinonic acid B. Mildly acidic mixture: 2.3 mg pinonic acid and 9.4 mg mildly acidic seed solution 
(16 g NH4HSO4, 8 mL H2O and 5 mL of H2SO4) C. Strongly acidic mixture: 4.8 mg of pinonic acid and 8.5 mg of 
strongly acidic seed solution (1.0 g NH4HSO4, 1 mL H2O and 1.5 mL of H2SO4). D.  Enlarged section of C. 
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3.3.6 Decoupling Organic and Inorganic Aerosol Mass  

 The total aerosol mass (MTOT) is composed of four components as shown in equation 3.1:  

                               MTOT = Mseed + Msoc + Molig  + Morg-sul                                            (3.1) 

Msoc is the mass of semi-volatile organic compounds (SOC), Morg-sul is the mass of organic sulfate, 

Molig is the mass of organic oligomers, and Mseed is the mass of inorganic seed.  The total organic 

mass (OM) in the aerosol is the sum of Msoc, Molig, and the organic portion of Morg-sul.  In order to 

determine the oligomeric fraction in the SOA of the aerosol, the OM portion of the thermogram is 

separated from the total aerosol thermogram by subtracting the inorganic seed mass (Mseed) 

thermogram from the thermogram of the total aerosol.  The separated OM thermogram is then used to 

determine Molig.  Estimation of Molig is based on the assumption that Msoc and Morg-sul decompose and 

volatilize before the oligomers begin to decompose.  This assumption may not hold exclusively as 2% 

of the total mass remains as char in the alcohol-acid seed system, which forms Morg-sul, increasing the 

uncertainty in the oligomer mass estimation. 

 Mseed is estimated using the volume concentration of the inorganic seed from the SMPS data 

multiplied by the seed aerosol density, which is determined, estimated using a method developed by 

Semmler et al. (2006).  The water content of the seed aerosols at a given %RH was determined using 

ISORROPIA (Nenes et al. 1998) and further used for the density estimation of seed aerosols.  

OM is determined by multiplying the organic aerosol density by the volume difference 

between inorganic seed mass and the total aerosol assuming an organic aerosol density of 1.4g/mL.  

This assumed density is an average between the density of highly oxidized oligomers of similar 

chemical structure as expected in the sampled aerosol at 1.5g/mL (Rothe and Rothe 1989) and the 

reported SOA density for terpinolene of 1.29 and 1.19 for α-pinene (Bahreini et al. 2005) respectively 

which are the lower limits for the SOA density.   
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The OM thermogram is decoupled from the total aerosol TGA thermogram using equation 3.2, where 

the weight percent of the organic fraction with respect to temperature is wt%org(T) and wt%TOT(T) 

represents the weight percent at a given temperature for the total aerosol mass.   

It is essential that wt%seed(T), the weight percent with respect to temperature for the inorganic 

seed, represents the same volatilization rates as the inorganic seed core at a given temperature.  

Subtraction of the inorganic aerosol thermogram signal from the total aerosol thermogram is 

complicated by changes to the inorganic volatilization when in the presence of organic compounds.  

As previously mentioned in the presence of organic compounds, the thermal decomposition of the 

inorganic seed occurs at temperatures lower than the characteristic temperature of a pure sample.  In 

order to confirm that temperature shifts occurred for the seeded SOA, inorganic and organic mixed 

samples, thermograms for samples of (NH4)2SO4 were compared to an aqueous mixture of aqueous 

(NH4)2SO4 and pinonic acid, which is one of the major SOA products from the ozonolysis of α-

pinene.  Figure 3.6A shows the resultant DTA thermograms.  A temperature shift of 80ºC occurred 

when pinonic acid was mixed with (NH4)2SO4.  After shifting the thermogram, the two plots track 

each other closely (Figure 3.6B).  The degree of the temperature shift was determined by matching 

the temperature of the final peak in the DTA plot for the pure inorganic and the final peak in SOA 

seeded systems.   
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Figures 3.7A and 3.7B show the temperature shift for the SOA from the ozonolysis of α-

pinene in the presence of inorganic seed aerosol.  The inorganic aerosol thermogram is shifted by 

reconfiguring the thermogram so the temperature for the weight percent is lower than reorder by the 

TGA. Once the thermogram of the inorganic seed aerosol is adjusted for the temperature shift, 

equation 3.2 is then used to generate the OM thermogram comprising of monomers and oligomers.   

Figure 3.6. DTA thermograms. A: aqueous (NH4)2SO4 solution and aqueous solution 
containing both (NH4)2SO4 (16%wt) and pinonic acid (13%wt).  B: T shifted (ΔT=80ºC) 
aqueous (NH4)2SO4 solution and aqueous solution containing both (NH4)2SO4 (16%wt) and 
pinonic acid (13%wt). 

A 

B 
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The evaporation or condensation of organics is assumed to follow a Gaussian mode.  The 

DTA curve for self-nucleated SOA (no seed aerosol, Figure 3.7C) shows the presence of a large peak 

centered at 150°C which has a tail beginning at 209°C.  At this temperature SOC volatilization is near 

completion.  Both thermograms in Figure 3.7C show that the curve starts to deviate from the 

Gaussian distribution near 209 ºC. The start of the tail is the end of the SOC volatilization.  All mass 

beyond this point is attributed to oligomer mass.  The tail corresponds to the decomposition and 

volatilization of oligomers which occur at higher temperatures.  The slow decomposition of the 

oligomers is in keeping with typical polymeric thermal decomposition  (Kiyoura and Urano 1970) 

which progresses gradually as temperature increases.  The range of the characteristic temperatures for 

the SOC fraction in each SOA system was narrow as ΔT = 15°C.  This range is mainly due to 

differences in the organic aerosol composition of the different terpenes (Table 3.1).   
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Figure 3.7. DTA thermograms. A: aqueous neutral seed solution and neutral seeded 
α-pinene SOA; B: T shifted (ΔT=100ºC) neutral seed solution and neutral seeded α-
pinene SOA; C: OM only decoupled from neutral seeded α-pinene SOA using 
equation 2 and self nucleated α-pinene SOA (no seed used).  The arrow shows the 
slope change used to determine the monomer Tf. 
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3.4. Results  

 

 
3.4.1 Influence of Inorganic Seed  

  

3.4.1 Experimental Yield 

 The most common way to determine the SOA yield has been defined by Odum et al. (1996) 

and described by equation 3.    

 
HC

OM
Y

Δ
=      (3.3) 

The SOA yield (Y) is determined by OM dividing by the amount of hydrocarbons reacted (ΔHC).  

OM (μg/m3) is estimated by the difference between the initial Mseed and the final MTOT measured in 

the chamber (equation 1).  The larger Mseed can cause larger aerosol yields.  In Figures 3.8B and 3.8C, 
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Figure 3.8 Composition of aerosol.  A: neutral seeded α-pinene SOA, Mseed/ΔHC = 0.5;  B: acidic seeded  
α-pinene SOA, Mseed/ΔHC = 0.25; C: acidic seeded α-pinene SOA, Mseed/ΔHC = 0.1; D: acidic  
seeded terpinolene SOA, Mseed/ΔHC = 0.15. 
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as the fraction of Mseed increases the aerosol yield increases, as well as the fraction of oligomer 

present at %RH = 22-23.  The resulting Y were 0.63 and 1.32 at Mseed/ΔHC = 0.1 (Mseed = 180 μg/m3) 

and Mseed/ΔHC = 0.25 (Mseed = 600μg/m3), respectively.  SOA formed in the presence of neutral 

inorganic seed has a higher Y as compared to the self nucleated SOA (Table 3.1).  It appears that the 

presence of inorganic seed aids oligomer formation and increases the SOA yield.  This enhancement 

of oligomer formation can be explained by the presence of water contained in the inorganic seed 

aerosol as well as the slightly acidic nature of (NH4)2SO4.  The yield enhancement in neutral systems 

due to the presence of inorganic seed may be limited as Mseed/ΔHC increases because organic 

solubility may decrease by the presence of inorganics.   

3.4.2 Effect of Particle Acidity on SOA Formation 

The effect of particle acidity on the oligomeric fraction of seeded SOA was investigated for 

the ozonolysis of α-pinene in the presence of neutral and acidic inorganic seed aerosols.  Figures 

3.8A and 3.8B show the resulting aerosol compositions of the SOC, oligomer, and inorganic 

fractions.  The SOA formed in the presence of acidic seed (Figure 3.8B) has a much higher mass 

fraction of oligomer than the neutral seeded SOA (Figure 3.8A).  This observation is similar to the 

results of previous studies which have found higher SOA yields in the presence of acidic aerosols 

(Czoschke et al. 2003; Jang et al. 2006; Czoschke and Jang 2006; Northcross and Jang 2007).  More 

than half of the OM of the acidic aerosols in this study is composed of oligomers as shown in Figure 

3.8B.  Oligomeric matter is also found in neutral aerosols (Figure 3.8A) although the oligomeric 

fractions are much smaller compared to SOA formed in the acidic environment. 

3.4.3 Types of Terpenes  

The subsequent reactivity for particle phase acid catalyzed reactions of the products formed 

from ozonolysis of terpenes is partially dependant on the initial structure of the terpene being 

oxidized.  It is hypothesized that highly oxidized SOA products created from the ozonolysis of 

terpinolene are likely to be more reactive for particle phase reactions as compared to α-pinene-ozone 
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SOA (Northcross and Jang 2007).  The two double bonds in terpinolene can be completely oxidized 

in excess ozone concentrations creating more oxidized products than α-pinene.  Such multifunctional 

carbonyls in the terpinolene system increase oligomer formation (Jang et al., 2006) through the 

particle phase reactions in the aerosol, leading to a larger increase of mass formed in the acidic seed 

experiments in comparison to the neutral seed experiments.    

 Figure 3.8D presents the fractional composition of SOA produced from ozonolysis of 

terpinolene with acidic seed aerosol (Mseed/ΔHC = 0.10).  Comparison of α-pinene SOA (Figure 3.8C, 

Mseed/ΔHC = 0.1) and terpinolene SOA (Figure 3.8D) demonstrates the influence of different terpenes 

on the Molig fraction in SOA.  The Molig fraction is 0.72 for the total aerosol formed from the 

terpinolene SOA and 0.32 for α-pinene SOA.  Baker et al. (2004) reported a larger fraction of 

aldehyde products from terpinolene ozonolysis, suggesting that the product distribution is partially 

responsible for the aerosol mass differences. The aldehyde products are more reactive for particle 

phase reactions than ketones and carboxylic acids (Jang et al., 2006).   

3.5. Conclusion 

This study demonstrated the ability of TGA to measure the oligomeric fraction of an aerosol 

composed of both inorganic and organic compounds.  The methodology presented here is quantitative 

and practical for laboratory generated SOA.  This method is limited to experimentally formed SOA 

and is not yet applicable to ambient SOA due to the necessity of the prior knowledge of the organic 

and inorganic compositions.  However, if TGA is used in conjunction with current ambient aerosol 

characterizations techniques for analyses of major inorganic species and source apportionment 

methods for major primary particulate sources (Bhave et al, 2001), a reasonable estimate of the 

oligomeric fraction may be obtainable.  Future studies should focus on the thermal decomposition of 

mixed inorganic compositions (e.g. NH4-SO4-NO3-Na-Cl) which are ubiquitous in the ambient 

atmosphere.  
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The effect of heating the SOA may influence the formation of oligomers producing 

uncertainty in this technique and needs to be further studied through the studies of model compounds.  

Our study suggests that the heating effect is also expected to occur within OC/EC analysis adding 

another layer to the uncertainty of that technique as well.  The effect of charring on the quantified 

oligomeric fraction has been tentatively measured, but should be further explored in future studies 

which will also help to decrease the uncertainty of this technique.  However, the successful use of 

thermal denuders, which face many of the same uncertainties, to measure the nonvolatile fraction of 

both ambient and laboratory generated aerosols implies that this technique is applicable to filer 

collected SOA and will be useful to the aerosol community. 
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4.1 Introduction 

 In the ambient atmosphere aerosols are composed of both inorganic and organic compounds 

(Drewnick et al. 2004; Russell et al. 2004; Morishita et al. 2006), originating from primary and 

secondary sources (Zhao and Hopke 2006; Kleeman et al. 2007; van Donkelaar et al. 2007; Bae et al. 

2006; Pekney et al. 2006).  Primary aerosols are emitted directly into the atmosphere and are much 

easier to quantify in comparison to secondary aerosols which are formed in the atmosphere.  The total 

atmospheric aerosol composition can be modeled to estimate the concentration of various pollutants 

in the atmosphere, as well as to understand the effects of emission regulations a priori.  Regional 

atmospheric models are typically composed of modules which simulate the concentration of 

constituents, such as inorganic and organic aerosols, and also simulate atmospheric processes such as 

gas phase chemical reactions, weather phenomena, and secondary organic aerosol (SOA) formation.  

Component modules are typically used to simplify complex ambient atmospheric system processes.  

This approach, although extremely practical can be flawed when atmospheric processes are able to be 

influenced by components which are not contained in the module.  Secondary organic aerosol 

formation is one case when this occurs.  Inorganic aerosols are currently modeled separately from 

organic aerosol formation, but are able to influence SOA formation. In other words the whole may be 

greater than the sum of the parts. A model which considers the interaction between inorganic and 

organic compounds to accurately describe SOA formation using atmospheric models is needed. 

 SOA formation has traditionally been described using the thermodynamic partitioning theory 

developed by (Pankow 1994).  Thermodynamic partitioning describes SOA mass formation by the 

accommodation of oxidized gas phase products into preexisting particles and the establishment of a 

thermodynamic equilibrium between the gas and particle phases.  However, ambient aerosols can 

contain both organics and inorganic acid.  The inorganic acid constituents of ambient aerosols are 

able to catalyze particle phase reactions forming oligomers, altering the thermodynamic equilibrium, 

and causing further partitioning of gas phase products in order to reestablish the equilibrium.  The 

overall result of particle phase reactions are increases in SOA mass beyond that attributable solely to 
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thermodynamic partitioning.  The amount of particle phase acid catalyzed mass formed in SOA is 

affected by the inorganic compounds, the ability of the partitioned oxidized organic products to react 

within the particle phase, the relative fractions of inorganic and organic constituents, as well as the 

concentration of water in aerosol (Jang et al. 2002;Jang et al 2003).   

 This study presents an SOA model which attempts to the relative influences of 

thermodynamic partitioning as well as particle phase oligomer forming reaction on SOA formation.  

The proposed SOA model builds on the previous work (Czoschke and Jang 2006;Jang et al. 

2005;Jang et al. 2004;Jang et al. 2002;Jang et al. 2003;Northcross and Jang 2007;Tolocka et al. 2004) 

which has focused on characterizing, quantifying and describing heterogeneous acid catalyzed SOA 

formation.  The model presented here further expands a previous model (Jang et al. 2006), which 

described SOA formation from α-pinene in the presence of inorganic acidic aerosols to include 

limonene and terpinolene and also tests the model at concentrations which are atmospherically 

relevant.   

 α-Pinene, d-limonene, and terpinolene, the precursor VOCs, are biogenic terpenes.  Biogenic 

terpenes are responsible for as much as 70% of the organic aerosol mass formed in the Southeast 

United States (Weber et al. 2007). This model is rigorously tested against experimental data produced 

using an indoor smog chamber.  The model was tested using both the total aerosol mass formed from 

the ozonolysis of the terpenes in the presence of inorganic aerosols, as well as the measured organic 

oligomer fraction of the aerosols which was determined using thermal gravimetric analysis (TGA) 

(See Chapter 3).  We are able to determine the expected SOA mass from the ozonolysis of three 

monoterpenes in the presence of both inorganic acidic and neutral aerosols and able to determine the 

fraction of oligomer mass formed at atmospherically relevant concentrations.  The uniqueness of the 

model presented in this study is its ability to incorporate the influences pf both inorganic and organic 

compounds to estimate SOA mass.                  
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4.2 Experimental Methods 

 The SOA yield study was conducted in the UNC indoor 2m3 Teflon film smog chamber.  The 

monitoring equipment for the gas and particle concentrations includes: SMPS/CNC (TSI Model 3080 

and Model, 3025A respectively) for particle number and sizes, GC/FID (Shimadzu) for terpene 

concentration, ozone monitor (Thermo Electron Instruments UV Photometric O3 analyzer model 49), 

temperature and humidity probes.  In depth analysis of aerosol samples were conducted using Fourier 

transform infrared spectroscopy (FTIR) (Nicolet Magna-IR 560 Spectrometer - MCD detector), and 

TGA (Pyris 1, Perkin Elmer).   

 Inorganic seed aerosol was added to the chamber by atomizing seed solutions of varying 

compositions. Ozone was added to the chamber using an ozone generator.  Organic aerosol was 

formed by volatizing terpenes into the chamber where they reacted with ozone.  The aerosol formed 

was measured using a scanning mobility particle sizer in series with a condensation nuclei counter 

and the aerosol mass concentration was determined using the cumulative volume and an organic 

aerosol density of 1.4 g/m3 for SOA(Bahreini et al. 2005) and an estimated density for the inorganic 

aerosol from ISORRPIA (Nenes et al. 1998).  Table 4.1 contains a summary of the experimental 

conditions. 

Terpene 
Terpene 

Conc. 
(ppm) 

Acidity 
Level of 

Inorganic 
Aerosol  

%RH 
Inorganic 

Aerosol Mass 
Conc. (μg/m3) 

Ozone 
Conc. 
(ppm) 

n 

α-Pinene 0.05 - 0.25 Neutral 39-53% 399-511 0.3 18 
α-Pinene 0.05 - 0.25 Mild Acid 22-53% 44-509 0.3 11 
α-Pinene 0.05 - 0.25 Strong Acid 16-53% 124-600 0.3 21 

d-Limonene 0.05 - 0.25 Neutral 38-54% 119-305 0.3 17 
d-Limonene 0.05 - 0.25 Mild Acid 28-43% 117-372 0.3 11 
d-Limonene 0.05 - 0.25 Strong Acid 20-48% 130-364 0.3 22 
Terpinolene 0.05 - 0.25 Neutral 38-61% 178-396 0.3 21 
Terpinolene 0.05 - 0.25 Mild Acid 24-43% 187-437 0.3 10 
Terpinolene 0.05 - 0.25 Strong Acid 23-53% 123-320 0.3 14 

Table 4.1 Experimental conditions for chamber generated SOA formed from the ozonolysis of α-pinene, d-
limonene, and terpinolene in the presence inorganic aerosols.  n is number of experiments conducted. 
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 TGA was conducted on aerosols sampled on a quartz fiber filter taken at the conclusion of a 

chamber experiment.  Due to the minimum mass requirements additional experiments were conducted 

at higher terpene and seed aerosol concentrations to increase the SOA mass formed and sampled.  The 

fraction of inorganic to organic compounds in the aerosol was controlled to remain in the same range 

as the aerosol yield experiments.  The analysis technique used is fully described in Chapter 3 of this 

document.  TGA data interpretation of the inorganic/organic aerosols decouples and subtracts the 

inorganic fraction signal from the signal of the total aerosol.  The remaining thermogram represents 

the organic fraction.  The non-oligomer organic fraction of the aerosol is more volatile than the 

oligomer fraction.  At ~230°C the non-oligomer organic mass has volatilized, and the remaining mass 

is attributable to the oligomer fraction.  At temperatures higher the oligomer begins to decompose and 

at lower temperatures the non-oligomers are still present in the sample.  The oligomer fraction 

measured is compared to the model estimated particle phase acid catalyzed mass formed.   

4.3 Model Development 

 The proposed model is a compilation of three separate modules: gas phase chemistry, 

thermodynamic partitioning, and particle phase heterogeneous reactions.  The gas phase terpene 

ozonolysis mechanism and reaction products are modeled using the Master Chemical Mechanism 

(MCM) (Jenkin 2004) and protocol (Saunders et al. 2003).  The ozonolysis products formed are 

lumped into twenty groups based on thermodynamic partitioning, and acid catalyzed particle phase 

reactions.  The particle phase oligomer mass (OMH ) and the mass attributable solely to 

thermodynamic partitioning (OMP) are modeled for each product group using separated modules.  

The total organic mass (OM) formed is estimated by adding OMP and OMH (equation 4.1).   

 OM = OMP + OMH  (4.1) 

4.3.1 Gas Phase Mechanism 

 A prediction of the gas phase organic products from the ozonolysis of the reactive organic gas 

(ROG) is fundamental to model SOA formation.  An explicit gas phase kinetic model using the 

master chemical mechanism version 3 (MCM v.3) (Saunders et al. 2003; Jenkin 2004) was used in 
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this study.  MCM produces a near explicit product distribution for the reaction of ozone and α-pinene 

(Jenkin 2004) based on reactant structural reactivity.  The MCM protocol (Saunders et al. 2003b) was 

used to develop the gas phase model for ozonolysis of d-limonene and terpinolene.  The model 

predicted ozone and terpene decays of the ozonolysis of α-pinene, limonene and terpinolene are 

compared to experimentally observed chamber data in Figures 4.1 A, B, C.  Both ozone and terpene 

decays predicted by the MCM model reasonably agree with experimental data.  
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Figure 4.1 Gas phase terpene ozonolysis model estimation and smog chamber data. MCM model and 
protocol simulation for the decay of α-pinene, limonene and terpinolene with ozone and smog chamber 
experimental data for terpene and ozone decays.  Terpene concentrated measured using GC/FID, ozone 
concentration measured using ozone monitor.  Started adding ozone at time=0. 
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 The explicit model produces over 100 products in the gas phase.  Products estimated to have 

concentrations higher than 1×106 ppm were used in this study.  The products were classified based on 

estimated vapor pressures and their reactivity for heterogeneous reactions.   Vapor pressures of 

organic products are estimated using equation 4.2 (Schwarzenbach et al. 1992)  
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The boiling point (Tb) is determined using a group contribution method (Joback and Reid 1987) 

modified by (Stein and Brown 1994).  The entropy of vaporization (ΔSvap(Tb)) is estimated using a 

method developed by Zhao et al. (1999).  .Products are lumped into one of five vapor pressure groups 

labeled based on the partitioning coefficient which is inversely proportional to vapor pressures: VLP 

(10-8< kPa), LP  (10-8 – 10-6 kPa), MP (10-6 – 10-3 kPa), HP (10-3 - 10-1 kPa) and VHP (<10-1 kPa).  

Each vapor pressure group is further segmented into four groups representing their heterogeneous 

reactivity:  High (HR) , medium (MR) , weak (WR), and no reactivity (NR).  These groups are 

determined by the product structure and the chemical functional group heterogeneous reactivity using 

the ranking system: multifunctional aldehydes > aldehydes > ketones > carboxylic acids (Carey and 

Sundberg 2000; Jang et al. 2005).   For example, highly reactive products include α-carbonyl 

aldehydes, dialdehydes, or aldehydes with an alcohol group.  Medium reactivity products contain 

only one aldehyde group.  Low reactivity products contain ketones and carboxylic acids.  Products 

which are inert to particle phase reactions do not contain carbonyl groups.  Table 4.2 shows the 

representative structures for the lumped product groups for α-pinene, terpinolene, and limonene 

ozonolysis based on the estimated vapor pressures and reactivity.   

 The model was run for three terpenes of this study varying ozone concentrations.  The 

resulting product distribution is described with stoichiometric coefficients (αi), which remains almost 

constant when ozone is in excess.  The average value for αi is used in the model.    
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Table 4.2 Stoichiometric coefficients and representative product group structures from the MCM product distribution for the ozonolysis of  
α-pinene, d-limonene, and terpinolene. 
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4.3.2 OMH  Model 
 Jang et al. developed the OMH model (Jang et al. 2006) that estimates the formation of 

organic particle phase oligomer SOA mass. The heterogeneous particle phase reaction of partitioned 

oxidized organic products is described as a second order reaction, governed by the reaction rate 

constant kH  (equation 4.3) (Jang et al. 2005).  Within the OMH model, a sub-model calculates kH 

using a semi-empirical equation developed by Jang et al. (2005).        

                                          ( ) sICazxXrpKk HwinBHiH +++= ++ ,, log   (4.3) 

The rate constant accounts for both the structural influence of organic products on particle phase 

reactivity and the effect of the acidic inorganic aerosol.  pKBH+ describes the ability of a carbonyl to 

become protonated in acidic media and is determined using the representative structures for each 

product group.  I is a structural indicator variable, used to classify the reactivity of the product groups 

for heterogeneous reactions. The affect of the acidic inorganic seed aerosol on OMH is accounted for 

using the proton concentration (CH+), the activity coefficient (ain,w) of the water in the inorganic 

aqueous aerosol and the excess acidity (X) of the acidic inorganic aerosol.  The CH+ and ain,w are 

estimated using an inorganic thermodynamic model, ISORROPIA, developed by Nenes et al. (1998).  

The X is determined based on the fraction of pure sulfuric acid in the aerosol, and the relative 

humidity in the system (Jang et al. 2004; Cox and Yates 1978) and compensates for the non-ideality 

of the acidity in the inorganic aerosols.  r, x, z, and s, are the regression variables for the multi-

variable regression (Jang et al. 2005). 

  The total aerosol mass formed by heterogeneous reactions for each product group (OMH,) is 

determined by equation 4.4 (Jang et al. 2006).  The total mass is shown as the summation of the OMH 

produced for products groups based on heterogeneous particle phase reactivity (i), and 
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thermodynamic partitioning (j). 
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 (4.4) 

The derivation of equation 4.4 was performed by Jang et al. (2006) and a more in-depth description 

can be found in this reference.  The important features of this model include: the partitioning of a 

product group to an existing inorganic aerosol using thermodynamic partitioning; the influence of the 

mass of inorganic seed aerosol ( seedM ) present ; the heterogeneous rate constant of the organic 

products in the absence of inorganic seed aerosol ( tkoj
' ); the amount of terpene reacted by ozonolysis 

( ROGΔ ); the stoichiometric coefficient for each product group (αi,Hj); and the rate constant (kH,i) of 

organic species for the heterogeneous reactions (equation 4.3). 

 The partitioning of an organic species into an aqueous inorganic aerosol is different than an 

organic species partitioning into an organic aerosol.  The conversion of an organic species 

partitioning into aqueous inorganic aerosol is considered using the activity coefficients (γ) of the 

product group in water (w) and semi -volatile organics (om).  γ om are γ w is estimated using the UNIFAC 

(Choy et al. 1996) group combination method, for each product group i.  The aerosol mass differences 

are captured as the ratio molecular volume (V) and density (ρ) of water and organic monomer (om).   

4.3.3 OMP  Model 

 The aerosol mass formed solely by thermodynamic partitioning (OMp) is estimated by 

modifying the preexisting secondary organic aerosol model (SOGRAM) developed by Schell et al. 

(2001).  SOGRAM has been used for the estimation of SOA within regional scale atmospheric 

models.  SOGRAM was modified (equation 4.5) in this study to include the contribution of 
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Ci is the concentration of a product group in the aerosol (aer), the total product formed from the 

ozonolysis reactions (tot), and the concentration of compound i which oligomerizes (H).  C*
sat,i is the 

saturation concentration of compound i in the gas phase as determined by thermodynamic 

partitioning.   The term  
( )∑ =

+
n

a initinitaaaer mCmC
1 , //

 represents the total aerosol mass available for 

partitioning, (Pankow, 1994) Caer,a/ma is the total aerosol mass which is present in the aerosol by 

thermodynamic partitioning but does not include compound i and Cint/minit is the preexisting aerosol 

mass, which we treat as OMH.   Caer,a/ma is dependant on the compounds partitioning and is solved for 

iteratively using a combination of Newton’s method and a globally convergent strategy for nonlinear 

systems (Odum et al. 1996).  By summing OMH and OMP the total SOA mass is estimated.    The 

remainder of this paper illustrates the modules ability to estimate the SOA from three different 

terpene species, three inorganic aerosol compositions, and relative humidity ranging from 20-

50%RH. 
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4.4 Results and Discussion 
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Figure 4.2  Stoichiometric coefficients from terpene ozonolysis, grouped based on 
thermodynamic partitioning: very high partitioning (VHP), high partitioning (HP), medium 
partitioning (MP), low partitioning (LP) and very low partitioning (VLP), and heterogeneous 
reactivity: highly reactive (HP), medium reactivity (MR), low reactivity (LR), and non-reactive 
(NR) A. α-pinene ozonolysis, B terpinolene ozonolysis, C d-limonene ozonolysis. 
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4.4.1 Product Distribution 

 The differences in the aerosol mass formed from the terpene systems are due to both the 

partitioning coefficients of the oxidized products as well as the particle phase reactivity.  Figure 4.2 

shows the stoichiometric coefficients for the gas phase oxidized products formed by MCM.  The 

products for the three terpenes are ranked by partitioning and reactivity. Table 4.2 shows the 

representative structures for each of the product groups.   

 Comparing the product groups of the three terpenes shows that terpinolene and α-pinene have 

the most volatile products. The majority of the products formed in the α-pinene ozonolysis reactions 

are the low partitioning and very low partitioning groups.  In comparison d-limonene has a product 

distribution which is more evenly spread over all of the partitioning groups.  

 The product grouping based on the heterogeneous reactivity is also shown in Figure 4.2.  d-

Limonene forms the largest concentration of highly reactive products, with very few products that do 

not react heterogeneously.   Terpinolene has low and no reactivity products and the α-pinene 

ozonolysis products are mostly composed of medium and low reactivity products.  The combination 

of high partitioning and high reactivity makes d-limonene less sensitive to changes in particle phase 

acidity. The d-limonene products readily react in the particle phase regardless of particle acidity 

compared to those of α-pinene and terpinolene.  The largest fraction of terpinolene products which 

participate in particle phase reactions are grouped in the low reactivity group.  Terpinolene derived 

SOA is more sensitive to changes in particle phase acidity (Northcross and Jang, 2007).  For products 

which have a low reactivity for particle phase reactions, a strongly acidic particle will have more 

effect on the particle phase reactions by causing a large change to the reaction rate compared to more 

reactive products.  High reactivity products also see an increase in the reaction rate due to increased 

particle acidity.  However, the increase to the rate is not as large because these products are not as 

sensitive to inorganic acidity. 
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 It is not possible to predict the total aerosol mass by only examining oligomerization through 

heterogeneous reactions or thermodynamic partitioning.  For example, terpinolene has lower values 

for partitioning than α-pinene but produces more aerosol mass Figure 4.3.  It may appear that particle 

phase reactivity drives SOA mass formation, but this assumption only holds in this specific study due 

to the similarity in the vapor pressure ranges of the gas phase reaction products.  Isoprene a 5 carbon 

monoterpene species produces products with very high particle phase reactivity but very high vapor 

pressures that significantly reduce the SOA formation.   

4.4.2 Total SOA Production 

 Figures 4.3 A, B and C show the total SOA mass estimated using the OMP and OMH models 

compared to the chamber produced SOA for each of the three terpenes.  The total SOA production 

was tested against SOA formed in the presence of inorganic aerosols of neutral, mild and strong 

acidity and at two different relative humidities. 

 In previous studies (Jang et al. 2005; Czoschke and Jang, 2006; Northcross and Jang, 2007) 

we have shown that as the relative humidity increases the particle phase acidity decreases, as well as 

the acid catalyzed particle phase reactions rate. Figure 4.3 highlights the capability of the model to 

simulate the decrease the in the production of particle phase organic aerosol mass.  When the seed 

mass and chemical compositions are similar, the system with the higher humidity (~40%) produces 

less total aerosol mass, than the lower %RH systems (~20%RH).  The model uses relative humidity to 

estimate the proton concentration, as well as the excess acidity, which quantify the acidity of the 

inorganic aerosol. Thus when the %RH is low the aerosol mass is higher due to increased 

heterogeneous aerosol mass being formed.  Terpinolene and α-pinene both show larger responses to 

humidity do to their increased responsiveness to acidity as compared to limonene (section 4.4.1).   

 It is important to note that as OMH increases, OMP simultaneously increases as well because 

OMH is treated as absorbing mass in the OMP model.  Thus the fraction of heterogeneous aerosol 

mass is less sensitive but the overall total aerosol mass changes.   The increase in particle phase 
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oligomer formation due to a lower the humidity is the largest for terpinolene, followed by α-pinene 

and d-limonene respectively.  The same order was also reported in the previous work by Northcross 

and Jang (2007).   
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Figure 4.3 Total SOA mass from terpene ozonolysis in the presence of inorganic aerosols at low and high %RH. Acid seed: 2:3 H2SO4/NH4HSO4 Mid-acid 
seed 3:7 H2SO4/NH4HSO4, neutral seed (NH4)2SO4. Black bar represent SOA from the smog chamber experiments, shaded bars are model results. 
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4.4.3 Oligomer Estimation 

 This model is distinct in that it is able to predict both total SOA mass as well as the SOA 

mass formed by heterogeneous reactions.  The model oligomer mass estimation is compared the 

aerosol phase oligomer formed experimentally and measured using a TGA technique (see Chapter 3).  

The TGA method uses temperature to separate the semivolatile fractions from the oligomer mass 

which is less volatile.  The maximum sample volume for the experimental setup was 1m3 which limits 

the amount of aerosol mass which can be sampled. TGA, requires at least 1mg sample therefore, the 

TGA set of experiments were conducted at concentrations which are higher than atmospheric 

concentrations.  We have maintained similar ratios of seed to SOA and assumed that the oligomer 

fractions will remain constant with higher aerosol mass concentrations; as long as the ratio of seed to 

SOA and ROG remains constant and all other parameters are similar.  Figure 4.4 shows a comparison 

of the oligomer fraction of the chamber sampled SOA and the subsequent model estimated values.  

The module is able to estimate OMH total mass within the uncertainty level. 
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Figure 4.4 Comparison of oligomer fraction of the organic SOA.  Oligomer fraction measured using TGA, OMH 
estimated using equation 4.3. Black bars are experimentally measured TGA oligomer fractions, shaded bars are 
model results from oligomer fractions estimated using the shown acidity and relative humidity. 
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4.4.4 Acidic Inorganic Seed Concentration and SOA Mass 

 SOA mass formation is not only dependant on the amount of terpene reacted but is also 

dependant on the inorganic aerosol mass concentration (Northcross and Jang, 2007).  As the 

concentration of inorganic aerosols increases, the subsequent SOA mass formed increases as well.  

Figures 4.2 A, B, and C, show that, as the concentration of inorganic seed aerosol increased, 

regardless of particle phase acidity, the observed aerosol mass increased. This suggests that the 

traditional method of estimating SOA based on the amount of reacted organic gas may not be an 

appropriate method for the estimation of SOA formed in the presence of inorganic aerosols.  This 

model compensates for the presence of differing mass concentrations of inorganic aerosols using the 

fH term, as defined by Jang et al (2006) in equation 4.5.  The term a, is determined empirically using 

chamber data and ranges from 0.11 to 0.18 due to the variance of SOA produced by the different 

monoterpenes.   

          

ROG
M

a
f

seed
h

+
=

1

1     (4.5) 

 The model is able to predict SOA mass when        is both large and small.  When the seed 

mass is dominate in the system and        is large and this occurs in nature in areas of high inorganic 

aerosol production (i.e. coastal areas, live stock farming, and industrial processes with high SO2 

emissions).  Small        values are representative of areas with high VOC emissions, such as 

agricultural areas and natural parks.  The model performs well with both small and large values.  At 

extremely small values equilibrium assumptions may not hold, and large values nucleation may 

become more important. The goal of this model was to predict the SOA mass formation from the 

ozonolysis of monoterpenes in the presence of inorganic aerosols at atmospherically relevant 

conditions.  
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4.4.5 Uncertainty Analysis  

 The model is a compilation of three separate models (gas phase explicit model, OMP model, 

and OMH model) which all have their own inherent uncertainty.  In order to improve the confidence 

of this model it is imperative to be aware of the models limitations due to uncertainty.  The gas phase 

model is tested against chamber data which used an ozone monitor and a GC/FID measure the ozone 

and terpene decays respectively. Both instruments were calibrated and only measurements above 

detection limits for the gas phase chamber data were used.  However the estimated products are not 

measured.  Many researchers have invested lots of time and energy to fully characterize the product 

distribution of the gas phase ozonolysis products from monoterpenes. However both the quantitative 

and qualitative analysis of SOA is very poor due to the unavailability of authentic standards and the 

instability of products in analytical procedure.  Furthermore the complexity in SOA product 

characterization is increased through the potential of heterogeneous reaction in aerosol phase.  The 

approach of the Master Chemical Mechanism focuses on a more theoretical approach to this problem.  

Thus, there is an uncertainty for the quality of the product distributions and concentrations.  Such 

uncertainty can influence the quality of the model employed in this study.  

 Using the same product lumping scheme the measured products were grouped and compared 

to the products groups from the MCM model.  Yu et al. (Yu et al. 1999) accounted for 30% of the 

total molar product yield by the sum of the gas and the particle products, and the products measured 

have the largest concentration in the lumped groups as predicted by MCM, so they can be used 

compare the product group and experimental data.  Table 4.3 shows the comparison for the molar 

yield percents.   
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Product 

Group 

 

MCM molar 

yield 

Yu et al.  

(1999) 

Molar Yield 

VHP NR 2.1% 3.0% 

HP MR 0.3% 0.1% 

MP LR 2.4% 2.5% 

LP HR 0.9% 0.6% 

LP MR 3.6% 3.8% 

VLP MR 17.0% 11.6% 

 
The largest difference is 6% for group VLP MR, however this is also the largest product group for 

both MCM and Yu et al. (1999).  The close accuracy to the measured value validates the product 

group values estimated from MCM.  It is difficult to repeat this comparison for terpinolene since very 

little product analysis has been conducted for the terpinolene and limonene ozonolysis product 

concentrations.   

 The uncertainty in the alpha values can be estimated to be about 25% in terms of absolute 

values, however what is of more importance is the distribution of the products among themselves.  

There is little variation in the order of molar yields increasing the confidence of the alpha values and 

MCM products.  The deviation the particle phase oligomer mass modeled and the actual oligomer 

mass can be determined by the difference between the TGA quantified oligomer fractions and the 

model estimated fractions.  The modeled oligomer fraction within 25% of the TGA quantified 

fraction.   

 The fraction of SOA formed by the oxidized gas phase products, is estimated as the 

difference between the total oxidized product concentration minus the equilibrated gas phase 

concentration, and the mass concentration for products from the formation of particle phase oligomers 

(equation 4.5).  The uncertainty in the estimation of OMP can be estimated from the largest value of 

uncertainty in the terms used to determine OMP.  The uncertainty from the gas phase equilibrated 

Table 4.3 Stoichiometric coefficients (αi) for the product 
group from with the highest partitioning constant and highest 
reaction rate constant for α-pinene terpinolene and limonene. 
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concentration is quantified by the error in the vapor pressure estimation.  Mackay et al. (1982) 

estimated that the vapor pressure equation has a mean error of 1.25, or 25%.  If the error in the vapor 

pressure is 25% this is the largest error in the estimation of Kp and subsequently the OMp.   

 Finally the uncertainty in the particle phase oligomer estimation can be quantified using 

equation 4.1 and estimating the error for each of the parameters we have determined that the error in 

the equation is 30%.  However when comparing the estimated values with the experimental values we 

find that this possible error is larger than the difference between experimental and model data 

suggesting that the difference may give a better estimation of the error in the model.  

4.5 Conclusion 

 This study demonstrates the ability of a novel approach to estimate SOA mass from terpene 

ozonolysis formed in the presence of inorganic aerosols using both heterogeneous and partitioning.  

The model permits us to estimate SOA at ambient conditions, for a range of relative humidities, 

inorganic aerosol mass concentrations, and three separate terpenes.  The model can be used to further 

investigate the effects of atmospheric conditions on the SOA formation, as well as the fractional 

composition of the SOA formed.   

 In the future the model frame work should be expanded for use with different reactive organic 

gases and condensed for the use with a regional scale model.  Additional work should also be 

conducted which includes the photo irradiation of terpenes in the presence different levels of NOx, as 

well as additional inorganic aerosols such as NaCl, NaSO4, NH4Cl and others.       
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CHAPTER 5 

Summary of Key Findings, Implications and Recommendation for Future Studies 

 

5.1 Key Findings and Implications 

 The three studies presented in this dissertation have contributed to valuable information about 

secondary organic aerosol particle phase reactions and their relationship to ambient inorganic 

particulates in the atmospheric aerosol field.  Using an indoor Teflon chamber, SOA mass formation 

in the presence of inorganic aerosols was investigated.  The SOA mass formation study quantified the 

ability of a terpene to participate in particle phase reactions, and illustrated the connection between 

the chemical structure of the gas phase reactant, the subsequent oxidized products and the reactivity 

for particle phase acid catalyzed reactions.  This study also showed that the quantity of aerosol mass 

formed from a specific reactive organic carbon is not only dependant on the concentration of reactant, 

but also the concentration of inorganic aerosol present in the system can influence the amount of 

aerosol mass formed.  As the inorganic seed aerosol increases so does the SOA mass formed. The 

increase in SOA also depends on the acidity of the inorganic aerosol.   

 These findings have implications on the modeling of SOA, as well as how the aerosol 

community describes the chemical and physical processes that govern SOA formation.  SOA mass is 

modeled in regional scale models using thermodynamic partitioning.  This dissertation has shown that 

thermodynamic partitioning is a major contributor to SOA but not the only process which should be 

considered to model SOA mass formation.   The SOA mass formation model has included both 

thermodynamic partitioning the as well as particle phase acid-catalyzed oligomer formation in the 

presence of inorganic aerosol. This approach more accurately represents the processes occurring 

during SOA formation. The oligomer fraction and total SOA aerosol mass both are estimated, which 
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provides additional information as to the composition of the aerosol.  This model has been 

constructed to allow the framework to be used to model SOA from ROGs not included in this study.  

This is can be achieved by simply adding the grouped stoichiometric coefficients for the ROG of 

interest. The mass balance approach of estimating total SOA allows for inclusion of additional SOA 

formation processes.         

 Beyond being able to model the fraction of oligomers formed due to the presence of inorganic 

aerosols, an experimental oligomer mass fraction estimation technique was developed using TGA 

which is targeted to bulk phase analysis of aerosols. The TGA method development study resulted in 

a new approach thermal analysis for aerosols.  By subtracting the inorganic aerosol signal, the 

evolution of the particle phase organics with response to temperature increase is captured.  The TGA 

study not only resulted in the development of a new analytical method, but also provide valuable 

information as to the how inorganics influence specific types of molecules.  Under acidic conditions 

alcohols were found to only form organic sulfate, while pinonic acid which contains and a carboxylic 

acid group and a ketone was able to form a small amount of oligomer.  Also the TGA study revealed 

a possible flaw in the use of organic carbon, elemental carbon (OC/EC) thermal analysis.  OC/EC 

analysis is a thermally based analysis technique which heats sampled aerosols, and analyzes the 

evolved gases.  Typically organic carbon is quantified at temperatures as high as 500ºC (Chow et al. 

2004), and the charring of organics are assumed to occur in the presence of oxygen gas. The TGA 

study showed that at temperatures above 250ºC the oligomer fraction of the aerosol begins to 

decompose and form char.  This char is quantified as EC in OC/EC analysis causing a possible 

underestimation of the OC fraction of aerosols.   

5.2 Recommendations for Future Studies 

 Acid catalyzed particle formation of organic oligomers in the presence of inorganic aerosols 

is a rapidly developing interest area within the atmospheric aerosol community. This study although 

narrow in focus has raised many questions which should be answered in future studies.  These 

questions can be grouped into studies which are related to atmospheric and aerosol chemistry and 
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studies which focus on the impact of oligomer formation on human health as well as the broader 

environment.   

5.2.1 Aerosol Chemistry Related Future Studies 

5.2.1.1 Photolysis 

 This study focused solely on SOA formed from the ozonolysis of monoterpenes in the 

presence of inorganic aerosols.  In the real atmosphere ozonolysis without photolysis mainly occurs at 

night, therefore additional studies are needed that focus on SOA from the photo-oxidation of reactive 

organic gases.  The product distribution of photochemically reacted organics will contain species 

which are nitrogen containing and may have a different effect on oligomer formation than the oxygen 

containing products of ozonolysis reactions. NOx a major component of ambient air pollution can also 

react photo-chemically to form nitric acid, which may also act as a catalyst for particle phase 

reactions and enhance oligomer formation.   

5.2.1.2 Aromatics 

 Although monoterpenes are an important precursor of ambient SOA, there are other ROGs 

which should also be studied.  In particular are aromatics.  Aromatics react in photochemical 

reactions to produce highly oxidized products which can be very reactive for particle phase reactions.  

In the presence of inorganic aerosols these products may form SOA yields which are not negligible 

despite having high vapor pressures. An investigation of the SOA yield and particle oligomer fraction 

is needed to better understand the ability of aromatics to generate SOA.  The highly reactive nature of 

these products may make them less sensitive to inorganic acidity, helping to further understand the 

point at which inorganic acidity fails to enhance SOA mass formation.      

 

5.2.1.3 Inorganic Aerosols 

 The effect of the inorganic aerosol was quantified using sulfuric acid, ammonium bisulfate, 

and ammonium sulfate.  Sodium, chloride, sulfate, and ammonium are the most prevalent 

atmospheric inorganic ions which can form salts from the various combinations of the ions, which 
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differ in acidity as well as hygroscopicity.  The effect on SOA formation and particle phase reactions 

forming oligomers in the presence of different inorganic salts should be determined.  Oligomer 

formation has been shown to be responsive to particle acidity, however what is unclear is if the 

response is dependent on the composition of the inorganic particle. Inorganics containing mixtures of 

various atmospherically relevant salts may help to explain further the relationship between inorganic 

particle phase acidity and the inorganic composition of the aerosol.  An even more atmospherically 

relevant study would be to use inorganic gases (NO2 NH3, SO2) which ultimately become inorganic 

aerosols, to quantify oligomer formation and SOA mass response to acidity. 

5.2.1.4 Mixtures of Organics 

 Similar to the possibility of an inorganic aerosol of mixed composition affecting the 

formation of particle phase oligomers, mixtures of organic aerosols may also have varied effects on 

the formation of particle phase oligomers.  For example the SOA produced from the ozonolysis of a 

50:50 mixture of terpinolene and α-pinene in the presence of a strongly acidic inorganic aerosol 

would be difficult to predict.  The α-pinene products have lower average vapor pressures and less 

responsivity to acidity, while terpinolene products have higher vapor pressures and are more 

responsive to acid-catalyzed particle formation.  But an additional layer complexity is added to the 

puzzle because terpinolene is much more reactive with ozone than α-pinene, thus, the time at which 

products are partitioning and reacting may influence the subsequent SOA formation.  As the reaction 

time progresses oligomer formation increases, which makes the organics become more solid like than 

liquid and decreases partitioning.  α-Pinene products which may partition and possibly react through 

particle phase reactions in a system without terpinolene may not contribute as much to the SOA mass 

when terpinolene is present.  This hypothesis should be tested as it may affect the SOA modeling of 

in realistic conditions.   

5.2.1.5 Organic Sulfate 
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 Oligomers are not the only product of particle phase reactions.  Recently there have been 

studies (Iinuma et al., 2007; Surratt et al., 2007) which have identified the formation of organic-

sulfate esters in SOA formed in the presence in ammonium sulfate-sulfuric acid inorganic aerosols.  

The identification of these compounds implies that an additional pathway of organic aerosol mass 

formation exists.  It is crucial to be able to quantify organosulfate formation and furthermore to be 

able to determine the conditions which aide in the formation of these products.  Modeling of organic 

sulfates may become important in the future if significant concentrations can be quantified.    

5.2.2 Environmental Future Studies 

 The affect of oligomer presence in SOA on human health is unknown.  Modeling the SOA 

mass and oligomer fraction in conjunction with an epidemiological study may help researchers to 

better understand which constituents of SOA are harmful to human health.    

 The health impacts of aerosols vary based on the composition of the aerosols.  Organic 

aerosols have been shown to have detrimental health effects. However the composition of the organic 

portion can vary and the presence of oligomers can also vary the physical properties of aerosols.  The 

impact on human health of the chemical and physical properties of organics containing oligomers 

should be quantified. Also the relationship between acidity, oligomers and health should also be 

investigated to better understand the observed relationship between increased adverse health effects in 

the ambient with SO2, but no measurable health effects in animal studies. Modeling the SOA mass 

and oligomer fraction in conjunction with an epidemiological study may help researchers to better 

understand which constituents of SOA are harmful to human health.   

 Overall this study has provided valuable information and has also highlighted how related 

areas of research are affected by the information learned through this study. 
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Appendix 
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A.1 Experimental Instrumentation Description and Calibration 

 
Smog Chamber Instrumentation 

Smog Chamber: 2 m3 Teflon chamber. Dimension: 1.0 m x 1.2 m x 1.8 m.  Chamber can be partially 

collapsed by suctioning the air using a vacuum to have a dimension of 1 m x 0.6 m x 1. m. The 

collapsed dimension is used to vent the chamber. 

 
 

Exhaust system: The laboratory exhaust system is used to evacuate the chamber.   

 

Clean Air Generator:  

Two clean air generators were used, a Whatman FT-IR purge gas generator 

(model 75–52) and an Aadco 73.  Both were connected to air compression tanks.  Room air was 

pumped into the tanks and compressed to remove excess water and airborne pollutants (tanks should 

Filtrer Sample 
Port/ Aerosol 
sample pump 

 •   •
Gas and aerosol 
injection port 

O3 
monitor 

Ventilation fan 
and Suction port 

• •
•

Clean air generator 

1 m 

1.2 m 

1.8 m 

Figure A.1 Smog chamber schematic

GC/FID 

SMPS/CNC 
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be emptied of compressed water once a week). Both clean air generators consisted of air filtrations 

systems which further purified the compressed air. 

 

 

Temperature and Relative Humidity Monitor:  

Hanna instruments thermo hygrometer HI 9160C 

 

Gas Chromatograph with Flame Ionization Detector:  

HP 5890 GC-FID Capillary column.  

N2 GC carrier gas flow rate 2.5 mL 

Column: DB-5 (15m x 0.53mm) fused silica capillary column (J & W Scientific INC, Cat# 1255012)  

Gas phase samples are taken through 1/16 in. stainless steel sample line connected to the chamber.  A 

six-port valve was used to sample the chamber air immediately after injecting a sample to the 

chamber. 

 

Scanning Mobility Particle Sizer in Series with Condensation Nuclei Counter .   

TSI (Model 3830) and TSI (Model 3025A) respectively.  The SMPS/CNC was configured to sample 

every 3 minutes for particle sizes 10 nm to 835 nm.  Imported data was corrected for multiple charges 

by the TSI software.         

 

Ozone Photometer 

Thermo Electron Instruments UV photometric 

O3 analyzer model 49  
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Aerosol Sampling Pump 

Gast model: DOA-P704-AA 

 

Aerosol Analysis Instruments 

Microbalance 

 

Fourier Transform Infrared Spectrometer (FTIR) 

Nicolet Magna-IR 560 Spectrometer equipped with a MCD detector 

 

Thermal Gravimetric Analyzer (TGA) 

Perkin Elmer Pyris 1 

N2 Purge gas, and actuator gas 
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A.2 Experiment Protocol 

A.2.1 Smog Chamber Experiments 

Initialization 

1. Evacuate chamber of air using exhaust system. Fill with room air twice and vent. Repeat 

twice. 

2. Fill chamber with clean air from clean air generator, humidify if necessary. 

a. Humidification: 

Pass clean air through bubbler inserted into flask containing deionizer water, and connected to 

chamber.  If humidity needs to be raised more than 20% then use a hot water bath to maintain an 

elevated flask water temperature. Air bubbled through water is pumped into the chamber. 

3. Once chamber is full, monitor the particle number concentration using the SMPS/CNC.  If 

the number of particles at any diameter exceeds 20, then vent chamber and repeat steps 1-3.  If all 

diameters are less than 20 then proceed to next step. 

 

Injection 

1. Inorganic seed solution is injected into the chamber using a TSI atomizer  to form the inorganic 

seed aerosol.  The inorganic seed aerosol is composed of 0.01M solutions of NH4HSO4, H2SO4 and 

(NH4)2SO4 all from Sigma Aldrich (99%, 95% and 99%). 

2. Terpene is injected by passing clean air through ozone generator and into the chamber at a rate 

of 5Lpm.  Monitor chamber ozone concentration during injection using ozone monitor, stop when 

desired concentration is achieved.  

3. Ensure the seed aerosol mass is not increasing.  SMPS/CNC should report a stable or slightly 

declining aerosol volume.  An increasing volume is a sign of a gas phase contaminants partitioning to 

the seed aerosol.  If this occurs, stop experiment and vent chamber.  

4. Terpene is injected into chamber using a heated manifold (Figure A.2) 
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5. Using GC/FID take gas phase samples to monitor terpene concentration.  Initially take        

sample as frequently as possible (~every 3 minutes).  As terpene decay begins to    GC/FID 

samples can be taken with less frequency 

6. Manually record O3 concentrations when GC/FID samples are taken. 

7. Monitor SOA mass using SMPS/CNC.  Samples are automatically taken every 3 minutes. 

8. Experiment is complete when SOA mass stops growing and begins to decline.  At this point if 

aerosol samples are taken is needed. 

Aerosol Filter Sampling 

1. Two types of aerosol filter samples were collected.  Samples for TGA and samples for FT-IR. 

2. FT-IR samples are collected in a specially designed Teflon aerosol sampler.  The sampler is 

designed to impact aerosols onto a ZnSe cell. 

3. The cell is placed into the FTIR for analysis. 

4. Aerosols were also sampled onto filters.  Quartz fiber filters were used to sample aerosol for 

TGA analysis, and Teflon filters were used to compare filters sampled aerosol concentrations 

with those measured by the SMPS/CNC.  The sampling technique was the same for both 

types of filters. 

5. A filter was pre-weighed using the microbalance, and then placed into the filter holder. 

6. The filer holder was connected to the chamber at one end and a pump on the other. 

7. A stop watch s started as the pump is turned on. 

Clean air 

Terpene 

Warm with heat 
gun 

Inject to chamber 

Figure A.2 Terpene injection manifold
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8. The volumetric flow rate is measured from the pump exhaust periodically throughout the 

sampling time.  The chamber is manually compressed as the air is suctioned out to maintain 

atmospheric pressure. 

9. After the chamber is fully compressed, the pump is turned off, time is recorded and the filter 

is weighted again using the micro balance. 

 

A.2.2 Aerosol Analysis 

A.2.2.1 Thermal  Analysis 

PerkinElmer Pyris 1  

Furnace Temperature Range: 20-1000°C 

 Scanning Rates: 0.1°C/minute to 200°C/minute 

 Temperature Precision: ±2°C 

Balance Tare: Reproducible to ±2 μg 

 Sensitivity: 0.1 μg 

 Accuracy: Better than 0.02% 

 Precision: 0.001% 

 Capacity: 1300mg 

Hang-down Wires High temperature quartz, nichrome, or platinum 

Sample Pans Platinum 60 μL 

 Purge Gases: N2  

 

 Temperature Program 

 Normal:Heating Rate: 10°C/minute to 30°C to 600°C 

 Isothermal:Heat 30°C to 250°C 

 Hold at 250°C for 1 hour  

 Heat 250°C to 600°C 
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 Micro Balance 

 

Materials 

Filter: 25 mm tissuquartz filters (Pallflex 2500 QAT-UP, 25 mm) 

Ammonium SulfateSigma Aldrich, 98% 

Sulfuric Acid Sigma Aldrich, 95-98%  

Ammonium BisulfateSigma Aldrich, ≥ 99%  

Deionized water 

Gast PumpDOA-P704-AA, 30 Lpm maximum flow rate   

Filter Holder:Brass 15mm Swage Loc reducing union reconfigured to hold a 13 mm diameter quartz 

filter 

Methods 

Aerosol Sampling and Aerosol TGA Method 

1. Bake filters to be used for the day at 400°C for 1 hour to remove any contaminants. 

2. Cut filter using circular hole punch to 13mm diameter circle. 

3. Weigh filter using microbalance and record mass. 

4. Place filter in filter holder and attached holder to chamber and pump. 

5. Start pump and timer. Record SPMS sample number and time.  

6. Measure pump exhaust flow rate using Gilibrator. 

7. After chamber appears to be fully evacuated, measure flow rate again using Gilibrator. 

8. While taking filter sample prepare TGA and Microbalance 

 Turn on TGA 

 Turn of N2 tanks, check pressure gauges.   

 Zero the TGA with an empty sample pan 

 Input file name information 

 Input temperature program 
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 Remove sample pan from TGA and zero microbalance using sample pan 

  

9. Turn of pump, stop timer, record time and SMPS sample number and time. 

10. Immediately remove filter from filter holder and place in pan. Weigh using microbalance. 

Record mass 

11. Place sample pan with filter on the wire pan hook in the TGA.  

12. Record the sample weight using TGA. 

13. Start sample run.  

  

Model Compounds Method 

Inorganic Aerosol Solutions 

1. Using ISOROPPIA determine the molar concentration of the aerosol, specific to initial seed 

solution composition and relative humidity.  

2. Make aerosol solution using the molar concentrations determined by ISOROPPIA 

3. Prepare TGA (Aerosol Sampling 8.) 

4. Measure a pre-baked filter (Aerosol Sampling 1.) using the microbalance.  

5. Add inorganic aerosol solution to the filter, trying not to add more than 7mg. 

6. Weigh filter with inorganic aerosol sample.  

7. Follow Aerosol Sampling 11-13 

 

Organic Model Compounds 

1. Follow Aerosol Sampling 8. 

2. Tare Microbalance using PT sampling pan. 

3. Add organics directly to sample pan, trying not to add more than 3mg. 

4. Follow Aerosol Sampling 11-13. 
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Data Analysis 

Raw TGA data is exported from the software in the form of tables of mass, and temperature.  The 

data is imported into excel for data analysis.  

 

A.2.2.2 FT-IR Analysis 

The FT-IR is used to identify relative changes in functional groups between samples, thus a 

calibration curve was not appropriate.  Also due to the large numbers of compounds present in SOA it 

would be extremely difficult to determine specific concentrations with first separating the 

components. 

 

Analysis was conducted for impacted SOA and samples of pinonic acid and inorganic seed aerosol 

solutions.  The samples were always placed on a ZnSe cell.  The detector temperature was lowered 

using liquid nitrogen, and clean low %RH air was introduced into the chamber which housed the 

detector to reduce the noise in the spectra gas phase contaminants.    

The clean chamber air was used as a zero reference, to compare the sample spectra against.  The 

resultant spectra were exported as raw data and analyzed using excel. 
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A.3 Instrument Calibration and Measurement Comparison 
A.3.1 Gas Chromatograph Calibration 
 

GC calibration was conducted using 

500L Teflon bag.  An initial volume 

(2- 5μL of 10% terpene solution) of 

terpene was volatilized into the bag 

by passing clean air through the 

injection tube and heating the tube 

with a heat gun.  The volumetric flow 

rate of the clean air was measured 

using a Gilibrator, the time was 

measured resulting in the volume of air in the bag.  A sample line was connected the bag and at least 

three GC measurements were taken at each concentration.  The terpene concentration changed by 

adding air to the bag.  The volume of dilution air added was measured using the Gilibrator and air 

injection time.  Flow rates varied between 15-30 Lpm. At least different concentrations were 

measured for each calibration curve.   

 The minimum detectable concentration was also measured by incremental serial dilutions 

until a discernible signal was no longer measured.  The minimum detectable concentration was 

determined as the concentration which was lower than the average standard error of all of the 

measurements above that level. 

Calibration curves were constructed each day, as the calibration factor changed daily. 

 

A.3.2 Mass Concentration Comparison SMPS/CNC vs. Filters 

It is not possible to calibrate the SMPS/CNC instrument.  In order to determine that the reported 

measurements where reasonable the aerosol mass measured in the chamber was compared to the 

Figure A.3 Example of calibration curve.  α-pinene in a Teflon 
bag with serial dilutions using clean air for concentrations from 
2.25 ppm – 0.32 ppm. 

y = 0.0003x - 0.0735
R2 = 0.9971
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SMPS/CNC estimated aerosol mass concentration.  Table A.1 show the results of α-pinene 

ozonolysis SOA. 

The aerosols were filtered on to a Teflon filter which was weighed both before and after sampling.  

The sample time was measured with a stop watch and the flow rate was measured every 8 minutes.  

The average flow rate was used to determine the mass concentration.  Table A.1 shows a comparison 

between the filter measured aerosol concentration and the SMSP/CNC estimated concentration using 

an inorganic aerosol density of 1.4 mg/m3 and an organic aerosol density of 1.4 mg/m3. 

 
SMPS/CNC 

Aerosol 
Mass 
μg/m3 

Filter 
Measured 

Aerosol Mass 
μg/m3 

Percent 
difference 

 378 390 3% 
249 220 13% 
373 352 6% 

  

  

Using Student’s t-test (t= 0.2) to compare the filter measured aerosol mass concentration in 

comparison to the SMPS/CNC estimated concentration shows the values are not statistically different.  

The SMPS/CNC provides a reasonable estimate for the aerosol mass concentration. 

A.3.3 Ozone Monitor Calibration 

The ozone monitor was calibrated using a two point calibration.  The clean air generator was 

connected directly a gas phase titration flask.  A zero air reading was taken.  The offset of the ozone 

monitor was changed so the reading for the zero air was 0.   

Next the flask was connected to an ozone source (Teledyne O3 Calibration) of 0.5535 ppm of ozone. 

The source concentration was measured using a different ozone monitor (Teledyne Instruments O3 

Photometer ML9811 series O3) which had been calibrated using a 5 point calibration curve. The 

ozone monitor span was reset to give a reading of 0.553 ppm.     

 

 

Table A1 SMPS/CNC estimated mass concentration for 
SOA from α-pinene ozonolysis in comparison to filter 
sample derived aerosol concentration. 
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A.3.4 TGA Calibration 

The TGA was purchased new from Perkin Elmer. The calibration of the instrument was conducted by 

the installation technician. A periodic calibration of the instrument was not conducted.   

The flow rate from the gas tank was periodically checked to ensure that the purge gas flow rate was 

stable.  The volumetric flow rate was measured using a bubble meter (Gilibrator).  Two N2 (National 

Welder, 99.99%) tanks were used. One tank was used to supply the actuator mechanism, and the 

second tank was for the purge gas flow.      
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A.4 Chamber Wall Loss 

Wall loss calculation is based on the exponential decay of the particle 

number at each in diameter (equation A.1) ( McMurray and Grosjean 

1985, see Chapter 3 references). N is the number of particles per 

cm3 at diameter Dp.  β is the loss coefficient of particles at diameter Dp 

and t is time.  

 
( ) ( ) ( )ppp

p DND
dt
DdN

β−=   (A.1) 

Solving equation A.1 results in an exponential equation (A.2).  

 ( )t
ot

peNN β=   (A.2) 

βp is found by fitting an exponential decay curve in the form of 

equation A.2 for each particle diameter size measured by the 

SMPS/CNC.  Table A.1 shows βp used for a series of experiments. βp 

was re-estimated after the chamber was cleaned and when the Teflon in 

the chamber was replaced. 

 The wall loss equation is applied after the seed particles are 

injected into the chamber.  Any particles lost to the walls before the 

injection has finished are not available to participate in partitioning and 

therefore are not corrected for. Once the particle number distribution is 

corrected the volume distribution can be determined using the 

corrected number of particles and the particle volume described 

as volume=πDp
3/8.  Figure A.4 shows the resulting cumulative volume 

distribution from an α-pinene ozonolysis experiment. 

 

Diameter (nm) βp
19.81 6.05E-04
21.29 5.10E-04
22.88 4.41E-04
24.58 3.47E-04
26.42 3.79E-04
28.39 2.42E-04
30.51 2.41E-04
32.78 2.59E-04
35.23 2.19E-04
37.86 1.90E-04
40.68 1.84E-04
43.71 1.67E-04
46.98 1.51E-04
50.48 1.33E-04
54.25 1.16E-04
58.29 1.08E-04
62.64 9.70E-05
67.32 8.55E-05
72.34 7.67E-05
77.74 4.14E-05
83.54 2.70E-05
89.77 4.78E-05
96.47 4.02E-05

103.66 3.30E-05
111.40 2.46E-05
119.71 1.86E-05
128.64 8.19E-06
138.24 1.53E-06
148.55 1.68E-06
159.63 2.53E-05
171.54 1.70E-05
184.34 5.12E-06
198.10 1.36E-05
212.88 4.46E-06
228.76 2.50E-05
245.82 2.64E-06
264.16 2.19E-06
283.87 2.53E-06
305.05 6.87E-06
327.81 3.87E-06
352.27 1.82E-05
378.55 5.45E-05
406.79 3.11E-05
437.14 3.17E-05
469.76 1.28E-05
504.81 6.24E-05
542.47 4.78E-05
582.94 3.31E-05
626.43 1.33E-04
673.17 7.91E-05
723.39 5.65E-05
777.37 3.40E-05
835.36 3.40E-05

Table A.2 Particle wall loss coefficients. 



112

Figure A.4 Particle wall loss for α-pinene ozonolysis and neutral seed. 
Loss calculation starts at end of seed injection.    
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A.5 Nebulizer Seed Aerosol Size Distribution 
 
The particle number distribution mode varied by seed aerosol acidity. Figures A.5-A.7 show the 

particle size distribution for the seed aerosols used in this study.   
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 Figure A.5 Acid seed particle number distribution, 25%RH Mode: 103 
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Figure A.6 Mid acid seed particle number distribution, 25%RH Mode: 89 

Figure A.7 Neutral seed particle number distribution, 42%RH Mode: 98 


