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ABSTRACT 
 

Amol Madhukar Joshi 
 

ENTREPRENEURIAL DISCOVERY AND INFORMATION COMPLEXITY IN 
KNOWLEDGE-INTENSIVE INDUSTRIES 

 (Under the direction of Atul Nerkar) 

 
Why are some firms better able than others to exploit new opportunities? I 

posit that differences in the type and level of complexity of the information 

obtained through the entrepreneurial discovery process may be a meaningful 

indicator of the likelihood that a firm is able to exploit a new opportunity. 

Specifically, I investigate knowledge reproduction processes for product 

replication (internal copying) and imitation (external copying) as a means of 

exploiting opportunities and building competitive advantage. Integrating concepts 

from information theory and the knowledge-based view of the firm, I introduce a 

generalized model and quantitative methods for estimating the inherent 

complexity of any unit of knowledge, such as a strategy, technology, product, or 

service, as long as the unit is represented in algorithm form. Modeling 

organizations as information processing systems, I develop measures of the 

information complexity of an algorithm representing a unit of knowledge in terms 

of the minimum amount of data (algorithmic complexity) and the minimum 

number of instructions (computational complexity) required to fully describe and 

execute the algorithm. I apply this methodology to construct and analyze a 
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unique historical dataset of 91 firms (diversifying and de novo entrants) and 853 

new product introductions (1974-2009), in a knowledge-intensive industry, digital 

signal processing. I find that: (1) information complexity is negatively and 

significantly related to product replication and imitation; (2) replicators have the 

greatest advantage over imitators at moderate levels of information complexity; 

(3) intellectual property regimes strengthening the patentability of algorithms 

significantly increase product replication, without significantly decreasing 

imitation; (4) outbound licensing of patented technologies decreases product 

replication and increases imitation; (5) products introduced by de novo entrants 

are less likely to be replicated and more likely to be imitated than products 

introduced by diversifying entrants; and (6) diversifying entrants have the 

greatest advantage over de novo entrants at high and low levels of information 

complexity; neither type of entrant has a significant advantage at moderate levels 

of complexity. These empirical findings support and extend predictions from 

earlier simulation studies. The model is applicable to other aspects of 

organizational strategy and has important implications for researchers, 

managers, and policymakers. 

 

Keywords: complexity, entrepreneurship, discovery, replication, imitation, 

algorithm
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PREFACE 

 

From time immemorial, man has desired to comprehend the complexity 

of nature in terms of as few elementary concepts as possible.  

Abdus Salam, 1979 Nobel Laureate in Physics 
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I. INTRODUCTION 

The beginning of knowledge is the discovery of something we do not understand. 

Frank Herbert 

 Entrepreneurial discovery is a dynamic competitive process through which 

market participants obtain information about new opportunities (Fiet 1996; 

Kirzner 1997; Shane 2000). Entrepreneurial discovery is the initial spark which 

catalyzes the creation of new industries, fuels the formation of new firms, and 

ignites the introduction of new products. As prospective market participants, de 

novo entrants (startup and spinoffs) and diversifying entrants (established firms) 

alike may exploit entrepreneurial opportunities (Companys and McMullen 2007; 

Ganco and Agarawal 2009) by “carrying out new combinations” of technical or 

managerial innovations (Schumpeter 1934).  

Ex ante validation of entrepreneurial opportunities is challenging for firms 

because “the only reliable confirmation that a previously unseen or unknown 

valuable opportunity does in fact exist occurs when a market has been created 

for the new item” (Eckhardt and Shane 2003). Thus, market participation in the 

form of a new product introduction by a firm may indicate the successful 

exploitation of the information obtained through the process of entrepreneurial 

discovery.  Previous research suggests that there are two main sets of factors 

which are likely to impact the ability of entrepreneurs to discover new 
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opportunities: “(1) the possession of the prior information necessary to identify an 

opportunity and (2) cognitive properties necessary to value it” (Shane and 

Venkataraman 2000).  A key implication of this research is that a firm’s ability to 

engage in entrepreneurial discovery and exploit new opportunities is essentially a 

function of the availability of prior information and the capacity to process this 

information (Galbraith 1977; Hayek 1945). 

Research Focus and Goal 

But what if the prior information that is available to firms is extremely 

complex, as is the case in many knowledge-intensive industries? Then does the 

inherent complexity of the available information in some way affect the ability of 

the firm to handle and use it in identifying and pursuing new opportunities?  

These questions stem from a more fundamental question which asks: “Why are 

some firms better able than others to exploit new opportunities?” This core issue 

in strategic management and entrepreneurship research has potentially 

significant implications for theory, practice, and policy, and is the primary focus of 

this study. My main goal is to answer this question in the context of how firms 

build competitive advantage in knowledge-intensive industries (Grant 1996a). In 

particular, I aim to extend earlier research (Rivkin 2000, 2001) by developing a  

methodology and testing a general model which explains how the complexity of 

the information (Boisot and Canals 2004) obtained through the process of 

entrepreneurial discovery affects the ability of firms to exploit new opportunities.  

The general term complexity has a broad definition which is commonly 

used to describe the extent to which an entity exhibits the characteristics of 
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intricacy, interdependency, complicatedness, multiplicity, etc. (Anderson 1999; 

Gell-Mann 1995; Simon 1962). In this study, the term complexity specifically 

refers to the concept of information complexity (Boisot and Child 1999; Boisot et 

al. 2007; Sorenson 2005), which is based on information theory (Blum 1967; 

Kolmogorov 1968; Shannon 1948) and describes the properties of algorithms.   

What is an Algorithm? 

Simply put, an algorithm is a set of instructions, a code. Though a 
seemingly basic concept, it is what made the modern world possible, for 
without the algorithm, there would be no computer. (Berlinski 2001) 

An algorithm is defined as a collection or set of simple instructions for 

carrying out a task and may also be called a procedure or recipe (Sipser 1997). 

Patent law more precisely defines an algorithm as “a finite series of steps (or 

sequence of actions) for making a numerical or other mathematical calculation, 

terminating with provision of the result of the calculation” (Stem 1991).  

Why are Algorithms Important? 

Algorithms sound scary, of interest only to dome-headed mathematicians. 
In fact they have become the instruction manuals for a host of routine 
consumer transactions. Browse for a book on Amazon.com and 
algorithms generate recommendations for other titles to buy. Buy a copy 
and they help a logistics firm decide on the best delivery route. Ring to 
check your order’s progress and more algorithms spring into action to 
determine the quickest connection to and through a call-centre. From 
analysing credit card transactions to deciding how to stack supermarket 
shelves, algorithms now underpin a large amount of everyday life. 

Source: “Algorithms - Business by numbers,” The Economist, Sept. 13, 2007 

Beyond the consumer examples described above, within the knowledge-

intensive sector of the economy, there are a number of emerging, high-growth 

industries which are based primarily on scientific and engineering advances in 
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fundamental algorithms. In addition to digital signal processing (DSP) (Widrow 

and Stearns 1985), which is the empirical context for this study, these algorithm-

based industries include the following: Internet search engines (Brin and Page 

1998), the semantic web (Hendler and Berners-Lee 2010), bioinformatics and 

computational genomics (Sanger 2004), cryptography (Diffie and Hellman 1976), 

encryption (Goldwasser and Micali 1984), networking (Karmarkar 1984), 

telecommunications (Shannon 1948), fraud detection (Bolton and Hand 2002), 

and actuarial sciences (Jonker and Volgenant 1987). These examples reflect the 

diversity of segments of the knowledge-based economy where firms purposefully 

pursue innovation in algorithms in order to build competitive advantage.  

Knowledge Replication and Imitation 

In the previously described examples of algorithm-based industries, firms 

intentionally and systematically use algorithms to represent a unit of knowledge 

(Boulding 1966) such as a strategy, a product, a service, or a technology. 

Competitive advantage may arise from differences in the ability of firms to 

replicate and imitate (Grant 1996a, b) the algorithms representing these units of 

knowledge. Replication is the internal copying of a unit of knowledge (Nelson and 

Winter 1982) by the firm that originally produced it  (Winter and Szulanski 2001), 

while imitation is the external copying of a unit of knowledge by the competitor(s) 

of the firm that originally produced it (Hill 1992). In other words, “imitation is 

simply replication performed by a competitor” (Teece and Pisano 1994).  

In the context of the process of entrepreneurial discovery, knowledge 

replication and imitation activities may be strategic drivers of firm success or 
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failure. Prior research suggests that “knowledge-based resources (applicable to 

discovery and exploitation of opportunities) are positively related to firm 

performance” (Wiklund and Shepherd 2003). The ability to replicate and imitate 

knowledge may also be an important determinant of the lead time (Bayus 1997; 

Cohen et al. 1996) required for introducing a new product and may affect the 

market share (Datar et al. 1997) and market value of the firm (Hendricks and 

Singhal 1997). A new product’s lead time “acts as an enhancing moderator in 

entrepreneurs’ exploitation decision policies” (Choi and Shepherd 2004). 

Furthermore, imitation in particular may be an underexplored factor (Mansfield 

1961) in entrepreneurial discovery and related processes.  

As Aldrich and Martinez (2007) explain “Overestimating the innovating 

capacity and personal traits of entrepreneurs has hidden the major role of 

imitation in entrepreneurial processes. Evolutionary theory calls our attention to 

the numerically dominant role of reproducers, rather than innovators.”  Whether a 

firm is primarily an originator of new innovations, or simply an imitator of existing 

innovations may have a profound influence on its chances of survival and growth 

(Aldrich and Kenworthy 1999; Lieberman 2006). However, originating an 

innovation is no guarantee of commercial success (Lieberman and Montgomery 

1998; Srinivasan et al. 2004), and the “paradox of replication” (Kogut and Zander 

1992) implies that originators and imitators face similar challenges in copying 

knowledge from internal and external sources (Cassiman and Veugelers 2006). 

The “paradox of replication” embodies the concept that “efforts by a firm to 

grow by the replication of its technology enhances the potential for imitation” 
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(Kogut and Zander 1992). For example, products based on technologies that are 

easy for a firm to replicate may also be easy for the firm’s competitors to imitate, 

while products based on technologies that are difficult for a firm to replicate may 

also be correspondingly difficult for its competitors to imitate (Rivkin 2000). Thus, 

in terms of assessing competitive advantage, it is critical to understand the 

relative difference in the ease of replication versus the ease of imitation 

associated with the reproduction of a unit of knowledge (Grant 1996a). The 

magnitude of the difference between the ease of replication and imitation may be 

influenced by the strength of the prevailing intellectual property (IP) regime 

(Lerner 2002), which may be a “formidable imitation barrier” (Teece et al. 1997) 

for firms in many knowledge-intensive industries including semiconductors, 

(Ziedonis 2004), software (Bessen and Maskin 2009), telecommunications (Hill 

1997), biotechnology (Gallini 2002), pharmaceuticals (Thomke and Kuemmerle 

2002), and chemicals (Arora 1997).  

In addition to legal barriers to imitation such as strong IP regimes, firms in 

knowledge-intensive industries may also encounter organizational barriers to 

imitation. Management theorists posit that causally ambiguous competencies 

create barriers to imitation and may increase the sustainability of competitive 

advantage (Barney 1991; Dierickx and Cool 1989). Causal ambiguity arises from 

three intrinsic characteristics of competencies (Reed and DeFillippi 1990): 

tacitness, specificity, and complexity. While previous conceptual work 

(Bharadwaj et al. 1993; Ganco and Agarwal 2009; Mosakowski 1997; Powell et 

al. 2006; Reed and DeFillippi 1990; Rivkin 2000, 2001) generates testable 
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propositions for the individual and combined effects of these characteristics on 

knowledge replication and imitation processes in firms, there are relatively few 

empirical studies that validate and refine these propositions (King and Zeithaml 

2001; Lippman and Rumelt 1982; Zander and Kogut 1995).  

In particular, there is a dearth of empirical testing of the direct relationship 

between the complexity of a unit of knowledge and the subsequent replication 

and imitation of this knowledge. Investigating this relationship is critical for 

unlocking how firms in knowledge-intensive industries successfully exploit the 

information obtained through the process of entrepreneurial discovery. While 

prior research on complexity and knowledge replication and imitation is highly 

insightful, the bulk of this work is almost exclusively conceptual in nature and 

relies extensively on simulation studies (Ethiraj and Levinthal 2004; Ethiraj et al. 

2008; Rivkin 2000, 2001) to test the propositions generated.  Furthermore, the 

few existing empirical studies in this area (Sorenson 2005; Sorenson et al. 2006; 

Yayavaram and Ahuja 2008) all utilize some variation of the NK model (Kauffman 

and Levin 1987; Kauffman and Weinberger 1989; Lenox et al. 2006; Levinthal 

1997; Siggelkow and Levinthal 2003) for capturing the relational complexity or 

interdependence among the modules of a complex system (Baldwin and Clark 

2000; MacCormack et al. 2006; Sanchez and Mahoney 1996; Schilling 2000).  

However, there are a number of situations in knowledge-intensive 

industries where the values of N (the number of nodes in a complex system) and 

K (the number of interconnections among these nodes) do not vary across units 

of knowledge. For example, two similar products that incorporate the same 
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product architecture (Ulrich 1995) may not necessarily differ in terms of their 

values of N and K ––– measures which only capture the relational complexity of 

a product as a complex system (Frenken 2000, 2006). These two architecturally 

similar products may in fact differ greatly in other dimensions of complexity such 

as the inherent complexity of the information associated with each product 

(Boisot et al. 2007; Solow et al. 1999; Sorenson 2005; Wilson and Latombe 

1994). It is precisely this gap in the current research on complexity and 

knowledge reproduction processes that this study seeks to address both 

theoretically and empirically. I posit that under certain conditions that are 

prevalent in many knowledge-intensive industries, information complexity may 

serve as meaningful predictor of the likelihood that a newly introduced product is 

subsequently replicated, imitated, or both.  

To evaluate this idea, I organize the study into five major steps described 

as follows. First, I outline the relevant theory related to information complexity. I 

integrate aspects of information theory and the knowledge-based view (KBV) of 

the firm to develop a generalized model of information complexity, replication, 

and imitation. Second, using this theoretical framework and generalized model, I 

formulate hypotheses which may be applied to any unit of knowledge such as a 

product, as long as the unit is representable in the form of an algorithm. Third, I 

explain the methodology including the data sample and collection methods, and 

specify the dependent, independent, and control variables in the model. Fourth, I 

test the model using a unique longitudinal dataset of new product introductions in 

a knowledge-intensive industry, digital signal processing (see Appendix for an in-
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depth analysis of the history and evolution of this industry). I quantify the 

previously described “paradox of replication” and present in detail the results of 

the analyses and summarize the key findings. Fifth and finally, I conclude with a 

discussion of the overall contributions, implications, limitations, and future 

directions of this research. 

As a brief preview, this study provides empirical support for the following 

findings: (1) information complexity is negatively and significantly related to 

product replication and imitation; (2) in general, replicators have the greatest 

advantage over imitators at moderate levels of information complexity; (3) an IP 

regime change which strengthens the patentability of algorithms increases 

product replication, but does not significantly decrease imitation; (4) outbound 

licensing decreases product replication and increases imitation; (5) products 

introduced by de novo entrants are less likely to be replicated and more likely to 

be imitated than products introduced by diversifying entrants; and (6) diversifying 

entrants have the greatest advantage over de novo entrants at high and low 

levels of information complexity; neither type of entrant has a significant 

advantage over the other at moderate levels of complexity. 

The background theory and derived model presented in the next chapter 

frames and guides the overall development of the study in subsequent chapters. 



 
 

 
II. THEORY AND MODEL 

In this chapter, I outline a theoretical framework and generalized model of 

information complexity. I define the two main types of information complexity and 

conceptualize organizations as information processing systems with memory. I 

then develop a model for capturing the relationship between information 

complexity and knowledge reproduction via replication and imitation. Built on 

information-theoretic principles, the model is extensible to any information 

processing system, including organizations, and to any unit of knowledge that is 

represented as an algorithm. 

Information Complexity 

As introduced earlier, an algorithm is defined as a collection or set of 

simple instructions for carrying out a task and may also be called a procedure or 

recipe (Sipser 1997). If a unit of knowledge such as a strategy, a product, a 

service, or a technology can be fully specified as a finite and complete set of data 

and instructions, then it is representable in the form of an algorithm and the 

information complexity of the algorithm may be estimated (MacKay 2003). Based 

on the computational resources required, Gell-Mann (1995) describes two types 

of information complexity ––– algorithmic and computational.  

Algorithmic Complexity and Computational Complexity 

As a simple analogy, if one characterizes a unit of knowledge as a “recipe” 

(Nelson and Winter 1982), then the algorithmic complexity of this recipe 
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corresponds to the number of words required to fully represent the entire recipe, 

while its computational complexity corresponds to the number of steps required 

to fully complete the recipe. As a general statistical theory for the estimation of 

the limits and efficiency of information processing, information theory (Shannon 

1948) is ideally suited to the measurement and analysis of such recipes. 

More formally defined in information-theoretic terms, algorithmic 

complexity measures the Minimum Description Length (MDL) (Barron et al. 1998) 

of the information required to represent an algorithm, while computational 

complexity measures the minimum amount of information processing capacity 

required to execute the algorithm (Blum 1967). Algorithmic complexity is based 

on the construct of space complexity, which measures the program size or 

memory required to completely encode and store an algorithm (Blum 1967). 

Algorithmic complexity is also referred to as the descriptive complexity (Chaitin 

1997) of an algorithm or as its Kolmogorov (1968) complexity, or stochastic 

complexity (Rissanen 1986).  

Computational complexity is based on the construct of time complexity, 

which is the number of instructions that it takes to solve “an instance of the 

problem as a function of the size of the input using the most efficient algorithm”  

(Blum 1967). Computational complexity is also referred to as the Blum (1967) 

complexity of an algorithm or as its communication complexity (Yao 1979), circuit 

complexity (Wegener 1987), or decision tree complexity (Buhrman and de Wolf 

2002). Both types of information complexity, algorithmic and computational, 

embody a fundamental degree of irreducibility (Boisot 2000; Chaitin 2007). The 
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two measures of complexity, algorithmic and computational, can be used to 

represent the availability of prior information and the capacity to process this 

information ––– two factors that are essential to the ability of a firm to exploit new 

opportunities. Now, specifically defined in terms of the process of entrepreneurial 

discovery, a firm’s ability to exploit new opportunities is a function of the 

algorithmic and computational complexity of the algorithm(s) representing the 

firm’s prior information.  

Organizations as Information Processing Systems 

A key assumption of this study is that organizations are information-

processing systems with memory (Tushman and Nadler 1978). Organizational 

memory enables firms to encode, store, and retrieve information (Walsh and 

Ungson 1991). In this study, I define a firm’s product architecture as a simplified 

subset of its organizational memory and a firm’s new product introductions as the 

output of this organizational memory.   

Product architecture is an over-arching methodology for organizing how a 

firm manages its innovation capabilities (Henderson and Clark 1990; Sanchez 

and Mahoney 1996). “Product architecture consists of three elements: a set of 

functions, a map of functions to modules, and interface specifications that explain 

how modules relate to one another” (Brown and Eisenhardt 1995). Within an 

organization, product architecture serves as a store of the modular information 

components or units of knowledge associated with a product or set of products 

(Frenken 2000; Hobday 1998; Hobday et al. 2000; Rosenkopf and Nerkar 1999, 

2001). Product architecture is a form of organizational memory, which may be 
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situated in standard operating procedures (March et al. 1958), routines (Nelson 

and Winter 1982), individuals (Loftus and Loftus 1976), dominant logics 

(Prahalad and Bettis 1986), dominant coalitions (Hambrick and Mason 1984), 

roles (Simon 1976), and culture (Smircich 1983).   

New product introductions are viewed as the output of the firm’s prior 

information stored in the organizational memory represented by product 

architecture and thereby indicate the earlier discovery and evaluation of an 

entrepreneurial opportunity (Eckhardt and Shane 2003). If one conceptualizes 

organizations as information processing systems (Tushman and Nadler 1978) 

and units of knowledge such as products as the input and output of these 

systems, the principle of irreducibility (Chaitin 2007) implies that the inherent 

complexity (Wilson and Latombe 1994) of the prior information used to generate 

a new product cannot be less than the inherent complexity of the product itself.  

Thus, by first observing the new product introductions made by firms in an 

industry, then representing these products in algorithm form, and finally 

measuring the algorithmic and computational complexity of these algorithms, the 

lower bound (Rissanen 1996) of the inherent complexity of each firm’s prior 

information can be estimated. Following this approach, in the next section, I 

develop a generalized model for estimating information complexity. 
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A Generalized Model of Information Complexity 

First, I state core assumptions and define key concepts used in the formal 

construction of the generalized model of information complexity. Second, I derive 

the model using principles from information theory and the KBV of the firm. Third, 

I examine the basic properties of the model to generate insights for developing 

testable hypotheses. Fourth and finally, I summarize the generalized model of 

information complexity in relation to the replication and imitation of knowledge. 

Model Assumptions and Definitions 

The generalized model of information complexity is based on the explicit 

assumptions and definitions delineated below. Note that these fundamental 

information-theoretic concepts apply to any information processing system, 

including organizations. My approach directly follows the earlier work of Homer 

and Selman (2001).1 For consistency, I use identical notation as the authors. 

1. “A finite set Σ = {a1, a2, a3, · · ·, ak} of symbols is called a finite alphabet. A 

word is a finite sequence of symbols. The length of a word w, denoted | w |, is 

the number of symbols composing it. The empty word is a unique word of 

length 0 and is denoted as λ. Note that λ is not a symbol in the alphabet” 

(Homer and Selman, 2001, p. 1).2 

2. “Σ* = denotes the set of all words over the alphabet Σ. A language is a set of 

words.” Thus, Ω is a language if an only if Ω  Σ*. This means that every 

                                            
1 See “Chapter 1 – Preliminaries” of Homer and Selman (2001) (“Section1.1 Words and 
Languages” and “Section 1.2 K-adic Representation” on pages 1-3) for a comprehensive set of 
assumptions, definitions, and functions. 
 
2 Note that any set is, by default, a subset of itself. Also, the empty set, {}, (sometimes called the 
null set) is a subset of any set. Further note that the empty word, λ, is not a set and has no 
relation to the empty set,{}. (Homer and Selman, 2001, p.1) 
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element contained in set Σ* is also contained in set Ω (Homer and Selman, 

2001, p. 2). 

3. A prefix is a substring that begins the word, while a suffix is a substring that 

ends the word (Homer and Selman, 2001, p. 2). 

4. “The concatenation of two words, x and y, is the word xy. For any word w, λw 

= wλ = w. If x = uvw, then v is a subword of x. If u and w are not both λ, then v 

is a proper subword. ... The lexicographic ordering of Σ* is defined by w < w′, if 

| w | < | w′ |, or if | w | = | w′ | and w comes before w′ in ordinary dictionary 

ordering” (Homer and Selman, 2001, p. 2). 

5. “Let N denote the set of all natural numbers, i.e., N = {0, 1, 2, 3, …}. … Let Σ 

be a finite alphabet with k symbols. Call the symbols 1,…, k. Every word over 

Σ will denote a unique natural number” (Homer and Selman, 2001, p. 2-3).3  

6. Let x = σn · · · σ1 σ0 be a word in Σ*. Defined as a polynomial expression of 

finite length constructed from variables and constants, Nk(x) is the natural 

number that word x represents (Homer and Selman, 2001, p. 3): 

Nk(λ) = 0,         (Eq. 1) 

Nk(x) = Nk(σn · · ·  σ1 σ0)      (Eq. 2) 
 

     = σn * k
n + · · · + σ1 * k

1+ σ0     (Eq. 3) 
 
7. Defined recursively4,  

Nk(ax) = k * Nk(x) + a       (Eq. 4) 
  

                                            
3 In order to represent the natural numbers as words over a finite alphabet, I use k-adic notation, 
which provides a one-to-one correspondence between Σ* and N (Homer and Selman, 2001, p.3). 
 
4 To compute Nk (ax), first find a0 and then iterate until all values are known. For a formal 
mathematical proof showing that Nk maps Σ* onto the natural numbers, see page 3 of Homer and 
Selman (2001). 
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Model Derivation 

The minimum description length (MDL) principle is “based on the idea that 

the more we are able to compress (describe in a compact manner) a set of data, 

the more regularities we have found in it and therefore, the more we have 

learned from the data” (Grünwald 2007). A regularity in the data is a discernable 

pattern which can be used to compress the data, i.e., “describe it using fewer 

symbols than the number of symbols needed to describe the data literally” 

(Grünwald 2007).  Utilizing the MDL principle, I derive the generalized model of 

information complexity in the series of steps enumerated below. My derivation 

closely follows the earlier work of Grünwald (2007) and uses similar notation and 

naming conventions throughout.5 

1. Let A be an algorithm representing a unit of knowledge U. The complete 

information content of algorithm A consists of a finite sequence of data and 

instructions expressed in language Ω. 

2. Let data D be the finite sequence of words X = {x1, x2, x3, · · ·, xj} which fully 

describes D and is associated with algorithm A. The natural number Nk(xj) 

represents the jth word, xj (Homer and Selman, 2001). 

3. Let C be a code or description method which encodes or maps D to D′. Under 

the MDL principle, all such description methods, C, satisfy the unique 

                                            
5 For a basic introduction to the MDL principle, see Chapter 1 “Learning, Regularity, and 
Compression,” on pages 1-40 of Grünwald (2007). For additional background material on the 
fundamental mathematical concepts associated with algorithmic complexity, see (Barron et al. 
1998; Chaitin 1975; 1997; Kolmogorov 1968; Li and Vitányi 2008; Rissanen 1986; 1996). For 
concepts related to computational complexity, see (Arora and Barak 2009; Cobham 1965; 
Goldreich 2008; Knuth 1968; MacKay 2003; Papadimitriou 1994). For a historical overview of the 
development of these concepts, see (Berlinski 2001; Chabert and Barbin 1999; Fortnow 2003) 
and the Appendix. 
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decodability property: given a description D′, one can fully reconstruct the 

original sequence D (Grünwald, 2007, p.7). 

4. The maximum value or upper bound of the total description length of D is the 

summation of the length of all of the words x, represented as natural numbers 

Nk(xj), in the sequence X, such that  

Lmax = | x1 | + | x2 | +| x3 | + · · · + | xj |      (Eq. 5) 
 

Note that the value of Lmax is literally the full length of the entire word 

sequence X representing data D and includes all of the words, subwords, 

prefixes, and suffixes in X (Homer and Selman, 2001).  

5. If the sequence of words X is not purely random, then there exists a code C 

which results in a length value, L that is a minimum value or lower bound of 

the total description length of D (Grünwald, 2007, p.14-15). The value of L is 

strictly less than Lmax and satisfies the unique decodability property described 

earlier. The value of L is the minimum description length or MDL of the data 

sequence D associated with algorithm A and is defined in steps 6-8 below. 

6. To select the best code, C, for encoding data sequence D into D′, let H 1, H 2, 

H 3, · · · be a list of candidate models (e.g. H g is the set of gth degree 

polynomials), each containing a set of point hypotheses (e.g., individual 

polynomials) (Grünwald, 2007, p.14).6  

7. The best point hypothesis H ∈ H   = H 1 ∪ H 2 ∪ H 3 · · · for code C to represent 

the data D is the one which minimizes the sum L(H) + L(D | H), where  

                                            
6 For a detailed proof that such a code, C, always exists, see Chapter 5 of Grünwald (2007). As 
described in the section entitled “From Crude to Refined MDL” (Grünwald 2007, p. 15),  “A model 
refers to a set of probability distributions or functions … A hypothesis refers to an arbitrary set of 
probability distributions or functions ... A point hypothesis is a single probability distribution and … 
may also be viewed as an instantiation of a model.”  
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L(H) = the length in bits, of the description of the hypothesis, H; and  

L(D | H) = the length, in bits, of the description of the data when encoded 

using the hypothesis, H (Grünwald, 2007, p.14). 

8. Thus, the MDL, which is the minimum length of data sequence, D, may be 

formally expressed as (Grünwald, 2007, p.16): 

L(D) = minH {L(D | H) + L(H)} (in bits)     (Eq. 6) 
 

and may serve as an estimate of the algorithmic complexity of algorithm A. 

9. Using the number of errors per bit, ε, for the expected error rate when copying 

data sequence D either through replication or imitation, results in the following 

estimates of the expected number of errors, E(D): 

Ereplication(D) = (εreplication) · L(D)       (Eq. 7) 
 
is the expected number of replication errors; and   

Eimitation(D) = (εimitation) · L(D)       (Eq. 8) 
 

is the expected number of imitation errors. Note that L(D) is a function of 

Nk(xj) expressed in polynomial form (Homer and Selman, 2001).  

10. Instructions are the specific procedures or steps that algorithm A must 

properly execute to complete a defined task. In the most general sense, 

instructions are simply another form of data and as such are representable 

using an alphabet, symbols, words, languages and numbers as defined 

earlier (Homer and Selman, 2001). Let C be a code or description method 

which encodes or maps I to I′ (Grünwald, 2007, p.7). 

11. Let P be the complexity class of computational problems that are solvable in 

polynomial time (Cobham 1965). For any decision problem that can be 
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expressed as an algorithm A in complexity class P, it is feasible to execute 

the algorithm and compute a solution to the problem (Homer and Selman, 

1992). This implies that the amount of computational resources or information 

processing capacity required to execute all of the instructions contained in 

algorithm A that is in class P has a maximum value or upper bound, Rmax, that 

may be expressed in polynomial form (Goldreich 2008). 

12. Let I be the finite sequence of instructions I = {i1, i2, i3, · · ·, ij} which fully 

describes the execution of algorithm A that is in class P and uses data 

sequence D. The natural number Nk(ij) represents the jth instruction, ij, in 

polynomial form (Homer and Selman, 2001).7  

13. The maximum value or upper bound of the total instruction length of I is the 

summation of the length of all of the instructions i, represented as natural 

numbers Nk(in), in the sequence I, such that  

Rmax = | i1 | + | i2 | + | i3 | + · · · + | ij |      (Eq. 9) 
 

Note that the value of Rmax is literally the full length of the entire instruction 

sequence I associated with algorithm A and includes all of the words, 

subwords, prefixes, and suffixes in I (Homer and Selman, 2001). 

14. If the sequence of instructions I is not purely random, then there exists a code 

C which results in a length value, R that is a minimum value or lower bound of 

the total instruction length of I (Grünwald, 2007, p.14-15).  

15. The value of R is strictly less than Rmax and satisfies the unique decodability 

property described earlier (Grünwald, 2007, p.7). The value of R corresponds 

to the minimum amount of information processing capacity required to fully 
                                            
7 Note that the values of j for I and D do not have to be equal and can be any finite integer. 
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execute the instruction sequence I associated with algorithm A. The value of 

R is more explicitly defined in steps 16 through 18 below. 

16. To select the best code, C, for encoding instruction sequence I into I′, let M 1, 

M 2, M 3, · · · be a list of candidate models (e.g. M n is the set of nth degree 

polynomials), each containing a set of point hypotheses (e.g., individual 

polynomials) (Grünwald, 2007, p.14). 

17. The best point hypothesis M ∈ M   = M 1 ∪ M 2 ∪ M 3 · · · for code C to represent 

the instructions I is the one which minimizes the sum R(M) + R(I | M), where  

R(M) = the length in bits, of the description of the hypothesis, M; and  

R(I | M) = the length, in bits, of the description of the instructions when 

encoded using the hypothesis, M (Grünwald, 2007, p.14). 

18. Thus, the minimum amount of information processing capacity required, R, 

may be expressed as (Grünwald, 2007, p.16): 

R(I) = minM {R(I | M) + R(M)} (in bits)     (Eq. 10) 
 
19. Using the number of errors per bit, ε, for the error rate when copying 

instruction sequence I either through replication or imitation, results in the 

following estimates of the expected number of errors, E(I):  

Ereplication(I) = (εreplication) · R(I)        (Eq. 11) 
 

is the expected number of replication errors; and  

Eimitation(I) = (εimitation) · R(I)        (Eq. 12) 
 

is the expected number of imitation errors. Note that R(I) above is a function 

of Nk(ij) expressed in polynomial form (Homer and Selman, 2001). 

Specifically, R(I) is also a function of the nth degree or highest order point 
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hypothesis Mn ∈ Mn  included in code C which minimizes the sum R(M) + R(I | 

M). 

20. Let TC(s) be the time or total number of steps (Papadimitriou 1994) required 

to execute algorithm A using code C for a given size input s into algorithm A. 

Since the code C includes nth degree or highest order point hypothesis Mn  , 

the total number of steps required to execute algorithm A, must be a function 

of and proportional to the size of input s to the nth degree, as shown below: 

TC(n) = f(sn) ∝ sn        (Eq. 13) 
 
21. Let O(z) be a function8 which returns the highest order polynomial contained 

in the polynomial expression z (Knuth 1997, 2000). If z = R(I), then  

O(R(I)) = n , and        (Eq. 14) 
 

O(TC(s)) = O(f(sn)) = n, since TC(s) = f(sn) ∝ sn   (Eq. 15) 
 
22. Substituting O(R(I)) for n, results in the following  

O(TC(s)) = O(R(I)) = n       (Eq. 16) 
 

Since the value of R is strictly less than Rmax, it follows that the value of O(R) 

must be less than or equal to O(Rmax). Therefore the value of n is the lower 

bound of the amount of polynomial time required to compute a solution to the 

decision problem represented by algorithm A in complexity class P. Since n is 

also the degree of highest order polynomial included in code C, which 

minimizes the encoding of instruction sequence I into I′, then computing 

O(R(I)) yields exactly the same value as computing O(TC(s)). Thus, O(R(I)) 

may serve as an estimate of the computational complexity of algorithm A.  

                                            
8 This is commonly referred to as “big oh” or “big Omicron” notation (Knuth 2000) and is widely 
used in the analysis of algorithms. For a detailed explanation and proof of this function see (Knuth 
1997; Sipser 1997). 
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23. Based on the results obtained in steps 1-22, I now formally define the 

expressions for the algorithmic complexity and computational complexity of 

algorithm A. The algorithmic complexity corresponds to the space complexity 

or program size associated with algorithm A, and it is denoted as AC. The 

computational complexity corresponds to the time complexity or number of 

steps associated with algorithm A, and it is denoted as CC. The formal 

expressions for estimating AC and CC are shown below. 

Algorithmic Complexity: AC = L(D) = minH {L(D | H) + L(H)} (Eq. 17) 

Computational Complexity: CC = O(TC(n)) = O(R(I)) = n  (Eq. 18) 

24. Based on the preceding steps, I formally define the probability that a unit of 

knowledge U represented by algorithm A is successfully copied via replication 

or imitation as shown below. 

Pr(Ureplication) = f(AC, CC, εreplication)     (Eq. 19) 
 
Pr(Uimitation) = f(AC, CC, εimitation)     (Eq. 20) 
 
The probability of successfully replicating a unit of knowledge U is a function 

of the AC, CC, and the replication error rate, εreplication, for copying the data D 

and instructions I associated with algorithm A. Similarly, the probability of 

successfully imitating a unit of knowledge U is a function of the AC, CC, and 

the imitation error rate, εimitation, for copying the data D and instructions I 

associated with algorithm A. 

25. If the occurrence of copying is modeled as a binary event (a unit of 

knowledge U either is copied or it is not copied), then the logistic function can 

be used to model the outcome (Allison 2003; Hosmer and Lemeshow 2008). 
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Since replication and imitation are both forms of copying and the only 

difference is in the actor that is doing the copying, the general model shown 

below applies to both. For k explanatory variables and the ith unit of 

knowledge Ui the model (Allison 2003) is specified as follows: 

ln � 	

��	
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"      (Eq. 22) 

26. Let k=3 and let AC, CC, and the error rate, ε, be the three explanatory 

variables in the model as shown below: 

xi1 = AC = L(Di)        (Eq. 23) 
 

xi2 = CC = ni        (Eq. 24) 
 

xi3 = ε = εreplication for replication and ε = εimitation for imitation (Eq. 25) 
 
27. Substituting Eq. 23-25 into Eq.22, results in the following generalized model 

of information complexity, which may be used the estimate the probability pi 

that yi = 1 for the replication and imitation of unit of knowledge U represented 

by algorithm A. 

�� � �
� �������#$�� $$��!%      (Eq. 26) 

28. For replication, the general model is 

��&'(�)*+,-(./ � �
� �������#$�� $$��!%0123
456
78   (Eq. 27) 

29. Similarly, for imitation, the general model is  

��&*9*-,-(./ � �
� �������#$�� $$��!%
:
656
78   (Eq. 28) 

  



 

24 
 

Properties of the Model 

 I examine some basic mathematical properties of the previously derived 

generalized model of information complexity. The purpose of this “thought 

experiment” (Davis et al. 2007) is to generate insights for developing testable 

hypotheses. A summary of the thought experiment is outlined below: 

1. Assume that the value of the coefficient β1 in the general model (Eq. 26) is 

negative, then ceteris paribus, an increase in the algorithmic complexity AC 

will decrease the probability pi of successfully copying a unit of knowledge U 

represented by algorithm A. 

2. Assume that the value of the coefficient β2 in the general model (Eq. 26) is 

negative, then ceteris paribus, an increase in the computational complexity 

CC will decrease the probability pi of successfully copying U. 

3. Assume that the value of the coefficient β3 in the general model (Eq. 26) is 

negative, then ceteris paribus, an increase in the error rate ε will decrease the 

probability pi of successfully copying U.  

4. If εreplication < εimitation, implying that replicators have an advantage over imitators 

in terms of the error rate ε for copying a unit of knowledge U, then ceteris 

paribus, pi(replicated) > pi(imitated).  

5. As εimitation approaches the value of εreplication, the value of pi(replicated) 

approaches pi(imitated). If εreplication = εimitation, implying that replicators do not 

have an advantage over imitators in terms of the error rate for copying a unit 

of knowledge U, then ceteris paribus, pi(replicated) = pi(imitated).  
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6. If the values of the coefficients β1 , β2, and β3 in the general model (Eq. 26) are 

all negative and the values of AC and CC both approach zero, then ceteris 

paribus, the probability pi of successfully copying U may be represented as 

�� ; �
� ������!%        (Eq. 29) 

In other words, at low levels of algorithmic complexity AC and computational 

complexity CC, the probability pi of successfully copying U is primarily a 

function of the error rate ε. As ε approaches zero in Eq. 29, pi approaches 1. 

In this case, if replicators have only a slight advantage over imitators such 

that the replication error rate is approximately equal to the imitation error rate, 

εreplication ≈ εimitation, then ceteris paribus, pi(replicated) ≈ pi(imitated). 

7. If the values of the coefficients β1, β2, and β3, in the general model (Eq. 26) 

are all negative and the values of AC and CC both approach infinity, then 

ceteris paribus, the probability pi of successfully copying U may be 

represented as 

�� ; �
� �������#$�� $$       (Eq. 30) 

In other words, at high levels of algorithmic complexity AC and computational 

complexity CC, the probability pi of successfully copying U is primarily a 

function of AC and CC as shown in Eq. 30. In this case, regardless of the 

possible size of the copying advantage of replicators versus imitators 

(reflected in the relative magnitude of the respective values of εreplication and 

εimitation), the probability pi is driven by the values of AC and CC. Thus, at large 

values of both AC and CC, ceteris paribus, pi(replicated) ≈ pi(imitated).  
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8. If the values of the coefficients β1, β2, and β3, in the general model (Eq. 26) 

are all negative and the value of AC approaches infinity while the value of CC 

approaches zero, then ceteris paribus, the probability pi of successfully 

copying U is primarily a function of AC. 

9. Similarly, If the values of the coefficients β1, β2, and β3, in the general model 

(Eq. 26) are all negative and the value of AC approaches zero while the value 

of CC approaches infinity, then ceteris paribus, the probability pi of 

successfully copying U is primarily a function of CC. 

10. If the value of the coefficient β1, is negative in the model for replication, but 

positive in the model for imitation, then ceteris paribus, an increase in AC 

increases the difference between pi(replicated) and pi(imitated). In this case, 

an increase in AC increases the relative advantage of replicators over 

imitators. 

11. If the value of the coefficient β2, is negative in the model for replication, but 

positive in the model for imitation, then ceteris paribus, an increase in CC 

increases the difference between pi(replicated) and pi(imitated).In this case, 

an increase in CC increases the relative advantage of replicators over 

imitators. 
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Model Summary  

 The generalized model of information complexity developed in this chapter 

is summarized in Table 1 below. 

Table 1. Summary of the Generalized Model of Information Complexity 

Variable or Function of Interest Definition or Description 

AC = L(D) = minH {L(D | H) + L(H)} Algorithmic Complexity – the minimum 
description length (MDL) of the algorithm A 
used to represent a unit of knowledge U, 
corresponds to the number of words in a 
“recipe” 

CC = O(TC(n)) = O(R(I)) = n  Computational Complexity – the minimum 
number of instructions required to execute 
algorithm A used to represent a unit of 
knowledge U, corresponds to the number of 
steps in a “recipe” 

εreplication Replication Error Rate – a constant 
representing the number of errors/bit when 
replicating an algorithm A 

εimitation Imitation Error Rate – a constant 
representing the number of errors/bit when 
imitating an algorithm A 

�� � 1
1 � (�=�>�?@�> @@�>!A 

Probability pi that yi = 1 for the replication 
and imitation of by algorithm A. The error 
rate ε = εreplication or εimitation 

 
 

 



 
 

 
III. HYPOTHESES 

Based on the theoretical framework and generalized model presented in 

the previous chapter, I present hypotheses for the effects on replication and 

imitation of differences in (1) the type and level of information complexity of a 

product; (2) the IP regimes under which a product is introduced; and (3) the type 

of entrants introducing the product. 

Hypotheses for Effects of Differences in Information Complexity 

Algorithmic Complexity and the Likelihood of Replication and Imitation  

In this study, algorithmic complexity corresponds to the minimum 

description length (MDL as defined earlier) or the minimum amount of information 

required to fully represent a unit of knowledge in the form of an algorithm (Chaitin 

1975). In terms of organizational information processing activities, which may be 

subject to chunking limits (Gobet and Simon 1998; Miller 1956; Simon 1974), the 

greater the amount of information associated with a product, the smaller the 

number of information chunks and the larger the size of each chunk required to 

fully represent the product (Baddeley 1994; Shannon 1948). In other words, the 

longer the MDL required for representing a unit of knowledge such as a product, 

the greater the potential number of errors in copying the information associated 

with the product (Grünwald 2007).  

If the expected error rate of copying information is constant for a firm, then 

as the algorithmic complexity of a firm’s products increases, the total number of 
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errors made in the replication of the firm’s own products should also increase. 

The total number of errors made in the imitation of the firm’s products by 

competitors should also increase, since the inherent complexity of the product is 

the same for the firm and its competitors and is independent of possible 

differences in the respective error rates of copying information for firms and their 

competitors (Cowan et al. 1999).  In addition, an increasing number of errors in 

copying previously introduced products may result in a decreasing number of 

new product introductions, once the cumulative number of copying errors 

reaches a threshold which impacts the proper functioning of the product (Rivkin 

2000), which suggests Hypotheses H1a and H1b shown below: 

Hypothesis H1a. The greater the algorithmic complexity of a 

product, the lower the likelihood that the product is subsequently 

replicated by the firm that first introduced it. 

Hypothesis H1b. The greater the algorithmic complexity of a 

product, the lower the likelihood that the product is subsequently 

imitated by competing firms. 

Computational Complexity and the Likelihood of Replication and Imitation 

In this study, computational complexity corresponds to the minimum 

amount of information processing capacity required to fully execute an algorithm 

(Goldreich 2008). In terms of organizational information processing activities, 

instructions are simply another form of information associated with a unit of 

knowledge such as a product, and as such are also subject to chunking limits 
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(Baddeley 1994; Miller 1956; Shannon 1948). Independent of the number of 

information chunks and size of each chunk, the number of instructions and the 

size of each instruction associated in the product also impacts the number of 

errors in copying the information content of the product (Grünwald 2007).  

Just as a larger data length increases potential errors in copying 

information, a larger instruction set increases potential errors in copying 

instructions. At constant expected error rates of copying information, if the 

computational complexity of a firm’s products increases, then the total number of 

errors that a firm makes in replicating its own products should also increase. 

Because the inherent complexity of the product is the same for the firm and its 

competitors and is independent of the respective error rates of copying 

information (Cowan et al. 1999), then the total number of errors made in the 

imitation of the firm’s products by competitors should also increase. Furthermore, 

if the cumulative number of copying errors exceeds a level which impairs the 

intended operation of the product (Rivkin 2000), then for both replicators and 

imitators, the likelihood of new product introductions should decrease. This 

suggests Hypotheses H2a and H2b presented below: 

Hypothesis H2a. The greater the computational complexity of a 

product, the lower the likelihood that the product is subsequently 

replicated by the firm that first introduced it. 

Hypothesis H2b. The greater the computational complexity of a 

product, the lower the likelihood that the product is subsequently 

imitated by competing firms.  
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Level of Information Complexity and the Likelihood of Replication and Imitation 

Although increased complexity generally favors firms that are replicators 

versus imitators in knowledge reproduction activities, there are organizational 

limits on the ability to handle increasing levels of complexity (March and Sutton 

1997; Reed and DeFillippi 1990; Rivkin 2000) that apply to both replicators and 

imitators.  In reproducing knowledge, replicators appear to have the greatest 

relative advantage or “wedge” versus imitators (see Figure 1) when faced with 

decision problems of intermediate complexity (Cohen and Levinthal 1990; 

Knudsen and Levinthal 2007; Rivkin 2001). This is because replicators are more 

likely than imitators to have preferential access to “superior yet imperfect 

information about good solutions to complex problems,” which results in a larger 

“wedge” between the ease of replication and ease of imitation (Rivkin 2001).   

 

Figure 1. Conceptual “Wedge” between Ease of Replication and Difficulty of 
Imitation 
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In contrast, when faced with decision problems of low complexity and 

correspondingly low causal ambiguity (Lippman and Rumelt 1982), both 

replicators and imitators appear to be able to effectively engage in the 

incremental search for solutions. Thus, at low levels of complexity, the 

informational advantage of replicators is short-lived and “easy imitation implies 

the rapid dissipation of rents” (Teece and Pisano 1994). When faced with 

decision problems of high complexity and correspondingly high causal ambiguity 

(King and Zeithaml 2001), both replicators and imitators appear to be similar in 

their ineffectiveness in conducting incremental searches for solutions. Because 

systems of greater complexity are sensitive to errors (Anderson 1999) in copying 

data and instructions, “the replicator's slightly imperfect knowledge then has little 

more value than the imitator's highly imperfect knowledge” and the “wedge” size 

is small (Rivkin 2001). Based on this logic, I propose Hypotheses H3a and H3b: 

Hypothesis H3a. The relative difference between the likelihood that a 

product is replicated and the likelihood that is it is imitated will be higher at 

moderate levels of information complexity, in comparison to low levels of 

information complexity. 

Hypothesis H3b. The relative difference between the likelihood that a 

product is replicated and the likelihood that is it is imitated will be higher at 

moderate levels of information complexity, in comparison to high levels of 

information complexity. 
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Hypotheses for Effects of Differences in Intellectual Property (IP) Regime 

The hypotheses presented thus far examine the direct relationship 

between the types and levels of information complexity and the likelihood that a 

product is subsequently replicated and imitated. As introduced earlier, in addition 

to organizational barriers to imitation, a legal barrier to imitation is the strength of 

the IP regime. In this section, I propose two sets of hypotheses related to IP 

regimes. The first set of hypotheses (H4a and H4b) concerns the establishment 

of a legal precedent strengthening the patentability of algorithms.9 The second 

set of hypotheses (H5a and H5b) concerns IP regimes that foster the formation 

of markets for technology which enable firms to make their patents available to 

other firms via licensing arrangements. 

Change in Strength of IP Regime and the Likelihood of Replication and Imitation 

If products are representable in algorithm form, and IP regimes confer 

patents to the firms that invent these algorithms, inventor firms may have clear 

economic incentives which encourage product replication and discourage 

product imitation (Klemens 2006; Oddi 1993). A prime example of an IP regime 

strengthening the patentability of algorithms occurred in 1988 when the United 

States Patent and Trademark Office (USPTO) granted AT&T a patent (U.S. 

Patent 4,744,028) for Narendra Karmarkar’s (1984) linear programming algorithm 

used to optimize the routing of calls over telecommunications networks. This 

                                            
9 Given the overall technological and economic importance of algorithms, there are remarkably 
few empirical studies of the innovation consequences of granting patents for algorithms (Bessen 
2008; Bessen and Maskin 2009; Graham and Mowrey 2004; Hall and MacGarvie 2010). For a 
comprehensive analysis of aggregate trends in patenting and research, including software 
patents for algorithms, see Kortum and Lerner (1998). For a literature review of theoretical and 
empirical research on major patent policy shifts, see Jaffe (2000). 
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landmark grant by the USPTO established, for the first time, that specific 

applications of algorithms are patentable as long as they meet the criteria of 

being novel, useful, and non-obvious (Stem 1991). The established U.S. legal 

precedents on the patentability of algorithms (Chisum 1985; Oddi 1993; Stem 

1991) are summarized in Table 2 below. 

Table 2. Established U.S. Legal Precedents on the Patentability of Algorithms 

Year Case(s)  Institution Impact on Patent Policy 
1972 Gottschalk v. 

Benson 
 

Supreme 
Court of the 
U.S. 
(SCOTUS) 

• Defined for the first time what legally 
constitutes an algorithm 

• Weakened the patentability of algorithms by 
specifically ruling that mathematical 
algorithms are not patentable 

1978 Parker v.  
Flook 

SCOTUS • Rejected the idea of a defined field of use for 
algorithms 

• Ruled that not just the algorithm, but also its 
implementation had to be novel and non-
obvious 

• Weakened the patentability of algorithms 
1980 Diamond v. 

Diehr 
SCOTUS • Purged the concept of treating an inventor’s 

mathematical discoveries as known prior art 
• Ruled that an algorithm-related patent 

should be allowed when the implementation 
of the algorithm is novel and the system as a 
whole is non-obvious 

• Weakened the patentability of algorithms 
1982 Taner, Abele, 

Pardo, and 
Meyer cases 

Court of 
Customs 
and Patent 
Appeals 
(CCPA)10 

• Largely reaffirmed earlier SCOTUS 
decisions  

• Weakened the patentability of algorithms  

1988 Granting of 
patent to 
AT&T for 
Karmarkar’s 
algorithm  

U.S. Patent 
and 
Trademark 
Office 
(USPTO) 

• Contradicted earlier SCOTUS and CCPA 
decisions 

• Strengthened the patentability of algorithms 
by ruling for the first time that specific 
applications or uses of algorithms are 
patentable as long as they are new, useful, 
and non-obvious 

 
                                            
10 As of October 1, 1982 the appellate jurisdiction of the Court of Customs and Patent Appeals 
was officially abolished. Since then, all appeals by patent applicants regarding claims rejected by 
the United States Patent and Trademark Office are handled by the Court of Appeals for the 
Federal Circuit. This appellate court adopted all of the earlier precedents for the patentability of 
algorithms from its predecessor (Chisum, 1985). 
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Legal precedents strengthening the patentability of algorithms may enable 

replicators of algorithm-based products to capture greater economic rents (Amit 

and Schoemaker 1993; Teece and Pisano 1994) from these products, while 

simultaneously increasing the costs for competitors to engage in imitation or 

“reverse engineering” (Chang 1995; Klemens 2006; Markman et al. 2004; 

Samuelson and Scotchmer 2002). The preceding logic suggests Hypotheses 

H4a and H4b shown below: 

Hypothesis H4a. After a legal precedent strengthening the patentability of 

algorithms is established, the likelihood that new products are 

subsequently replicated by the firms that first introduced them is greater in 

comparison to products introduced before the precedent. 

Hypothesis H4b. After a legal precedent strengthening the patentability of 

algorithms is established, the likelihood that new products are 

subsequently imitated by competing firms is lower in comparison to 

products introduced before the precedent. 

Technology Licensing and the Likelihood of Replication and Imitation 

Markets for technology are arrangements in which IP representing 

intermediate technological inputs may be commercially exchanged among 

market participants via licensing transactions (Arora et al. 2001). Stronger IP 

rights frequently enable high degrees of specialization among firms within 

markets for technology (Arora et al. 2001) in knowledge-intensive industries (Hall 

and Ziedonis 2001; Linden and Somaya 2003). For example, in the 
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semiconductor industry in the 1980s, the “strengthening of U.S. patent rights 

spawned ‘patent portfolio races’ among capital-intensive firms, but it also 

facilitated entry by specialized design firms” (Hall and Ziedonis 2001).   

By facilitating trade in IP assets such as patents, markets for technology 

enable participating firms to harness the productivity gains that come from the 

division of labor into specialized activities by each firm (Arora and Merges 2004). 

As Adam Smith states in the opening line of The Wealth of Nations (1776), “the 

greatest improvement in the productive powers of labour, and the greater part of 

the skill, dexterity, and judgment with which it is anywhere directed, or applied, 

seem to have been the effects of the division of labour."  Smith (1776) further 

explains that the division of labor is determined by the extent of the market. 

Limited markets will exhibit limited specialization, while larger markets will 

provide firms with greater opportunities for specialization (Stigler, 1951). 

In a market for technology fostered by the existence and enforcement of 

strong IP rights, a firm’s strategy space includes three main options for trading or 

commercializing units of knowledge that are protected by patents (Arora et al. 

2001). A firm may choose to (1) setup inbound licensing for technology from 

external suppliers instead of pursuing internal development (Porter 1985); (2) 

offer outbound licensing of its own proprietary technology to other firms 

(Chesbrough and Crowther 2006); or (3) produce an integrated product by itself 

(Arora and Fosfuri 2003).  Accordingly, a firm may be classified as an Inbound 

Licensee, an Outbound Licensor, or an Integrated Producer, based on its 

dominant mode of interaction with the market for technology. The strategic 
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rationale for a Licensee to externally source IP is framed from a transaction cost 

minimization perspective as the classic “make vs. buy” decision (Teece 1986; 

Walker and Weber 1984) Similarly, the managerial logic for a firm to act as a 

Licensor or an Integrated Producer is framed in terms of determining whether the 

“revenue effect” outweighs the “rent dissipation effect” when licensing out (Arora 

and Fosfuri 2003).   

Firms that find this trade-off unattractive will choose to take actions to 

enhance revenue (through higher unit pricing) and reduce rent dissipation (via 

exclusivity in licensing uses) or produce the integrated product themselves 

(Motohashi, 2008). Thus, a firm that makes its patented technologies available to 

other firms via outbound licensing does so with the explicit understanding that 

such licensing arrangements disclose knowledge (Arrow 1962; Dasgupta and 

David 1985) that may make its protected technologies easier to imitate. At the 

same time, the firm’s economic incentives to replicate the technologies that are 

being licensed out are also reduced (Arora and Ceccagnoli 2006; Fosfuri 2006; 

Walker and Weber 1986). Based on the potential for increased ease of imitation 

and decreased incentives for replication associated with the intentional and 

strategic choice to license out patented technologies, I propose Hypotheses H5a 

and H5b below: 

Hypothesis H5a. For products available through outbound licensing, the 

likelihood that the product is replicated is lower than that of products that 

are not available through licensing. 
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Hypothesis H5b. For products available through outbound licensing, the 

likelihood that the product is imitated is higher than that of products that 

are not available through licensing. 

Hypotheses for Effects of Differences in Type of Entrant 

As stated out the outset of this study, startups and spinoffs (Klepper and 

Sleeper 2005) are nascent firms that are de novo entrants into a new market, 

while established firms are classified as diversifying entrants (Ganco and 

Agarawal 2009; Helfat and Lieberman 2002). Consistent with the taxonomy 

proposed by Helfat and Lieberman (2002), in this study, a de novo entrant is a 

separate legal entity from an established firm, while a diversifying entrant is the 

same legal entity as an established firm.  As noted earlier, markets for 

technology expand the feasible strategy space for all firms (de novo entrants and 

diversifying entrants alike) by making it possible to trade and commercialize IP 

assets such as patents by engaging in inbound licensing, outbound licensing, or 

the integrated production of final products. Although the strategic options created 

by the formation of a market for technology are possible for all firms to pursue, 

different types of market entrants may find some options substantially more 

attractive than others.  

For example, de novo entrants participating in a market for technology 

may have fewer resources available (Heirman 2005) than diversifying entrants 

and a greater strategic incentive to engage in outbound licensing. If a de novo 

entrant is an originator of innovations (Aldrich and Martinez 2007) then it may be 

able to effectively pre-empt the research and development (R&D) activities 
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(Gallini 1984) of potential competitors by licensing out its patented technologies 

to these other prospective market participants. Doing so may be a less costly and 

more profitable technology commercialization path for de novo entrants to pursue 

(Hall and Ziedonis 2001; Kim and Vonortas 2006; Lichtenthaler and Ernst 2009; 

Motohashi 2008), especially in knowledge-intensive industries which require 

substantial investments in R&D.11  

In contrast, diversifying entrants participating in a market for technology 

may have more resources available (Bayus and Agarwal 2007) than de novo 

entrants and a greater strategic incentive to engage in integrated production. If a 

diversifying entrant is an originator of innovations (Grindley and Teece 1997), 

then it may be able to maximize its potential profits by replicating its own 

patented technologies to produce final products rather than sell intermediate 

technological inputs via outbound licensing (Hall and Ziedonis 2001; Linden 

2003; Ziedonis 2004). Note that although diversifying entrants are typically larger 

than de novo entrants, “large size per se does not impart the advantage in R&D. 

Rather, it results from the limited character of firm growth and the nature of 

appropriability mechanisms that confine firms to exploiting their innovations 

chiefly through their own output” (Cohen and Klepper 1996). In other words, the 

pursuit of replication is advantageous to firms that have the technologies, 

resources, and organizational capabilities to “make” rather than “buy” (Walker 

                                            
11 For de novo entrants, outbound licensing may be considerably more attractive in knowledge-
intensive industries such as semiconductors, where “Rising fixed costs give rise to Moore’s 
Second Law: as the cost of transistors comes down, the cost of fabs goes up, albeit not at quite 
the same rate.” Source: “The Semiconductor Industry: Under New Management,” The Economist, 
April 2, 2009. For these same reasons, integrated production may be considerably more 
attractive for diversifying entrants than de novo entrants in these types of industries.  
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and Weber 1984; 1986). In many knowledge-intensive industries, diversifying 

entrants may be better equipped than de novo entrants to engage in integrated 

production (Malerba 2010; Yoon and Malerba 2009).  

As an intentional strategic choice, outbound licensing increases the 

likelihood that a product is imitated (see Hypothesis H5b), while integrated 

production increases the likelihood that a product is replicated (see Hypothesis 

H5a). Since de novo entrants have stronger incentives to engage in outbound 

licensing, while diversifying entrants have stronger incentives to engage in 

integrated production, I propose Hypotheses H6a and H6b below, which are 

consistent with the IP regime hypotheses (H4a, H4b, H5a, and H5b) presented 

earlier. 

Hypothesis H6a. The likelihood that a product is replicated is lower for 

products introduced by de novo entrants in comparison to products 

introduced by diversifying entrants. 

Hypothesis H6b. The likelihood that a product is imitated is higher for 

products introduced by de novo entrants in comparison to products 

introduced by diversifying entrants.  

In the next chapter, I describe in detail the methods and data used to 

systematically test all of the hypotheses developed in this chapter. 



 
 

 
IV. METHODS AND DATA 

First, I describe the signal processing industry12 and the special 

characteristics which it shares with other algorithm-based industries and which 

facilitate the proposed analysis. Next, I discuss the data sample and data 

collection procedures. Finally, I outline the statistical technique and specify the 

key dependent, independent, and control variables. 

Empirical Setting: The Signal Processing Industry 

 The KBV of the firm (Grant 1996b) suggests that “knowledge generation, 

accumulation, and application may be the source of superior performance” for 

firms (Decarolis and Deeds 1999).  My choice of the signal processing industry is 

driven by the core premise of the study ––– that the inherent complexity of any 

product that is represented in algorithm form may be estimated by measuring its 

information complexity, and that the level of information complexity affects the 

likelihood that the product is subsequently replicated and imitated. Previous 

research has examined knowledge-intensive industries and studied firm 

performance and its association with attributes of knowledge such as its tacitness 

or codifiability (Cowan et al. 2000; Galunic and Simon 1998; Johnson et al. 2002; 

Kogut and Zander 1993). In contrast, this study examines the information 

complexity of newly introduced products and I would like to rule out alternative 

explanations.  

                                            
12 See Appendix for a detailed examination of the pre-history of signal processing as a scientific 
field and its technological evolution. 
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The empirical setting of this study is formally referred to as the Digital 

Signal Processing (DSP) industry.  Digital Signal Processors (DSPs) are physical 

devices or semiconductor “chips” that are used to digitally convert, transform and 

analyze audio, voice, image, video and other sensory signals from one form to 

another (Smith 1997).  DSPs are essential components (Eyre and Bier 1998; 

Frantz 2000) used in a variety of consumer applications (cell phones, DVD 

players, stereos) and industrial solutions (telecommunications network switches, 

satellite transmission, global positioning). In 2007, worldwide DSP revenues were 

$27.2 billion, representing about 10% of the total semiconductor industry revenue 

(Strauss 2007). The DSP industry and other algorithm-based industries exhibit a 

unique characteristic ––– their product introductions can be mapped to a finite 

set of algorithms of known or computable complexity (Deka 1995), which makes 

the proposed type of information-theoretic analysis possible.  

Also, the algorithms underlying these product introductions are public 

knowledge and extensively codified. In fact, many of the algorithms first 

appeared in published academic research years, if not decades, before their 

actual implementation in the form of DSP products (Nebeker 1998a, b, c).  Thus, 

there is a substantial common, codified, and cumulative base of knowledge 

available in the public domain to all firms that are current and prospective 

industry participants.  Figure 2 shows historical knowledge production in the 

underlying scientific and engineering field of signal processing, measured in 

terms of the total annual number of patents granted and research papers 

published in academic journals.  
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The generally low levels of tacitness of product knowledge for all firms in 

the DSP industry means that the process of “reverse engineering” of competitors’ 

DSP products is not only feasible, it is a prevalent practice in the industry (Nelson 

and Winter 1982). The choice of the DSP industry13 effectively enables me to 

control for and minimize the potential for tacitness as a major source of 

competitive advantage and causal ambiguity (Reed and DeFillippi 1990) and 

focus on the inherent complexity of the products themselves as the primary 

simultaneous source of advantage and ambiguity. 

Data Sample and Data Collection Procedures 

In this study, I hand-assembled a comprehensive historical dataset of firm-

level and product-level market entry data and technical specifications for DSP 

chips from 1973 to 2009 (from industry inception to the most recent full year in 

which new product introduction data is available).  I obtained the data from seven 

independent sources including: Berkeley Design Technology, Inc. (BDTI), 

Electronic Design News (EDN), Forward Concepts (FC), the Institute of Electrical 

and Electronics Engineers (IEEE) Signal Processing Society, the Smithsonian 

Institution’s Chip Collection as well as information provided by the most active 

firms such as Analog Devices (AD) and Texas Instruments (TI).  

I collected the firm-level and product-level data in the following manner. 

First, I contacted representatives from BDTI, EDN, FC, the IEEE, the 

Smithsonian, AD and TI to obtain access to each organization’s archives on the 

DSP industry. Next, I gathered and verified the firm-level and product-level data 

                                            
13 The first DSP product was introduced in 1973 (Strauss 2007), the year after the Gottschalk v. 
Benson case was decided by the SCOTUS (see Table 2). This also makes the DSP industry ideal 
for the study of the IP regime hypotheses H4a, H4b, H5a, and H5b presented earlier. 
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in each of the seven main datasets and then compared them to each other to 

generate a combined list of unique firms and products. Using this extensive 

archival data, I then validated the year that each product was introduced, the key 

technical characteristics of each product (architecture, generation of technology, 

performance specifications, etc.), and assigned each product to the firm that 

introduced it. In this combined list, firm and product names were normalized, 

duplicate firms and products were removed, and successor firms formed through 

mergers, acquisitions and spinoffs were identified and accounted for consistently.  

After completing this data consolidation effort, the combined sample was 

found to have 91 unique firms and a total of 853 new product introductions over a 

37-year period. Each firm has at least one product introduction, and each product 

is assigned to only one firm. There are no jointly produced products in the 

sample. For firms with greater than 10 product introductions, the number of 

products and the approximate percentage of the sample that these products 

represent are shown in Table 3.  The top 20 firms introduced 589 or 69.1% of the 

853 products in the sample. The top 2 firms, AD and TI, accounted for 16.8% and 

15.0%, respectively, of all products introduced since industry inception.  

The new product introductions span 8 generations (designated 0 through 

7) of DSP technology as shown in Figure 3.  Each successive generation of DSP 

technology incorporates architectural improvements which facilitate increasing 

levels of feasible complexity for DSPs. The value of the feasible complexity for 

each generation of technology is largely driven by Moore’s Law, which states that 

the number of transistors which can be placed on an integrated circuit doubles 



 

45 
 

every 18 to 24 months (Mollick 2006; Moore 1995). In this study, Moore’s Law is 

used to extrapolate the theoretical upper bound of the overall level of complexity 

that is possible for all semiconductor products, including DSPs. Note that in 

Figure 3, the values of algorithmic and computational complexity as well as the 

value of the feasible complexity are base 10 logarithms of the actual values. 

Thus, a one unit increase on the Y-axis corresponds to a 10X or one order of 

magnitude increase in algorithmic, computational, or feasible complexity. Each 

shift in the generation of DSP technology reflects one to two orders of magnitude 

or a 10X to 100X increase in the feasible complexity of DSP products. This 

indicates that dramatic increases in the level of algorithmic and computational 

complexity of DSP products are technologically possible for firms in this industry.  

Table 4 summarizes the average levels of algorithmic and computational 

complexity and the maximum feasible complexity that is theoretically possible in 

each generation of technology. Nearly 51% or 434 products in the sample were 

introduced in the 6th generation of DSP technology and about 25% or 209 

products in the sample were introduced in the 7th and most recent generation. In 

the 6th generation of DSP technology, 134 (or 31%) out of the 434 products 

introduced were made available through licensing. The 134 licensable products 

introduced in the 6th generation of technology represent just over 71% of all of 

the licensable products introduced in the entire industry from inception to 2009. 

In the 7th generation, 31 (or 15%) out of the 209 products introduced were made 

available through licensing. 
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Figure 2. Knowledge Production and Key Milestones in Signal Processing, 1963-2008 

1

10

100

1000

10000

100000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

N
u

m
b

e
r 

o
f 

P
a

te
n

ts
 o

r 
P

a
p

e
rs

 (
Lo

g
a

ri
th

m
ic

 S
ca

le
)

Year

Patent Grants

Research Papers

12,587 Papers

Published in Journals 

207,233 Patents

Granted by USPTO

1988 AT&T Granted Patent for 

Karmarkar's Algorithm 

(change in IP regime)

1974 First 

Commercially 

Available DSP Chip 

Introduced by  AMD 



 

 
 

47 

Table 3. Total Number of Product Introductions by Top 20 DSP Firms 

 

Rank Firm Name

1 ANALOG DEVICES 1986 143 16.8%

2 TEXAS INSTRUMENTS 1982 128 15.0%

3 MOTOROLA 1987 31 3.6%

4 RENESAS 2002 30 3.5%

5 CEVA 2002 24 2.8%

6 LSI LOGIC 1999 21 2.5%

7 FREESCALE 2003 20 2.3%

8 ALTERA 2004 18 2.1%

9 HITACHI 1982 18 2.1%

10 NEC ELECTRONICS 1980 18 2.1%

11 ARC 2001 16 1.9%

12 ARM 1998 16 1.9%

13 AT&T MICROELECTRONICS 1984 16 1.9%

14 MICROCHIP TECHNOLOGY 1988 15 1.8%

15 NXP SEMICONDUCTORS 2006 15 1.8%

16 DSP GROUP 1993 13 1.5%

17 VERISILICON 2005 13 1.5%

18 INFINEON TECHNOLOGIES 1999 12 1.4%

19 CIRRUS LOGIC 2001 11 1.3%

20 PHILIPS 1987 11 1.3%

Subtotal for the Top 20 DSP Firms in Sample 589 69.1%

Subtotal for the other 71 DSP Firms in Sample 264 30.9%

TOTAL 853 100.0%

% of 

Total

Total Number of DSP 

Products Introduced by 

Firm, 1973-2009

Year of First DSP 

Product Introduction
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Figure 3. Feasible Complexity and Average Values of AC and CC for Each Generation of DSP Technology 
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Table 4. New Production Introductions by Each Generation of DSP Technology 
 

 
 

 

For a summary of the specific technological changes and key market drivers associated with each generation of DSP 

technology listed above, see Table 22  in the Appendix.  

GENERATION OF 

TECHNOLOGY

NUMBER OF 

NEW PRODUCTS 

INTRODUCED

% OF TOTAL 

INTRODUCED

NUMBER OF NEW 

PRODUCTS AVAILABLE 

AS LICENSABLE CORES

% OF TOTAL 

LICENSABLE

% OF 

GENERATION

AVERAGE 

LOG10_AC

AVERAGE 

LOG10_CC

FEASIBLE 

COMPLEXITY

0 5 1% 0 0% 0% 3.37 3.37 5.61

1 8 1% 0 0% 0% 4.52 4.52 6.85

2 40 5% 0 0% 0% 4.85 4.85 8.09

3 59 7% 1 1% 2% 5.08 5.08 8.88

4 41 5% 2 1% 5% 5.20 5.20 9.82

5 57 7% 20 11% 35% 5.89 7.44 10.99

6 434 51% 134 71% 31% 8.98 9.92 13.21

7 209 25% 31 16% 15% 10.19 13.68 14.55

ALL GENERATIONS 853 100% 188 100% 8.39 9.82 12.58
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Statistical Technique 

As described earlier, the research sample in this study consists of 853 

products introduced by 91 firms over a 37-year period. Because my primary 

interest is in establishing the effect of the theoretical variables (algorithmic and 

computational complexity) at the product-level on the dependent variables, i.e., 

the likelihood of a product being replicated and imitated, across all of the 

products in the sample, I decided to use the generalized estimating equations 

(GEE) method (Nerkar 2003; Zeger and Liang 1986) to estimate the logistic 

regression model. The GEE framework is appropriate in this context for two main 

reasons: 1) the objective of the study is to estimate the average effect across the 

population as opposed to attributing heterogeneity to the clustering level, in this 

case the firm, as is typical in most firm-strategy research, 2) the sample of 

products is drawn from multiple firms and introduced over a large time window. 

The GEE logit framework estimates the same model as the standard logistic 

regression. The GEE logistic estimation differs from maximum-likelihood based 

logistic regression in that it allows for dependence within clusters, such as in 

longitudinal data (Diggle and Kenward 1994) and gives consistent estimates of 

the parameters and the standard errors by using a robust ‘sandwich’ estimator 

(Allison 2003; Hosmer and Lemeshow 2008).  

Variables and Measurement 

In this study, the dependent variables are the subsequent occurrences of 

replication or imitation of newly introduced products. The independent variables 

are information complexity measures (algorithmic and computational) and the 
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change in IP regime. Note that an alternative to algorithmic and computational 

complexity is the use of an analytical technique called the design structure matrix 

(DSM), which captures the degree of modularity of a design (MacCormack et al. 

2006). Measurement of inherent complexity using a DSM is not necessarily a 

meaningful predictor of replication and imitation for the DSP products in this 

study, because the degree of modularity does not vary much across 

architecturally similar products from the same generation of technology.  

In addition to dummy variables for capturing firm fixed effects, the control 

variables include the geographic region in which the firm introducing the focal 

product is headquartered and the availability of the product through licensing. 

Lagged dependent variables (O'Brien 2003) control for possible unobserved 

heterogeneity at the product-level (Heckman et al. 1979) by taking into account 

the number of times a product has been previously replicated and imitated. I also 

control for the number of firms that have previously entered the market.  

Dependent Variables 

1. REPLICATED: This binary outcome variable indicates whether or not the 

focal product is subsequently replicated (copied by the same firm) within the 

same generation of technology. All 853 products are classified based on their 

technical features into one of eight mutually exclusive and collectively 

exhaustive categories representing each generation of DSP technology 

(Strauss 2007). If, for example, after its first product introduction, a firm later 

introduces a new product that is an extension of the original product (part of 

the same product line or product family) within the same generation of 



 

52 
 

technology, then this is classified as the occurrence of a replication of the 

original product by the firm (REPLICATED=1). Note that later product 

introductions within the same product line or product family but not within the 

same generation of technology are not classified as the occurrence of a 

replication, because of the substantial technological differences between the 

products. I adopted this classification approach after extensive discussions 

with several DSP industry experts. For consistency and to ensure an 

independent and objective classification of the products grounded in industry 

practices, I followed the exact product categorizations standardized by EDN 

in their annual DSP industry directories and BDTI in their annual DSP chip 

benchmarking studies.  

2. IMITATED: This binary outcome variable indicates whether or not the focal 

product is subsequently imitated (copied by competing firm(s)) within the 

same generation of technology. Similar to the approach described above for 

determining the subsequent occurrence of a replication, I followed a 

standardized process for determining the subsequent occurrence of an 

imitation. Based on the advice of my group of DSP industry experts, I relied 

solely on the available independent benchmarking studies from the archival 

sources described earlier. These annual studies compared the technical 

performance of a firm’s newly introduced DSP chips with chips from its 

competitors and with previously introduced chips from all firms. If, for 

example, after the introduction of the focal product, a competitor later 

introduces a new product that closely matches the independently-
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benchmarked key technical features of the original product within the same 

generation of technology, then this is classified as the occurrence of a 

imitation of the original product by the competitor (IMITATED=1). 

3. OUTCOME: The dependent variables REPLICATED and IMITATED are used 

in the initial set of binary logit regression analyses described in the Results 

section. As a further refinement of these analyses, an additional set of 

multinomial logit regression analyses are conducted by constructing a new 

categorical dependent variable, OUTCOME, directly from the variables 

REPLICATED and IMITATED. For each product in the sample, the variable 

OUTCOME is assigned a value of 0, if the product is neither replicated nor 

imitated within the same generation of technology. A value of 1 is assigned if 

the product is replicated, but not imitated. A value of 2 is assigned if the 

product is imitated, but not replicated. Finally, a value of 3 is assigned if the 

product is replicated and imitated. 

Independent Variables 

1. LOG10_AC: This is the base 10 logarithm of the algorithmic complexity of the 

focal product. The value of the algorithmic complexity is estimated using the 

data width (in bits) of the product. For example, a data width of 16 bits equals 

a value of 216 = 65,536 which is equivalent to a value of LOG10_AC = 4.816. 

The rationale for using the data width of a DSP chip as an approximation for 

its algorithmic complexity is that the data width completely describes the 

maximum size of the data space for the operation of the DSP chip (Lee 

1988). A larger data space requires a larger MDL for representing a product 
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(MacKay 2003). Therefore, the value of the data width is proportional to the 

MDL of the product and may be suitable as a measure of algorithmic 

complexity (Grünwald 2007). 

2. LOG10_CC: This is the base 10 logarithm of the computational complexity of 

the focal product. The value of the computational complexity is estimated 

using the instruction width (in bits) of the product. For example, an instruction 

width of 8 bits equals 28 = 256 bits which is equivalent to a value of 

LOG10_CC = 2.408. Similar to the logic for using the data width as an 

approximation of a DSP chip’s algorithmic complexity, I use the instruction 

width as an approximation of its computational complexity. This is because 

the instruction width completely describes the maximum size of the instruction 

space for the operation of the DSP chip (Lyons 1997). A larger instruction 

space means that a larger set of instructions are required to represent a 

product (MacKay 2003; Zhao et al. 2002). Therefore, the value of the 

instruction width is proportional to the size of the instruction set of the product 

and may be useful as a measure of computational complexity (Goldreich 

2008). 

3. IP_REGIME: This binary variable is assigned a value of 1 only if the focal 

product was first introduced after the change in IP regime in 1988, the year 

the Karmarkar patent was granted by the USPTO (Stem 1991). Including this 

policy variable enables the analysis of a natural experiment of the effect of 

strengthening the patentability of algorithms on the likelihood of subsequent 

replication and imitation of algorithm-based products such as DSP chips. 
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Control Variables 

1. GEO_REGION: This categorical variable corresponds to the geographic 

region where the headquarters of the firm that produced the focal product is 

located. A value of 0 = Asia-Pacific (Japan, China, Taiwan). A value of 1 = 

Europe (Austria, Belgium, France, Germany, Netherlands, Poland, Russia, 

Switzerland, United Kingdom) and a value of 2 = North America (Canada, 

United States). The speed and cost of innovation and the propensity to use 

technology replicated internally versus technology imitated from external 

sources may differ for firms headquartered in different geographic regions 

because of fundamental differences in managerial practices (Mansfield 1988). 

2. LICENSABLE_CORE: This variable is assigned a value of 1 if the product is 

available as a licensable core, or = 0 otherwise. DSPs available as licensable 

cores may be more likely to be imitated and less likely to be replicated than 

DSPs only available as chips (Grindley and Teece 1997). 

3. DIVERSIFYING_ENTRANT: This variable is assigned a value of 1 if the firm 

that introduced the product is a diversifying entrant, or a value of 0 if it is a de 

novo entrant. Different types of entrants may have different strategies and 

incentives for engaging in outbound licensing (Motohashi 2008) versus 

integrated production (Arora and Fosfuri 2003). Products introduced by 

diversifying entrants may be more likely to be replicated and less likely to 

imitated than products introduced by diversifying entrants (Gallini 1984).14 

                                            
14 To avoid potential problems of multi-collinearity, DIVERSIFYING_ENTRANT is used in place of 
LICENSABLE_CORE in testing Hypotheses H6a and H6b. The tests for all of the other 
hypotheses in this study use LICENSABLE_CORE. 
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4. NREPLICATED_LAG1: This variable is a running count of the number of 

times a focal product has been previously replicated. Products that are in high 

demand may be frequently replicated (Winter and Szulanski 2001).  

5. NIMITATED_LAG1: This variable is a running count of the number of times a 

focal product has been previously imitated. Products that are in high demand 

may be frequently imitated (Saviotti 2001). 

6. NFIRMS_LAG1: This variable counts the total number of firms that entered 

the market in the previous year. Firm entry may indicate shifts in aggregate 

demand or technology and changes in barriers to imitation (Makadok 1998). 



 

 
 

 
V. RESULTS 

Descriptive Statistics and Correlations 

Table 5 presents descriptive statistics and a correlation matrix of the 

variables used in the analyses. REPLICATED and IMITATED are the dependent 

variables for the two separate sets of binary logit analyses for estimating the 

likelihood that a newly introduced product is subsequently replicated or imitated 

within the then current generation of technology. OUTCOME is the dependent 

variable used in the follow-on set of multinomial logit analyses. Of the 853 

products introduced by DSP firms from 1974-2009, about 77% were replicated by 

the originating firm and about 45% were imitated by competitors. Thus, some 

products were both replicated and imitated.  More precisely, as summarized in 

the bottom of Table 9, a mutually exclusive and collectively exhaustive 

breakdown of the possible product outcomes indicates the following. About 4% of 

products introduced by DSP firms are neither replicated nor imitated, 51% are 

replicated but not imitated, 19% are imitated but not replicated, and the 

remaining 26% are replicated and imitated.  

The mean values of algorithmic complexity (LOG10_AC) and 

computational complexity (LOG10_CC) for the 853 products in the sample are 

about 8.35 and 9.79, respectively, which correspond to bit values of 

approximately 27.7 bits and 32.5 bits, respectively. About 94% of all of the 

products in the sample were introduced after the change in IP regime 
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(IP_REGIME=1) marked by the Karmarkar patent grant in 1988. In terms of the 

categorical control variable GEO_REGION, about 12% of the products are 

introduced by firms headquartered in the Asia-Pacific region, another 13% by 

firms based in Europe, and the remaining 75% by firms in North America. Over 

22% of the products are available as licensable cores, as indicated by the control 

variable LICENSABLE_CORE. Diversifying entrants introduced 59% of the 

products. On average, about 4 DSP firms enter the market for the first time in the 

year preceding each new product introduction. The control variables for the 

running count of the number of times a product has been previously replicated or 

imitated, represented by lagged dependent variables NREPLICATED_LAG1 and 

NIMITATED_LAG1, respectively, are only used in separate sets of analyses, so 

the correlation of r = 0.281 is not a concern. The highest correlation between any 

two independent variables is r = -0.242 (p<0.05) between LOG10_CC and   

GEO_REGION. This level of correlation indicates that there is little likelihood of 

multi-collinearity influencing the internal and external validity of the results.15 

Binary Logit Models for Replication 

Table 6 reports the results of the models examining how the values of 

algorithmic and computational complexity affect the likelihood that a newly 

introduced product is replicated within the then current generation of technology 

(Hypotheses H1a and H2a). Specifically, Model 1 represents a baseline 

specification comprised of all of the control variables. Models 2, 3, and 4 extend 

                                            
15 The correlation between DIVERSIFYING_ENTRANT and LICENSABLE_CORE is r = -0.438 
(p<0.05). To avoid potential problems associated with multi-collinearity, I use the variable 
LICENSABLE_CORE in testing all of the hypotheses, except for H6a and H6b. Because only H6a 
and H6b make predictions based on the type of entrant, I replace LICENSABLE_CORE with 
DIVERSIFYING_ENTRANT in the tests of these hypotheses.  
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this baseline model by separately adding the direct effects of algorithmic 

complexity, computational complexity, and the change in IP regime. Model 5 is 

the full model with all of the independent variables and controls included. All of 

the Models 1-5 include firm fixed effects. Across Models 1-5, all of the control 

variables are significant and are in the expected direction. All of the models are 

significant and the relative improvement in quasi likelihood associated with each 

model in comparison to the baseline model is shown at the bottom of Table 6. 

This comparison indicates that Model 5 is the best fit model for estimating the 

likelihood that a product is replicated. 

The coefficient of the independent variable LOG10_AC is negative and 

significant in both Model 2 (β= -0.0188, p<0.1) and in Model 5 (β= -0.0233, 

p<0.05), which is the full model. This supports Hypothesis H1a, which predicts 

that the greater the algorithmic complexity of a newly introduced product, the 

lower the likelihood that it is subsequently replicated. The coefficient of the 

independent variable LOG10_CC is slightly positive but not significant in either 

Model 3 or Model 5. This does not support Hypothesis H2a, which predicts that 

the greater the computational complexity of a newly introduced product, the lower 

the likelihood that it is subsequently replicated. The coefficient of the independent 

variable IP_REGIME is positive and significant in both Model 4 (β= 0.9605, 

p<0.01) and in Model 5 (β= 0.9729, p<0.01). This supports Hypothesis H4a, 

which predicts that after a legal precedent strengthening the patentability of 

algorithms, the likelihood that a product is subsequently replicated is higher in 

comparison to products introduced before the precedent. 
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Table 5. Descriptive Statistics and Correlation Matrix 

 

  

Variable Mean Std. Dev. 1 2 3 4 5 6 7 8 9 10 11 12
1 REPLICATED .77 .42 1

2 IMITATED .45 .50 -.408** 1

3 OUTCOME 1.67 .91 .014 .907** 1

4 LOG10_AC 8.35 7.30 -.009 -.005 -.009 1

5 LOG10_CC 9.79 14.33 .041 -.105** -.096** .110** 1

6 IP_REGIME .94 .24 .173** -.060 .014 .130** .092** 1

7 GEO_REGION 1.62 .70 .162** -.095** -.030 -.025 -.242** .104** 1

8 LICENSABLE_CORE .22 .41 -.110** .178** .145** .168** -.022 .137** -.137** 1

9 DIVERSIFYING_ENTRANT .59 .49 .106** -.124** -.087* -.252** -.121** -.165** .327** -.438** 1

10 NFIRMS_LAG1 4.28 2.55 .193** -.019 .068* .148** .032 .196** .061 .061 -.117** 1

11 NREPLICATED_LAG1 5.39 10.80 .130** -.107** -.057 -.001 .023 .112** .192** -.129** .255** .000 1

12 NIMITATED_LAG1 17.17 27.29 .010 .056 .066 -.154** -.135** .082* .116** .078* -.037 .049 .281** 1

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).
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Table 6. Binary Logit Models of Likelihood that a Product is Replicated 

 

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 0.8467 0.9576 0.7879 0.0018 0.0711

(0.3138) *** (0.3391) *** (0.3472) ** (0.4709) (0.4829)

LOG10_AC -0.0188 -0.0233

(0.0098) * (0.0098) **

LOG10_CC 0.01 0.0078

(0.0106) (0.0102)

IP_REGIME 0.9605 0.9729

(0.3426) *** (0.3395) ***

GEO_REGION Asia-Pacific -1.0008 -0.9859 -1.0778 -0.9251 -0.9799

(0.3716) *** (0.3642) *** (0.3574) *** (0.3760) ** (0.3590) ***

GEO_REGION Europe -0.9776 -0.9894 -0.9664 -0.9021 -0.9052

(0.3886) ** (0.3953) ** (0.3899) ** (0.3716) ** (0.3790) **

GEO_REGION North America 0 0 0 0 0

LICENSABLE_CORE -0.9401 -0.9014 -0.9153 -1.0304 -0.9596

(0.3724) ** (0.3623) ** (0.3703) ** (0.3806) *** (0.3685) ***

NREPLICATED_LAG1 0.0202 0.0207 0.0196 0.0181 0.0181

(0.0098) ** (0.0097) ** (0.0099) ** (0.0099) * (0.0099) *

NFIRMS_LAG1 0.2435 0.2513 0.2407 0.2297 0.2366

(0.0704) *** (0.0717) *** (0.0690) *** (0.0675) *** (0.0674) ***

Fixed Firm Effects Included Included Included Included Included

Quasi Likelihood 13322.16 13298.59 13346.07 13233.59 13218.54

Improvement 23.57 -23.91 88.57 103.62

Comparison Model 1 1 1 1

Values in parentheses represent robust standard errors clustered on firms.

All  tests are two-tailed,  *** p<0.01, ** p<0.05, * p<0.10

Algorithmic 

Complexity

Computational 

Complexity

Reference Category
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Table 7. Binary Logit Models of Likelihood that a Product is Imitated 

 

Variable Model 6 Model 7 Model 8 Model 9 Model 10

Intercept -0.6792 -0.6676 -0.3569 -0.2436 -0.1375

(0.2109) *** (0.2607) ** (0.2213) (0.2422) (0.2518)

LOG10_AC -0.0017 0.0074

(0.0142) (0.0150)

LOG10_CC -0.04 -0.0364

(0.0100) *** (0.0114) ***

IP_REGIME -0.4739 -0.2928

(0.2905) (0.2915)

GEO_REGION Asia-Pacific 0.8235 0.8248 1.0818 0.7827 1.0491

(0.3407) ** (0.3392) ** (0.2519) (0.3350) ** (0.2417)

GEO_REGION Europe 0.9173 0.9158 0.8339 0.8731 0.8122

(0.3776) ** (0.3811) ** (0.3700) ** (0.3538) ** (0.3554) **

GEO_REGION North America 0 0 0 0 0

LICENSABLE_CORE 0.8899 0.8944 0.8301 0.9205 0.8293

(0.2808) *** (0.2594) *** (0.2819) *** (0.2880) *** (0.2712) ***

NIMITATED_LAG1 0.0067 0.0066 0.0046 0.0068 0.0049

(0.0053) (0.0057) (0.0052) (0.0053) (0.0054)

NFIRMS_LAG1 -0.0423 -0.0419 -0.0322 -0.0375 -0.0308

(0.0446) (0.0469) (0.0446) (0.0447) (0.0452)

Fixed Firm Effects Included Included Included Included Included

Quasi Likelihood 20451.88 20504.07 20205.84 20425.79 20239.29

Improvement -52.19 246.04 26.09 212.59

Comparison Model 6 6 6 6

Values in parentheses represent robust standard errors clustered on firms.

All  tests are two-tailed,  *** p<0.01, ** p<0.05, * p<0.10

Algorithmic 

Complexity

Computational 

Complexity

Reference Category



 

 
 

63 

Table 8. Estimating the “Paradox of Replication” 

  

CASE

Value of AC

Value of CC

Likelihood a Product is REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED

LOG10_AC 0.977 - 1.684 - - - - 1.107 - 1.074 0.975 -

LOG10_CC - 0.964 - - 1.26 0.892 - 2.277 1.164 - - 0.973

IP_REGIME 2.646 - 2.227 - - - - - - - - -

GEO_REGION Asia-Pacific

vs. North America

GEO_REGION Europe

vs. North America

LICENSABLE_CORE 0.383 2.292 0.355 2.437 0.031 2.321 0.113 - 0.091 2.24 - 1.839

NREPLICATED_LAG1 1.018 - 1.065 - 0.963 - - - 0.971 - 1.05 -

NIMITATED_LAG1 - - - 0.996 - 1.047 - 1.25 - 1.076 - 1.009

NFIRMS_LAG1 1.267 - 1.078 - 1.643 0.911 1.81 1.699 1.751 0.876 1.205 1.065

Percent Concordant 77.4 65.9 76.2 63.1 88.1 74.3 86.2 81 87.5 73 72.6 67

Somers' D 0.553 0.329 0.533 0.295 0.777 0.511 0.75 0.672 0.762 0.479 0.459 0.36

Number of Products

Mean Value of AC

Mean Value of CC

Estimated Size of the 

"Wedge" Between 
-2.3% -3.6% 68.4% - 26.0% -10.8% - 127.7% 16.4% 7.4% -2.5% -2.7%

Replication and Imitation

Note: Only the estimated Odds Ratios associated with parameters that are significant at the p<0.10 level or better in each model are shown

- 0.405 - - 0.429 6.5470.404 2.253 0.313 3.038 0.301 -

0.066 7.182 0.175 4.631 0.33 2.3630.375 - 0.524 2.592 - -

10.11

7.41

253 268

13.71

15.50

Odds Ratios

FOR ALL CASES

All Values of AC

All Values of CC

LOW

CASE 1

LOW, AC < 4.8165

LOW, CC < 7.2247

9.79 4.94 15.00 5.33

MODERATE

CASE 2

LOW, AC < 4.8165

HIGH, CC >= 7.2247

MODERATE

CASE 3 

8.35 4.74 4.68 10.07

HIGH, AC >= 4.8165

LOW, CC < 7.2247

853 332 125 128

CASE 2 and CASE 3

ALL VALUES IN CASE 

2 and CASE 3 

HIGH

CASE 4

HIGH, AC >= 4.8165

HIGH, CC >= 7.2247

Estimated Odds Ratios at Different Levels of Overall ComplexityEstimated

1.3% 36.8% 9.0% 0.2%

MODERATE
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Table 9. Multinomial Logit Models of Likelihood of Product Outcomes 

 

Variable 1 vs. 0 2 vs. 0 3 vs. 0 2 vs. 1 3 vs. 1 3 vs. 2

LOG10_AC 0.963 - 0.971 1.019 - -

LOG10_CC - 0.939 0.915 0.975 0.958 -

IP_REGIME 2.848 - 3.341 0.364 - 3.064

GEO_REGION Asia-Pacific

vs. North America

GEO_REGION Europe

vs. North America

LICENSABLE_CORE 0.454 - - 3.717 1.81 0.496

NREPLICATED_LAG1 - 0.981 - 0.972 - 1.025

NFIRMS_LAG1 1.452 1.225 1.451 0.816 - 1.234

Note: Only the estimated Odds Ratios associated with parameters

that are significant at the p<0.10 level or better in each model are shown

Coding of Possible Outcomes:

0 = Product is Not Replicated and is Not Imitated within the current generation of technology 4.0%

1 = Product is Replicated, but is Not Imitated within the current generation of technology 51.0%

2 = Product is Imitated, but is Not Replicated within the current generation of technology 18.8%

3 = Product is Replicated and is Imitated within the current generation of technology 26.3%

TOTAL 100.0%

3.199 1.521

0.432 1.804 - 3.583 2.225

% of Outcomes

0.529

0.42

Estimated Odds Ratios for Comparisons of Outcomes

- 1.884 -
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Binary Logit Models for Imitation 

Table 7 reports the results of the models examining how the values of 

algorithmic and computational complexity affect the likelihood that a newly 

introduced product is imitated within the then current generation of technology 

(Hypotheses H1b and H2b). Specifically, Model 6 represents a baseline 

specification comprised of all of the control variables. Models 7, 8, and 9 

augment this baseline model by separately adding the direct effects of 

algorithmic complexity, computational complexity, and the change in IP regime. 

Model 10 is the full model with all of the independent variables and controls 

included. Consistent with the previously described Models 1-5 for examining the 

likelihood of replication, Models 6-10 for examining imitation include firm fixed 

effects. Across Models 6-10, all of the control variables are in the expected 

direction, but only the coefficients of the variables for GEO_REGION and 

LICENSABLE_CORE are significant. All of the models are significant and the 

relative improvement in quasi likelihood associated with each model in 

comparison to the baseline model is shown at the bottom of Table 7. This 

comparison indicates that Model 8 is the best fit for estimating the likelihood that 

a product is imitated. 

The coefficient of the independent variable LOG10_AC is not significant in 

either Model 7 or in Model 10, which is the full model. This does not support 

Hypothesis H1b, which predicts that the greater the algorithmic complexity of a 

newly introduced product, the lower the likelihood that it is subsequently imitated. 

The coefficient of LOG10_CC is negative and significant in Model 8 (β= -0.04, 
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p<0.01) and Model 10 (β= -0.0364, p<0.01). This supports Hypothesis H2b, 

which predicts that the greater the computational complexity of a newly 

introduced product, the lower the likelihood that it is subsequently imitated. The 

coefficient of IP_REGIME is negative (its expected direction), but not significant 

in either Model 9 or in Model 10. This does not support Hypothesis H4b, which 

predicts that after a legal precedent strengthening the patentability of algorithms, 

the likelihood that a product is subsequently imitated is lower in comparison to 

products introduced before the precedent.  

As a next step, I compute the odds ratios associated with the coefficients 

that are significant in the full models for replication (Model 5) and imitation (Model 

10). These values are shown in Table 8 in the column labeled “Estimated Odds 

Ratios - For All Cases”. Since the values I used for the algorithmic and 

computational complexity are base 10 logarithms, a unit increase in LOG10_AC 

or LOG10_CC corresponds to a 10X increase in the measure.  

Note that it is entirely possible for a 10X increase in the algorithmic and 

computational complexity of DSPs to occur in only a few years’ time, since 

Moore’s Law implies that the overall feasible complexity of such chips doubles 

every 18 to 24 months (Mollick 2006). A10X increase in the algorithmic 

complexity of a newly introduced product reduces the odds that the product is 

replicated by -2.3%. Similarly, a 10X increase in the computational complexity of 

a newly introduced product reduces the odds that the product is imitated by -

3.6%. In terms of estimating the size of the “wedge” between ease of replication 

and difficulty of imitation (Rivkin 2001), the net difference between the odds of 
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replication and the odds of imitation is 1.3% for all 853 DSP products in the 

sample.  

In addition, the change in IP regime appears to have a significant effect on 

the likelihood that a product is replicated, but no significant effect on the 

likelihood that a product is imitated. For products introduced after the change in 

IP regime, the odds of subsequently being replicated are 2.65 times higher than 

for products introduced before the change in IP regime. Note that the coefficient 

of the control variable LICENSABLE_CORE is in the expected direction and 

significant (p<0.01) in all of the Models 1-10 for replication and imitation shown in 

Table 6 and Table 7. In Model 5, the full model for replication, the coefficient of 

LICENSABLE_CORE is negative (β= -0.9596, p<0.01). In Model 10, the full 

model for imitation, the coefficient of LICENSABLE_CORE is positive (β= 0.8293, 

p<0.01). This supports Hypotheses H5a and H5b, which predict that making a 

product available through outbound technology licensing decreases the likelihood 

of replication and increases the likelihood of imitation. 

 For DSPs available as licensable cores, the odds of subsequently being 

replicated are 62% lower, while the odds of subsequently being imitated are 

129% higher than for DSPs that are not available via licensing. A one product 

increase in the number of times that a product is previously replicated 

(NREPLICATED_LAG1) increases the odds of subsequent replication by 1.8%. 

In contrast, a one product increase in the number of times that a product is 

previously imitated (NIMITATED_LAG1) does not appear to have a significant 

effect on the odds of subsequent imitation. 
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Sub-Sample Analyses for Different Levels of Complexity 

As a refinement of the previously described analyses, I repeat the binary 

logistic regressions for replication (Model 5) and imitation (Model 10) on 4 distinct 

sub-samples of the 853 DSP products in the total sample. Each sub-sample 

corresponds to a separate case which represents a different level of information 

complexity. Classification in the appropriate sub-sample is determined by 

computing the median values of LOG10_AC (4.8165) and LOG10_CC (7.2247) 

respectively. Case 1 represents low overall information complexity and the 332 

products in this sub-sample all have a value of LOG10_AC and LOG10_CC 

below their respective median values. Case 2 represents one of two possible 

scenarios for moderate overall complexity, while Case 3 represents the other. In 

Case 2, all of the 125 products in this sub-sample have a value of LOG10_AC 

that is below the median and a value of LOG10_CC that is above the median. 

Case 3 is exactly the opposite of Case 2. In Case 3, all of the 128 products in this 

sub-sample have a value of LOG10_AC that is above the median and a value of 

LOG10_CC that is below the median. Case 4 represents high overall information 

complexity and the 268 products in this sub-sample all have a value of 

LOG10_AC and LOG10_CC above their respective median values.  

For comparison purposes, an additional case, which combines Case 2 

and Case 3 is also shown. At moderate levels of overall information complexity 

(Case 2 and Case 3 combined), a 10X increase in algorithmic complexity 

increases the odds that a product will be replicated by 16.4%, while a 10X 

increase in computational complexity increases the odds that a product will be 
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imitated by 7.4%. In terms of estimating the size of the “wedge” between ease of 

replication and difficulty of imitation (Rivkin 2001), the net difference between the 

odds of replication and the odds of imitation is 9.0% for the 253 DSP products in 

the combined sub-sample for moderate levels of overall information complexity.  

Decomposing the moderate complexity case further, the size of the 

“wedge” appears to be largest for the 125 products in Case 2, where algorithmic 

complexity is below its median value and computational complexity is above its 

median value. For Case 2, a 10X increase in computational complexity increases 

the odds that a product will be replicated by 26.0% and simultaneously 

decreases the odds that a product will be imitated by -10.8%. The net difference 

of 36.8% between the odds of replication and the odds of imitation for Case 2 is 

the largest of any of the 4 cases. In comparison, for Case 4, the net difference 

between the odds of replication and the odds of imitation is only 0.2%.  

A meaningful direct comparison to Case 1 is not possible because neither 

algorithmic nor computational complexity appear to have a significant effect on 

imitation in Case 1. For the products in Case 1, geographic region and the 

availability of a product as a licensable core appear to have a significant effect on 

the likelihood that a product is imitated. For each of the cases shown, the closer 

that the percent of observations concordant with predictions are to 100% and the 

higher that the values of Somer’s D are above 0.5, the better the models fit with 

the observed data (Hosmer and Lemeshow 2008). Note that the proposed 

models have the largest percent concordance and highest values of Somer’s D 

for Case 2 and Case 3, which represent moderate complexity. Based on these 
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results, Hypothesis H3a is not supported, but Hypothesis H3b is supported. The 

difference between the likelihood that a product is replicated and the likelihood 

that is it is imitated appears to be greater at moderate levels of complexity, in 

comparison to high levels of complexity. 

Multinomial Logit Models for Product Outcomes 

As the next step in my analyses, I reformulate the model as a multinomial 

logit model which incorporates the four possible product outcomes as shown in 

Table 9. The comparison shown in the column labeled “3 vs. 0” shows the odds 

of the outcome that a product is replicated and imitated (OUTCOME=3) versus 

the outcome that a product is neither replicated nor imitated (OUTCOME=0). A 

10X increase in algorithmic complexity reduces the odds of the outcome that a 

product is replicated and imitated by -2.9%, in comparison to the outcome that 

the product is neither replicated nor imitated. A 10X increase in computational 

complexity reduces the odds of the outcome that a product is replicated and 

imitated by -8.5%, in comparison to the outcome that the product is neither 

replicated nor imitated. The comparison shown in the column labeled “3 vs. 1” 

shows the odds of the outcome that a product is replicated and imitated 

(OUTCOME=3) versus the outcome that a product is replicated but not imitated 

(OUTCOME=1). A 10X increase in computational complexity reduces the odds of 

the outcome that a product is replicated and imitated by -4.2%, in comparison to 

the outcome that the product is replicated but not imitated. Thus far, Hypotheses 

H1a, H2b, H3b, H4a, H5a and H5b are supported. In the next section I test the 

remaining hypotheses, H6a and H6b. 
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Analyses for Different Types of Entrants 

Hypothesis H6a predicts that the likelihood that a newly introduced 

product is replicated is lower for de novo entrants than for diversifying entrants. 

Hypothesis H6b predicts that the likelihood that a newly introduced product is 

imitated is higher for de novo entrants than for diversifying entrants. To evaluate 

hypotheses H6a and H6b, I replace the variable LICENSABLE_CORE with 

DIVERSIFYING_ENTRANT and conduct additional analyses as described below. 

First, I construct the series of contingency tables shown in Table 10. I 

compute the odds ratios (all are significant at the p<0.01 level) for each set of 

contingency tables and observe the following: 

1. The odds that a product is replicated are 39.7% lower for de novo entrants 

than diversifying entrants. 

2. The odds that a product is imitated are 66.2% higher for de novo entrants 

than diversifying entrants. 

3. The odds that a product is replicated are 44.3% lower for products that are 

available as licensable cores than for products not available via licensing.  

4. The odds that a product is imitated are 139% higher for products that are 

available as licensable cores than for products not available via licensing.  

5. The odds that a product is available as a licensable core are 10.46 times 

greater for de novo entrants than for diversifying entrants. 

The baseline observations listed above suggest that de novo entrants in 

the DSP industry have a greater propensity to make their newly introduced 

products available as licensable cores and, as a consequence, these products 
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are more likely to be imitated than products introduced by diversifying entrants. 

This supports Hypothesis H6a and H6b but further support is needed using 

models which include the full set of explanatory variables, beyond the 2 x 2 

contingency tables and computed odds ratios shown in Table 10. 

Next, I repeat the sub-sample analyses for different levels of complexity 

following the same steps as before (see page 68), except that I now replace the 

variable LICENSABLE_CORE with DIVERSIFYING_ENTRANT.16 I control for all 

of the same factors as before. The results of these sub-sample analyses are 

shown in Table 11 (see the column labeled “Estimated Odds Ratios - For All 

Cases”). Overall, the odds that a newly introduced product is replicated are 

99.5% higher for diversifying entrants than for de novo entrants. Also, overall, the 

odds that a product is imitated are 36.2% lower for a diversifying entrant than for 

a de novo entrant. These results are consistent with the observations obtained 

earlier from computing the odds ratios from the contingency tables in Table 10 

and lend additional support to Hypothesis H6a and H6b. 

Note that a 10X increase in algorithmic complexity decreases the odds 

that a product is replicated by 2.2%, but appears to have no significant effect on 

the odds that a product is imitated. A 10X increase in computational complexity, 

increases the odds that a product is replicated by 1.4% and decreases the odds 

that it is imitated by -3.9%. Thus, as a function of computational complexity, the 

size of the “wedge “ in terms of the relative difference between ease of replication 

and ease of imitation is 5.3% for all products. 

                                            
16 Including both variables, LICENSABLE_CORE and DIVERSIFYING_ENTRANT could increase 
the potential for problems associated with multi-collinearity. The odds ratios computed for the 
observations listed on the previous page provide support for making this variable substitution. 
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Table 10. Contingency Tables and Odds Ratios 

 

ENTRANT TYPE REPLICATED NOT REPLICATED TOTALS IMITATED NOT IMITATED TOTALS % OF TOTAL

DE NOVO 251 98 349 183 166 349 41%

DIVERSIFYING 408 96 504 201 303 504 59%

TOTALS 659 194 853 384 469 853 100%

% OF TOTAL 77% 23% 100% 45% 55% 100%

Odds Ratio = 0.603 Odds Ratio = 1.662

LICENSABLE CORE REPLICATED NOT REPLICATED TOTALS IMITATED NOT IMITATED TOTALS % OF TOTAL

YES 129 59 188 116 72 188 22%

NO 530 135 665 268 397 665 78%

TOTALS 659 194 853 384 469 853 100%

% OF TOTAL 77% 23% 100% 45% 55% 100%

Odds Ratio = 0.557 Odds Ratio = 2.387

ENTRANT TYPE YES NO TOTALS % OF TOTAL

DE NOVO 153 196 349 41%

DIVERSIFYING 35 469 504 59%

TOTALS 188 665 853 100%

% OF TOTAL 22% 78% 100%

Odds Ratio = 10.460

CONTINGENCY TABLE FOR ENTRANT TYPE - NUMBER OF PRODUCTS IN EACH CATEGORY ARE SHOWN

CONTINGENCY TABLE FOR ENTRANT TYPE AND TECHNOLOGY LICENSING  - NUMBER OF PRODUCTS IN EACH CATEGORY ARE SHOWN

LICENSABLE CORE

CONTINGENCY TABLE FOR TECHNOLOGY LICENSING  - NUMBER OF PRODUCTS IN EACH CATEGORY ARE SHOWN

OUTCOMES OUTCOMES

OUTCOMES OUTCOMES

The computed Odds Ratios shown in all of the tables above are significant (p<0.01)
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Table 11. Estimating the “Paradox of Replication” for Diversifying vs. De Novo Entrants 

 

CASE

Value of AC

Value of CC

Likelihood a Product is REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED REPLICATED IMITATED

LOG10_AC 0.978 - 1.907 - - - - 1.14 - 1.076 0.981 -

LOG10_CC 1.014 0.961 - 1.93 1.195 0.894 0.485 2.392 1.138 - 1.012 0.966

IP_REGIME 2.491 - 2.049 - - - - - - - - -

GEO_REGION Asia-Pacific

vs. North America

GEO_REGION Europe

vs. North America

DIVERSIFYING_ENTRANT 1.995 0.638 2.042 - - - - - - - 2.372 0.48

NREPLICATED_LAG1 1.018 - 1.066 - 0.974 - - - 0.98 - 1.043 -

NIMITATED_LAG1 - - - 0.996 - 1.05 - 1.224 - 1.077 - 1.009

NFIRMS_LAG1 1.281 - 1.094 - 1.641 0.904 1.476 1.661 1.701 0.871 1.222 1.061

Percent Concordant 76.1 65.5 75.4 63.8 84.9 73.7 84.7 80.3 85.3 72.7 74 68.2

Somers' D 0.529 0.322 0.519 0.304 0.713 0.496 0.712 0.656 0.715 0.473 0.488 0.385

Number of Products

Mean Value of AC

Mean Value of CC

Estimated Size of the 

"Wedge" Between 
1.4% -3.9% 90.7% 93.0% 19.5% -10.6% -51.5% 139.2% 13.8% 7.6% 1.2% -3.4%

Replication and Imitation

Note: Only the estimated Odds Ratios associated with parameters that are significant at the p<0.10 level or better in each model are shown

3.534 0.311 - - 0.455 5.8210.466 2.066 0.314 2.971 0.473 -

0.088 5.675 0.094 6.075 0.479 2.0730.373 - - 2.685 0.251 4.414

10.11

7.41

253 268

13.71

15.50

Odds Ratios

FOR ALL CASES

All Values of AC

All Values of CC

LOW

CASE 1

LOW, AC < 4.8165

LOW, CC < 7.2247

9.79 4.94 15.00 5.33

MODERATE

CASE 2

LOW, AC < 4.8165

HIGH, CC >= 7.2247

MODERATE

CASE 3 

8.35 4.74 4.68 10.07

HIGH, AC >= 4.8165

LOW, CC < 7.2247

853 332 125 128

CASE 2 and CASE 3

ALL VALUES IN CASE 

2 and CASE 3 

HIGH

CASE 4

HIGH, AC >= 4.8165

HIGH, CC >= 7.2247

Estimated Odds Ratios at Different Levels of Overall ComplexityEstimated

5.3% -2.3% 30.1% -190.7% 6.2% 4.6%

MODERATE



 

 
 

75 

Table 12. Multinomial Logit Model of Likelihood of Product Outcomes for Diversifying vs. De Novo Entrants 

 

Variable 1 vs. 0 2 vs. 0 3 vs. 0 2 vs. 1 3 vs. 1 3 vs. 2

LOG10_AC 0.959 - 0.969 1.021 - -

LOG10_CC - 0.953 0.917 0.969 0.956 -

IP_REGIME 2.303 - 3.047 0.395 - 3.16

GEO_REGION Asia-Pacific

vs. North America

GEO_REGION Europe

vs. North America

DIVERSIFYING_ENTRANT - 0.398 - 0.464 - 2.448

NREPLICATED_LAG1 - 1.048 - 0.971 - 1.021

NFIRMS_LAG1 1.467 1.114 1.451 0.807 - 1.247

Note: Only the estimated Odds Ratios associated with parameters

that are significant at the p<0.10 level or better in each model are shown

Coding of Possible Outcomes:

0 = Product is Not Replicated and is Not Imitated within the current generation of technology 4.0%

1 = Product is Replicated, but is Not Imitated within the current generation of technology 51.0%

2 = Product is Imitated, but is Not Replicated within the current generation of technology 18.8%

3 = Product is Replicated and is Imitated within the current generation of technology 26.3%

TOTAL 100.0%

Estimated Odds Ratios for Comparisons of Outcomes

- 2.718 - 2.578 1.436

0.288 - - 3.576 2.768

% of Outcomes

0.598

0.414
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Table 13. Summary of Results for Hypothesized Differences in Products, Levels of Complexity, and Entrants 

Hypothesis Variable(s) of Interest Model(s) Results 
H1a Algorithmic Complexity,  

REPLICATED 
Binary Logit for 
Replication 

SUPPORTED, coefficient of LOG10_AC is negative and significant 
(p<0.05) 

H1b Algorithmic Complexity, 
IMITATED 

Binary Logit for 
Imitation 

NOT SUPPORTED, coefficient of LOG10_AC is not significant 

H2a Computational Complexity, 
REPLICATED 

Binary Logit for 
Replication 

NOT SUPPORTED, coefficient of LOG10_CC is not significant 

H2b Computational Complexity, 
IMITATED 

Binary Logit for 
Imitation 

SUPPORTED, coefficient of LOG10_CC is negative and significant 
(p<0.05) 

H3a Moderate vs. Low Levels 
of Information Complexity, 
REPLICATED, IMITATED 

Sub-Sample Analyses NOT SUPPORTED, coefficient values in low complexity case are not 
significant, does not allow a meaningful comparison to moderate 
complexity case 

H3b Moderate vs. High Levels 
of Information Complexity, 
REPLICATED, IMITATED 

Sub-Sample Analyses SUPPORTED, size of the “wedge” is the greatest at moderate levels of 
complexity (9.0%) in comparison to high levels of complexity (0.2%)17 

H4a IP Regime Change, 
REPLICATED 

Binary Logit for 
Replication 

SUPPORTED, coefficient of IP_REGIME is positive and significant 
(p<0.01) 

H4b IP Regime Change, 
IMITATED 

Binary Logit for 
Imitation 

NOT SUPPORTED, coefficient of IP_REGIME is negative (its expected 
direction) but not significant  

H5a Technology Licensing, 
REPLICATED 

Binary Logit for 
Replication 

SUPPORTED, coefficient of LICENSABLE_CORE is negative and 
significant (p<0.01) 

H5b Technology Licensing, 
IMITATED 

Binary Logit for 
Imitation 

SUPPORTED, coefficient of LICENSABLE_CORE is positive and 
significant (p<0.01) 

H6a Diversifying Entrants vs.  
De Novo Entrants, 
REPLICATED 

Contingency Tables SUPPORTED, odds of replication -39.7% for de novo entrants (p<0.01) 
Sub-Sample Analyses SUPPORTED, odds of replication +99.5% for diversifying entrants (p<0.1) 
Multinomial Logit for 
Product Outcomes 

SUPPORTED, odds of outcome “3 vs. 2” +245% for diversifying entrants 
(p<0.1) 

H6b Diversifying Entrants vs.  
De Novo Entrants, 
IMITATED 

Contingency Tables SUPPORTED, odds of imitation +66.2% for de novo entrants (p<0.01) 
Sub-Sample Analyses SUPPORTED, odds of imitation -36.2% for diversifying entrants (p<0.1) 
Multinomial Logit for 
Product Outcomes 

SUPPORTED, odds of outcome “2 vs. 1” -53.6% for diversifying entrants 
(p<0.1) 

                                            
17 When the variable LICENSABLE_CORE is replaced with DIVERSIFYING_ENTRANT, this result holds and the size of the “wedge” at moderate 
complexity is 6.2% in comparison to 4.6% at high levels of complexity. 
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At low levels of information complexity (Case 1), the odds that a product is 

replicated are 104% higher for diversifying entrants than for de novo entrants. 

However, at these low levels of information complexity, the type of entrant does 

not appear to have a significant effect on the odds that a product is imitated. At 

moderate levels of information complexity (Case 2, Case 3, and Case 2 and 3 

combined), the type of entrant does not appear to have any significant effect on 

the odds that a product is replicated or on the odds that it is imitated. In contrast, 

at high levels of information complexity (Case 4), the type of entrant does appear 

to have a significant effect on the odds that a product is replicated and on the 

odds that it is imitated. At these high levels of information complexity, the odds 

that a product is replicated are 137% higher for diversifying entrants than for de 

novo entrants. The odds that a product is imitated are 52% lower for diversifying 

entrants than for de novo entrants. 

As a final step in the analyses of the effect of the type of entrant on the 

likelihood of replication and imitation, I repeat the multinomial logit analyses 

following the same steps as before (see page 70). As explained in the previous 

set of sub-sample analyses, I again replace the variable LICENSABLE_CORE 

with DIVERSIFYING_ENTRANT and I control for all of the same factors as 

before. The results are shown in Table 12.  

The comparison shown in the column labeled “2 vs. 0” shows the odds of 

the outcome that a product is imitated but not replicated (OUTCOME=2) versus 

the outcome that a product is replicated nor imitated (OUTCOME=0). These 

results indicate that the odds of outcome “2 vs. 0” occurring are 61.2% lower for 
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diversifying entrants than for de novo entrants, which suggests that products 

introduced by diversifying entrants are less likely to be imitated. This lends 

further support to Hypothesis H6b. 

The comparison shown in the column labeled “2 vs. 1” shows the odds of 

the outcome that a product is imitated but not replicated (OUTCOME=2) versus 

the outcome that a product is replicated but not imitated (OUTCOME=1). These 

results indicate that the odds of outcome “2 vs. 1” occurring are 53.6% lower for 

diversifying entrants than for de novo entrants, which also suggests that products 

introduced by diversifying entrants are less likely to be imitated. Again, this lends 

further support to Hypothesis H6b. 

The comparison shown in the column labeled “3 vs. 2” shows the odds of 

the outcome that a product is replicated and imitated (OUTCOME=3) versus the 

odds of the outcome that a product is imitated but not replicated (OUTCOME=2). 

These results indicate that the odds of outcome “3 vs. 2” occurring are 245% 

higher for diversifying entrants than for de novo entrants, which suggests that 

products introduced by diversifying entrants are more likely to be replicated. This 

lends further support to Hypothesis H6a. 

Evaluated separately and collectively, the preceding analyses of 

contingency tables, sub-samples at different levels of complexity, and the 

multinomial logit model all consistently support Hypotheses H6a and H6b. 

Overall, for the 853 products introduced by the 91 firms in the sample, the 

likelihood that a product is replicated is lower for de novo entrants than for 

diversifying entrants, which supports Hypothesis H6a. Also for all of these 
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products and firms, the likelihood that a product is imitated is higher for de novo 

entrants than for diversifying entrants, which supports Hypothesis H6b. The 

“wedge” between ease of replication and ease of imitation appears to be greatest 

for diversifying entrants at high levels of information complexity. However, at 

moderate levels of information complexity, there does not appear to be a 

significant size “wedge” difference between diversifying and de novo entrants.  

Overall, eight out of the twelve proposed hypotheses are supported 

(Hypotheses H1a, H2b, H3b, H4a, H5a, H5b, H6a and H6b). A summary of the 

results is presented in Table 13. The contributions, implications, limitations and 

future research directions related to all of the findings presented in this chapter 

are discussed in detail in the next chapter. 

 



 

 
 

 
VI. DISCUSSION AND CONCLUSION 

Based on the preceding results, for the 91 DSP firms and 853 products in 

the sample, information complexity appears to be a meaningful predictor of the 

likelihood that a newly introduced product is replicated, imitated, or both. In 

general, increases in algorithmic complexity appear to decrease the likelihood 

that a product is replicated, while increases in computational complexity appear 

to decrease the likelihood that a product is imitated.  However, the direction and 

significance of the effects of algorithmic and computational complexity appear to 

vary at different levels of overall information complexity and in the presence of 

the full set of control variables. Consistent with predictions of past simulation 

studies reported in the literature, there appears to be a “wedge” between the 

ease of replication and the difficulty of imitation, and the size of this “wedge” 

seems to be the greatest at moderate levels of complexity. At high levels of 

overall information complexity, in particular, the size of the wedge is 

comparatively smaller than at moderate levels of complexity.  

In addition, an IP regime change which strengthens the patentability of 

algorithms appears to significantly increase the likelihood that a newly introduced 

product is subsequently replicated but does not significantly decrease the 

likelihood that the product is imitated. In contrast, under IP regimes which 

facilitate the formation of a market for technology, outbound licensing of a newly 

introduced product appears to significantly decrease the likelihood that the 
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product is replicated, while significantly increasing the likelihood that the product 

is imitated. Products introduced by de novo entrants are less likely to be 

replicated and more likely to be imitated than products introduced by diversifying 

entrants. Diversifying entrants appear to have the greatest advantage over de 

novo entrants at high and low levels of information complexity. Neither 

diversifying entrants nor de novo entrants appear to have a significant relative 

advantage over the other at moderate levels of complexity. 

Contributions  

In terms of theory, this study contributes to the broader strategy and 

entrepreneurship literature by introducing a model and methods for estimating 

the inherent complexity of any product, when the product is represented in the 

form of an algorithm. I integrate research streams from information theory with 

research streams on the KBV of the firm to formulate a methodology for 

evaluating the relationship between information complexity and firm-level product 

replication and imitation processes. I extend earlier work on relational complexity 

and strategy based on NK models in a new direction by developing measures for 

information complexity based on the underlying information-theoretic concepts of 

algorithmic and computational complexity.  

I also develop and test a method for mapping new product introductions to 

a finite set of algorithms of known or computable complexity. I apply this method 

to empirically test a generalized model of information complexity in the context of 

the process of entrepreneurial discovery in knowledge-intensive industries. I not 

only demonstrate “proof of concept” that the method works, I also obtain 
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empirical evidence to support largely untested predictions from prior simulation-

based studies on knowledge replication and imitation processes. Specifically, I 

introduce an information-theoretic approach to quantifying the extent to which the 

“paradox of replication” (Kogut and Zander 1992) or the “wedge” between the 

ease of replication and the difficulty of imitation (Rivkin 2001) affects the 

reproduction of newly introduced products as units of knowledge.  

The generalized model of information complexity may be applied to the 

analysis of a broad range of knowledge-intensive industries that are growing in 

their economic and technological importance, and where products may be 

represented in the form of an algorithm. This empirically testable model may be 

especially useful in industry contexts where the values of N and K or the degree 

of modularity does not vary substantially across products and relational 

complexity is therefore not a meaningful predictor of product replication or 

imitation (Solow et al. 1999). For researchers, managers, and policymakers 

involved in analyzing or making decisions related to R&D, product management, 

and technology strategy, this study outlines a practical tool for estimating how 

much the inherent complexity (Wilson and Latombe 1994) of a product affects a 

firm’s ability to replicate the product and its competitors’ abilities to imitate the 

product. 

Implications 

My methodology for examining information complexity, replication, and 

imitation suggests several important theoretical, managerial, and policy 

implications, as described below. For strategy and entrepreneurship scholars 
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who seek to understand the antecedents and consequences of knowledge 

reproduction processes within firms, this methodology offers a means to analyze 

not only products, but any unit of knowledge that can be represented as an 

algorithm. For example, codifiable organizational routines may be represented in 

algorithmic form as a complete and finite set of information and instructions for 

completing a specified task (Dosi 2000; Grant 1996b; Lillrank 2003; Nelson and 

Winter 1982; Winter and Szulanski 2001). Codified organizational processes, 

procedures, mindsets, dominant logics, and strategic logics that undergird the 

rules and heuristics for making decisions (Bettis and Prahalad 1995; Bingham et 

al. 2007; Pentland and Feldman 2005; Pentland and Rueter 1994; Tollin 2008) 

may be analyzed in terms of their algorithmic and computational complexity in a 

similar manner to the analyses conducted in this study.18  

Because the concepts of algorithmic and computational complexity are 

grounded in the fundamental principles of information theory, any algorithmic 

representation of the information associated with a unit of knowledge can be 

analyzed quantitatively. However, producing algorithmically and computationally 

complex products may not necessarily require that a firm’s strategies, routines, 

and processes of firms also be algorithmically and computationally complex 

(Baldwin and Clark 2000; Beinhocker 2006; Davis et al. 2009). In fact, as 

Eisenhardt and Sull (2001) explain, “When the business landscape was simple, 

companies could afford to have complex strategies. But now that business is so 

                                            
18 “Organizational routines can be conceptualized as generative systems with internal structures 
and dynamics … For some questions, routines can be taken as a unit of analysis without 
considering their internal structure, but there are many research questions for which it is useful to 
consider the parts of routines either separately or as they interact” (Pentland and Feldman 2005). 
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complex, they need to simplify. Smart companies have done just that with a new 

approach: a few straightforward, hard-and-fast rules that define direction without 

confining it” (Eisenhardt and Sull 2001).  

A further implication of this study may be the need to broaden complexity-

related research in strategic management and entrepreneurship beyond the 

concept of relational complexity or interdependence implicit in the use of NK 

models. In particular, this study demonstrates the potential value of developing 

new, empirically testable models and measures for other dimensions of 

complexity such as information (Boisot 2000; Boisot and Canals 2004; Boisot et 

al. 2007; Sorenson 2005). While this study focused on the effects of differences 

in products, IP regimes, and the type of entrant on knowledge replication and 

imitation, this study also highlights the need for further research at multiple levels 

of analysis. For example, conceptual and experimental research on managerial 

cognition may help uncover the possible relationship between information 

complexity and the individual and collective decision-making processes of 

managers and management teams (Simon 1959). 

For managers in knowledge-intensive industries who seek to build 

competitive advantage for their firms, different types of information complexity 

may have a different direction and magnitude of effect on the likelihood that a 

product is replicated or imitated. For example, in the DSP industry setting of this 

study, at moderate levels of overall information complexity, simultaneously 

increasing algorithmic and computational complexity results in the greatest size 

“wedge” between the likelihood of replication and imitation. However, in the same 
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industry setting, but at high levels of overall information complexity, 

simultaneously increasing algorithmic and computational complexity results in a 

much smaller “wedge” between the likelihood of replication and imitation. These 

empirical findings support and extend the propositions and predictions of 

previous conceptual work (Bharadwaj et al. 1993; Reed and DeFillippi 1990) and 

simulation studies (Rivkin 2000, 2001). These results suggest that the type of 

information complexity (algorithmic or computational), and the level of overall 

information complexity (low, moderate, or high), may matter a great deal in terms 

of the relative ease or difficulty of replication and imitation. Maximizing the size of 

the “wedge” at any given level of overall information complexity requires 

managers to understand how high-level product design choices (Hobday 1998; 

Hobday et al. 2000; Novak and Eppinger 2001; Sanchez and Mahoney 1996) 

and development paths (Baldwin and Clark 2000; Clark and Fujimoto 1991; 

Millson et al. 1992; Rothaermel and Deeds 2004) drive the different types of 

information complexity, and in turn how information complexity drives replication 

and imitation processes.  

In addition, when operating at the same overall level of information 

complexity and when subject to the same IP regime, managers of different types 

of entrants (diversifying and de novo), may make different optimal decisions for 

their respective firms regarding outbound licensing and product strategy. Based 

on the empirical results obtained from the DSP industry, diversifying entrants 

have the greatest competitive advantage over de novo entrants at low and at 

high levels of complexity but no significant advantage at moderate levels of 



 

86 
 

complexity. Thus, when faced with a large number of de novo entrants as 

potential competitors, diversifying entrants should focus on introducing products 

of either low or high information complexity. In contrast, when faced with a large 

number of diversifying entrants as potential competitors, de novo entrants should 

focus on introducing products of moderate information complexity. Furthermore, 

to maximize its competitive advantage at moderate levels of complexity, a de 

novo entrant should, whenever possible, pursue a replicator strategy and opt to 

be an Integrated Producer rather than an Outbound Licensor of its products. 

For policymakers in regulatory agencies and positions of authority who 

seek to encourage innovation in knowledge-intensive industries in a pro-

competitive manner, providing institutional frameworks and legal precedents 

which reinforce the patentability of algorithms may be a vital policy tool. This 

study indicates that products introduced by DSP firms headquartered in the Asia-

Pacific and European regions are substantially less likely to be replicated and 

substantially more likely to be imitated than products introduced by firms 

headquartered in North America. A change in IP regime in the U.S. which 

strengthens the patentability of algorithms appears to enhance the incentives for 

firms headquartered in North America to focus on replicating their own products. 

With stronger government assurances that their intellectual property rights for 

algorithms will be protected, North American firms may expect greater economic 

rents from replication (Hall and Ziedonis 2001; Jaffe 2000; Kortum and Lerner 

1998; Schoemaker 1990). As a potential policy tool, supporting the patentability 

of algorithms may promote product replication, but may not necessarily deter 
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imitation. This is because imitation deterrence is often driven by the expected 

costs and benefits of future patent litigation (Lanjouw and Schankerman 2001; 

Somaya 2003) rather than the existence of past legal precedents.  

IP regime changes which facilitate the formation of markets for technology 

may dramatically alter the competitive landscape by shifting the strategic 

incentives for firms to engage in outbound licensing or integrated production. If IP 

regime changes allow and approve of knowledge-sharing arrangements such as 

cross-licensing agreements (Grindley and Teece 1997; Hall and Ziedonis 2001; 

Shapiro 2000), patent pools (Gilbert 2004; Joshi and Nerkar 2011; Lerner 2002; 

Merges 2001) and R&D consortia (Branstetter and Sakakibara 2002; Grossman 

and Shapiro 1986; Sakakibara 2002), then these arrangements may also shift 

the incentives for firms to pursue a replicator or an imitator strategy. Beyond the 

information complexity of products themselves, the structural complexity of the IP 

regime (Alter and Meunier 2009; Coriat and Orsi 2002; Helfer 2009; Jaffe 2000; 

Malerba and Orsenigo 1993) under which these products are introduced may be 

a critical factor in determining the likelihood of replication and imitation. 

Using the empirical results obtained from my analyses of the DSP 

industry, I compiled a list of questions and answers for researchers, managers, 

and policymakers to use when estimating the likelihood of replication and 

imitation of products introduced by different firms. This list is intended to serve as 

a set of “rules of thumb” for making “optimally imperfect decisions” (Baumol and 

Quandt 1964) based on whether a product is more or less likely to be replicated 

or imitated (see Table 14). 
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Table 14. “Rules of Thumb” for Estimating Replication and Imitation19 

Main Question Follow-up Question Answers Based on This Study 
Which product, A or B, is 
more likely to be 
replicated? 

What is the algorithmic 
complexity of each product? 
 

The product with the greater algorithmic 
complexity is less likely to be replicated.  

If the algorithmic complexity is the same for both 
products, then the products are equally likely to 
be replicated. 

Which product, A or B, is 
more likely to be 
imitated? 

What is the computational 
complexity of each product? 
 

The product with the greater computational 
complexity is less likely to be imitated.  

If the computational complexity is the same for 
both products, then the products are equally 
likely to be imitated. 

Should the respective 
firms that introduced 
product A and product B, 
pursue a replicator or an 
imitator strategy? 

What is the overall level of 
information complexity of 
each product? 
LOW, MODERATE, or HIGH 

At moderate levels of information complexity, 
replicators have the greatest advantage over 
imitators. Therefore, the firm introducing the 
product should pursue a replicator strategy. 

At low and high levels of information complexity, 
replicators have the smallest advantage over 
imitators. Therefore, the firm introducing the 
product should pursue either strategy without 
significantly affecting how likely the product is to 
be replicated or imitated. 

How does a change in IP 
regime affect whether a 
product more or less 
likely to be replicated or 
imitated? 

Does the new IP regime 
support the patentability of 
algorithms? 
YES or NO 
 

If the IP regime supports the patentability of 
algorithms, then the product is more likely to 
replicated but not necessarily less likely to be 
imitated. 

How does technology 
licensing affect whether 
a product more or less 
likely to be replicated or 
imitated? 

Is the product available via 
outbound licensing? 
YES or NO 
 

If the product is available via outbound licensing, 
then the product is less likely to be replicated 
and more likely to be imitated. 

How does the type of 
firm affect whether a 
product more or less 
likely to be replicated or 
imitated? 

Is the firm that introduced 
the product a diversifying 
entrant (established firm) or 
a de novo entrant (startup or 
spinoff)? 

At low and high levels of information complexity, 
a product introduced by a diversifying entrant is 
more likely to be replicated and less likely to be 
imitated that a product introduced by a de novo 
entrant. 

At moderate levels of information complexity, 
there is no significant difference between 
diversifying and de novo entrants in terms of 
how likely a product is to be replicated or 
imitated. 

                                            
19 Baumol and Quandt (1964) define a rule of thumb to be a set of rules describing a decision 
procedure with the following characteristics: 
(a) The variables which are employed in the decision criteria are objectively measurable;  
(b) The decision criteria are objectively communicable, and decisions do not depend on the 
judgment of individual decision-makers;  
(c) As a corollary to (b), every logically possible configuration of variables corresponds to a 
(usually unique) determinate decision;  
(d) The calculation of the appropriate decision is simple, inexpensive, and well suited for frequent 
repetition and for spot checking by management in higher echelons.  
A decision process with these characteristics seems to be designed as the instrument par 
excellence of optimally imperfect decision-making for routine and recurrent problems.  
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Limitations and Future Directions for Research 

While this study contributes to the existing strategy and entrepreneurship 

literature and offers important implications for theory, practice, and policy, there 

are some limitations that future extensions could address. First and foremost, the 

fundamental assumption that makes my methodology analytically tractable and 

empirically testable ––– that units of knowledge such as products can be 

represented as algorithms ––– may not apply to a number of knowledge-based 

products such creative, cultural or entertainment goods (Caves 2000; 

Cunningham 2002; Hirsch 1972). That said, as described earlier, there are a 

number of industries in which products may be represented as algorithms. This 

study focuses on one industry in particular, DSP, and the findings in terms of the 

direction and magnitude of the effects of algorithmic and computational 

complexity on the likelihood of replication and imitation may differ across 

industries.  

One of the limitations of this single-industry study is that it is not possible 

to completely discern the extent to which technological, financial, and temporal 

constraints determine the feasible set of design choices which firms face prior to 

making decisions to replicate or imitate earlier products (Gonzalez-Zugasti et al. 

2000; Pate-Cornell and Dillon 1998; 2001). These high-level design choices may 

directly drive the level and type of complexity associated with a newly introduced 

product and the related information processing activities of the organization 

introducing the product (Novak and Eppinger 2001; Sosa et al. 2004). 

Furthermore, these choices may change dramatically during generational shifts 
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in technology (Bass and Christensen 2002). For example, a generational shift in 

technology such as a new system architecture may reduce or even remove some 

critical technical, economic, and timing constraints for all firms while increasing or 

adding new constraints (Malerba and Orsenigo 1993). Changes in any of these 

constraints may enable the formation of new firms and the exploitation of new 

markets through replication and/or imitation (Shane 2001).  

I speculate that one of the possible reasons why Hypotheses H1b, H2a, 

H3a, and H4b are not supported by the results of this study is because of the 

nature and duration of the eight distinct generational shifts in DSP technology 

which occurred from 1973 to 2009.20 For example, in the initial stages and early 

generations of DSP technology, increases in algorithmic complexity may have 

been far more feasible than increases in computational complexity. Therefore, 

early on, copying data may have been easier than copying instructions, which 

makes replication somewhat easier and imitation slightly more difficult (this 

supports H1a, but not H1b). In contrast, in the mid-to-later generations of DSP 

technology, increases in computational complexity may have been much more 

feasible than increases in algorithmic complexity.21 Therefore, later on, copying 

data may have been harder than copying instructions, which makes replication 

somewhat more difficult and imitation slightly easier (this supports H2b, but not 

H2a). Because the earlier generations of DSP technology are on average shorter 

                                            
20 The recombination and rediscovery of mathematical, architectural, and material innovations 
may have had a profound effect on the technological evolution of the DSP industry. These factors 
are analyzed and discussed in detail from a historical perspective in the Appendix. Mathematical 
innovations in particular may have had a greater impact on the feasible level of computational 
complexity than on the feasible level of algorithmic complexity. 
 
21 See Figure 3 for a graph of the feasible complexity for each generation of DSP technology. 
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in duration with fewer products introduced than in the later generations, a 

meaningful comparison between moderate and low levels of complexity is not 

possible (this supports H3b, but not H3a).22 In the case of a change in IP regime 

which strengthens the patentability of algorithms, this study found a positive and 

significant effect on the likelihood of replication and a negative but not significant 

effect on the likelihood of imitation (this supports H4a, but not H4b). The 

existence of a substantial common, codified, and cumulative base of knowledge 

available in the public domain may help explain why firms appear to be able to 

invent around (Samuelson and Scotchmer 2002) patented algorithms and imitate 

these algorithms without infringing on the IP rights of the original inventors, even 

when those rights are strengthened by an IP regime change.  

Further empirical work is needed to refine and validate the model and 

findings presented here. Future work could expand the methodology to the 

analysis of the replication and imitation of new products in a diverse array of 

industries that are based on fundamental innovations in algorithms (Berlinski 

2001). A multi-industry study comparing product introductions across a range of 

knowledge-intensive industries, or a single-industry study comparing product 

introductions based on different technologies may shed light on the extent to 

which the likelihood of replication and imitation varies as a function of industry 

and technology characteristics including technological, financial, and temporal 

constraints. 

                                            
22 Recall from Figure 3 and Table 4 that only a small number of low complexity products were 
introduced in the earlier stages of the DSP industry. In fact, about 71% of all of the product 
introductions occurred in the last two generations of DSP technology. These products had, on 
average, higher levels of algorithmic and computational complexity than the products introduced 
in the preceding generations of DSP technology. 
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In this study, I control for firm effects by using robust standard errors that 

are clustered at the firm-level and this approach accounts for firm-level 

heterogeneity. If correlations exist between the complexity measures I examined 

and the unobserved attributes of products, the coefficients obtained will be 

overstated (Allison 2003; Hosmer and Lemeshow 2008). Research that controls 

for additional firm-level heterogeneity can improve the precision of the estimates 

of the effect of algorithmic and computational complexity on the likelihood that a 

newly introduced product is replicated or imitated. Despite these limitations, this 

research provides strong evidence that the likelihood of a product being 

replicated or imitated is associated with measurable dimensions of information 

complexity. In addition, there may be factors in the competitive environment that 

influence the likelihood that a product is subsequently replicated or imitated. 

Although I have attempted to control for these factors in my models, there may 

be some unobserved factors that are not fully captured in these models.  

Future research could build on the model, methods, and results presented 

here in a number of potentially promising areas. One important area for future 

research may be the development of more precise measures for algorithmic and 

computational complexity. In this study, I use the data width and instruction width 

of a DSP product as proportional approximations of the algorithmic and 

computational complexity of the product (Goldreich 2008; Grünwald 2007). This 

approach may result in extremely conservative estimates which are only rough 

approximations of the respective quantities of interest. More advanced 

information-theoretic models and techniques may enable much more precise 
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measurement of information complexity in a variety of settings (Li and Vitányi 

2008; MacKay 2003).  

Another important area for future work may be investigating the error rates 

of replication and imitation associated with the processing of complex 

information. For tractability, this study assumed that error rates of replication and 

imitation were constant for each firm. However, these error rates may themselves 

be algorithmically and computationally complex functions of a wide range of 

explanatory variables (Anderson 1999)23 including parameters associated with 

the breadth and depth of firm search patterns (Gavetti and Levinthal 2000; 

Siggelkow and Rivkin 2005), the level of pre-entry experience (Ganco and 

Agarawal 2009; Ganco and Hoetker 2009), and the degree of knowledge 

simplification implied by the use of managerial heuristics (Baumol and Quandt 

1964; Davis et al. 2009). Furthermore, if errors occasionally generate beneficial 

mutations (Axelrod and Cohen 1999; McKelvey 1999; Mitleton-Kelly 2003) when 

copying knowledge, then under certain conditions, higher error rates may actually 

increase the chances of successfully exploiting the information obtained through 

entrepreneurial discovery processes.  

Yet another important area for future research may be examining how 

firms produce complex products by cooperating with other firms including current 

and prospective competitors in innovation networks within industries and across 

industries. A firm’s structural position as well as its degree of embeddedness in 

an innovation network (Granovetter 1985; Gulati et al. 2000; Henderson and 

                                            
23 As Anderson (1999) points out, “It is usually impossible to forecast the exact value of a chaotic 
system in nature, because small measurement errors between two apparently identical values at 
time t can lead to large differences at time t + 1.” 
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Clark 1990) may enable it to absorb and handle differing amounts of information 

complexity. In addition, the underlying deep structure (Ackerman et al. 2008; 

Barley 1986; DeSanctis and Poole 1994; Orlikowski 1992) of the information 

obtained via participation in an innovation network may vary in ways not fully 

captured by the measurement of algorithmic and computational complexity. 

Although the methodology developed in this study is primarily used to 

examine the replication and imitation of products as a unit of knowledge, other 

aspects of organizations may also be represented as algorithms. Quoting Winter 

(1986), Grant (1996b) defines an organizational routine as a “relatively complex 

pattern of behavior ... triggered by a relatively small number of initiating signals or 

choices and functioning as a recognizable unit in a relatively automatic fashion.” 

This definition of an organizational routine is congruent with the conceptualization 

of algorithms upon which this entire study is based. Embracing the methodology 

presented here may open up intriguing new possibilities for research on the 

quantitative measurement of information complexity and the replication and 

imitation of units of knowledge such as organizational routines, processes, 

procedures, decision-making rules and heuristics. Beyond entrepreneurial 

discovery in knowledge-intensive industries, information complexity may be a 

useful concept for understanding how the inherent structure of units of 

knowledge affects strategic decisions at the firm-level. In sum, I believe that 

extending this methodology to other aspects of organizational strategy as well as 

overcoming the previously described limitations of this study offer promising new 

directions for future research. 
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APPENDIX: INDUSTRY SETTING AND HISTORICAL CONTEXT 

 

Mixed Signals: How the Recombination and Rediscovery of 

Mathematical, Material, and Architectural Innovations 

Shaped the Signal Processing Industry, 1948-200824 

 

The Science of Signal Processing 

Signal processing is the science of identifying, analyzing, manipulating, and 

extracting physical signals such as audio, video, images and sensory data in 

real-time.  Digital Signal Processors (DSPs) are semiconductor chips which are 

the core engines of a diverse array of products including cell phones, digital 

cameras, high-definition televisions, network equipment, global-positioning 

systems, and communications satellites. DSPs account for $27 billion or 10% of 

global semiconductor revenues (Strauss 2008). Although DSPs are 

technologically and economically significant, the evolution of innovation in the 

signal processing industry is relatively unexplored.  

In this appendix, I trace the commercialization of signal processing since its 

inception in 1948, when the following three breakthrough innovations occurred. 

Information theory, a mathematical innovation, introduced a conceptual 

foundation for designing DSPs. Transistors, a material innovation, provided the 

                                            
24 A an earlier version of the material contained in this appendix was summarized and presented 
at the Business History Conference (BHC) Annual Meeting on the “The Business History of 
Everything” held March 25-27, 2010 in Athens, GA and was nominated for the K. Austin Kerr 
Prize for Best Ph.D. Student Paper. Parts of this appendix were also presented in a talk entitled 
“An Analysis of the Evolution of the Digital Signal Processing Industry as a Global Market for 
Technology, 1986-2008,” at the Industry Studies Association (ISA) Conference, held at the 
University of Illinois-Chicago, May 6, 2010.  
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physical building blocks for creating DSPs. Stored-program computing, an 

architectural innovation, offered an integrated framework for recombining 

mathematical and  material innovations to produce functional DSPs. An analysis 

of sixty years of subsequent innovation in DSPs reveals that: (1) some 

fundamental mathematical innovations are actually rediscoveries of earlier 

inventions; (2) architectural innovations often lag mathematical innovations by 

decades due to the technological constraints of material innovations; and (3) 

architectural innovations frequently reconfigure industry alliances and open new 

markets. The unintentional loss and rediscovery of mathematical innovations, the 

unanticipated lag between architectural and mathematical innovations, and the 

unexpected rearrangement of firm alliances are all possible sources of surprising 

new entrepreneurial opportunities to be discovered and exploited by firms in the 

signal processing industry. 

 Within the domain of science, the discipline of signal processing has been 

described as a remarkable success story that has resulted in the tangible 

creation of a multitude of useful “products that have changed the way we live” 

(Chiariglione 1997). From a cell phone in a caller’s hand to a communications 

satellite in Earth’s orbit, and from local wireless networks for Internet connectivity 

to global positioning systems (GPS) for vehicle navigation ––– and nearly 

everything digital in between ––– signal processing is a fundamental, enabling 

technology which makes all of these products possible.  Although most people 

are aware of the many end products resulting from signal processing research 
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and development, few people are aware of the existence of the underlying 

scientific field of signal processing itself.  

As Leah H. Jamieson25, 2007 President and CEO of the Institute of 

Electrical and Electronics Engineers (IEEE)26 observed regarding signal 

processing’s lack of visibility as an engineering endeavor, “it often seems that 

only the people who actually work in signal processing think about who we are 

and what we do” (Nebeker 1998a). 

The purpose of this appendix is to broaden and deepen our understanding 

of the origins, historical evolution, technological importance, and economic 

significance of the “numerous innovations in theory, algorithms, and 

implementation” (Hu 1997) in signal processing from 1948 to 2008. From a 

Schumpeterian perspective, the most essential aspect of innovation is “carrying 

out new combinations” to generate inventions which may include “discovery 

scientifically new and can also exist in a new way of handling a commodity 

commercially” (Schumpeter 1934).  I examine how the recombination and 

rediscovery of three types of innovations ––– mathematical, material, and 

architectural ––– generated surprises and impacted the commercialization of 

signal processing. 

 This appendix is organized in the following manner. First, I briefly describe 

the early origins of signal processing and discuss the earliest known digital 

                                            
25 August 2009. Biosketch of Leah H. Jamieson. 
 
26 The IEEE is the world’s largest technical society. By 2008, IEEE had 375,000 members in 160 
countries, with 43% outside of the United States, where it was founded in 1884 as the American 
Institute of Electrical Engineers (AIEE). IEEE includes 38 societies in various specialties and 
serves its members with 130 journals, transactions and magazines; more 300 conferences 
annually; and 900 active standards. See A Brief History of the IEEE. 
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representation of a signal. I also define the basic terminology used throughout 

the study. Next, I outline the growth of modern signal processing as a formalized 

field of research from its birth in 1948, to the introduction of the first digital signal 

processor chip in 1974; I highlight relevant and inter-related innovations in 

information theory, transistors, and computing. Then, I analyze the emergence 

and structure of digital signal processing as a global high-technology industry 

from 1974 to 2008, with an emphasis on exploring the role of innovation in 

reshaping inter-firm alliances and driving new opportunities. Finally, I summarize 

the main findings of this historical analysis and assess their potential implications 

for innovation in other knowledge-intensive industries. Based on these findings 

and implications, I evaluate recent speculation on the future of signal processing.  

The Early Origins of Signal Processing, c. 2500 B.C. 

The “Palermo Stone” and Nilometers 

Possibly the first known application of signal processing may be traced 

back to approximately 2500 B.C., when the ancient Egyptians used the “Palermo 

Stone” (St. John 2003; Wilkinson 2000) and a series of measuring stations called 

“nilometers” (Ardagh 1889; Manoug 1889) along the banks of the Nile River to 

measure seasonal water levels in an attempt to predict future flooding (Eltahir 

and Wang 1999; Jarvis 1964).  In this c. 2500 B.C. example, the signal, or 

physical quantity sampled, was the water level of the Nile, and the processing, or 

codification of the signal, was the regular and periodic inscription of the 

corresponding hieroglyphs into stone by human hands (Prandoni and Vetterli 

2008).  
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Figure 4. Photograph of a Large Fragment of the “Palermo Stone” 
  

(On display in the Regional Archeological Museum in Palermo, Italy. Source: Wikimedia Commons) 
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Figure 5. Illustration of the Nilometer on the Isle of 
Rhoda, Cairo  

 
David Roberts (1796-1864).  

Source: Wikimedia Commons
 

 

 

. Illustration of the Nilometer on the Isle of 

 
Source: Wikimedia Commons 

 
 
 

Figure 6. Photograph of a Modern DSP Chip Manufactured by 
Texas Instruments, 1988

 
Source: Wikimedia Commons

 

Photograph of a Modern DSP Chip Manufactured by 
Texas Instruments, 1988 

Source: Wikimedia Commons 
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Table 15. Type of Innovation in Primitive DSP System and Modern DSP Chips 

Type of 
Innovation 

Primitive  
DSP System 

Modern  
DSP Chips 

Potential 
Impact on Field 

Relevant Previous 
Findings 

Mathematical Egyptian calendar, 
writing system, & 
numerals (Gardiner 
and Gauthier-
Laurent 1927) 

Information 
theory & 
numerical 
analysis 

The “formalization” and 
“axiomization” of a 
mathematical theory will 
facilitate its wider use (Glas 
1999).  

Both “thought experiments” and 
“numerical experiments” contribute to 
knowledge and are essential to the 
process of conceptual reform and 
mathematical innovation (Stoltzner 2003). 

Material Stones and the 
tools for carving & 
transport (Lucas 
and Harris 1962) 

Transistors 
and the tools 
for design & 
manufacture 

Technical benchmarks (such 
as Moore’s Law27) are a self-
fulfilling prophecy; 
technologies will evolve in 
ways not predicted by and 
even contradictory to 
established benchmarks 
(Tuomi 2002). 

The entry of global competitors and the 
adoption of industry standards increase 
the diversity and rate of material 
innovation, thereby enabling organizations 
to overcome the performance barriers 
implicit in technical benchmarks (Mollick 
2006).  

Architectural Construction of 
nilometers (Clarke 
and Engelbach 
1990) 
 

Construction of 
stored-
program 
computer 

Architectural innovation will be 
“initiated by new entrants and 
will lead to the failure of 
incumbents in a product class” 
(Tushman and Nelson 1990).28 

Architectural innovation leads to “the 
failure of incumbents and the rise of new 
organizations; this process recurs over 
successive generations of architectural 
innovations” (Tushman and Nelson 1990). 

                                            
27 Moore’s Law characterizes an empirically observed relationship indicating that the number of transistors on an integrated circuit has doubled 
approximately every 18-24 months, over the history of computing. The Law is named in honor of Intel Co-Founder Gordon Moore. For Moore’s 
original article, see (Moore 1998). For Moore’s own updated perspective, see (Moore 1995). 
 
28Quote is from page 3 of  (Tushman and Nelson 1990) The referenced quote summarizes the original longitudinal study by Henderson and Clark 
of the photolithography industry from 1962 to 1986 appearing in the same issue. See (Henderson and Clark 1990). See also (Christensen 1992) 
For related work on recombinant innovation see (Galunic and Eisenhardt 2001). 
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Restated in more specific, 21st century A.D. technical terms, signals are 

analog or digital electrical representations of time-varying or spatial-varying 

physical quantities (Oppenheim and Schafer 1975). Signal processing is the 

science of identifying, analyzing, manipulating, and extracting signals in real-time 

(Lyons 1997). Digital Signal Processing (DSP) “is the mathematics, the 

algorithms, and the techniques used to manipulate these signals after they have 

been converted into a digital form” (Smith 1997). Digital Signal Processors 

(DSPs)29 are physical devices or semiconductor chips that are used to digitally 

convert, transform and analyze audio, voice, image, video and other sensory 

signals from one form to another (Eyre and Bier 1998; Eyre 2000).   

Thus, now expressed in modern parlance, the “Palermo Stone”, 

“nilometers”, and human stone carvers can be regarded as the essential 

components of a primitive DSP system which was used to capture the 

measurement of Nile’s water level as a discrete-time digitally-sampled physical 

signal and manually convert it into the form of pictorial images (St. John 2003). 

Innovation in Primitive DSP System and Modern DSP Chips 

Because its hieroglyphically-encoded digital data is still used in 

contemporary hydrological (Atiya et al. 1999) and statistical (St. John 2003) 

research, the Palermo Stone is “arguably the first recorded digital signal which is 

still of relevance today” (Prandoni and Vetterli 2008). In the preceding example, 

the creation of a primitive stone-based DSP system was made possible by the 

                                            
29 Within the industry and academia, the term “DSP” is commonly used to mean both “Digital 
Signal Processing” and “Digital Signal Processor,” the singular form of “Digital Signal 
Processors.” To avoid confusion, in this study, the term “DSP” is used specifically to refer to the 
science, while the terms “DSP chips” and “DSPs” are used to refer specifically to the chips. 
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earlier mathematical, material, and architectural innovations summarized in   

Table 15. As will be discussed in the next section, the development of modern 

silicon-based DSP chips was also made possible by significant advances within 

each type of innovation. The potential impact and relevant previous findings for 

each of these types of innovation are also shown in Table 15. 

Modern Signal Processing as a Formalized Field of Research, 1948-1973 

The story of modern signal processing begins in 1948 and continues to 

the present day.  Three major research breakthroughs appeared in 1948: the 

introduction of information theory, the invention of the transistor, and the 

demonstration of the first stored-program computer (Nebeker 1998c). 

Understanding the emergence of these three distinct, yet highly complementary 

research areas is critical for analyzing the evolution of signal processing as a 

general purpose technology (GPT). General purpose technologies (GPTs) are 

defined as enabling technologies, which “open up new opportunities, rather than 

offering complete, final solutions” (Bresnahan and Trajtenberg 1995).  

A GPT is a type of “drastic innovation” which has “the potential for 

pervasive use in a wider range of sectors in ways that drastically change their 

modes of operation” (Helpman 1998).  GPTs have four essential features: “(1) 

much scope for improvement initially, (2) many varied uses, (3) applicability 

across large parts of the economy, and (4) strong complementarities with other 

technologies” (Lipsey et al. 2005). Although prior studies have examined the 

evolution of related GPTs such as the electric dynamo and the personal 

computer (David 1990), as well as microprocessors (Grindley and Teece 1997; 
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Hall and Ziedonis 2001; Linden 2003), the current study is perhaps among the 

first to analyze the evolution of signal processing as a GPT from the perspective 

of economic history and Schumpeterian innovation (Nebeker 1998a, b, c).  

Information Theory in 1948: The Mathematical Logic for Designing DSPs 

The year 1948 is generally considered to be the starting point for signal 

processing as a formalized field of research. The seminal event which launched 

the field was the publication of Claude Elwood Shannon’s (1948) paper entitled 

“A mathematical theory of communication” in which he laid out the foundations of 

information theory. According to Shannon (1948), “the fundamental problem of 

communication is that of reproducing at one point, either exactly or 

approximately, a message selected at another point.”  Shannon first introduced 

and defined the smallest unit of information to be a bit, which is a simple binary 

representation of a 0 or 1 value (Waldrop 2001).  Shannon published his work in 

the Bell System Technical Journal and the core ideas in his paper were heavily 

influenced by the earlier work of Bell Labs researchers including Harry Nyquist 

and Ralph Hartley.  While at Bell Labs, Shannon also briefly worked with Alan 

Turing as part of a joint cryptographic research project (Aspray 1985) with the 

British military during World War II and with John von Neumann and Norbert 

Weiner at Princeton’s Institute for Advanced Study (Kahn 1967). 

Earlier, in 1924, Nyquist published “Certain factors affecting telegraph 

speed” in the Bell System Technical Journal, in which he formulated a theory 

describing bandwidth requirements for accurate and reliable information 

transmission (Maliniak 2005). In 1928, Hartley published “Transmission of 
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information,” in the same journal and for the first time introduced “a quantitative 

measure by which the capacities of various systems to transmit information may 

be compared” (Hartley 1970). Hartley’s work was published shortly after the first 

successful transatlantic transmission of a television program (Burns et al. 1998) 

from London to Hartsdale, New York and he discussed “its application to systems 

of telegraphy, telephony, picture transmission and television over both wire and 

radio paths” (Hartley 1970). Nyquist’s and Hartley’s research can be further 

traced back to the even more fundamental physics concepts of energy and 

entropy and the principles of thermodynamics and statistical mechanics first 

proposed by Ludwig Boltzmann in 1877 and later refined in 1901 by Willard 

Gibbs  and Max Planck (Gibbs et al. 1906; Planck 1901).  

It is important to note that Shannon, Nyquist, and Hartley all developed 

their ideas while employed at Bell Labs (or its precursor research center at the 

Western Electric Company) and they all published their findings in the Bell 

System Technical Journal.  Thus, if the birth of modern signal processing can be 

traced back to a single organization, it is Bell Labs.  Another significant 

contribution which Shannon made in 1948 in collaboration with colleagues at Bell 

Labs was the enhancement of Pulse Code Modulation (PCM) which was 

originally invented independently by Paul Rainey in 1926 and Alan Reeves in 

1937 (Nebeker 1998c).  Shannon along with Bernard Oliver and John Pierce 

described the underlying theory of a new method for digitally converting and 

quantizing signals into an efficient binary format that is the basis for audio and 

video coding schemes widely used in digital telephone and multimedia systems 
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even to this day (Verdu 1998).  In 1948, Shannon’s fellow Bell Labs scientist and 

research collaborator, Richard Hamming developed an error-correction code for 

binary transmission which greatly improved the reliability of signal processing 

and today bears his name as “the Hamming code” (MacKay 2003). Also in 1948, 

the work of British statistician Maurice Bartlett on time-series analysis advanced 

mathematical techniques for spectrum estimation (Nebeker 1998c) which is 

critical for signal processing applications.    

Why did so many important information-theoretic breakthroughs related to 

signal processing emerge around 1948?  Norbert Weiner, generally regarded as 

the “father of cybernetics” speculated that “Largely because of the impetus 

gained during the World War II, communication and control engineering have 

reached a very high level of development today. Many perhaps do not realize 

that the present age is ready for a significant turn in the development toward far 

greater heights than we have ever anticipated” (Wiener 1949). Military 

investment in research and development for applications such as 

communications, cryptography, and radar appears to be the primary catalyst for 

early advances in signal processing (Walker 2003) and Claude Shannon, Norbert 

Wiener, Warren McCulloch, Walter Pitts, Alan Turing, and John Von Neumann 

emerged as the scientific leaders of the post-war research program to build a 

unified information theory from multi-disciplinary fields (Aspray 1985).  

Transistors in 1948: The Physical Materials for Building DSPs 

In 1948, another critical event which contributed to the birth of modern 

signal processing was the announcement of the invention of the transistor by Bell 
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Labs researchers John Bardeen, Walter Brattain, and William Shockley (Riordan 

and Hoddeson 1998).  The original design of the transistor was actually begun by 

Bardeen and Brattain in 1947 and subsequently improved by William Shockley in 

1948, who prototyped earlier field effect transistor designs (Clements 2007) that 

were patented by Julius Lilienfeld in Canada in 1927 and 1928 and by Oskar Heil 

in Germany in 1934 (Hutcheson 2005; Kleint and Lilienfeld 1998). The trio of 

Bardeen, Brittain, and Shockley was awarded the Nobel Prize in Physics in 1956 

and a description of their invention is included below.  

The transistor is a three terminal, solid state electronic device. In a three 
terminal device we can control electric current or voltage between two of 
the terminals by applying an electric current or voltage to the third 
terminal. This three terminal character of the transistor is what allows us to 
make an amplifier for electrical signals, like the one in our radio. With the 
three-terminal transistor we can also make an electric switch, which can 
be controlled by another electrical switch. By cascading these switches 
(switches that control switches that control switches, etc.) we can build up 
very complicated logic circuits.30  

The invention of the transistor revolutionized the electronics industry.  

Expensive and energy-consuming vacuum tubes could be replaced with cheaper, 

lower-power and more reliable transistors which could perform the same 

amplification and switching functions essential for signal processing with much 

more efficiency (Riordan and Hoddeson 1998). It is interesting to note that the 

name “transistor” was actually coined by John Pierce, who was one of Claude 

Shannon’s original collaborators along with Bernard Oliver on PCM. Pierce 

supervised Bardeen, Brattain, and Shockley’s series of experiments on the 

development of the transistor. Bell Labs served as the intellectual nexus for the 

information theorists and transistor physicists whose collective work in 
                                            
30 Description of the Transistor. Source: http://www.nobelprize.org 
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establishing a formal and axiomatic foundation for signal processing would soon 

radically shape its evolution. 

Stored-Program Computing in 1948: The System Architecture for Implementing 

DSPs 

In addition to the multiple breakthroughs in information theory and the 

invention of the transistor which occurred at Bell Labs in 1948, the third major 

area of innovation which catalyzed the formation of signal processing as a field of 

research was the demonstration of the first stored-program computer by 

Frederick Williams and Tom Kilburn at the University of Manchester in England 

(Nebeker 1998a).  As first published in Nature (Lavington 1993), the Small-Scale 

Experimental Machine (SSEM), nicknamed the "Baby", was designed and built at 

the University of Manchester, and made its first successful run of a program on 

June 21, 1948 (Williams and Kilburn 1948). The SSEM was the first computer 

that could store not only data but any user program in electronic memory and 

process it at electronic speed (Williams and Kilburn 1949).  

Table 16. Functional Specifications of the Small-Scale Experimental Machine 
(SSEM) 

SSEM Functionality 
32-bit word length 

Serial binary arithmetic using 2's complement integers 
A single address format order code 

A random access main store of 32 words, extendable up to 8192 words 
A computing speed of around 1.2 milliseconds per instruction 

 

The SSEM functioned according to the specifications shown in Table 16. 

Although these specifications would appear to be extremely primitive and 
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painfully slow by modern computing standards, they were unprecedented at the 

time. A replica of the SSEM was built in 1998 in commemoration of the 50th 

anniversary of its invention and a picture is shown in Figure 7.  

 

Figure 7. Photograph of a Replica of the SSEM, The World’s First Stored-
Program Computer 

(On Display at the Museum of Science and Industry in Manchester, England) 
Source: Wikimedia Commons 

 

Williams and Kilburn along with other colleagues at the University of 

Manchester were later instrumental in producing the world’s first transistor 

computer in 1953. This transistor computer was built using 200 contact point 

transistors and performed arithmetic operations at 125,000 calculations per 

second.31  In comparison, 55 years later, in 2008, Intel announced the world’s 

                                            
31 Source: University of Manchester Computer Science Archives 
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first computer with over 2 billion transistors on a single chip and which operates 

at clock speeds between 1.2 to 2 GHz.32  

Thus, in 55 years, the number of transistors which may be incorporated 

into a single computer has increased by a factor of 10 million, a remarkable rate 

of advance that has led to the rapid evolution of signal processing as a GPT. This 

rate of technical advance is even more astounding when one compares the 

processing speed of single-chip DSPs to microcontrollers, a specialized form of 

microprocessor-based computer on a single chip (Nebeker 1998c).   From 1980 

to 1995, the performance of single-chip DSPs increased by about three orders of 

magnitude (a factor of improvement of nearly 1,000 times) in comparison to the 

performance of microcontrollers (Frantz and Papamichalis 1996). The 

remarkable and unprecedented rate of technological advancement in signal 

processing may account for the occurrence of substantial errors in threat 

perception and opportunity recognition among firms in the industry. These errors 

in assessing threats and opportunities may, in turn, contribute the magnitude and 

direction of the numerous surprises encountered by firms in the industry.  

Timeline and Milestones in Modern Signal Processing, 1948-1974 

Although the critical technologies which led to the formalization of the field 

of signal processing first emerged in 1948, it was not until 26 years later that the 

first commercially available digital signal processing (DSP) chips were actually 

produced.  In 1973, TRW produced the first “DSP engine” which was designed 

for classified U.S. military applications and was not commercially available. The 

first commercially available off-the-shelf DSP chips were introduced the next year 
                                            
32 Sources: Intel and Physorg http://www.physorg.com/news121350597.html 
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in 1974 by Advanced Micro Devices as the Am2901 family of discrete logic chips 

(Strauss 2007). In the period from 1948 to 1974, a number of unexpected or 

surprising technical advances occurred in information theory, transistors, and 

computing which were essential to the development of the first DSP chips.   

These advances and related market events such as the entry of new 

companies and products are summarized chronologically in Tables 17,18, 19, 

and 20, with major developments impacting signal processing highlighted (see 

shaded blocks) throughout. 

Table 17. Timeline of Events in the Field of Signal Processing,33 1948-1949 

Year Information Theory Transistors Computing 
1948 • At Bell Labs in the U.S., 

Claude Shannon publishes 
foundations of information 
theory.  

• Claude Shannon, Bernard 
Oliver and John Pierce publish 
fundamentals of Pulse Code 
Modulation (PCM). 

• Richard Hamming introduces 
error correction codes 

• Maurice Bartlett introduces 
statistical  techniques for 
spectrum estimation. 

• Bell Labs announces the 
invention of the transistor by 
researchers John Bardeen, 
Walter Brattain and William 
Shockley. 

• Raytheon CK703 is first 
commercially available 
transistor.   

• Junction transistor theory 
developed by William 
Shockley at Bell Labs.  

 

• At the University of 
Manchester in England, 
Frederic Williams and Tom 
Kilburn demonstrate the 
Small-Scale Experimental 
Machine (SSEM), the first 
stored-program computer. 
 
 

1949 • Shannon's Communication 
Theory of Secrecy Systems is 
declassified. 

• Marcel J. E. Golay introduces 
Golay codes for forward error 
correction. 

• John Tukey introduces 
statistical techniques for the 
spectral analysis of random 
processes. 

• “Type A” point contact 
transistor enters limited 
production at Bell Labs. 

• W. MacWilliams builds 
the Transistor Gating 
Matrix at Bell Labs, using 
40 “Type A” transistors; 
this is the first functional 
transistor application.  

• BINAC, the Binary Automatic 
Computer, is designed for 
Northrop Aircraft Company by 
the Eckert-Mauchly Computer 
Corporation (EMCC), which 
was the first computer 
company. BINAC was the first 
stored-program computer in 
the US, and the world's first 
commercial digital computer. 

                                            
33 I compiled this set of tables (Table 17-20) from multiple sources, including Nebeker (1998a, b, 
c) and Verdu (1998). For additional details and more in-depth timelines for information theory, 
transistors and computing, see also http://www.historyofscience.com, 
http://www.intel.com/museum/online/hist_micro/hof/, http://www.sciencetimeline.net, and  
http://www.asc-cybernetics.org/foundations/timeline.htm. 
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Table 18. Timeline of Events in the Field of Signal Processing, 1950-1959 

Year Information Theory Transistors Computing 
1950-
1959 

1951  
• David A. Huffman invents 

Huffman encoding, a method 
of finding optimal prefix codes 
for lossless data compression 
for any set of symbols; the 
algorithm is eventually used 
for compressing data in 
everything from compact discs 
to interplanetary spacecraft 
(Waldrop, 2001). 

1955 
•  Peter Elias introduces 

convolutional codes. 
1956 
• Noam Chomsky publishes 

"Three Models for the 
Description of Language" and 
introduces two key concepts: 
the hierarchy of syntactic 
forms, and transformational-
generative grammar theory; 
Chomsky expands on these 
ideas in Syntactic Structures 
(1957). 

• Norbert Wiener publishes The 
Human Use of Human Beings.  

• Ross Ashby publishes 
Introduction to Cybernetics. 

1957  
• Eugene Prange first discusses 

cyclic redundancy codes. 
1958 
• A joint United States and 

European committee is 
formed to create a universal 
programming language, 
'Algorithmic Language,' or 
'Algol.' the precursor of 
'Pascal.; In the course of 
creating Algol, John Backus 
and Peter Naur invented 
'Backus-Naur notation' for 
giving the formal definition of 
a programming language.   

1959  
• Raj Chandra Bose and 

Dwijendra Kumar Ray-
Chaudhuri, and independently 
the next year Alexis 
Hocquenghem, present BCH 
codes. 

1950 
• First grown junction transistor 

created at Bell Labs. 
1951 
• 30 Companies licensed 

by Western Electric to 
manufacture transistors. 

• First alloy junction transistors 
developed at GE and RCA. 

1952 
• Texas Instruments (TI) enters 

semiconductor business by 
licensing transistor from 
Western Electric (Bell Labs). 

• Hearing aids become 
first commercial product 
to use transistors; 
Raytheon produces 
10,000 CK718 hearing 
aid transistors. 

• GPC markets the first 
commercial grown 
junction transistor (2517 
series). 

1953 
• Total U.S. transistor 

production for the year is 
1,000,000 units.  

1954 
• Regency and TI develop 

and market the first all-
transistor radio (TR-1). 

• TI markets the first 
commercial silicon 
transistor (900 series). 

1956 
• Shockley, Bardeen and 

Brattain awarded the 
Nobel Prize for the 
invention of the 
transistor. 

1957 
• Fairchild semiconductor 

division founded by 
former scientists from 
Shockley Semiconductor 
Laboratory. 

1958 
• Jack Kilby invents 

integrated circuit at TI. 
1959 
• Texas Instruments 

introduces first 
commercial integrated 
circuit (IC). 

1950 
• Alan Turing proposes the 

Turing Test to decide if a 
computer is exhibiting 
intelligent behavior. 

• Sperry Rand builds the first 
commercially-available data 
processing machine, the 
UNIVAC I.  

1951 
• IBM decides to produce their 

first electronic computer, the 
701. It is a machine for 
scientific applications and IBM 
eventually sells nineteen of 
these machines. 

1952  
• EDVAC (Electronic Discrete 

Variable Computer) 
completed at the Institute for 
Advanced Study, Princeton, 
USA (by Von Neumann and 
others).   

1953 
• An Wang invents the 

magnetic core computer 
memory. 

• IBM announces the 
development of the 702, a 
version of the 701 designed 
for business rather than 
scientific applications. 

1954 
• IBM announces the 704. It is 

the first commercially 
available computer to 
incorporate indexing and 
floating point arithmetic as 
standard features. The 704 
also features a magnetic core 
memory, far more reliable 
than its predecessors’ 
memories.  

1956 
• Nathaniel Rochester and John 

H. Holland publish computer 
programs which simulated 
neural networks. 

1957 
• Commercial transistorized 

computers, including the 
UNIVAC Solid State 80 and 
the Philco TRANSAC S-2000, 
are introduced. These 
inaugurate the so-called 
second generation of 
electronic computers. 
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Table 19. Timeline of Events in the Field of Signal Processing, 1960-1969 

Year Information Theory Transistors Computing 
1960-
1969 
 

1960 
• Irving S. Reed and Gustave 

Solomon propose Reed-
Solomon codes.  

• Bernard Widrow and Marcian 
“Ted” Hoff develop the Least-
Means-Squares (LMS) 
algorithm for adaptive filtering. 

1962  
• Robert G. Gallager proposes 

Low-density parity-check 
codes; they are unused for 30 
years due to technical 
limitations.  

1964 
• Leonard Kleinrock publishes 

his 1962 PhD thesis 
Communication Nets: 
Stochastic Message Flow and 
Delay, providing a 
mathematical theory of packet 
data network communications.  

1965 
• James W. Cooley and John 

Tukey rediscover the Fast 
Fourier Transform (FFT) 
algorithm originally formulated 
by Carl Friedrich Gauss in 
1805 and describe how to 
implement it on a computer. 

1966 
• John Stockham and Howard 

Helms independently invent 
fast convolution, which 
combines the FFT with digital 
filtering and convolution. 

1967  
• Andrew Viterbi reveals the 

Viterbi algorithm, making 
decoding of convolutional 
codes practicable.  

• Bishnu Atal and Manfred 
Schroeder invent adaptive 
predictive coding (APC) which 
enables efficient coding of 
speech signals for 
transmission over 
communications networks.  

• Atal also invents linear 
predictive coding (LPC), an 
extension of APC which is 
used in the compression, 
recognition and synthesis of 
speech signals. 

1968  
• Elwyn Berlekamp invents the 

Berlekamp-Massey algorithm; 
used for decoding BCH and 
Reed-Solomon codes. 

• Chris Wallace and David M. 
Boulton publish the first of 
many papers on Minimum 
Message Length (MML) 
statistical and inductive 
inference.  

1961 
• TI delivers the first integrated 

circuit computer to the U.S. 
Air Force. The advanced 
experimental equipment has a 
total volume of only 6.3 cubic 
inches and weighs only 10 
ounces. It provides the 
identical electrical functions of 
a computer using 
conventional components 
which is 150 times its size and 
48 times its weight, which also 
was demonstrated. 

1964 
• Texas Instruments in 

partnership with Zenith Radio 
introduces the first consumer 
product containing an 
integrated circuit--a hearing 
aid. 

1965 
• Future Intel co-founder 

Gordon Moore observes the 
exponential growth in the 
number of transistors per 
integrated circuit and predicts 
that this trend will continue. 
The press calls this “Moore’s 
Law.”  

1966 
• Robert H. Dennard of IBM 

invents Dynamic Random 
Access Memory (DRAM) 
cells— one-transistor memory 
cells that store each single bit 
of information as an electrical 
charge in an electronic circuit. 
The technology permitted 
major increases in memory 
density. 

1967 
• Texas Instruments files the 

patent for the first hand-held 
electronic calculator, invented 
by Jack S. Kilby, Jerry 
Merryman, and Jim Van 
Tassel. This miniature 
calculator employed a large-
scale integrated array 
containing the equivalent of 
thousands of discrete 
semiconductor devices. 

1968 
• Robert Noyce, Gordon Moore 

and Andrew Grove found 
Intel. The company is 
originally incorporated under 
the name of NM Electronics. 

1969 
• Marcian “Ted” Hoff designs 

the first microprocessor, an 
integrated circuit 
semiconductor chip which was 
able to receive instructions 
and send data. 

1960 
• The Advanced Research 

Projects Agency (ARPA) of 
the United States Defense 
Department increases funding 
for research on computing. 

• IBM introduces a 
transistorized version of its 
vacuum-tube-logic 709 
computer, the 7090. It was the 
first commercially available 
general purpose computer 
with transistor logic, and it 
became the most popular 
large computer of the early 
1960s. 

1961 
• TI builds the first computer 

specifically designed for signal 
processing, the TI187, which 
is used to analyze seismic 
data, although not in real-time. 

1962  
• Douglas Engelbart of Stanford 

Research Institute completes 
his report, Augmenting 
Human Intellect: A Conceptual 
Framework, for the Air Force 
Office of Scientific Research. 

1964 
• IBM announces the 

System/360 family, the first 
IBM computers capable of 
both commercial and scientific 
applications All IBM 360s ran 
the same operating system -- 
OS/360. Previously each 
computer model required a 
different operating system. 

• RCA announces the Spectra 
series of computers, which 
run the same software as 
IBM’s 360. The Spectra 
computers were the first 
commercial computers to use 
integrated circuits. 

1964 
• Pres Eckert and John 

Mauchly receive a general 
patent on the stored-program 
electronic computer. Sperry 
Rand Univac, owner of the 
patent, charged a 1.5 percent 
royalty for all electronic 
computers sold by all 
companies except IBM, with 
which it had previously cross-
licensed patents. 

1968 
• Douglas Engelbart of Stanford 

Research Institute 
demonstrates an “oNLine 
System” (NLS), the features of 
which include hypertext, text 
editing, screen windowing, 
and email.  
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Table 20. Timeline of Events in the Field of Signal Processing, 1970-1974 

Year Information Theory Transistors Computing 
1970-
1974 
 

1970  
• Valerii Denisovich Goppa 

introduces Goppa codes, A 
new class of linear correcting 
codes.  

1971  
• Thomas Kailath and Enders 

Robinson publish a number of 
papers on statistical 
techniques for optimal design 
of filters and systems for 
reducing noise in signal 
transmissions. 

1972  
• Thomas Parks and James 

McClellan and introduce the 
Parks-McClellan algorithm for 
designing and implementing 
efficient and optimal finite 
impulse response FIR filters. 

• James K. Baker and Fred 
Jelinek introduce statistical 
techniques which enable 
speech recognition by 
automated systems.  

• Franklin Cooper introduces 
new techniques for analyzing 
speech patterns and 
synthesizing speech signals 
based on principles of 
acoustics and human auditory 
perception. 

• J. Justesen proposes 
Justesen codes, an 
improvement of Reed-
Solomon codes.  

1973  
• James Flanagan proposes 

adaptive differential pulse 
code modulation (ADPCM), 
which exploited the fact that a 
small sample of speech can 
be predicted fairly accurately 
from preceding samples. 
ADPCM was adopted as a 
new standard for encoding 
speech in 1984. 

• David Slepian and Jack Wolf 
discover and prove the 
Slepian–Wolf coding limits for 
distributed source coding.  

 

1970 
• Gilbert Hyatt files a patent 

application entitled Single 
Chip Integrated Circuit 
Computer Architecture based 
on work begun in 1968. This 
was the first general patent on 
the microprocessor. Twenty 
years later in 1990, the U.S. 
Patent Office awarded the 
patent, but was overturned in 
1995. 

• Intel announces the Intel 
1103, the world's first 
commercially available 
Dynamic Random Access 
Memory (DRAM) chip (1K bit 
pMOS dynamic RAM ICs). 

1971 
• TI announces a new standard 

one-chip MOS/LSI calculator 
logic circuit to make full 
electronic calculators 
available for the mass 
consumer market. 
The chip incorporates all of 
the logic and memory circuits 
to perform complete 8-digit 3-
register calculator functions, 
including full precision add, 
subtract, multiply, and divide 
operations. The chip was 
priced at less than $20. 

• Intel announces the first 
microprocessor, the 4-bit 
4004, designed by Federico 
Faggin.  

1972 
• Intel introduces the eight-bit, 

8008 microprocessor. 
1974 
• Intel announces the 8080 

eight-bit microprocessor. It will 
power the MITS Altair 8800 
designed by H. Edward 
Roberts, the first truly 
inexpensive personal 
computer. Within a year the 
8800 will be designed into 
hundreds of different 
products. 
 

1970 
• MIT Lincoln Labs develops 

the Fast Digital Processor 
(FDP), the first real-time DSP 
computer, which performed 
signal processing tasks about 
100 time faster than the 
general-purpose computers of 
the era. A more powerful 
version was introduced in 
1974 for speech processing. 

1971 
• C. Gordon Bell and Allen 

Newell publish Computer 
Structures: Readings and 
Examples, a systematized 
presentation of the principles 
governing the design of 
computer systems. 

• IBM’s first operational 
application of speech 
recognition enables customer 
engineers servicing 
equipment to “talk” to and 
receive “spoken” answers 
from a computer that can 
recognize about 5,000 words. 

1973 
• The Alto computer system is 

operational at Xerox PARC. 
Conceptually the first personal 
computer system, it eventually 
featured the first WYSYWG 
(What You See is What You 
Get) editor, a graphic user 
interface (GUI), networking 
through Ethernet, and a 
mouse. 

1974 
• IBM builds the first prototype 

computer (the 801) employing 
RISC (Reduced Instruction 
Set Computer) architecture. 
Based on an invention by 
John Cocke, RISC simplified 
the instructions given to run 
computers, making them 
faster and more powerful.  
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The Role of Computational Complexity in Driving Technological Adoption 

A careful review of the preceding timeline of events impacting signal 

processing offers some valuable insights regarding the largely unpredictable and 

surprising evolution of DSP as a GPT. Advances in information theory sometimes 

led directly to improvements in computing architectures, which were then quickly 

implemented in commercial products made possible by the latest transistor 

devices. However, this process was rarely linear or as straightforward as it might 

appear from the retrospective summary (Tables 17-20) compiled in this study.  

For example, some innovations such as David Huffman’s 1951 invention of 

Huffman coding for lossless data compression were quickly adopted and remain 

in use even today (Huffman 2006). However, Peter Elias’ 1955 more 

computationally complex invention of convolutional codes (Elias 1955) was not 

practical to implement until 12 years later with Andrew Viterbi’s 1967 

development of the Viterbi algorithm for decoding (Viterbi 1967).  In a more 

extreme case, Robert Gallager’s 1962 invention of low-density parity-check 

codes was not usable until 30 years later due to technical limitations and 

computational complexity (Richardson and Urbanke 2003).  

In addition, some innovations were actually rediscoveries of earlier 

inventions. In these situations, the source of the surprise was that information 

was unintentionally lost and then found. Perhaps the most notable of example of 

rediscovery in signal processing is James Cooley’s and John Tukey’s (1965) 

formulation of the Fast Fourier Transform (FFT) which was originally discovered 

by Carl Friedrich Gauss over one hundred and sixty years earlier c.1805 
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(Heideman et al. 1985).34 What made Cooley’s and Tukey’s version of the FFT 

spread so quickly was the ease of implementation in the computers available at 

the time (Cooley 1992). The FFT, which enables the frequency domain 

processing of the time domain representation of physical signals (Cooley 1987; 

Cooley and Tukey 1965) in real-time, is absolutely fundamental to all signal 

processing applications in use today (Rader and Brenner 1976).  

Figure 8 below utilizes a brief numerical example to illustrate the 

significance of the FFT as a mathematical innovation.35 

Figure 8. The Computational Complexity of Fast Fourier Transform (FFT) in 
Comparison to the Discrete Fourier Transform (DFT) 

 

                                            
34 (Heideman et al. 1985) According to the authors, the treatise of interest was entitled “Theoria 
Interpolationis Methodo Nova Tractata”. It was published only posthumously in Volume 3 of the 
collected works of Gauss in 1866, but was originally written, most likely, in 1805. 
 
35 Note that scale on the Y-axis is logarithmic, each increment is an increase in order of 
magnitude (a factor of 10). 
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 Prior to the discovery of the FFT, the Discrete Fourier Transform (DFT) 

was the best known method for generating a frequency-domain representation of 

a sampled signal. Here, the variable N corresponds to the length of the sampled 

signal; the greater the length, the higher the value of N. As the value of N on the 

X-axis (in the figure below) increases from N=16 to N=1024 (corresponding to an 

increase the sample length), the number of mathematical operations 

(multiplications and additions) required to compute the FFT increases from 64 to 

a value of 10,240 (an increase by a factor of 160 times). In comparison, the 

number of mathematical operations required to compute the DFT increases from 

256 to 1,048,576 (an increase by a factor of 4,096 times). The net result is that 

for a sample length of N=1024, the DFT is exactly 102.4 times more 

computationally complex than the FFT.36 

 Thus, as shown in the preceding numerical example, the impact of the 

FFT as a mathematical innovation was a dramatic reduction in the computational 

complexity of the most fundamental algorithm required for every signal 

processing application. The “thought experiments” that were previously only 

possible on paper could actually be tested and validated through “numerical 

experiments” by efficiently programming the available computing power (Cooley 

1992). This enabled scientists and engineers to prototype and implement a 

variety applications in fields ranging from sonar systems for underwater 

navigation to seismic monitoring systems for oil exploration. Perhaps the most 

surprising and fascinating aspect about the FFT is that it was rediscovered 

multiple times and in multiple forms by a number of scientists working in different 
                                            
36 Obtained by dividing 1,048,576 by 10,240. 
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disciplines. Table 21 below summarizes the known instances of the initial 

discovery computationally efficient alternatives to the DFT.  

Table 21. Discovery and Rediscovery of Computationally Efficient Alternatives to 
the DFT37 

Generalizability Input Sequence Lengths 
(Acceptable Values of N) 

Researcher(s) and  
Year of Initial Discovery 

 
Most General 
 
 
 
 
Least General 

Any composite integer Gauss – 1805, Cooley & Tukey – 
1965 (FFT)  

Any integer with relatively 
prime factors 

Thomas – 1948, Good – 1958, 
Winograd – 1976 

2n·K, 3n·K Stumpff – 1939  
2n·K Runge – 1903  
2n Danielson & Lanczos – 1942 
4, 8, 16, 32  Smith – 1846  
12 Carlini – 1828, Everett – 1923  

 

Remarkably, over a 160 year span of time, from 1805 to 1965, at least 7 

different alternatives to the DFT were discovered by 11 different researchers or 

pairs of researchers. The most generalizable approach, the FFT, which was 

developed by Cooley and Tukey in 1965, was actually a rediscovery of the 

comparable work of Gauss from 1805 (Cooley 1987). The unintentional loss and 

rediscovery of this vital know-how may have contributed to errors in threat 

perception and opportunity recognition among potential developers of signal 

processing technology and may account for the occurrence of surprises during 

the course of the emergence of the scientific field and industry. 

  

                                            
37 I modified the original table entitled “Principal Discoveries of Efficient Methods of Computing 
the DFT” on page 272 of (Heideman et al. 1985) The modified table indicates the overall 
generalizability of each alternative in terms of the allowed values for the input sequence lengths. 
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The Role of Key Inventors in Generating More than One Type of Innovation 

In addition to the rediscovery of the FFT, the original contributions of a 

select group of researchers who spanned two or more areas of innovation 

(mathematical, material, and/or architectural) were also significant in the 

evolution of signal processing. For example, in 1960, Marcian “Ted” Hoff 

developed the Least-Means-Squares (LMS) algorithm (Widrow and Stearns 

1985) with his doctoral advisor, Bernard Widrow, as part of his Ph.D. dissertation 

(Hoff 1962). The LMS algorithm is perhaps second only to the FFT in terms of its 

widespread use in signal processing applications as an adaptive filtering 

mechanism (Widrow and Haykin 2003). Later, in 1969, Hoff was an early 

employee at Intel as is credited with co-inventing the microprocessor with 

Frederico Faggin and Stan Mazor.38  Hoff contributed to key developments in 

both information theory and transistors and it is impossible to discern how much 

influence his invention in one domain had on his subsequent invention in another 

related domain.  Similarly, at Bell Labs in 1948, John Pierce developed the 

methodology of pulse code modulation (PCM) with Bernard Oliver and Claude 

Shannon while also managing the team of John Bardeen, Walter Brattain and 

William Shockley when they conducted the series of experiments that led to the 

invention of the transistor.  Based on the analysis presented thus far on the 

unpredictable evolutionary path of signal processing, the description below 

appears to appropriately characterize mathematical, material, and architectural 

innovation in this field. 

                                            
38 Source: Intel Corporation, http://inventors.about.com/od/mstartinventions/a/microprocessor.htm 
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Models that depict innovation as a smooth, well-behaved linear 
process badly mis-specify the nature and direction of the causal 
factors at work. Innovation is complex, uncertain, somewhat 
disorderly, and subject to changes of many sorts. (Kline and 
Rosenberg 1986) 

Furthermore, as Stephen Kline and Nathan Rosenberg explain, “The 

process of innovation must be viewed as a series of changes in a complete 

system not only of hardware but also of market environment, production facilities 

and knowledge, and the social contexts of the innovation organization”(Kline and 

Rosenberg 1986).  In Kline and Rosenberg’s (1986) framework, “Commercial 

innovation is controlled by two distinct sets of forces that interact with one 

another in subtle and unpredictable ways.” The two sets of forces are market 

forces and technological forces and they are closely interconnected on multiple 

levels.  Thus, understanding the evolution of signal processing as a GPT also 

requires the careful measurement and analysis of the interaction of market forces 

and technological forces over time.  The non-deterministic nature of this 

interaction may generate errors in organizational beliefs about the field of signal 

processing and these errors may produce surprise in less resilient organizations. 

In the next section, I examine both sets of forces and their effect on the 

emergence and growth of DSP firms and the DSP industry as a whole. 

DSP as a Global High-Technology Industry, 1974-2008 

As described earlier, the field of signal processing has its roots in the 

breakthroughs in information theory, transistors and computing which occurred in 

1948. Over 26 years passed before the first commercially available off-the-shelf 

DSP chips were introduced in 1974 by Advanced Micro Devices as the Am2901 

family of discrete logic chips; in the 34 subsequent years that passed from the 
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introduction of the first off-the-shelf DSP chips, the total size of the DSP industry 

grew from virtually zero to over $27 billion in total revenues in 2008 (Strauss 

2008).39  

Initial Generation of Commercial DSP 

In the period from 1974-2008, DSP technology underwent six major 

changes in technology regimes, represented by six new generations of 

technology.  After Advanced Micro Devices’ introduction of the Am2901 family of 

DSP chips in 1974, the next major milestone was the introduction of the Speak 

and Spell™ educational toy by Texas Instruments (TI) in 1978 (Frantz 1982).  

Market and technological forces interacted synergistically, demonstrating that 

DSP could be used to create a new class of consumer products that would 

eventually transform the way we live. The Speak and Spell™ incorporated the 

non-programmable TMS280, the first single-chip implementation of a DSP 

algorithm and was the first widely used mass market consumer product to utilize 

DSP technology (Strauss 2007).40 The introduction of the Speak and Spell™ 

surprised TI and its competitors in the emerging DSP industry by demonstrating 

that consumer applications of signal processing could be enormously profitable 

for firms even in comparison to military applications of the technology. In the 

same year, 1978, AMI Semiconductor announced the first programmable DSP, 

the S2811 (Strauss 2007),  but was beaten to the market by Intel, which 

introduced the 2920 DSP chip which was designed by Marcian “Ted” Hoff (the 

                                            
39Estimates are for all DSP silicon, which includes general purpose programmable DSP chips and 
embedded DSP chips. See Appendix for Profiles and a Comparison of DSP Firms. 
 
40 According to Strauss (2007), prior to the introduction of the TMS280, all DSP algorithms 
required multiple chips for implementation.  
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co-inventor of the LMS algorithm for adaptive filtering in 1960 and the Intel 4004, 

the first microprocessor in 1969).  

1st Generation of Commercial DSP 

After the introduction of these early single-chip DSPs by TI, AMI, and Intel, 

the first major shift in DSP technology occurred in 1980 with the introduction 

µPD7720 by NEC and the DSP-1 by AT&T (Lee 1988, 1989). The significance of 

both chips is that they were the first DSPs based on the Harvard architecture, a 

computer architecture which separates data and memory buses for real-time 

operation.41 The result of adopting this architecture is that both chips were 

sufficiently powerful for real-time processing of audio signals.  Because AT&T’s 

DSP-1 chip was only available for internal use until 1985, NEC’s µPD7720 was 

the first practical off-the-shelf DSP chip for use in real-time audio applications 

(Strauss 2007). 

2nd Generation of Commercial DSP 

The second substantial improvement in DSP chip technology occurred 

during 1983-1987 when Texas Instruments, Toshiba, Fujitsu, Matsushita and 

AT&T all introduced DSP chips which incorporated the single-cycle multiplier-

accumulator (MAC) function, which effectively doubled the bandwidth of these 

DSPs versus previous chips (Lee 1988, 1989). The AT&T DSP32 which was 

introduced internally in 1984 and externally in 1986 had the added distinction of 

being the first floating-point DSP chip available in the commercial market.42 

  

                                            
41 http://www.pic24micro.com/harvard_vs_von_neumann.html 
 
42 Source:  AT&T, Lucent, and Agere company historical timelines 
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Subsequent Generations of Commercial DSP 

 The third wave of technological change in DSP chip technology occurred 

in the years 1987-1990, when a number of vendors, most notably Zoran and 

Analog Devices introduced DSP chips featuring reconfigurable memory, 

increased parallelism, and expanded instruction sets, all of which improved the 

overall flexibility of the DSP chips. (Strauss 2007). These chips were primarily 

used for military applications. Vendors also focused on optimizing their earlier 

first-generation floating-point chip designs.  The fourth wave of DSP technology 

from 1990-1994 was marked by the introduction of integer operational 

capabilities, optimization of chips for commonly used algorithms, smaller chip 

sizes and faster processing speeds.43 Several vendors introduced their second-

generation of floating point DSP chips and their second-generation of integer 

DSP chips. The fifth wave of DSP technology from 1994-1998 featured the 

inclusion and of numerous functions which optimized DSPs for use in cell phones 

and wireless infrastructure.  

The sixth and most recent wave of DSP technology from 1999-2006 was 

characterized by a fundamental change in chip architecture, the first DSP chips 

based on VLIW (Very Large Instruction Word) and superscalar architectures 

were introduced.44 The benefit of this new architecture was the ability to 

efficiently handle more complex algorithms for a variety of signal processing 

                                            
43 Source: Motorola's DSP56156 product data sheet. 
 
44 Source: ZSP, LSI Logic. 
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applications in audio, video, wireless and multimedia products.45  The current 

generation of DSP products reflects continued improvement in increasing the 

processing speed, flexibility and capabilities of fixed-point, floating-point, and 

integer DSPs over time along with the density improvements expected with 

Moore’s Law and the fabrication cost increases expected with Moore’s Second 

Law (discussed in the next section).  Table 22 below summarizes the six 

generations of DSP technology and key market drivers during the 

commercialization phase of the industry from 1974-2008. 

Table 22. Generations of DSP Technology and Market Drivers46 

Years Generation Technological Changes Market Drivers 
1974-
1980 

0 First single-chip implementation of a 
DSP algorithm 

Military applications, 
Consumer applications-
Speak and Spell 

1980-
1983 

1 First DSPs based on the Harvard 
architecture 

Audio applications 

1983-
1987 

2 Doubled bandwidth; 
First floating-point DSP 

Audio and communications 
applications 

1987-
1990 

3 Reconfigurable memory, increased 
parallelism, and expanded instruction 
sets, all of which improved the 
overall flexibility 

Military applications, 
imaging 

1990-
1994 

4 Integer operational capabilities, 
optimization of chips for commonly 
used algorithms, smaller chip sizes 
and faster processing speeds 

Communications 
applications 

1994-
1998 

5 Optimized for use in cell phones and 
wireless communications 
infrastructure. 

Wireless applications 

1998-
2006 

6 First VLIW and superscalar 
architectures for efficiently handling 
complex algorithms 

Wireless and multimedia 
applications 

2006- Current Continued improvement in 
processing speed, flexibility, 
capabilities, and density 

Audio, video, wireless and 
multimedia applications 

 
                                            
45 Source: Discussion with former members of the technical staff at ZSP Corporation. 
 
46 For details on each generation of DSP technology, see Strauss (2007). 
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As shown in Table 22, the nature of the technological changes and the 

key market drivers were different from one generation of DSP to another. 

Architectural improvements over six generations of technology have facilitated 

the opening of new markets for a broad range of DSP applications.  Although a 

consumer application, Speak and Spell™, captured the imagination of the market 

in the initial phase, it was military applications that provided the significant early 

market demand.  This demand gradually shifted over time to audio and 

communications applications and then more specifically to wireless and 

multimedia applications. The current market demand is for audio, video, wireless 

and multimedia applications across multiple sectors of the economy, but is still 

driven primarily by wireless phones. In addition to the market forces described 

here, technological forces also played an important role in shaping the evolution 

of DSP and are examined in the next section. 

Moore’s Second Law and Gene’s Law: Addressing What Moore’s Law Left Out 

As described earlier in this study, Moore’s Law states that the number of 

transistors on a chip doubles every 18-24 months.  The emergence of merchant 

foundries reflects an industry phenomenon that has come to be known as 

Moore’s Second Law, described below.47  

Rising fixed costs give rise to Moore’s Second Law: as the cost of 
transistors comes down, the cost of fabs goes up, albeit not at quite 
the same rate. In 1966 a new fab cost $14m. By 1995 the price had 
risen to $1.5 billion. Today, says Intel, the cost of a leading-edge fab 
exceeds $6 billion, including all the preparatory work. And the 
Taiwanese Semiconductor Manufacturing Company (TSMC) has 
built two “GigaFabs” for between $8 billion and $10 billion each, 
which would buy you four nuclear power stations. The output of such 

                                            
47 http://research.microsoft.com/en-us/um/people/gray/Moore_Law.html 
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monsters depends on the mix of products, but they each could easily 
churn out 3 billion chips a year.48 
 
Thus, ever-increasing costs have fueled the need for increasing 

specialization to achieve sufficient economies of scale in each stage of the value 

chain. This has led to the proliferation of merchant foundries and fabless 

semiconductors companies in all sectors of the market including DSP. 49 The 

DSP industry as a whole has benefited from this reconfiguration of inter-firm 

alliances. Only when the economics of the semiconductor industry made the 

costs of owning and operating their own internal foundry prohibitive for all but the 

largest integrated device manufacturers (IDMs), did an active market for 

technology in DSP truly emerge.  Based on previous studies on the economics of 

Moore’s Law (Tuomi 2002), the conventional wisdom about the semiconductor 

industry in general is that the reconfiguration of inter-firm networks has 

substantially increased the diversity and rate of material innovation, thereby 

enabling organizations to overcome the performance barriers implicit in such 

technical benchmarks. However, this conclusion is somewhat controversial, and 

it is not universally shared, especially by leading DSP experts. Beyond Moore’s 

                                            
48 “The Semiconductor Industry: Under New Management,” The Economist, April 2, 2009 
 
49 In this study, and in standard industry terminology, an integrated producer or integrated device 
manufacturer (IDM) is a semiconductor company which designs, manufactures, and sells chips - 
integrated circuit (IC) products.  The term integration refers to the fact that design and 
manufacturing of the IC are both done in-house.  A foundry is a semiconductor company which 
manufactures ICs. IDMs have their own foundries or fabs for manufacturing ICs and these are 
typically referred to as “internal” or “captive” foundries, since they only produce chips for internal 
markets. “Merchant” or “pure-play” foundries are semiconductor companies that do not design 
their own chips but fabricate chips for other firms called fabless semiconductor companies, which 
focus only on designing chips.  Thus one way to conceptualize the three types of companies, 
IDMs, foundries, and fabless semiconductor companies is that IDMs compete with dyads of 
fabless semiconductor companies that partner merchant foundries to produce chips. See (Yoon 
and Malerba 2009) fttp://asialics6.ust.hk/essays/2b/Yoon_Minho_015_Feb23.pdf. See also 
(Teece 2006). 
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Law and Moore’s Second Law, Gene Frantz,50 a Texas Instruments’ Principal 

Fellow, has proposed the eponymous Gene’s Law, to address what he and many 

other industry participants and observers view as a significant shortcoming of 

Moore’s Law. Frantz was the program manager for the Speak & Spell™ learning 

aid, and development team leader for all of the early speech products for TI; he 

has been at the forefront of commercializing signal processing over several 

technology generations. Gene’s Law states that the power dissipation of 

semiconductor chips including DSPs will be reduced at approximately the same 

rate that performance increases. As described below, and in contrast to the 

prevailing wisdom, Frantz believes that architectural innovation, rather than 

material innovation, has been the primary means through which chip design 

engineers have dealt with the limitations of Moore’s Law. Thus, in the DSP 

industry, different organizations may have dramatically different beliefs about the 

expected trajectories of the three types of innovations (mathematical, material, 

and architectural), which may lead to surprises if the actual introduction of 

innovations does not conform to the prior expectations of firms. 

Most experts see Moore’s Law continuing to follow the path it has 
held for nearly half a century. But there are things that Moore did 
not tell us about ICs that threaten the validity of his law. In terms of 
performance, as measured in terms of clock speed, we effectively 
fell of the 18-month cycle of doubling nearly a decade ago. Then, 
how does performance continue to increase, I hear you ask. Well, 

                                            
50 From Gene Frantz’s official bio: “Gene Frantz is presently responsible for finding new 
opportunities and creating new businesses utilizing TI’s signal processing technology.  In 
recognition of his leadership role in establishing TI as the world's leading DSP solutions provider, 
Frantz was elected as TI’s Principal Fellow in 2002, a privilege enjoyed by less than 0.1 percent 
of TI's technical personnel.” 
 



 

128 
 

we’ve managed to compensate for it with innovations in 
architecture such as deeper and deeper pipelines.51 

Mahesh Mehendale, TI Fellow at Texas Instruments India, concurs with 

this assessment and posits that going forward, architectural innovation will play 

an even greater role in driving performance improvement, as indicated in his 

comments below. 

The net result of this is that moving forward Gene’s law cannot hold 
good riding on Moore’s law but rather it will have to hold good in-
spite of Moore’s law. Just as in the past whenever Moore’s law was 
threatened, innovations and breakthroughs in the semiconductor 
manufacturing process have helped keep it on track, in case of 
Gene’s law the breakthroughs will have to come from innovations at 
circuit design and architecture levels. Just as Moore’s law took us 
from micrometer to nanometer, Gene’s law will take us from volts to 
millivolts. As long as it makes business sense, technologists will 
find a way to make Gene’s law hold true. So as I gaze at the 
technology trends crystal ball, it shows me this simple prediction: 
"Moore’s law will hold good as long as Gene's law holds good".52 

As discussed at the outset of this study, technical benchmarks such as 

Moore’s Law may indeed be a self-fulfilling prophecy (see Table 15). As the 

ongoing and unresolved debate between proponents of Moore’s Law and Gene’s 

Law demonstrates, technologies such as DSP may evolve in ways that are not 

predicted by and even contradict these established benchmarks (Tuomi 2002).  

Unpredictability in technological evolution or seemingly contradictory technology 

trends may lead to errors in organizational beliefs which may ultimately result in 

surprising consequences for competing firms. 

  

                                            
51 Gene Frantz, “What Moore Didn’t Tell Us About ICs” TI Video360 Blog, http://blogs.ti.com 
 
52 http://www.vlsiconference.com/vlsi2009/mess_mahesh.html 
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Discussion and Summary of Historical Analysis 

A diverse and ongoing mixture of mathematical, material, and architectural 

innovations have shaped the evolution of signal processing from its ancient 

origins in Egypt to its current state as a multi-billion dollar global high-technology 

industry. From c. 2500 B.C., when the combination of the Palermo Stone, 

nilometers, and human stone carvers constituted the essential components of a 

primitive DSP ––– to the present day, when semiconductor-based DSP chips are 

used in virtually every digital application involving communications, audio, voice, 

video, image, and sensory data ––– the technological and economic importance 

of signal processing has grown exponentially.  

If the birth of modern signal processing can be traced back to a single 

year, it is 1948, when three major research breakthroughs occurred: the 

introduction of information theory, the invention of the transistor, and the 

demonstration of the first stored-program computer. If the birth of modern signal 

processing can be traced back to a single organization, it is Bell Labs, which 

served as an intellectual crossroads for early scientific leaders who sought to 

build a unified information theory firmly grounded in mathematics and physics. 

The formalized and axiomatic nature of signal processing stemmed from its 

information-theoretic roots. This intrinsic characteristic of signal processing as 

mathematical science enabled conceptual exploration and practical application 

through the active combination and recombination of thought experiments and 

numerical experiments. Conducting these numerical experiments was largely 

made possible through the rediscovery by James Cooley and John Tukey in 
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1965 of the Fast Fourier Transform (FFT) originally discovered by Carl Friedrich 

Gauss in 1805. If the successful commercialization of modern signal processing 

can be traced back to a single innovation, it is the rediscovery of the FFT. 

Although the critical innovations which led to development of signal 

processing first emerged in 1948, it was not until 26 years later, in 1974, that the 

first commercially available DSP chips were actually produced, representing a 

significant lag between the initial mathematical innovations, and the subsequent 

architectural innovations which were further constrained by the technical limits of 

material innovations.  From 1974-2008, a series of architectural improvements 

over six generations of technology facilitated the opening of new markets for a 

broad range of DSP applications and led to the reconfiguration of industry 

alliances, particularly between fabless DSP companies and their merchant 

foundries. While most semiconductor industry participants believe that material 

innovation was the primary factor in overcoming the performance barriers 

inherent in technical benchmarks such as Moore’s Law during this time frame, 

some noted DSP experts believe that architectural innovation was the main 

driver.  

This difference in perspective has not yet been reconciled but may 

nevertheless offer some valuable general insights for managers and researchers 

interested in the evolution of GPTs and their role in the formation and growth of 

knowledge-intensive industries. For example, although mathematical innovations 

are typically rigorously formalized and highly axiomatic, their impact on 

subsequent architectural innovations may be largely unpredictable and may 
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generate errors which lead to surprises for firms. Without computationally 

efficient methods for conducting natural experiments to test the predictions of 

thought experiments, there may be a substantial lag between the discovery of a 

mathematical concept and its eventual instantiation in the form of a commercially 

available product.  

While empirically-observed technical benchmarks may provide a useful 

framework for prioritizing and making resource allocation decisions among the 

different types of innovations (mathematical, material, and architectural), the 

causal mechanisms underlying these distinct types of innovation may be difficult 

to isolate and may interact in entirely unexpected and occasionally contradictory 

ways.  In particular, dramatic changes in the materials themselves, as a physical 

building block, may radically alter the long-term trajectory of innovation. The 

history of signal processing is replete with examples of the unintentional loss and 

rediscovery of mathematical innovations, the unanticipated lag between 

architectural and mathematical innovations, and the unexpected rearrangement 

of firm alliances. All of these factors may contribute to a chaotic industry 

environment in which firm errors in threat perception and opportunity recognition 

are not only possible but highly probable. This may make the signal processing 

industry ideally suited to the study of strategic surprise. 

 In a fascinating preview of future possibilities in the advancement of DSP, 

recent studies have speculated that in the coming decades, the main materials 

for constructing DSPs will not be semiconductors made of silicon, but more 

exotic materials made of organic elements. In the future, DSP systems may be 
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grown, rather than fabricated and be comprised of “chemical substrates, cells, 

organisms, or even DNA” and may even operate “without the use of electrical 

currents” (Tsaftaris and Katsaggelos 2008).  

While this speculation may sound like science fiction, future observers 

may regard today’s DSP chips to be as primitive in comparison to organic-based 

DSP systems as modern observers regard the stone-based DSP system of the 

ancient Egyptians. Perhaps an intriguing new mixture of mathematical, material, 

and architectural innovations awaits future signal processing researchers. 

Molecular biologists, genetic engineers, biophysicists, and organic chemists may 

someday join computer scientists, electrical engineers, transistor physicists and 

information theorists in influencing the ongoing evolution of the field of signal 

processing in surprising new ways. 
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