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Abstract

Amy Elizabeth Webb
Linkage, Association, And Haplotype Analysis: A Spectrum Of AppraadioeElucidate
The Genetic Influences Of Complex Human Disease
Under the direction of Kirk Wilhelmsen

The goal of human genetics is to identify genetic variants that influerergaandrait with

the intent to provide a better understanding of the biology behind that trait. As tegbsol
and statistical methods towards this goal have developed, there has beerearctiang
approaches to identify trait-causing variants. The three projectsaé@te cover a range

of approaches. Early studies focused on family-based data, using linkagesanodiysi

regions of the genome shared by members with similar trait values. Thiselppvas used

to confirm the involvement of CYP2E1 with the level of response to alcohol in siblirgy pair
with an alcoholic parent. With the advent of high through-put genotyping panelsdha fie
human genetics has shifted to population-based association studies that seek to firsd variant
that correlate with a trait. This approach was used to search for regitesgginome that

infer risk for Pick’s disease, a spectrum of heterogeneous dementia dis@alsts

reproduce the association with MAPT, a gene with known disease-causingpnsutat
Haplotype based analysis approaches have emerged to improve the analysis af dataomi
A novel algorithm for haplotype based analysis was developed to identify long haplotypes
shared in a population based on genotypes from genome-wide association data and was
found to be very accurate when predicting haplotypes within the shared regions. Togethe

these three projects represent the past, present, and future of the study of mehes ge
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Chapter 1 — Introduction

The introduction to this dissertation outlines the purpose and significance of tlyis stud

defines the problem, and introduces the three projects covered in the chapters to follow.

1.1 Purpose of the Study

The study of the genetics of complex human traits seeks to identify gereitya
that predispose to the trait. Researchers expect that the identificatioseofjtmeetic variants
that predispose to disease traits will elucidate the pathogenesis of desezdimg possible
targets for treatment. Additionally, an understanding of disease provides insigttie
genetics of normal biological processes.

Mendelian traits have simple patterns of inheritance (e.g. autosomal domirant, se
linked recessive) and are influenced by a small number of genetic vahanksave large
effects. In contrast, complex human traits have complex patterns of inheritanoeiueie
effect of multiple genetic variants and gene-environment interactions. Nanded
complex traits can be vanishingly rare or common, but in the absence of a sirtesle gfat
inheritance, the possibility of a genetic cause for a rare trait isajgneot obvious.
Typically in complex traits, an accumulation of variants combined with enviroainent

exposures are needed to increase the risk for the trait to a level sufficithatftrait to



occur. A continuum exists between complex and Mendelian traits in the number &f causa
variants and the effect size of the causal markers. A trait that is aorwitle a larger

number of causal variants that each contribute a small effect would have a cpatf@ex of
inheritance, while a trait with a single causal marker that contribheesrtire effect would
have a Mendelian pattern of inheritance. These patterns of disease cisticsctan be

used to optimize the study design and statistical approach used to identifyepgerstic
variants.

To understand the genetic causes of a disease, genetic variants mu st il tieat
occur in diseased or affected individuals. Some studies take a candidate gene approach to
identify these genetic variants, where previous evidence, such as the biolodyingdiee
trait or previous genetic studies, is used to target the search on variantsticrrggiens
most likely to have a direct effect on disease. However, for most diseasEsneot
completely understand the molecular processes leading to disease, maliioglit ti
identify possible variants likely to increase the risk for disease. A gendtheeapproach
instead considers randomly chosen markers at a high density across the genome. By
systematically searching throughout the genome for regions with variahtsdleorrelated
with a trait or disease, we can identify genes likely to have an effect aaitheithout
requiring a previous hypothesis.

The purpose of this dissertation was to search for genetic regions thaterrcskdsr
neurological phenotypes, specifically dementia and alcoholism, and to evaluate the
development of a statistical application that seeks to aid in the identificatiegiofs that
influence a trait by considering haplotypes, or combinations of markers ath&xgether.

Specific issues addressed by this study include the differences béinkage and



association analysis, locus heterogeneity, linkage disequilibrium, and hapboaee

inference.

1.2 Overview and approaches to the problem

Through the three projects that make up this dissertation, various statistical
techniques were applied to different types of genetic data to find regions ohtiragyéhat
affect a trait of interest. The first two projects focus on techniques used teg@ions of the
genome more likely to occur in individuals with a certain trait or with extremesalf a
trait. A trait, often referred to as a phenotype, is a physical chartictéré can be reliably
observed or measured. It can be quantitative as in the case of a continuous maasfireme
height or qualitative as in the case of a dichotomous disease status. Thedissegtdtion
addresses both kinds of traits—a project looking at the spectrum of responses to alcohol and
a separate project concerning the disease status of various subtypes of derherftraal T
project deals with haplotype phase inference, a technique created as aediaeristep in
the identification of regions containing possible causal variants able to diegdralblems
that obscure localization. The combination of marker alleles on a single chroenizssom
referred to as a haplotype. Haplotype phase inference seeks to stgtditsainine this
combination of alleles from phase unknown SNP genotype data.

Two approaches used to find correlation between a genetic variant and a phenotypic
trait were applied to the projects in this dissertation. The first uses liakadysis which
identifies regions that are shared “identical by descent” or inheritedefraammon ancestor.
Regions shared more often in related individuals with similar trait valueseitgsected by

chance are likely to have an influence on the trait. The second approach uses@ssoci



analysis to look for regions shared “identical by state.” Identity lig st@ans the genotypes

are the same in a population-based context but there is not enough information contained in a
single genotype to determine whether it was inherited from a common ancestoonsR

shared more often in a population with a certain phenotype when compared to a population
without the phenotype are likely to have an influence on the trait. These two approaches
differ with regards to the study population, the type of markers measuredttsiecst

calculation approach, the localization of a causal variant, and the power to detéfett

1.2.1 Linkage Analysis — study design and statistical approach

A family based approach is utilized in linkage analysis to look for geregfions
shared between family members with the same trait ultimately idengfifggions “linked”
with a trait. In a region containing a variant that has a direct effect on, afiected family
members should share more genotypes identical by descent in the area surrbahnding t
region than expected from chance based on their level of relatedness. Foeexampl
expect two siblings should share 50% of their genome by chance alone. So if antigord
affected sibling pairs show enrichment for sharing in a particular regioretking in that
region likely has an effect on the trait. For quantitative traits, siblingsless difference in
their trait should share more alleles identical by descent in the regionrslinga causal
locus and siblings with greater difference should share less. Chromosomal veggoas
there is a correlation between the chromosome sharing and trait shargagdato show
evidence for linkage and the evidence for linkage can be aggregated acrbes.fdDNA
sequence variations, often called markers, are used to identify chromosgioad.re

Markers are said to be informative in a family if the chromosomes in thayfeamlbe



distinguished by the sequence variations interrogated by the marker. aGsefcsequence
variants commonly used for linkage analysis has been the microsatetkierma
Microsatellites have short tandem repeats that commonly occur throughgentimae.
These markers are highly polymorphic with multiple allelic forms that aaityebe traced
through families.

While many statistical approaches are available for linkage asalyshe linkage
project that makes up part of this dissertation, a multipoint variance componentpproa
implemented through the computer package SOLv&s used to find regions of the genome
correlated with a quantitative trait. Variance component linkage analy$ie itoassimplify
the characterization of a trait by partitioning out the components that tiféetcait. The
trait is modeled based on the linear function of Yis;vij+g+e whereu is the population
average of the traif§ a regression coefficient for the jth covariatés the value of the jth
covariate, g represents the additive genetic effects, and e the unedeasuronmental
effects’® The last two parameters can be estimated through the variance-covariaice mat
represented b@=2ITc";+20c°;+|c°+0%c0, Whereo?y is the additive genetic variandé,is
the estimated number of markers shared identical by deségistthe variance attributable
to residual additive genetic factofs represents the kinship matrixe represents the
environmental factors, andoy is the variance due to covariates An added benefit to the
variance component approach is opportunity for the inclusion of covariates and the
possibility of identifying a covariate that can account for all of the varisntee trait and be
classified as causal. A covariate is a predictive variable that camicd#l@ephenotype often
independently from genotypic influences. Covariates such as gender or agrdualediim

the model to correct for the influences of these variables. In variance compokege



analysis, the covariate parameter is modeled first, so if all of thengaréan be attributable
to an included covariate, there is no variance left for the other terms and thecb@Dwill

be reduced to zero. SOLAR considers a multipoint measurement of identity by descent,
where markers from the entire chromosome influence the calculation tkeérmalosest to
the location of calculation are weighted more highly. This provides more informiadion t
the standard two point calculation of IBD. The evidence for linkage in a regiores tas
the calculation of a LOD score which compares the likelihood of a model assumkenggl

with the basic polygenic model with no linkade.

1.2.2 Association Analysis — study design and statistical approaches

Association analysis has quickly become a more suitable alternative to linkage
analysis for investigation into the genetics of complex human traits due to advances i
multiplex, high throughput genotyping technology and an improved understanding of
common human population variation as a result of the International HapMap project.
Association analysis seeks to identify genetic changes that ateady state, focusing on
comparing an unrelated population of individuals with a trait (cases) with an edrelat
population of individuals without a trait (controls). If the measured allele eitaiic variant
occurs at a statistically different frequency in the population of casgsacedhwith the
population of controls, the variant is said to be “associated” with the trait. The maincge
variant used in these studies is the single nucleotide polymorphism (SNP) ggresents a
single nucleotide change in the sequence of DNA. By definition, a polymorphism is a
genetic variant that has reached a relatively high frequency in a populatnam &thele

frequency of greater than 1%). In practice, SNP genotyping is limited \whaeminor allele



frequency is less than 5% because the probability of detecting associatoy lsw and

often leads to spurious results. SNPs are biallelic, meaning there arvsopiresent for
each SNP in a population, often simplified to an A and B allele. With only two forms, it is
impossible to predict whether the alleles from a single SNP shared by two inihadeia
inherited from a common ancestor. A single SNP provides less information than a
microsatellite and many more are needed to provide enough power to detectaasiaig
locus. To make up for the low information content in a SNP, high throughput genotyping
technology has made it very cost effective to genotype markers throughout theegetiom

a much denser coverage than allowed by microsatellites.

Two approaches were used to identify genetic regions associated with a trait. The
first was to apply a mixed linear model to genotypes from sibling pairs. Since &setdat
was family based, a correlation exists between related individuals but teé model
method was able to account for the correlated family struttuféis type of method
considers both the correlation within families and the correlation betweenemmoilmake
statistical inferences about the genetic effects of a continuous thast method was
implemented through the PROC MIXED command in $AJhe approach is similar to the
variance component approach of linkage analysis where there exists unknown random
variables that can influence the variability of the trait. The mixed modé¢hétdata to a
linear model of y=X+Zy+e where y is the observed daaepresents the fixed effects
parametersy represents random-effects parameters gaegresents unknown random error.

The second approach to measuring the level of association of genetic factors was
through the calculation of a Fisher exact test to compare the genotype cbAA, AB, and

BB between populations of cases and controls. The test is used to determine thbethe



allele frequency in the cases is significantly different from the contiidie Fisher exact test
was chosen over a chi squared test due to the possibility of low allele countskersmath
small minor allele frequencies. For the genome-wide association dedoribéesl
dissertation, the fisher exact test for a two by three contingency tableppeoximated
through the use of permutations.

Genotype determination for the Pick’s disease project were made based gpgenot
calls generated using probe intensity levels from the Affymetrix genotypiipg A signal is
generated after the hybridization of labeled DNA fragments with the eon@pitary probes
on the genotyping chip providing an intensity for each genotype measurement. rigthe sig
intensity is normalized to correct for both the variation between features mgleadhip and
variation across different chips containing different samples ultimataragng a
measurement corresponding to the amount of each allele in each sample. Thage intens
measurements for the two alleles are transformed into Contrast (g8gh(K
S)/(Sa+Sy))/asinh(K)) and Strength log{&S,) which represent genotype and brightness
respectively. The constant K is termed the stretch factor and is used &s@tire distance
between genotype clusters creating a balance in the variability betiaethree clusters and
allowing for improved differentiation. The cluster membership of each samplermsndeed
with the Mahalanobis distance defined as squi)é&™(x-p)] measured between each point
and the cluster center. The confidence score or call quality for each genotgsurement
is determined based on the ratio between the closest cluster and the next tclokstees
This approach to genotype determination is implemented in the BRLMM algorithm:

Bayesian Robust Linear Model with a Mahalanobis distance classifier.



1.2.3 Genome-wide analysis — why should it work?

In every diploid organism, two copies of each marker are typically present. One is
inherited from the maternal chromosome and one from the paternal chromosome. The
combination of SNPs on a single chromosome is referred to as a haplotype. haviesy
was truly independent, each SNP would need to be genotyped in order to capture all of the
variation within the genome. With 14 million validated SNPs cataloged in db®iséRs not
only unreasonable but also unnecessary. There is statistical correlatieerbetarby SNPs
since they are inherited together on a chromosome, referred to as linkagdidisaguor
LD. Markers located closely together on a chromosome will more often be eaherit
together, while markers farther apart are more likely to be separateddigbination. As a
result, markers located in a region surrounding a causal variant will showaiesdao the
trait of interest even if the causal variant is not genotyp&His association will wane as the
distance from the causal variant increases as there is less tmréla to the recombination
that occurs though generations.

Single marker association (considering a single SNP at a time) taleegagky of
linkage disequilibrium to find an association with markers that may or may not hexve be
directly genotyped. The length of a region that is correlated or in compliehgdi
disequilibrium depends on the number of generations that have passed from the nearest
common ancestor. For a linkage study focusing on sibling pairs, that nearesircomm
ancestor would be the parent, only one generation away. But for associati@msattay
nearest common ancestor may be hundreds to thousands of generations away. $nce shor
genetic regions are correlated this allows for a finer localizatidimedtfrait causing locus. So

after the identification of an associated marker, the region that could passitdyn a



causal variant is smaller and easier to systematically searchlthiarga region provided
by linkage analysis. Patterns of LD in many world populations have beergcatiaith
the International HapMap projécillowing for the creation of efficient SNP genotyping
panels that can predict or “tag” nearby common variants based on the loc&ipadit¢rns
inherent in each populatiéh.

Although markers or regions can be shown to be “linked” or “associated” wéit,a tr
it provides little indication regarding causality. Genome-wide arsatg&ies advantage of
the linkage disequilibrium as described above to locate genetic regions thatardald c
causal variants. Most markers used in these studies have no effect on the amino acid
sequence of a protein due to either the redundancy of the amino acid codons or that they lie
in intergenic or intronic regions with no obvious connection with protein expression. More
often, the markers identified in genome-wide studies do not play a role in thbutait
instead represents genetic variation in the surrounding region that incistaes r

Perhaps the most important question regarding genome-wide analysis ishyot “W
should it work?” but instead “Why does it not work?” The reality is that even though many
studies are performed with the intention of understanding the genetic influencesasedis
most of these studies provide inconsistent results because of unaccounted restgragen
poor power. The final chapter of this dissertation details many of the prolaeimg f

genome-wide studies and why so many of them present conflicting results.

1.2.4 Haplotype Analysis — The best of both worlds

A number of algorithms have been created to apply statistical methods of limidage a

association to different types of genotype data to solve genetic problems. Onearption f

10



obtaining more information from genetic data is to consider multiple genotype nexeasiis
together. While many genetic association studies focus on one marker af théise

markers are inherited as a unit and interact in complex ways. A haplotysetoeties set of
alleles for nearby SNPs that are inherited together on a chromosome andahgbapiase
refers to the determination of a haplotype or the placement of allelesgpgking a
chromosome. The third project in this dissertation was performed to evaluate a novel
algorithm created to determine haplotype phase on genome-wide associasetscad to
understand the accuracy of this new method compared to standard haplotype phase inferen
programs.

Haplotype based analysis seeks to find an association between the ahapkitgpe
harboring a causal variant inherited by individuals with a trait of intr#ghen a mutation
arises in an individual that causes a certain trait, it is contained on a chronasboreates
a new chromosome length haplotype. As it is passed through to further generatiens of t
population, the full length of the chromosome will be eroded away due to recombination.
After many generations, individuals with that trait caused by the mutati®edsta the first
individual, or founder, will have varying lengths of the original haplotype (or founder
chromosome) surrounding the variant, assuming the mutation survives selettien.
intersection of these haplotypes will map the trait-causing variant, usoalfiner region
than by single marker analysis improving the probability of localiziogusal variant.

Haplotype analysis combines the population based approach of association analysis
with the search for regions identical by descent of linkage analysis. BNRPegenotyping
represents common variation in the genome, haplotypic analysis allows fonthderation

of untyped rare variants including those with low frequency or recent mutations ththbeoul

11



hidden on a haplotype and not be “tagged” well by a single SNP on conventional genotyping
panelst’ Considering multiple markers together as a haplotype provides a great deal of
benefit to genetic association studies not only in terms of the power to deteci@at@ss

with a trait, but also with the possibility for providing useful insights of the elcolaty

history of human populations and complex patterns of linkage disequilibrium allowing for an

understanding of natural selection, recombination rates, and patterns of migtation.

1.2.5 Looking ahead

When viewed together, the three main studies that make up this project represent the
natural progression in the study of complex human disease, addressing isgingstoethe
ever-changing technological advances allowing for the measurementefsmgatic units in
larger sets of individuals and ways to understand the effect of multiple genigsiecnherited
as a haplotype. Throughout the history of human genetics, early studies used linkage
analysis to investigate sparse maps to identify variants that cosegutfaderait through a
limited number of generations within families. As time progressed, the field dnaesdm
towards the consideration of dense genetic maps measured in large unrelatetpspala
understand the common causes of common disease through association analysisitdsoing i
the future, there is already a trend towards whole genome sequencing taaliogy f
consideration of all common and rare variants. New scientific advances in genotype
technology provide more information to add to our understanding of complex human traits,
but also create more problems related to data management and ways tohdeal wit
confounding effects. The last chapter of this dissertation provides a discussiorhabout t

future trends in the study of complex human disease.
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1.3 Research Objectives

The research objectives that constitute this dissertation are divided into #tieet di
projects. While there is little overlap between the subject matters arydiarsgdproaches,
all three projects represent a continuum of the overarching methods for the stugly of t

genetics of complex human disease.

1.3.1 The investigation of CYP2E1 with the level of response to alcohol

A genome-wide linkage study was performed to search for regions of the gdrame t
confer risk to alcoholism as measured by the level of response to alcohohafteolzol
challenge. Results from the genome-wide study led to the consideration of CYP2E&, a g
with known involvement with the metabolism of ethanol. To further understand the
relationship between CYP2E1 and the level of response to alcohol, both linkage and
association analyses were applied to a combined map of microsatellite amiaBh¢Ps.
Variance component linkage analysis supported the linkage shown at the end of chromosome
10 from the original study. However the addition of a second set of samples reduced the
significance of the linkage signal. An investigation of possible locus hetaibgbsd to the
discovery of a single family with unreliable phenotype data that was rabpofor the
reduction of signal. Association analysis was performed on the SNPs genotyped inIlCYP2E
The best evidence for association came from a marker upstream of the CYP2EE®promot
Combined linkage and association was performed by including this associaked asaa
covariate in variance component linkage, but this analysis was unable todiniti

implicate the marker as a causal variant.
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1.3.2 The association of the MAPT region with Pick’s complex diseases

A genome-wide association analysis was performed on a number of different, but
related neurodegenerative diseases collectively referred to as tauogaéteshe
aggregation of tau proteins commonly found in diseased neurons. Mutations had previously
been identified in affected cases in the gene that encodes the tau protein, MARMARhe
gene is located on an inversion on chromosome 17 resulting in a high degree of linkage
disequilibrium between markers across the inverted interval limiting the muwhpessible
haplotypes. A single haplotype, H1, was found to be overrepresented in certain subtypes of
disease (specifically CBD and PSP). The current genome-wide assostatly was able to
replicate the overrepresentation of the H1 haplotype in PSP and CBD cases wheed¢ompar
to controls and show a constant high level of association for the inverted region for Both PS
and PSP combined with CBD. This positively replicated association provides @ttreas
confidence for the results generated from the GWAS in other regions of the gevioote (

genome results not reported at this time).

1.3.3 The evaluation of a novel algorithm for haplotype phase inference

A novel haplotype phase inference algorithm called Convergent Haplotype
Association Tagging, or CHAT, was created to determine the haplotype phase of a
population of unrelated individuals genotyped for genome-wide association. This new
algorithm bases phase inference on the identification of subsets of individuals taat sha
region of the genome identical by descent allowing for the generatiocoofsansus

haplotype for each region of sharing. The complementary haplotype for each individua
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the subset can be easily identified and added to the set of known haplotypes. The algorithm
was created to outperform existing packages that tend to perform poorlylaogssgions

and across recombination hotspots. Reported is the evaluation of the novel phaseeinfere
algorithm compared to three publicly available phase inference packaggsalgorithm

was applied to simulated datasets created under different test conditionsritaintbieow

each program performs in regards to selection, degree of linkage disequilibriyste aach
marker size, and the imputation of missing genotypes. CHAT demonstrated an improved
single site error rate compared to the alternative haplotype phase iefatgodthms and an
improved switch error compared to ENT when considering a dataset with alengper of
samples. CHAT performed best with a larger number of samples but needs impranement
coverage to be able to compete with current haplotype phase inference programs and be

practical for haplotype-based association mapping.

1.4 Summary of the Chapter

Chapter one introduced the research topic of this dissertation by briefly degtnii
problem facing the study of the genetics of complex human disease, discussing the
techniques used throughout this dissertation for finding regions of the genomanfieat c
risk to disease, and providing an overview of the three research problems covered in the
following chapters.

This dissertation will be organized into five chapters. Chapter one presented the
relevant background and introduced the three research projects. Chapter twositseribe
combined linkage and association analysis performed as a follow-up to understhading

involvement of the gene CYP2EL1 with the level of response to alcohol and thus the risk for
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alcoholism. Chapter three describes the results from a genome-wide tassstialy on a
number of related neurodegenerative diseases, focusing on the region containing MAPT
which shows association with the two diseases that more commonly include aggrefyat

the MAPT protein product. Chapter four describes the evaluation of a novel haplotype phas
inference algorithm that bases phase inference on the identification of jaotypas shared

in a population and compares the accuracy of this algorithm with standard haplo&gae
inference programs. Chapter five provides a final discussion of the threehgsegects
focusing on the limitations facing the detection of genetic variants tha¢ chsease and

future directions in the field of the genetics of complex human disease.
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Chapter 2 - The investigation of CYP2EL in relatiornto the level
of response to alcohol through a combination of likage and
association analysis

2.1 Abstract

A low level of response to alcohol during an individual’s early experience with
alcohol is associated with an increased risk for alcoholism. A familydlpegome-wide
linkage analysis using sibling pairs that underwent an alcohol challenge tivbéegel of
response to alcohol was measured with the Subjective High AssessmenS8eete (
implicated the 10q terminal regioBYP2E1, a gene known for its involvement with ethanol
metabolism, maps to this region. Variance component multipoint linkage anabsi
performed on a combined map of single nucleotide polymorphism (SNP) and mictesatell
data. To account for the heterogeneity evident in the dataset, a catcalkguming locus
heterogeneity was made using the HLOD (heterogeneity LOD) sesgeciation between
SNP marker allele counts and copy number and SHAS scores were evaluatednisied
model regression. Linkage analysis detected significant linkaQ¥R8E1 which was
diminished due to apparent locus heterogeneity traced to a single familytugine

phenotypes. In retrospect, circumstances recorded during testing for tiyssiaggest that



their phenotype data are likely to be unreliable. Strong allelic associateyaetected for
severalCYP2E1 polymorphisms and the SHAS score. DNA sequencing from families that
contributed the greatest evidence for linkage did not detect any changdly difecting the

primary amino acid sequence. With the removal of a single family, combined e¥itdemc
microsatellites and SNPs offer significant linkage between the levetmdmse to alcohol

and the region on the end of chromosome 10. Combined linkage and association indicate that
sequence changes in or n€MP2E1 affect the level of response to alcohol providing a

predictor of risk for alcoholism. The absence of coding sequence changeesmtheat

regulatory sequences are responsible. Implic&Wig2EL in the level of response to alcohol

allows inferences to be made about how the brain perceives alcohol.

2.2 Introduction

While a number of phenotypic factors can affect the risk for alcoholism, one of the
most studied endophenotypes is an individual's level of response to alcohol duringrigeir e
experience with alcohdf The level of response to alcohol can be reliably measured with the
Subjective High Assessment Scale (SHAS) during an alcohol challengdha Self-Rating
of the Effects of Alcohol (SRE) which uses recall to establish the number of czonkised
to reach an effect. Children of alcoholics have a greater risk for alcohohsmtwey have a
lower level of respons&:*°A low level of response established early in an individual’s
drinking career can lead to higher future drinking le¥&ts'?Populations at historically
higher risk for alcoholism, such as Native American or Korean, need to consgsre lar
amounts of alcohol to become intoxicat&t*compared to those with lower ri8kvho

exhibit a more intense level of response to alcohol. Several studies have sdplieaées
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showing association with the level of response to alcdbaB@, 5-HT, andKCNMAL).* 734

The evidence proving association for these genes is weak by current standdragaieen
developed as a consequence from the technological advances enabling genome-wide
association studies. Even though these genes may affect the level of res@bcsled to
some degree, it is possible that these reported associations reflect¢herggmrting bias
seen in candidate gene studies.

Initially, data were collected from 139 sibling pdifa/ariance component analysis
found a significant LOD (Log of Odds) score peak of 3.2 for the SHAS score Hidhe
terminal region. Of the genes located at 1Q@i&P2E1 has a known involvement with
ethanol metabolism. The CYP2E1 enzyme metabolizes ethanol and acetaminophdn, as wel
as many toxicologic and carcinogenic compounds and can be induced by ethanol and
nicotine® In the second stage of the study, when 99 newly collected sibling pairs were
added®* the peak at 10qter was significantly diminished. As will be described in this paper, it
was initially assumed that the diminishment was due to locus heterogeneityjrbatakt
the reduced evidence for linkage was explained by a single family xtrémee and
unreliable phenotypes.

Most of the ethanol that is consumed is oxidized by the liver using alcohol
dehydrogenase (ADH). At the high concentrations associated with chraohoklc
consumption, metabolism of ethanol to acetaldehyde increases while the subsequent
conversion into acetate is decreased, leading to even higher levels aeduatal It was
shown in rats that chronic consumption reduced the oxidation of acetaldehyde in the liver,
thus providing an explanation for the high blood acetaldehyde levels measuretraftér c

use in human subject3Acetaldehyde is toxic and highly reactR&inding to nearby
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proteins thus creating an antibody response, decreased DNA repair, andaylatdépletion
ultimately reducing the ability of the liver to clear free radiéaiss a result from the
oxidation, NAD' is reduced with the addition of an electron to form NABsed by
mitochondria for ATP synthesis. At high concentrations, ethanol is oxidized by ABH at
higher rate leading to an increase in the NADH/N/A&tio>°

CYP2EL is part of the Microsomal Ethanol Oxidizing System (MEOS) accounting for
up to 10% of ethanol oxidation in the livErOnce the ADH pathway becomes saturated due
to high ethanol concentrations, the MEOS pathway activity incréasgsthe MEOS
pathway, CYP2E1 metabolizes ethanol and other substrates into toxic metabedities) c
free radicals in the form of reactive oxygen) (dtermediates creating oxidative stress
leading to liver damage. CYP2E1 usest®oxidize ethanol to aldehyde and NADPH to
NADP*. While generally used biosynthetically, NADPH can be regenerated from NADP
with the conversion of NADH to NAD In the absence of NADPH, oxidation of ethanol to
aldehyde by CYP2EL1 results in superoxitfesn excess of reduced NADH in addition to
the increased activity of hydrogen shuttles in mitochondria, results in ansednegake of
electrons leading to an increase of superoxide afiioftse increased creation of Reactive
Oxygen Species, or ROS, as a result from the shift in cellular redox state, coitplégw
reduced ability to clear these free radicals, due to the increase idabgts, is thought to
be a major driving force in the development of alcohol related liver disease.

The catalase pathway can oxidize ethanol in conjunction with hydrogen peroxide
generating systems, such as NADPH oxid4dée catalase pathways plays a larger roles in
the oxidation of ethanol in the brain, where little ADH oxidation octllis.a study by
15°

Vasiliou et al.}" it was found that animals with a knockout of either catalase or CYP2E1
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were more sensitive to the sedative effects of ethanol than control, wild-typalsnihe
study found that CYP2E1 did not contribute significantly to ethanol clearance in the bra
but was instead involved with ethanol processing in the brain affecting sensitivit

High ethanol concentrations can interfere with the ability of CYP2E1 to metaboli
other substrates due to competition from the shared oxidation pathway leadingcemredu
drug clearance and elevated drug concentrafibfise interaction of certain drugs with
alcohol will lead to a long-lasting, enhanced drug effect, often leading to ogeAlssnilar
relationship is thought to exist with nicotine. It has been shown that smokers have a more
rapid ethanol clearance than non-smokers, suggesting a biological basisctoretetion of
tobacco and alcohol consumption seen in alcohdlics.

A number of polymorphisms i@YP2E1 have been tested in relation to alcoholism
and a number of related disorders, including many types of cancer, withgvarfgan
conflicting, results. Carriers of the c2 allele of CYP2E1*5B have increasdetbr alcoholic
liver disease and are more likely to consume excessive amounts of alcoholymhssita
the higher transcriptional levels of CYP2E1 seen with this dfféf*Vvariants in the gene
have been implicated in the increased risk of different types of cancemgetathe
respiratory and digestive systenfs:*°

Due to the previously described relationship betw@¥n2E1 and the metabolism of
ethanol and positive linkage results concerning the level of response to alcohdlon tela
alcoholism, a number of single nucleotide polymorphisms (SNP) were genatyihed i
CYP2EL to further elucidate the gene’s role in alcohol response. Both genotype and copy

number were tested for association with the level of response to alcohol asethdgstive
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SHAS questionnaire. Combined linkage and association analysis was performiedrnonge

whether a single marker or haplotype could account for the linkage signal 4€epeat

2.3 Methods

2.3.1 Alcohol Challenge

The data collection protocol was approved by the Human Subjects Protection
Committee at the University of California in San Diego and used writtenmefibconsent.
The design for the alcohol challenge is fully described in the initial reportilbneMisen et
al.*® Male and female subjects ranging in age from 18 to 29 years old wariéeg:érom a
population of college students. Chosen sibling pairs reported having an alcohol dependent
parent, but were not alcohol dependent themselves. The siblings included 43.7% males and
56.3% females. They had an average age of 22.4 years and 14.2 years of education. 72.2%
were Caucasian, 20.0% were Hispanic, and 7.8% were African-Amerma85 0% of the
subjects, the alcohol-dependent parent was the father, whereas for 4.4% it wakhérgim
4.0% it was both parents, and in 6.6% the more intensive interview revealed that neither
parent met full criteria for dependence.

To measure each participant’s response to alcohol, the Subjective HiglsrAsse
Scale (SHAS) questionnaire was administered. For the challenge, eachsabkjgo/en 8
minutes to consume a 20% by volume solution of 95% ethanol, at 0.75 ml/kg for women and
0.9 ml/kg for men. Baseline levels for each score (SHAS, body sway, and bceatti a
level) were measured prior to the challenge and then were measured @lemsattiime

intervals throughout the 3 hour challenge. Ultimately the changes in SHASascbbedy
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sway at 1 hour after the challenge were used as phenotypes for the genome-wide gene

analysis. Genotyping was performed on 811 microsatellite markers dweagsnome.

2.3.2 Tagman Genotyping

Genomic DNA was extracted from whole peripheral blood samples. Genotyping was
performed on 10 SNPs with Tagman genotyping assays using locus specific PER prim
and fluorescent allele specific probes designed by Applied Biosysteamslagd Tagman
protocol was followed and endpoint amplification intensity was measured by the B?00 A
Sequence Detector. The position of the genotyped markers in rela@diP2&1 can be
found in Figure 2.1. The HapMap Consortium reported three major haplotypes in the
Caucasian population, as seen in Figure 2.1, which could be distinguished by the imitial tw

SNPs that were genotyped. Table 2.1 lists the names and positions of the genotyped SNPs.

2.3.3 Copy number analysis

The copy number a€YP2E1 was determined for each sample in quadruplicate
through the amplification of both a probe specifi€¥P2E1 and a standard probe by real-
time PCR using the standard Gene Dosage protocol provided by Applied Bios§stems.
Preliminary amplification showed the two probes used for analysis hacedifffficiencies
of amplification, which was corrected by a standard dilution curve added to eéehlle
fold increase aftem number of cycles was calculated by (efficiefl@nd the ratio of this
increase between the target and reference genes provided copy number. Standard copy
number quantification assumes equal amplification efficiencies, but this abwets a valid

assumption. Correcting for even small differences in amplification efitoes leads to less
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variability among the quadruplicate samples and lowered standard error ith cweya

number determination.

2.3.4 CYP2E1 resequencing
Index cases from the 96 families with the greatest evidence for linkdlge 10q
terminal region were selected for resequencing. Each coding sequence sxesegaenced

using primers from Applied Biosystems using the standard provided procedure.

2.3.5 Linkage allowing for heterogeneity

A map of the positions of the genotyped SNPs relative to the microsatellite snarker
was created with Fastlink. Variance component methods were used to rechloiate
scores using SOLAR v4.0.7 with the identity by descent provided through pedigree
information and estimating multipoint identity by descent sharing probabflitiariance
component linkage analysis uses correlation in the phenotype to partition out variance
between relative pairs into the effects of the genes in the region of indeldisitye genetic
effects of other genes, and non-shared environmental variance. The trait isdrixedsd on
the linear function of Yi fu+pjvj+g+e wherep is the population average of the trgig
regression coefficient for the jth covariatas the value of the jth covariate, g represents the
additive genetic effects, and e the unmeasured environmental éffEaeslast two
parameters can be estimated through the variance-covariance nmaserged by
Q=YI1c"+20c’¢+lo’+0 o, Wherea?y; is the additive genetic variandg,is the estimated
number of markers shared identical by desaggiis the variance attributable to residual

additive genetic factors) represents the kinship matris represents the environmental
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factors, and’,y is the variance due to covariafedhe evidence for linkage in a region is
based on the calculation of a LOD score which compares the likelihood of a modehgssum
linkage with the basic polygenic model with no link&g&o account for the heterogeneity
evident in the dataset, a calculation assuming locus heterogeneity wasisimaglthe HLOD
(heterogeneity LOD) score to identify the cause of the lowered peak aidiod e

chromosome 10 observed after the addition of samples to the dataset.

2.3.6 Association analysis

Association between SNP marker allele counts and copy number and SHAS scores
were evaluated using a mixed model regression through the SAS statistikate testing
for statistical inferences using a generalization of the standard liroesal nThe mixed
model fits the data to a linear model of \B=HZy+e where y is the observed dafa,
represents the fixed effects parameters with design matgixefresents random-effects
parameters with design matrix Z, antepresents unknown random error. Family ID and
marker genotype were used as classification variables and the effeapsy ofumber and
genotype were modeled against the SHAS score. Genotypes were ddsskd in the

count of the minor frequency allele.

2.3.7 Combined Linkage and Association

Combined linkage and association analysis using SOLAR v4.0.7 was performed to
include identity by state information similar to the approach used by Almasy where the
variance in the SHAS score that cannot be accounted for by the covariatetpalased on

the number of minor alleles was decomposed into the standard variance components. To see
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whether the linkage signal could be explained by the allele effects ofla SINE, each SNP
marker was individually tested by including the number of minor alleles @saaiate.
Polygenic covariate screening was used to calculate the significancefteveéhe inclusion
of any particular SNP and multipoint analysis was used to calculate thpamilttOD

score for the SHAS score.

By combining linkage and association approaches, a disease loci position can be
confined to a region finer than linkage analysis alone and avoid false positive associat
results due to admixture. Assuming the linkage is not over-estimated, ilsane@aariant is
the actual functional variant affecting the phenotype and no other variantg oeafér any
additional risk, linkage analysis conditional on the genotype of such a variant should provide
no evidence for linkage. However if the suspected variant is in some degree df linkag
disequilibrium with the actual causal variant, the evidence for linkagéevikduced

proportional to the degree of LD.

2.4 Results

With a combined map of microsatellite and SNP markers the dataset wagzednal
as described in the original linkage std&§° using SOLAR. When divided into the two
stages of sample sets from the previous study, significant linkage was fouageii s
samples with a peak LOD score of 3.14; however, when combining the initial 139 sibling
pairs with the additional 99 sibling pairs in stage 2, the linkage signal lowerecdax &PD
score of 1.61. The LOD score plot can be seen in Figure 2.2.

Multipoint linkage analysis allowing for locus heterogeneity was perfdrimethe

SHAS phenotype using microsatellite and SNP data from 10qter. The famiifycspec
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heterogeneity scoret and LOD score was inspected for each family. Most of the families
hada scores of 0.99, one family stood out witheaof 0.37 indicating poor support for

linkage to the region. The individual pedigree LOD score for this familyeahas -0.97
accounting for most of the reduction in LOD score seen between stage 1 arii Baged

on the level of alleles shared between siblings in this family, it was expbetiethese

siblings should have more similar SHAS scores. The sibling pair had a largerdiéfen
phenotype despite having inherited the same chromosome Identical By Oestenoth of
their parents (IBD of 2). While one sibling reported a SHAS score of 26.75 (z = 2.147), the
other reported a SHAS score of 4 (z =-0.7161).

Comments from the observers of the study propose phenotyping error as the cause of
the extreme phenotype difference. The more sensitive sibling felt naudeateglthe
challenge. This is a common response reported by many subjects, and the Si¢A8rsc
this individual is around the same value reported by other individuals with a siesiemse.
The other sibling, with SHAS scores indicating they were insensitivedba@|dad a blood
alcohol level close to the predicted value, indicating that they were appebpdased. This
sibling fainted briefly during blood draw. The researchers involved in testing shbégects
take special care to avoid fainting and report that it only happens 2% of the lihzeigh
the subject woke up quickly and admittedly felt fine, this fainting spell could have
contributed to the low response indicated by a low SHAS score. Therefore ityghi&ethe
reduction in LOD score by the inclusion of the discordant family is due to a phenotyping
error. While the inclusion of this family has dramatic effect on the linkaglysis it has a

negligible effect on the association analysis. Due to irregularity fn@mnetported testing, the
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whole family was removed from analysis. When the single family waswed the original
LOD score peak was reestablished with the maximum LOD score for 10qter at 3.40.

SNP genotypes could not be called automatically using the manufacturer supplied
program due to copy number differences which affected the allele signal ietenaiising
samples to fall between the heterozygous and homozygous genotypes. Genotypealls w
made manually, assuming that the intermediate samples were eitherrAdEBalepending
on the location relative to the heterozygote cluster. The best estimateyafusnper and
genotype was made by integrating the real-time PCR measured copyrnliagrean
derived genotype and pedigree structure. While the majority of subjects (888 hapies,
11% had 3 copies, and 4% had 1 copy. A small number (<2%) were considered to have
greater than 3 copies based on real time PCR, but these measurements weredeotdonsi
plausible based on Tagman derived genotype and pedigree information.

Mixed model regression analysis which controlled for the relatedness oftsubje
within families was used to investigate the association between copy ngemutype and
level of response to alcohol. Copy number had little effect on the level of resporsehtd.al
The presence of at least one copy of a relatively rare allele ferad&SNPs is associated
with a more intense response to alcohol. The best evidence for association wasrfthuad f
first three markers, which lie near the beginning of the gene near the proeger, when
considering genotype alone. The SNP rs10776687 showed the greatest evidence for
association with a p value of 0.007 and an odds ratio of 2.893 (1.476-5.669 95% CI). Odds
ratios for all other SNPs were not significant. In this case, copy numbegmaed and all
genotypes were assigned as biallelic. When considering copy number anghgeogéther,

none of the markers were significant. Copy number alone (1, 2, or 3) was not sidggificant
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associated. Interestingly, when modeling the effect of genotype and copyrramthe

number of cigarettes smoked per day, copy numb€YBREL was associated with this

smoking phenotype with an average p value of 0.014. Association p values for the regression
analysis are shown in Table 2.2.

Intuitively we would expect that inclusion of a causal SNP as a covariate would
reduce the residual linkage due to IBD to Zebaif this is an area of active research. After
each SNP marker was separately tested in the variance component modeloundahat
inclusion of the number of minor alleles of any single SNP was not able to explain all
variation in the SHAS phenotype. When considering the dataset after removihygdédmi
the peak LOD score was 3.36. The marker that lowered this LOD score the mb&i(by
LOD units) when included as a covariate was rs10776687, the marker located closest to the
linkage peak. Other SNPs lowered the LOD score by lesser amounts, as be€rainl¢ 2.3
below. Combined linkage and association analysis indicates that no single loalissteste
likely to be the only causal allele. When testing haplotypes, none of the three hegplotyp
were able to completely account for the linkage signal.

In addition to testing SNP markers to determine whether a single SNP cauaitdydir
influence the SHAS phenotype, a number of smoking and drinking phenotypes were
analyzed by including them as covariates when modeling their relationghiSMAS.

Three of these phenotypes (average number of cigarettes per day, the maximum amount
drank in one day, and the average number of drinks consumed on days the subject consumed
alcohol) improved the overall peak LOD score compared to the model without cazariate

The other tested phenotypes (humber of days the subject drank in the last week, amount

consumed 24 hours prior to challenge, number of days of smoking in a month, and number of
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cigarettes smoked on days where the subject smoked), lowered the peak LOD score
presumably because these phenotypes are correlated with the SHAS sdddd® Atlores
are shown in the Table 2.4 below.

To examine whether previously unidentified missense sequence changes could be
responsible for the association detected, coding sequence exons were reddquééce
index cases from the families with the strongest evidence of linkage. No reisbamgjes

were found and no novel polymorphisms were identified.

2.5 Discussion

Alcoholism is a complex disease with potentially many genetic inflieence
Investigators have tried to minimize heterogeneity by choosing a nardefuhed phenotype
such as the level of response to alcohol that was measured with the SHAS duerstirly.
Strong evidence for linkage to 10qter was observed for the SHAS score in subjecs from
alcohol challenge only after the removal of one family that retrospgcsiieuld not have
been included in the analysis. After linkage was found at the end of chromosome 10, several
SNPs genotyped iBYP2E1 were associated through mixed model regression with the level
of response to alcohol as reported by the SHAS score. Copy number did not appear to affec
the SHAS score even though copy number differences were found between individuals
across th&€YP2E1 gene.

When considered separately, linkage was found over the region con@@ikag1
and SNPs from the gene were found to be associated with the SHAS score. If incltiséon of
causal variant as a covariate in variance component analysis alwagss #ukel residual

LOD score to zero, we were unable to implicate a causal variant directignofhg the level
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of response to alcohol in the families studied. It is possible that an unidentified
polymorphism nearby could play a causal role in the level of response to alcdi®l| as t
degree of signal reduction is largest in the marker closest to the linkagenpiealea
declines for markers farther away. Another possibility is that a singtkencannot account
for the entire linkage signal because many markers in the region play a roledsphese.
Instead of a single polymorphism causing variation, combinations of polymorphisras ac
the region may work together to contribute to the variation seen in our dataset. Swopport fr
the heterogeneity LOD score calculation showing that all families shewdence for
linkage combined with the independently derived association analysis impliggHaDD
score peak was not over-estimated. It still can be concluded the regulatonycesguear
CYP2EL1 appear to play a role in the level of response to alcohol.

Variance component linkage analysis for the level of response to alcohol was
significantly affected by including covariates for recent drinking anokemy behavior.
SinceCYP2EL expression is inducible by alcohol and nicotinthis further supports the role
of CYP2EL1L in level of response to alcoh@YP2EL represents a metabolic intersection
between these substances of aftistewas initially surprising that while an association was
not found between the level of response to alcohol and copy numB¥P2EL, an
association was found between nicotine use and copy number. Studies have shown that
neither ethanol nor nicotine increase the level of CYP2E1 mRNA in rat hepstie'tis
Ethanol likely changes the activity of CYP2EL1 by interacting with ttie@site leading to
increased protein stabilization and reduced clearance by degradation. Given that the
induction of CYP2EL1 by nicotine requires multiple doses and does not interact with the

catalytic function ofCYP2EL, it is thought that the mechanism behind nicotine induction is
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not through protein stabilizatidfi>* Since the molar concentrations are vastly different it is
unlikely that both nicotine and alcohol could stabilize CYP2E1 by the same mechanism.
Since ethanol and nicotine likely induce CYP2E1 through different mechanismsyibese t
drugs may have an additive effect on CYP2E1 induction and furiétitire ability to induce
CYP2EL1 activity by nicotine, but not alcohol, could be dependent on basal transcription rates
that could be affected by gene copy number.

The four polymorphisms commonly testeddwP2E1, CYP2E1*5B (c2), CYP2E1*6
(C), CYP2E1*1B (A1), and CYP2E1*1D (1C), have been found to be associated with
alcoholism and related disorders in a number of studies. Several of these variearts iare
the Caucasian population (see below). Carriers of the c2 allele of *5B have @ftefobed
to have increased risk for alcoholic liver dise¥sgossibly due to the increased tendency to
consume excessive amounts of alcofidihe C allele of *6 was shown to be associated with
the predisposition for alcoholism in Japanese Hdine A1 allele of *1B was found to have
a significantly higher allele frequency in alcoholics than in nonalcoholic indiladigan a
Mexican Indians populatioff. The 1D variant allele was shown to be associated with
elevated CYP2E1 activity after alcohol consumptidoRor every association found with
CYP2EL1 variants, a number of studies found no association between the variants and alcohol
consumption or risk of alcoholism which could be due to differing phenotype categorization
or population allele frequenciés>293141

Of the markers measured in the current study, the most associated &Neveliof
response to alcohol, rs10776687, is in complete linkage disequilibrium (LD) with the c1
allele of CYP2E1*5B, rs2031920, implying that this marker is associated with thefeve

response to alcohol as well. A homozygous genotype of the minor allele c2 of CYP2E1*5B

33



is associated with an increase in gene transcriptiémother marker, rs2515641, is in
complete LD with rs2070676, also known as CYP2E1*1B.

As CYP2EL1 is involved with the metabolism of many carcinogenic compounds, it is
not surprising that variants in the gene have been implicated in a number of diffpesndf
cancer. The generation of ROS as a result of CYP2E1 oxidation will lead to thercoéat
lipid peroxidation products such as 4-hydroxynonenal which reacts with DNA to form DNA
adducts leading to highly mutagenic cells resistant to apofitdhis. metabolism of
procarcinogens by CYP2E1 commonly found in alcohol, tobacco, and industrial chemicals
can be enhanced through chronic ethdnol.

While a number o€YP2E1 variants have been analyzed in relation to cancer
development, CYP2E1*5B is most often considered. Many of these associations are
enhanced by alcohol or nicotine intake which further supports the rGNRZEL in the
metabolism of these substances. The c1/c1 genotype of the CYP2E1*5B variaseithcrea
risk of hepatocellular carcinoma in smokers from a Taiwanese popdfaiwhoral cavity
cancer in heavy smokers from Caucasians and African Americans popufatorscersely
other studies have found evidence for the minor c2 allele leading to an increased risk of
hepatocellular carcinoma in ethanol users with chronic liver disease andviiyateacer in
combination with heavy drinkingOthers have found no association between the
CYP2E1*5B variant and the same types of cancer including a number of studies for
hepatocellular carcinond*®**’Many CYP2E1 association studies did not detect an
association because the c2 risk allele is rare in Caucasians {22386} African Americans
(0.3-7% )}"***8put much more common for Asian (24-3688“>and Mexican American

populations (15%]®
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In aggregate it appears that alleles that increase CYP2E1 expresstaiseénevel of
response to alcohol and risk for cancer, presumably by allowing the activation of
procarcinogens or the production of ROS. Previous evidence for the involven@2fR2#1
with alcohol metabolism and the incidence of several alcohol related canaarglystr
supports the conclusion th@YP2E1 alleles are associated with the level of response to
alcohol and ultimately the development of alcohol use disorders. With multiple lines of
evidence linkingCYP2EL1 to alcohol intake and subsequent outcomes, this gene can be an
important predictor of risk for alcoholism and provide us with a better understandiogrof
the brain perceives alcohol. Drugs that affect the expression of this genalzstjuently,
the perception of alcohol, could reduce intoxication or limit consumption and thus moderate

the development of alcoholism.
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Figure 2.1 Location of genotyped SNPs in relation t€YP2E1 on chromosome 10

Figure 2.1 The top of the figure shows the position on chromosome 10 with each SNP
location indicated by triangles. The middle part of the figure shows the posit@¥PaEL

with exons represented as yellow rectangles and introns as the lines betintberb@itom,
phased haplotypes derived from the HapMap Caucasian (CEU) population are shown. Each
vertical block represents a SNP genotyped in HapMap. Not all of these markers wer
genotyped in the study, so vertical black lines through the haplotype figureénaataal

genotyped SNPs.
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Figure 2.2 LOD score plot showing linkage in the region surroundin@YP2E1.

Figure 2.2 Shows the LOD score plot highlighting the linkage G¥R2E1. The line labeled
as First Set represents the initial 139 sibling pairs. The line labeled@sdSget represents
the complete set of 238 sibling pairs. Once the family with questionable phenoggpes w
removed, the strength of the linkage signal was restored to the level providedfst Set

samples. Locations of microsatellite markers and SNPs are shown oratie X-

Linkage over CYP2E1
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Table 2.1 Translation of identification values for genotyped SNPs and position

Build 129

position
rs ID ABI Assay ID (bp) Other names
rs10776687 hCVv2431881 135184332
rs9418990 hCVv2431878 135187956
rs2070673 hCVv2431871 135190557 CYP2E1*7_-333T>A
- hCVv30633979 135192024 CYP2E1*2,9.1132G>A

rs943975 hCV7468406 135192250
rs6413421 hCv25594214 135195801
rs915909 hCVv7468401 135197387 CYP2E1_6498C>T(I1321l)

rs2515641 hCV16026002 135201352 CYP2E1_10463T>C(F421F)
rs2480258 hCVv2431850 135202090
rs2249695 hCVv2431848 135202158

Table 2.1 A listing of the various identification names for the SNPs genotyped in the study
based on the Applied Biosystems ID. Included under “other names” are namesrdgmm
used for specific markers.

Table 2.2 Association p values for logistic regression analysis between th#AS score
and CYP2EL1 genotype alone or genotype considering copy numher

Minor
allele

Genotype  Genotype considering copy number  frequency
rs10776687 0.007 0.103 0.056
rs9418990 0.024 0.125 0.244
rs2070673 0.015 0.077 0.238
hCVv30633979 0.215 0.253 0.004
rs943975 0.182 0.274 0.131
rs6413421 0.133 0.123 0.057
rs915909 0.058 0.081 0.007
rs2515641 0.45 0.261 0.176
rs2480258 0.04 0.187 0.252
rs2249695 0.024 0.139 0.268

Table 2.2 Logistic regression was used to test for association betweemdtitygpgd SNPs
and the SHAS quantity representing the level of response to alcohol. P-values < 05 are i
bold. The three markers near the 3’ end and two from the 5’ end were most assodmted wit

the level of response to alcohol. The best evidence for association came fronmalh®Nt
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rs10776687. None of the SNPs were associated when the genotype call was made cansiderin

copy number.

Table 2.3 Results of variance component linkage analysis for combined linkagedan
association

LOD

Covariate score covar p Variance
None 3.36

rs10776687 215  4.25E-04 0.0531
rs9418990 2.46 5.65E-03 0.021
rs2070673 2.54 5.04E-03 0.0311
rs943975 2.23 8.74E-02 0.0105
rs2515641 2.88 5.30E-02 0.0076
rs2480258 2.42 1.26E-02 0.0268
rs2249695 2.54 9.58E-03 0.02

Table 2.3 Combined linkage and association analysis showed that a single markerbleas una
to account for all of the variation in the signal. This was accomplished by adaingalP
individually into the model as a covariate. With no covariates, the LOD scser8.@@ The

SNP that lowered the score the most when added as a covariaseowa&s7and was able

to explain 5.3% of the variance in the SHAS score.

Table 2.4 Results of variance component linkage analysis with the inclusiohseveral
drinking and smoking covariates

covariate variance

LOD
number of days in the last week where subject drank 2.19 0.078
amount consumed in the last 24 hours 2.82 0.028
days smoking per month in previous 6 months 3.03 0.046
cigarettes per day, on smoking days in previous 6 months 3.27 0.036
Average number of cigarettes per day 3.37 0.026
maximum amount drank in one day 3.47 0.084
Average number of drink on days they drank 3.77 0.066

Table 2.4 A number of smoking and drinking phenotypes were analyzed by including them
as covariates when modeling their relationship with SHAS. Three of these plenotyp

(average number of cigarettes per day, the maximum amount drank in one day, and the
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average number of drinks consumed on days the subject drank) improved the overall peak

LOD score compared to the model without covariates.
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Chapter 3 - The role of theTau gene region chromosome
inversion in PSP, CBD and related disorders

3.1 Abstract

A genome wide association scan was performed to search for variants tleat conf
susceptibility to 4 tauopathies and clinically related disorders. This papsefoon the
results from an inverted region of chromosome 17 that contaiMdARa& gene. A total of
231 samples were genotyped on the GeneChip 500K Affymetrix SNP arrays. Missing or
untyped SNPs were imputed with IMPUTE from the Chiamo suite. Genotypes sfatake
controls were compared with a Fisher exact test on a marker by marlger lHapiotypes
were determined by the visual inspection of genotypes. Cases of PSP, CBDn&HIa
with amyotrophy were collected from an unrelated Caucasian population. UWeaffec
individuals from the same population were used as controls. The samples included in the
study were collected by the Memory and Aging Center at UCSF or by KCWhd-or t
comparison between any particular disease and controls, the associatconstast across
the interval. Significant associations were seen for both PSP and PSP combhneB i

Of the two haplotypes seen in the region, the H1 haplotype was overrepresentednd PSP a



CBD cases when compared to controls. The association found in these tauopathies across
this interval on chromosome 17 further supports the theory that one or more susceptibility
loci in this region is affecting susceptibility specifically to PSP and CBihce the markers

are highly correlated and the association is seen across the whole regidifficuis to

narrow down a disease causing variant or even a possible candidate gene. However
considering the pathology of these diseases and the involvement of tau mutatidns see

familial forms, the MAPT gene represents the most likely cause drivengssociation.

3.2 Introduction

The Pick Complex refers to a spectrum of diseases with a variety of overlapping
clinical and pathological features, due to a related genetic etiologgm#on, though not
ubiquitous, overlapping feature of these diseases is the presence of tau protaons)chus
aggregates. Thus, the genetics and brain histochemistry of the gene that twdades
microtubule associated protein tadAPT), provides a compelling reason for thinking that
patients with these clinically and pathologically diverse findings should behlthofigs a
contiguous group. These diseases are characterized clinically tyivamdgoehavioral, and
movement defects. This study focused on four diseases in the spectrum where tau
histochemistry and genetics are believed to be critical—progressivensol@ar palsy
(PSP), corticobasal degeneration (CBD), and frontotemporal dementia (Fhywithout
amyotrophy.

The clinical signs and symptoms observed in patients with these diseases are
correlated with the anatomic distribution of neuronal loss, which can be quite varidlaee

are several patterns of inclusions of insoluble proteins in affected individuateebeiis
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only limited correlation between inclusion type and clinical symptomatologik Gamplex
diseases can be accompanied by tau inclusions, ubiquitin inclusions, or no inclusibt?s at al
Pick Complex diseases that contain tau inclusions are collectively refemedauopathies.
Many families with inherited tauopathies have been linked to the same genomic
region, and collectively, these families are said to be affected with feompotral dementia
and parkinsonism linked to chromosome 17 (FTDP21V)APT was considered to be a
likely candidate gene in this region for its involvement in FTD with tau inclusants
subsequently, manyAPT mutations have been identified in affected individuals. A variety
of Tau mutations have been identified that affect protein function by eittsingrehanges
in level of translated protein or by alternative RNA splicing, which magtups interaction
between tau and microtubules, allowing unbound and abnormally phosphorylated tau to
polymerize into inclusion3. Different tau mutations alter biochemical properties of the gene
product, but these mutations do not necessarily predict the exact clinical nature of the
disease. The same mutation in affected individuals, even in the same familgsulainra
different age of onset, combination of symptoms, and clinical diagtfo3ise variable
morphology of accumulated tau proteins could be explained by the wide range obnsutati
that have been found in these diseases. In various tauopathies, the inclusions may differ
based on the ratios of particular isoforms and the physical location of accomulatileast
40 MAPT mutations have been identified in patients with FTD and related diséaEas.
inclusions, usually withouMlAPT mutations, are part of the pathologic definition of CBD
and PSP while cases of FTD are often seen without tau mutations or tau inclusionsr Anothe
set of cases with FTDP-17 that contain ubiquitin inclusions, but no tau inclusions, wds linke

to the same region on chromosome 1Further gene resequencing of this set of cases led to
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the discovery of mutations in the progranulin gene from this region, which are responsible
for many cases of FTDP-£7.

In its natural stataylAPT works to stabilize microtubule formation and regulate
transport along microtubulés. Dysfunctional tau proteins can interrupt axonal transport by
reducing the cell’s ability to control microtubule formation, ultimately ilegdo neuron
dysfunction and death.Normally, the tau protein is located in axons, but in diseased cells it
will relocate to the cell body and form insoluble hyperphosphorylized fibrilfasiysions:>
This hyperphosphorylation of tau may lead to a loss of microtubule affinity andtamesis
to proteases, leading to aggregatioBix major isoforms are produced in the adult human
brain through the alternative splicing of exons 2, 3, antf Ithe 6 isoforms can be divided
into 2 groups, depending on the number of microtubule binding domains. Alternative
splicing of exon 10 will lead to four repeat (4R) binding domains or three repeat (3R) binding
domains'® The number of binding domains affects the binding of tau to tubulin; 4R tau will
bind stronger and assemble more efficiently than 3R*aireduction in binding efficiency
may increase the amount of unbound tau in the neuron leading to aggregation, although
increased binding may have an equally damaging €ffean accumulation of unbound tau
may result if any isoform fails to function, creating insoluble inclusfohgclusions found in
affected individuals may contain all 6 isoforms in equal amounts or different otios
selected isoforms. Many mutations disrupt the splicing of exon 10, leading to unéigsal ra
of 3R and 4R ratios. Tau deposits in PSP and CBD are predominantly 4R, where deposits in
FTD contain equal levels of 4R and 3&®°

The region containing tHdAPT gene has been shown to be genetically complex due

to an inversion commonly found in Caucasian populations. There are three highly
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homologous low copy repeats (LCRS) that flank the redjidine two LCRs telomeric of
MAPT, LCRs B, and C are inverted relative to the centromeric LCRLER A and LCR B
flank theMAPT haplotype, suggesting that the inversion was caused by non-allelic
homologous recombinatioh.Figure 3.1 shows the structure of MAPT in relation to these
LCRs. Extensive genotyping across the interval identified two haplotypesastal
complete disequilibriumi* These haplotypes are commonly referred to as the H1 and H2
haplotypes. Recombination within the inverted segment between carriers of thd H2 a
haplotype would result in a Robertsonian translocation. The high degree of disequilbrium
this region suggests that recombination has been suppressed or that there wtesra sele
against recombinant chromosomes prior to the inversion becoming established in the
Caucasian populatioh A study on the expression of tau in Alzheimer patients found that
one variant of the H1 haplotype led to an increase in overall tau levels and afigcific
increase in 4R tau creating an imbalance of isofdriBmilar changes in expression could
be found in these diseases.

There is a locus in or near tNAPT gene that clearly affects susceptibility to PSP
and CBD. Conrad et al established that common variations MARS gene affect
susceptibility to PSP. They reported that the a0 allele of a dinucleotide repeat marker
located in intron 9 oMAPT is observed in 57% of control chromosomes compared to 95.5%
of PSP cases.The a0 allele was also shown to be overrepresented in CBD chromdsomes.
Other tauopathies have a less certain associatiorWABHT region polymorphisms. The a0
allele is not believed to be biologically relevant to the disease processijriaie&l in
linkage disequilibrium with some other polymorphiérithe a0 allele is inherited with the

H1 haplotype, so it is not surprising that the H1 haplotype is also overrepresented in PSP
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cases. It is uncertain whether the increased risk for PSP and CBD is associtted wi
specific common variation of the haplotype or a rare mutation that is found on same
chromosomes with the H1 haplotype.

Despite the varied clinical features that are used to categorize themtiffieseases,
there is quite a bit of overlap, suggesting that there could be a shared underlyingimialche
abnormality resulting from the altered expression of'téw.order to explore this possibility,
we performed a high density association scan looking for markers that may confe
susceptibility to several different tauopathies. In this report, we focusandtkers
contained in the region including and surrounding tau. Using our data, and genotypes
imputed using Hapmap, it was shown that a significant association exists heressire

inverted interval on chromosome 17 for PSP and CBD cases.

3.3 Methods

3.3.1 Sample Collection and preparation

The samples included in the study were collected by the Memory and Agirey @ent
UCSF or by KCW. Cases of PSP, CBD, FTD, and FTD with amyotrophy weretedlle
from an unrelated Caucasian population. Cases of FTD met Neary criteria an@PSP m
Litvan criteria. While all cases were clinically confirmed, only 46 hdabdgagical
confirmation of disease. None of the cases have known tau or progranulin mutations.
Unaffected individuals from the same population were used as controls. DNA wasdisolat
from whole blood using the Puregene kit (Gentra Systems). The number of patients used f
each diagnosis in this study can be found in Table 3.1. The number of cases per gender can

be found in Table 3.2. The average age was 73 for controls and 67 for cases with an average
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age of onset of 60 years. All subjects participated with informed consent pracedure

approved by the UCSF and UNC Human Subjects Institutional Review Boards.

3.3.2 Genotyping

Genotyping was performed using the GeneChip 500K Affymetrix SNP arrays usin
the protocol provided by Affymetrix. The BRLMM algorithm was used to make gemotypi
calls. Acceptable genotypes had confidence scores less than 0.5. Any cidl tiwtmeet

this threshold was removed from further analysis.

3.3.3 Analysis

The genotypes of cases versus controls were compared using a Fisherstxac
determine whether the allele frequency in the cases was signifidéfehgnt from the
controls. Markers that were considered to be out of Hardy Weinberg Equilibrium were
excluded from analysis. There was no population stratification detected wieehvweh
Eigenstrat! Genotype calls made by the BRLMM algorithm were used to infer the rest of
the known Hapmap markers in the area based on correlation using the programronpute f
the Chiamo suité. Imputed genotypes were considered acceptable with a posterior
probability greater than 0.8, and markers were included in association thstsall rate

was greater than 80%.

3.4 Results

Genome wide, the average sample call rate was 95% and the average single

nucleotide polymorphism (SNP) call rate was 92% on the Affymetrix 500K platfbeas
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than 1% of SNPs were out of Hardy Weinberg equilibrium and 1.5% of SNPs were
monomorphic.

From the 326 SNPs typed in the MAPT region ranging from approximately 40.4 Mb
to 42.5 Mb on chromosome 17, we attempted to impute an additional 4,845 HapMap SNPs.
After eliminating imputed polymorphisms with a posterior probability lowen th&, 1,477
SNPs remained. Of these, 60 SNPs were monomorphic and 68 were not in Hardy Weinberg
equilibrium. Any marker with a sample call rate less than 80% was removed. fGEnfuty
1,169 genotyped and imputed SNPs were used to explore the region ndAPthgene for
allelic association with PSP, CBD, FTD, and FTD with amyotrophy.

Figure 3.2a shows a plot of the probability that the cases and controls have atuivale
genotype frequencies for each of the typed or imputed SNPs that met inchitsioa for
each of the disease classification models tested. All of the signifisaatiations observed
are within the boundaries of the chromosomal inversion that distinguish the H1 and H2
haplotype. While there are some clear exceptions, the majority of markess dwe
inversion for any given comparison fall within a constant range of probabditress the
interval. The most striking associations observed are for PSP alone or comitmE® iy
versus controls across the entire region of the chromosomal inversion. Rarekeafnom
other comparisons will reach a nominally significant association, but these axerase
and not constant across the inverted interval. Inspection of the raw allefecspeci
hybridization intensity for these markers does not robustly distinguish betyeeetype
clusters and are not considered to be significant associations. The region vefiere all
association is detected clearly defines the inversion interval boundaigese B.2b shows

the genotypes for all samples across the region of interest in the followdeg control,
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FTD, FTD with amyotrophy, CBD, and PSP. Each row represents an individual énd eac
column represents a marker. Known genes are indicated as lines above the geftiypes
samples were sorted based on diagnosis and haplotype similarity. Two digilottges

can be identified in this figure consistent with previous designation of the H1 and H2
haplotype.

Table 3.3 shows the counts for the three haplotype combinations (H1/H1, H1/H2,
H2/H2) for each category of diagnosis. Very few heterozygous haplotypes, and no
homozygous H2 haplotypes, were seen in either PSP or CBD. When compared to controls
using a fisher exact test, only PSP and PSP/CBD were significandyediff This confirms
that the H1 haplotype is overrepresented in PSP and CBD cases when compared $ control
while both FTD and FTD with amyotrophy had H1 levels in the same proportion as controls

as seen in Table 3.4 which gives the percentage of H1 and H2 haplotypes in each group.

3.5 Discussion

The association found in these tauopathies across this interval on chromosome 17
further supports the theory that one or more susceptibility loci in this regadiecsing
susceptibility specifically to PSP and CBD. Since the markers are lughiglated and the
association is seen across the whole region, it is difficult to narrow down aedtsesasing
variant or even a possible candidate gene. However considering the pathologg of thes
diseases and the involvement of tau mutations seen in familial forms, the MA®T gen
represents the most likely cause driving the association.

While all of the diseases in the current study are part of what is referasd t

tauopathies, not all of the diseases were highly associated with this regionypotieshis
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leading to this study was that similar diseases were caused by mutaty@mes controlled
by similar biochemical pathways. So while the mutation causing any paricatentation
of one of these diseases may be located in different genes, the pathologaaleostthe
same. There were other significantly associated regions in our genomeandghsch may
be affecting susceptibility to the diseases which were not as highlyaesbwith the tau
region. There was no association seen between FTD samples and this region even thoug
cases with FTD can have tau inclusions and mutations of the tau gene have been found in
affected families. The lack of association may be influenced by our samafile size and
the heterogeneity of sporadic FTD. Most cases of FTD do not have tau mutations or
inclusion, but cases of PSP and CBD are almost always accompanied by taonaclus

The odds ratio was calculated to determine the risk associated withcalparti
haplotype. Controls have a 7 fold greater odds (95% confidence interval 2.08-25.36) of
having an H2 haplotype, on either one or both chromosomes, compared to PSP and a 4 fold
greater odds (95% confidence interval 1.16-15.10) when compared to CBD. When CBD and
PSP are considered together, the odds ratio is in the middle with a value of 5.7 (95%
confidence interval 2.24-14.62). This suggests that the H2 haplotype provides some
protection from the PSP and CBD diseases. This proposed protective alleledsrenhi
be significant for PSP, CBD, and PSP+CBD since none of the confidence intervalsvgo be
1.

Imputation filled in missing genotypes and genotypes for markers not includesl in t
Affymetrix chip 500K sets. This gave a fuller picture of the association irethen.
Imputation methods are useful for association studies since they combine irdorfraah

genotyped markers with existing datasets such as Hapmap. Testing alanper of
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markers across the genome provides a finer grid for association. Howevereaa af laigh
linkage disequilibrium, as in the chromosome 17 inversion, the true disease causimtg varia
cannot be distinguished from the surrounding markers even with the extra imputed
genotypes. Imputation added little to our association due to the strong LD in threthedi
was implicated. The regions flanking this inversion are much more thoroughly edadunat
there is little reason to investigate these flanking regions furthieerirkg the data for call
rate and posterior probability removed noise and most false positives thaetented
using unfiltered data. The genotype calling software which used to impute genotypes
resulted in more stringent and reliable genotyping calls.

The results from this association study provides strong evidence that a filggepti
locus in the MAPT gene region is related to certain Pick Complex diseasd® bigh
degree of linkage disequilibrium in the region makes it difficult to draw comissibout
the exact location of the locus. To our knowledge, previous studies have reported results
from candidate gene studies focusing on the tau gene. We instead looked at thegeorire
and found an association with the entire inversion region with no evidence that any part of
the region is more important than any other. The genotypes are constantrechegsrsion
due to the high level of linkage disequilibrium, but outside of the inversion they become
highly variable with no identifiable pattern. This is also supported by the corestahof
association that drops off at the boundaries of the inversion. The inversion is likegné r
event since it is only found in Caucasian populations. While a specific cause cannot be
determined, something in the inversion is likely affecting expression ofulgete and
ultimately disease status. The inversion, or more specifically the H2 hamlafypears to

offer some protection against PSP and CBD.
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Figure 3.1 Tau Gene Region
Figure 3.1 shows the structure of the Tau gene, indicating the locations ofulide

binging domains and flanking LCRs.
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Figure 3.2 Association and haplotypes across the interval

a) Figure 3.2a shows a plot of the negative log of the p value from the comparisons between
cases and controls. Known genes are represented as lines at the top of the figure

b) Figure 3.2b shows the genotypes for all samples across the region of.irEaa@strow
corresponds to a sample. The samples were sorted based on diagnosis and haplotype
similarity. Samples with mostly blue or major alleles have the H1 hapletljpe samples

with mostly yellow or minor alleles have the H2 haplotype. Samples witHymedtor
heterozygote alleles are H1/H2. The figure was created usiiN EHS SNPs Visual

Genotypes prograrft
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Table 3.1 Number of Samples included per Diagnosis
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Table 3.1 shows the number of samples genotyped for each diagnosis type.

Diagnosis Count

Control 98
FTD 56
PSP 36
CBD 23
ALS 18

Table 3.2 Gender of Patients in Study

Table 3.2 shows the breakdown of samples by gender

Male Female

FTD 32 24
PSP 20 16
ALS 11 7
CBD 9 14
Control 42 56

Table 3.3 Comparison of Haplotypes

Table 3.3 shows the p value and odds ratio based on haplotype counts for each diagnosis.

H1/H1 H1/H2 H2/H2 pvalue Odds Confidence
Ratio Interval

Control 59 35 4
PSP 33 3 0 0.0011 7.27 2.08-25.36
CBD 19 3 0 0.061 4.19 1.16-15.10
FTD 37 15 4  0.4617 1.29 0.65-2.55
MND 11 6 1 1 1.04 0.37-2.91
PSP+CBD 52 6 0 0.0002 5.73 2.24-14.62
ALL 100 27 5 0.0311 2.07 1.17-3.64

Table 3.4 Percentage of Haplotypes

Table 3.4 shows the percentage of samples of each diagnosis with the H1 haplotype.
Control PSP CBD FTD MND PSP+CBD ALL

H1 153 69 41 89 28 110 227
H2 43 3 3 23 8 6 37
total 196 72 44 112 36 116 264

%H1 0.781 0.958 0.932 0.795 0.778 0.948 0.860
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Chapter 4 - The evaluation of Convergent Haplotypé\ssociation
Tagging: a novel algorithm for haplotype phase infeence

4.1 Abstract

Current approaches for the identification of genetic influences of cordgease
typically focus on the effect of one genetic variant at a time. Consecutiaatgasiong a
chromosome are inherited together as a haplotype and knowledge of this haplotype ca
very beneficial to genetic analysis. The statistical prediction of hggapteferred to as
haplotype phase inference, has proven difficult when applied to the ambiguous genotypes
created by conventional genome-wide SNP genotyping methods. A new approach,
Convergent Haplotype Association Tagging or CHAT, was created to search fetssoiies
population that share a long haplotype and to phase haplotypes based on the identified
sharing. In order to test the performance of the haplotype phase inference toagpabili
CHAT, comparisons were made with three publicly available haplotype phasgraupi
ENT, HaploRec, and Beagle. Performance comparisons were based on tvatioak off
accuracy: the single site error rate, which measures the percentegerozygous loci
incorrectly phased according to the true sequence, and the switch accuracy, vesicteme
the number of recombinations needed to regain the true sequence. The programs were

applied to simulated data generated to mimic world populations. CHAT made vergtaccu



haplotype predictions especially when applied to a sample set with a largemafm
individuals; however, due to the nature of the algorithm it is only able to improve the

haplotype phase for regions with haplotype sharing.

4.2 Background

4.2.1 Haplotype-based association analysis

Current approaches for the identification of genetic influences of com@eas#
typically focus on the effect of one genetic variant or marker at a time amha®ach
marker is independent. Consecutive markers along a chromosome are actuaigdinhe
together and knowledge of this configuration can be very beneficial to gendyisignd he
combination of alleles for nearby markers on a single chromosome is ddfeas a
haplotype. In single marker association analysis, we assume that a genotgierdantisbe
able to represent the variation of an untyped, causal variant. Unfortunately, ssaoa@on
studies are unsuccessful at identifying a reproducible causal variant.d€ormgsimultiple
genotyped markers improves the chance that the untyped variant can be capturetlyespec
if the variant is rare in the sampled population due to selection or recent mbtation.
Haplotype based association analysis seeks to find association betwetarsal tazi
ancestral haplotype harboring a variant that influences the trait. Indivigithlthe trait
affected by the same causal variant will have varying amounts of therahbaglotype
containing that variant. The intersection of these haplotypes can mapttsausang
variant to a smaller chromosomal region with greater certainty thandig snarker
analysis. In this way, haplotypes can provide more information and improve the power to

detect a variant associated with the trait.
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Although knowledge of haplotypes is advantageous for genetic analysis of complex
human disease, haplotype based analysis has been limited. Current genotypnglatf
used in genome-wide association studies provide only the genotype at each posigon, eit
heterozygous or homozygous for any particular allele, with no indication about templac
of each allele on a chromosome in relation to other genotyped markers. Fqodlo$ diata,
the haplotype phase, or set of markers together on a chromosome, must be predicted afte
genotype assignments have been determined. Haplotype phase inference tefers to t
identification of haplotypes in genotyped samples by determining whichsalled inherited
together on a single chromosome. Two copies of each marker are typicsdigtpreevery
diploid organism—one inherited from the maternal chromosome and one from the paternal
chromosome. Complete inherited parental chromosomes are broken up by recombination, so
that the grand parental origin for a region will vary across the length ofitbmosome. In
a small region, markers are less likely to be separated by recombinatiom@nikely to be
inherited together. Given this correlation between nearby markers on a chromosome
referred to as linkage disequilibrium or LD, markers located closely tgeih more often
be inherited as a single haplotype, while markers farther apart areiketye¢d be separated

by recombination.

4.2.2 Genetic approaches to haplotype phase inference

Early genetic studies were family-based linkage analyses which catsitier
sharing of alleles between relatives often using sibling pairs or pdmdshtrios. Using
family genotypes simplifies phase inference, but phase is ambiguoutarmhdll members

are heterozygous. The recruitment of family members can be difficultj@gpéar late
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onset diseases, and increases the genotyping costs. With the transitiom sodégase-
control association studies, the phase inference capabilities provided by genotypes of
relatives have been lost.

As an alternative to family based haplotype phase determination, a \driety
molecular genotyping methods are available to determine phase by seghrating
chromosomes and genotyping each directly. These include single-molecule diturigen, |
range allele specific PCR, diploid to haploid conversion, pyrosequencing, rotte c
amplification, etd:* Compared to SNP genotyping, molecular haplotyping methods are
expensive, low throughput, and often unrelidffé&.

Both molecular genotyping and family based methods are unacceptable for feplotyp
phase inference of large case-control association studies. Effective pa@aoslysis
requires a quick, reliable, and cost effective method to phase millions of ambiguous
genotypes created by conventional genome-wide SNP genotyping methodsefgrtangs

of unrelated individuals.

4.2.3 Statistical approaches to haplotype phase inference

Early statistical based haplotype phase inference algorithms weredcieias small
number of markers and samples. The earliest described algorithm for haplotype pha
determination was a maximum parsimony approach by ¢lakkile Clark’s method is
straight-forward and able to handle a potentially large number of markers, ththalgor
depends on the identification of one completely unambiguous individual in the dataset. As
the number of markers increases, the likelihood of finding an individual with no more than

one heterozygous genotype becomes vanishingly small. More recently, thedstandar
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haplotype phase inference has been PHASE/fich uses a Bayesian approach and fits
model parameters based on Markov Chain Monte Carlo. The algorithm uses an agproxima
coalescent prior probability assuming that haplotypes from the same populatien clus
together due to shared ancestry. While the program can deal with largergestetgpes by
focusing on short subsets, it is still not practical for dense SNP data ancalangle sets

typical for GWAS.

Contemporary statistical algorithms have been developed to handle genome-wide
association data. The three programs chosen for comparison in the current seugiNWe
HaploRec, and Beagle.

ENT’ attempts to maximize the likelihood of phasing using a count-based estimation
of haplotype frequencies. It is capable of phasing long stretches of gesdty using an
overlapping window and batched implementation where a section of previously phased
haplotypes is included in the model to aid in phasing the neighboring section of genotypes.
The algorithm iteratively changes the phase of an unknown set of haplotypékeauntil
calculation of entropy is minimized.

HaploReg is a likelihood expectation maximization based method that considers the
local regularities observed between haplotypes. The expectation maximipatEM,
algorithm was first used for haplotype phasing by Exoffier and Sl&tKopulation
haplotype frequencies are initially estimated and iteratively updatedxmnize the log-
likelihood function to estimate an updated set of genotype frequencies. The frequeaci
iteratively updated until the frequency convergeBhe overall probability of the haplotypes

is derived from the probability of local fragments. This method uses long \eafiagment
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sizes based on a fragment threshold and takes advantage of information containgd in |
maps.

Beaglé uses a localized haplotype cluster model to define a hidden Markov model to
determine the most likely phased haplotype for each individual. The haplotype is maxleled
a string of sites with a finite number of states at each site, with @siemprobability for
any given state to transition to another state at the next’sifée Viterbi algorithm is
applied to the hidden Markov model to determine the single most likely phased haplotype.
The inclusion of localization avoids sampling irregularities across long relgadisig to
false correlation between distant markers. Observed haplotypes are graopedsiters
depending on similarity allowing the model to adapt based on the data.

While these algorithms vary on their accuracy and efficiency, they teradftom
poorly across recombination hotspots, meaning the localized haplotypes may be phased
correctly when considered individually, but placed on the wrong chromosome strand when

combined with haplotypes from flanking regions.

4.2.4 CHAT: A new option for haplotype phase inference

A new algorithm for haplotype based analysis, known as Convergent Haplotype
Association Tagging or CHAT, is currently under development in the WilhelmseTtab
algorithm searches for subsets of a population that have inherited a long siptogghbaa
CHAT, harboring a mutation from a common ancestor. Figure 4.1 illustrates theanberit
of an ancestral haplotype harboring a disease-causing mutation. As desctibed ear
identifying haplotypes implicitly can be difficult given the phase unknown geaatsfa

provided from genome-wide association data. As an alternative, a pair-wiparemn of
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samples determines whether it is possible for each pair to share a hapiaypgiaen
location. The only case when sharing is not possible is when two individuals are
homozygous for the alternative alleles of a SNP (AA vs BB). The assumed hajptotiype
region of sharing can be determined from the consensus haplotype of the individuals
identified.

CHAT evaluates a pair-wise comparison of all subjects with genotypecdateef
potential for long shared haplotypes starting at each seed location. The distradut
observed sharing is assumed to be the sum of a distribution due to what would be seen by
chance (which can be modeled as a Gaussian distribution) and the distribution of&haring
the rare pairs of individuals that have a long shared haplotype. CHAT models the combined
distribution given the length of potential sharing and a prior probability of shawahg t
estimate the probability that the subjects share a long haplotype.

The length of the shared haplotype and the allele frequencies of spediis falend
on the haplotype are used to calculate the Pi-SMOR statistic, a meadusétherikelihood
that the haplotype is inherited identical by descent or from a common ancesEMOR-is
the cumulative sum for markers in the putatively shared chromosome segment of the
negative log of the single marker odds ratio of the probability of the observed genotype
assuming identity by descent of greater than 1 to the probability of the obgenasgpes
assuming identity by descent of zero. This measure reflects the uniqueahéssgah of a
putative long shared haplotype. The Pi-SMOR statistic was developed to overcome the
problem that an individual with a long string of heterozygous markers has thegdtenti

share a haplotype with many other samples for the segment.
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Using all the putative long shared haplotypes that individual X shares with others, a
consensus haplotype for individual X can be predicted. CHAT uses the putative long shared
haplotypes that involve subject X with the largest PISMOR statistic tdhase@nd allows
data from additional putative long shared haplotypes to further resolve the phageass lon
they are parsimonious with the previously phased haplotype. After phasingt stjed
other samples that putatively share a haplotype with subject X, CHAT testsewtiet
solutions are consistent. We describe this as a transitive test. We have obsé¢thedhioat
common reason why the phase solution for subject X (and the other subjects that putatively
share a haplotype with subject X) are incompatible is that one of the putative &med sh
haplotypes is a false positive. By iteratively phasing subjects, and perfaurtriagsitive test
to remove presumed false positive putative long shared haplotypes, CHAT converges on the
most parsimonious haplotypes across long shared haplotypes. CHAT has thetgapalsié
local entropy minimization to infer the haplotype of remaining chromosome s¢gase
nearly as efficiently as other commonly used phasing programs.

The goal of the current study was to test the performance of CHAT on the haplotype
phase inference of simulated data sets generated under a number of conditions arel compar
the performance to other haplotype phase inference programs in regards todhe ove
accuracy across the entire simulated region and the ability to minineizedalized

haplotype effect.

4.3 Methods

4.3.1 Data Simulation
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Fregene was used to simulate data with known haplotype ph&segene is a
forward data simulator that generates sequence data for large populations tindsr va
conditions allowing for control over selection, population level changes, ratagation,
and patterns of recombination. The program tracks the sequence level cHanges o
population as mutations and recombination events arise through the creation of generations
by simulated random mating. Each new individual in a subsequent generation is created
from two random sequences from the previous generation.

The Population C datasetvailable from the Fregene website was chosen for analysis
as it is more likely to achieve the high level of complexity found in a readetatzan any
user generated dataset. It was created with the intention of mimickingtérapaf genetic
variation found in major human populations worldwidé series of events were simulated
to mimic the creation of African, European, and Asian populations. (It should be noted that
while these populations are referred to as “African,” “European,” or “Asthay do not
represent the true population of the same name and could not be considered as a subset of
that population.) The Fregene website provides a set of simulations assuming neutral
selection and another that includes selection. Throughout the simulations, mutations were
allowed to occur at a rate of 1.5x48nd recombination at a rate of 1.1%10

To simulate the creation of current world population, a number of steps were taken to
mimic the history of actual human populations. Figure 4.2 summarizes the datdisimula
To begin, a population of 25K sequences is created in “Africa” and allowed to evolve for
125K generations. The African population further expands to 48K sequences and continues
for another 17K generations. From this set, 4K sequences leave Africa, terroed O

Africa population, and the remaining bottleneck to 380 sequences. The African and Out of
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Africa populations expand to 48K and 15.4K respectively and evolve for 3.5K generations.
The Out of Africa population experiences a bottleneck to 1.3K sequences and splits into a
“European” population of 320 sequences and an “Asian” population of 1K sequences. The
European and Asian populations expand to 15.4K sequences and evolve for 2K generations.
During this time, migration is allowed to occur at a rate of 0.8t&iween the Asian and

African populations and 3.2xPetween the European and African populations. Finally

each population evolves independently until each reaches 50K sequences.

4.3.2 Data Sampling and Dataset Creation

Sample® a companion program for Fregene, was used to sample from the simulated
sequence-level population data to obtain genotype data. For simplicity of comparison,
sampling was performed on the African neutral selection population, the Europeah neutr
selection population, and the European positive selection population. African and European
populations with neutral selection were chosen to compare differences in pedemakated
to the level of linkage disequilibrium in a population. The European populations with neutral
or positive selection were chosen to compare the effect of selection. The stantjaletls
population size was 1000 individuals. An additional dataset was created with 2000
individuals from the European positive selection set to understand the effect of sesmple
Ultimately four sets were generated for comparison: African with alesgtection, European
with neutral selection, European with positive selection, and European with poskietosel

and a large sample size.

4.3.3 Haplotype Phase Inference
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Fregene generated genotype data was transformed into formats apgrfopreaich
haplotype phase inference algorithm. ENT version 1.0.2 was applied to each datgset usi
default operating conditions suggested for optimal use, where free and locked wirel®w si
are automatically selected and batching is included. Beagle version 3.1 wad tppéeh
dataset using default operating conditions. Under these conditions, 4 haplotype pairs we
sampled for each subject during each iteration and 10 iterations were applied pehem. W
HaploRec was applied to each dataset, a window size of 1000 markers and an overlap of 250
markers was chosen so that the program could complete the analysis giaeailtide
computational resources. Other operating conditions were default, wheratdevarder
Markov Model with smoothed probabilities was used, iterations continued until the
likelihood was unchanged, and a sequential pruning strategy was applied that builds
haplotypes along the chromosome one marker at a time. CHAT was applied tosbtsdata
under standard operating conditions. The operating conditions chosen for each program
may not be the optimal conditions for accuracy, but default conditions were chosen in each

case to understand the baseline accuracy levels.

4.3.4 Haplotype Phase Comparisons

To understand the accuracy of haplotype phase inference provided by each program,
the experimentally phased haplotypes were compared to the real haplotype pravided fr
Fregene. For performance comparisons, three measurements of accuracycwiated.a
First, the single site error rate, described by Stephens and Dolineibyided a
measurement of how well each program could recreate the whole phased chromosome. The

single site error rate was calculated as the number of incorrectly @bekes divided by
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total number of heterozygous markers averaged across samples. Second, hrerewitc

rate was calculated as the number of contiguous heterozygous sites correetllyqrtias
number of switches needed to regain the original chromosome. The switch ahlerts

show how well each program performs across sites of recombination. A related
measurement described by Yia the switch accuracy calculated as (het-1-sw)/(het-1). Like
the switch error used in the present study, the switch accuracy represenimtier of
switches needed between neighboring pairs of heterozygous sites to regaie Haplotype

sequence and is roughly equivalent to 1-switch error.

4.4 Results

The amount of change for each average error comparison between samigle set
shown in table 4.1 which displays the fold change for each comparison. Stagisticall
significant changes are indicated in bold and were determined through ecngsring the

error measurements generated by each dataset.

4.4.1 Single Site Error Rate

With regards to single site error rate, CHAT performed better ovemalpared to all
other programs. Beagle performed better compared to ENT and HaploRec whibladbot
single site error rate near 50%, not much better than chance. There was widmvarthe
individual sample single site error rates for Beagle and CHAT. ENT andReplwere
more precise in their inaccuracy. Figure 4.3 shows a histogram of the averégsiteng

error rate for each program.
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Single site error rates ranged between 0.16-0.19. Compared to the other haplotype
phase inference programs, CHAT had a consistently lower single siteaterolCHAT
demonstrated a significantly lower single site error rate with thieakf sample compared to
the European sample and performed better with a dataset with more samples.

When considering program specific analysis, Beagle performed bettdtMiaand
HaploRec with regards to single site error rate with average values réraym@.25-0.30.
When considering the different datasets, the single site error rate tiaddrethe African
sample compared to the European sample, better with neutral selection than wth pos
selection, and better with a larger number of samples. While ENT performed poadl} ove
in regards to the single site error rate with average values ramgm@f46-0.47. HaploRec
performed slightly better than ENT with single site error rates mgrfgom 0.40-0.43. The
single site error rate was lower for the European sample compared to ttea Aaiople and

lower with neutral selection than with positive selection.

4.4.2 Switch Error Rate

When considering the switch error rate, Beagle performed better than all othe
programs with average rates between 0.01-0.03. Again, ENT had the highest saitch err
rates ranging between 0.25-0.36. CHAT (0.06-0.12) and HaploRec (0.08-0.18) had similar
rates, with CHAT performing slightly better. Figure 4.4 shows a histograhe @vierage
switch error rate for each program.

All four programs showed similar trends when considering individual dataset
comparisons. With one exception, all programs had a significantly lower switcHaerthe

African sample compared to the European sample, significantly lower witlahseigction
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than with positive selection, and significantly lower with a larger datddet.one exception
pertains to ENT which had a lower switch error rate for the European sample edngar

the African sample.

4.5 Discussion

CHAT displayed a higher level of accuracy when compared to all other haplotype
phase inference programs with regards to single site error rate. etowleen considering
switch error, of which CHAT was predicted to perform better, CHAT was able pe rbotm
both ENT and HaploRec. An increase in sample size consistently showed aasignific
improvement in the performance of all haplotype phasing programs, although the walz@ng
small for ENT and HaploRec. A larger sample size provides a more completenspofipli
the overall population and as a result improves the representation of rare haplotypes.
Specifically for CHAT, a larger dataset increases the enrichmehtahg between
individuals. It is notable that in the large dataset nearly 30% of samples hadclyperfe
predicted haplotype phase configuration for the markers that were chosen foomclusi
Although the markers included in the phase determination was limited, an insurmountable
number of individuals were phased for these markers with absolute accuracy.

CHAT was able to have a high degree of accuracy when phasing because it was
selective when choosing markers to include in the finished haplotype phasea&iitiy
The publicly available haplotype phase inference programs determine haplotgpdqtell
markers entered into the program; however, CHAT does not attempt to determine the
haplotype phase for all of the markers. This is not surprising since CHATetvag ®©

determine phase only for markers covered by the shared haplotypes. Fordhe sdmple
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an average of 39% of markers were phased per sample, for the European samplénaith ne
selection 35.4%, for the European sample with positive selection 18.2%, and for the larger
European sample 18.6%.

Figure 4.5 shows the number of samples for each marker for which phased haplotype
data was successfully generated by CHAT. For the first 100 kb and the last 50 kb, ghase wa
determined for around a hundred individuals. Phase inference may be difficulistr the
regions because there is less overlap at the beginning and end of the sequenceiddtiethe m
most markers reach the upper limit of phased individuals with other markersestatte
between phasing for 900 to 650 individuals. Around 900 kb, there is a reduction in coverage
as the number of successfully phased individuals drops to a range between 850 and 550
individuals. The genomic region covered by this reduction has a lower marker dénskty w
is likely influencing the drop in coverage. This graph reveals that markeagevisrpoor in
regions of low marker density and at either end of the chromosome.

As shown by the graph, the maximum number of phase determined individuals never
reaches the maximum of 1000. For the datasets with neutral selection, phasemasekbt
for all samples for at least some of the markers. For the datasets withepssigiction,

CHAT provided phased haplotypes for 90% of the samples: 89% for the European sample
with positive selection and 92% for the larger European sample with positiveaselect

It was postulated that markers left unphased by CHAT were likely rare in the
population and not contained in the common haplotypes easily identified as shared between
individuals. To improve the coverage of CHAT, an additional filter was applied to the
dataset with the larger sample size to remove markers with a minor edtplericy (MAF)

less than 5%. A marker with a low minor allele frequency could be a recentomuatiat
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simply not represented well in the subset of the population sampled from the origgeal, la
population. In a real dataset, markers with low minor allele frequencie$ @asolbe due to
genotyping error. Regardless of the cause, exclusion of these rare mankexduca the
specificity required for the identification of shared haplotypes by reddlcencare
haplotypes represented in the sample and allowing more individuals to be identified wi
common haplotype. The MAF filter greatly improved coverage and moderatelgveapr
phasing accuracy. While 8% of samples were completely unphased when cogsiaerin
full range of MAF, only 1.5% of samples remained unphased after the application of the
MAF filter. The average percentage of phased markers per individual also ichpiftee
the application of a MAF filter. When applied to the complete dataset, an average of 81.4%
of markers per sample were unphased. After the MAF filter, an aver&@es6b of markers
per sample were unphased. This indicates that nearly a quarter of the originaednpha
genotypes had low minor allele frequencies meaning that they were rargopthation
and likely not included in the haplotypes shared between individuals in the population. The
removal of markers with low MAF improved both the single site error ratevaitchserror
by 1.3 fold. However with regards to both measures, the improvement did not change the
performance rankings of CHAT in relation to the other phasing programs.

When comparing the performance on the various datasets within programs, there was
improved accuracy for the African dataset compared to the European as wethas for
neutral and compared to positive selection seen nearly consistently leegpistype phasing
programs. Haplotype phase inference should be more difficult in an African population
compared to European since there should be greater diversity and more complax, shorte

regions of linkage disequilibrium. But this also results in a higher number of polymorphi
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sites and thus a denser genetic map than the younger European population. Likewise,
positive selection will lead to less variation in haplotypes present in a population, leut mor
polymorphic sites can develop under neutral selection. This improved accuracy is likely
driven by the density of markers found in each dataset. It is logical tm@skat a denser

set of markers will provide a more complete picture of haplotype diversitpetter

frequency predictions leading to increased accuracy overall.

The main goal of this study was to understand the accuracy of the haplotype phasing
capabilities of a novel algorithm Convergent Haplotype Association Tagging, AT CH
CHAT is unique compared to other haplotype phase inference programs becausets res
the search space of possible haplotype configurations by identifying hapldtgoed s a
population that were inherited from a common ancestor. When considering singleosite er
rate, or how many markers were placed together on the same chromosome, CHAT
consistently outperformed other phasing programs applied to the same data.tdfor swi
error, or how flanking segments of the chromosome are placed, CHAT perforrtexd bet
when compared to ENT for the African set and the large sample set.

Clearly the strength of CHAT lies in the ability to accurately pretiethaplotype
phase in regions covering long shared haplotypes for datasets with a large oumbe
samples. CHAT is very accurate with regards to single site erromcitaa@derately
accurate concerning switch error on the markers that it does choose to phase.ove impr
coverage, it is important to filter markers with low minor allele frequeranéesto maximize
the number of samples. It is probable that coverage will improve with larger ssingde
given the trends comparing 1000 and 2000 samples; however, more complete coverage will

likely come from reduced stringency in sharing or through an alternatithedcthat can be
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applied to fill in the unphased gaps. While the current implementation of CHAT is unable t
meet the complete coverage provided by current haplotype phase inferendkrafyariis
possible to apply the entropy minimization technique implemented in ENT to determine
phase for the markers left out by CHAT analysis. It is likely that the higlracy phasing
across shared haplotypes provided by CHAT combined with the moderate accuradgdorovi

by entropy minimization would provide both high accuracy predictions and better gevera
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Table 4.1 Fold change between comparisons
The amount of difference between comparisons. Values less than one indicast sieé f

had lower error rates, while values greater than one indicate the second hasrlonetes.

Single Site Error Rate Switch Error
Haplo Haplo
Beagle ENT CHAT Beagle ENT CHAT
Rec Rec

African s 0.95 1.02 1.07 0.9 0.79 1.04 0.86 0.69
European
neutral vs positive  0.91 1 0.94 0.98 0.38 0.71 0.5 0.73
sample size 1.22 1 1 1.17 1.82 1.01 1.04 1.23
small vs large
Compared to
CHAT
African 1.54 2.87 2.61 - 0.17 4.27 1.25 -
European neutral 1.45 2.53 2.18 - 0.15 2.85 1.01 --
European positive  1.57 2.48 2.28 - 0.28 2.93 1.47 -
large sample 15 2.92 2.68 - 0.19 3.58 1.75 -

Table 4.2 Significance Testing
Provides the p values, as calculated through a student t test, used to detemiic@nsig in

the comparisons between programs as seen in table 4.1.

Single Site Error Rate Switch Error
Haplo Haplo
Beagle ENT CHAT Beagle ENT CHAT
Rec Rec

African vs
European 4.32E-02 1.15E-18 6.21E-29 7.25E-03 3.31E-19 1.25E-20 1.26E-49 1.21E-20
neutral vs
positive 3.89E-05 3.10E-01 1.13E-18 7.09E-01 1.19E-225 0.00E+00 0.00E+00 2.97E-15
sample
size small
s large

3.81E-04 8.01E-01 6.11E-01 9.47E-16 3.44E-134 3.40E-03 5.93E-07 1.00E-21
Compared
to CHAT
African 5.21E-35 0.00E+00 4.63E-299 - 2.71E-123 0.00E+00 1.11E-15 -
European
neutral 2.19E-32 0.00E+00 2.90E-232 - 2.34E-170 0.00E+00 6.22E-01 -
European
positive 5.26E-49 7.79E-259 2.60E-218 - 1.65E-100 0.00E+00 8.98E-49 -
large
sample 1.10E-97 0.00E+00 0.00E+00 - 1.55E-131 0.00E+00 3.93E-246 -
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Figure 4.1 Inheritance of Ancestral Haplotype

lllustrates the inheritance of an ancestral haplotype harboring a mutié¢iosexveral
generations. The initial chromosome represents the ancestral chromosonmencpataait-
causing mutation. After several generations, individuals that have inherited tteomatso
contain some amount of ancestral haplotype surrounding the mutation.
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Figure 4.2 Data Simulation

Diagram of Fregene generated data simulation. A population of 25K sequencetediarea
“Africa” and allowed to evolve for 125K generations. The African population further
expands to 48K sequences and continues for another 17K generations. From this set, 4K
sequences leave Africa, termed the Out Of Africa population, and the remainiegdmitt

to 380 sequences. The African and Out of Africa populations expand to 48K and 15.4K
respectively and evolve for 3.5K generations. The Out of Africa population expsreence
bottleneck to 1.3K sequences and splits into a “European” population of 320 sequences and
an “Asian” population of 1K sequences. The European and Asian populations expand to
15.4K sequences and evolve for 2K generations. During this time, migration iscattowe
occur at a rate of 0.8xfhetween the Asian and African populations and 3.2)dfween

the European and African populations. Finally each population evolves independently until
each reaches 50K sequences.
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Figure 4.3 Single Site Error Rate

Average single site error rates for the tested datasets for eacltypagibtise inference
algorithm. Error bars represent the standard error of the measurement.
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Figure 4.4 Switch Error Rate

Average switch error rates for the tested datasets for each haplotypenpérasee
algorithm. Error bars represent the standard error of the measurement.
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Figure 4.5 Coverage

Number of samples for which phase was predicted through CHAT for any giveopositi

Coverage of Phased Markers for European Selection Dataset
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Chapter 5 — Conclusions, Limitations, and Future Diections

The fifth and final chapter of this dissertation will review the conclusions &ach
project. Also included is a discussion of some of the major limitations encountered in the
study of complex disease and how each relates to the current projects. At the emnd, futur
directions for each project will be suggested as well as some predictions outbefuhe

genetics of complex human disease as a whole.

5.1 Project Specific Conclusions

5.1.1 The investigation of2YP2E1 with the level of response to alcohol

Combined linkage and association analysis of the G&R2E1 was able to reinforce
the implication that this gene, known for its metabolism of ethanol, affects thefeve
response to alcohol. A genome wide linkage scan of sibling pairs with an alcohefit par
originally suggested the involvement@YP2E1. Variance component linkage analysis with
the inclusion of a number of SNPs locate€¥P2E1 confirmed the suspected linkage
between this region at the end of chromosome 10 and the level of response to alcohol. The
reduced evidence for linkage after the addition of sibling pairs was attributadlsingle
family with unreliable phenotype measurements. A number of SNPs genotyped from
CYP2E1 were found to be associated with the level of response to alcohol through a mixed

model regression, but copy number was not found to be associated. So either the level of



response to alcohol is not affected by carrying multiple copies of the rikk alle
individuals with copy number changes did not carry the minor allele due to a low minor
allele frequency (MAF = 0.056). Testing for linkage while simultaneousigleling
association allows for the confirmation of a causal variant or a variant iple@h.D with a
causal variant. However tests showed that the most associated SNP could not be
conclusively ascribed as a causal variant.

It is likely that there are multiple causal variants in CYP2E1 in diffdeantlies
affecting the level of response to alcohol or that the single causal wadamtot included in
the SNPs chosen for genotyping in the gene. If the latter is true, itlisthie¢ the causal
variant is upstream of the most associated SNP due to the trend in LOD scotiemediite
LOD score was reduced the most by the SNP that showed the best evidence fati@ssoci
and the amount of reduction decreased for markers downstream on the chromosome. The
most associated SNP is located upstream fEdf2E1, so this unidentified causal variant
could be located even farther upstream and have some kind of regulatory effectemethe g
Although a causal variant could not be identified, evidence from linkage, assocaatd
knowledge of biological pathways indicate that changes in orG¥R2EL1 regulate the
activity or expression of this gene, thus affecting how the brain percécad®Bleading to

differences in the response to alcohol.

5.1.2 The association of th1APT region with Pick’s complex diseases
A genome-wide association was performed on four different sub-types of Pick’s
disease. While a very large number of SNPs were found to be associated wigintdiffe

diseases, the results reported focus on the inverted region on chromosome 17 surrounding the
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gene Microtubule Associated Protein TauM#PT. The association of this region with
Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneratins((@ports
previously reported associations of this gene with these diseases. PSP amb§&BD
commonly include aggregates of tau, the protein produdA®T. The study was also able
to replicate the overrepresentation of the H1 haplotype in this region in PSP and CBD.
Either the H1 haplotype contains causal variants increasing risk, or ttmagte H2
provides some protection from PSP and CBD but not for FTD. Due to the inversion

surrounding the gene, it is difficult to narrow down an exact causal variant.

5.1.3 The evaluation of a novel algorithm for haplotype phase inference

A novel algorithm called CHAT was created to determine the haplotype phase of a
unrelated set of individuals for genome-wide genotype data. The current sheditai
understand the accuracy of haplotype phase inference on datasets simulated eneletr diff
conditions as well as compared to publicly available haplotype phase infereg@nmso
CHAT showed significant improvement regarding the single site etemtaen compared to
the other haplotype phase inference programs for all datasets. Reguatitthgesror,
CHAT was able to outperform ENT and HaploRec. The coverage of haplotype phase
inference performed by CHAT was very selective and directly dependeim on t
identification and overlap of shared haplotypes. Although up to 30% of samples had
haplotype phase configurations with perfect accuracy for the datakeaheitarger number
of samples, CHAT was not able to determine the phase for the complete lerngthegfion
for all samples. The strength of CHAT lies in the ability to accuratelligirthe haplotype

phase in regions covering long shared haplotypes for datasets with a large aumbe
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samples. CHAT is very accurate with regards to single site erromcita@derately
accurate concerning switch error on the markers that it does choose to phasehéVhile
current implementation of CHAT is unable to meet the complete coverage provided by
current haplotype phase inference algorithms, it is possible to apply thpyemtinimization
technique implemented in ENT to determine phase for the markers left out by CHAT
analysis. lItis likely that the high accuracy phasing across shared haplptgvided by
CHAT combined with the moderate accuracy provided by entropy minimization would

provide both high accuracy predictions and better coverage.

5.2 Limitations and Challenges of Genetic Analysis

The success of the studies presented here, as well as other studies of ite @enet
complex human traits, is dependent on the ability to maximize the power to dgteeta
effect and to minimize the occurrence of false positive findings. Mamynge-wide
association studies are not powered well enough to detect variants with lacge thfat can
be distinguished from the noise of false positive associations. While false @os#ive
obscure the identification of true positives, overly strict exclusion crit@nébe just as
detrimental when true positives are eliminated along with the falsevessitiVhat follows
is a discussion of the many considerations to maximize power and achieve a balaveen
true and false positives. Attempts to maximize power can be divided into six aagegori
sample considerations, phenotype considerations, the linkage disequilibrium otiocoarrela
between markers in a population, control for false positive results, replication tbigoosi

findings, and the genetic component of a phenotype or effect size.
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5.2.1 Sample Considerations

The power to detect a genetic influence for a trait increases with theanchisnore
samples. The minimum number of samples needed to glean the most power fronta genet
study and to minimize genotyping costs can be estimated based on featureso$dhe c
variant to be detected, including allele frequency, penetrance, and magnitéféetphe
measurement of the amount of risk provided by a variant. There is some ungéutéin
calculation because features of the unknown causal locus must be estimatéd Bstwel
more often the sample size of a study is limited based on the availabilityadfls affected
individuals, as was the case with the Pick’s disease GWAS which focused on rare
neurodegenerative diseases.

There is a tendency to collect large sample sets and combine samplgpepabdt
multiple research centers in order to maximize the power to detect vavidngsnaller
effects. While this does increase the overall power, genotypes and phenotypes Ioeay not
consistent across research centers leading to biases resulting from thbetddegeneity.
The CYP2E1 alcoholism project is one example where the intent to increase the power to
detect an effect by the addition of extra samples was detrimental to tiai evietence for
linkage. Including more samples in a study will increase the chance éoogeneity
leading to the apparent association of regions unrelated to disease statug¢assmthe
chance for false positives or, as seen in the CYP2EL project, obscuring the evadence f
genetic region that may actually affect disease—a false negateterogeneity can occur
through incorrect sample definitions, either by poorly defined cases and sanmtll

differences in population ancestry.
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Through the identification of appropriate cases and controls heterogeareibg c
minimized. For a qualitative trait of case/control, the status must be dypliiined and
easily differentiated. The choice of phenotype will be discussed in detgildatehe
phenotype should be easy to measure and reliably consistent. Heteroggmbiy
minimized if the cases share a specific subtype of a phenotype. Controls shoailfilcdom
the same population as the cases and be at risk for disease, but must be excluithed from
disease or trait of interest. In studies of substance abuse, like alcoholisonttioés must
have had exposure to the addictive substance but not be addicted. For a rare disease suc
Pick’'s complex it is unlikely that any control individual will be affected big important
for age-related diseases like dementia be matched for age. The saradas geender and
any other variable unrelated to a genetic effect that could have an influence ait,thieetr
environmental exposures.

Another consideration for reducing heterogeneity is the effect of popubaticestry.
Unlike linkage analysis, which controls for ancestral background internally thtbegh
inclusion of family members, association analysis is highly vulnerable to piopulat
stratification creating apparent correlations with variants uncetatéhe trait. Population
stratification occurs when the ancestral composition differs betweesn aadeontrol. If the
frequency of a specific allele is also different between the populations fodinel sample,
that allele could show a false association simply due to population effects. nilesa
the association study of Pick’s Disease were screened for Europeatnyaaicg $opulation
stratification was undetected by Eigenstat, a program that looks fofictain in GWAS
data. The effects of population stratification are minimized by resggisamples to a single

continent of origin. But stratification may even exist in a single contifsatmples come
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from different regional areas introducing more cryptic differencese W@y to reduce the
effects of cryptic population stratification is to choose a homogeneous populataie sith
a more recent common ancestor. In a homogeneous population most mating occurs within
the population and genetic variants affecting a trait are more likely to comelie same
mutation and thus be located on the same haplotype.

Genetic heterogeneity can also occur when multiple variant lead to the same
phenotypic outcome. Methods to minimize the heterogeneity created by the choice of

phenotype will be discussed in the next section.

5.2.2 Phenotype Considerations

A search for regions of the genome that affects a trait will perform piddinky
phenotype is not well defined. TREYP2EL1 linkage study illustrates the importance of
accurately reported phenotypes. Skewed phenotype scores from one familpougie ®
introduce heterogeneity into the sample and obscure the genetic effectddressas the
importance of accurate phenotype measurements that can be reliahlyeded3omplex
human disease can be very heterogeneous; some diseases are defined byrémeeot
any number of symptoms. For example, in the association analysis for Pieldsalisach
subtype of disease is defined by a number of clinical and pathological featurb® éxact
set of features can vary between individuals. A trait needs to have a clegiodednd be
easily determined. The different subtypes of Pick’s disease can be gathlbyaconfirmed,
but are often misdiagnosed at the clinical level.

The choice of phenotype is also a concern for heterogeneity minimization. Often the

phenotype used in GWAS is a dichotomous classification of disease status. Fowieen) i
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on a particular symptom, or endophenotype, of a disease can reduce heterogeneayeand m
a genetic cause easier to identify. The CYP2EL project focused on a quarttaétige

there were no case/control determinations. Instead, sample collectioastversed to
individuals that had an alcoholic parent, thus increasing that individual’s own risk for
alcoholism. Focusing on individuals with a known high risk for alcoholism reduces the
heterogeneity that could be encountered in a study of the risk for alcoholism endralg
population. Additionally, a specific measurement such as the level of respornsehtl &

more likely to be affected by a similar genetic cause in different indigdwmashpared to

considering the broad definition of alcoholism.

5.2.3 Linkage Disequilibrium Considerations
The power to detect an untyped causal variant depends on the level of correlation
between the genotyped markers and the causal variant. The number of samples needed to
detect an unmeasured causal marker is proportional to the level of linkage dizequodr
r> a measure of correlation, between the typed marker and the untyped causal irteeker
likelihood of measuring a marker in linkage disequilibrium with a trait causmgslcan be
improved by increasing the density of genotyped markers or by choosing a popuititian w
recent common ancestor. In such a homogeneous population, the regions in linkage
disequilibrium will be larger, so fewer markers will be required to coverf #he variation.
Alternatively, the power to locate the exact genetic effect incredgeshe number of
generations to a common ancestor due to the smaller size of region in linkagdidraem.
The power of a genetic study increases with the inclusion of more distdatgdre

pairs. Association maximizes this power by comparing very distantlydeladividuals.
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Compared to association based analysis, linkage analysis can map a trarytaeee
region since linkage analysis is based on the inheritance of chromosomes frgmezaetr
ancestor. In the case of the sibling pairs used in the current study, that comestaranc
would be the parents. As a result, the comparison is made after only one meiosis and one
chance for recombination leading to very large regions in LD. This is illustratae
linkage study to find regions that affect the level of response to alcohol wheirgktgel
peak covered a large region. WHiI¥P2EL provides the most logical evidence for
involvement with our trait, there is not always such an obvious candidate gene in a region of
linkage. Association analysis provides a way to map a trait locus to a mucle§oer r
because the regions of LD are smaller. Association analysis can béecedsis an extreme
version of linkage analysis. It is often assumed in association that theesamoipécted from
a common population are unrelated. In reality, every individual in a population can ble trace
back to a common ancestor. With many more generations, more recombination can occur
dividing the chromosomal region, or haplotype, from the common ancestor into much
smaller pieces. The length of haplotypes shared in a population from a common amcestor
the extent of linkage disequilibrium depends of the number of generations that have passed
and the interrelatedness of the population. An older population will have very short regions
of LD while a younger, less heterogeneous population will have longer regiobs of L

A densely mapped set of markers will increase the power to detect a géieetic
because it increases the probability that a genotyped marker is likely ta baffecient
correlation with the causal variant. Regions of linkage disequilibrium in a linkagye ate
much larger requiring only a few markers to represent the genome. In the gsiame

linkage scan to search for regions of the genome affecting the levepohsesto alcohol,
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only 811 microsatellite markers were genotyped across the entire genomechAlemser

map is required for genome-wide association studies because the ElBlicontains less
information and the regions of linkage disequilibrium are smaller. A more densely

genotyped map will increase the likelihood that a measured allele willlimkage

disequilibrium with the causal allele as it will be able to capture more obthenon

variation in the genome. Similarly, the required number of markers to captureitdimna

in a population is dependent on the number of generations to the common ancestor. An older
population requires more markers to represent the larger number of LD regions.

When the Pick’s Disease project was performed the Affymetrix genotgpipgpnly
included 500 thousand markers, but current genotyping technology has allowed for the
inclusion of up to a million markers. Additionally, using the patterns of linkage
disequilibrium among common SNPs captured by the International HapMap Pribjsct,
possible to increase the density of markers in a study by predicting, or impoérigers not
originally included on the genotyping chip. Imputation was performed for the Pliskéase
project, but the prediction of untyped markers provided limited benefit because tre reqgi

had nearly perfect correlation due to the high degree of linkage disequilibrium.

5.2.4 Data Processing Considerations

An overabundance of false positive results in a study will limit the power to gentif
an actual causal variant. Careful study design through sample and phenotgtieag)ids
described earlier, seeks to reduce false positives but is not enough to prevecuradinces.
Through improved genotype calling algorithms and extensive quality comsehnchers

aim to minimize the prevalence of false positive results.
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The method of genotyping and subsequent data processing has a large influence on
the success of a genetic study, especially for a genome-widgatiesostudy. Because so
many markers are being measured, even a small error rate wilblaaizable excess of
false positives. It is very important that genotype calls be as accanabssble. In a
genome-wide association study, genotype calls for each marker arautaadwtically using
a genotype calling software. Genotype calls for the Pick’s disease pvepecgenerated by
the BRLMM algorithm which categorizes genotype based on the distance of egith sa
measured from the center of the three predicted clustéhe algorithm underlying
BRLMM was explained in detail in chapter 1 of this dissertation. At the tintlgedPick’s
disease study, BRLMM was the best available genotype calling methode WWhBRLMM
algorithm was an improvement over previous genotype calling software,engeerevealed
that many markers are genotyped poorly. The algorithm often misclassifreszygous
individuals as heterozygous, especially at low intensity levels or when slostntap.
Experience has shown that systematic bias or batch effects in the genotypes sathpl
lead to poorly called genotypes. Batch effects can occur due to any déf¢nancould lead
to biased genotype calls and improper associations. These effects can cocliférences
in sample handling prior to genotyping, differences between plates of saorgjesotypes
that were generated at different research centers. After the detgomiof genotype,
possible genotyping errors are removed through stringent quality control althouglemcge
has shown this is not always the case.

Many quality control criteria were applied to the Pick’'s disease ddtassduce the
chance for false positive associations. The confidence score given bytitgpgecalling

software for each genotype is used to distinguish acceptable genotypepiésionable
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genotypes. A call rate is calculated for each sample and each markediariial samples
or markers are removed if too many fail to pass the predetermined threseold rat
Additionally, a minor allele threshold is set to remove markers that arerrarenomorphic
in the genotyped population. Markers with low minor allele frequencies are digpecia
susceptible to errors in genotyping and often lead to over-inflated measugsifafesice
(extremely low p values). Hardy Weinburg Equilibrium describes theedtieduencies
expected from a stable population and is a calculation comparing the measueed allel
frequencies compared to the expected. Markers that do not meet critéterdgrWeinburg
Equilibrium are likely to be a result of unreliable, biased genotype calls amdraoved
from analysis. Often the best way to exclude poorly called markers is to yisispéct the
probe intensity genotype plots and manually make genotype designations. Thisaaitybe
performed with small scale Tagman genotyping efforts, but is nearly irbfosdien

dealing with half a million markers at a genome-wide scale.

5.2.5 Replication

Even after stringent quality control and data processing, not all false posstvs re
can be removed. After any genome-wide scan for genetic variants, replisatequired to
confirm the positive results and increase the likelihood of the identificatiomlofgzally
appropriate variants. With so many statistical tests performed in amadiesoanalysis
combined with the tendency for genomic errors and heterogeneity to calese thage is an
increased potential for false positive findings, or associations that occurrmecha
interspersed with true positive associations. The most accepted correctioutiple

testing is through the Bonferoni correction which divides alpha, the predetermined
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significance threshold level for a single test or how often a test should rgaidicance by
chance, by the number of independent tests performed. This method is often described as
overly conservative because SNP genotypes are not completely independentrikag¢o li
disequilibrium. Even so, the commonly accepted threshold for genome-wide sigmifisanc
5x10® which corrects for one million SNPs. The results from the Pick’s disease phioject
not reach genome-wide significance under this criterion, but many of the uecepor
associations did reach that level. Considering so many different markersreggibis
surrounding MAPT independently show the same level of association and knowledge of the
involvement of the gene with these diseases, it is certain that the asscseatnin the
inversion across chromosome 17 is not a false positive.

Many reported findings have been difficult to reproduce. Either these studies are
reporting false positives or the reproduction approach is not optimal. For th&ékdsvdd
of replication, an independent sample should be taken from the same population, the same
phenotypes should be measured, and the same markers should be genotyped. A true
reproduction will implicate the same SNP for the same allele in the sarogatifgneaning
the same allele increases risk or provides protectto@)ften associations found in one
population do not translate to other populations due to differences in ancestry and allele
frequencies. When looking at variants fro@YP2E1 that confer risk for alcohol related
phenotypes, there is a lot of discrepancy between studies because they drsantpleis
from different populations with different allele frequencies and they focus @mnediff
phenotypes. This is discussed in detail in Chapter 2.

For a replication study, often the most significantly associated nsaake chosen for

genotyping in an alternate set of samples. Errors in genotyping and biasepla szts
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more often lead to extremely significant associations, while the findingslikedyg to be
robust across replication samples are less impreSsi@éten the markers with the best
evidence for association, or most extreme p values, are chosen for replicatcever,
markers with less extreme association levels are more likely toaepbecause they are less
likely to be false positive results. Experience from the Pick’s diseassetlated another
GWAS not discussed in this dissertation has shown that these studies generate an
overabundance of highly associated markers suggesting high false pasészeln these
studies, markers with the most inflated association p values have very unliketye
counts and visual inspection of probe assay plots reveal that unreliable genbtiypeeca

been made.

5.2.6 Effect Sizdor the Genetic Component of a Trai}

To be successful, a trait considered in a genetic study must have a laetie gen
component. Obviously, it should be easier to ascribe a genetic cause to a teaitigaus
larger genetic effect. The heritability of a trait refers proportion ofrtievariance
attributable to genetic effects and can be measured through twin studies by thdayorecor
between dizygotic twins compared to monozygotic twins. The level of response to alcohol
was chosen as the phenotype for@2E1 linkage study because evidence from previous
studies showed that the trait was highly heritable and consistent in families elliidren of
alcoholics had lower levels of response to alcohol than control individuals. Additionally, the
sibling relative risk for a trait or the disease risk for the sibling afffected individual can
be an indication of the feasibility of a study. The sibling relative riskitsileded as the

ratio between the sibling risk and the overall population risk. A disease like FUB acc
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families fairly often but has a vary small overall population risk, so the sit@lagve risk is
very large especially compared to other more common dementia relatesedibea
Alzheimer’s Disease. Alternatively diseases like PSP and CBD qgooradically thus have
a vanishingly small sibling relative risk suggesting that a genetic faudeese diseases
would be more difficult to identify.

A large proportion of the heritability for most common, complex diseases has been
left unexplained by identified genetic variantéssociation studies were created under the
assumption that common genetic variants are likely to cause common diseadesand t
common variants with smaller effect sizes could be detected in a populatiorthzattby
linkage. Association has increased power to detect variants that have aftrogbf a trait
than linkag€e. However, association analysis only has power to detect common causal
variants that are in linkage disequilibrium with genotyped SNPs. The detection of rare
variants with larger effect sizes is technically feasible but would equiattainably high
sample sizes. Typically linkage analysis has greater power to deteearants with large
effects for rare diseases since these traits tend to be found in multiptechffesmbers of a
family. But linkage is less successful than association analysis f@leomnaits influenced
by multiple alleles in different genes contributing only a small amount toviell risk.
Haplotype analysis, especially as constructed through CHAT, provides a batigeen
linkage and association since it can detect rare variants with smalsdéea relatively rare
trait.

The Common Disease Common Variant, CDCV, hypothesis assumes that many
common SNPs with small effect sizes and low penetrance could be detecfedtta af

common trait in a population if enough individuals were genotjpe@urrent genotyping
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platforms are able to capture up to 80% of markers in the Caucasian population with minor
allele frequencies greater than 0.05 but misses any markers with rdeefratjaencies.

The majority of markers found to be associated by GWAS have small effest($i1-1.5)

and explain only a small proportion of the estimated heritability or underlirgfigerause
(5-10%)1%*? It is likely that the CDCV hypothesis is not entirely correct and the rekeof
heritability may be explained by rare variants, copy number changes, actdrstirvariation,

as well as interactions between genes or between genes and environmeniiy To ful
understand the genetic heritability of complex traits will require thestrgagion of these
variants by deep sequencing or new genotyping platforms that can better cagture r
genetic changes.

Variants able to explain more of the heritability with large effedssare expected to
be rare and not well represented by common variation. This is logical consideruigteon
with a large effect on disease would likely be deleterious and be minimized in atjpopula
by selection since it would decrease reproductive fithesdditionally stabilizing selection
would seek to minimize the extremes of the trait caused by variants withe#fes® The
best option for capturing rare variants with large effect sizes will ttesgguencing either
through targeted regions likely to harbor mutations or through a whole genome approach.
The 1000 genomes project plans to sequence a thousand individuals with the hope of

capturing rarer genetic variation with minor allele frequencies betd:6®

5.3 Project Specific Future Directions

5.3.1 The investigation of2YP2E1 with the level of response to alcohol
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It seems evident that sequence changes in or alOWR2EL are affecting the
expression or activity of this gene. To understand 6¥R2EL is changed in response to
chronic alcohol intake, the redox pair compound ratios could be measured in different mouse
strains that respond to alcohol differently. DuntP2E1 mediated metabolism, oxygen
recruits an electron from hydrogen and NADPH resulting in NADFhe redox pair ratio
compares the levels of NADP and NADPH in the brain, thus providing an indication of how
much ethanol has been metabolized>P2E1. Similar compounds can be measured for
the alcohol dehydrogenase pathway allowing for the comparison of pathwatyacliwi
fully understand the sequence variants that affect the activ@y¥®2E1, functional variants
need to be identified either by sequencing or further SNP genotyping upstr&x2agfl to
find regions that correlate with expression.

A single causal variant may not be driving the evidence for linkage at the end of
chromosome 10. Since linkage analysis seeks to find regions of a chromosome that co-
segregate within a family, the specific variants can vary betweeridarag long as they fall
within the same region. So there could be allelic heterogeneity amofagpriities, where a
small number of variants in the gene could be independently affecting threriits in the
level of response to alcohol. It is not fully understood what effect this would have on the
identification of a causal variant as performed in this study. It would be helpfaihévage
simulated datasets with multiple causal variants to understand how the meastyges
affect the reduction of the LOD score when included as a covariate.

A number of additional variables were available for the study of the levedpdmee
to alcohol. During the alcohol challenge, blood alcohol levels and body sway were also

measured. It would be possible to look at the interaction of blood alcohol level and the level
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of response to alcohol. A linkage based study is family based and as a result is tommune
population stratification. Linkage analysis compares only the allele stearthtyait

difference between family members, not across families. So even thougantpke set was
made up of different ethnicities, the genetic differences affectingeiponse to alcohol in
the families were centralized to the region at the end of chromosome 10. It would éave be
beneficial to include ethnicity as a covariate in association analyse ib ®rrecting for
different genetic backgrounds increased our evidence for association. Th®mofus
families in the association analysis accounts for the within familyti@riand is likely
protected from the effects of stratification. It would also have been intgréstconsider
whether the alcoholic parent, mother or father, had any effect on the levepohse to
alcohol.

The current dataset had phenotype data related to nicotine use, however this data was
sparse since values were not reported for the entire sample. Even so, it washsthow
correcting for the average number of cigarettes smoked per day was abledsertbe
evidence for linkage. Given the known interaction between alcoholism and nicotine use
combined with the evidence of an enhanced effect during the metabolism of ethanol and
nicotine byCYP2EL, it would be interesting to further investigate the effect of nicotine use
on the level of response to alcohol and activit£®¥P2E1 in a set of individuals who drink

and smoke excessively.

5.3.2 The association of th1APT region with Pick’s complex diseases

This association found between the inversions contaMi®gT can be considered a

true positive due to the well documented involvement of the gene with these diseases,
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providing some level of plausibility for other positive associations found in the genalae
study. These other associations are not reported here because extensleardatpand
replication is needed. Replication is a necessary follow-up for any agsosiatdy to
minimize errors due to false positives and cryptic biases in a data set. wEnersome
compelling possibilities for positive association, with many that reach genahee
significance, in genes involved with microtubules, endosomal trafficking, andgamgisis.
But they will not be discussed here in detail.

It is likely that the H1 haplotype is harboring mutations inNt#PT gene leading to
disease. Imputation was used to predict the genotypes of markers not includestudyhe
provide a more complete picture of the common variation in the dataset. Howevertlueie t
high degree of linkage disequilibrium across the inversion, imputation provided no additional
information about the association of this. Sequencing is required to understand the rare
variants that can distinguish different sub-haplotypes of H1 and H2. The inversion is onl
present in the Caucasian population, so as an alternative, the study could be penfarmed i
different population to provide a clearer picture of the region and possible causabkvariant
although ascertainment of enough samples in an alternate population could be diffiboilt due
the rarity of the disease.

There are several known isoforms of tau and these isoforms are presentemdiffer
ratios in different subtypes of Pick’s disease. The main two types of isofi@pesd on the
alternative splicing of exon 10 resulting in three or four repeat binding domaingrdtain
aggregates in PSP and CBD are predominantly made up of four repeat domains. It would be
informative to investigate possible splice variants in the gene leadihg tivérabundance

of one type of isoform.
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5.3.3 The evaluation of a novel algorithm for haplotype phase inference

Analysis for this project was performed on a sequence of 1 Mb. Compared to a
standard full chromosome that would be provided by GWAS data, this is rather small. To
test data of that scale, it would be useful to apply the same performanca twitee 10 Mb
dataset provided through Fregene. Parameters for computational job parsing woutd nee
be optimized for the successful completion of analysis for the larger scaseii&iut it
would be expected that CHAT would be able to predict the haplotype phase of a 10Mb
dataset with better accuracy and coverage.

CHAT was not created as a haplotype phasing algorithm and that is not its main
purpose. CHAT was created to identify long haplotypes shared by a subset of irtglividua
with a certain trait in a population with the assumption that such a haplotype could harbor an
ancestrally inherited causal mutation. To test the performance of CHAT alettidication
of trait-causing variants, simulated data can be generated bynErage Sample with

case/control status and causal variants.

5.4 The Future of the Genetics of Complex Human Desse

Future genome-wide association studies need to be well planned and designed with
more power to detect variants with small effects. The most controllabléowagrease
power is through sample size. Current studies include thousands of individuals andahere is
trend for collaborations between large centers to combine genotypes into arrgsen la
multi-center pool of data. But care should be taken to ensure consistency betegeen sit

regarding both genotype and phenotype measurements. As described eddimgtgybias
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in either type of measurement will lead to biased associations. There &stedsid of
focusing on subtypes of disease or intermediate symptoms, often referred to as
endophenotypes. This approach is helpful when there is complex heterogeneity in the
disease definition and avoids the loss of information that results from the useedsedis
endpoint as a phenotype. This also allows for the comparison of symptoms that overlap
across different diseases that could have similar biological causes.

Many GWAS have identified variants that could be involved with diseases and some
of these have been replicated. When examining the association results frostysobvar
diseases, up to 80% of associated SNPs lie in intergenic or intronic regions with no obvious
effect on expressioh®® It is important now to determine the exact causal variants and
understand how these causal variants create changes that lead to disedmem&jority of
identified variants, the effect that these variants have on expression |leadisgase has not
been obvious and detection of functional variants for most identified associations has been
difficult.>® It is likely that the variants are tagging unknown causal variants whigtbena
nearby or at some distance. While linkage disequilibrium does decline with distaac
complex and can span hundreds of kilob&s&se SNP may tag a large number of markers
that are interspersed among other, untagged $Nfsextensive genotyping in a large
region around associated markers is needed to identify probable causal SNBsstThe
option for considering all variants in a region would be deep sequencing.

As mentioned briefly in the introduction, the field of the genetics of complex disease
has been moving towards whole genome or whole exome sequencing to identify specific
variants that increase risk for a disease or trait. With next-generatjoansgeng technology,

whole genome sequencing has become both time and cost effective. Whole genome
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sequencing addresses the problem of uncaptured rare variants seen in assilasnls
also bypasses the reliance on linkage disequilibrium between the genotyped wdriant a
causal variant. But the creation of massive genome-wide sequence leveédatdaspa wide
range of challenges regarding bioinformatics, data mining, and data management. Jus
because the data can be created, does not mean we know what to do with it. New
applications must be created to efficiently sift through the data, identigntsrand make
calculations. Computational and statistical approaches that were apprigur@®AS will
likely not scale well for whole genome applications and more powerful computmg ces
will be needed. Data management and storage will be a particular challenge ndédzkto
be ways to not only store the sequence data and compile results from many owgrlappin
reads, but to retrieve that data and present it in a usable way.

The immediate goal of the study of the genetics of complex human dis¢a$@ds
genetic variants that increase risk for disease. The long term goagply this information
to help treat or predict disease. Genes containing risk variants can be tardeig f
treatment which can alter expression to either up-regulate or down-reggjete as needed.
Variants can be used to screen for individuals that are at risk for diseaseteogba
individuals can modify their behavior or seek preventative help. Genetic vaaare c
used to choose the best treatment for a disease—which drug or what dosage to mdemize s
effects. But to be good predictors, genetic variants need to be easily edeasyinly
accurate, cost effective, and have an effect size large enough tdyaaa&r enough risk to
matter. A genetic variant with an odds ratio of 1.1 will not increase an individisil'for
disease much compared to the general public risk level. A variant would also need to be

relatively common in the general population, or it would be rarely seen and notadrmsti
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clinical use. A better option may be to use multiple genetic variants togethbiasarker
to predict whether an individual will develop that disease based on their set of congkned r

alleles.

5.5 Final Thoughts

The purpose of this dissertation was to apply various statistical and computational
techniques to aid in the understanding of the genetics of complex human disease and the
assessment of genome-wide datasets. The presented projects dembaseasntthough
regions of the genome that increase risk for a trait can be readily disddkieridentification
of the specific variants that directly influence a trait has proven diffidstdemonstrated
throughout the dissertation, to be effective in the identification of risk variants &ttudies
need to increase the power to detect an effect, reduce heterogeneitylgadiaences in
populations or genotypes, minimize the chance of false positives, and increasetiné @
information provided by genetic polymorphisms by using dense maps and combinations of

markers as haplotypes.
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