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Abstract
EVANGELOS A. EVANGELOU: Bayesian and Frequentist Methods for Approximate

Inference in Generalized Linear Mixed Models

(Under the direction of Richard L. Smith and Zhengyuan Zhu)

Closed form expressions for the likelihood and the predictive density under the Generalized

Linear Mixed Model setting are often nonexistent due to the fact that they involve integration

of a nonlinear function over a high-dimensional space. We derive approximations to those

quantities useful for obtaining results connected with the estimation and prediction from a

Bayesian as well as from a frequentist point of view. Our asymptotic approximations work

under the assumption that the sample size becomes large with a higher rate than the number

of random effects.

The first part of the thesis presents results related to frequentist methodology. We derive

an approximation to the log-likelihood of the parameters which, if maximized, gives estimates

with low mean square error compared to other methods. Similar techniques are used for the

prediction of the random effects where we propose an approximate predictive density from the

Gaussian family of densities. Our simulations show that the predictions obtained using our

method is comparable to other computationally intensive methods. Focus is given toward the

analysis of spatial data where, as an example, the analysis of the rhizoctonia root rot data is

presented.

The second part of the thesis is concerned with the Bayesian prediction of the random effects.

First, an approximation to the Bayesian predictive distribution function is derived which can

be used to obtain prediction intervals for the random effects without the use of Monte Carlo

methods. In addition, given a prior for the covariance parameters of the random effects we

derive approximations to the coverage probability bias and the Kullbak-Leibler divergence of

the predictive distribution constructed using that prior. A simulation study is performed where

we compute these quantities for different priors to select the prior with the smallest coverage

probability bias and Kullbak-Leibler divergence.
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CHAPTER 1

Introduction

A statistical model is a tool for describing random phenomena in terms of mathematical

equations. Although such models rarely manage to capture the phenomenon exactly, they are

still useful in the sense that they provide a way of understanding the phenomenon under study.

Here we focus on a specific model that is general enough to find many applications such as

in medical experiments (ex. 6.2 in Breslow and Clayton, 1993), genetics (ex. 6.6 in Breslow

and Clayton, 1993), environmental sciences (ex. 1 in Diggle et al., 1998), epidemiology (Zhang,

2002) among others.

The Generalized Linear Mixed Model (GLMM) is a type of model that is general enough

to be used for modeling data from discrete as well as continuous distributions and to allow for

different sources of variability in the mean response. The first feature is achieved by specifying

the mean of the response as a function (usually nonlinear) of some explanatory variables. The

second feature is achieved by modeling the mean of the response as a function of random

variables called the random effects.

An example

Consider the following example adapted from Zhang (2002). In this example, a plantation

of wheat and barley suffers from a disease called rhizoctonia that attaches to the roots of plants

and hinders the absorption of water and nutrients by them. In order to be able to apply

sufficient treatment to the plantation, we would like to construct a map showing the severity

of the disease in the whole area. To achieve that, a sample of 15 plants where each plant has

multiple roots was collected at 100 different locations and the number of roots and infected

roots were counted. The data are shown in Figure 1.1 where we can see the number of infected



roots out of the total number of roots observed at each location.
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Figure 1.1: Figure showing the infected number of roots out of the total number of roots
observed at the different locations.

The nature of the data does not allow us to model them as continuous variables but instead

they should be modeled as binomial where the probability of observing an infected root is

higher where the disease is more severe. In addition, since the data depend on the locations

that were drawn from, a separate sampling involving data from different locations would result

to a different disease mapping, therefore, the effect of the disease intensity at each location

should be considered random in order to account for the variability due to sampling, hence a

random effect. Furthermore, it is natural to assume that observations at nearby locations are

highly correlated compared to observations from locations that are far apart.

In this example we are interested in estimating any parameters associated with the prob-

ability of an infected root as well as any parameters associated with the correlation structure

of the random effects. Furthermore, a disease map should be constructed by predicting the

random effects associated with the probability of an infection.

Two questions related to Generalized Linear Mixed Models with statistical interest are (i)

estimating the parameters of the model and (ii) predicting the random effects. Methods exist
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for solving these questions, suitable for each problem. They can be split into two categories,

those that calculate the likelihood and the predictive density by simulations and those that

evaluate those quantities by approximating them. On the one hand, simulation based methods

become very accurate if the simulation is carried to a large size, but that is sometimes too

computationally intensive. On the other hand, approximation methods are faster but the error

of the approximation can be significant if the sample size is not sufficiently large, which makes

these methods biased.

This thesis is focused on results related to asymptotic methods. Approximate techniques

are used to derive an approximation to the likelihood with small error when the sample size

is large. Parameter estimation is then performed by maximizing the proposed approximation.

We compare the proposed method with other methods by simulations and find that it performs

very well compared to the other methods.

The same techniques are used for approximating the predictive likelihood. These lead us

to the definition of an approximate plug-in predictive density which has the Normal density.

Prediction intervals for the random effects are constructed by obtaining the necessary quantiles

of this approximate distribution. This method is also compared to other existing methods and

shows good performance compared to them.

From a Bayesian point of view, estimation and prediction is performed by drawing random

samples from the posterior distributions of the parameters and the random effects given the

sample. We derive a similar approximation to the Bayesian predictive distribution function and

show how our approximation can be used to derive corrections to the Bayesian (and frequentist)

prediction intervals using random sampling. Furthermore, we propose criteria for assessing

the performance of the prior based on approximations to the coverage probability bias and

Kullback-Leibler divergence.

The rest of the thesis is organized as follows. In chapter 2 we review the literature in

Generalized Linear Mixed Models and related topics. The model under study in this thesis

is defined in chapter 3 where we also derive some useful results that will be used later in

the thesis. Chapter 4 deals with issues related to the maximum likelihood estimation and

chapter 5 contains similar results in the case of the predictive density. An example on how

the theory in the previous chapters can be applied is presented in chapter 6. In chapter 7

3



we derive approximations to the Bayesian prediction quantiles. We also show how the bias of

the Bayesian predictive density and the Kullabck-Leibler divergence can be approximated and

describe how these quantities can be computed. A comparison of several Bayesian predictive

densities is performed constructed under different priors by comparing the coverage probability

bias and Kullback-Leibler divergence and selecting the one with the smallest of these.

4



CHAPTER 2

Background

2.1 Generalized Linear Mixed Models

Statistical models are generally used to explain the variability in the values of one variable,

the response, in terms of the values of other variables, the predictors. From a statistician’s point

of view, the challenges of any model fitting are developing a methodology for estimating the

parameters of the model, as well as predicting any unobserved random variables.

The simplest model, and the most widely studied, is the Linear Model. Its main assumptions

are that (i) the observations are independent, (ii) the mean equals a linear combination of the

predictors, and (iii) the variance of the response is constant for every observation. An additional

fourth assumption is sometimes made, that (iv) the observations are a sample from the Normal

distribution. Procedures for fitting linear models which are very easy to implement have been

developed. However, the above assumptions are not always satisfied, therefore the use of more

general models is necessary. Such models include the Generalized Linear Model (GLM) and the

Generalized Linear Mixed Model (GLMM).

The GLM generalizes on the assumptions (ii), (iii), and (iv) above in the following way:

(ii’) a monotone transformation of the mean equals a linear combination of the predictors, (iii’)

the variance is a function of the mean of each observation, and (iv’) the distribution of the

observations is a member of the exponential family. More specifically, suppose that we have

the sample

y1, y2, . . . , yn



which we want to model with respect to a set of covariates

x1,x2, . . . ,xn

Our data consist of a realization of the random variables Y1, . . . Yn which according to assump-

tion (iv’), the ith variable follows a distribution with probability density/mass function

f(y; θ, ω) = exp[ω−1{y θ − b(θ)} + c(y, ω)] (2.1)

for known functions b and c, and with canonical parameter θ and dispersion parameter ω.

Examples of distributions with density/mass function (2.1) are the Normal, Poisson, Binomial,

and Gamma distributions. For certain members of this family of distributions, the dispersion

parameter ω is known and is in general of less importance. The parameter θ on the other

hand, plays an important role, especially because of its relationship with the mean µ of the

distribution by the equation

µ = b′(θ) (2.2)

and needs to be estimated from the data. Furthermore, the variance, as a function of θ equals

v(θ) = ω b′′(θ) (2.3)

The function b is called the cumulant function and v is called the variance function (McCullagh

and Nelder, 1999).

A linear combination ηi = xT

i β of the response is called the linear predictor and according

to assumption (ii’), for some strictly increasing function g, called the link function,

g(µi) = ηi (2.4)

In the special case of the linear model, g is the identity function.

Note that by (2.2) and (2.4), a one-to-one relationship exists between θi and ηi. A natural

choice would be to choose g such that θi = ηi in which case g is called the canonical link

function. Canonical links have the property that the sufficient statistic for β is XTy, X being

6



the matrix with rows xi’s and y the vector of yi’s.

The GLMM introduces a further generalization of the linear model by relaxing the assump-

tion (i) that the observations are independent and assuming (i’) that they are conditionally

independent given an unobserved random variable Z called the random effect. In this case, the

linear predictor is written as

ηi = xT

i β + uT

iZ (2.5)

for known ui. A usual assumption of the distribution of the random variable Z is that is Normal

with mean zero and some variance Σ = Σ(γ) that is parameterized by an unknown parameter

γ, called the variance components, that is

Z ∼ N(0,Σ) (2.6)

In applications, assuming that the correct model is being used, two main questions arise

with statistical interest:

1. How to estimate the parameters β and γ, and

2. how to predict the random effects Z.

The solution to the first question is related to the notion of the likelihood while the solution to

the second question with the predictive distribution.

2.1.1 Maximum Likelihood Estimation

The most broadly used method for estimation in parametric models is that of maximum

likelihood estimation (MLE) originally proposed by Fisher (1912). The idea is to choose the

value of the parameters that maximizes the joint density of the observations, called the likeli-

hood. Under fairly weak regularity conditions the estimate obtained is asymptotically unbiased

and asymptotically efficient as the sample size increases.

In linear models, the calculations for deriving the MLE can be done analytically and closed

form expressions for the estimators of the parameters exist. This is not the case for the GLM and

the GLMM so numerical methods are used instead. The MLE for GLM is obtained by applying

7



the Iterated Weighted Least Squares algorithm (IWLS) as shown in Nelder and Wedderburn

(1972).

For the GLMM, the log-likelihood of the parameters (β, γ) given the observations y can be

written (up to a constant), using (2.1) as

`(β, γ|y) = −1

2
log |Σ(γ)| + log

∫
exp

{∑

i

yi θi(β,z) −
∑

i

b
(
θi(β,z)

)
− 1

2
zT

Σ
−1(γ)z

}
dz

(2.7)

where θi(β,z) is the expression of θ as a function of (β,z) obtained from (2.2), (2.4), and (2.5).

To understand the difficulties in calculating the MLE let’s consider the simple example

where there is only one random effect z ∼ N(0, γ), β is just an intercept term, and for each i,

yi|z ∼ Po(eβ+z). Then the likelihood of (β, γ) equals

L(β, γ|y) = eβ
∑
yie−

1

2
log γ

∫
exp

{
z
∑

yi − neβ+z − 1

2γ
z2

}
dz (2.8)

The integral in (2.8) does not have a closed form solution which makes it difficult to calculate

the likelihood accurately. Evaluation of (2.8) is possible using numerical techniques such as

Gauss-Hermite quadrature but as the dimension of z becomes larger, these methods become

unreliable. More advanced methods have been developed for estimation in GLMM. These

include simulation based methods, as in McCulloch (1997) and Booth and Hobert (1999), and

approximation methods as in Breslow and Clayton (1993) and Shun and McCullagh (1995).

Approximate Likelihood

The idea of the approximate methods is to approximate the log-likelihood in (2.7) by replac-

ing the integrand with an approximation of it which can be integrated analytically. Typically

the approximation is performed by applying Taylor expansion to the exponent of the integrand

in (2.7) around the point z̃ that the exponent is maximized. This method of approximating

integrals is known as Laplace approximation (Barndorff-Nielsen and Cox, 1989, sec 3.3). The

estimates are then obtained by maximizing the approximate likelihood.

Penalized Quasi Likelihood

Breslow and Clayton (1993) expanded the exponent of the integrand up to a polynomial of

8



second degree and suggested using an IWLS algorithm for obtaining the MLE. Their method

is outlined below:

Let

ψ(y,z;β, γ) = −
∑

i

yi θi +
∑

i

b
(
θi
)

+
1

2
zT

Σ
−1z (2.9)

i.e. the log-likelihood is `(β, γ|y) = −1
2 log |Σ| + log

∫
exp{−ψ(y,z;β, γ)}dz.

Let

z̃ = argmin
z

ψ(y,z;β, γ). (2.10)

Note that z̃ is a function of (y;β, γ). Then by Laplace approximation (eq. 4 in Breslow and

Clayton, 1993)

`(β, γ|y) ≈ −1

2
log |Σ| − 1

2
log |ψzz(y, z̃;β, γ)| − ψ(y, z̃;β, γ) (2.11)

where ψzz(y, z̃;β, γ) denotes the matrix of the second order derivatives of ψ with respect to the

components of z evaluated at z̃. For fixed γ, Breslow and Clayton (1993) noted that the term

log |ψzz(y, z̃;β, γ)| varies very little with respect to β, therefore the estimate of β is obtained

by maximizing −ψ(y, z̃;β, γ), which is of the form of the log-likelihood for GLM. Hence, the

IWLS algorithm which is used for obtaining the MLE β̂ in GLM can be used for estimating

β. Substituting β̂ into (2.11) and noting that the profile likelihood for γ has the form of the

likelihood if the data were following a Normal distribution, the estimate γ̂ is obtained by REML.

The obvious procedure to follow is first to set a starting value for γ, estimate β and use β̂ to

estimate γ. Then γ̂ is used to obtain a new β̂ which is in turn used to re-estimate γ. These

steps are repeated until the algorithm converges.

From computational point of view, apart from the challenge of finding z̃ when its dimension

is large, the algorithms suggested are easy to implement. Breslow and Clayton (1993) provided

several examples that their method applies but they noted that it doesn’t perform well in certain

examples, e.g when used to analyze binary clustered data. Breslow and Lin (1995) and Lin and

Breslow (1996) improved the method of Breslow and Clayton (1993) by including higher order

terms in the Taylor expansion of ψ but even so there are cases where the estimates are highly

biased. This is the case when the dimension of the random effects is comparable with the

9



sample size.

Direct Laplace Approximation

Shun and McCullagh (1995) looked at problems where the dimension of the random effects

increases with the sample size. This assumption is necessary for the variance components to

be estimated consistently but under this framework it is not clear if the remainder term in

the classical Laplace approximation is bounded. In their paper Shun and McCullagh derived a

formula that takes this into account by grouping terms according to their asymptotic order, an

application of which can be found in Shun (1997).

More specifically, they noted that a suitable approximation to the log-likelihood in (2.7) is

− ψ̃ − 1

2
log |Σ| − 1

2
log |ψ̃zz| +

1

8

∑

ijkl

ψ̃ijklψ̃
ijψ̃kl

− 1

8

∑

ijklmt

ψ̃ijkψ̃lmtψ̃
ijψ̃klψ̃mt − 1

12

∑

ijklmt

ψ̃ijkψ̃lmtψ̃
ilψ̃jmψ̃kt (2.12)

Here, the subscripts on ψ denote differentiation with respect to the elements of z, the su-

perscripts denote the inverse elements of the Hessian of ψ, ψzz and the tilde means that the

function ψ and its derivatives are evaluated at the z̃ defined in (2.10). In addition, the in-

dices in the summations range over the dimension of z. The expression in (2.12) is maximized

simultaneously over (β, γ) to obtain the corresponding estimates.

It should be noted here that although their method performs well for small sample sizes,

it becomes slow even for moderate samples because it involves the summation of many terms.

In fact, Shun in his application excluded some non-small terms from the likelihood to speed

up the convergence of the algorithm. Later, Noh and Lee (2007) found a way to include these

terms when the design matrix of the random effects has many zeros, which is the case of the

crossed random effects.

Although these approximation methods perform very well in many situations, the estimates

obtained are biased because of the error in the Taylor expansion. Of course the bias can become

smaller by including more terms in the expansion, as in Raudenbush et al. (2000), but on the

other hand, the approximations become harder to evaluate.
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Simulation based methods

The idea behind simulation based methods is to evaluate any integrals that occur by simu-

lating random numbers from an appropriate distribution. Under some regularity conditions, if

X1, . . . ,XN is an i.i.d. sequence and h(x) is some function then, by the Law of Large Numbers,

E(h(X1)) ≈ N−1
∑
h(Xi).

Note that the log-likelihood in (2.7) can be expressed as E(f(y|Z)) where the expectation

is taken over the distribution of Z which is N(0,Σ). A rather naive method to evaluate this

expectation would be to simulate a large number of random effects from (2.6), plug them into

f(y|z) and then average over the simulations. Unfortunately this simple method fails if the

sample size is large, and that is because the conditional density f(y|z) would be so small that

is numerically indistinguishable from 0.

Three suggestions were proposed by McCulloch (1997) with the key point of using the

Metropolis-Hastings algorithm to simulate from the distribution of Z|y.

Monte Carlo EM

The EM algorithm is an iterative method for maximizing the likelihood in the presence of

latent variables. In each iteration the parameters are chosen such that they maximize the expec-

tation E(log f(y,Z)|y) over the distribution of Z|y with parameters taken from the previous

iteration. The parameters are updated until convergence of the estimates.

In GLMM β is updated by maximizing

E(log f(y|Z;β)|y) (2.13)

and γ is updated by maximizing

E(log f(Z; γ)|y) (2.14)

Since none of (2.13) or (2.14) can be evaluated analytically, McCulloch (1997) suggests using the

Metropolis-Hastings algorithm to simulate a sample from the distribution of Z|y and evaluate

the expectations numerically. On the other hand, some testing has to be made on whether the

sample produced is approximately an i.i.d. sample from the target distribution. Alternatively

Booth and Hobert (1999) suggested two other algorithms that don’t require the simulation of
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a Markov Chain, and hence are more efficient than the one proposed by McCulloch.

Monte Carlo Newton-Raphson

In another point of view, instead of trying to maximize the log-likelihood, McCulloch (1997)

proposes estimating the parameters by setting the scores equal to 0. In this case, an estimate

for β is obtained by solving

E

(
∂

∂β
log f(y|Z;β)

∣∣∣∣ y
)

= 0 (2.15)

and for γ by solving

E

(
∂

∂γ
log f(Z; γ)

∣∣∣∣y
)

= 0 (2.16)

The left hand side of (2.16) has an analytical expression and it can be solved easily. On the other

hand (2.15) is not so easy to solve but it is evaluated numerically using the same algorithms as

with the Monte Carlo EM case.

Simulated Maximum Likelihood

The idea of Simulated Maximum Likelihood is as follows. Suppose there exists a random

variable Z∗ with density function f∗ such that f∗(z;β, γ) > 0 whenever f(z|y;β, γ) > 0. Then

the log-likelihood can be written as

`(β, γ|y) = logE

(
f(y,Z∗;β, γ)

f∗(Z∗;β, γ)

)
(2.17)

where the expectation is taken over the distribution of Z∗. The expectation is then calculated

numerically by simulating from the distribution of Z∗ and averaging. We noted earlier that

evaluating the log-likelihood by naive Monte Carlo integration is not possible but here if f∗ is

chosen appropriately then the simulated likelihood should be possible to evaluate. (In fact, the

best choice for f∗(z) is f(z|y).) To this end, McCulloch (1997) did not give a clear answer as

to what to choose for f∗ and in his example he chose f∗(z;β, γ) = f(z; γ) which is of course

unknown, but even in this case his method did not perform as well as the MCEM or MCNR

methods.
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2.1.2 Prediction

We now review methods for predicting the random effects themselves or other random

variables that are correlated with them such that conditioned on the random effects, they are

independent on the observations. We use the symbol Z0 for the variable that we want to predict

given a sample Y .

Best Prediction

The best prediction for the random variable Z0 is defined as the random variable Ẑ0 = Ẑ0(Y )

such that the mean square prediction error E{(Ẑ0 − Z0)
2} is minimized. This reduces to

Ẑ0 = E(Z0|Y ) which also depends on the parameters of the model. If the parameters were

known, the best predictor can be calculated either by using the Metropolis-Hastings algorithm

as was proposed by McCulloch (1997) or any of the two sampling methods of Booth and Hobert

(1999), or approximate the expectation using Laplace approximation (see Vidoni, 2006, for the

case of independent random effects). Of course, in most applications the parameters are not

known. A way to overcome this problem is to replace them with a good estimate, obtained using

one of the methods described in the previous section. This is known as the plug-in approach.

Plug-in approach

A method for obtaining prediction intervals is by constructing the predictive density, that is

the conditional density of the variable we want to predict given the observations: f(z0|y;β, γ).

It can be expressed as

f(z0|y;β, γ) =

∫
f(z0|z; γ)f(y|z;β)f(z; γ) dz∫

f(y|z;β)f(z; γ) dz
(2.18)

Similarly, the predictive distribution function is written as

F (z0|y;β, γ) =

∫
F (z0|z; γ)f(y|z;β)f(z; γ) dz∫

f(y|z;β)f(z; γ) dz
(2.19)

As we mentioned earlier, (2.18) and (2.19) depend on the parameters which are unknown. The

plug-in predictive density is constructed by replacing the parameters with their estimates based

on the sample y and is a rather simple to construct but on the other hand it has been criticized
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as failing to take into account the uncertainty in estimating the parameters and assumes that

they are the true values.

Barndorff-Nielsen and Cox (1996) made some suggestions on correcting the plug-in ap-

proach, although these have not been applied to GLMM. They considered the fact that the

plug-in and the true predictive distribution are related asymptotically by

F (z0|y; β̂, γ̂) = F (z0|y;β, γ) + k−1D(z0|y;β, γ) +O(k−3/2) (2.20)

as k → ∞ where k is some constant related with the sample size and D is a known expression.

Let zα be the quantiles obtained by inverting the true predictive distribution and ẑα be the

quantiles obtained by inverting the plug-in predictive distribution. Their first suggestion was to

estimate zα by ẑα1
where α1 = α−k−1D(ẑα|y; β̂, γ̂) in which case F (ẑα1

|y; β̂, γ̂) = α+O(k−3/2)

instead of O(k−1) that would have been if we used just ẑα. We should note though, that if

the correction is too large, then α1 might not be between 0 and 1. Their second suggestion

corrects ẑα directly by using ẑα − k−1D(ẑα|y;β̂,γ̂)

f(ẑα|y;β̂,γ̂)
as an estimator for zα which doesn’t have

the disadvantage of the first method and gives the same order of accuracy. Furthermore, they

derived an approximation to the predictive density of order O(k−3/2) given by

f(z0|y;β, γ) = (1 + r̂′(z0))f(z0 + r̂(z0)|y; β̂, γ̂) (2.21)

where r̂(z0) = D(z0|y; β̂, γ̂)/f(z0|y;β, γ) and r̂′(z0) = (d/dz0)r̂(z0).

2.1.3 Bayesian solution

We describe the Bayesian approaches to GLMM in a different section since from the Bayesian

point of view, there is no distinction between estimation and prediction.

A major concern regarding Bayesian analysis is the choice of prior distribution for the

parameters. On this subject, we note the papers by Zeger and Karim (1991) where they discuss

Gibbs sampling in longitudinal GLMM, Karim and Zeger (1992) for similar ideas in crossed

random effects models, Berger et al. (2001) and Diggle et al. (1998) discuss prior selection in

spatial GLMM while Natarajan and Kass (2000) provide priors for the covariance matrix in a
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general setting.

Bayesian Monte Carlo Methods

After the prior is selected, say β ∼ π(β) and independently γ ∼ π(γ), one proceeds by

calculating confidence regions from the posterior distributions π(β|y), π(γ|y), and f(z0|y). The

Monte Carlo methods proceed by constructing the conditional distributions π(β|y,z), π(γ|z),

f(z|y, β, γ), and f(z0|z, γ). As in general, these conditional distributions cannot be obtained

analytically (besides f(z0|z, γ) which is Normal), Markov Chain Monte Carlo techniques, such

as Gibbs sampler and Metropolis-Hastings, are used to simulate from them which sometimes can

be burdensome (see Clayton, 1996). In a recent paper, Fan et al. (2008) proposed a Sequential

Monte Carlo algorithm for simulating from the posterior distributions which is faster than

MCMC, though it does not completely avoid the simulation of Markov Chains.

Integrated Nested Laplace Approximation

Alternatively, Rue et al. (2009), suggest a new methodology based on Laplace approxima-

tion. Writing θ = (β, γ), they express the posterior as

π(θ|y) ∝ f(y,z; θ)π(θ)

f(z|y; θ)
(2.22)

and the Bayesian predictive density as

f(z|y) =

∫
f(z|y; θ)π(θ|y) dθ (2.23)

The idea is to replace the denominator of (2.22) with its Normal approximation using first

order Laplace approximation, centered around the point ẑ = argmaxz f(y,z; θ). Denoting the

aforementioned approximation by f̃G(z|y; θ) define

π̃(θ|y) ∝ f(y, ẑ; θ)π(θ)

f̃G(ẑ|y; θ)
(2.24)

Equation (2.24) is an approximation to the posterior of θ which can be used to substitute the

second term of the integrand in (2.23). The first term of the integrand is also computed by a

separate application of Laplace approximation. Finally, the integration in (2.23) is performed
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numerically by Gauss-Hermite quadrature.

This approach provides a quick and accurate way of obtaining approximations to the con-

ditional distributions of interest and therefore obtain accurate predictions to the parameters

and the random effects. On the other hand, the computational advantages of this method

are in effect when the inverse covariance matrix of f(z|γ) is sparse and when the number of

parameters is small.

Bayesian Predictive Distribution Function

In analogy to the plug-in predictive distribution, we note here the Bayesian predictive

distribution function

F (z0|y) =

∫∫∫
F (z0|z; γ)f(y|z;β)f(z; γ)π(β)π(γ) dz dβ dγ∫∫∫

f(y|z;β)f(z; γ)π(β)π(γ) dz dβ dγ
(2.25)

Several authors have argued for the Bayesian predictive distribution against the plug-in one in

the sense that it naturally takes into account the uncertainty in the parameters by assigning

the prior distribution (see Geisser, 1993), nevertheless this should not always be conceded as

Smith (1999) mentions examples where the plug-in predictive density performs better.

2.2 Modeling Geostatistical Data with GLMM

In this section we review methods for analyzing geostatistical data, that is, correlated data

observed over a continuous spatial domain S whose correlation arises through their dependence

on an unobserved spatial process Z = {Z(s), s ∈ S}. (s here is an index representing the

individual elements of S.) In practice, only a finite sample Y1, . . . , Yn is observed corresponding

to the sampling sites s1, . . . , sn and the objective is to predict the spatial process Z over the

whole domain S. In practice this is done by predicting Z(s) on a fine grid that covers S.

2.2.1 Gaussian Random Fields

A Random Field over the spatial domain S is a process Z = {Z(s, ω), s ∈ S, ω ∈ Ω} such

that for fixed s, Z(s, ω) is a random variable on a probability space, say (Ω,A,Pr) while for

fixed ω, Z(s, ω) is a realization of a stochastic process indexed by s.
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The mean µ(s) and covariance c(s, s′) of the random field Z are defined on S and S
2

respectively in the following way

µ(s) =

∫

Ω
Z(s, ω) dPr(ω) (2.26)

c(s, s′) =

∫

Ω
{Z(s, ω) − µ(s)}{Z(s′, ω) − µ(s′)}d Pr(ω) (2.27)

For simplicity, hereafter, we will avoid writing explicitly the second argument ω when we

describe Random Fields.

Note that the definitions in (2.26) and (2.27) can be written as µ(s) = E(Z(s)) and c(s, s′) =

Cov(Z(s), Z(s′))

Homogeneous Gaussian Random Field

In this section, we present a class of Random Fields, the isotropic Gaussian Random Field,

that is usually assumed in order to assist with the inference regarding the probability measure

Pr.

The random field Z(s) with mean µ(s) and covariance c(s, s′) is called weakly stationary if

for all s, s′ ∈ S the following three conditions hold:

1. E(Z(s)) = E(Z(s′)),

2. Cov(Z(s), Z(s)) <∞, and

3. Cov(Z(s), Z(s′)) can be expressed as a function of s− s′.

A weaker form of stationarity is a process that is intrinsically stationary defined by replacing

condition 3 above by

3’. Var(Z(s) − Z(s′)) can be expressed as a function of s− s′.

If in addition to 1, 2 and 3’, the following condition holds

4. Var(Z(s) − Z(s′)) can be expressed as a function of ‖s − s′‖.

then the process is called isotropic. If all conditions 1, 2, 3, and 4 hold then the process is called

homogeneous.
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A Gaussian Random Field is the Random Field Z on S where for every subset {s1, . . . , sk}

of S, the joint distribution of (Z(s1), . . . , Z(sk)) is Gaussian. In connection with the previous

definitions the distribution of a homogeneous Gaussian Random Field is characterized by its

mean µ, which without loss of generality we will assume that µ = 0, and by its covariance

function c(dii′) = c(si, si′) where dii′ = ‖si − si′‖.

Intuitively, the probability measure underlining a stationary Gaussian Random Field is

invariant under parallel transition of the co-ordinate system while for an isotropic Random

Field it is invariant under rotations of the co-ordinate system.

Here we only consider zero-mean homogeneous Gaussian Random Fields.

Covariance Structure

A common practice is to assume that the covariance function c(·) is parameterized by a few

parameters γ that have a reasonable interpretation regarding the structure of the covariance

between two sampling sites. Some forms of the covariance function c(·) are

1. Exponential:

c(d) =





γ1 + γ2, if d = 0

γ2 exp{−d/γ3}, if d > 0

(2.28)

2. Gaussian

c(d) =





γ1 + γ2, if d = 0

γ2 exp{−(d/γ3)
2}, if d > 0

(2.29)

3. Spherical:

c(d) =





γ1 + γ2, if d = 0

γ2{1 − 1.5(d/γ3) + 0.5(d/γ3)
3}, if 0 < d < γ3

0, if d ≥ γ3

(2.30)

4. Matérn:

c(d) =





γ1 + γ2, if d = 0

γ2
Γ(ν)

2ν−1

(
2
√
ν d

γ3

)ν
Kν(2

√
ν d/γ3) if d > 0

(2.31)
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γ1 is called the nugget and is interpreted as the variability due to measurement error and

microscale variation (i.e. the part of the variation that cannot be estimated because there are no

two sampling sites close enough to indicate it). γ2 is called the partial sill and is interpreted as

the variance of the random field if there was no nugget. γ3 is called the range and is interpreted

as the distance at which the correlation function reaches 0 for the spherical form, or 5% of

the partial sill for the other forms. In (2.31), ν is called the smoothness parameter and Kν

corresponds to the modified Bessel function of the second kind of order ν (Abramowitz and

Stegun, 1964).

The Gaussian Geostatistical Model

Suppose a Gaussian Random Field Z on S. In practice, we sample at s1, . . . , sk and observe

Y = (Y1, . . . , Yk) whose mean is affected by a set of covariates X. For simplicity, let Z =

(Z1, . . . , Zk), Zi = Z(si), i = 1, . . . , k so that Z ∼ Nk(0,Σ) where the (i, i′) element of Σ is

c(‖si − si′‖), parameterized by γ.

The simplest type of relationship we can have between the observations and the covariates

is to express the mean of Y as a linear combination of the covariates:

Y = Xβ + Z (2.32)

The model in (2.32) implies that the distribution of Y is k-dimensional Gaussian with mean

Xβ and covariance matrix Σ and in this case estimation of β and γ can be performed by either

weighted least squares, maximum likelihood, or restricted maximum likelihood.

Several tools under the name kriging have been developed for predicting the random variable

Z0 associated with the sampling site s0 under the model (2.32). The original work on this subject

was done by Krige (1951) and later developed by Matheron in a series of papers and books (e.g.

Matheron, 1962, 1963). For a collection of these methods see Cressie (1993).

2.2.2 Spatial GLMM

In many applications, for example when the observations involve counts, the Gaussian Geo-

statistical model (2.32) is not appropriate. Diggle et al. (1998) extended the Gaussian geosta-
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tistical model to include parametric families depending only on the mean of the spatial process

in the same way that the classical linear model is extended to the generalized linear mixed

model. In other words they define the linear predictor by

η = Xβ + Z (2.33)

and they assumed that the conditional distribution of the observations Y given the random field

Z is a member of the exponential family as defined in (2.1). In addition, all the assumptions

regarding GLMM also hold for the spatial GLMM and as a consequence, all methods that have

been developed for the analysis of GLMM can also be used for this model. Here we present a

few from the literature.

Bayesian MCMC

As we mentioned earlier, when we want to predict the random effect Z0 under GLMM, the

Bayesian approach has the advantage that it incorporates the unknowing of the parameters

into the prior. In their paper Diggle et al. (1998) assigned independent uniform priors with

bounded support for the components of β and γ and used Metropolis-Hastings to simulate

from the posterior distribution of γ while random samples from the posteriors of β and Z0 were

obtained by simulating from the normal distribution. Later on, Christensen et al. (2000) and

Christensen and Waagepetersen (2002) commented on the use of Langevin-Hastings algorithm

for the MCMC simulation as it leads to better convergence and mixing properties than the

Metropolis-Hastings algorithm. They also suggested the use of non-informative flat priors for

the components of β and non-informative inverse Gamma for the partial sill γ2. For the range

parameter γ3, the use of improper prior results to improper posterior, hence they used uniform

proper prior in the first paper and exponential prior in the second. The estimation of the nugget

γ1 was not considered.

Monte Carlo EM Gradient

In connection with the MCEM idea of McCulloch (1997), Zhang (2002) uses a Metropolis-

Hastings algorithm to simulate from the distribution of Z|y and calculate the expectations

(2.13) and (2.14) needed for the E step but instead of maximizing those expectations at the

M step, he applies a one-step Newton-Raphson update. This way he avoids performing full
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maximization of the expectations which can be cumbersome. For prediction, he noted that the

best predictor is expressed in terms of the expectations of the random effects at the sampling

sites conditioned on the observations, i.e.

E(Z0|y) =
k∑

i=1

wiE(Zi|y) (2.34)

where the vector of wi’s, w = c
T
Σ
−1, c = Cov(Z, Z0). Therefore, after the covariance parame-

ters are estimated, the best predictor for Z0 is obtained by evaluating (2.34) for each iteration

of Z|y and then averaging over all simulations.

Simulated Maximum Likelihood

Christensen (2004) demonstrated the use of Simulated MLE for the spatial GLMM. He

wrote the likelihood function in the form of (2.17) and used simulation to approximate it. As

we mentioned earlier, the best choice for f∗ is f(z|y;β, γ) which depends on the unknown

parameters. For this reason the author suggested simulating from f(z|y;β0, γ0) for some fixed

values (β0, γ0) which are believed to be close to the true ones and which are updated after a

few iterations.

2.3 Contribution of the thesis

This thesis contributes on topics related to Bayesian and frequentist methods for the analysis

of Generalized Linear Mixed Models. The basic idea is to use asymptotic expansions to compute

quantities of interest such as the likelihood or the predictive density. A key role is played by

Laplace approximation, a method for approximating integrals, where an approximation of this

type, suitable for our case, is derived. The particular feature of our approximation is that

it allows the dimension of the variable that is integrated to increase to infinity, a necessary

assumption for estimation and prediction for these models.

For parameter estimation, we propose an approximate likelihood method. There are several

advantages when estimating the parameters this way. First, as our simulations show, the

estimates obtained have low bias and mean square error and second, our method is fast to

compute. Some details are also given on correcting the bias of the approximation.
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We also suggest an approximate prediction method based on the same idea. We apply a

high order approximation to the predictive density and replace the unknown parameters with

their estimates, what is known as the plug-in approach. The proposed density belongs to the

Gaussian family and prediction intervals can be easily computed. We present a simulation study

where we compare our method with other approximate and simulation based methods and show

that our method has similar performance with the other methods with less computation time.

From Bayesian perspective, we investigate the issue of prior selection. We derive approxima-

tions to the coverage probability bias and Kullback-Leibler divergence of the Bayesian predictive

density constructed under different priors. These are computed for different simulations and

for possible choices for priors that are found in the literature. We make selection based on the

criterion of minimum coverage probability bias and minimum Kullback-Leibler divergence. Our

approximation to the coverage probability bias agrees mostly to the one obtained by simulations

but has smaller variation. We find that the best choices are uniform priors for the nugget and

range parameter while for the partial sill we recommend either uniform prior or inverse gamma.

Using exponential prior for the range, results to higher coverage probability bias unless the true

value is close to the mean of the exponential prior.
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CHAPTER 3

General Results

3.1 Model and Notation

Throughout this document we use indices to denote components, derivatives and summa-

tions. For the last purpose, any index that appears in an expression as a subscript and as

a superscript, a summation over all possible values of that index is implicit. For this reason

we will denote the components of a vector sometimes by subscripts and sometimes by super-

scripts. For example, the components of the three dimensional vector x will be written as

x1, x2 and x3 or as x1, x2 and x3 depending on the expression i.e. xix
i = xixi =

∑3
i=1(xi)

2

but xixi is the square of the ith element of x: (xi)
2. The (i, j) component of a matrix A

will be written as aij and its inverse (when exists) will have components aij. It is also conve-

nient to enclose any set of indices within square brackets to denote the sum over all partitions

of those indices of the products of the corresponding arrays and a number withing square

brackets to denote the different permutations of indices for the corresponding partition, i.e.

x[ijk] = xijk + [3]xijxk + xixjxk = xijk + xijxk + xikxj + xjkxi + xixjxk.

For any real function f(x), x ∈ R
k, its derivative with respect to the ith component of

x is denoted by a subscript i.e. fi(x) := ∂f(x)
∂xi

and fij(x) := ∂2f(x)
∂xi∂xj

. Furthermore, fx is the

gradient of f and fxx is the Hessian matrix. Based on our notation on matrix inversion, f ij

is the (i, j) element of f−1
xx : the inverse of the Hessian matrix. Finally, when we refer to the

probability density/mass function of a random variable, we will use the generic symbol f(·; ·)

with the random variables written at the left of the semicolon and the parameters at the right,

i.e. f(x; θ) is the density/mass of X depending on parameter θ and f(x|y; θ) is the conditional

density of X|Y . In a similar fashion, we will write F (·; ·) for the cumulative distribution



function. An exception will be made when the distribution is Gaussian, in which case we will

use the letters φ and Φ for the pdf and cdf respectively.

The vector of the response variable is denoted by Y with components {Yil i = 1, . . . , k, l =

1, . . . , ni} repeatedly sampled at k different locations within a spatial domain S. We assume

the existence of an unobserved homogeneous Gaussian random field Z over the whole spatial

region S such that conditioned on Z the observations are independent. We denote by Z the

k-dimensional vector that consists of the components of Z that correspond to the sampled sites

and we refer to it as the random effects. Furthermore, the mean µi = E(Yil|Zi) = b(θi) for some

known differentiable function b, called the cumulant function, such that b′ is strictly increasing,

and variance vi(µi) where vi is a known function called the variance function (McCullagh

and Nelder, 1999). The parameter θi relates to the linear predictor ηi = xT

i β + Zi through the

relationship µi = b(θi) = g−1(ηi) for some function g called the link function. In our asymptotic

analysis we consider the case in which k and ni increase to infinity with the ni’s having the

same order, min{ni} = O(n) but k is increasing in a lower rate, k/n → 0.

We assume that the joint distribution of the random field Z is Normal with mean 0 and

covariance matrix parameterized by γ, i.e. for the random effects Z we have,

Z ∼ Nk(0,Σ(γ)) (3.1)

Conditioned on Z, the density of Y has the form

f(y|z;β) = exp

{
k∑

i=1

yi(x
T

i β + zi) −
k∑

i=1

nib(x
T

i β + zi) +

k∑

i=1

c(yi)

}
(3.2)

for known functions b and c, where yi =
∑ni

j=1 yij. Note that the form of the density implies

conditional independence among the observations given the corresponding random effects. Al-

though in (3.2) we implicitly used the canonical link for the distribution of y, the results that

follow don’t necessarily require this restriction.

We are interested in estimating the parameters (β, γ) of the model as well as predicting a

component Z0 of Z that corresponds to an unsampled site.
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Under our model, the likelihood for the parameters is

`(β, γ;y) =

∫
f(y|z;β)φ(z; γ) dz (3.3)

which does not have an analytic expression. In addition, writing the distribution function of

Z0|Z as

Φ(z0|z; γ) = Φ

(
z0 − µ

τ

)
(3.4)

where Φ(·) denotes the standard normal distribution function and

µ = c
T
Σ
−1z (3.5)

τ2 = σ2
0 − c

T
Σ
−1

c (3.6)

σ2
0 = Var(Z0) (3.7)

c = Cov(Z, Z0) (3.8)

the predictive distribution function for Z0 given the data Y is

F (z0|y;β, γ) =

∫
Φ(z0|z; γ)f(y|z;β)φ(z; γ) dz∫

f(y|z;β)φ(z; γ) dz
(3.9)

Similarly, the predictive density is written as

f(z0|y;β, γ) =

∫
φ(z0|z; γ)f(y|z;β)φ(z; γ) dz∫

f(y|z;β)φ(z; γ) dz
(3.10)

Neither (3.9) nor (3.10) have an analytic expression and hence exact prediction intervals cannot

be calculated exactly.

Before we reach the point of proposing methods for obtaining maximum likelihood estimates

and prediction intervals, we derive a formula that allows us to approximate the likelihood and

the predictive likelihood when the sample size is large.
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3.2 Asymptotic Expansions of Integrals

3.2.1 Modified Laplace approximation

Shun and McCullagh (1995) proposed a modification of Laplace’s approximation that can

be used for evaluating integrals of the form

I1 =

∫
e−g(z) dz (3.11)

where g = O(n). Assuming that g has a unique minimum at ẑ, Shun and McCullagh suggest

an expansion of the integral around that minimum. They derive the identities

log I1 = −ĝ − 1

2
log

∣∣∣∣
ĝzz

2π

∣∣∣∣+
∞∑

m=1

∑

P,Q
P∨Q=1

(−1)t

(2m)!
ĝp1 . . . ĝpt ĝ

q1 · · · ĝqm (3.12)

I1 = e−ĝ
∣∣∣∣
ĝzz

2π

∣∣∣∣
−1/2 ∞∑

m=1

∑

P,Q

(−1)t

(2m)!
ĝp1 . . . ĝpt ĝ

q1 · · · ĝqm (3.13)

where the second sum in each of (3.12) and (3.13) is over all partitions P , Q such that P =

p1| . . . |pt is a partition of 2m indices into t blocks, each of size 3 or more and Q = q1| . . . |qm is

a partition of the same indices into m blocks, each of size 2. P ∨Q = 1 means that the union

of the graphs produced by joining elements in the same block of the two partitions is connected

e.g. Q = i1i2|i3i4 is connected with P1 = i1|i2i3|i4 but not with P2 = i1|i2|i3i4 (see Figure 3.1).

The summation over all the possible values of the 2m indices is also implicit.

�
�

�
�

�
�

�
�

�
��

i1

i2

i3

i4

i1

i2

i3

i4

Figure 3.1: Connected partitions Q and P1 (left) and unconnected Q and P2 (right)

These formulae require expressing the integrand in a fully exponential form while for the

results here we require the integrand to be written in the standard form (Tierney et al., 1989).
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In our approach, we consider the following integral:

I2 =

∫
exp {−g(z)} × f(z) dz (3.14)

where f is not necessarily positive. Suppose that z ∈ R
k, g(z) = O(n) has a minimum at 0

and f and its derivatives are o(n). We will develop a formula for the approximation of (3.14).

Taylor expansion of g around 0 gives

g(z) = ĝ +
1

2!
zi1zi2 ĝi1i2 +

1

3!
zi1zi2zi3 ĝi1i2i3 +

1

4!
zi1zi2zi3zi4 ĝi1i2i3i4 + . . . (3.15)

where the subscripts under g imply differentiation with respect to the indicated component of

z and the hats imply that the function or its derivatives are evaluated at 0. The indices range

from 1 to k and the sums are over all indices. Let ĝzz denote the hessian matrix of g evaluated

at 0.

A similar expansion of f around the same point gives

f(z) = f̂ + f̂j1z
j1 +

1

2
f̂j1j2z

j1zj2 + . . . (3.16)

Thus

I2 = e−ĝ
∫
e−

1

2
zTĝzzz exp

{
− 1

3!
ĝi1i2i3z

i1zi2zi3 − 1

4!
ĝi1i2i3i4z

i1zi2zi3zi4 − . . .

}

×
(
f̂ + f̂j1z

j1 +
1

2
f̂j1j2z

j1zj2 + . . .

)
dz

= e−ĝ
∫
e−

1

2
zTĝzzz

(
1 − 1

3!
ĝ[i1i2i3]z

i1zi2zi3 − 1

4!
ĝ[i1i2i3i4]z

i1zi2zi3zi4 − . . .

)

×
(
f̂ + f̂j1z

j1 +
1

2
f̂j1j2z

j1zj2 + . . .

)
dz

= e−ĝ
∣∣∣∣
ĝzz

2π

∣∣∣∣
−1/2

E

[(
1 − 1

3!
ĝ[i1i2i3]Z

i1Zi2Zi3 − 1

4!
ĝ[i1i2i3i4]Z

i1Zi2Zi3Zi4 − . . .

)

×
(
f̂ + f̂j1Z

j1 +
1

2
f̂j1j2Z

j1Zj2 + . . .

)]

where Z is a normally distributed random variable with mean 0 and covariance matrix ĝ−1
zz .
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Then,

I2 = e−ĝ
∣∣∣∣
ĝzz

2π

∣∣∣∣
−1/2 ∑

r∈{0,3,4,...}

∞∑

s=0

(−1)r
1

r!s!
ĝ[i1...ir ]f̂j1...jsE

[
Zi1 · · ·Zir · Zj1 · · ·Zjs

]

where we make the convention if r = 0 then ĝ[i1...ir ] = 1, if s = 0 then f̂j1...js = f̂ and if

r = s = 0 then E
[
Zi1 · · ·Zir · Zj1 · · ·Zjs

]
= 1

Using equation (2.8) from McCullagh (1987), I2 becomes

I2 = e−ĝ
∣∣∣∣
ĝzz

2π

∣∣∣∣
−1/2 ∞∑

m=0

2m∑

s=0

∑

P,Q

(−1)t

(2m)!
f̂j1...js ĝp1 . . . ĝpt ĝ

q1 · · · ĝqm (3.17)

where P is a partition of 2m− s indices into t blocks each of size 3 or more and Q is a partition

of the same indices together with {j1, . . . , js} into m blocks of size 2. It is not required for P

and Q to be connected.

In the special case where f(z) > 0, say f(z) = exp{h(z)}, then from (3.17),

log I2 = −ĝ + ĥ− 1

2
log

∣∣∣∣
1

2π
ĝzz

∣∣∣∣+
∞∑

m=1

1

(2m)!

∑

P,Q
P∨Q=1

χp1 . . . χpt · ĝq1 . . . ĝqm (3.18)

where

χi1···is =





ĥi1···is if s ≤ 2

ĥi1···is − ĝi1···is if s ≥ 3

3.2.2 Approximation to the ratio of two integrals

In the following sections we will need to approximate ratios of integrals e.g. when we want

to approximate conditional densities. Suppose we want to approximate

I2
I1

=

∫
exp {−g(z)} × f(z) dz∫

e−g(z) dz
(3.19)

Using equations (3.13) and (3.17)

I2
I1

=

∑∞
m=1

∑2m
s=0

∑
P,Q

(−1)t

(2m)! f̂j1...js ĝp1 . . . ĝpt ĝ
q1 · · · ĝqm

∑∞
m=1

∑
P,Q

(−1)t

(2m)! ĝp1 . . . ĝpt ĝ
q1 · · · ĝqm
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=

∞∑

m=1

2m∑

s=1

∑

P,Q

(−1)t

(2m)!
f̂j1...js ĝp1 . . . ĝpt ĝ

q1 · · · ĝqm (3.20)

As a demonstration of (3.20) suppose kn−1 → 0, and that f and its derivatives are O(1)

as k → ∞. In addition g and its derivatives are O(n) when the differentiation is performed

with respect to the same component of z, otherwise they are O(1). As we will show later in

Lemma 1, the inverse Hessian matrix of g is O(n−1) at the diagonal and O(n−2) at the off

diagonal elements as k → ∞. This a typical situation which we encounter in the subsequent

sections. The numerator of (3.19) is approximated by

f̂ − 1

8
f̂ ĝi1i2i3i4 ĝ

i1i2 ĝi3i4 +
1

8
f̂ ĝi1i2i3 ĝi4i5i6 ĝ

i1i2 ĝi3i4 ĝi5i6 +
1

12
f̂ ĝi1i2i3 ĝi4i5i6 ĝ

i1i4 ĝi2i5 ĝi3i6

− 1

2
f̂i1 ĝi2i3i4 ĝ

i1i2 ĝi3i4 +
1

2
f̂j1j2 ĝ

j1j2 +O(n−1 ∨ k2n−2) (3.21)

where besides the first term: f̂ , all the other terms in (3.21) are O(k n−1). A similar expansion

exists for the denominator by replacing f in (3.21) by 1. Thus (3.20) becomes after we take f̂

as a common factor

I2
I1

= f̂

(
1 − 1

8
ĝi1i2i3i4 ĝ

i1i2 ĝi3i4 +
1

8
ĝi1i2i3 ĝi4i5i6 ĝ

i1i2 ĝi3i4 ĝi5i6 +
1

12
ĝi1i2i3 ĝi4i5i6 ĝ

i1i4 ĝi2i5 ĝi3i6

− 1

2

f̂i1

f̂
ĝi2i3i4 ĝ

i1i2 ĝi3i4 +
1

2

f̂j1j2

f̂
ĝj1j2 +O(k2n−1)

)

×
(

1 − 1

8
ĝi1i2i3i4 ĝ

i1i2 ĝi3i4 +
1

8
ĝi1i2i3 ĝi4i5i6 ĝ

i1i2 ĝi3i4 ĝi5i6

+
1

12
ĝi1i2i3 ĝi4i5i6 ĝ

i1i4 ĝi2i5 ĝi3i6 +O(n−1)

)−1

(3.22)

Employing the identity (1 − ε)−1 = 1 + ε+O(ε2) we have in (3.22) after canceling between

the numerator and the denominator

I2
I1

= f̂

(
1 − 1

2

f̂i1

f̂
ĝi2i3i4 ĝ

i1i2 ĝi3i4 +
1

2

f̂j1j2

f̂
ĝj1j2 +O(k2n−1)

)

= f̂ − 1

2
f̂i1 ĝi2i3i4 ĝ

i1i2 ĝi3i4 +
1

2
f̂j1j2 ĝ

j1j2 +O(n−1) (3.23)
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CHAPTER 4

Likelihood Methods

Define

`(β, γ|y,z) = log f(y|z;β) + log f(z; γ) (4.1)

to be the log-likelihood when the complete dataset (y,z) is observed. Then, the likelihood

based only on y is defined by integrating over the unobserved random effects:

`(β, γ|y) = log

∫
exp{`(β, γ|y,z)}dz (4.2)

which is of the form (3.11). Joint maximization of (4.2) with respect to (β, γ) results to the

Maximum Likelihood Estimates for those parameters. In order to be able to derive the order

of the asymptotic approximations, we need to know the order of the elements of `−1
zz(β, γ|y,z),

the inverse Hessian matrix of the log-likelihood of the complete data. The following lemma

gives the answer

Lemma 1. If k = o(n) then the diagonal elements of `−1
zz(β, γ|y,z) are O(n−1) and the off

diagonal are O(n−2).

Proof. Keeping only the terms that depend on z, the Hessian of the complete log-likelihood

has the form

`zz = nD − Σ
−1

where D is diagonal with elements of order O(1) while Σ
−1 has elements of order O(1) and the

dimension of these matrices is k × k. Then, using the identity

(I − εA)−1 = I + εA+ ε2A2 + ε3A3 + . . .



we have

`−1
zz = (nD − Σ

−1)−1

= n−1D−1{I − n−1(DΣ)−1}−1

= n−1D−1{I + n−1(DΣ)−1 +O(k n−2)}

= n−1D−1 + n−2(DΣD)−1 +O(k n−3)

where we can see that the diagonal elements of `−1
zz (β, γ|y,z) are O(n−1) and the off diagonal

are O(n−2).

4.1 The Conditional Distribution of the Random Effects

We derive an approximation to the conditional distribution of the random effects Z given the

observations Y and the parameters (β, γ) by approximating the cumulant generating function of

the distribution in question. We first start by approximating the moment generating function.

Let `(z) be the complete likelihood defined in (4.1). For given (y, β, γ), ẑ = argmaxz `(z)

and denote the evaluation of `(z) and its derivatives at ẑ by a hat over the corresponding

function. Then

E(et
TZ|Y ) =

∫
et

Tze`(z) dz∫
e`(z) dz

= et
Tẑ − 1

2
et

Tẑti1ti2
ˆ̀i1i2 +

1

2
et

Tẑti1
ˆ̀
i2i2i2

ˆ̀i1i2 ˆ̀i2i2 +O(k2n−2)

= et
Tẑ

(
1 − 1

2
ti1ti2

ˆ̀i1i2 +
1

2
ti1

ˆ̀
i2i2i2

ˆ̀i1i2 ˆ̀i2i2 +O(k2n−2)

)
(4.3)

Therefore, by taking logarithms on (4.3) and using the fact that log(1 + ε) ≈ ε + o(ε2), we

observe that the cumulant generating function of the conditional distribution of the random

effects matches up to order O(k2n−2) the one of a k-dimensional Normally distributed random

variable with mean whose ith element is ẑi+
1
2
ˆ̀
i1i1i1

ˆ̀i1i1 ˆ̀i1i and covariance matrix whose (i1, i2)

element is −ˆ̀i1i2 .
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4.2 Fisher Information Matrix

For the Gaussian model, Mardia and Marshall (1984) showed that the MLE is consistent and

asymptotically Normal with covariance matrix having block diagonal form with two blocks, one

corresponding to the inverse Fisher information for β and one to the inverse Fisher information

for γ. We show a similar result for our model and derive the asymptotic form of the Fisher

information matrix.

Let

h(y|z;β) = − log f(y|z;β) (4.4)

h(z; γ) = − log f(z; γ) (4.5)

h(y,z;β, γ) = h(y|z;β) + h(z; γ) (4.6)

Then, the log-likelihood for the observed data is written as

`(β, γ|y) = log

∫
e−h(y,z;β,γ) dz (4.7)

so, up to first order,

∂

∂βm
`(β, γ|y) = −

∫
hm(y|z;β)e−h(y,z;β,γ) dz∫

e−h(y,z;β,γ) dz
≈ −hm(y|ẑ;β) (4.8)

∂

∂γj
`(β, γ|y) = −

∫
hj(z; γ)e−h(y,z;β,γ) dz∫

e−h(y,z;β,γ) dz
≈ −hj(ẑ; γ) (4.9)

where

ẑ = argmin
z

h(y,z;β, γ) (4.10)

We can show (see Appendix) that ẑ(Y ) converges to Z in probability as k → ∞, therefore, as

k → ∞, (∂/∂βm)`(β, γ|Y )
p→ −hm(Y |Z;β) and (∂/∂γj)`(β, γ|Y )

p→ −hj(Z; γ).

The asymptotic expression for the likelihood for β is the same as the likelihood for GLM

with a total of
∑
ni observations, hence the bias of the MLE for β has order O((

∑
ni)

−1/2).

Similarly, the asymptotic expression for the likelihood of γ is the same as the one in the Gaussian

case, therefore, according to the result of Mardia and Marshall, the bias of the MLE for γ has
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order O(k−1/2). Furthermore, since

E{hm(Y |Z;β)hj(Z; γ)} = E[E{hm(Y |Z;β)|Z}hj (Z; γ)] = 0,

the estimates for β and γ are asymptotically uncorrelated.

Let

`j1j2(β, γ|Y ) =
∂

∂γj1γj2
`(β, γ|Y ) (4.11)

and κj1,j2 be the (j1, j2) element of the Fisher information matrix. Then, it can be shown that

κj1,j2 = −E{`j1j2(β, γ|Y )} where

`j1j2(β, γ|Y ) = −
∫
hj1j2(z; γ)e−h(y,z;β,γ) dz∫

e−h(y,z;β,γ) dz
+

∫
hj1(z; γ)hj2(z; γ)e−h(y,z;β,γ) dz∫

e−h(y,z;β,γ) dz

−
∫
hj1(z; γ)e−h(y,z;β,γ) dz∫

e−h(y,z;β,γ) dz
·
∫
hj2(z; γ)e−h(y,z;β,γ) dz∫

e−h(y,z;β,γ) dz
(4.12)

Applying (3.20), an asymptotic expansion of (4.12) around ẑ is

`j1j2 = −
(
ĥj1j2 +

1

2
ĥi1i2j1j2ĥ

i1i2 − 1

2
ĥi1j1j2ĥi2i2i2ĥ

i1i2 ĥi2i2 +O(k2n−2)

)

+

(
ĥj1 ĥj2 +

1

2
(ĥi1i2j1ĥj2 + 2ĥi1j1 ĥi2j2 + ĥj1 ĥi1i2j2)ĥ

i1i2

− 1

2
(ĥi1j1ĥj2 + ĥj1ĥi1j2)ĥi2i2i2ĥ

i1i2 ĥi2i2 +O(k2n−2)

)

−
(
ĥj1 +

1

2
ĥi1i2j1ĥ

i1i2 − 1

2
ĥi1j1 ĥi2i2i2 ĥ

i1i2 ĥi2i2 +O(k2n−2)

)

×
(
ĥj2 +

1

2
ĥi1i2j2ĥ

i1i2 − 1

2
ĥi1j2 ĥi2i2i2 ĥ

i1i2 ĥi2i2 +O(k2n−2)

)
(4.13)

After some cancellation in (4.13), we approximate the (j1, j2) element of the information matrix

by

ĥj1j2 +
1

2
ĥi1i2j1j2ĥ

i1i2 − 1

2
ĥi1j1j2ĥi2i2i2ĥ

i1i2 ĥi2i2 − ĥi1j1ĥi2j2 ĥ
i1i2

+
1

4
(ĥi1i2j1 ĥ

i1i2 − ĥi1j1 ĥi2i2i2 ĥ
i1i2 ĥi2i2)(ĥi1i2j2ĥ

i1i2 − ĥi1j2ĥi2i2i2 ĥ
i1i2 ĥi2i2) (4.14)

where the error of the approximation is O(k2n−2).
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4.3 Approximation to the Likelihood

Write (4.2) as

`(β, γ|y) =

∫
exp{−h(y,z;β, γ)}dz (4.15)

and define ẑ by (4.10). Then by (3.12), ignoring the terms that don’t depend on the parameters,

`(β, γ;y) = −ĥ− 1

2
log |hzz|

− 1

8
ĥiiiiĥ

iiĥii +
1

12
ĥiiiĥiiiĥ

iiĥiiĥii +
1

8
ĥi1i1i1 ĥi2i2i2ĥ

i1i1 ĥi2i2 ĥi1i2 +O(k n−2) (4.16)

where the functions in the right hand side are evaluated at ẑ.

The terms ĥiiiiĥ
iiĥii and ĥiiiĥiiiĥ

iiĥiiĥii appearing in (4.16) have order O(k n−1) and the

term ĥi1i1i1 ĥi2i2i2ĥ
i1i1 ĥi2i2 ĥi1i2 has order O(k2 n−2). The remainder terms which are excluded

from (4.16), such as hiiiiiih
iihiihii and hiiiihiiiih

iihiihiihii, have order O(k n−2).

On the other hand, if k is too large, obtaining ẑ accurately can be numerically challenging.

A second approach would be to write the likelihood in the form of (3.14) i.e.

L(β, γ|y) =

∫
φ(z; γ) exp{−h(y|z;β)}dz (4.17)

where now h(y|z;β) = −∑ yiηi +
∑
nib(ηi). Then, letting ẑ = argminz h(y|z;β), we have the

following approximation

`(β, γ|y) = −1

2
log |Σ| − 1

2
ẑT

Σ
−1ẑ − 1

2
log
∣∣∣ĥzz + Σ

−1
∣∣∣+ 1

2

φ̂i1

φ̂

φ̂i2

φ̂
v̂i1i2

− 1

2

φ̂i1

φ̂
ĥi2i2i2 v̂

i1i2 v̂i2i2 − 1

8
ĥiiiiv̂

iiv̂ii +
5

24
ĥi1i1i1 ĥi2i2i2 v̂

i1i1 v̂i1i2 v̂i2i2 +O(k n−2) (4.18)

where vi1i2 is the (i1, i2) element of (ĥzz + Σ
−1)−1. Comparing (4.18) to (4.16), both have

the same asymptotic order. The main advantage of (4.18) is that it performs faster because

it doesn’t require the use of an optimization algorithm for finding ẑ and it can be consider an

alternative to other computational intensive methods such as MCMC. On the other hand, there

is no guarantee that it actually has a maximum as the high order correction terms sometimes

become too large and the resulted estimates become biased. A bias corrected estimate can be
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calculated in this using bootstrap methods, as described in the next section.

4.3.1 Bootstrap bias correction and bootstrap variance

Here we apply the methodology for bias correction via bootstrapping as described in Chapter

10 of Efron and Tibshirani (1993).

Denote by (β̂, γ̂) the maximizer of (4.18). The bootstrap estimate of the bias is obtained

as follows: First we independently draw B realizations from the underlying model with true

parameters (β̂, γ̂). For each realization r ∈ {1, . . . , B} we estimate the parameters of the model

by the approximate likelihood method. Let (β̂∗r , γ̂
∗
r ) denote the estimate from the rth realization

and define

β̂∗ = B−1
B∑

r=1

β̂∗r

γ̂∗ = B−1
B∑

r=1

γ̂∗r

Then an estimate for the bias of the approximate likelihood is given by

b̂ias(β̂) = β̂∗ − β̂

b̂ias(γ̂) = γ̂∗ − γ̂

and a bootstrap bias correction to our original estimates is

β̂ − b̂ias(β̂)

γ̂ − b̂ias(γ̂)

The bootstrap realizations can also be used to approximate the variance of our estimates:

v̂ar(β̂) = (B − 1)−1
B∑

r=1

(β̂∗r − β̂∗)2

v̂ar(γ̂) = (B − 1)−1
B∑

r=1

(γ̂∗r − γ̂∗)2
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As Efron and Tibshirani (1993) point out, bootstrap bias correction is not always effective.

In general, the variability of the estimates is increased, so they recommend applying the boot-

strap bias correction if the estimate of the bias is at least of the same magnitude as the estimate

of the variance.

4.3.2 Assessing the error of the approximation

Let

p(z) = ĥ+
1

2
ĥi1i2(z

i1 − ẑi1)(zi2 − ẑi2) +
1

3!
ĥi1i2i3(z

i1 − ẑi1)(zi2 − ẑi2)(zi3 − ẑi3)

+
1

4!
hi1i2i3i4(z

i1 − ẑi1)(zi2 − ẑi2)(zi3 − ẑi3)(zi4 − ẑi4) (4.19)

i.e. the first four terms in the Taylor expansion of h(z) around ẑ where h(z) is given by

either (4.4) or (4.6) according to whether (4.16) or (4.18) is used. Define the remainder of this

expansion by

r(z) = h(z) − p(z) (4.20)

where the functions h, p, and r implicitly depend on (β, γ,y). In the following we will assume

that (4.16) is used to approximate the likelihood but similar corrections can be carried when

(4.18) is used.

We have, after transforming to ẑ = 0,

∫
e−p(z) dz = e−ĥ

∫
exp{−1

2
zTĥzzz} exp{− 1

3!
ĥi1i2i3z

i1zi2zi3 − 1

4!
ĥi1i2i3i4z

i1zi2zi3zi4}dz

≈ e−ĥ
∫

exp{−1

2
zTĥzzz}

{
1 − 1

3!
ĥi1i2i3z

i1zi2zi3 − 1

4!
ĥi1i2i3i4z

i1zi2zi3zi4

+
1

2

(
1

3!
ĥi1i2i3z

i1zi2zi3 +
1

4!
ĥi1i2i3i4z

i1zi2zi3zi4
)2
}

dz

= e−ĥ
∣∣∣∣

1

2π
ĥzz

∣∣∣∣
−1/2(

1 − 1

8
ĥi1i2i3i4 ĥ

i1i2 ĥi3i4 +
1

8
ĥi1i2i3 ĥi4i5i6 ĥ

i1i2ĥi3i4 ĥi5i6

+
1

12
ĥi1i2i3 ĥi4i5i6 ĥ

i1i4ĥi2i5 ĥi3i6 +
1

128
ĥi1i2i3i4 ĥi5i6i7i8 ĥ

i1i2 ĥi3i4 ĥi5i6 ĥi7i8
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+
1

16
ĥi1i2i3i4 ĥi5i6i7i8 ĥ

i1i2 ĥi3i5ĥi4i6 ĥi7i8 +
1

48
ĥi1i2i3i4 ĥi5i6i7i8 ĥ

i1i5 ĥi2i6ĥi3i7 ĥi4i8
)

(4.21)

which by (4.16), is equal to the likelihood L(β, γ|y) up to order O(k n−2). Denote the right

hand side of (4.21) by L̂0(β, γ|y) and

(β̂0, γ̂0) = argmax
(β,γ)

L̂0(β, γ|y) (4.22)

Now write

L(β, γ|y) =

∫
e−h(z) dz

=

∫
e−p(z)−r(z) dz

=

∫
e−p(z) dz

∫
e−p(z)

∫
e−p(z) dz

e−r(z) dz (4.23)

The first term in (4.23),
∫
e−p(z) dz, is what we propose in (4.16), hence

∫
e−h(z) dz =

∫
e−p(z) dz

(
1 +O(k n−2)

)

On the other hand,

e−p(z)

∫
e−p(z) dz

≈ e−h(z)

∫
e−h(z) dz

= f(z|y;β, γ)

so, by writing the second integral in (4.23) as

R(β, γ|y) =

∫
e−p(z)

∫
e−p(z) dz

e−r(z) dz ≈
∫
f(z|y;β, γ)e−r(z|y;β,γ) dz (4.24)

we obtain an expression of the error of the approximation.

There are two ways we can evaluate the right hand side of (4.24), both of which use the

result from section 4.1, namely that f(z|y;β, γ) is approximately the Normal density. The

first method is by importance sampling using the Normal approximation to f(z|y;β, γ) as the
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importance density. Let R̂2(β, γ|y) be the remainder approximated this way and

L̂2(β, γ|y) = L̂0(β, γ|y)R̂2(β, γ|y) (4.25)

The approximate likelihood estimates are obtained by maximizing (4.25) with respect to the

parameters, i.e.

(β̂2, γ̂2) = argmax
(β,γ)

L̂2(β, γ|y). (4.26)

Davis and Rodriguez-Yam (2005) applied this method to correct the Laplace approximation

under a different setting and found that (β̂2, γ̂2) has smaller bias compared to (β̂0, γ̂0). On

the other hand, random sampling has to be performed at every function evaluation of the

optimization algorithm used to maximize (4.25) which can be time consuming. For this reason

Davis and Rodriguez-Yam (2005) suggest a first order approximation to the logarithm of (4.24)

by applying Taylor expansion around (β̂0, γ̂0), i.e.

logR(β, γ|y) ≈ logR(β̂0, γ̂0|y) +
(
(β, γ) − (β̂0, γ̂0)

)
T ∇ logR(β̂0, γ̂0|y) (4.27)

where ∇ logR(β̂0, γ̂0|y) denotes the gradient of logR(β, γ|y) with respect to (β, γ) evaluated

at (β̂0, γ̂0). As the quantities in the right hand side of (4.27) are unknown, they replaced

logR(β̂0, γ̂0|y) by logR2(β̂0, γ̂0|y) and ∇ logR(β̂0, γ̂0|y) by

logR2(β̂0 + δ, γ̂0 + δ|y) − logR2(β̂0, γ̂0|y)

δ

for sufficiently small δ. This way the importance sampling approximation to the remainder is

carried only once which significantly improves the speed of the algorithm. On the other hand,

since R2(β̂0 + δ, γ̂0 + δ|y) and R2(β̂0, γ̂0|y) are computed by simulation and for small δ, it is

not clear how accurate the numerical differentiation is. Here we suggest a different way of

approximating ∇ logR(β̂0, γ̂0|y) which is also based on importance sampling. The idea is to

write

∇R(β̂0, γ̂0|y) =

∫
f(z|y; β̂0, γ̂0)e

−r(z|y;β̂0,γ̂0)
(
∇ log f(z|y; β̂0, γ̂0) −∇r(z|y; β̂0, γ̂0)

)
dz (4.28)
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which can be evaluated using the same importance sample that was used for the evaluation of

R̂2(β̂0, γ̂0|y). Therefore, denoting by ∇R̂1(β̂0, γ̂0|y) the approximation to (4.28) computed this

way and by

R̂1(β, γ|y) = exp
{

log R̂2(β̂0, γ̂0|y) +
(
(β, γ) − (β̂0, γ̂0)

)
T ∇R̂1(β̂0, γ̂0|y)/R̂2(β̂0, γ̂0|y)

}
(4.29)

we define

L̂1(β, γ|y) = L̂0(β, γ|y)R̂1(β, γ|y) (4.30)

and

(β̂1, γ̂1) = argmax
(β,γ)

L̂1(β, γ|y) (4.31)

The estimates (β̂1, γ̂1) can be used as alternative to the more computational intensive esti-

mates (β̂2, γ̂2) for correcting the error of the approximation to the likelihood.

4.3.3 Example: Binomial Spatial Data

Suppose we observe ni Bernoulli random variables at location i with a total of k locations

and we use the canonical link g(µ) = log{µ/(1 − µ)}. Then

log f(y|z;β, γ) = −h(y|z;β, γ) =

k∑

i=1

ni∑

j=1

yijηi −
k∑

i=1

ni log(1 + eηi)

where ηi = xiβ+zi. It’s easy to see that h(y|z;β, γ) has a maximum at ẑi = log (ȳi·/(1 − ȳi·))−

xiβ for ȳi· being the average of the yij’s for fixed i. Two remarks on this

1. In rare cases we might have ȳi· = 0 or 1 causing problems in finding ẑi. Therefore when

a 0 occurs we take it as it is equal to .5/ni and when 1 occurs to 1 − .5/ni.

2. The calculations can be simplified by noting that when we evaluate h(y|z;β, γ) and its

derivatives at ẑ the terms that depend on β cancel i.e. h and its derivatives are constants

in the likelihood.

Assuming that the ni’s increase to infinity with the same order, say min{ni} = O(n), then

the order of h is O(k n) and its derivatives with respect to z is O(n) if the differentiation is
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with respect to one component and 0 if the differentiation is with respect to different compo-

nents. The order of φi in (4.18) depends on the form of Σ: here we assume increasing domain

asymptotics in the spirit of Mardia and Marshall (1984), in which case the order is O(1). By

Lemma 1 we have that the diagonal elements of (ĥzz + Σ
−1)−1 have order O(n−1) while the

off-diagonal elements have order O(n−2). Thus, an asymptotic expansion to the log-likelihood

(up to a constant) of order O(k n−2) obtained from (4.18) where

ĥzz = diag

{
yi·

(
1 − yi·

ni

)}

ĥiii = yi·

(
1 − yi·

ni

)(
1 − 2

yi·
ni

)

ĥiiii = yi·

(
1 − yi·

ni

)(
1 − 6

yi·
ni

+ 6
y2
i·

n2
i

)

4.3.4 Simulations

We compare the performance of the second order Laplace approximation to the likelihood

(LA 2) as given by (4.18) with three other methods: first by taking the logit transformation to

the observed probabilities and then performing maximum likelihood on the transformed data

assuming they follow a normal distribution (trans.), the first order Laplace approximation (LA

1), and the MCMC method from the R package geoRglm (R Development Core Team, 2008;

Christensen and Ribeiro, 2002) which computed the likelihood by drawing random samples from

the distribution f(z|y;β, γ). The transformation and the first order Laplace approximation are

lower order approximations to the log-likelihood and they consist of the first two and the first

three terms of (4.18) respectively.

We randomly choose k = 50 locations on a 10×10 grid (Figure 4.1) from where we simulate

1000 realizations of a Gaussian random field Z with exponential covariance function given by

C(γ) =





γ1 + γ2 if dij = 0

γ2 exp {−dij/γ3} if dij 6= 0

with parameters γ = (0.2, 2.0, 4.0) corresponding to nugget, partial sill and range and dij is the

euclidean distance between the locations i and j. The linear predictor at location i is given by
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ηi = xiβ + zi where xi is the ith row of the k × 2 matrix X with the first column equal to 1

and the second equal to the first co-ordinate of the locations, and β = (−1.0, 0.2). We consider

estimation when the nugget is unknown and when it’s not. Conditioned on the random field

we repeatedly generate 1000 binomial observations with parameters ni = 60 in the case where

the nugget is known and ni = 200 when the nugget is unknown, and pi = eηi/(1 + eηi) at

location i. The reason for the larger sample in the unknown-nugget case was because for some

simulations, the profile likelihood for the nugget didn’t have a maximum for ni = 60 for the

approximation methods. Starting values for the fixed effects are obtained by fitting a GLM on

the observations and then applying variogram estimation on the residuals to obtain starting

values for the covariance parameters. As indicated by Stein (1999, sec. 6.2) the parameters

γ2 and γ3 are not identifiable in infill asymptotics but their ratio is, and since our simulation

design corresponds more closely to infill asymptotics than increasing domain asymptotics, we

also provide an estimate of log(γ3/γ2). We compare the estimates from each method with

the corresponding REML estimates obtained assuming that the random effects were actually

observed. This comparison is useful because frequently the estimated variogram matches the

data better than the true variogram. The programs were executed on a computer with 3.20 GHz

processor and 1Gb RAM.

*

*

*

*

** *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

2 4 6 8

2
4

6
8

Figure 4.1: Observed locations for estimation.

The results of the simulations are summarized in Tables 4.1 and 4.2. The estimates obtained

using the MCMC method have the least bias and are closer to the estimated values when
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the random effects are observed. The second order Laplace approximation (LA 2) performs

generally well in terms of mean square error. In fact, it has the smallest mean square error among

all methods for the estimation of β. Also it is generally close to the REML estimates obtained

if the random effects were observed, again with the smallest difference for the estimation of β.

MCMC has low bias for the estimation of the fixed effects but takes much longer.
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β0 β1 γ2 γ3 log(γ3/γ2) time (sec)

trans.

Bias −0.0180 0.0068 −0.7049 −2.5494 −0.6873

864
S.D. 0.03712 0.00548 0.02179 0.03592 0.01750

M.S.E. 1.3779 0.0298 0.9716 7.7899 0.8619
M.S. diff. REML 0.1114 0.0020 3.1432 27.3643 0.6675

LA 1

Bias −0.0233 0.0077 −0.5925 −2.7741 −0.9493

887
S.D. 0.03772 0.00550 0.02142 0.02802 0.01337

M.S.E. 1.4233 0.0303 0.8098 8.4805 1.3305
M.S. diff. REML 0.1351 0.0023 2.9635 30.6541 1.1238

LA 2

Bias 0.0690 −0.0103 −1.0102 −1.9184 −0.0223

807
S.D. 0.03323 0.00498 0.02001 0.05557 0.03473

M.S.E. 1.1093 0.0249 1.4208 6.7681 0.2841
M.S. diff. REML 0.0777 0.0015 3.8777 19.4539 0.1450

MCMC

Bias 0.0140 −0.0007 −0.9837 −2.2573 −0.2025

27682
S.D. 0.03539 0.00533 0.01298 0.06462 0.03270

M.S.E. 1.2523 0.0284 1.1362 9.2705 0.2548
M.S. diff. REML 0.0977 0.0017 4.4771 26.5111 0.1412

Table 4.1: Simulation results for comparing the performance of each method when the nugget (γ1) is known. The fourth row from each
method corresponds to the mean square of the differences from the REML estimation assuming that the random effects are observed.
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β0 β1 γ1 γ2 γ3 log(γ3/γ2) time (sec)

trans.

Bias 0.0105 3.611 × 10−3 −0.0222 −0.7415 −2.0705 −1.5519

1725
S.D. 0.03607 0.00531 0.00525 0.02180 0.04615 0.03573

M.S.E. 1.3009 0.02825 0.0280 1.0249 6.4164 3.6852
M.S. diff. REML 0.1384 1.319 × 10−3 0.0148 9.3500 50.3339 0.7777

LA 1

Bias 0.0088 3.667 × 10−3 0.0059 −0.7315 −2.1090 −1.5723

1655
S.D. 0.03619 0.00532 0.00570 0.02186 0.04419 0.03674

M.S.E. 1.3108 0.02833 0.0325 1.0129 6.4011 3.8221
M.S. diff. REML 0.1475 1.416 × 10−3 0.0192 9.3344 50.8865 0.8914

LA 2

Bias 0.0699 −7.143 × 10−3 −0.0702 −0.8382 −2.0225 −1.4638

1748
S.D. 0.03494 0.00511 0.00509 0.02042 0.05260 0.03841

M.S.E. 1.0650 0.02521 0.0276 1.1130 6.9512 3.6183
M.S. diff. REML 0.1161 1.209 × 10−3 0.0167 9.5095 48.4351 1.1570

MCMC

Bias 0.0269 −0.6667 × 10−3 −0.0459 −0.7738 −2.0369 −1.7173

81398
S.D. 0.03529 0.00521 0.00539 0.02593 0.05453 0.02402

M.S.E. 1.2459 0.02717 0.0312 1.2712 7.1227 3.5262
M.S. diff. REML 0.1345 1.267 × 10−3 0.0197 9.4852 50.2075 0.6742

Table 4.2: Simulation results for comparing the performance of each method when the nugget (γ1) is unknown. The fourth row from each
method corresponds to the mean square of the differences from the REML estimation assuming that the random effects are observed.
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CHAPTER 5

Prediction Methods

Let’s consider now the issue of predicting the random effect, Z0 say, at location s0 based on

the observations y1, . . . , yk at locations s1, . . . , sk.

The joint density of (Z, Z0) is written as

(Z, Z0)
T ∼ Nk+1


(0, 0)T,




Σ c

c
T σ2

0





 (5.1)

where the terms in the covariance matrix depend on the variance components γ.

We write the density of Z0|{Z = z} as

φ(z0|z; γ) = τ−1φ

(
z0 − µ

τ

)
(5.2)

where µ = c
T
Σ
−1z and τ2 = σ2

0 − c
T
Σ
−1

c.

An important role for prediction is played by the predictive density f(z0|y;β, γ). Using the

fact that conditioned on Z, the random effect at location Z0 is independent of the observations

at the other locations Y , we write

f(z0|y;β, γ) =

∫
φ(z0|z; γ)f(y,z;β, γ) dz∫

f(y,z;β, γ) dz
(5.3)

For the same reason that the likelihood cannot be expressed analytically, the predictive density

does not have a closed form expression.



In connection to the predictive density, we write the predictive distribution function

F (z0|y;β, γ) =

∫
Φ(z0|z; γ)f(y,z;β, γ) dz∫

f(y,z;β, γ) dz
(5.4)

As is indicated by the expressions in (5.3) and (5.4), the predictive density depends on the

unknown parameters β and γ. A way to overcome this is to replace the unknown parameters

with some consistent estimates (β̂, γ̂). The predictive density constructed by this method is

called the plug-in predictive density.

5.1 Plug-in Predictive Density

Suppose that based on the sample y = (y1, . . . , yk)
T drawn from the sampling sites s1, . . . , sk,

we estimate the parameter β by β̂, and γ by γ̂. The plug-in predictive density is given by

f(z0|y; β̂, γ̂) =

∫
φ(z0|z; γ̂)f(y,z; β̂, γ̂) dz∫

f(y,z; β̂, γ̂) dz
(5.5)

and similarly, the plug-in predictive distribution function by

F (z0|y; β̂, γ̂) =

∫
Φ(z0|z; γ̂)f(y,z; β̂, γ̂) dz∫

f(y,z; β̂, γ̂) dz
(5.6)

We now proceed to construct an approximation to the predictive distribution of Z0 using

similar techniques with the approximation to the likelihood function. Write

f(z0|y; β̂, γ̂) =

∫
φ(z0|z; γ̂) exp{−h(y,z; β̂, γ̂) dz∫

exp{−h(y,z; β̂, γ̂) dz
(5.7)

and define ẑ = argminh(y,z; β̂, γ̂). Then, by (3.20)

f(z0|y; β̂, γ̂) = φ̂− 1

2
φ̂i1 ĥi2i2i2 ĥ

i1i2 ĥi2i2 +
1

2
φ̂i1i2 ĥ

i1i2 +O(k n−2) (5.8)

Taking φ̂ as a common factor in (5.8) we write

f(z0|y; β̂, γ̂) = φ̂

(
1 − 1

2

φ̂i1

φ̂
ĥi2i2i2ĥ

i1i2 ĥi2i2 +
1

2

φ̂i1i2

φ̂
ĥi1i2 +O(k n−2)

)
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and then logarithms on each side,

log f(z0|y; β̂, γ̂) = log φ̂− 1

2

φ̂i1

φ̂
ĥi2i2i2 ĥ

i1i2ĥi2i2 +
1

2

φ̂i1i2

φ̂
ĥi1i2 +O(k n−2) (5.9)

where

log φ̂ = −1

2
log(2π τ̂) − 1

2

(
z0 − µ̂

τ̂

)2

φ̂i1

φ̂
= τ̂−1µ̂i

(
z0 − µ̂

τ̂

)

φ̂i1i2

φ̂
= τ̂−2µ̂i1µ̂i2

{(
z0 − µ̂

τ̂

)2

− δi1,i2

}

δi1,i2 = 1 if i1 = i2 and 0 otherwise.

Notice that the terms in the right hand side of (5.9) consist of a polynomial of second

degree with respect to z0, which suggests that the predictive density constructed by including

the higher order terms in the right hand side of (5.9) is Normal. Consequently, we define the

second order corrected plug-in predictive density by

f̂(z0|y) = exp

{
log φ̂− 1

2

φ̂i1

φ̂
ĥi2i2i2 ĥ

i1i2ĥi2i2 +
1

2

φ̂i1i2

φ̂
ĥi1i2

}
(5.10)

Notice that the coefficient of z2
0 is

− 1

2τ̂2

(
1 − τ̂−2µi1µi2ĥ

i1i2
)

(5.11)

Since ĥzz is evaluated at ẑ, it is positive definite, hence, so is ĥ−1
zz , therefore µi1µi2 ĥ

i1i2 > 0

so the higher order correction always has bigger variance than the first order Laplace approx-

imation. On the other hand, it might happen that τ̂−3µi1µi2ĥ
i1i2 > 1, hence (5.10) cannot be

defined because (5.11) becomes positive, in which case a modification as we explain below can

be used. Note though that since µi1µi2ĥ
i1i2 = O(k n−1), then the coefficient of z2

0 should be

negative if the sample size is sufficiently large.
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The mean of (5.10) is

µ̂c = µ̂− 1

2
τ̂−1(µ̂i1 ĥi2i2i2ĥ

i1i2 ĥi2i2) (1 − τ̂−2µ̂i1µ̂i2 ĥ
i1i2)−1 (5.12)

and its variance is

σ̂2
c = τ̂2(1 − τ̂−2µ̂i1µ̂i2 ĥ

i1i2)−1 (5.13)

therefore, the α-quantile of the distribution of Z0|{Y = y} is estimated by

ẑα = µ̂c + σ̂cΦ
−1(α) (5.14)

where Φ−1(α) is the α-quantile of the standard Normal distribution.

By (5.8), f̂(z0|y) − f(z0|y; β̂, γ̂) = O(k n−2). On the other hand, since γ̂ − γ = O(k−1/2)

and β̂ − β = O(k−1/2n−1/2), then f̂(z0|y) − f(z0|y;β, γ) = O(k−1/2), which implies ẑα − zα =

O(k−1/2).

Making the approximation a proper density

As we mentioned above, it might happen that τ̂−2µ̂i1 µ̂i2ĥ
i1i2 > 1, in which case (5.10)

is not an actual density since the quantity in (5.13) is negative. If τ̂−2µ̂i1 µ̂i2 ĥ
i1i2 < m for

some m > 0, then the term (1 − τ̂−2µ̂i1 µ̂i2ĥ
i1i2)−1 in (5.12) and (5.13) can be replaced by

(1 −m−1τ̂−2µ̂i1 µ̂i2 ĥ
i1i2)−m without changing the order of the approximation.

Alternatively, since τ̂−2µ̂i1 µ̂i2ĥ
i1i2 = O(k n−1), we can write (1 − τ̂−2µ̂i1µ̂i2 ĥ

i1i2)−1 = 1 +

τ̂−2µ̂i1 µ̂i2ĥ
i1i2 +O(k2n−2) which is always positive.

5.1.1 Plug-in corrections

Here we propose an adjustment for the bias of the predictive quantiles. Let ẑα be as in

(5.14). The coverage probability of ẑα when the true parameters are (βT, γT) is

α′(y;βT, γT) = F (ẑα|y;βT, γT) =

∫
Φ(ẑα|z; γT) exp{−h(y,z;βT, γT)}dz∫

exp{−h(y,z;βT, γT)}dz
(5.15)
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By Laplace approximation around z̃ = argminz h(y,z;βT, γT) to the right hand side of (5.15),

we have

α′(y;βT, γT) = Φ̃ − 1

2
Φ̃i1h̃i2i2i2h̃

i1i2 h̃i2i2 +
1

2
Φ̃i1i2h̃

i1i2 +O(k n−2) (5.16)

where Φ̃ = Φ(ẑα|z̃; γT) and similarly for the other quantities of (5.16). Define

α̂′ = α′(y; β̂, γ̂) (5.17)

Then the difference

ẑα̂′ − ẑα

can be used to estimate the bias of ẑα̂′ . As we expect the quantiles ẑα̂′ , ẑα, and zα to be

relatively close to each other, the bias of ẑα̂′ can be used to adjust for the bias of ẑα. Therefore,

a bias adjustment to ẑα would be

ẑ′α = ẑα − (ẑα̂′ − ẑα)

5.2 Simulations

Using the same simulated data as in Chapter 4, we compare our method for prediction with

the Markov Chain EM Gradient (MCEMG) method from Zhang (2002), and the MCMC from

Christensen and Ribeiro (2002). We also consider the no-correction plug-in, i.e. using only the

first term of (5.9) as a predictive density. We choose 41 locations from the previously defined grid

for prediction as shown in Figure 5.1. We only consider the case where the nugget is unknown.

For the plug-in methods we use the parameter estimates obtained from our simulations while

for the other two methods we choose the estimates obtained from the MCMC method. For

the MCEMG and MCMC algorithms the total run length of a Markov chain was 37700 with

burn in 200 and thinning 25, chosen such that both methods give sufficient random samples.

The calculations for the plug-in and MCEMG methods were programmed in fortran and for

the MCMC method we used the R package geoRglm (Christensen and Ribeiro, 2002) which

calls a routine written in C. A large part of the calculations required by the MCEMG and

MCMC is due to random sampling from the conditional distribution of the random effects, the
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first implementing the Metropolis-Hastings algorithm, while the second the Langevin-Hastings

modification (see Christensen and Waagepetersen, 2002). A significant difference between the

two is that for MCMC, the random effects at each location are updated simultaneously instead

of updating a single component each time. Note that the length of the Markov chain is the same

for these two methods, thus even though the computation time for MCMC could be different if

it was implemented in fortran, it is our belief that it won’t make a notable difference when

comparing its speed with the plug-in method, and we choose not to address this issue.
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Figure 5.1: Locations for the simulations. The sampled locations are marked by ∗, and the
locations for prediction by ×.

Using each method, we predict the random effects at the new locations z0i and estimate

the success probability at each location by p̂i = exiβ̂+z0i/(1 + exiβ̂+z0i). We also obtain the

conditional mean value for the random effects at the new locations assuming the random effects

at the observed locations were observed. Then, the “true” probabilities at the new locations

are calculated similarly by pi = exiβ+z0i/(1 + exiβ+z0i)

Three scoring rules that appear in Gneiting and Raftery (2007) allow us to compare the

different methods. They are defined in the following way: Let U ∼ Bin(n, p) and pj = Pr(U =

j) =
(n
j

)
pj(1 − p)n−j be the probability assigned to the event j, j = 0, . . . , n and p̂j the

corresponding estimate. If the event {U = i} is observed then define� The Brier score: −
n∑

j=0

(δij − p̂j)
2 where δij = 1 if i = j and 0 otherwise,
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� the spherical score: p̂α−1
i

( n∑

j=0

p̂αj

)−(α−1)/α
where α > 1, and� the logarithmic score: log p̂i

The higher the score, the better the prediction.

Assuming that we make one draw at each location, there is probability pi to get 1 and

1− pi to get 0. Then we can calculate the expected scoring rules at each location and for each

simulation. The average over all locations and all simulations is compared for each method. In

addition, for each simulation we take the Mahalanobis distance with covariance matrix equal

to the conditional variance of the random effects. The average Mahalanobis distance over all

simulations gives another measure for comparison. The results are in Table 5.1

Method Brier Spherical (α = 2) Logarithmic Mah/bis dist. time (sec)
uncorr. plug-in −0.38125 0.78345 −0.56193 5.2934 76

2nd order plug-in −0.38094 0.78363 −0.56156 5.0944 84
MCEMG −0.38097 0.78361 −0.56160 5.1783 2795
MCMC −0.40794 0.77028 −0.61392 3.1690 2768

Table 5.1: Measures for comparing different methods for prediction.

Regarding the three scoring rules, the corrected plug-in method seems to be doing slightly

better than the other three methods and MCMC is the worse. On the other hand, MCMC

ranks first when we compare the average Mahalanobis distance and the corrected plug-in is the

second best. Also note that the uncorrected plug-in is always doing worse than the corrected

plug-in. Clearly the two plug-in methods are much faster.
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CHAPTER 6

An Application: The Rhizoctonia Disease

The rhizoctonia root rot is a disease that attaches on the roots of plants and hinders the

process of absorbing water and nutrients. In this example examined by Zhang (2002), 15 plants

were pulled from each of 100 randomly chosen locations in a farm and the number of crown

roots and infected crown roots were counted. Similar to Zhang (2002), we assume constant

mean and spherical covariance structure given by

C(γ) =





γ1 + γ2 if dij = 0

γ2

(
1 − 1.5

dij

γ3
+ 0.5

(
dij

γ3

)3
)

if 0 < dij < γ3

0 o.w.

(6.1)

for the underlying Gaussian random field and treat the data as samples from binomial distri-

bution. Because γj > 0, in our optimization we estimated the log γj and then exponentiated.

Applying our method we obtain the estimates β̂ = −1.677 with standard error 0.0925 obtained

by inverting the hessian matrix evaluated at the maximum, and γ̂ = (0.405, 0.098, 145.69) with

standard errors (0.0804, 0.0808, 38.42) obtained using our approximate formula (4.14). Our

estimates are close to Zhang’s and fall within a 95% confidence interval constructed by our

estimates but we find smaller standard error for the covariance parameters. The analysis using

MCMC gives β̂ = −1.721 and γ̂ = (0.4776, 0.108, 149.1) which also fall within our 95% confi-

dence interval. The estimates using the first order Laplace approximation are β̂ = −1.760 and

γ̂ = (0.7074, 0.1241, 151.4).

It’s important to know the severity of the disease at locations that we don’t have an obser-

vation. Using (5.10) as an approximation to the predictive density we take the mode to be our



prediction. The resulting map, shown in Figure 6.1, has a very close pattern with the one in

Zhang (2002) though the range of our predictions is narrower.
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Figure 6.1: Map of the predicted random effects (disease intensity) using the second order
corrected plug-in predictive density.

We compare the four methods: corrected and uncorrected plug-in (this paper), MCEMG

(Zhang, 2002), and MCMC (Christensen and Ribeiro, 2002) by cross-validation. We predict

the value of the random effect zi at each of the i = 1, . . . , 100 locations using each method

and then calculate the binomial probability of what we actually observed given ni and p̂i =

eβ̂+ẑi/(1 + eβ̂+ẑi). The parameter values were taken from our estimates above for the plug-in

and MCMC methods and from Zhang (2002) for the MCEMG method.

We use the same three scoring rules as in Chapter 5 for comparison. Figure 6.2 shows

that the calculated scores at each location for the plug-in and MCEMG are very similar. The

average scores over all the locations for each method are summarized in Table 6.1. MCEMG

does slightly better than plug-in but MCMC is worse. The corrected plug-in is more accurate

than the uncorrected. Again note the time difference between the methods.

Method Brier Spherical (α = 2) Logarithmic Time (sec)

uncorrected plug-in −1.0096 0.11198 −7.4450 20
corrected plug-in −1.0086 0.11257 −7.2795 20

MCEMG −1.0078 0.11400 −7.2254 651
MCMC −1.0164 0.10133 −7.9378 703

Table 6.1: Measures of scoring for comparison of plug-in and MCEMG.
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Figure 6.2: Plot showing the calculated scores for plug-in and MCEMG for cross-validation.
The dotted line corresponds to the equation y = x. (a) Brier score, (b) Spherical score, (c)
Logarithmic score.
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CHAPTER 7

Bayesian Prediction

Here, we take the Bayesian approach in predicting the random effects in GLMM. We inves-

tigate the effect of the prior for γ on the prediction for Z0.

7.1 Bayesian Predictive Distribution

We start by assigning priors for β and γ:

(β, γ) ∼ exp{u(β) + r(γ)} (7.1)

and define the Bayesian Predictive Distribution Function by

F̃ (z0|y) =

∫∫∫
Φ(z0|z; γ)f(y,z;β, γ) exp{u(β) + r(γ)}dz dβ dγ∫∫∫

f(y,z;β, γ) exp{u(β) + r(γ)}dz dβ dγ
(7.2)

Let

ψ(y,z;β, γ) = − log f(y,z;β, γ) − u(β) (7.3)

Then (7.2) becomes

F̃ (z0|y) =

∫∫∫
Φ(z0|z; γ) exp{−ψ(y,z;β, γ)} exp{r(γ)}dz dβ dγ∫∫∫

exp{−ψ(y,z;β, γ)} exp{r(γ)}dz dβ dγ
(7.4)



7.1.1 Expansion of the Bayesian Predictive Distribution

Write ξ = (z, β, γ) and define ξ̂ = argmin(z,β,γ) ψ(y,z;β, γ). Then, (7.4) is written as

F̃ (z0|y) =

∫
Φ(ξ) exp{−ψ(ξ) + r(ξ)}dξ∫

exp{−ψ(ξ) + r(ξ)}dξ
=
IN

ID
(7.5)

Using (3.17) on each of IN and ID,

IN = e−ψ̂+r̂

∣∣∣∣∣
ψ̂ξξ
2π

∣∣∣∣∣

−1/2 ∞∑

m=1

2m∑

s=0

2m−s∑

λ=0

∑

P,Q

(−1)t

(2m)!
Φ̂l1...ls · r̂[j1...jλ] · ψ̂p1 . . . ψ̂pt · ψ̂q1 . . . ψ̂qm (7.6)

ID = e−ψ̂+r̂

∣∣∣∣∣
ψ̂ξξ
2π

∣∣∣∣∣

−1/2 ∞∑

m=1

2m∑

λ=0

∑

P,Q

(−1)t

(2m)!
r̂[j1...jλ] · ψ̂p1 . . . ψ̂pt · ψ̂q1 . . . ψ̂qm (7.7)

Hence, dividing (7.6) by (7.7), after some cancellations, we obtain

F̃ (z0|y) =

∞∑

m=1

2m∑

s=1

2m−s∑

λ=0

∑

P,Q

(−1)t

(2m)!
Φ̂l1...ls · r̂[j1...jλ] · ψ̂p1 . . . ψ̂pt · ψ̂q1 . . . ψ̂qm (7.8)

(Notice the difference from (7.6) that s starts at 1.)

Note that (7.8) implies differentiation with respect to different variables with derivatives

having different orders and this complicates the calculations. In general the indices in the two

partitions range from 1 to k + d, d being the dimension of (βT, γT)T. In order to be able to

evaluate (7.8) we need to know the order of the elements of ψ̂ξξ when the differentiation is

performed on the various components of ξ.

Order of the inverse Hessian of ψ

In Table 7.1 we show the asymptotic order of the derivatives of ψ with respect to the different

components of ξ evaluated at ξ̂.

Write

ψξξ =




ψzz ψzβ ψzγ

ψβz ψββ ψβγ

ψγz ψγβ ψγγ




For the inverse of ψξξ, we make use of the following two lemmata.
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·
· k · n ∂zm2

i2

∂zm1

i1
0, m1 = 1; n, o.w. 1, m1 = m2 = 1; 0, o.w. ∂βl2j2

∂βl1j1 0, l1 = 1; k · n, o.w. n k · n ∂γl2j2

∂γl1j1 0, l1 = 1; k, o.w. 1 0 k

Table 7.1: Table showing the order for different derivatives of ψ. The derivative is taken with
respect to the components shown outside of the borders of the table and the · means that no
derivative is taken.

Lemma 2. Let A be an invertible 3 × 3 block matrix with blocks Aij, i, j = 1, 2, 3 such that

A11, A22 and A33 are square matrices. Write A−1 as a 3 × 3 block matrix where its blocks Aij

have the same dimensions as the corresponding Aij in A. Then,

A11 =
(
A11 −A12(A22 −A23A

−1
33 A32)

−1(A21 −A23A
−1
33 A31)

−A13(A33 −A32A
−1
22 A23)

−1(A31 −A32A
−1
22 A21)

)−1
(7.9)

A12 = −A11
(
A12(A22 −A23A

−1
33 A32)

−1 −A13(A33 −A32A
−1
22 A23)

−1A32A
−1
22

)
(7.10)

The other block elements of A−1 are given similarly.

Proof. By multiplication.

Lemma 3. Let A,B be symmetric and invertible. Then

(A− UB−1UT)−1 = A−1 +A−1U(B − UTA−1U)−1UTA−1 (7.11)

Proof. By multiplication (see Henderson et al., 1959, page 196).

Using Lemma 2,

ψzz =
(
ψzz − ψzβψ

−1
ββψβz − ψzγψ

−1
γγ ψγz

)−1

=
(
ψzz − ψzβψ

−1
ββψβz

)−1
(
I − ψzγψ

−1
γγ ψγz

(
ψzz − ψzβψ

−1
ββψβz

)−1
)−1
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Applying (7.11) on the first parenthesis we get

(
ψzz − ψzβψ

−1
ββψβz

)−1
= ψ−1

zz + ψ−1
zzψzβ

(
ψββ − ψβzψ

−1
zzψzβ

)−1
ψβzψ

−1
zz (7.12)

For the order of (7.12) remember that summation over the values of the vector z contributes

an extra factor of order O(k). Thus, by Lemma 1, the elements of ψ−1
zzψzβ have order O(1)

Therefore, the term in the parenthesis of the right hand side: ψββ−ψβzψ
−1
zzψzβ has elements of

order O(k n). As a result, the diagonal elements of
(
ψzz − ψzβψ

−1
ββψβz

)−1
are O(n−1) and the

off-diagonal are O(k−1n−1). In addition, the elements of ψzγψ
−1
γγ ψγz

(
ψzz − ψzβψ

−1
ββψβz

)−1

are O(k−1n−1). Consequently, the diagonal elements of ψzz are O(n−1) and the off-diagonal

are O(k−1n−1).

For ψzβ and ψzγ we have

ψzβ = −ψzzψzβψ
−1
ββ

ψzγ = −ψzzψzγψ
−1
γγ

where we note that when we multiply ψzzψzβ and ψzzψzγ we get elements of order O(1) and

O(n−1) respectively. Thus the elements of ψzβ and ψzγ are O(k−1n−1).

For the other blocks,

ψββ =
(
ψββ − ψβz(ψzz − ψzγψ

−1
γγ ψγz)−1ψzβ

)−1

ψγγ =
(
ψγγ − ψγz(ψzz − ψzβψ

−1
ββψβz)−1ψzγ

)−1

ψβγ = ψββψβz(ψzz − ψzγψ
−1
γγ ψγz)−1ψzγψ

−1
γγ

We have already derived the order of (ψzz − ψzβψ
−1
ββψβz)−1. Applying the same technique we

write
(
ψzz − ψzγψ

−1
γγ ψγz

)−1
= ψ−1

zz + ψ−1
zzψzγ

(
ψγγ − ψγzψ

−1
zzψzγ

)−1
ψγzψ

−1
zz (7.13)

In this case, the order of the elements of ψγzψ
−1
zzψzγ is O(k n−1) so the order of the elements

of
(
ψγγ − ψγzψ

−1
zzψzγ

)−1
is O(k−1). Thus the second term at the right hand side of (7.13)

has elements of order O(k−1n−2) which is lower than the order of the first term. Finally we
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have that the diagonal elements of
(
ψzz − ψzγψ

−1
γγ ψγz

)−1
are O(n−1) and the off-diagonal are

O(n−2). After similar calculations we have

ψββj1j2 = O(k−1n−1)

ψγγj1j2 = O(k−1)

ψβγj1j2 = O(k−1n−1)

7.1.2 Asymptotic approximation to the Bayesian predictive density

Note that the derivatives of Φ(ξ) = Φ(z0|z; γ) are all O(1) and we also assume that the

derivatives of r(γ) are O(1).

In (7.8), we can break each index to three different ranges, one for the dimension of z, one

for the dimension of β and one for γ. Then each block of the partitions P and Q has indices

belonging in one of six cases: “only z”: (zz), “only β”: (ββ), “only γ”: (γγ), “z and β”: (zβ),

“z and γ”: (zγ) and “β and γ”: (βγ). The case “z and β and γ” for P is ignored because it has

derivatives equal to 0. Table 7.2 shows the order of each component in (7.8) for the different

cases. Keep in mind that an index that ranges over the values of z contributes an extra factor

of order k.

Φpi
rpi

ψpi
ψ
qj
ξξ

zz 1 or 0a 0 n or 1b n−1 or k−1n−1b

ββ 0 1 k n k−1n−1

γγ 1 1 k k−1

zβ 0 0 n k−1n−1

zγ 1 or 0a 0 1 k−1n−1

βγ 0 1 0 k−1n−1

Table 7.2: Order of magnitude of the derivatives for different cases. a1 for at most second
derivative, 0 for higher order derivatives. bCorresponding to if the differentiation is with respect
to the same component of z or not.

Based on the expansion in (7.8) and the orders shown in Table 7.2, an approximation to

the Bayesian predictive density is given by

F̃ (z0|y) = Φ̂ +
1

2
Φ̂i1i2ψ̂

i1i2 − 1

2
Φ̂i1ψ̂i2i2i2ψ̂

i1i2ψ̂i2i2
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+
1

2
Φ̂j1j2ψ̂

j1j2 + Φ̂j1 r̂j2ψ̂
j1j2 − 1

2
Φ̂j1ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4 +O(k−2 ∨ k2n−2) (7.14)

where here and subsequently we will use the index i to refer to the components of z, and j to

refer to the components of γ. The order of the approximation is O(k−2 ∨ k2n−2) because for

example terms such as Φ̂j1j2ψ̂j3j4j5ψ̂j6j7j8ψ̂
j1j3ψ̂j2j6ψ̂j4j5ψ̂j7j8 have order O(k−2), while terms

such as Φ̂i1i2ψ̂i3i3i3ψ̂i4i4i4ψ̂
i1i3ψ̂i2i4ψ̂i3i3ψ̂i4i4 have order O(k2n−2).

In (7.14),

Φ = Φ(z0|z; γ)

Φi = −µi
τ
φ

(
z0 − µ

τ

)

Φi1i2 = −µi1µi2
τ2

z0 − µ

τ
φ

(
z − µ

τ

)

Φj = −
(
µj
τ

+
τj
τ

z0 − µ

τ

)
φ

(
z0 − µ

τ

)

Φj1j2 = −
(
µj1j2
τ

− µj1τj2
τ2

− µj2τj1
τ2

+
τj1j2
τ

z0 − µ

τ
− 2τj1τj2

τ2

z0 − µ

τ

)
φ

(
z0 − µ

τ

)

−
(
µj1
τ

+
τj1
τ

z0 − µ

τ

)(
µj2
τ

+
τj2
τ

z0 − µ

τ

)
z0 − µ

τ
φ

(
z0 − µ

τ

)

(7.15)

with

µz = c
T
Σ
−1

µj = c
T

jΣ
−1Z − c

T
Σ
−1

ΣjΣ
−1Z

µj1j2 = c
T

j1j2Σ
−1Z − c

T

j1Σ
−1

Σj2Σ
−1Z − c

T

j2Σ
−1

Σj1Σ
−1Z − c

T
Σ
−1

Σj1j2Σ
−1Z

+ c
T
Σ
−1

Σj1Σ
−1

Σj2Σ
−1Z + c

T
Σ
−1

Σj2Σ
−1

Σj1Σ
−1Z

µj1j2j3 = c
T

j1j2j3Σ
−1Z − [3]cT

j1j2Σ
−1

Σj3Σ
−1Z − [3]cT

j1Σ
−1

Σj2j3Σ
−1Z

+ [6]cT

j1Σ
−1

Σj2Σ
−1

Σj3Σ
−1Z − c

T
Σ
−1

Σj1j2j3Σ
−1Z + [3]cT

Σ
−1

Σj1j2Σ
−1

Σj3Σ
−1Z

+ [3]cT
Σ
−1

Σj1Σ
−1

Σj2j3Σ
−1Z − [6]cT

Σ
−1

Σj1Σ
−1

Σj2Σ
−1

Σj3Σ
−1Z

τj =
(
σ2

0j − 2cT

jΣ
−1

c + c
T
Σ
−1

ΣjΣ
−1

c

)
/(2τ)

τj1j2 =
(
σ2

0j1j2 − 2cT

j1j2Σ
−1

c + 2cT

j1Σ
−1

Σj2Σ
−1

c + 2cT

j2Σ
−1

Σj1Σ
−1

c

− 2cT

j1Σ
−1

cj2 − 2cT
Σ
−1

Σj1Σ
−1

Σj2Σ
−1

c + c
T
Σ
−1

Σj1j2Σ
−1

c

)
/(2τ)
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−
(
σ2

0j1 − 2cT

j1Σ
−1

c + c
T
Σ
−1

Σj1Σ
−1

c

) (
σ2

0j2 − 2cT

j2Σ
−1

c + c
T
Σ
−1

Σj2Σ
−1

c

)
/(4τ3)

τj1j2j3 =
(
σ2

0j1j2j3 − 2cT

j1j2j3Σ
−1

c − [3]2cT

j1j2Σ
−1

cj3 + [3]2cT

j1j2Σ
−1

Σj3Σ
−1

c

+ [3]2cT

j1Σ
−1

Σj2Σ
−1

cj3 + [3]2cT

j1Σ
−1

Σj2j3Σ
−1

c− [3]2cT

j1Σ
−1

Σj2Σ
−1

Σj3Σ
−1

c

+ c
T
Σ
−1

Σj1j2j3Σ
−1

c− [3]2Σ−1
Σj1j2Σ

−1
Σj3Σ

−1
c

+ [3]2cT
Σ
−1

Σj1Σ
−1

Σj2Σ
−1

Σj3Σ
−1

c

)
/(2τ) − [3]τj1j2τj3/(2τ)

Bayesian prediction intervals

Write (7.14) in the form

F̃ (z0|y) = Φ(z0|ẑ; γ̂) +Q(z0|y) +O(k−2 ∨ k2n−2) (7.16)

with

Q(z0|y) =
1

2
Φ̂i1i2ψ̂

i1i2 − 1

2
Φ̂i1ψ̂i2i2i2ψ̂

i1i2ψ̂i2i2

+
1

2
Φ̂j1j2ψ̂

j1j2 + Φ̂j1 r̂j2ψ̂
j1j2 − 1

2
Φ̂j1ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4 (7.17)

which has order O(k−1 ∨ k n−1). Next, we suggest two methods for constructing prediction

intervals.

Define ζ̂α to be the α-quantile of Φ(z0|ẑ; γ̂). That is

Φ(ζ̂α|ẑ; γ̂) = α (7.18)

Also let z̃α to be the α-quantile of F̃ (z0|y), i.e.

F̃ (z̃α|y) = α.

z̃α can only be calculated via MCMC but ζ̂α can be obtained analytically.

By (7.14), F̃ (z0|y) = Φ̂(z0|y) +O(k−1 ∨ k n−1), so by Taylor expansion

0 = F̃ (z̃α|y) − Φ̂(ζ̂α|y)

61



≈ Φ̂(z̃α|y) − Φ̂(ζ̂α|y)

≈ (z̃α − ζ̂α)Φ̂
′(ζ̂α|y)

hence, z̃α − ζ̂α = O(k−1 ∨ k n−1) and F (ζ̂α|y) = α+O(k−1 ∨ k n−1)

In view of (7.16), our first suggestion for the approximation of z̃α is to use ζ̂α1
where

α1 = α−Q(ζ̂α|y).

Then, by Taylor expansion, ζ̂α1
− ζα = O(k−1 ∨ k n−1) and

F̃ (ζ̂α1
|y) = Φ(ζ̂α1

|ẑ; γ̂) +Q(ζ̂α1
|y) +O(k−2 ∨ k2n−2)

= α−Q(ζ̂α|y) +Q(ζ̂α1
|y) +O(k−2 ∨ k2n−2)

= α−Q(ζ̂α|y) +Q(ζ̂α|y) +O(k−2 ∨ k2n−2)

= α+O(k−2 ∨ k2n−2)

The second approximation is to use

z̃∗α = ζ̂α −Q(ζ̂α|y)/Φ′(ζ̂α|ẑ; γ̂) (7.19)

In this case, by Taylor expansion,

F̃ (z̃∗α|y) = Φ(z̃∗α|ẑ; γ̂) +Q(z̃∗α|y) +O(k−2 ∨ k2n−2)

= Φ(ζ̂α|ẑ; γ̂) −Q(ζ̂α|y) +Q(z̃∗α|y) +O(k−2 ∨ k2n−2)

= α+O(k−2 ∨ k2n−2)

It turns out that

z̃∗α = µ̂+ τ̂Φ−1(α) +
1

2
τ̂−1Φ−1(α)µ̂i1 µ̂i2ψ̂

i1i2 − 1

2
µ̂i1ψ̂i2i2i2ψ̂

i1i2ψ̂i2i2 +
1

2
µ̂j1j2ψ̂

j1j2

− τ̂−1(1 − Φ−1(α)2)µ̂j1 τ̂j2ψ̂
j1j2 +

1

2
Φ−1(α)τ̂j1j2ψ̂

j1j2 − 1

2
τ̂−1Φ−1(α)(2 − Φ−1(α)2)τ̂j1 τ̂j2ψ̂

j1j2

+
1

2
τ̂−1Φ−1(α)µ̂j1 µ̂j2ψ̂

j1j2 − µ̂j1 r̂j2ψ̂
j1j2 − Φ−1(α)τ̂j1 r̂j2ψ̂

j1j2 − 1

2
µ̂j1ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4
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− 1

2
Φ−1(α)τ̂j1ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4 (7.20)

7.2 Coverage Probability Bias

Consider the predictive density F (z0|y; γ) constructed if the parameter γ was known:

F (z0|y; γ) =

∫∫
Φ(z0|z; γ) exp{−ψ(y,z;β, γ) dz dβ∫∫

exp{−ψ(y,z;β, γ) dz dβ
(7.21)

Suppose we estimate the α-quantile of (7.21) by z̃α. The coverage probability bias is defined as

EF (z̃α|Y ; γ) − α (7.22)

Consider the log-likelihood for γ given the sample y

`(γ|y) =

∫∫
exp{−ψ(y,z;β, γ)}dz dβ (7.23)

Then

F̃ (z0|y) =

∫
F (z0|y; γ) exp{r(γ)} exp{`(γ|y)}dγ∫

exp{r(γ)} exp{`(γ|y)}dγ
(7.24)

We express the derivatives of the log-likelihood in (7.23) with respect to the components of

γ in the form

Uj1(γ|Y ) = k1/2Wj1(γ|Y ) (7.25)

Uj1j2(γ|Y ) = kκj1j2 + k1/2Wj1j2(γ|Y ) (7.26)

Uj1j2j3(γ|Y ) = kκj1j2j3 + k1/2Wj1j2j3(γ|Y ) (7.27)

and so on for higher order derivatives. This is justified because the leading terms in the

expansions of the above derivatives are the same as the ones that would result if the distribution

was Gaussian (see Section 4.2). Note that we treat the likelihood and its derivatives as being

functions of Y , and therefore, random variables.
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Let γ̂ = argmaxγ `(γ|Y ) and write the difference γ̂ − γ as

γ̂j − γj = k−1/2εj1 + k−1εj2 + . . . (7.28)

Then,

εj1 = Wj1κ
j1,j (7.29)

εjm+1 = Wj1j2ε
j1
mκ

j2,j

+
1

2!
κj1j2j3

( ∑

i1+i2=m+1

εj1i1 ε
j2
i2

)
κj3,j +

1

2!
Wj1j2j3

( ∑

i1+i2=m

εj1i1 ε
j2
i2

)
κj3,j

+ . . .+
1

m!
κj1...jm+1

( ∑

i1+...+im=m+1

εj1i1 . . . ε
jm
im

)
κjm+1,j

+
1

m!
Wj1,...,jm+1

( ∑

i1+...+im=m

εj1i1 . . . ε
jm
im

)
κjm+1,j +

1

(m+ 1)!
κj1,...,jm+2

εj11 . . . ε
jm+1

1 κjm+2,j

(7.30)

Then the following result holds

Theorem 1. The difference between the Bayesian and the true predictive distribution function

is given by

F̃ (z0|y) − F (z0|y; γ) = k−1/2R(z0|y; γ) + k−1S(z0|y; γ) + k−3/2T (z0|y; γ) +O(k−2) (7.31)

where

R = Fj1ε
j1
1 (7.32)

S = Fj1ε
j1
2 +

1

2
Fj1j2ε

j1
1 ε

j2
1 +

1

2
Fj1κj2j3j4κ

j1,j2κj3,j4 +
1

2
Fj1j2κ

j1,j2 + Fj1rj2κ
j1,j2 (7.33)

T = Fj1ε
j1
3 +

1

2
Fj1j2(ε

j1
1 ε

j2
2 + εj12 ε

j2
1 ) +

1

6
Fj1j2j3ε

j1
1 ε

j2
1 ε

j3
1

+
1

2
Fj1{(Wj2j3j4 + κj2j3j4j5ε

j5
1 )κj1,j2κj3,j4 + κj2j3j4(Wj5j6 + κj5j6j7ε

j7
1 )κj1,j5κj2,j6κj3,j4

+ κj2j3j4(Wj5j6 + κj5j6j7ε
j7
1 )κj1,j2κj3,j5κj4,j6}

+
1

2
Fj1j5κj2j3j4ε

j5
1 κ

j1,j2κj3,j4 +
1

2
(Fj1,j2 + 2Fj1rj2)(Wj3j4 + κj3j4j5ε

j5
1 )κj1,j3κj2,j4
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+
1

2
Fj1j2j3ε

j3
1 κ

j1,j2 + (Fj1rj2j3 + Fj1j3rj2)ε
j3
1 κ

j1,j2 (7.34)

and

Fj1...js =
∂s

∂γj1 . . . ∂γjs
F (z0|y; γ) (7.35)

The proof of this result is given in section A.2 of the Appendix.

Evaluating (7.31) at z0 = z̃α,

F (z̃α|y; γ) = α− k−1/2R(z̃α|y; γ) − k−1S(z̃α|y; γ) − k−3/2T (z̃α|y; γ) +O(k−2 ∨ k2n−2) (7.36)

we obtain an estimate for the bias of the Bayesian predictive density. In section 7.4 we describe

how the above expression can be computed. Knowing the bias is important in assessing the

performance of the prior when used for the construction of the predictive density.

7.3 Kullback-Leibler Divergence

Let f̃(z0|y) be the Bayesian predictive density evaluated with prior γ ∼ exp{r(γ)} and let

f(z0|y; γ) be the predictive density if γ was known. We would like to see how close f̃ is to f

by approximating the Kullback-Leibler divergence of f̃ from f .

7.3.1 Approximation to the Bayesian predictive density

Here we follow section 6 of Barndorff-Nielsen and Cox (1996).

Define z̃α to be the α-quantile of the Bayesian predictive distribution using the prior γ ∼

exp{r(γ)}, i.e.

F̃ (z̃α|y) = α (7.37)

Differentiating (7.37) with respect to α, we have

{
d

dα
z̃α

}
f̃(z̃α|y) = 1
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hence

f̃(z̃α|y) =

{
d

dα
z̃α

}−1

(7.38)

Note that by (7.16), if ζ̂α is given by (7.18), then

0 = F̃ (z̃α|y) − Φ(ζ̂α|ẑ; γ̂)

= Q(z̃α|y) + Φ(z̃α|ẑ; γ̂) − Φ(ζ̂α|ẑ; γ̂)

= Q(z̃α|y) + (z̃α − ζ̂α)Φ′(z̃α|ẑ; γ̂)

Hence,

z̃α = ζ̂α −Q(z̃α|y)/Φ′(z̃α|ẑ; γ̂) +O(k−2 ∨ k2n−2) (7.39)

Differentiating (7.39) with respect to z̃α,

1 =
dζ̂α
dz̃α

− d

dz̃α

Q(z̃α|y)

Φ′(z̃α|ẑ; γ̂)
+O(k−2 ∨ k2n−2) (7.40)

so

dζ̂α
dz̃α

= 1 +
d

dz̃α

Q(z̃α|y)

Φ′(z̃α|ẑ; γ̂)
+O(k−2 ∨ k2n−2)

⇒ dz̃α

dζ̂α
=

(
1 +

d

dz̃α

Q(z̃α|y)

Φ′(z̃α|ẑ; γ̂)
+O(k−2 ∨ k2n−2)

)−1

= 1 − d

dz̃α

Q(z̃α|y)

Φ′(z̃α|ẑ; γ̂)
+O(k−2 ∨ k2n−2)

On the other hand, differentiating Φ(ζ̂α|ẑ; γ̂) = α with respect to α,

dζ̂α
dα

=
{
Φ′(ζ̂α|ẑ; γ̂)

}−1
(7.41)

Hence,

dz̃α
dα

=
dz̃α

dζ̂α

dζ̂α
dα

=

(
1 − d

dz̃α

Q(z̃α|y)

Φ′(z̃α|ẑ; γ̂)
+O(k−2 ∨ k2n−2)

){
Φ′(ζ̂α|ẑ; γ̂)

}−1
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=

(
1 − d

dz̃α

Q(z̃α|y)

Φ′(z̃α|ẑ; γ̂)
+O(k−2 ∨ k2n−2)

)

×
{
Φ′(z̃α +Q(z̃α|y)/Φ′(z̃α|ẑ; γ̂) +O(k−2 ∨ k2n−2)|ẑ; γ̂)

}−1
(7.42)

Using (7.42) into (7.38), we obtain the following approximation

f̃(z0|y) =

(
1 +

d

dz0

Q(z0|y)

Φ′(z0|ẑ; γ̂)

)
Φ′

(
z0 +

Q(z0|y)

Φ′(z0|ẑ; γ̂)

∣∣∣∣ ẑ; γ̂

)(
1 +O(k−2 ∨ k2n−2)

)
(7.43)

Note that Φ(z0|ẑ; γ̂) = Φ ((z0 − µ̂)/τ̂ ) and Q(z0|y) is given by (7.17), therefore

Q(z0|y)

Φ′(z0|ẑ; γ̂)
= −1

2
τ̂−1µ̂i1µ̂i2

z0 − µ̂

τ̂
ψ̂i1i2 +

1

2
µ̂i1ψ̂i2i2i2ψ̂

i1i2ψ̂i2i2 − 1

2
µ̂j1j2ψ̂

j1j2 + τ̂−1µ̂j1 τ̂j2ψ̂
j1j2

− 1

2
τ̂j1j2

z0 − µ̂

τ̂
ψ̂j1j2 + τ̂−1τ̂j1 τ̂j2

z0 − µ̂

τ̂
ψ̂j1j2 − 1

2
τ̂−1µ̂j1µ̂j2

z0 − µ̂

τ̂
ψ̂j1j2

− τ̂−1µ̂j1 τ̂j2

(
z0 − µ̂

τ̂

)2

ψ̂j1j2 − 1

2
τ̂−1τ̂j1 τ̂j2

(
z0 − µ̂

τ̂

)3

ψ̂j1j2 − µ̂j1 r̂j2ψ̂
j1j2

− τ̂j1 r̂j2
z0 − µ̂

τ̂
ψ̂j1j2 +

1

2
µ̂j1ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4 +
1

2
τ̂j1
z0 − µ̂

τ̂
ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4

(7.44)

and

d

dz0

Q(z0|y)

Φ′(z0|ẑ; γ̂)
= −1

2

µ̂i1 µ̂i2
τ̂2

ψ̂i1i2 − 1

2

τ̂j1j2
τ̂

ψ̂j1j2 +
τ̂j1 τ̂j2
τ̂2

ψ̂j1j2 − 1

2

µ̂j1µ̂j2
τ̂2

ψ̂j1j2

− 2
µ̂j1 τ̂j2
τ̂2

z0 − µ̂

τ̂
ψ̂j1j2 − 3

2

τ̂j1 τ̂j2
τ̂2

(
z0 − µ̂

τ̂

)2

ψ̂j1j2 − τ̂j1 r̂j2
τ̂

ψ̂j1j2

+
1

2

τ̂j1
τ̂
ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4 (7.45)

7.3.2 Approximation to the Kullback-Leibler divergence

A similar expression exists for the predictive density when γ is known

f(z0|y; γ) =

(
1 +

d

dz0

Q(z0|y; γ)

Φ′(z0|ż; γ)

)
Φ′

(
z0 +

Q(z0|y; γ)

Φ′(z0|ż; γ)

∣∣∣∣ ż; γ

)(
1 +O(k−2 ∨ k2n−2)

)
(7.46)

where (ż, β̇) = argmin(z,β) ψ(y,z;β, γ) and

Q(z0|y; γ)

Φ′(z0|ż; γ)
= −1

2
τ̂−1µi1µi2

z0 − µ̇

τ
ψ̇i1i2 +

1

2
µi1ψ̇i2i2i2ψ̇

i1i2ψ̇i2i2
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d

dz0

Q(z0|y; γ)

Φ′(z0|ż; γ)
= −1

2

µi1µi2
τ2

ψ̇i1i2

hence Normal with mean

µ̊ = µ̇− 1

2
τ−1µi1ψ̇i2i2i2ψ̇

i1i2ψ̇i2i2
(

1 − 1

2
τ−2µi1µi2ψ̇

i1i2

)−1

and standard deviation

τ̊ = τ

(
1 − 1

2
τ−2µi1µi2ψ̇

i1i2

)−1

The log-difference of (7.43) from (7.46) is approximately

log f̃(z0|y) − log f(z0|y; γ) =
d

dz0

Q(z0|y)

Φ′(z0|ẑ; γ̂)
+ log

τ̊

τ̂
− 1

2τ̂2
(z0 − µ̂)2

+
1

τ̂2
(z0 − µ̂)

Q(z0|y)

Φ′(z0|ẑ; γ̂)
+

1

2̊τ2
(z0 − µ̊)2 +O(k−2 ∨ k2n−2)

The Kullback-Leibler divergence of f̃ from f given y, KL(f̃ , f |y), is

KL(f̃ , f |y) = −
∫

{log f̃(z0|y) − log f(z0|y; γ)}f(z0|y; γ) dz0

=
1

2

µ̂i1 µ̂i2
τ̂2

ψ̂i1i2 +
1

2

τ̂j1j2
τ̂

ψ̂j1j2 − τ̂j1 τ̂j2
τ̂2

ψ̂j1j2 +
1

2

µ̂j1µ̂j2
τ̂2

ψ̂j1j2

+ 2
µ̊− µ̂

τ̂

µ̂j1 τ̂j2
τ̂2

ψ̂j1j2 +
1

2

τ̊2

τ̂2

τ̂j1 τ̂j2
τ̂2

ψ̂j1j2 +
1

2

(µ̊− µ̂)2

τ̂2

τ̂j1 τ̂j2
τ̂2

ψ̂j1j2 +
τ̂j1 r̂j2
τ̂

ψ̂j1j2

− 1

2

τ̂j1
τ̂
ψ̂j2j3j4ψ̂

j1j2ψ̂j3j4 − log
τ̊
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+O(k−2 ∨ k2n−2) (7.47)
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Ideally we would like to be able to obtain the Kullback-Leibler divergence unconditionally,

but the expression in (7.47) is too complicated to allow us to have a closed form expression for

its expectation with respect to y.

7.4 Computations

The expressions in (7.36) and (7.47) involve quantities that cannot be computed explicitly.

Here we show how they can be approximated given a random sample from the distribution

f(z|y;β, γ) which is obtained for predicting Z0|Y .

7.4.1 Log-likelihood derivatives and Cumulants

The derivatives of the log-likelihood as defined in (7.26) and (7.27) are needed. Here we

propose a method to obtain them approximately using the random sample from the distribution

of Z|Y .

Write the likelihood:

L(β, γ|y) =

∫
f(y|z;β) f(z; γ) dz (7.48)

and the log-likelihood:

`(β, γ|y) = logL(β, γ|y) (7.49)

To simplify the notation, we will use ∂j1 for ∂/∂γj1 , ∂
2
j1j2

for ∂2/∂γj1∂γj2 and so on. Then (see

section A.3)

∂j1L(β, γ|y)

L(β, γ|y)
= Uj1(Y ; γ) (7.50)

∂2
j1j2

L(β, γ|y)

L(β, γ|y)
= Uj1j2(Y ; γ) + Uj1(Y ; γ)Uj2(Y ; γ) (7.51)

∂3
j1j2j3

L(β, γ|y)

L(β, γ|y)
= Uj1j2j3(Y ; γ) + [3]Uj1j2(Y ; γ)Uj3(Y ; γ) + Uj1(Y ; γ)Uj2(Y ; γ)Uj3(Y ; γ)

(7.52)

∂4
j1j2j3j4

L(β, γ|y)

L(β, γ|y)
= Uj1j2j3j4(Y ; γ) + [4]Uj1j2j3(Y ; γ)Uj4(Y ; γ) + [3]Uj1j2(Y ; γ)Uj3j4(Y ; γ)

+ [6]Uj1j2(Y ; γ)Uj3(Y ; γ)Uj4(Y ; γ)
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+ Uj1(Y ; γ)Uj2(Y ; γ)Uj3(Y ; γ)Uj4(Y ; γ) (7.53)

from where the log-likelihood derivatives, Uj1(Y ; γ), Uj1j2(Y ; γ), etc, can be obtained given the

quantities in the left hand side of equations (7.50) – (7.53).

Using (7.48),

∂j1L(β, γ|y)

L(β, γ|y)
=

∫
f(y|z;β)fj1(z; γ) dz∫
f(y|z;β)f(z; γ) dz

=

∫
f(y|z;β)f(z; γ){∂j1 log f(z; γ)}dz∫

f(y|z;β)f(z; γ) dz

=

∫
f(z|y;β, γ){∂j1 log f(z; γ)}dz (7.54)

and similarly,

∂2
j1j2

L(β, γ|y)

L(β, γ|y)
=

∫
f(z|y;β, γ){∂2

j1j2 log f(z; γ)}dz

+

∫
f(z|y;β, γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}dz (7.55)

∂3
j1j2j3

L(β, γ|y)

L(β, γ|y)
=

∫
f(z|y;β, γ){∂3

j1j2j3 log f(z; γ)}dz

+ [3]

∫
f(z|y;β, γ){∂2

j1j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

+

∫
f(z|y;β, γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

(7.56)

∂4
j1j2j3j4

L(β, γ|y)

L(β, γ|y)
=

∫
f(z|y;β, γ){∂4

j1j2j3j4 log f(z; γ)}dz

+ [4]

∫
f(z|y;β, γ){∂3

j1j2j3 log f(z; γ)}{∂j4 log f(z; γ)}dz

+ [3]

∫
f(z|y;β, γ){∂2

j1j2 log f(z; γ)}{∂2
j3j4 log f(z; γ)}dz

+ [6]

∫
f(z|y;β, γ){∂2

j1j2 log f(z; γ)}{∂j3 log f(z; γ)}{∂j4 log f(z; γ)}dz

+

∫
f(z|y;β, γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}

{∂j3 log f(z; γ)}{∂j4 log f(z; γ)}dz (7.57)
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where

∂j1 log f(z; γ) =
1

2
zT

Σ
−1

Σj1Σ
−1z − 1

2
tr(Σ−1

Σj1) (7.58)

∂2
j1j2 log f(z; γ) = −zT

Σ
−1

Σj1Σ
−1

Σj2Σ
−1z +

1

2
zT

Σ
−1

Σj1j2Σ
−1z

+
1

2
tr(Σ−1

Σj1Σ
−1

Σj2) −
1

2
tr(Σ−1

Σj1j2) (7.59)

∂3
j1j2j3 log f(z; γ) = −[3]zT

Σ
−1

Σj1Σ
−1

Σj2Σ
−1

Σj3Σ
−1z + [3]zT

Σ
−1

Σj1j2Σ
−1

Σj3Σ
−1z

+
1

2
zT

Σ
−1

Σj1j2j3Σ
−1z − [2]

1

2
tr(Σ−1

Σj1Σ
−1

Σj2Σ
−1

Σj3)

+ [3]
1

2
tr(Σ−1

Σj1j2Σ
−1

Σj3) −
1

2
tr(Σ−1

Σj1j2j3) (7.60)

∂4
j1j2j3j4 log f(z; γ) = [12]zT

Σ
−1

Σj1Σ
−1

Σj2Σ
−1

Σj3Σ
−1

Σj4Σ
−1z

− [12]zT
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Σj1j2Σ
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−1z + [4]zT
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Σj1j2j3Σ
−1

Σj4Σ
−1

+ [3]zT
Σ
−1

Σj1j2Σ
−1

Σj3j4Σ
−1 +

1

2
zT

Σ
−1

Σj1j2j3j4Σ
−1z

+ [6]
1

2
tr(Σ−1

Σj1Σ
−1

Σj2Σ
−1

Σj3Σ
−1

Σj4)

− [12]
1

2
tr(Σ−1

Σj1j2Σ
−1

Σj3Σ
−1

Σj4) + [3]
1

2
tr(Σ−1

Σj1j2Σ
−1

Σj3j4)

+ [4]
1

2
tr(Σ−1

Σj1j2j3Σ
−1

Σj4) −
1

2
tr(Σ−1

Σj1j2j3j4) (7.61)

Equations (7.54) – (7.57) involve the expectations over the distribution of Z|Y . Using the

random sample from f(z|y;β, γ), (7.58) – (7.61) are computed for every simulation and then

taking the average we obtain an approximation to (7.54) – (7.57).

The cumulants are defined as the expectations of the derivatives of the log-likelihood:

κj1j2 = E{Uj1j2(Y )}

κj1j2j3 = E{Uj1j2j3(Y )}

and so on. The expectations at the right hand side are over non-linear functions of Y and it is

not possible to calculate the cumulants explicitly. An approximation is obtained as follows. Note

that the left hand sides of (7.50) – (7.53) have expectation 0 with respect to the distribution
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of Y . Taking expectations, after some simplifications (see Appendix section A.4), we obtain

κj1j2 = E(Uj1j2)

= −1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

]

+
1

4
tr{Σ−1

Σj1} tr{Σ−1
Σj2} (7.62)

κj1j2j3 = E(Uj1j2j3)

= [3]
1

2
E
[
tr(Σ−1

Σj1Σ
−1

Σj2Σ
−1

E(ZZT|Y )) tr(Σ−1
Σj3Σ

−1
E(ZZT|Y ))

]

− [3]
1

4
E
[
tr(Σ−1

Σj1j2Σ
−1

E(ZZT|Y )) tr(Σ−1
Σj3Σ

−1
E(ZZT|Y ))

]

− [3]
1

8
E
[
E
{
(ZT

Σ
−1

Σj1Σ
−1Z)(ZT

Σ
−1

Σj2Σ
−1Z)|Y

}
tr{Σ−1

Σj3Σ
−1

E(ZZT|Y )}
]

+
1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

tr{Σ−1
Σj3Σ

−1
E(ZZT|Y )}

]

− [3]
1

4
tr(Σ−1

Σj1Σ
−1

Σj2) tr(Σ−1
Σj3)

+ [3]
1

4
tr(Σ−1

Σj1j2) tr(Σ−1
Σj3)

+
1

2
tr{Σ−1

Σj1} tr{Σ−1
Σj2} tr{Σ−1

Σj3} (7.63)

There is no direct way of obtaining explicitly (7.62) or (7.63) but the expectation E(ZZT|Y )

can be approximated using the random sample from f(z|y;β, γ). A second option would be to

average over the log-likelihood derivatives computed for each simulation.

7.4.2 Derivatives of the distribution function

The derivatives of the distribution function (7.21) as defined at (7.35) are needed. Write

F (z0|y; γ) =

∫∫
Φ(z0|z; γ)f(z; γ)f(y|z;β)eu(β) dz dβ∫∫

f(z; γ)f(y|z;β)eu(β) dz dβ

=

∫∫
Φ(z0|z; γ)f(β,z|y; γ) dz dβ

=

∫
Φ(z0|z; γ)f(z|y; γ) dz (7.64)

72



Then

Fj1(z0|y; γ) =

∫∫
Φj1(z0|z; γ)f(z; γ)f(y|z;β)eu(β) dz dβ∫∫

f(z; γ)f(y|z;β)eu(β) dz dβ

+

∫∫
Φ(z0|z; γ)fj1(z; γ)f(y|z;β)eu(β) dz dβ∫∫

f(z; γ)f(y|z;β)eu(β) dz dβ

− F (z0|y; γ)

∫∫
fj1(z; γ)f(y|z;β)eu(β) dz dβ∫∫
f(z; γ)f(y|z;β)eu(β) dz dβ

=

∫
Φj1(z0|z; γ)f(z|y; γ) dz

+

∫
Φ(z0|z; γ)f(z|y; γ){∂j1 log f(z; γ)}dz

− F (z0|y; γ)

∫
f(z|y; γ){∂j1 log f(z; γ)}dz (7.65)

Fj1j2(z0|y; γ) =

∫
Φj1j2(z0|z; γ)f(z|y; γ) dz

+ [2]

∫
Φj1(z0|z; γ)f(z|y; γ){∂j2 log f(z; γ)}dz

+

∫
Φ(z0|z; γ)f(z|y; γ){∂2

j1j2 log f(z; γ)}dz

+

∫
Φ(z0|z; γ)f(z|y; γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}dz

− [2]Fj1(z0|y; γ)

∫
f(z|y; γ){∂j2 log f(z; γ)}dz

− F (z0|y; γ)

∫
f(z|y; γ){∂2

j1j2 log f(z; γ)}dz

− F (z0|y; γ)

∫
f(z|y; γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}dz (7.66)

Fj1j2j3 =

∫
Φj1j2j3(z0|z; γ)f(z|y; γ) dz + [3]

∫
Φj1j2(z0|z; γ)f(z|y; γ){∂j3 log f(z; γ)}dz

+ [3]

∫
Φj1(z0|z; γ)f(z|y; γ){∂2

j2j3 log f(z; γ)}dz

+ [3]

∫
Φj1(z0|z; γ)f(z|y; γ){∂j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

+

∫
Φ(z0|z; γ)f(z|y; γ){∂3

j1j2j3 log f(z; γ)}dz

+ [3]

∫
Φ(z0|z; γ)f(z|y; γ){∂2

j1j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

+

∫
Φ(z0|z; γ)f(z|y; γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

− F (z0|y; γ)

∫
f(z|y; γ){∂3

j1j2j3 log f(z; γ)}dz

− [3]F (z0|y; γ)

∫
f(z|y; γ){∂2

j1j2 log f(z; γ)}{∂j3 log f(z; γ)}dz
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− F (z0|y; γ)

∫
f(z|y; γ){∂j1 log f(z; γ)}{∂j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

− [3]Fj1(z0|y; γ)

∫
f(z|y; γ){∂2

j2j3 log f(z; γ)}dz

− [3]Fj1(z0|y; γ)

∫
f(z|y; γ){∂j2 log f(z; γ)}{∂j3 log f(z; γ)}dz

− [3]Fj1j2(z0|y; γ)

∫
f(z|y; γ){∂j3 log f(z; γ)}dz (7.67)

where the derivatives of log f(z; γ) are given in (7.58) – (7.60) and the derivatives of Φ in (7.15).

These expressions can also be computed by simulation.

7.4.3 Simulations

Nine predictive densities were considered. Eight of them were Bayesian predictive densities

under different priors for the three parameters of the covariance matrix (see Table 7.3). The

literature didn’t give much focus in the nugget parameter and the only proposal we found was

the use of a uniform prior. The first set of priors uses uniform bounded priors for all three pa-

rameters as in Diggle et al. (1998). Christensen et al. (2000) propose the use of improper inverse

gamma for the partial sill and uniform or exponential for the range parameter. Following their

suggestion, the second set of priors assigns uniform priors to the nugget and range parameters

but improper inverse gamma for the partial sill. The third, fourth, and fifth set of priors assigns

uniform prior to the nugget, improper inverse gamma to the partial sill and exponential to the

range parameter with corresponding means 2, 4, and 6. For the Gaussian model Berger et al.

(2001) suggested three other priors for the partial sill and range parameters, the reference prior,

the Jeffreys independent prior and the Jeffreys rule prior (see section A.5 in the Appendix).

These three sets of priors were also considered. We also considered the coverage probability

bias for the plug-in predictive density as proposed by Zhang (2002) and also in Chapter 5 of

this thesis.

Coverage probability bias

We perform simulations to compute the coverage probability bias under the setting of sec-

tion 4.3.3. Using the locations in Figure 4.1, we simulate 1000 realizations of a Gaussian

random field as described in section 4.3.3. Then we repeatedly draw n = 60 observations from
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prior nugget partial sill range
1 uniform uniform uniform
2 uniform inverse gamma uniform
3 uniform inverse gamma exponential w/ mean 2
4 uniform inverse gamma exponential w/ mean 4
5 uniform inverse gamma exponential w/ mean 6
6 uniform Gaussian reference prior
7 uniform Gaussian Jeffreys indep. prior
8 uniform Gaussian Jeffreys rule prior

Table 7.3: Priors used for the simulations.

the Bernoulli distribution. We consider prediction at location (5, 5), the center of Figure 4.1.

We computed the bias at γ = (0.2, 2.0, 4.0) for the 2.5%, 5%, 50%, 95% and 97.5% quantiles.

For each simulation, using the R package geoRglm we drew an MCMC sample of size 1000

from the distribution of Z0|Y where Z0 corresponds to the random effect at location (5, 5).

Equations (7.54) – (7.57) were computed by averaging (7.58) – (7.61) over the MCMC sample

which in turn were used to obtain the log-likelihood derivatives using (7.50) – (7.53). In addition

(7.64) – (7.67) were also computed by averaging.

The cumulants were calculated by averaging the log-likelihood derivatives over each simu-

lation. All the quantities needed to obtain the coverage probability bias given in (7.36) have

been computed. The mean, median and standard deviation over the 1000 simulations for the

nine different predictive densities are shown in Table 7.4.

The plug-in method seems to have the smallest bias. We see that the second set of priors

(inverse gamma for the partial sill and uniform for the other two) tends to have lower bias at the

tails of the distribution which is the most significant when a prediction interval is constructed.

Also the first set of priors (all uniform) has a small bias. On the other hand, the standard

deviation is too large to allow for a clear answer as to which prior should be preferred. It’s

also interesting to see in how many cases over the 1000 simulations there are such that the

absolute bias of the predictive density under one prior is less than the one under a different

prior. This comparison is presented in Table 7.5. According to this table and in combination

with Table 7.4, the second set of priors results to a predictive distribution with smaller coverage

probability bias among the Bayesian predictive densities. The plug-in method also results to

low coverage probability bias.

A chi-square goodness-of-fit test was performed testing the hypothesis that each of the
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quantile 1 2 3 4 5
2.50% Mean 1.137E-03 1.077E-03 1.393E-03 1.235E-03 1.182E-03

Median 1.254E-03 1.211E-03 1.433E-03 1.319E-03 1.290E-03
S.D. 5.074E-05 5.068E-05 5.164E-05 5.099E-05 5.085E-05

5% Mean 1.759E-03 1.675E-03 2.121E-03 1.898E-03 1.824E-03
Median 1.867E-03 1.784E-03 2.069E-03 1.946E-03 1.881E-03

S.D. 7.454E-05 7.429E-05 7.696E-05 7.531E-05 7.490E-05
50% Mean -2.342E-06 -3.648E-08 -2.226E-05 -1.115E-05 -7.445E-06

Median 8.091E-05 6.797E-05 3.234E-05 2.081E-05 1.502E-05
S.D. 1.449E-04 1.415E-04 1.683E-04 1.537E-04 1.493E-04

95% Mean -1.749E-03 -1.664E-03 -2.123E-03 -1.893E-03 -1.817E-03
Median -1.855E-03 -1.813E-03 -2.104E-03 -1.946E-03 -1.912E-03

S.D. 7.996E-05 7.967E-05 8.255E-05 8.082E-05 8.037E-05
97.50% Mean -1.127E-03 -1.067E-03 -1.391E-03 -1.229E-03 -1.175E-03

Median -1.264E-03 -1.193E-03 -1.432E-03 -1.315E-03 -1.290E-03
S.D. 5.408E-05 5.399E-05 5.514E-05 5.441E-05 5.423E-05

quantile 6 7 8 plug-in
2.50% Mean 1.379E-03 1.306E-03 1.313E-03 -1.819E-05

Median 1.425E-03 1.380E-03 1.386E-03 1.338E-04
S.D. 5.157E-05 5.124E-05 5.131E-05 5.066E-05

5% Mean 2.101E-03 1.998E-03 2.007E-03 -2.190E-05
Median 2.047E-03 1.989E-03 1.990E-03 1.710E-04

S.D. 7.679E-05 7.598E-05 7.616E-05 7.410E-05
50% Mean -2.130E-05 -1.616E-05 -1.849E-05 2.028E-05

Median 6.810E-06 4.291E-05 5.263E-05 1.633E-05
S.D. 1.669E-04 1.600E-04 1.617E-04 1.285E-04

95% Mean -2.103E-03 -1.997E-03 -2.007E-03 3.968E-05
Median -2.098E-03 -2.024E-03 -2.028E-03 -1.652E-04

S.D. 8.238E-05 8.153E-05 8.172E-05 7.891E-05
97.50% Mean -1.377E-03 -1.302E-03 -1.310E-03 3.035E-05

Median -1.424E-03 -1.378E-03 -1.388E-03 -1.193E-04
S.D. 5.506E-05 5.470E-05 5.478E-05 5.373E-05

Table 7.4: Approximate coverage probability bias calculated for the eight different sets of priors
and the plug-in method.

proportions in Table 7.5 is different from 0.5. If p̂ is the observed proportion from Table 7.5

and N is the number of simulations, the test statistic for testing p 6= 0.5 is given by

T = 2N (p̂− 0.5)2 + 2N (1 − p̂− 0.5)2 = 4N (p̂− 0.5)2

which has, approximately, the chi square distribution with 1 degree of freedom. The null

hypothesis is rejected for every pair of Table 7.5 which suggests the use of inverse gamma prior

for the partial sill and uniform priors for the other two parameters.

The same computations were performed for different values of the range parameter but for

fixed nugget and partial sill parameter. The values of the range parameter were 2, 3, . . . , 8 while
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the nugget was fixed at 0.2 and the partial sill at 2.0. We plotted the estimate of the coverage

probability bias with respect to the value of the range parameter (Figures 7.1–7.2). The plug-in

has clearly the smallest coverage probability bias. Among the Bayesian predictive densities,

the one that seems to have the lowest bias is the second (inverse gamma for the partial sill and

uniform for the other two parameters). The decreasing pattern can be explained by the fact

that for higher values of the range, more locations can be used for the prediction at a certain

location, hence the bias is smaller. Also notice, that the third set of priors (exponential with

mean 2 for the range) had good performance when the true value is less than or equal to 4 but

separates from the others when the true value is higher.

The coverage probability bias was also computed for different values of the partial sill

parameter: 0.15, 0.2, 0.35 and 0.5, 1, 1.5, . . . , 5, while the nugget was fixed at 0.2 and the range

was fixed at 4.0. Figures 7.3 – 7.4 show how the coverage probability bias changes. There is an

increase for the values of the sill that are smaller than 0.5, then the bias is decreasing towards

0 while the sill becomes larger but starts increasing again when the sill is larger than 3. We

actually expect the bias to decrease as the sill increases, as is the case for the values between 0.5

and 3.0, because the signal-to-noise ratio is increased. Perhaps the false pattern for very small

and very large values of the sill is due to instability of the simulations. A third set of simulations

was performed with the nugget varying at values 0.4
0.15 ,

0.4
0.2 ,

0.4
0.35 and 0.4

0.5 ,
0.4
1 ,

0.4
1.5 , . . . ,

0.4
5 with range

and partial sill being fixed at values 4 and 2 respectively. The plots are shown in Figures 7.5 –

7.6. Besides the low values for the nugget, the bias seems to increase as the value of the nugget

increases which can be explained by the fact that when the nugget is high, the variability for

each observation is higher introducing more uncertainty and measurement error.

Alternative computation of the coverage probability bias by simulation

Empirically, the coverage probability bias can be computed by simulating from the distri-

butions of Z0|Y and Z0|Y ; γ by noting that

f(z0|y) =

∫∫
f(z0|z, γ)f(y|z;β)f(γ) dz dγ
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and

f(z0|y; γ) =

∫
f(z0|z; γ)f(y|z;β) dz

and by using the following scheme:

For a given vector of observations Y the predictive quantiles of the Bayesian predictive

density are obtained as follows

1. Replicate the following steps:

(a) Simulate from the distribution of γ|Z,Y

(b) Simulate from the distribution of Z|Y , γ

2. Estimate γ by γ̂ and predict Z by Ẑ by averaging over the simulations.

3. Construct the distribution of Z0|Ẑ; γ̂ and compute its quantiles

For the predictive density for fixed covariance parameters, say γ = γT, the coverage proba-

bility of the quantiles obtained above is estimated in the following way

1. Replicate the following:

(a) Simulate from the distribution of Z|Y ; γT

2. Predict Z by Z̃ by averaging over the simulations.

3. Construct the distribution of Z0|Z̃; γT

4. Compute the coverage probability for the given quantiles.

The simulations at step 1. were replicated 1000 times and the whole procedure was repeated

1000 times. The median of the coverage probability bias was computed under the first five sets

of priors of Table 7.3 and for the plug-in method (we chose the median because the distribution

of the coverage probability bias computed this way was not symmetric and had high variability).

According to the simulations the coverage probability bias is as shown in Table 7.6. The simu-

lations seem to agree with our approximation (within simulation error) in terms of the value of

the coverage probability bias. The comparison between the simulations and the approximation

can be easily seen in Figures 7.7 and 7.8 where in most cases there is an agreement between
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the two but the approximation has much smaller variability. A different comparison is shown

in Figures 7.9 – 7.11 where the approximation and the simulation methods are plotted against

different sill values. Because of the high variability of the simulations, the interquartile range

is too wide but we can see that our approximation falls within the two quartiles.

We also counted how many times one predictive density has smaller coverage probability

bias than another (in absolute value) and tested if there is any significant advantage using one

prior over another. Table 7.7 shows the observed proportions. The simulations recommend the

first and second set of priors in agreement with our approximation.

Kullback-Leibler divergence

For the computation of the Kullback-Leibler divergence, we used a larger sample size to

reduce the error of the approximation given in (7.47). We used k = 100 randomly chosen

locations from where we drew n = 100 observations at each location and calculated (7.47) for

the given simulation under the priors in Table 7.3. We repeated this 2000 times and the average

was taken. The distribution of the Kullback-Leibler divergence was not symmetric. Most of

the values were less than 10 with first quartile around 0.3 and third quartile around 8. We

excluded any values larger than 15 and were left with 1122 simulated values of the Kullback-

Leibler divergence. The average Kullback-Leibler divergence over the simulations for each set

of priors is shown in Table 7.8

It is not very clear from Table 7.8 if any predictive density has an advantage but the one

constructed using the second set of priors seem to be the best. The proportions of how many

times one predictive density had smaller Kullback-Leibler divergence than another density were

computed and displayed in Table 7.9.

A similar chi-square goodness-of-fit test was performed for the proportions in Table 7.9

testing if they are different from 0.5. The null hypothesis is rejected for every pair of table

Table 7.9. This is another evidence that the predictive density constructed using the second

set of priors has the smallest Kullback-Leibler divergence.
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7.5 Summary

The main results of this chapter are the approximations to the coverage probability bias

and Kullback-Leibler divergence of the Bayesian predictive distribution. In order to obtain

these approximations we first derive expressions for the approximation of the Bayesian predic-

tive distribution and the Bayesian probability density function. Our result also allows us to

approximate the quantiles of the Bayesian predictive distribution under a given prior.

Our approximation to the coverage probability bias was compared against the bias computed

using simulations. Due to the high variability of the simulated coverage probability bias, it is

hard to provide a golden standard to the exact value of the coverage probability bias, but out

approximation seem to agree (within error) with the simulated one.

The computations were performed for different values of the parameters. We find that the

bias is reduced as the range parameter increases which can be explained by the fact that when

the range is larger, more locations can be used for the prediction at a given location, which

reduces the bias. In addition, when the sill parameter is increased while the nugget remains

constant, the signal-to-noise ratio is increased and the bias of the prediction should be reduced.

This property is not completely captured by our approximation (except for the range 0.5 –

2.5) but neither by the simulated bias. A similar reasoning can be applied when the nugget

parameter is increased while the sill and range parameters remain constant. In this case, the

signal-to-noise ratio is reduced and the bias of the prediction should be increased. This feature

is captured by our approximation except for very low values of the nugget parameter, i.e., those

lower than 0.2.

Based on our approximation to the coverage probability bias in Tables 7.4 and 7.5, the

exponential prior is not a good choice for the range parameter. This result is also verified

by our approximation to the Kullback-Leibler divergence in Table 7.9. For the sill parameter,

either uniform or inverse gamma is a good choice. In addition, priors proposed for the Gaussian

Spatial model don’t perform very well for the Generalized Linear Mixed Model.
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2 3 4 5 6 7 8 plug-in
1 0.256 0.737 0.711 0.683 0.736 0.728 0.717 0.322

0.260 0.716 0.690 0.677 0.716 0.706 0.697 0.312
0.307 0.764 0.738 0.730 0.762 0.751 0.754 0.347
0.264 0.740 0.719 0.691 0.738 0.732 0.724 0.316
0.254 0.742 0.721 0.704 0.741 0.731 0.729 0.328

2 0.742 0.728 0.722 0.741 0.736 0.728 0.327
0.723 0.712 0.711 0.721 0.712 0.703 0.315
0.753 0.723 0.716 0.750 0.738 0.744 0.363
0.742 0.723 0.717 0.742 0.736 0.732 0.319
0.746 0.728 0.719 0.745 0.736 0.730 0.343

3 0.250 0.253 0.238 0.245 0.228 0.300
0.268 0.270 0.257 0.263 0.238 0.282
0.227 0.235 0.206 0.222 0.235 0.298
0.244 0.252 0.228 0.237 0.220 0.303
0.243 0.247 0.229 0.232 0.214 0.314

4 0.263 0.748 0.747 0.720 0.313
0.282 0.731 0.728 0.703 0.304
0.254 0.772 0.762 0.766 0.335
0.261 0.753 0.747 0.732 0.313
0.260 0.756 0.748 0.735 0.326

5 0.747 0.744 0.727 0.317
0.729 0.724 0.707 0.308
0.762 0.758 0.762 0.340
0.748 0.742 0.734 0.315
0.751 0.746 0.737 0.327

6 0.246 0.223 0.300
0.264 0.235 0.287
0.222 0.241 0.299
0.240 0.220 0.305
0.233 0.205 0.314

7 0.595 0.310
0.591 0.296
0.766 0.321
0.611 0.305
0.611 0.319

8 0.309
0.296
0.319
0.305
0.320

Table 7.5: Comparison of the absolute coverage probability bias. The numbers in each cell
show what proportion over 1000 simulations, the set of priors in the corresponding row had
a smaller bias compared to the prior in the corresponding column for the different quantiles.
Within each cell, the quantiles compared were, from top to bottom, 2.5%, 5%, 50%, 95%, and
97.5%
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Figure 7.1: Coverage probability bias for eight different priors and plug-in at the 2.5% and 5%
quantiles with range varying.
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Figure 7.2: Coverage probability bias for eight different priors and plug-in at the 95% and
97.5% quantiles with range varying.
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Figure 7.3: Coverage probability bias for eight different priors and plug-in at the 2.5% and 5%
quantiles with sill varying.
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Figure 7.4: Coverage probability bias for eight different priors and plug-in at the 95% and
97.5% quantiles with sill varying.
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Figure 7.5: Coverage probability bias for eight different priors and plug-in at the 2.5% and 5%
quantiles with nugget varying.

86



0.0 0.5 1.0 1.5 2.0 2.5

−
0
.0

0
2
5

−
0
.0

0
1
5

−
0
.0

0
0
5

95 %

nugget

C
o
v
er

a
g
e 

p
ro

b
 b

ia
s

1

2

3

4

5

6

7

8

p−i

0.0 0.5 1.0 1.5 2.0 2.5

−
0
.0

0
1
5

−
0
.0

0
1
0

−
0
.0

0
0
5

0
.0

0
0
0

97.5 %

nugget

C
o
v
er

a
g
e 

p
ro

b
 b

ia
s

1

2

3

4

5

6

7

8

p−i

Figure 7.6: Coverage probability bias for eight different priors and plug-in at the 95% and
97.5% quantiles with nugget varying.
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quantile 1 2 3 4 5 Plug-in
2.50% Mean 4.630E-05 5.097E-04 -4.116E-03 2.782E-05 2.982E-03 2.593E-03

Median -1.049E-04 -1.056E-04 -4.030E-03 -1.252E-04 1.847E-03 3.687E-05
S.D. 2.083E-04 2.113E-04 2.558E-04 2.146E-04 2.479E-04 1.420E-03

5% Mean 1.773E-05 7.185E-04 -6.283E-03 2.567E-05 4.408E-03 2.717E-03
Median -1.847E-04 -2.857E-04 -5.795E-03 -2.347E-04 2.806E-03 9.803E-07

S.D. 3.589E-04 3.570E-04 4.670E-04 3.656E-04 4.104E-04 1.424E-03
50% Mean -2.274E-04 3.124E-04 8.517E-04 8.460E-04 2.270E-03 4.385E-04

Median -1.398E-04 -1.726E-03 1.067E-03 1.455E-03 1.367E-03 2.026E-04
S.D. 1.355E-03 1.239E-03 2.009E-03 1.325E-03 1.333E-03 1.188E-03

95% Mean -2.388E-04 -6.527E-04 6.615E-03 3.126E-04 -3.232E-03 -9.206E-04
Median 4.124E-04 -5.394E-04 5.828E-03 7.826E-04 -1.985E-03 3.896E-05

S.D. 3.970E-04 3.522E-04 4.804E-04 3.854E-04 3.932E-04 3.374E-04
97.50% Mean -1.955E-04 -4.960E-04 4.282E-03 1.410E-04 -2.317E-03 -6.737E-04

Median 2.542E-04 -3.548E-04 3.908E-03 5.917E-04 -1.404E-03 3.382E-05
S.D. 2.337E-04 2.087E-04 2.638E-04 2.281E-04 2.371E-04 2.173E-04

Table 7.6: Coverage probability bias computed by simulations.

2 3 4 5 plugin
1 0.469 0.696 0.514 0.579 0.271

0.475 0.683 0.516 0.567 0.277
0.488 0.675 0.520 0.544 0.267
0.483 0.695 0.513 0.566 0.274
0.493 0.703 0.515 0.576 0.261

2 0.703 0.532 0.595 0.288
0.690 0.528 0.592 0.299
0.681 0.543 0.561 0.302
0.690 0.521 0.558 0.279
0.696 0.528 0.579 0.277

3 0.301 0.379 0.165
0.307 0.395 0.167
0.347 0.376 0.175
0.308 0.375 0.168
0.308 0.366 0.161

4 0.544 0.274
0.552 0.269
0.534 0.270
0.566 0.273
0.549 0.258

5 0.261
0.266
0.273
0.256
0.268

Table 7.7: Comparison of the absolute coverage probability bias by simulations.

1 2 3 4 5 6 7 8
Mean 2.2659 2.2593 2.2845 2.2719 2.2677 4.0462 2.2911 2.2779
S.D. 0.0770 0.0770 0.0771 0.0771 0.0771 0.1152 0.0770 0.0772

Table 7.8: Mean and standard deviation of the Kullback-Leibler divergence for the simulations.
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Figure 7.7: Boxplots to compare the coverage probability bias by simulation (left) and by
approximation (right) for different priors and plug-in. The top corresponds to the 2.5% quantile
and the bottom to the 5% quantile
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Figure 7.8: Boxplots to compare the coverage probability bias by simulation (left) and by
approximation (right) for different priors and plug-in. The top corresponds to the 50% quantile
and the bottom to the 95% quantile
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Figure 7.9: Approximated (dashed with ∗) and simulated (solid with ∗) coverage probability
bias at the 2.5% quantile under priors 1 and 2 against sill with the interquartile range of the
simulated coverage probability bias represented by a plain solid line.
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Figure 7.10: Approximated (dashed with ∗) and simulated (solid with ∗) coverage probability
bias at the 2.5% quantile under priors 3 and 4 against sill with the interquartile range of the
simulated coverage probability bias represented by a plain solid line.
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Figure 7.11: Approximated (dashed with ∗) and simulated (solid with ∗) coverage probability
bias at the 2.5% quantile under priors 5 and plug-in against sill with the interquartile range of
the simulated coverage probability bias represented by a plain solid line.

2 3 4 5 6 7 8
1 0.3610 0.8396 0.7219 0.6301 0.9439 0.9189 0.7219
2 0.9537 0.9537 0.9537 0.9537 0.9537 0.8396
3 0.0463 0.0463 0.9537 0.7727 0.3610
4 0.0463 0.9537 0.9510 0.7219
5 0.9537 0.9537 0.7736
6 0.0463 0.0472
7 0.2718

Table 7.9: Proportions for comparing the Kullback-Leibler divergence. Each cell shows the
proportion of how many times the predictive density constructed using the set of priors in the
corresponding row had a smaller Kullback-Leibler divergence than the one constructed using
the priors in the corresponding column.
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CHAPTER 8

Summary and Future Work

In this thesis we provide methods that can be used for the analysis of data modeled under the

Generalized Linear Mixed Model framework. Although the focus is toward spatial applications,

these methods can easily be extended to other types of problems (e.g. longitudinal data) under

the same model. Our methods are based on approximate techniques, mainly Taylor expansion

and Laplace approximation to integrals described in section 3.2 and work well if the sample

size is large.

We solve the problem of estimation by proposing an approximate likelihood method based

on Laplace approximation. Although these types of approximations are known to be biased,

we find that the mean square error is small. A further correction can be made to reduce bias

by evaluating the error in the Taylor expansion of the likelihood as outlined at the end of

section 4.3.

For the prediction of the random effects, we suggest using modified a plug-in method, derived

by an application of Laplace approximation. Our proposed predictive distribution is Normal

and prediction intervals can be easily computed. Our method is comparable to other existing

methods in terms of prediction accuracy using three different scoring rules and it’s much faster.

Potential improvement can be made as we describe in section 5.1.1 although this has not been

investigated yet.

Similar ideas are applied to the Bayesian predictive distribution where we suggest corrections

to the predictive quantiles. The coverage probability bias and the Kullabck-Leibler divergence

are also approximated. We use our approximation to compare the Bayesian predictive distribu-

tions constructed under different priors for the covariance parameters and concluded that the



best choice among the ones we compared is to use inverse gamma for the partial sill parameter

and uniform for the nugget and range parameters.

Some ideas for future work

A potential improvement to the approximate likelihood can be made by computing the

error of the Laplace approximation. An idea is presented at the bottom of section 4.3 which is

based on an approximation to the conditional density of the random effects given the data as

described in section 4.1.

An improvement to the plug-in prediction is outlined in section 5.1.1. The idea is to use

numerical derivatives to obtain a higher order correction to the predictive quantiles. It will be

interesting to apply the same idea to the quantiles of the Bayesian predictive distribution.

Another possibility would be to apply Laplace approximation to compute the posterior

quantiles for the covariance parameters. If this idea works, it can be considered as an alternative

to MCMC methods that are currently used for Bayesian estimation.

There is also the possibility of using Laplace approximation in the place of the E step of

an EM algorithm as an alternative to Monte Carlo simulation. Alternatively, the approximate

density in section 4.1 can be used to simulate i.i.d. samples from the conditional distribution

of the random effects given the data and compute the expectation by averaging. The same

density can be used for importance sampling when approximating the simulated likelihood.

94



Appendix

A.1 Convergence of ẑ(Y )

We show that ẑ(Y ) defined in (4.10) converges as k → ∞ to Z almost surely. For the proof

we make use of the following Lemma:

Lemma 4. If Xn|(Y = y)
a.s→ y for all y as n→ ∞, then Xn

a.s→ Y .

Proof.

Pr(Xn → Y ) =

∫
Pr(Xn → Y |Y = y) d Pr(y) =

∫
1 d Pr(y) = 1

Now note that Ẑ = ẑ(Y ) is chosen to maximize

( k∑

i=1

Yi·θ(Zi) −
k∑

i=1

nib(θ(Zi))

)
/ω − 1

2
ZT

Σ
−1Z (A.1)

where θ(z) is an increasing function relating the canonical parameter with the linear predictor.

Define Z∗
i = (b′ ◦ θ)−1(n−1

i Yi·) where (b′ ◦ θ)−1(·) is the inverse function of b′(θ(·)).

By the Law of Large Numbers, n−1
i Yi·|(Zi = zi)

a.s→ b′(θ(zi)) which implies that Z∗
i |(Zi =

zi)
a.s→ zi. Consequently, by Lemma 4, Z∗

i
a.s→ Zi.

To show that Ẑi
a.s→ Zi, define Ei = θ(Ẑi) − θ(Z∗

i ). By definition, Ẑ satisfies

θ′(Ẑi)
(
Yi· − nib

′(θ(Ẑi))
)
/ω −

k∑

j=1

σijẐj = 0 (A.2)

where σij is the (i, j) element of Σ
−1. By the mean value theorem

b′(θ(Ẑi)) = b′(θ(Z∗
i ) + Ei) = b′(θ(Z∗

i )) + Eib
′′(θ(Z∗

i ) + Ξi) (A.3)

for some Ξi such that |Ξi| ≤ |Ei| a.s.. Note that the monotonicity of b′ ◦ θ implies that

Ei b
′′(θ(Z∗

i ) + Ξi)
a.s→ 0 if and only if Ei

a.s→ 0.
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Substituting (A.3) into (A.2),

−θ′(Ẑi) b′′(θ(Ẑi) + Ξi)Ei = n−1
i ωσii1Ẑi1

and letting k → ∞, Ei → 0, so Ẑi
a.s→ Zi.

A.2 Proof of Theorem 1

By (7.29) and (7.30), for any four-times-differentiable function g, the bias of the estimate

g(γ̂) − g(γ) is given by expanding g(γ̂) around the true value γ

g(γ̂) − g(γ) = gj1(γ̂
j1 − γj1) +

1

2
gj1j2(γ̂

j1 − γj1)(γ̂j2 − γj2)

+
1

6
gj1j2j3(γ̂

j1 − γj1)(γ̂j2 − γj2)(γ̂j3 − γj3) +O(k−2)

= gj1(k
−1/2εj11 + k−1εj12 + k−3/2εj13 ) +

1

2
gj1j2(k

−1/2εj11 + k−1εj12 )(k−1/2εj21 + k−1εj22 )

+
1

6
gj1j2j3(k

−1/2εj11 )(k−1/2εj21 )(k−1/2εj31 ) +O(k−2)

= k−1/2gj1ε
j1
1 + k−1

{
gj1ε

j1
2 +

1

2
gj1j2ε

j1
1 ε

j2
1

}

+ k−3/2

{
gj1ε

j1
3 +

1

2
gj1j2(ε

j1
1 ε

j2
2 + εj12 ε

j2
1 ) +

1

6
gj1j2j3ε

j1
1 ε

j2
1 ε

j3
1

}
+O(k−2) (A.4)

Using a well known formula for matrix inversion,

U j,j
′

= −k−1κj,j
′

+ k−3/2Wj1j2κ
j,j1κj

′,j2 +O(k−2)

and applying (A.4) on the plug-in predictive distribution we have

F (z0|y; γ̂) − F (z0|y; γ) = k−1/2Fj1ε
j1
1 + k−1

{
Fj1ε

j1
2 +

1

2
Fj1j2ε

j1
1 ε

j2
1

}

+ k−3/2

{
Fj1ε

j1
3 +

1

2
Fj1j2(ε

j1
1 ε

j2
2 + εj12 ε

j2
1 ) +

1

6
Fj1j2j3ε

j1
1 ε

j2
1 ε

j3
1

}
+O(k−2) (A.5)

where Fj1...js is defined in (7.35).

On the other hand, applying standard Laplace approximation for the ratio of two integrals
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on F (z0|y)

F (z0|y) − F (z0|y; γ̂) =
1

2
F̂j1Ûj2j3j4Û

j1j2Û j3j4 − 1

2
(F̂j1j2 + F̂j1 r̂j2)Û

j1j2 +O(k−2) (A.6)

Applying (A.4) on Ûj1j2 and Ûj1j2j3 we have

Ûj1j2 = Uj1j2 + k−1/2Uj1j2jε
j
1 +O(1)

= kκj1j2 + k1/2
{
Wj1j2 + κj1j2jε

j
1

}
+O(1) (A.7)

Ûj1j2j3 = Uj1j2j3 + k−1/2Uj1j2j3jε
j
1 +O(1)

= kκj1j2j3 + k1/2
{
Wj1j2j3 + κj1j2j3jε

j
1

}
+O(1) (A.8)

and

Û j1j2 = −k−1κj1,j2 − k−3/2
{
Wj3j4 + κj3j4j5ε

j5
1

}
κj1,j3κj2,j4 +O(k−2) (A.9)

so

Ûj1j2j3Û
j1j2Û j3j4 = k−1κj1j2j3κ

j1,j2κj3,j4 + k−3/2
{(
Wj1j2j3 + κj1j2j3jε

j
1

)
κj1,j2κj3,j4

+κj1j2j3

(
Wjj∗ + κjj∗j†ε

j†
1

)
κj1,jκj2,j∗κj3,j4 + κj1j2j3

(
Wjj∗ + κjj∗j†ε

j†
1

)
κj1,j2κj3,jκj4,j∗

}

+O(k−2) (A.10)

In addition,

F̂j1 = Fj1 + k−1/2Fj1jε
j
1 +O(k−1) (A.11)

F̂j1j2 = Fj1j2 + k−1/2Fj1j2jε
j
1 +O(k−1) (A.12)

F̂j1 r̂j2 = Fj1rj2 + k−1/2(Fj1rj2jε
j
1 + Fj1jrj2ε

j
1) +O(k−1) (A.13)

Using (A.9) – (A.13) into (A.6),

2{F (z0|y) − F (z0|y; γ̂)} = k−1(Fj1κj2j3j4κ
j1,j2κj3,j4 + Fj1j2κ

j1,j2 + 2Fj1πj2κ
j1,j2)

+ k−3/2[Fj1{(Wj2j3j4 + κj2j3j4rε
r
1)κ

j1,j2κj3,j4 + κj2j3j4(Wrs + κrstε
t
1)κ

j1,rκj2,sκj3,j4
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+ κj2j3j4(Wrs + κrstε
t
1)κ

j1,j2κj3,rκj4,s} + Fj1rκj2j3j4ε
r
1κ
j1,j2κj3,j4

+(Fj1,j2+2Fj1πj2)(Wrs+κrstε
t
1)κ

j1,rκj2,s+Fj1j2rε
r
1κ
j1j2+2(Fj1πj2r+Fj1rπj2)ε

r
1κ
j1,j2]+O(k−2)

(A.14)

Combining the result of (A.14) with (A.5), we obtain the result.

A.3 Expressions for the log-likelihood derivatives

For the first derivative Uj1 we have

Uj1 = ∂j1 logL(β, γ|y)

=
∂j1L(β, γ|y)

L(β, γ|y)
(A.15)

Differentiating (A.15),

∂2
j1j2

L(β, γ|y)

L(β, γ|y)
− ∂j1L(β, γ|y)

L(β, γ|y)

∂j2L(β, γ|y)

L(β, γ|y)
= Uj1j2 (A.16)

Hence, by substituting (A.15) into (A.16),

∂2
j1j2

L(β, γ|y)

L(β, γ|y)
= Uj1j2 + Uj1Uj2 (A.17)

which is (7.51).Further differentiation of (A.17) results (7.52) and (7.53).

A.4 Approximating the cumulants

The second cumulant, κj1j2 is defined as κj1j2 = E(Uj1j2) where the expectation is taken with

respect to the distribution of Y . Using (7.50) and (7.51) and the fact that E{E(ZZT|Y )} = Σ

we have

κj1j2 = E(Uj1j2)

= −E

[{∂/∂γj1}L(β, γ|y)

L(β, γ|y)

{∂/∂γj2}L(β, γ|y)

L(β, γ|y)

]
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= −1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

]

+ [2]
1

4
E
[
tr{Σ−1

Σj1E(ZZT|Y )}
]
tr{Σ−1

Σj2} −
1

4
tr{Σ−1

Σj1} tr{Σ−1
Σj2}

= −1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

]

+
1

4
tr{Σ−1

Σj1} tr{Σ−1
Σj2} (A.18)

Similarly, for κj1j2j3,

κj1j2j3 = E(Uj1j2j3)

= −[3]
1

4
E
[{

−2 tr(Σ−1
Σj1Σ

−1
Σj2Σ

−1
E(ZZT|Y )) + tr(Σ−1

Σj1j2Σ
−1

E(ZZT|Y ))

+ tr(Σ−1
Σj1Σ

−1
Σj2) + tr(Σ−1

Σj1j2)
}

{
tr(Σ−1

Σj3Σ
−1

E(ZZT|Y )) − tr(Σ−1
Σj3)

}]

− [3]
1

8
E
[
E
{
(ZT

Σ
−1

Σj1Σ
−1Z − tr(Σ−1

Σj1))(Z
T
Σ
−1

Σj2Σ
−1Z − tr(Σ−1

Σj2))|Y
}

{
tr(Σ−1

Σj3Σ
−1

E(ZZT|Y )) − tr(Σ−1
Σj3)

}]

+
1

4
E
[{

tr(Σ−1
Σj1Σ

−1
E(ZZT|Y )) − tr(Σ−1

Σj1)
}

{
tr(Σ−1

Σj2Σ
−1

E(ZZT|Y )) − tr(Σ−1
Σj2)

}

{
tr(Σ−1

Σj3Σ
−1

E(ZZT|Y )) − tr(Σ−1
Σj3)

}]

= [3]
1

2
E
[
tr(Σ−1

Σj1Σ
−1

Σj2Σ
−1

E(ZZT|Y )) tr(Σ−1
Σj3Σ

−1
E(ZZT|Y ))

]

− [3]
1

2
tr(Σ−1

Σj1Σ
−1

Σj2) tr(Σ−1
Σj3)

− [3]
1

4
E
[
tr(Σ−1

Σj1j2Σ
−1

E(ZZT|Y )) tr(Σ−1
Σj3Σ

−1
E(ZZT|Y ))

]

+ [3]
1

4
tr(Σ−1

Σj1j2) tr(Σ−1
Σj3)

− [3]
1

8
E
[
E
{
(ZT

Σ
−1

Σj1Σ
−1Z)(ZT

Σ
−1

Σj2Σ
−1Z)|Y

}
tr{Σ−1

Σj3Σ
−1

E(ZZT|Y )}
]

+ [3]
1

4
tr{Σ−1

Σj1Σ
−1

Σj2} tr{Σ−1
Σj3} +

3

8
tr{Σ−1

Σj1} tr{Σ−1
Σj2} tr{Σ−1

Σj3}

+ [3]
1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

]
tr(Σ−1

Σj3)

− 3

8
tr{Σ−1

Σj1} tr{Σ−1
Σj2} tr{Σ−1

Σj3}

+
1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

tr{Σ−1
Σj3Σ

−1
E(ZZT|Y )}

]
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− [3]
1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

]
tr(Σ−1

Σj3)

+
1

2
tr{Σ−1

Σj1} tr{Σ−1
Σj2} tr{Σ−1

Σj3}

= [3]
1

2
E
[
tr(Σ−1

Σj1Σ
−1

Σj2Σ
−1

E(ZZT|Y )) tr(Σ−1
Σj3Σ

−1
E(ZZT|Y ))

]

− [3]
1

4
E
[
tr(Σ−1

Σj1j2Σ
−1

E(ZZT|Y )) tr(Σ−1
Σj3Σ

−1
E(ZZT|Y ))

]

− [3]
1

8
E
[
E
{
(ZT

Σ
−1

Σj1Σ
−1Z)(ZT

Σ
−1

Σj2Σ
−1Z)|Y

}
tr{Σ−1

Σj3Σ
−1

E(ZZT|Y )}
]

+
1

4
E
[
tr{Σ−1

Σj1Σ
−1

E(ZZT|Y )} tr{Σ−1
Σj2Σ

−1
E(ZZT|Y )}

tr{Σ−1
Σj3Σ

−1
E(ZZT|Y )}

]

− [3]
1

4
tr(Σ−1

Σj1Σ
−1

Σj2) tr(Σ−1
Σj3)

+ [3]
1

4
tr(Σ−1

Σj1j2) tr(Σ−1
Σj3)

+
1

2
tr{Σ−1

Σj1} tr{Σ−1
Σj2} tr{Σ−1

Σj3} (A.19)

A.5 Priors for the Gaussian geostatistical model

Here we describe the three priors for the covariance parameters proposed by Berger et al.

(2001) for the analysis of spatial data under the Gaussian assumption. The predictive densities

constructed under these priors were compared among others in section 7.4.3.

The model that they used assumes

Z ∼ Nn(Xβ,Σ)

where n is the sample size, X is a matrix of covariates, and Σ is a spatial covariance matrix

depending on the covariance parameters.

The general form of the prior suggested for the partial sill (γ2) and range (γ3) was

π(γ2, γ3) ∝ γ−a2 π(γ3), a > 0 (A.20)

These were� Reference prior:
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a = 1 and πR(γ3) ∝
{
tr(W 2) − (n− p)−1 tr(W )2

}1/2

where p is the number of columns in X and

W = (( d/dγ3)Σ)Σ−1P , P is the matrix orthogonal to the space of X.� Jeffreys rule prior:

a = 1 and πJ1(γ3) ∝
{
tr(U2) − n−1 tr(U)2

}1/2

where U = (( d/dγ3)Σ)Σ−1� Jeffreys independent prior:

a = 1 and πJ2(γ3) ∝ |XT
Σ
−1X|1/2πJ1(γ3)
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