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ABSTRACT

JEFF POOL: Energy-Precision Tradeoffs in the Graphics Pipeline.
(Under the direction of Anselmo Lastra and Montek Singh.)

The energy consumption of a graphics processing unit (GPU) is an important factor

in its design, whether for a server, desktop, or mobile device. Mobile products, such

as smart phones, tablets, and laptop computers, rely on batteries to function; the less

the demand for power is on these batteries, the longer they will last before needing to

be recharged. GPUs used in servers and desktops, while not dependent on a battery

for operation, are still limited by the efficiency of power supplies and heat dissipation

techniques. In this dissertation, I propose to lower the energy consumption of GPUs

by reducing the precision of floating-point arithmetic in the graphics pipeline and the

data sent and stored on- and off-chip.

The key idea behind this work is twofold: energy can be saved through a system-

atic and targeted reduction in the number of bits 1) computed and 2) communicated.

Reducing the number of bits computed will necessarily reduce either the precision or

range of a floating point number. I focus on saving energy by way of reducing precision,

which can exploit the over-provisioning of bits in many stages of the graphics pipeline.

Reducing the number of bits communicated takes several forms. First, I propose en-

hancements to existing compression schemes for off-chip buffers to save bandwidth.

I also suggest a simple extension that exploits unused bits in reduced-precision data

undergoing compression. Finally, I present techniques for saving energy in on-chip

communication of reduced-precision data.

By designing and simulating variable-precision arithmetic circuits with promising

energy versus precision characteristics and tradeoffs, I have developed an energy model

for GPUs. Using this model and my techniques, I have shown that significant savings

(up to 70% in computation in the vertex and pixel shader stages) are possible by

reducing the precision of the arithmetic. Further, my compression approaches have

enabled improvements of 1.26x over past work, and a general-purpose compressor design

has achieved bandwidth savings of 34%, 87%, and 65% for color, depth, and geometry

data, respectively, which is competitive with past work. Lastly, an initial exploration

in signal gating unused lines in on-chip buses has suggested savings of 13–48% for the

tested applications’ traffic from a multiprocessor’s register file to its L1 cache.
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Chapter 1

Introduction

1.1 Motivation

Graphics processing units (GPUs) in desktop computers have become very powerful

in recent years, capable of creating nearly photo-realistic images by processing hun-

dreds of millions of triangles and pixels every second. Similarly, graphics hardware

has been used for general-purpose computation on graphics processing units (GPGPU)

in applications to accelerate the solutions to problems such as molecular simulations,

modeling large-scale crowds, and weather predictions. GPUs have been integrated

into mobile devices, such as smart phones and tablets, to enrich the user experience

and enable high-definition video applications. In all these domains—desktop graphics,

GPGPU, and mobile devices—energy is a limiting factor in the performance of the

GPU. While mobile devices are ultimately limited by the total energy available after

a battery charge, desktop and server hardware also has to perform within the limits

of their power supplies and heat dissipation solutions. Thus, energy consumption is

directly related to performance! Decreasing the energy demands of the hardware will

allow for both higher performance and longer battery lifetimes.

Nearly all computer graphics are based on the interaction of different types of light

sources with different surfaces, which are well-understood natural phenomena. By

simulating these interactions accurately, computers can render scenes that increasingly

approach reality. As with any simulation, however, the results are approximate. Real-

time graphics regularly employ many tricks to hide errors in these approximations, and

even images generated by offline renderers are not exact replicas of scenes in real life.

At the lowest level, the hardware used to render graphics has limited precision, and

monitors can only display a finite number of different colors. Hao and Varshney first



looked at variable-precision rendering for speed benefits when the vertex operations

in the graphics pipeline were implemented in software and executed on the central

processing unit (CPU) (Hao and Varshney, 2001). By reducing precision requirements,

CPU rendering could be sped up. I take a similar approach, but my target is GPUs and

my objective is saving energy consumption. My approach exposes a tradeoff between

rendering precision and energy demands, which can equate to battery life improvement

in mobile devices and performance increase in power-limited desktop units.

There are many approaches to reducing the energy used by hardware, from semicon-

ductor manufacturing techniques, to reducing the voltage and/or frequency at runtime,

to shutting down entire processing cores. My work is orthogonal to these techniques;

the systematic reduction of precision throughout all levels of the pipeline can be used in

tandem with these and other standard approaches to enable further savings. This work

focuses on just the graphics pipeline, a single component of an overall system which

typically has many other components using energy, such as some number of CPUs

and display screens. While all these other components may use significant energy, the

consumption of the GPU can often limit both the battery life and performance of the

system. For example, a mobile device may deplete its battery much more quickly if the

GPU is used for an extended period of time, and the performance of a GPU running

a graphics or general-purpose application may be unnecessarily limited. For modern

GPUs, power consumption is a significant issue that can cause performance bottlenecks

and frustrate users.

1.2 Background: Graphics Pipeline

Before discussing specifics of how to save energy in the graphics pipeline, let me first

briefly present a high-level view of graphics in general. Computer graphics is, at its

heart, a series of similar computations performed on different data. These computations

are performed in a pipeline, a simplified view of which is shown in Figure 1.1. The first

stage is the transformation of input data—vertices from disparate coordinate frames—

into a unified “world-space” and then into “screen-space” (often combined into a single

matrix multiplication). These transformed vertices are then assembled into triangles

visible on the screen, possibly sharing a transformed vertex between several triangles.

These triangles are sent through the rasterization stage, which generates a list of pixels

that are wholly- or partially-covered by each triangle (“fragments”). These pixels are

finally “shaded,” or given a final color based on lighting and texture information. It is
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Figure 1.1: A simplified view of the traditional graphics pipeline. Vertices enter
the vertex shader, where they are transformed to screen space through a series of
matrix multiplications. These transformed vertices are assembled, or “set up,”
into triangles. Next, these triangles are rasterized, creating lists of pixels covered
by the on-screen triangles. These pixels are shaded, determining their final colors,
before compositing them with geometry that has already been rendered to the
final frame-buffer.

possible to discard (or “cull”) data at any of these stages for reasons such as triangles

existing entirely off-screen, or a set of pixels being entirely occluded behind opaque

geometry that has already been drawn to the screen.

1.3 The Use of Graphics Hardware

The first dedicated graphics hardware was built to satisfy the demanding performance

requirements of flight simulators. Strict requirements, such as real-time frame rates and

low latency from user input to response on the screen, meant that general processors

of the time period were not able to take on the job. The reader is referred to a survey

of the topic for more information (Mueller, 1995).

In the personal computer (PC) market, these operations were, for a time, performed

on a computer’s CPU, the same general-purpose processor also responsible for executing

all applications and operating system functions. However, as rendered scenes became

increasingly complex, dedicated hardware (the GPU) that could be added to a PC was

built to handle part of this load. At first, this hardware handled only rasterization and

pixel operations; later it also performed vertex transformation and lighting operations.

Early graphics hardware used a fixed-function implementation, which allowed for only

minimal control by exposing different “modes” to the programmer, letting them change

such parameters as lighting functions, blending modes, depth cueing, and backface
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culling.

In time, this fixed function hardware gave way to programmable hardware, letting

the application programmer or artist dictate how to transform vertices and color pix-

els. This technology allowed for much more complex rendering techniques than were

previously possible. At this point, scientists realized that these highly-parallel GPUs

could also be exploited for general-purpose computations if they expressed these com-

putations as graphics operations (early GPGPU). As programmability increased, the

processing cores used for vertex transformations and pixel shading became progres-

sively similar, eventually merging into a larger pool of “unified shaders” that can be

allocated dynamically to adapt to varying workloads. This unification has allowed for

new pipeline stages to emerge, such as geometry and tessellation shaders. Further,

hardware vendors have made it easier to program the GPU as a general-purpose pro-

cessor, allowing widespread use of the hardware for GPGPU and high-performance

computing (HPC) applications in addition to the graphics workloads for which it was

designed.

1.4 Contribution: Precision-Energy Tradeoff

Nearly all of computer graphics is an approximation, even with all the processing power

available in modern GPUs. Lighting equations are simplified to run in fractions of a

second. Reflections on surfaces are, at times, not updated each frame. Research into

the human visual system has led to lossy compression formats that are used to save

memory and bandwidth. It is these approximations that lead to the key insight behind

this thesis: reducing the precision of graphics operations need not have a negative effect

on the application’s usability and can save significant energy.

This tradeoff between the energy efficiency of a graphics application and the preci-

sion with which it computes the results can allow the user to choose an operating mode

along the continuum connecting the two extremes. At one end, the user can enjoy a

faithful reproduction of the application designer’s vision at the expense of higher energy

consumption. In mobile devices this will mean a shorter battery life, and in desktop

and server settings, this will mean more heat that must be dissipated and higher energy

costs. At the other end of the continuum is very long battery life (in a mobile device)

with very noticeable errors. It is my intention that the user can choose a point in the

middle that saves significant energy yet does not incur any noticeable errors.

This collection of ideas creates my thesis statement:
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Figure 1.2: “Crysis,” a popular video game, is an example of a class of applica-
tions that can benefit from my proposed techniques. The pictured scene’s depth
information was compressed by a factor of 7.7x, and the geometry data was com-
pressed by a factor of 3.3x with my unified buffer compressor (see Chapter 6).

Reducing the work done in the modern graphics pipeline through novel communica-

tion and variable-precision computation techniques can enable a tradeoff between energy

savings and image fidelity, leading to significant energy savings without perceptible loss

of image quality.

1.5 Results

In order to defend this thesis, I approach the larger problem of energy savings in

several parts, discussed independently, below. All of my proposed techniques apply to

and have been tested on large-scale real-world applications, such as “Crysis” (Figure

1.2) (Crytek, 2007).

1.5.1 Energy Model

I first develop an instruction-level energy model for a GPU (Figure 1.3) by experimen-

tally measuring the total energy used by a reference graphics card. For each operation

(memory accesses, arithmetic, and fixed-function graphics operations), I measure the

energy required for a directed microbenchmark. Then, I combine these individual en-

ergy per operation values to construct a model for any given workload. Accurate to

within 10–15%, it allows programmers or architects to estimate the energy consumed

by a particular graphics application on a particular architecture. By using the model’s
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Figure 1.3: The accuracy of my energy model for GPUs. The model is accurate
to within 10–15% for the tested data sets, leading to very accurate predictions
of energy consumption of the system as a whole, as well as different stages of the
pipeline (see Chapter 3).

predictions for discrete sections of the hardware, I am able to estimate the impact

of reducing the energy in a single part of the graphics pipeline on the overall energy

consumption of the entire GPU. This, in turn, leads to an estimate of overall savings

possible by putting the following techniques into practice.

1.5.2 Energy Savings in Computation

Due to the inherently approximate nature of computer graphics, the precision of floating-

point numbers can be reduced significantly without noticeably affecting the final result,

though the degree to which the precision can be reduced depends on the data used in

the computations. Figure 1.4 shows an example of this: the dragon on the top was ren-

dered with full-precision arithmetic (24 bits of precision) in the pixel shader, while the

lower image used an average of only 12.5 bits of precision. Similar reductions are possi-

ble in the vertex shader stage, leading to average energy savings of 70% in the shaders’

arithmetic (details in Chapter 5). I have also categorized the different types of errors

that manifest themselves at different points in these shaders. Finally, I present sev-

eral techniques for choosing a successful operating precision that saves energy without

incurring intolerable error.
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(a) Full Precision

(b) Reduced Precision

Figure 1.4: Figure 1.4(a) is the reference frame produced by full-precision compu-
tation (24 bits) throughout the pixel shader of a screen space ambient occlusion
demo. Figure 1.4(b) shows the result when using an average of 12.5 bits of pre-
cision in the pixel shader. There are no perceptible differences between the two
images, yet the reduced-precision image saved 71% of the energy in the pixel
shader stage’s arithmetic, or up to 20% of the GPU’s overall energy.
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Figure 1.5: Range reduction of variable-precision prior to compression data is
very effective when used with dynamic bucket selection (HDR1 scene) (see Chap-
ter 6). My approach (“Dynamic”) leads to compressed data sizes closer to the
ideally-compressed size (“Raw”) than two different standard static bucket selec-
tions (“FC/50/75” and “FC/25/50”).

1.5.3 Energy Savings in Communication

I also save energy by reducing the number of bits that are necessary for communica-

tion, both on- and off-chip. First, I suggest two enhancements to a state-of-the-art

compression scheme: dynamic bucket selection and using a Fibonacci encoder. These

two techniques lead to an average improvement of 1.26x for an existing compressor.

Next, I describe a general-purpose compressor that is able to handle data from

any source and of any layout without modification, which is a limitation of past work.

It is clear that the GPU is a very general-purpose device; I feel the use of different

specialized compressors for color, depth, etc., is not beneficial to the GPU’s utility in

a broad range of applications. Using this compressor, I estimate average bandwidth

reductions of 1.5x, 7.7x, and 2.9x for color, depth, and geometry data, respectively.

Lastly in off-chip communication, I suggest a straightforward method that will take

advantage of unused bits in compressing reduced-precision data, called “dynamic range

reduction.” Essentially, this technique treats reduced precision data in a similar manner

to the computation: lower bits are simply ignored. The bandwidth savings will vary,

depending on the data and precisions of the applications, but are expected to be between

5% and 20%. Figure 1.5 shows dynamic bucket selection and dynamic range reduction

working in tandem to lower the bandwidth of reduced-precision data.

Saving energy in on-chip communication takes a different form; since compression

is seldom used for sending data relatively short distances, I explore the use of signal
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gating on a bus from a processor’s register file to its L1 cache. I have shown that the

energy savings are nearly linear with bit width of the bus, so disabling 8 out of 32

bits will reduce the energy consumption by 25%. By simulating the data sent on this

path for several applications, I have enabled savings between 13–48%, with an average

energy savings of 36%. This technique requires only a minimal overhead, which is more

than reclaimed for any “burst length” seen by the bus.

1.6 Outline of This Thesis

Following is the organization of this dissertation. Chapter 2 presents an overview of re-

lated work in the area of low-power graphics and hardware. Then, I present my energy

model in Chapter 3. In Chapter 4, I develop and simulate several variable-precision

arithmetic circuits whose energy-precision characteristics are used to estimate energy

savings in later chapters. Chapters 5 and 6 detail my work in variable-precision com-

putation and communication, respectively. Finally, Chapter 7 summarizes my findings

and offers some conclusions.
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Chapter 2

Background and Related Research

This chapter contains a short primer on power and energy, as well as common energy-

saving techniques, both in the computation and the communication of data. Also, I

review existing variable-precision applications, specifically, work in graphics and physics

simulations.

2.1 Power and Energy

As discussed in Chapter 1, reducing the power and energy consumption of graphics

hardware is an important task for modern architects, hardware designers, and software

developers. The first step in reducing power is understanding exactly how the power is

consumed on a chip. Let us start at a very low level: a simple complementary metal-

oxide semiconductor (CMOS) inverter, pictured in Figure 2.1. The function of the

inverter is to transform a high signal (logical ‘1’) on the input side to a low signal (logical

‘0’) on the output side, or a low input signal to a high output signal, thereby inverting

the input. This is accomplished by a single pair of NMOS and PMOS transistors

that conduct in opposing situations. When the input is low, the PMOS transistor

(on top in the figure) conducts, allowing the output to be pulled high. Similarly, the

NMOS pulls the output low when the input is high. This seemingly simple idea can be

extended to create any logical gate necessary, such as NAND and NOR gates. These

gates, arranged in a particular fashion, can compose a basic circuit: an integer adder,

for example. These basic circuits, in turn, can be combined to create more complex

circuits and, eventually, a processing unit.

Stepping back to the inverter, I will discuss how it consumes power to perform its

simple task. First, we should look at the inverter in the context of a larger circuit: the



Figure 2.1: A CMOS inverter.

Figure 2.2: A CMOS inverter with output capacitance and main sources of power
use illustrated: dynamic power (blue), short circuit power (green), and leakage
power (red).

inverter’s input and output will be connected to other gates. The inverter’s output, in

particular, is said to “drive” the next element (just as the inverter itself is being driven

by whatever came before it). A capacitive load is seen by this output, the magnitude

of which is determined in part by the size of the driven element and the length of

connecting wire. This capacitance is illustrated in Figure 2.2.

There are three main categories of power consumed during an inverter’s operation.

The first, dynamic (or switching) power, is highly dependent on the output capacitance.

It is this capacitance that causes the transistor to have to work to change the output

from one signal to another; the capacitance stores charge, and it must be either charged

or discharged for the signal to change. The second, short circuit power, is due to the

inability of transistors to switch on and off instantaneously. During a transition, there

will be a brief moment when both the PMOS and NMOS transistors are conducting.

At this point, current will have a direct path from the power supply to ground, creating

a short circuit which consumes power without doing any useful work. Finally, there is

11



leakage power, which is always present and not dependent on the activity of the gate.

The transistors that make up the circuit are not perfect switches; some charge “leaks”

through them even when they are disabled. These three sources of power consumption

are illustrated in Figure 2.2.

Dynamic and leakage power are the two dominant consumers of power, so let us

discuss them in more detail. Switching power is dependent on the capacitance: the

larger the output capacitance, the more the gates have to work to change the output

charge. Likewise, the higher the source voltage, the more the output has to change; this

relationship is quadratic. Finally, the frequency with which the output changes directly

affects the power consumed. This is determined by two quantities: the frequency at

which the circuit is operating (or clock speed, f) and the activity factor (α) of the

individual gates. The activity factor is an estimate of how often a given gate undergoes

a transition and is a number between ‘0’ (never) and ‘1’ (every cycle). These various

quantities are shown together in Equation 2.1.

Pswitching =
1

2
CV 2fα (2.1)

Leakage power does not depend on the frequency or activity factor of a circuit or

gate. Instead, it is determined by the source voltage and the area of the gates. (This

is a very high-level treatment that captures the most important aspects of leakage

current; the reader is referred to a more in-depth analysis for further details (Yeap,

2002; Mukhopadhyay et al., 2003; Butzen et al., 2007; Rastogi et al., 2008).) The

leakage power consumed by a circuit component is shown in Equation 2.2.

Pleakage ∝ V ∗ Area (2.2)

Instantaneous power, in units of watts (W), is an important factor in the heat

produced by high-performance hardware, so the effectiveness of the cooling (passive,

fan, or even water-based) used on a circuit can often dictate how much power the

circuit can handle. Further, the power supplies driving computational hardware have

bounds on the amount of power they can deliver. These limits have recently become

a bottleneck in GPUs; if graphics hardware used less power, it could run at a higher

frequency. So, power efficiency is a concern to today’s GPU designers.

Like power, energy is a consideration that designers must keep in mind. Energy,

with units of joules (J) or kilowatt-hours (kWh), is instantaneous power over a period of

time, shown in Equation 2.3. While energy consumption can be important for desktop
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and server hardware, as energy cost directly impacts the total cost of operation, energy

efficiency is even more crucial for mobile hardware. Batteries are limited by the amount

of energy they can store; when that energy is depleted, the device powered by that

battery is useless until the battery is replaced or recharged. While batteries do have

limits on the instantaneous power they can deliver, the lifetime of the battery is often

the more pressing concern to the consumer.

E =

∫ T

0

P (t) dt (2.3)

2.2 Saving Energy in Computation

Saving energy in the computational phase of a program can come at all levels of the

device: algorithmic, architectural, circuit, and even changes at the transistor level affect

energy consumption. Though surveys of existing techniques exist (Benini et al., 2001;

Hung et al., 2009), I will briefly mention and discuss common energy-saving approaches

detailed in these surveys and refer the reader to them for more details.

2.2.1 Power, Clock, and Signal Gating

The most straightforward way to save energy is to attack the power term in Equation

2.3. In turn, there are two quantities in Equations 2.1 and 2.2 that can be changed at

runtime: the voltage and frequency of the circuit. (The hardware’s area, capacitance,

and switching activity are tied to circuit- and architectural-level decisions.) Shutting

off either the power or the clock that drives the circuitry will stop the circuitry from

performing useful work but can drastically reduce the power, and therefore energy,

consumed. Both techniques have their own benefits and caveats, however.

Power gating refers to completely turning off the supply voltage to some area of

circuitry. Clearly, a circuit with no voltage will not function, so it is used on circuitry

which is not currently needed, such as a floating-point unit (FPU) during an integer

operation. Since a circuit’s voltage plays a role in both its dynamic and its leakage

power, power gating will reduce both of these quantities. Power gating can also apply

to many levels of the hardware, from entire cores and partitions down to computational

paths for individual bits. However, completely turning the voltage to a circuit on and

off is not instantaneous—the hardware may take some time after it is re-enabled before

it is usable again. Scheduling power events is a complicated problem, both for making
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sure the hardware is available for a task (Wang et al., 2010), as well as reducing noise

in the power lines driving the hardware (Jiang and Marek-Sadowska, 2008).

Clock gating does not affect the supply voltage; rather, it eliminates switching ac-

tivity in a component by changing the effective frequency to zero. As this frequency

term is only found in the equation for dynamic power, clock gating does not affect leak-

age power; current still leaks through the transistors in the path to ground. However,

re-enabling a clock-gated circuit is much faster than re-enabling a power-gated circuit,

and there are no issues with noise on the power and ground rails. As with power gating,

clock gating can be applied to many levels of the hardware’s design.

One last type of gating does not change either the voltage or the frequency, but

focuses on the activity factor (α) in Equation 2.1: signal gating. If it is known before-

hand that the result of an operation (or sequence of operations) will not be used, then

the inputs to the hardware can be “frozen,” or held at a constant value. This value

can be a logical ‘1’ or ‘0’ (which is simple in implementation, but can require a small

amount of power to force the inputs to a particular value) or it can take the existing

value as the constant value (which can be slightly more complicated in implementation,

but requires no power to change the values). Signal gating can be applied to entire

registers, or even just to individual computational paths (Huang and Ercegovac, 2001).

In Chapter 4, I use very fine-grained power gating to shut down sections of arith-

metic circuits for energy savings, and I use signal gating in Chapter 6 to save energy

in on-chip communication of reduced-precision data.

2.2.2 Dynamic Voltage and Frequency Scaling

While simply gating the voltage or clock signal to a circuit can save significant energy,

it can sometimes be too heavy-handed; reducing the voltage and clock speed by some

factor can often save energy while still allowing the circuitry to function as intended.

Changing voltage and frequency at runtime, or dynamic voltage and frequency scaling

(DVFS) (Benini et al., 2001), allows for a tradeoff between power or energy and per-

formance. A simple example showing the effect of DVFS on a circuit’s dynamic power

should make this tradeoff clear.

Given a simple circuit that performs work at a voltage of 2V and a frequency of

100Hz, and expressing switching activity (α) and capacitance (C) (seen in Equation

2.1) as a single constant, k, the switching power is given in Equation 2.4. Equation

2.5 shows the power consumed by the same circuitry running at half the voltage and
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half the frequency of the original. (Voltage and frequency do not necessarily scale with

the same ratio; this is a contrived example!) Finally, Equation 2.6 shows the ratio of

dynamic power consumed by the circuit operating at original and scaled voltage and

frequencies; the circuit under DVFS uses only one-eighth the power.

Pbase = k ∗ 22 ∗ 100 (2.4)

= 400 ∗ k

Pscaled = k ∗ 12 ∗ 50 (2.5)

= 50 ∗ k

Pscaled =
1

8
Pbase (2.6)

There is one final step to find the energy savings. Since the frequency of the circuit

was halved, the time spent in the computation was doubled, which, as we saw in

Equation 2.3, will play a role in the energy. The energy consumed by the circuit

(Equation 2.7) is reduced by using DVFS (Equation 2.8) to only one fourth of the

original energy (Equation 2.9):

Ebase =

∫ T

0

Pbase (t) dt (2.7)

Escaled =

∫ 2T

0

Pscaled (t) dt (2.8)

=
1

8

∫ 2T

0

Pbase (t) dt

=
1

4

∫ T

0

Pbase (t) dt

Escaled =
1

4
Ebase (2.9)

The performance and power tradeoff should be clear. However, in some circum-

stances, there need not be a performance hit. With two similar units (be they simple

adders or entire processors) and a sufficiently parallelizable workload, the same work

can be done in the same time with much less energy by using both units at the same

time. This is the approach taken by NVIDIA when motivating the use of multiple

CPUs in their Tegra 3 system-on-a-chip (SoC) (NVIDIA Corporation, 2012).

15



2.2.3 Workload Reduction

A slightly different approach to saving energy is to simply do less work. If the work that

is not performed was not necessary, or at least not noticeably important, then the larger

application can save energy by not performing it. For instance, Lafruit et al. present a

method for estimating the time necessary to render a frame based on input statistics

and render states and reducing the workload gracefully if this time is too large (Lafruit

et al., 2000). By reducing the render buffer (virtual screen) size, texture resolutions, and

mesh resolutions, the authors have shown that rendering time can be (approximately)

bounded with a “full” result, rather than truncating the rendering process in the middle

of a frame. This allows for a quality/performance tradeoff, starting with a full-quality

input scene and scaling down as desired.

Similarly, variable-precision techniques seek to do less work and arrive at approx-

imate answers to computations, which, in many applications, are close enough to the

correct answer. This is a broad topic, and I discuss it more fully in Section 2.4.

2.3 Saving Energy in Communication

Communication, not just computation, of data can also be a target for significant energy

savings, and there have been studies detailing the power consumption in communica-

tion hardware (Lahiri and Raghunathan, 2004). Long-distance data communication

consumes roughly an order of magnitude more energy than the computation performed

on that data (Keckler et al., 2011), and this disparity is expected to increase in the fu-

ture as transistors continue to shrink. There are many ways of approaching reducing the

energy consumption of communication, which can target the amount of data, encoding

of data, or even how the data is sent over long wires (Oh et al., 2006). Caches can

reduce the amount of data that must be sent over a long distance, effectively increasing

the bandwidth and energy efficiency of the hardware, but can hurt performance when

handling poorly-behaved data access patterns (Bahar et al., 1998). Choosing different

encodings for the data sent across a bus can reduce the transitions seen on long wires

(the α term in Equation 2.1) (Zhao et al., 2007; Lindkvist and Lofvenberg, 2005).

I look closely at compression of memory traffic on graphics hardware (Ström et al.,

2008; Rasmusson et al., 2009). Compression can reduce redundancy within data, ex-

pressing the information contained within it more compactly and making it more effi-

cient to send across wires. More information can be found in Chapter 6.
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2.4 Variable-Precision Applications

Reducing the precision of the variables used for computation in an application can

be seen as a reduction in workload. The results may no longer be as exact, but the

computational effort can be greatly lessened. This type of tradeoff has been explored

in many domains, which I discuss briefly below.

2.4.1 Graphics

Variable-Precision Rendering

Hao and Varshney looked in-depth at variable-precision rendering in the geometry

transform and lighting stage to accelerate 3D graphics (Hao and Varshney, 2001). It

is important to note that their work focused on CPU-side rendering, so they exploited

the use of MMX (a single-instruction multiple-data (SIMD) instruction set designed by

Intel) instructions and operated on integer and fixed-point representations. Further,

they applied their work to the fixed-function pipeline, which has fallen to the wayside

with the introduction of programmable shading. However, their work provides a foun-

dation upon which to build a modern exploration. First, they present a breakdown of

sources of error in data sets and computations for inputs with n bits, listing worst-case

errors.

1. Representation error. These are statistical and observational uncertainties. At

worst, the representation error is one half bit: εrep ≤ 1
2
.

2. Addition error. Propagation error leads to at most one bit of lost accuracy for

each addition.

3. Multiplication error. Using 2n bits to store the intermediate result, the worst

case error occurs when both operands are close to 2n−1 and the representation

error is 1
2
: one bit of accuracy can be lost during each multiplication.

4. Division error. Assuming the division is in the transformation from homogeneous

coordinates to 3D image-space coordinates, the loss of accuracy is:⌈
log2(1 +

distanceoffarplanefromeye

distanceofscenevertextoeye
)

⌉
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Finding the total error incurred is a linear combination of errors for each operation.

Working backwards from, for example, 10 bits of precision in x and y for a 1024x1024

rendering window, one can find the necessary bits at the input to guarantee 10 output

bits of precision. Sub-pixel accuracy is computed by artificially enlarging the window

size.

Small objects in the distance do not need as much precision as a big object in the

foreground. They propose an octree-based bounding volume hierarchy (BVH) to keep

track of the position of rendered items in space to take advantage of this technique.

If the near and far vertices in a cell need the same number of bits to be represented

accurately, then this number can be used for every vertex in the cell; otherwise, it must

be split.

Spatial coherence can be exploited in 3D models by encoding neighboring vertex

positions as offsets from previous positions. Temporal coherence can be similarly ex-

ploited by expressing a transformed vertex as the sum of the originally transformed

vertex and the original vertex transformed by the difference between the previous and

current transformation matrices.

There are further sources of error in lighting operations that were not present in

vertex transformations.

1. Operands with different accuracy. When two operands have different precisions,

results always take on the precision of the lesser-precise operand.

2. Dot products (of unit vectors). For dot products of two three-component vectors,

the results will lose one to two bits of precision.

3. Square roots. When implemented with a lookup table, the result will have nearly

the same precision as the input (as long as the input is bigger than 22n−2).

4. Exponentiation. A step in the calculation of the specular component which will

incur a loss of precision of 6 bits.

Lighting computations can be treated just like spatially-coherent geometry, calculating

one vertex’s lighting as an offset from a neighboring vertex’s result.

Minimum Triangle Separation

A common problem that has plagued graphics applications for years is called z-fighting,

and it occurs when two triangles are (nearly) co-planar. The limited precision of the
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Figure 2.3: Z-fighting in the shoreline of a frame from “Grand Theft Auto: IV.”

depth buffer cannot capture the correct rendering order across the entirety of the tri-

angles. So, one triangle is rendered in front of the other triangle in some pixels, with

the opposite ordering chosen for other pixels. The effect is exacerbated as the view-

point moves, since the ordering is not spatially coherent. An example of z-fighting in

the video game “Grand Theft Auto: IV” can be seen in Figure 2.3 (Rockstar Games,

2008). Apparent even when rendering a scene at full-precision, this problem can become

worse as geometric precision is reduced.

Akeley and Su analyze the minimum triangle separation in object-space for cor-

rect occlusion given a viewing environment: camera position, field of view (fov), and

window coordinate precision (Akeley and Su, 2006). By beginning with a minimum

triangle separation, instead, an artist can calculate a final minimum necessary buffer

and geometric transform precision to use when reducing the precision of an application

that utilizes their 3D models.

Their method works as follows: an uncertainty cuboid is formed for each 3D location

in window coordinates, the depth of which is the numeric distance between the repre-

sentable z-buffer values nearest its location, and whose width and height (identical for

all cuboids in a window) are determined by b, the precision of the window coordinates.

Given a traditional z-buffer, cuboids near the near plane will be shallow; those near the

far plane will be deep. Conversion to eye coordinates is done by inverting the projec-

tion and viewport transformations to reverse map the cuboids, which become frusta.
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Parallel triangles may swap order (fight) if and only if any of their uncertainty frusta

overlap. The minimum distance, Smin, is the length of the frustum’s longest diagonal.

A frustum in a screen corner will be highly sheared, meaning its diagonal will be

longer than it would be at the center of the screen. This factor is labelled Kfov—

the ratio of corner-screen to center-screen diagonal length for uncertainty frusta on a

given zeye plane. The minimum separation depends on all these factors—simulations

show that discounting any one of them will lead to an under-prediction and possible

punch-through.

Finite-precision projection, viewport, and rasterization (mapping) arithmetic can

further increase the minimum precision. The authors modeled the error in these oper-

ations by performing them in double precision. The contribution of this mapping error

to Smin is minor due to the spatial-related error dominating the depth-related error;

10.8 fixed-point spatial precision used in the representation of window coordinates xwin

and ywin is far below that of floating-point.

Texture Mapping

Textures, or pre-computed images, are often applied to triangles to add detail that is

not captured by lighting equations alone. (While texture mapping can be performed

at both the vertex and pixel shader stages, I will discuss texturing at the pixel level in

particular.) These textures can represent color, normal, reflectance, and many other

types of information. Special fixed-function hardware is used to determine what texture

element, or texel, is to be applied to a particular pixel based on that pixel’s texture

coordinates, effectively an address into the texture memory. This address, though, is

often a floating-point number that selects an element a fraction of the way through the

data. If this address is greater than ‘1,’ either the address is clamped or the texture is

treated like a periodic signal.

Since floating-point addresses do not often land precisely on a single texel and a

single pixel may cover several texels, the texture mapping hardware must decide what

value to return. The simplest approach the hardware can take is to choose the nearest

texel; this is seldom used in practice because of its poor quality and aliasing artifacts.

Instead, filtering (i.e. interpolation) is often performed. By examining the four nearest

texels to the pixel’s center and performing a weighted average on their values, the tex-

ture hardware can enabled smoother gradients across texel boundaries. This is referred

to as bilinear filtering. Trilinear filtering, on the other hand, performs bilinear filtering

on two mipmap levels (Williams, 1983) and linearly interpolates between these two
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values to find a single result. This inclusion of mipmapping leads to gentle transitions

when a texture is applied to triangles of varying sizes. Finally, anisotropic filtering is

the highest-quality filtering commonly used; it addresses cases in which a texture is

applied to a triangle at a high relative angle to the camera, meaning it is much larger

in one dimension than the other (not isotropic).

Chittamuru et al. present a method of trading off energy for quality in this texture

mapping hardware (Chittamuru et al., 2003). They discuss two techniques for skipping

certain MAC operations in texture filtering: weight-based and intensity-based techniques.

If texel weights in the bilinearly or trilinearly sampled texels are small enough, they

can be ignored. Similarly, if two neighboring texels are roughly equal, the two MAC

operations can be transformed into an addition and a multiplication. This technique

offers a tradeoff: comparing more bits of neighboring texels leads to more accurate

results, and comparing fewer bits will lead to fewer MAC operations. The authors also

present an architecture for efficiently evaluating texel and weight similarities, so that

power spent in comparisons will not outweigh the savings realized. In total, the authors

save 30–50% of the power and speculated that up to 80% could be saved with the use

of multiple voltage supplies.

2.4.2 Physics

Yeh et al. explored error tolerance in physically based animation (Yeh et al., 2006;

Yeh et al., 2009). Physics simulations are usually performed in several steps: broad-

phase and narrow-phase collision detection, island creation (grouping colliding objects

together), and the simulation step (applying forces to simulated bodies). By injecting

bounded random errors into these different phases, the authors determined acceptable

limits. From a quantitative analysis of the errors, they choose the “knee” at which the

system suffers a catastrophic failure as the last acceptable error threshold. Several tests

confirmed this choice: visual inspection, comparison with a previous contrived system,

comparison of the magnitude of observed errors to that seen in constraint reordering,

and examining the effect of different timesteps on the errors. They observe that the

overall energy in the system is a good indicator of whether or not a given simulation

is well-behaved; if the total energy does not remain constant, then the simulation will

likely explode into very implausible behavior. Finally, the authors present four case

studies in trading off accuracy and performance.

1. Simulation timestep. It was shown that a frame rate of at least 34 frames per
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second (FPS) is necessary to keep the simulation stable.

2. Iteration count. 11-30 solver iterations are result in a stable simulation at 60 FPS,

but some iteration counts over 30 are not stable for only 30 FPS. So, iteration

count can’t be traded for frame rate.

3. Fast estimation with error control. Previously presented by Yeh (Yeh et al.,

2006), this method creates a precise thread and an estimation thread for a given

computation. The estimation thread completes first, allowing other components

(rendering, AI) to begin working with this estimated result. The precise results

are fed to the input of both threads for the next frame. Reducing the iteration

count of the estimation thread led to stable simulations for iterations counts as

low as 1, due to the precise input used for each frame.

4. Precision reduction. The precision of the computational steps is reduced, rather

than range, because exponents are less tolerant of bit width reduction and the pos-

sible savings are lower. Precision thresholds derived numerically are much higher

than thresholds arrived at through perceptual metrics. For the authors’ tests,

around 7 mantissa bits were the most ever needed by a phase of the simulation

to remain stable.
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Chapter 3

Energy Model

3.1 Motivation

Hardware designers and, recently, software designers, have gone to great lengths to

reduce the power consumption of their hardware and applications. Hardware designers

seek to minimize heat, keeping power and cooling requirements low in desktop units. In

mobile GPUs, they go to great lengths to maximize battery life to make their solutions

more attractive to buyers. Likewise, software designers know that their applications

will likely see more use if they are not excessively power hungry. It is for this reason

that mobile platforms, such as Apple’s iOS, include tools for monitoring the power

consumption of applications under development (Apple Inc., 2010).

A validated energy model for GPUs would be helpful in predicting the impact of

modifying applications on energy efficiency. For example, one could determine how

the mix of operations performed in the hardware will change when using a different

architecture (such as a tiled rendering scheme, similar to the popular POWERVR

graphics solutions (Imagination Technologies Ltd., 2010)). Alternatively, one could

look at the energy efficiency of different algorithms used for a graphical technique called

bump-mapping (NVIDIA Corporation, 2004). With the energy model I introduce in

this chapter, I am able to examine both these facets of hardware and software design.

3.2 Related Research

A commonly used solution for modeling the power consumption of computer hardware

at the architectural level is Wattch (Brooks et al., 2000), which uses cycle-level simula-

tion and parameterizable hardware power models to estimate power usage of different



CPU architectures and compiler techniques to within around 10% of the actual reported

value in most cases. Since then, there have been studies on the modeling of a single-core

system at the architectural level, so that weeks of simulation are not necessary, with

good results (Chen et al., 2001; Varma et al., 2008).

For multicore systems, perhaps the most promising work is an approach that maps

the power consumption of the various cores to the power consumption on an analogous

network model (Eisley et al., 2006). This model was simulated with LUNA, a high-

level network power analysis tool (Eisley and Peh, 2004), to give a reported 9% error

in most cases. There have also been tools developed explicitly to measure the energy

in high-performance systems (Ge et al., 2010), but they have not been adapted or used

for modeling or prediction.

Power modeling for the GPU, in particular, is far less advanced. There have been

multiple works published that advocate the use of GPUs for general-purpose computing

from an energy standpoint, observing that though they require more power, their higher

speeds reduce overall energy (Rofouei et al., 2008; Huang et al., 2009). A framework

called PowerRed, which was designed for exploring power efficiency in GPUs, seems

very promising, but it has not been validated or run on real-world graphics applications,

only short tests (Ramani et al., 2007). QSilver, a GPU simulator with power analysis

capabilities, can be a very powerful tool, but requires time to build a model and simulate

existing application traces (Sheaffer et al., 2004). This tool remains, to my knowledge,

unvalidated.

Recently, there have been several groups looking at statistical approaches for power

and performance modeling of GPUs. Nagasaka et al. examine two NVIDIA graph-

ics cards and use benchmarks in the Compute Unified Device Architecture (CUDA)

software development kit (SDK) to develop a linear regression fit for a number of ex-

posed performance counters (Nagasaka et al., 2010). Their model achieves an average

of 4.7% relative error for a set of GPGPU kernels, but does not include many graphics-

specific operations, such as rasterization and texture fetches. Zhang et al. also looked

at a statistical approach for finding performance and power characteristics of a GPU,

though for a specific architecture made by Advanced Micro Devices (AMD), and dis-

cussed the relative importance and interdependence of various metrics (Zhang et al.,

2011). They find that, for this particular architecture, making full use of special hard-

ware for writing to the GPU’s dynamic random-access memory (DRAM) is essential to

achieving full performance. Further, they show that significant power can be saved by

slightly under-utilizing the hardware, though the energy consumption increases due to
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the performance loss.

Hong and Kim take a different approach (very similar to mine), in which they

measure the energy of different operations directly via micro-benchmarks and compute

the cross-product of energy costs and operation frequencies to find the overall power

consumed (Hong and Kim, 2010). However, like the above statistical models, they focus

on GPGPU applications and do not integrate operations unique to graphics workloads.

3.3 Approach

Developing an energy model for graphics applications on a GPU is challenging be-

cause (i) many types of operations, both arithmetic and memory accesses, occur in a

typical graphics pipeline; and (ii) while some parts of the pipeline are fixed-function,

other parts are user-programmable. The mix of arithmetic versus memory accesses

and fixed-function versus programmable hardware make it difficult to accurately pre-

dict what processing will occur for any given frame of an application. My methodology

consists of carefully applying targeted tests to find the energy of arithmetic and memory

operations, and that of the fixed-function and programmable stages. In particular, I use

NVIDIA’s CUDA—a framework for running general-purpose programs on GPUs—to

determine the energy usage in the programmable stages. For the fixed-function units,

I develop targeted graphics applications that stress only the unit in question, isolating

its energy usage. For each of these tests, I measure the actual energy consumed by the

GPU by measuring the current drawn by the hardware. I then use these measurements

to develop my energy model.

I validate my model against existing applications with different types of workloads.

Two different configurations for a frame of “Half-Life 2: Lost Coast” (Valve, 2005)

are used—high and low graphical quality at a high resolution (1600x900 pixels). The

test frame from “Batman: Arkham Asylum” (Eidos Interactive Ltd., 2009) and “Mass

Effect” (BioWare, 2007) have a large amount of input geometry (≥300,000 triangles),

very arithmetic-intensive vertex and pixel shaders, and a modest resolution (1024x768

pixels). “Mass Effect,” though, makes use of occlusion queries to minimize shading

work. These three test applications are shown in Figure 3.1.
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(a) Batman: Arkham Asylum

(b) Half-Life 2: Lost Coast

(c) Mass Effect

Figure 3.1: Test applications used to validate my energy model: “Batman:
Arkham Asylum” (a), “Half-Life 2: Lost Coast” (b), and “Mass Effect” (c).
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3.3.1 Instruction-Level Energy Measurements

The key idea of my model is that the total energy consumed for a frame of a graphical

application can be estimated by the sum of the energy used in each of the operations—

arithmetic and memory—performed in rendering that frame. This is similar to Tiwari

et al.’s approach to software power estimation (Tiwari et al., 1996). So, my goal is to

find a representative value of energy for each operation performed in a GPU. There

are two types of components where energy is consumed: in programmable units, such

as the vertex and pixel shaders, and in fixed-function units, such as texture filtering

and rasterization. In the programmable units, I focus on floating-point operations,

as they are the most expensive and common arithmetic in practice. However, I also

categorize different types of memory transactions: loads and stores to both local and

global (on- and off-chip) memories. Below, I describe the process used to measure

the energy in programmable floating-point operations, memory operations, and fixed-

function operations.

To measure the energy used by operations on the GPU accurately, I must first

decouple the computer’s power supply from that of the GPU. I use a peripheral com-

ponent interconnect (PCI) riser, the PEX16LX made by Adex Electronics, Inc., to lift

the GPU from the motherboard to accomplish this (Adex Electronics, Inc., 2008). This

allows me to interrupt the power lines and supply my own metered 12V and 3.3V rails

to the GPU. I also supply the GPU fan with its own 12V supply, which is not counted

towards the energy measurements, in case dynamic fan control changes the current

drawn during a running experiment. So, I have isolated the energy consumed by the

GPU (NVIDIA’s 8300GS in this case).

A similar procedure is used for each of the instructions I wish to examine. I first

design a CUDA kernel, or program to be run on the GPU, that will stress the opera-

tion in question. The key features of these kernels are that they include a minimum

of overhead operations (loop counters, initialization, etc.), do a large amount of work

to allow for an experiment of significant length for accurate timing and current mea-

surement, and exhibit high utilization of the CUDA cores with as few data hazards as

possible. As an example, the kernel I developed and used to measure the energy costs

of addition is shown in Listing 3.1. At execution, the data (an array of 1,536 random

floating-point values) is first transferred to the GPU’s memory before any timing or

measurement begins. Timing begins at the first execution of the kernel and continues

for up to a minute, depending on the operation under investigation. During this time,
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Table 3.1: Energy used by various floating-point operations in programmable
units of the GPU.

Operation Energy (nJ)

ADD 0.443
MUL 0.357
MAD 0.455
RCP 2.440
EXP 1.512
LOG 5.177
SIN/COS 22.997
POW 16.366

the current drawn remains steady, as the workload is regular and constant. At the

conclusion of execution, the timing stops before transferring the data back to the host

memory, giving me just the time taken for computation. This allows me to compute

the energy taken for all the computations, which then leads to an average energy for a

single operation.

Programmable Floating-Point Operations

For the programmable portions of the graphics pipeline, such as the vertex and pixel

shaders, I do not actually run any graphics applications. Instead, I take advantage

of NVIDIA’s CUDA (Lindholm et al., 2008), which allows me to map an operation

to execution on the device more directly. Since programmable stages of the graphics

pipeline execute on the same processors that are responsible for CUDA’s computations,

I can measure the energy of the necessary operations with less uncertainty about what

is actually taking place. In the context of a graphics processor, there are many often

unseen optimizations and other operations that take place without the programmer’s

knowledge. CUDA, however, allows for execution of the bare arithmetic operations.

The floating-point operations used most often by the programmable graphics pipeline

are as follows: ADD, MUL, MAD, RCP, EXP, SIN/COS, and LOG. Other instructions are

available in the programming units, such as DP3, DP4, NORM, and LRP, but their en-

ergy requirements can be approximated by their constituent operations. For example,

a DP4 is made up of 1 MUL and 3 MAD instructions, in both implementation and my

energy model. Table 3.1 gives the energy usage for each of the measured operations.
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Listing 3.1: An example CUDA kernel used to measure the energy per floating-
point addition performed on a GPU

g l o b a l void DoAdditionOnDevice ( f loat *data )
{

// s e t up number o f i t e r a t i o n s , index o f data ,
// and temporary l o c a l s t o rage ( r e g i s t e r s )
const int i t e r s = 392 ;
int i = blockIdx . x * blockDim . x + threadIdx . x ;
f loat temp [ 4 ] ;

// popu la t e the temporary s t o rage
#pragma u n r o l l
for ( int j = 0 ; j < 4 ; ++j )

temp [ j ] = data [ i ] + j ;

// perform repea ted add i t i on s
#pragma u n r o l l
for ( int j = 0 ; j < i t e r s ; ++j )
{

temp [ 0 ] += temp [ 2 ] ;
temp [ 1 ] += temp [ 3 ] ;
temp [ 2 ] += temp [ 0 ] ;
temp [ 3 ] += temp [ 1 ] ;

}

// prevent op t im i za t i on
#pragma u n r o l l
for ( int j = 1 ; j < 4 ; ++j )

temp [ 0 ] += temp [ j ] ;

// s t o r e the f i n a l va lue ( prevent op t im i za t i on )
data [ i ] = temp [ 0 ] ;

}

Table 3.2: Energy per operation (4-byte word) for different types of memory
accesses performed on the GPU.

Operation Energy (nJ)

Local load 1.49
Local store 1.49
Global load (coalesced) 8.39
Global store (coalesced) 5.19
Global load (uncoalesced) 67.4
Global store (uncoalesced) 42.7
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Memory Operations

Typical graphics cards have both a large off-chip DRAM for storing geometry, texture

information, and other persistent data, as well as a pool of smaller on-chip static

random-access memory (SRAM) for storing intermediate data and caching accesses

to main memory. In addition, for the architecture I examine, there are hardware

optimizations that take advantage of reading or writing 32 consecutive bytes of data

stored in global memory (DRAM), such as reading a cache line (or portion thereof)

from global memory into the cache. In this case, the global load is called coalesced. If,

however, the data is accessed in a more random manner, the load will be uncoalesced.

Coalesced accesses (both reads and writes) are much faster than uncoalesced accesses.

So, it is likely that they have different energy characteristics, as well, requiring separate

treatment.

I explored each of the six types of memory accesses in a manner very similar to

that described for floating-point operations. I developed a kernel to stress only the

particular operation in question, executed a set number of iterations, and measured for

both timing and current information, leading to an average energy per operation. (An

operation is reading or writing a 4-byte word, which is typical for floating-point and

integer values.) These values are shown in Table 3.2.

There are two trends to note about these results: first, when compared with the

simple arithmetic operations, memory operations require around an order of magnitude

more energy, on average. Second, uncoalesced accesses are 8 times as expensive as

coalesced accesses, reflecting the ability of coalesced accesses to read 32, rather than 4,

bytes at a time.

Fixed-Function Operations

Some parts of the graphics pipeline are not user-programmable, but they still play a role

in the overall energy consumption of the device. In particular, the two most often-used

fixed-function units in contemporary graphics are the rasterizer and texture filtering

units. Since the behavior of these units can not be captured by CUDA’s hardware and

usage patterns, I make use of the graphics drivers to exercise them and measure their

characteristics.

Rasterization To determine the energy used in rasterization, I designed a pair

of experiments that would perform the same work, with the exception that one exper-
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Table 3.3: The energy cost of fixed-function hardware.

Operation Energy/Pixel (nJ/P)

Rasterization 0.2384

Texture Mapping
Filtering Mipmapping

Nearest - 13.3
Bilinear - 13.8
Nearest Nearest 7.07
Bilinear Nearest 7.76
Bilinear Linear 10.6

iment would not include any rasterization. The first experiment sent a single unlit,

untextured, screen-sized rectangle through the card: the vertices were transformed and

assembled into triangles which were then sent through the rasterizer. However, depth-

testing was used to keep any generated fragments from undergoing further processing—I

set it to reject all fragments, regardless of depth. In the second experiment, I made

use of triangle backface culling. If the vertices of the triangle are sent in reverse order,

the hardware can treat it as a triangle that faces away from the virtual camera and

not process it any further, a common optimization in real-time graphics. The only

difference between the two experiments was that rasterization was performed in one

and not the other.

I conduct a variety of rasterization tests with varying window sizes and frame rates

(this can be controlled via vertical-syncing, or timing the scene redraw with the refresh

rate of the monitor) and perform a linear regression on the results, fitting a line to a

plot of frames per second versus power. The slope is power/frame/second, or energy

per frame, and the difference between the two slopes is the energy required for just

rasterization. The energy results are given in Table 3.3.

Texture filtering When a triangle is textured, there is seldom a 1-to-1 pixel to

texel ratio; the texture is usually filtered in some way so a pixel can be assigned a

texel value. This filtering is performed at run time, although many textures are also

pre-filtered for use when texturing a smaller triangle. A texture that has had smaller

versions of itself created is said to be mipmapped (Williams, 1983); each smaller version

is known as a mipmap level. This allows for the hardware to load smaller textures into

the texture cache, yielding greater performance. When using mipmaps, bilinear filtering
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can either pertain to just one mipmap level, or the texture can be filtered between two

levels, yielding a trilinearly interpolated value for a single pixel. If a texture is not

filtered, it is said to use nearest sampling, because texels are assigned to pixels based

on simple proximity.

I used a very similar approach to measuring the energy of texture filtering as my

approach to rasterization. I sent a single, unlit, screen-sized rectangle through the

pipeline and varied the texturing applied to it. However, I disabled color writes, depth

testing, depth writes, and stencil testing so that no unnecessary work was done and all

work stops after the shading of the fragments. In this case, the only shading work done

was texturing. The average results for various types of filtering to map large texture

onto different-sized triangles are shown in Table 3.3.

Why is the most complex filtering less expensive than not doing any at all? The

two steps in texture mapping are (i) fetching and (ii) filtering the data. Mipmaps allow

more of the texture to fit into the cache, greatly reducing the amount of DRAM traffic.

The hardware that performs the actual filtering is very specialized and efficient, so

performing more complex filtering within any mipmapping is more expensive, but the

energy is more than reclaimed by the lessened memory traffic.

Finally, I have omitted incoherent texture mapping, in which the texture-space

texels do not align on corresponding screen space pixels. In my model, though, I do

allow for adding a penalty if a particular texture fetching operation is known to be

incoherent (see Section 3.5.2 for an example). However, most texture caches, both by

design and due to their usage patterns, have very high hit rates: usually 97% or higher

(Al Maashri et al., 2009).

3.3.2 Frame-Level Energy Prediction

With the energy for all of the operations performed on a GPU measured, it remains for

me to determine a methodology for modeling the frequency of each operation for an

arbitrary program. I adopt a strategy similar to that used in the past (Molnar et al.,

1994) and assign values to various input parameters (primitive count, primitive size,

resolution, etc.) and follow them through the graphics pipeline (abstracted in Figure

1.1) to see how workloads change. I also need a count of the operations performed in

the different programmable units, which can either be known (in the case of modeling

an application in development) or approximated (if the source code is unavailable).

Furthermore, I must make some assumptions about values that are not readily available,
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such as cache sizes and performance, compression ratios, and depth test efficiency.

Below, I explain the model at each stage of the pipeline.

Input Vertices

The rendering pipeline is fed by primitives, usually triangles which contain various

data, or attributes, at each vertex. (Rarely, general polygons are used as input, in

which case the first step performed by the hardware is to decompose these polygons

into triangles. Triangles are preferred and the most common input type, however, since

polygons with more vertices do not have a unique triangulation, which can lead to

ambiguous plane formation.) Typically, these attributes are in a floating-point format,

either 32 or 16 bits, and contain information such as position, normals, one or more

texture coordinates, color, and other values. Each primitives is made up of vertices,

but these vertices may be shared between primitives; therefore, the vertex to triangle

ratio approaches 1 in the ideal case, but is usually closer to 2 in my test applications.

The energy in this stage is directly related to the number of input vertices, vin, and the

data per vertex, dv, as seen in Equation 3.1 (where Ecgr is the energy required for a

coalesced global read. Uncoalesced, local, or write operations are subscripted similarly

in later equations).

EV I = vin ∗ dv ∗ Ecgr (3.1)

Vertex Shading

After the vertex data has been transferred from main to local memory, the vertices enter

a programmable unit known as the vertex shader, where they are transformed from a

local to a screen space coordinate system through matrix multiplications. Optionally,

the vertices are lit or textured, though these operations are more commonly performed

later, in the pixel shader, for higher quality results. The energy spent in this stage is

the product of the number of vertices which undergo shading and the energy of the

operations contained in the vertex shading program, collectively shown in Equation

3.2:

EV S = vin ∗
numOps∑

op

Eop (3.2)
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Rasterization

After the vertices are processed, they are assembled into screen space triangles and

sent to the rasterization stage, where a fragment is generated for each pixel the triangle

covers. The energy spent in rasterization is a function of the number of generated

fragments, which is roughly the product of the display triangle size in pixels and the

number of display triangles, as shown in Equation 3.3:

ER = tdisp ∗ sizetdisp ∗ Eraster (3.3)

Depth Testing

The generated fragments streaming from the rasterizer are ultimately bound for frag-

ment shading. However, by testing the depth of a generated fragment against the

current minimum depth of fragments at its position, the hardware may be able to dis-

card some or all of the fragments for a triangle before shading them. Another common

optimization is the use of a hierarchical depth testing acceleration structure: if the

depth of a fragment is greater than the greatest depth for a large area of the screen,

then the fragment does not have to be tested at a finer granularity (which can be as

fine as a per-pixel test). Both these factors contribute to the efficacy of the depth test,

effz−test. Additionally, depth values are often compressed to cut down on reading and

writing bandwidth, represented by a zcomp factor. The energy in this stage is spent

reading and writing depth values from main memory through a dedicated cache; thus,

it will depend on the cache’s performance (zchit) and line size (zcls). The model is

shown in Equations 3.4-3.6:

EDread
= (f ∗ effz−test) ∗ (zchit ∗ Eclr + (1− zchit) ∗ zcls ∗ Ecgr) (3.4)

EDwrite
= (f ∗ effz−test) ∗ (1− zchit) ∗ zcls ∗ Ecgw (3.5)

EDtotal
= (EDread

+ EDwrite
) ∗ zcomp (3.6)

Fragment Shading

All fragments that pass the early depth test successfully are sent through the fragment

shader, which will produce the final color for the fragment. Operations here often
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include lighting and texture mapping. Much like the vertex shader stage, the energy

spent in fragment shading is the product of the number of fragments and the energy of

the operations that are applied to them, shown in Equation 3.7:

EFS = fin ∗
numOps∑

op

Eop (3.7)

Framebuffer Operations

Once the fragments’ color values have been generated, they need to be sent to the

framebuffer so they can be sent out to the display during “scan out.” They are first

sent to a color cache, so that different processors working on neighboring pixels can

combine their writes. Also, framebuffer data is often compressed in order to cut down

on high bandwidth costs. So, the energy spent in sending data to the framebuffer is

related to the number of fragments generated, data per fragment (usually 4 channels

of 8-bit color), df , color cache hit rate, cchit, color cache line size, ccls, and framebuffer

compression ratio, fbcomp. My model for writing to the framebuffer is given in Equation

3.8:

EFwrite
= f ∗ fbcomp ∗ (df ∗ cchit ∗ Eclw + (1− cchit) ∗ ccls ∗ Ecgw) (3.8)

Reading from the framebuffer occurs when pixels are to be blended, most commonly

when rendering a translucent surface. Since this is not the common case, an extra

parameter is necessary for my model—the alpha blending ratio, aratio. My model for

reading from the framebuffer is shown in Equation 3.9:

EFread
= f ∗ fbcomp ∗ aratio ∗ (1− cchit) ∗ Ecgr ∗ ccls (3.9)

3.4 Validation

With my energy model fully developed, I now test it against actual applications to see

how well the composite equations perform. The applications are a selection of video

games with different characteristics, to represent varied real-world workloads. “Batman:

Arkham Asylum” has a medium geometric complexity but very arithmetic-intensive

shaders, and it was running with a window size of 1024x768 pixels (a relatively low

resolution). “Half-Life 2: Lost Coast” has less input geometry and simpler shaders, but
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Figure 3.2: Accuracy of the developed energy model. The relative errors ranged
from 0.14% to 4.6% with an average error of only 2.9% when the framerate was
assumed to be in the middle of the two bounding integers reported at runtime.
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a much higher resolution: 1600x900 pixels. “Mass Effect” is quite similar to “Batman,”

but performs occlusion queries to minimize unnecessary shading. These test frames can

be seen in Figure 3.1.

To ensure accurate and repeatable results, the graphics loads were kept constant,

meaning the frame rate, work performed, and current drawn were measured at steady,

specific values. I then subtract the idle values to find the energy of the graphics work.

While these values were steady, a single frame was captured with Microsoft’s PIX for

Windows, a tool included in the Microsoft DirectX SDK used for debugging graphical

applications developed with DirectX.

From the data gathered with this tool, I was able to extract, for each individual draw

call within the frame, the characteristics (triangle count, included attributes) of the

input geometry, render states (alpha blending, depth testing), vertex and pixel shader

code, and the contents of the framebuffer. From this last data, I have approximated

the number of shaded and depth-tested fragments for each draw call. Essentially, I

gathered all the input parameters that are not specific to the hardware that I need to

populate my model. I briefly give and justify the values I chose for parameters that are

not able to be derived from the experiments.

1. Cache performance. There have been no publicized cache performance

figures from existing hardware, so I look to other research. An exploration in 3D chip

stacking simulates several graphics applications and reports values of close to 100% and

95% for the texture and depth caches, respectively; I assume the color cache behaves

likewise (Al Maashri et al., 2009).

2. Cache line size In the same vein as cache performance, I look to other

sources for cache line sizes. There is no validated work, so I chose a line size of 128B,

which is in line with other used values (Al Maashri et al., 2009).

3. Compression rates Color and depth buffers are often compressed as render-

ing is performed, and texture data is nearly always compressed before being released

with the game. Both of these compression areas will decrease the amount of global

memory traffic. For texture data, I used a common compression rate of 4:1 (Microsoft

Corporation, 2012b). Data going to and from the frame buffer was assigned an average

rate of 2:1.

There are two parameters that are excluded from this harvesting process: intra-draw
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call overdraw and local data traffic. There can be pixels rendered to the scene that are

immediately overdrawn in the same draw call, but this information is impossible to find

with the infrastructure I have available. Further, local data traffic is heavily dependent

on the architecture and specific techniques used on the hardware, such as redundancy

elimination (Wittenbrink and Ordentlich, 2005). These two missing parameters will

likely lead to energy estimates that are lower than the actual consumption for the same

scenes.

The results of my model’s validation are given in Figure 3.2. The relative errors are

very small—between 0.14% and 4.6% with an average of only 2.9%. These estimates,

however, could be off by as much as ±5–10%, depending on the actual frame rate of

the application due to inaccuracy in the measuring of the frame rate. I then separate

the energy used by the whole GPU into discrete energy consumption values stage by

stage, shown in Figure 3.3. I see that the pixel shader is by far the most energy-

hungry stage, both when considering arithmetic as well as texture fetches, followed by

memory transactions (reading input geometry, reading and writing the depth buffer

and framebuffer) and vertex shading.

3.5 Case Studies

I now explore two potential uses for the energy model I have developed: exploring the

impact on energy of (i) architectural and (ii) algorithmic modifications.

3.5.1 Architectural Study

The most popular high-performance graphics architectures are currently all very sim-

ilar and fall under the sort-last-sparse classification (Molnar et al., 1994). (It is into

this category that the NVIDIA 8300GS used in validating the model falls (Lindholm

et al., 2008)). In the mobile market, however, the leading architecture is known as a

tiled renderer (Imagination Technologies Ltd., 2010), a type of sort-middle architecture

(Molnar et al., 1994). Briefly, a tiled renderer will process the scene one screen space

tile at a time; all geometry is sorted into the appropriate tiles, the tile is rendered to a

local rather than global framebuffer memory, and only the finished tile is sent to global

memory for scan out.

When designing for the mobile realm, battery life is of the utmost importance, and

proponents of tiled renderers claim that the very coherent writes to local framebuffer
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memory will offset any overhead in reading and transforming some fraction of the

input geometry more than once. However, there has been no published verification of

this claim. By adapting my energy model’s underlying architecture to that of a tiled

renderer, I can gain insight into the veracity of this assertion. Since validating this new

model would be impossible without fabricating an entirely new architecture, I perform

several sanity checks before applying the model to my test scenes.

The possible search space for this question is enormous, so I simplify the problem

somewhat. First, I will only explore three different parameters to check the validity of

the new model: (i) input geometry count, (ii) screen size, and (iii) the depth complexity

of the finished scene. (Depth complexity is a measure of how much work is performed

shading pixels that do not appear in the final image. The three test applications have a

depth complexity of between 4 and 5. Very complex scenes can have a depth complexity

as high as 30 in some limited testing I performed.) The baseline scene will have 100,000

triangles, a screen size of 1280x1024 pixels, and a depth complexity of 3. Other scene

assumptions are: 48B of data per input vertex, 16B per fragment, 1.8 vertices per

primitive, a depth fail rate of 0.5, an alpha blending rate of 0.25, framebuffer and

depth compression ratios of 1.5, and vertex and pixel shaders with equal complexity.

Additionally, I make the following assumptions in my tiled renderer’s energy model:

1. The added cost of pre-sorting the geometry will be one read of the input geometry,

a pass through the vertex shader, and a write of a batch ID for every 32 input

primitives,

2. There is a local framebuffer storage of 2MB,

3. The tile size will be fixed at 128x128 pixels, and

4. The depth buffer is not stored to global memory after a tile is finished processing.

The results of my three experiments are shown in Figure 3.4.

1. Input geometry count. Increasing the input geometry directly increases

the overheads seen by a tiled renderer. Thus, the tiled renderer becomes relatively

less energy-efficient as the geometry count increases. (I assume that when increasing

the triangle count of a scene, the extra geometry will be put towards refining meshes,

decreasing the size of the average triangle, therefore keeping the generated fragments

and depth complexity the same.)
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2. Resolution. The strength of the tiled renderer comes from its ability to write

to local memory during framebuffer operations. As resolution increases, the locality

of these writes and the disparate nature of the full-screen renderer’s cause the relative

efficiency of the tiled renderer to increase.

3. Depth complexity. Closely related to resolution is depth complexity. I note

a similar trend: as more pixel processing and framebuffer writing is performed, the

relative efficiency of the tiled renderer increases.

When applying the new tiled renderer model to my existing test applications, I

see that they are all less efficient with a tiled renderer (13% on average). While this

would seem to suggest that this architecture is less efficient, there are several things

to consider before accepting this outcome at face value. Firstly, my näıve approach to

the tiled renderer’s architecture certainly lacks optimizations employed by implemented

hardware. For example, it is doubtful that the price paid to presort the geometry is a

doubling of the initial effort, and the sorted geometry may even fit in on-chip memory.

Secondly, the test scenes I examined all had complex input geometry; they were not

meant to be run on mobile hardware! Developers would likely optimize their geometry

and applications for such an environment.

To test how these applications would consume energy on an existing mobile plat-

form, I adapted them to have a workload more characteristic of mobile applications.

So, I first scaled the applications to be the resolution of a current mobile device, the

iPhone 4: 640x960 pixels. Next, I treated the amount of input geometry as on par with

the peak triangle rate of this device at 30 frames per second. The results after these

modifications are shown in Figure 3.5. The main difference is that reading geometry

and vertex shading steal some energy away from pixel shading due to the relatively

small screen size; this is an expected result.

3.5.2 Algorithmic Study

When designing a graphics application, the developer often has to choose between

many algorithms to achieve a certain effect. For instance, dynamic shadows can be

implemented with a number of techniques, such as shadow maps or shadow volumes.

Usually, developers will look at such metrics as rendering time, programming cost,

or memory overheads when deciding which algorithm to choose. However, it may be

advantageous to consider the energy efficiency of different algorithms, as well, which
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Figure 3.5: Energy used by modified applications per stage of a hypothetical
mobile graphics pipeline.

my model allows.

As an example, a typical cost/benefit analysis of different algorithms for a graphical

technique looks at the use of a cube map texture to normalize a number of vectors used

in a common pixel shader effect known as bump-mapping (NVIDIA Corporation, 2004).

These vectors are the eye-space position of the fragment (V ), the eye-space light vector

(L), the computed half-angle vector (H), and the computed normal (N). In some

instances, the texture lookup can be faster than normalizing a vector arithmetically.

I use this demo and my model in a similar experiment to see which approach is more

energy efficient. I analyzed two frames of this demo, one where the model took up a

small fraction of the screen and a second frame where the model covered nearly every

pixel, both in Figure 3.6. The predicted and measured energies are shown in Figure

3.7.

In the first test case, it is important to note that the amount of work being done

is relatively small, since there is only one model which does not take up much of the

screen. Therefore, any overheads (absolute error) not accounted for in my model will

play a much larger role in the overall energy. In the second experiment, however,

the error between the measured and predicted energies is much less—around 11% on

average, down from 35% in the first test case. This indicates that as more work is
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(a) Bump-mapping test 1 (b) Bump-mapping test 2

Figure 3.6: Test scenes from the bump-mapping application.
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Figure 3.7: Results of the algorithmic change experiment. My model correctly
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performed, the model will become more and more accurate. Indeed, in the second

case, the model accurately predicted the best and worst performing algorithms from

an energy standpoint. Even with its high relative error, the model correctly predicted

the best algorithm for the first test case.

This experiment demonstrates both the flexibility and necessity of my model. The

original study into the rendering efficiency of the different algorithms noted that using

a texture to normalize the N vector was always slower than the corresponding case

that normalized N arithmetically. Since that particular vector varies rapidly in screen

space, leading to incoherent accesses, it is not able to make use of the texture cache

as well as the others. So, there is a penalty included for only that fetch which is

known a priori and was included in my model to give more accurate results. It should

also be noted that speed is no indication of energy-efficiency. While the setup labeled

“lh” is the fastest in both experiments, it was not the most efficient, indicating that

a model such as mine is necessary for developers looking to minimize the energy their

application uses without resorting to cumbersome monitoring—it is unlikely that the

average graphics developer will have access to or the time to set up power monitoring

hardware.

3.6 Conclusions

I have presented an accurate energy model for GPUs that allows architectural, algo-

rithmic, and other experimental changes to be explored without the implementation

of new hardware, complicated simulations, or instrumentation of existing hardware. I

also validate my model against a variety of existing graphical applications to prove its

accuracy in practice, with less than 10–15% error in these tests. Different games or

drastically different scenes may require new parameters to be introduced to the model

to make it more accurate. With this model, I now know which parts of the pipeline

consume the most energy, so I can target reducing their consumption for the largest

effect on the total energy. Also, as I make stages more energy efficient through some

means, I will have an accurate estimate of the overall savings gained.
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Chapter 4

Variable-Precision Arithmetic

Circuit Implementation

4.1 Motivation

As I showed in Chapter 3, the vertex and pixel shaders consume substantial amounts of

energy in the graphics pipeline. Since these two shaders actually run on a single pool of

general-purpose processors in modern hardware, developing an energy-saving strategy

for one stage will likely lead to energy savings in the other, too. I update Hao and

Varshney’s variable-precision rendering techniques to today’s GPUs, so a natural step

is to find or build hardware capable of trading off precision for energy savings. Since

32-bit floating-point numbers with full precision are not necessary to perform many

rendering tasks, the goal will be to reduce the amount of computation that is done in

order to save energy.

This variable-precision arithmetic hardware must be able to limit both its dynamic

and leakage power (see Chapter 2.1), so clock gating by itself is not sufficient; some

form of power gating will be necessary. Furthermore, initial experiments revealed that

the precision of the arithmetic must be variable at a very fine level, possibly down to a

per-bit granularity, but also must be able to operate at full-precision for some graph-

ical and scientific applications. (Not every program can tolerate having its precision

reduced.) Clearly, a high-performance environment like a GPU cannot afford to have

its throughput decreased by the inclusion of variable-precision hardware; this hardware

must not negatively impact performance. The necessary circuits are the building blocks

of a full FPU: integer adders and multipliers. These basic arithmetic circuits constitute

more complex units used in graphics hardware and are responsible for the precision of



a given floating-point operation.

To put a fine point on the requirements of the variable-precision arithmetic hardware

needed for saving energy in a GPU, let me enumerate them here. The circuits need to

be:

1. integer adders and multipliers (that will be used in a full FPU),

2. power gated, so that leakage power will be reduced, as well as dynamic power,

3. variable-precision at a fine granularity,

4. not significantly slower than the original hardware, and

5. dynamically reconfigurable.

I will go over many past techniques and approaches for tackling this problem in the

next section and will show that no existing work addresses each of the requirements

listed above. So, the rest of this chapter will describe new circuits to enable precision-

energy tradeoffs by not computing successive least significant bits (LSBs).

4.2 Related Research

Many methods of power gating have been presented, from simple header and footer

transistors to more complex techniques. For instance, if there is a need to save the

current state and data stored within a circuit while it is power-gated, Liao et al. and

Kim et al. have both proposed structures allowing for this capability (Liao et al.,

2002; Kim et al., 2004). However, this is far beyond what is needed for my approach

to variable-precision arithmetic; there is no need to store intermediate results in the

lower, power-gated bits. So, I chose simpler techniques with lesser overheads that can

be applied to each bit of an arithmetic circuit, rather than the circuit as a whole.

There has also been research directed towards low power arithmetic circuit de-

sign. Sheikh and Manohar thoroughly examined a floating-point adder and designed

a new one piece by piece with aggressive optimizations for energy savings (Sheikh and

Manohar, 2010). Liu and Furber presented a low power multiplier (Liu and Furber,

2004), while Callaway and Swartzlander detailed the relationship between power and

operand size in CMOS multipliers (Callaway and Swartzlander, 1997). Tong et al. sug-

gested a digit-serial multiplier design with three discrete bit-widths, resulting in a linear

power savings (Tong et al., 2000). Lee et al. proposed a variable-precision constant
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multiplier that uses shifting in the place of multiplication by powers of 2, realizing an

energy savings of between 16% and 56% (Lee et al., 2007). Most similar to my work is

that of Huang and Ercegovac, who developed two-dimensional signal gating for variable

bit-width multipliers, realizing up to 66% power savings over a baseline implementa-

tion (Huang and Ercegovac, 2002; Huang and Ercegovac, 2003). However, their work

does not address leakage power, which is a large component of nanometer-scale CMOS

hardware. They also look at the layout of the parts of an array multiplier from an

energy standpoint, but do not perform any power gating (Huang and Ercegovac, 2005).

Phatak et al. presented a low power adder and included a treatment of the adder’s

power usage dependent on the number of significant bits (Phatak et al., 1998). Kwong

filed a patent for a variable-precision digital differential adder for use in graphics render-

ing, but has not reported any power results (Kwong, 2005). Park et al. have proposed

a scheme in which energy can be traded for quality (similar to this dissertation) in

a discrete cosine transform (DCT) algorithm using only three “tradeoff levels” (Park

et al., 2010). Other research by Usami et al. and Sjalander et al. has led to variable-

precision power-gated multipliers, which will save leakage current in smaller processes

(Usami et al., 2009a; Sjalander et al., 2005). However, both of these papers only allow

for two different operating precisions, while the ability to operate at a full range of

precisions is necessary for rendering. (In experiments for Chapter 5, there were many

shader programs that could be reduced to, say, 17 or 18 bits of precision, which would

not see any savings with hardware that accommodates only 2 or 3 precisions.)

Kulkarni et al. use building blocks that are slightly numerically inaccurate to create

a multiplier with bounded error characteristics that saves power over a traditionally

precise multiplier (Kulkarni et al., 2011). What’s more, they offer a method for trading

off error for power, allowing the designer to choose a point along the error-power curve

that their application can tolerate, and they allow for exact computations with the

use of a residual adder. This is very promising! However, these design choices must

be made as the hardware is being built, which precludes the use of this approach for

general-purpose hardware. The precision necessary for a GPU’s applications can vary

wildly from frame to frame, even from one stage of the pipeline to the next, and cannot

be fixed in the hardware.

None of these approaches have all design characteristics mandated at the begin-

ning of this chapter. My targeted applications need very fine-grained control over the

operating precision; thus, coarse-grained designs which allow for, for example, 8, 16,

and 24 bits of precision simply do not offer the necessary degree of control. The use
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of power-gating will offer significant returns when also considering the savings in de-

creased leakage current (Kim and Shin, 2006). Finally, the ability to reconfigure the

hardware for different precisions at runtime is imperative for use in a GPU.

The VFloat library is meant to address some of these problems - application-

specific precisions, reduced leakage current - but has only been implemented for field-

programmable gate array (FPGA) devices (Wang and Leeser, 2010). So, these problems

are only solved by actually reprogramming the hardware, which is not possible at run-

time.

Specialized hardware for other domains has also been developed to reduce leakage

current by power gating the arithmetic hardware in certain ways, such as Ngo and

Asari’s video processing convolution hardware (Ngo and Asari, 2009). There are key

differences between our approaches, though; the convolution of image data lets Ngo

and Asari use a priori knowledge, such as the magnitude of common filter coefficients,

that I cannot count on in my design. They use this knowledge to optimize circuit

paths such as one and zero detection. Also, they can count on the dynamic range of

neighboring pixels to be relatively small, leading to optimizations taking advantage of

transforming this spatial coherence to temporal coherence from the point of view of the

arithmetic logic unit (ALU). However, in a massively parallel GPU, it is not guaranteed

that neighboring pixels will be processed on the same ALU, rendering this approach

infeasible for my designs.

Other low-power techniques, such as DVFS (Mao et al., 2004) and unit-level power

gating (Chowdhury et al., 2008), can be used for energy-efficient graphics hardware.

These techniques are orthogonal to this work on fine-grained power gating for variable-

precision arithmetic.

4.3 Hardware Implementation

To create new hardware that meets the criteria detailed in Section 4.1, I modified

existing arithmetic circuits. I chose three common integer adder designs and looked

into different ways of adapting a standard array multiplier. The adders used are a

ripple carry, uniform carry-select, and Brent-Kung adders (Brent and Kung, 1982),

each with their own strengths and weaknesses. The ripple carry adder is a simple

design that uses very little hardware, but has the longest critical path and therefore

the longest propagation delay. The carry-select adder is faster but, depending on the

implementation, can use nearly twice as much area. The Brent-Kung adder, although
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Figure 4.1: A standard full adder modified for use in a power-gated variable-
precision arithmetic circuit. Depending on the value supplied on the “Enable”
line, the transistors in the gates either receive an actual power source (Vdd) or just
a floating input, which does not provide a path for current to follow. The tran-
sistors connected to the outputs only pull the values low if the block is disabled,
providing components downstream from the adder with a constant value.
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it has the highest area requirements, is the fastest of the three and is easily pipelined,

making it a popular and commonly-used design. It is one of many parallel-prefix adders

(Harris, 2003).

Three key modifications were applied to any single component subject to power

gating. First, the arithmetic logic transistors were supplied with either a virtual power

(header switch) or ground (footer switch) signal controlled by sleep transistors driven

by an enable signal, rather than actual power or ground rails. This modification allows

the power to the element to be cut off, thereby practically eliminating the dynamic

power consumption and potentially reducing leakage power loss through the circuit.

When deciding whether to use either a header or footer switch, I consider the power

and timing implications of each (Shi and Howard, 2006), as well as the desired output

in the disabled state. In the second modification, the outputs were either pulled down

(for a header) or pulled up (for a footer switch), depending on the larger context

of the element, so that any downstream hardware will see a consistent signal. This

both reduces downstream switching and allows for transparent integration with existing

hardware; no special treatment of floating signals needs to be considered because the

outputs of disabled gates are not floating. Since the state of the output does not need

to be preserved when disabled, no extra registers are necessary. Lastly, the logic and

gating transistors in the circuit were manually resized in order to minimize the power

or timing overheads of the modified designs (Mao et al., 2004; Shi and Howard, 2006;

Sathanur et al., 2008). Figure 4.1 shows these changes applied to a standard full adder.

Fine-grained power gating, such as I propose, is subject to problems with ground

bounce if large portions of the circuit are switched at the same time. Rush-current

suppression can be implemented by skewing the switching of portions of the circuit

(Usami et al., 2009b). For my design, I can skew the switching by disallowing very

large changes in precision at one time. A possible approach is to have the software

driver monitor precision changes and sequence overly large ones as a series of smaller

changes.

The operating precision is chosen by setting enable lines to each gated unit. Several

approaches are available for correctly setting these enable signals. The most straight-

forward is to drive each gated element based on a symbolic constant in a register.

Alternatively, any manner of decoding circuitry can be used to translate a shorter en-

able code bundled with operands into individual enable/disable signals. The specific

technique used will depend heavily on the application and the usage patterns of the

unit. It is highly likely, however, that whatever area overheads are incurred by the
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Figure 4.2: A section of a modified ripple carry adder. Each full adder has its
own “Enable” signal in order to gate the power used by the unit. It is assumed
that if EnableN is low, then Enablei is also low for all i < N .

control circuitry will be shared over several functional units, over an entire ALU, or

even over multiple ALUs.

4.3.1 Modified Adder Designs

Differences in each of the three adders targeted led to distinct approaches to power gat-

ing for each. I explore designs of 24-bit integer adders, which are used in single-precision

floating-point addition, a common operation in many applications. Past research has

shown that, for some target applications, the most readily available savings appear in

the first twelve least significant bits of a 24-bit adder, where reduced precision will

not have an overly negative impact on application utility (Yoshizawa and Miyanaga,

2006; Chittamuru et al., 2003). I therefore limit the precision control of my proposed

designs to the least significant sixteen bits. I note here that though two of the adder

designs I explore are rudimentary and not often used in high-performance systems, I

show later that they can be more energy-efficient than faster designs. Furthermore,

their relatively high latency does not render them useless in a GPU; performance in a

GPU is a function of throughput, which can be achieved by many pipelined ALUs with

any given latency (within reason).

Ripple Carry Adder

First, let’s examine a ripple carry adder. This is a very basic adder whose functionality

is immediately discernible, and it will serve as a baseline implementation. A ripple

carry adder simply uses one full adder per bit of precision needed by the operands.

I modify each full adder as previously described and shown in Figure 4.1. Disabling
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Figure 4.3: A portion of the double full adder chain of a carry-select adder
block. Each gated unit is two modified full adders which share the same gating
transistor, saving area and timing penalties. The final sum is chosen with a
multiplexer driven by the carry-in of the previous block.

each successive full adder has the effect of reducing the precision by a single bit. The

modified design is shown in Figure 4.2.

The interested reader may continue in this section for details of the other adder and

multiplier designs; otherwise, results are presented in Section 4.5.

Carry-Select Adder

Carry-select adders are slightly more complicated than simple ripple carry adders. They

employ several banks of smaller ripple carry adders to make up one full-width adder;

each bank computes two carry paths in parallel. When the carry out signal from one

block enters the next, multiplexers select the correct carry path to output to the next

stage, and so on. The first ripple carry block does not have the second carry path, since

its carry-in signal is always ‘0.’ It is treated like the modified ripple carry adder above.

The other type of block is made up of two ripple carry chains in parallel. Applying

my technique to these blocks involves power gating each parallel pair of full adders

as one unit, leading to less power and area overhead than simply using the single full

adder approach. Specifically, the tested design was a uniform carry-select adder which

uses four blocks of six full adders, with all but the least significant block performing

additions in parallel chains. Figure 4.3 shows the details of a carry-select block with
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Figure 4.4: Power gating applied to the first stage of a Brent-Kung adder, the
carry generation and propagation signal generation stage. Note the use of the
NMOS to supply a virtual ground to the logic gates, and the PMOS to tie the
output signals to a logical ‘1,’ characteristics of a footer switch. The outputs are
sent further down the computation chain of the current bit, as well as to the next
stage of the next significant bit, as complementary (inverted) signals.

two layers of full adders gated as a single unit.

Brent-Kung Adder

Last, I modify a 24-bit Brent-Kung adder, one of several parallel adder designs. In

contrast to the first two adder designs I explored, which generate a single bit’s sum

in one functional unit (a full adder), Brent-Kung adders perform addition on a single

bit in several stages (Brent and Kung, 1982). Intermediate stages’ outputs are used

as inputs to later stages of the same bit, as well as later stages of more significant

bits. So, in order to freeze the switching activity in the computation of a single bit,

it is only necessary to gate the power of the first stage of that specific bit. I used a

footer switch to gate this computation in order to tie the outputs high, as they are

treated as complementary (inverted) signals by other signal paths. So, the eventual

sums generated will be ‘0’ in the disabled bits, which results in the same behavior as

my other adder designs. While it is possible to explicitly power gate the subsequent
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stages along a bit’s computation path, I found that the extra power savings obtained

are minimal and do not justify the additional area and speed overheads incurred. The

details of these modifications to the first stage can be seen in Figure 4.4 and are the

only modifications necessary for applying my technique to this adder.

4.3.2 Modified Multiplier Designs

Integer multipliers are used in many different application domains with similarly var-

ied usage patterns. So, I explored several approaches to modifying a 24x24-bit array

multiplier for variable-precision operation. A carry-save array multiplier, abstracted in

Figure 4.5, is constructed with a matrix of cells (blue squares) composed of an AND

gate, to generate the partial products, and a full adder. The final summation step (dark

blue rectangle) of the design is performed with a ripple carry adder for simplicity. This

adder is not variable-precision, in order to fully separate the two designs (adder and

multiplier), though it would certainly make sense to combine my designs in practice.

An nxn multiplier produces 2n product bits, but, in the larger context of a floating-

point multiplier, only the high n bits (green squares) are used, while the low n bits (red

squares) are ignored.

The full adder of each of these cells is gated in a fashion similar to that shown

in Figure 4.1, but I also designed versions that have separate gating controls for the

signals that propagate downwards and those that propagate to higher bits. First,

I tested simply suppressing the low order bits in the operands. Next, I gated the

power to just one operand’s lower bits, then the lower bits of both operands. Finally,

I adapted a truncation multiplier with correction constant and extended the column

truncation to provide variable-precision operation with power gating. Each of the

accompanying illustrations represents the gating applied to an 8x8 adder operating at

5 bits of precision.

Operand Bit Suppression

Suppressing the data entering the arithmetic units can be done in different ways. In

my tests, I assumed bit suppression at the source registers or before; I do not include

specialized circuitry for this purpose. My results, then, will simply show the dynamic

power saved. Since there is no power gating performed, the leakage power will not be

reduced.
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Figure 4.5: An abstracted representation of an 8x8 carry-select array multiplier,
showing partial product generation (blue squares), final adder (dark blue rectan-
gle), used product bits (light green squares), and ignored product bits (dark red
squares).

Figure 4.6: When gating only one operand, the multiplicand, diagonal slices of
the partial product matrix are disabled. This allows for more precise rounding if
required.
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Figure 4.7: When gating both operands, entire rows of the multiplier’s partial
product matrix are disabled in addition to the diagonal slices of the multiplicand.

Figure 4.8: Column truncation extends the premise of a truncation multiplier by
applying power gating to entire columns at a time. In addition, not every column
needs to be implemented in hardware, saving significant circuit area, though this
will make full-precision operation impossible.
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Single Operand Power Gating

Only varying the precision of one operand (the multiplicand) shows that my design

allows for handling operands of different precisions. This yields more precise rounding,

if necessary, while still achieving significant power savings. For each bit of reduced

precision, another diagonal slice of the multiplication matrix can be gated, as shown in

Figure 4.6. Each diagonal slice consists of half of a full adder from the lower bit and half

a full adder from the higher bit of the slice, so that the signals that would propagate

further left are not affected. This mode will also have the lower bound for energy

savings in handling operands of different precisions (one operand at full precision).

Double Operand Power Gating

By gating the low-order bits of both operands, even more circuitry is shut down with

each bit of reduced precision. As in single operand power gating, a diagonal slice of

the partial product matrix is gated for each bit of the multiplicand. Additionally, an

entire row is gated for each reduced bit of the multiplier. This gating scheme is shown

in Figure 4.7.

Column Truncation

A truncation multiplier saves area and power by simply not implementing low-order

columns of the partial product generation stage. A correction constant which reason-

ably handles the average case is added to the carry-in stage of the existing circuitry to

correct for the incurred error, but errors can still be large when the generated partial

product in a column would all be ‘0’ or ‘1.’ I extended the idea of a truncation mul-

tiplier (Ercegovac et al., 2000; Walters and Schulte, 2005) by applying power gating

to entire columns in order to reduce the operating precision (Figure 4.8). As more

columns are gated, the correction constant (supplied in a similar manner to the preci-

sion selection) is changed by software to minimize the average error. Since this scheme

has an immediate loss of precision, it is not likely a reasonable choice for hardware that

may need to operate at full-precision, but I have included it as another example of a

design to which fine-grained power gating can be applied.
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4.4 Simulation Setup

I used LT Spice IV (Linear Technology, 2010), built on the well-known Spice III simula-

tor (The University of California at Berkeley, 2010), to simulate the netlists generated

by Electric (used for rapid prototyping of smaller circuits) for power and timing fig-

ures for a 0.13µm TSMC library with a Vdd of 1.3V, frequency of 100MHz, and load

capacitances of 0.01pF. The Spice models were at the TT corner and simulated at a

standard 25C. (A higher temperature and voltage would exacerbate leakage effects.)

First, I tested a smaller 8-bit version of each adder exhaustively for correctness, and

then I compared the results of adding 200 random operands to a baseline 24-bit ripple

carry adder and visually compared the results to waveforms produced by the opera-

tions in software. I repeated these steps for the multipliers. In this way, I verified the

functionality of my designs. The same set of random 24-bit operands was used for the

power usage simulations of each modified unit at each operating precision. The current

drain through the supply voltage source was tracked to determine the power consumed

and energy used over these operations. Next, a set of worst-case operands was used to

find the longest propagation delay of each adder, measured from the 50% level of the

input’s voltage swing to the 50% level of the slowest output’s voltage swing. Leakage

power was found by first performing an operation on random 24-bit operands to ap-

proximate the average case current draw. Then, power was measured 500ms after the

operation to allow for the dynamic current draw to fade away, leaving only quiescent

current. I also devised an experiment to time the worst case delay in enabling/disabling

all 16 controllable bits at a time. This will be, in effect, the timing penalty incurred

for dynamically changing precisions. It may be necessary to slow this down in order to

avoid ground bounce, as described above, but it will serve as a worst-case penalty.

4.5 Results

I now present the power savings and area/timing overheads of my designed circuits

from simulation. These results are from simulations of pre-layout circuit designs with

realistic load capacitances and transistor sizes. While a more detailed, post-layout

simulation would also include the effects of wire capacitances, the results presented

are strong indicators of the trends of energy savings realizable as arithmetic precision

is reduced. Area and timing overheads are difficult to classify as either acceptable or

unacceptable (Sathanur et al., 2008), so I compare my overheads with those in other
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techniques. Finally, I compare my power savings with other approaches.

4.5.1 Energy and Power Savings

The overall energy consumption for my adder designs as a function of precision is shown

in Figure 4.9(a). To demonstrate that these designs help suppress leakage power, which

is likely to become increasingly significant as transistor technologies continue to shrink

(Roy et al., 2003), Figure 4.9(b) shows the leakage power for each adder circuit as a

function of the operating precision. Similar graphs are shown for the results of the

modified multiplier power savings in Figures 4.10(a) and 4.10(b). For reference, single

full-precision ripple carry, carry-select, and Brent-Kung additions require 3.5, 6.7, and

8.2 pJ, respectively, and a single full-precision multiplication requires 196.1 pJ.

Adders

The desired linear power savings are very apparent and significant in my proposed

adder designs. When using a Brent-Kung adder, for example, reducing the precision

by just four bits will cause each operation to use roughly 80% of the energy used by

full precision operations. In many applications, the precision can often be reduced by

more than just four bits without sacrificing fidelity. I will show in Chapter 5 that up to

12 bits can be lost without causing several graphics applications to become unusable.

This would give energy savings of close to 50% for additions. Also, though there were

energy overheads caused by the circuits becoming slightly slower (see Section 4.5.3),

these were overcome after reducing the precision by just 3 bits in the worst case, and

only 1 bit in the case of the Brent-Kung adder.

There are some expected characteristics of the energy per operation versus precision

trends worth noting. Firstly, the ripple carry adder has an almost perfectly linear slope.

This is exactly what one would expect, since precisely one full adder per bit is gated.

Second, the carry-select adder has two different regions of savings, due to the structure

of its design. The first is seen in precisions 24 through 18, which corresponds to the

single layer of full adders being gated in succession. After bit 18, at a precision of 17

and below, the savings are more aggressive as two full adders per bit are gated and

consume minimal power.

Leakage power consumption (Figure 4.9(b)) shows analogous trends. Firstly, all

the adders show linear savings, as expected. Also, the carry-select adder displays the

same dual-slope that was seen in the total power results. Furthermore, while there are
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some overheads, due to the added transistors, they are overcome with a reduction in

precision by only 4-6 bits.

Multipliers

The power savings for the multiplier designs (Figure 4.10) are even more promising

than those of the adders, due to the quadratic complexity of the multiplier’s hardware.

Just as the adders displayed interesting behavior, the multipliers show trends that

warrant remark. The design with the lowest energy savings is that with only one gated

operand (“X Gating”), which naturally results in linear energy savings. Simple operand

suppression is more useful, but, as previously noted, does not stop leakage current (see

Figure 4.10(b)), which will be more of a problem when using a smaller technology.

Gating both operands (“XY Gating”) performs better than suppression with a similar

inverse quadratic decay, expected from the gating pattern. Using this approach, one

must only reduce the precision by 5 bits in order to see a 50% decrease in power

consumption. Column gating exhibited even more dramatic power savings, which is to

be expected, as roughly half of the multiplier was disabled (or not implemented) from

the start. However, it must be noted that the precision is not guaranteed to be exactly

the number specified, since the correction constant does not change with operands, only

with precision. Errors of one to a few low-order bits must be acceptable when using

this scheme, which limits its utility somewhat but gives it the greatest power savings.

The leakage power versus precision curves, in Figure 4.10(b), resemble those of the

full energy per operation versus precision curves. While operand suppression does not

reduce leakage power, as was expected, the other designs save significant power and

overcome very small power overheads after only one bit of precision reduction. So, the

power savings will be immediately realized.

4.5.2 Area Overheads

The extra area incurred by the gating and control circuitry must not overshadow the

power savings they enable. Table 4.1 shows the overheads, as extra transistor area,

for each adder type, and Table 4.2 shows the same figures for the multiplier designs. I

have not included the area penalty for precision control circuitry, as it is dependent on

the implementation chosen. Also, any overhead of the control hardware would likely be

shared among several units; the amortized impact on a single unit, such as an adder,

would likely be acceptably small.
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Figure 4.9: Energy per operation and leakage power versus precision of the differ-
ent adder designs. The ripple carry adder uses very little energy per operation,
while the carry-select and Brent-Kung adders use nearly double this amount.
These two, however, are significantly faster. Like the energy per operation, leak-
age power declines roughly linearly with precision.
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Figure 4.10: Energy per operation and leakage power versus precision of the
different multiplier designs. Simply gating one operand (“X Gating”) leads to
a linear savings, while gating both operands (“XY Gating”) and taking advan-
tage of the multiplier’s quadratic complexity yields more aggressive savings with
minimally reduced precision. Suppressing operand data does not reduce leakage
power at all, but the other curves show trends similar to those seen in the energy
per operation savings.
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Table 4.1: Extra area needed for modified adders.

Transistor area (µm2)

Adder type Unmodified Modified Increase (%)

Ripple Carry 4.606 5.383 16.9
Carry-Select 9.165 10.319 12.6
Brent-Kung 13.487 14.735 9.3

Table 4.2: Extra area needed for modified multipliers.

Transistor area (µm2)

Gating type Unmodified Modified Increase (%)

X 128.65 172.78 34
XY 128.65 172.78 34
Column 69.10 80.10 16

Overheads in the on-chip area are not of a degree to prohibit my designs from being

used. To control 16 bits of a 24-bit unit, the areas of ripple carry, carry-select, and

Brent-Kung adders increase by 16.9, 12.6, and 9.3%, respectively, and the multiplier’s

area increases by 16 or 34%, depending on configuration. 16 bits is likely at the upper

threshold of bits of precision that can be safely lost without adversely affecting the

function of an application that normally operates at 24 bits of precision. Choosing

a design that controls fewer than 16 bits will use even less extra hardware, both by

reducing the number of gating network transistors needed and also by simplifying the

control logic. For comparison, simpler signal-gating approaches have incurred overheads

of 5-16% (Huang and Ercegovac, 2002) (measured by counting the number of inverters

with the simple assumption that each sequential unit has five inverters, while offering

only a fixed reduced precision). Only the circuitry to gate at a certain bit (22 in the

X dimension and 16 in the Y dimension) was included in the cited work. Overheads

would be much higher were their circuits to allow a full range of operating precisions,

as mine do.

4.5.3 Timing Overheads

The proposed variable-precision units incur two types of delay penalties. The first is

the extra time needed for the input signals to propagate through the resized gates to

the output. The second is the time taken to change operating precisions, or the turn-on
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Table 4.3: Time overheads of the modified adders.

Critical path delay (ns)

Adder type Unmodified Modified Increase (%) Turn-on time (ns)

Ripple Carry 5.6 5.9 6.9 2.1
Carry-Select 2.4 2.5 6.9 1.4
Brent-Kung 1.066 1.069 0.4 1.069

Table 4.4: Time overheads of the modified multipliers.

Critical path delay (ns)

Gating type Unmodified Modified Increase (%) Turn-on time (ns)

X 6.99 7.26 3.8 7.15
XY 6.99 7.26 3.8 7.15
Column 6.99 7.26 3.8 7.15

time. Table 4.3 lists these figures and compares the propagation delays of the modified

and original designs for the new adders, and Table 4.4 reports my findings for the new

multiplier designs.

These timing overheads are also acceptable. Firstly, the worst-case turn-on time

due to precision changing is a cycle or less for each of the modified designs; allowing

that my simulations are pre-layout, this is reasonable. The propagation delay penalty

is also quite acceptable, less than 7% at maximum for the adders and less than 4% at

maximum for the multipliers. While this overhead is already quite low, in low-power

devices, a high clock speed is usually not the primary concern. In fact, the clock

may be dynamically slowed to take advantage of lighter workloads. My techniques are

orthogonal to DVFS; both can be used on the same circuitry to gain energy savings. As

before, my designs are competitive compared with a signal-gated approach that shows

delay overheads of 7-11% (Huang and Ercegovac, 2002).

4.5.4 Comparison with Other Techniques

Here, I compare the energy savings of my proposed circuits with the savings of other

variable-precision techniques. This is a difficult task, as other reported findings differ

in technology sizes and other factors. I offer comparisons of my approach versus both

coarse-grain power gating and signal gating.

I first look at one representative coarse-grain power gating technique, a twin-precision
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multiplier, which is nearly directly comparable with my results, thanks to the same size

process (130nm) and similar driving voltages (my 1.3V versus their 1.2V) (Sjalander

et al., 2005). There are several differences between our two approaches: Sjalander et

al.’s circuit is based on a tree multiplier, while mine is a simpler array multiplier. Also,

their approach allows for only two different precisions to be used, whereas my design

offers a continuum of operating precisions. While they do not report all the necessary

results, such as power consumption of the multiplier in 16-bit mode, one metric that

I can compare is the power consumption of a standard 16-bit multiplier operating on

8 bit operands compared to their twin-precision cutoff multiplier operating on 8-bit

operands. The ratio between these two is 3.2, whereas the ratio between my multiplier

operating at full and half precisions is 6.8, indicating that I see more savings for the

same reduction in precision. However, this comparison is unfair, as I do not implement

power gating below 8 bits. So, if I treat 8 bits as ‘0’ and find the ratio between the

new full and half precisions (24 and 16, respectively), I arrive at a ratio of 3.4. This is

slightly better than the twin-precision multiplier. Lastly, even though my unpipelined

multiplier has a delay of 4 to 5 times that of Sjalander et al.’s, depending on configura-

tion and despite my 50% larger bit width, my design is more flexible and has an energy

efficiency 1.7 times higher than their design.

I now compare my results against a signal-gated approach by Huang and Ercegovac

(Huang and Ercegovac, 2002). In this compared work, a 32-bit multiplier is signal-gated

in both the X and Y dimensions, and is the technique on which I have based my “XY”

power gating approach. However, they hardwire gating lines at the 22nd bit of one

dimension and then 16th bit of the other. I have only reported results for symmetric

power gating, though my circuit could be driven with two different precisions. So, to

choose a comparison, I first observe that they report results when gating, on average,

40% of each operand. This equates, in my design, to an operating precision of 14.4

bits. So, I will compare their reported results with my results linearly interpolated

between 14 and 15 bits. They report energy savings of 67% when using their most

low-power design, and I show savings of 76% for my analogous “XY” gating technique.

(Column gating would yield better savings, but incurs computational errors not seen

in their approach.) As expected, my own “Suppression” technique, which mimics their

coarse-grain signal-gating approach, has an energy savings of 69%, which agrees closely

with their results.
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4.6 Conclusion

I have applied power-gating techniques to several standard integer adders and an array

multiplier, converting them to be dynamic, fine-grained variable-precision circuits. My

designs show significant savings when reducing the precision of integer adders and

multipliers in order to save dynamic and static power consumption. I have shown that

the overheads caused by this power gating are modest, and that the precision only

needs to be reduced by 2 or 3 bits in order to start seeing energy savings. I will use

the energy versus precision characteristics of these circuits in Chapter 5 to build an

energy model of the vertex and pixel shader stages of a GPU that can trade precision

for energy savings.

There is significant remaining work in the area of variable-precision arithmetic cir-

cuits. First, none of my designs are pipelined, which is a common optimization in

throughput-oriented devices like GPUs. Second, my designs are only the foundation

for an FPU; they will need to be assembled into a variable-precision ALU with floating-

point specific hardware to handle exponents, rounding, etc. Lastly, while I have pre-

sented several adder designs, I am confident my approach will apply to other adders,

as well, including carry-save adders or Kogge-Stone and other parallel adders (Harris,

2003). Likewise, the application of my techniques to different multiplier designs, such

as Wallace or Dadda trees, may reveal an even more useful design.
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Chapter 5

Energy Savings in Computation

5.1 Motivation

In this chapter, I look at reducing precision in the vertex and pixel shader stages.

Shaders currently perform all their operations with 32-bit floating point numbers by

default, which have 24 bits of precision in the mantissa. However, the final colors

are displayed with only 8 to 12 bits of precision in each channel, and vertex positions

do not need 24 bits of precision in order to map to the correct pixel, even in a large

(1920x1200 pixel) render target. I show that it is possible to reduce the precision of

shader operations without incurring noticeable differences in the final image, allowing

me to use variable-precision hardware (developed in Chapter 4) to save energy.

The precision of computations in GPUs is often dictated by graphics APIs, such

as Microsoft’s DirectX (Microsoft Corporation, 2012a). So, the underlying hardware

must be capable of performing these full-precision computations. In order to use less

precision, the API must be changed or amended for specific cases, or a different graphics

API should be used.

Since choosing a single precision for all applications would result in sub-optimal

energy savings for some and intolerable errors for others, per-program precision selection

must be made available. I explore several approaches to choosing the final operating

precision of the hardware for maximizing energy savings. I develop these approaches

and present the findings in the context of pixel shaders of several existing applications.

I briefly introduced the efficacy of my techniques in Section 1.5 with Figure 1.4,

which showed savings possible in the pixel shader stage. Similar savings are possible in

the vertex shader stage, shown here in Figure 5.1.



(a) Full Precision (24 bits)

(b) Reduced Precision (19 bits) (c) Reduced Precision (16 bits)

Figure 5.1: Figure 5.1(a) is the reference frame produced by full-precision com-
putation (24 bits) throughout the vertex shader of the video game “Doom 3.”
Figure 5.1(b) shows the result when using 19 bits in the vertex shaders. There
are no perceptible differences between the two images, yet the reduced-precision
image saved 62% of the energy in the vertex shader stage’s arithmetic. Figure
5.1(c) shows the same frame computed with 16 bits of precision, leading to visible
errors commonly referred to as “z-fighting,” though it did save 76% of the energy.
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5.2 Related Research

Sections 2.2 and 2.4 covered standard techniques for saving energy in computation and

variable-precision computation, respectively.

5.3 Reduced-Precision Shading

Vertex and pixel shaders have very different characteristics that necessitate individual

exploration of the effects of reducing their precisions, discussed below.

5.3.1 Vertex Shaders

Vertex shaders are primarily responsible for the transformation of input vertices in a

local 3D object space to output vertices in a common 2D screen space. At this stage,

vertices can also be “lit,” or have lighting equations evaluated at the vertices’ positions,

but this operation is more commonly done in the pixel shader for higher-quality results.

Transformations, then, are the main operation and the focus of my experiments.

There are two types of errors that can occur when vertices are transformed in-

correctly. The first and most commonly expected error is that a vertex will shift its

on-screen position in the X and/or Y directions, so that it will end up at a different

pixel than the same vertex transformed with full precision operations would. I refer to

this type of error as an “XY” error. The second is an error in the depth of the vertex.

If a vertex is assigned an incorrect depth, then there may be very subtle changes in the

eventual lighting due to an incorrect plane equation. Much more drastic, however, is

an error called “z-fighting,” which happens when two nearly coplanar faces intersect.

The limited precision of the depth buffer can not distinguish between the depths of

the two surfaces and does not choose just one surface to be “in front” consistently

across the intersecting region. As a result, there may be very distracting spatial and

temporal aliasing at this location on the screen as the two surfaces fight for dominance

(see Figure 2.3 for an example of this in a full-precision commercial application). This

is a common problem that happens even without reducing the precision of operations

in the vertex shader that has been researched in the past (Akeley and Su, 2006).
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5.3.2 Pixel Shaders

The various operations in modern pixel shaders have very different sensitivities to

precision reduction. Arithmetic instructions will give a result whose imprecision can

be statically determined by the imprecision of the operands. The results of other

instructions, such as texture fetches, can be much more sensitive to variations in input

precision. So, maximum energy savings will be seen only with control over the precision

of these two groups of instructions independently, when neither precision will limit the

other. It is this observation that makes the problem of controlling the precision used

in a pixel shader more complicated than might be immediately apparent. Figure 5.2

demonstrates these two types of errors. Here, I discuss these characteristics so that I

can take them into account in my algorithmic and experimental sections.

Texture Fetches

Texture fetches behave very differently from arithmetic instructions, since texture co-

ordinates are effectively indices into an array. Using slightly incorrect indices to index

an array can lead to results that are very wrong, correct, or anywhere in between. The

behavior is dependent on such parameters as the frequency of the texture data, size

of the texture (or mip level accessed), and type of filtering used - information that

may only be available at run time. Reduced precision texture coordinates will lead to

neighboring pixels fetching the same texel. In some pathological cases, texture coordi-

nates for entire triangles may collapse to the same value when using a slightly reduced

precision, giving the triangle a single color.

Arithmetic Operations

The errors that arise in simple arithmetic operations (add, mul, div, etc.) are quan-

tifiable, and a discussion of these errors is readily available (Wilkinson, 1959). For

complex operations, such as rsq, sin/cos, etc., the errors incurred will depend upon the

implementation. I assume that these operations have an error bound of no greater than

one unit in the lowest place. With these error characteristics, I am able to apply my

static analysis technique to the instructions in shader programs that do not contribute

to a value used as a texture coordinate. Arithmetic imprecisions generally manifest

themselves in the computation of color values in two ways: they gently darken the

scene overall as LSBs are dropped, and smooth color gradients can appear blocky as

nearby values are quantized to the same result.
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(a) Full Precision

(b) Reduced Precision Texture Fetches (c) Reduced Precision Color Computations

Figure 5.2: Figure 5.2(a) is the reference frame produced by full-precision compu-
tation (24 bits) throughout the pixel shader. Figure 5.2(b) shows an exaggerated
result due to reducing the precision of texture coordinates to 8 bits, and Fig-
ure 5.2(c) shows similarly exaggerated results of reducing the precision of color
computations to 4 bits. Errors of this magnitude are never seen in my test ap-
plications when using my techniques to select precisions; these images are shown
only to demonstrate the types of errors that are possible.

5.4 Precision Selection

Simply knowing that applications can handle a reduction in the precision of their com-

putations is not enough to enable energy savings; the applications must also know how

far their precisions can be reduced before errors become intolerable. As seen in Figure

5.3, applications can have very different errors for the same precision. This operating

precision can be found in many ways; I propose and discuss several static and dynamic

precision selection techniques. I examine these techniques in the context of the pixel

shader, as it will have two different precisions (in order to accommodate pre- and post-

last texture fetch (LTF) instructions) and is therefore more complicated. Applying any

of the proposed approaches to the vertex shader will only require simplification, not
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Figure 5.3: Simulating several fragment shaders at various precisions shows that
the error is not the same for each shader.

more work.

5.4.1 Static Program Analysis

A static analysis of the shader programs used by an application will determine reduced

precisions with guaranteed error bounds. My approach is to build a dependency graph

for the final output value and to propagate the acceptable output error back towards

the beginning of the shader program. This procedure yields a conservative estimate of

the precision for each instruction. As I noted above, though, the error characteristics of

texture fetch instructions are non-linear and impossible to predict without knowledge

of the data stored in the textures in use. In the worst case, reducing the precision of

a texture coordinate by a single bit could cause an unbounded error in the resulting

value. For this reason, I am not able to safely change the precision of instructions that

modify texture coordinates. The output of my static analysis, then, is a single precision

for each shader program which will be applied to each instruction after the program’s

last texture fetch.

Determining the last texture fetch is not always straightforward; for instance, multi-

phase shaders may rely on complex control structures to repeat texture fetch loops. In
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this case, a dependency graph is constructed at the shader’s compilation, rather than

the simpler approach I have taken for this work of simply noting the position of the

last texture fetch and applying a different precision to subsequent instructions. If the

control structures modify texture coordinates, this information would be captured in

the dependency graph and used to choose a precision.

Just as a static analysis will not have access to the texture data in use, it will also

not have access to the rest of the fragment’s data - position, color, normal information,

etc. I can handle this restriction more effectively, however, by assuming the worst-case

error for each arithmetic instruction. This will cause overly conservative estimates in

most cases, but the error is guaranteed to be within the local tolerance.

5.4.2 Dynamic Programmer-Directed Selection

My static analysis assumes the worst-case inputs, which may cause the final chosen

precision to be too conservative, leaving unclaimed energy savings. Similarly, it is

impossible to determine a safe reduced operating precision for computations affecting

texture coordinates with a static method, while a dynamic approach will be able to

monitor errors while reducing the precision of these computations, saving more energy.

So, I propose a simple scheme to allow the application’s developer to control the preci-

sion of each shader effect in tandem with the effect’s development. This will allow the

developer to stipulate that certain shaders can tolerate large reductions in precision

without noticeable degradation; here, of course, the developer is able to decide what is

noticeable on a case by case basis.

Currently, most pixel shaders are developed inside a dedicated shader editor. This

allows artists to tweak certain parameters and see the results in real time. With hard-

ware support for variable-precision arithmetic, two extra parameters (precisions before

and after the last texture fetch) for each shader program will be a natural addition to

the artist’s array of variables. Once the shader is finalized, the chosen precisions can

be encoded either as constants in the program or as instructions, depending on the

implementation. Alternatively, the precision for each stage of the program could be en-

coded with the current rendering state. This way, existing context switching procedures

would automatically handle loading and storing correct precisions.

In the extreme case, the programmer could have control over the precision of each

instruction independently. This would allow for more savings in the arithmetic but

would carry with it a higher control cost: either encoding a precision in each floating-
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point instruction or using many more precision setting instructions. It would be up to

the programmer to evaluate the tradeoffs in their particular application, though I do

not think this level of fine-tuning will be necessary.

5.4.3 Automatic Closed-Loop Selection

To remove any burden from the application’s developer, I have also developed a closed-

loop method by which the actual errors can be monitored as precision is reduced at

runtime. At the highest level, when the error is larger than a given threshold, the preci-

sion is increased to avoid continued errors. In this section, I describe an efficient method

to monitor runtime errors and change the precisions of individual shader programs at

the driver level.

Monitoring Errors

In order to determine that the current operating precision for a shader program is

either too high or too low, the error between the shader’s output (commonly in an

8-bit per channel format) at the current reduced precision must be compared to the

output at full precision. To do this, the hardware must compute both the reduced-

precision result of the shader as well as the full-precision result. The difference between

these two will give the error caused by the precision reduction. There are different

ways of implementing this process in hardware, but I will first show that it is a viable

method of energy saving. I save a discussion of one possible implementation for Section

5.8. I note here that these errors will be monitored regularly throughout each frame,

and that the reaction to this monitoring does not need to wait until the next frame.

If the precision is updated mid-frame, then the response time will be quite short; it is

unlikely that errors will persist for more than a single frame. In all of my simulations,

I did not see any multi-frame errors.

Sampling Generated Fragments

Clearly, this method will not save any energy if each pixel of every frame is computed

twice - the overhead in this case would be 100%! Rather, the redundant execution

should be predicated on some flag; this flag could be anything from a randomly-selected

boolean input assigned by the rasterizer, to a value obtained from hashing the input

fragment’s position at the start of the shader. The method chosen will depend on

74



many factors, but it must be able to select a subset of fragments for error determina-

tion. Ideally, this subset will be as small as possible, leading to a very small incurred

overhead. In my experiments, I have explored varying both the sampling rate and sam-

pling pattern. What I found is very promising - sparsely sampling every nth generated

fragment performs nearly as well as denser random sampling. See more on these results

in Section 5.7.3.

Precision Control

With an accurate measure of the error caused by the precision reduction of a partic-

ular pixel shader, I must now determine how to change the operating precision, if at

all. I expect that, due to differences in the responses of texture fetches and regular

arithmetic operations to reducing precision, I will see different minimum precisions for

the two phases (texture fetches and color computation) within a single shader. Some

texture coordinates must be computed with high precisions, yet the results of their

corresponding fetches are subject to a series of operations that can be performed at

lower precisions. Other texture coordinates, however, can tolerate low precisions, which

is one of the advantages of my dynamic approach. So, I store two precisions for each

active shader: one used prior to the LTF that will control the precision of any com-

puted texture coordinates, and one used after the last texture fetch, which will incur

predictable arithmetic errors.

One complication with this dual-precision approach is that when both are reduced,

it can become difficult to correctly determine which precision is the source of an error

in the final pixel value. I examine several heuristics for controlling these precisions: a

“simple” approach that merely acts on an “error detected” signal, a modified “simple

with delay” approach that adds a configurable latency with the goal of determining the

source of the error more accurately, a “texture fetch priority” approach that acts on

the magnitude of the error, and two “dual test” approaches that attempt to determine

precisely the source of the error at the expense of higher overheads. For all these

approaches, the precisions of each shader are initially reduced in the same manner.

First, the post-LTF precision is reduced at the rate of one bit per frame until an error

is seen, after which it is immediately raised by a single bit. Then, the pre-LTF precision

is reduced at the same rate until an error is seen. The behavior at this point is dictated

by the control system in use. I describe the five I explored below.
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“Simple” Control This approach does not make any attempt at determining which

precision is the source of the error. Rather, it increases the pre-LTF precision until

there is no error above the tolerance threshold with the assumption that it was this

precision that caused the error. Once the pre-LTF precision is at its maximum value (of

24), the post-LTF precision is increased if any errors over the tolerance are measured.

The overheads for this approach are minimal, just an extra pass for the full-precision

results and some control logic in the driver.

“Simple with Delay” Control As with the “simple” control, the post-LTF pre-

cision is reduced until an error is seen. However, there is then a configurable delay

period of some number of frames added before decreasing the pre-LTF precision. This

will allow for more error sampling with only one source of error, so that I can be more

confident that the chosen precision setting for the post-LTF instructions is sufficiently

high. If another error is seen during this period, it restarts. After this point, this

technique is identical to the “simple” approach, and it has similar overheads, with only

slightly more storage necessary for the remaining time in the assigned delay period. In

my explorations, I chose to add ten frames of delay.

“Texture Fetch Priority” Control An error’s magnitude may hold a clue to its

source, since imprecise texture coordinates can lead to very incorrect results. A large

error encountered during runtime is likely due to the pre-LTF precision being too low.

A simple arithmetic error is unlikely to cause a very large error rapidly. So, when an

error is seen, I take its magnitude into account and increase the pre-LTF precision

if the error is high. However, I cannot assume that a low error indicates arithmetic

imprecision, since low-frequency texture data will also lead to relatively small errors.

In this case, I fall back to the “simple” controller. The overhead for this technique is

only slightly higher than the “simple” control due to slightly more complicated control

logic.

“Dual Test” Control It is possible to diagnose which precision caused an error by

performing the computations again with one of the two precisions, pre- and post-LTF,

set to 24 bits. Performing the computations yet again with the other precision at 24

will make it likely that the culprit will be accurately determined. Whichever instruction

group’s pass causes the lesser error will be the group to have its precision raised. This

approach (and the next) incurs the highest overhead, at more than 3 times that of the
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simplest approach due to two extra passes and more control logic.

“Dual Test with Gradient Climb” Control A variant of the “dual test” control,

this approach simply steps either precision up by a single bit, giving the local gradient

of the errors with respect to precision. This gradient is then used to predict which

phase of the shader is the source of the error. I expect this method to perform better

than plain “dual test” because it predicts the effects of performing the eventual action,

rather than the effects of maximizing the precision.

5.4.4 Local Shader Errors vs. Final Image Errors

Both the static and automatic approaches give reliable access to the local errors at

each pixel shader; however, these errors do not necessarily correspond to the errors in

the final image presented to the viewer. For example, in a scene with a car driving

through a city, an environment map will be generated to show the reflections on the

car’s surface. This environment map may have slight errors from the reduced precision

in its pixel shader. When the map is sampled during the car’s draw call, further errors

may be imparted on the same pixels. If this generated image is then used as input to a

post-processing shader, more errors may be compounded upon the preexisting errors.

I find that limiting the tolerance of the local errors is sufficient to limit the notice-

ability of differences in the final image, despite two discouraging observations. The first

is that it is impossible to relate the local errors in each shader stage to the errors in the

final image. The second is that it is impossible to sparsely sample errors in the final

image effectively. This is due to a final pixel of position (x,y) being composed of several

other pixels with varying positions, not necessarily (x,y), in their own render targets

and textures; predicting these positions to sample during program execution is infea-

sible. However, these shortcomings do not make these local error limiting approaches

ineffective, as I will show in Section 5.7.3.

Only my programmer-directed dynamic approach allows for consideration of the

final image errors. So, this approach will better bound the final errors, which may

be necessary in some circumstances when the local errors do not predict the final

errors well. However, this benefit comes at the cost of extra work on the part of the

programmer or artist.
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5.5 Precision to Energy Model

In this section, I present the energy model I use for estimating the energy spent in the

computations necessary to render a frame at a certain precision. I justify the use of the

energy characteristics of the circuits developed in Chapter 4 as the models for addition

and multiplication. I then use the energies for these operations to model those of more

complex operations. The energy spent in a dot product, for example, is the sum of its

constituent addition and multiplication operations, and likewise for multiply-add and

MIN/MAX operations. I also show the model used for reciprocal and reciprocal/square

root operations. I assume that these composite operations are performed sequentially.

5.5.1 Addition

Floating-point additions are computationally expensive operations consisting of several

steps. First, the operands’ exponents must be made equal, which requires shifting

a mantissa. Then, mantissas are added. Another normalization step is needed to

align the sum’s mantissa, followed by a configurable rounding step. I focus on only

the addition of mantissas when modeling the floating-point energy. The energy in

rounding is significant in a traditional FPU (Jain, 2003; Sheikh and Manohar, 2010),

but when doing reduced precision calculations, I assume a simple round toward zero

(truncation) scheme which does not need any intricate rounding support. Shifting, too,

is significant, but of a lesser magnitude than the addition itself once a simple shifter

that need not perform any necessary rounding operations is implemented (Sheikh and

Manohar, 2010). Furthermore, the energy in shifting will scale linearly with the bit

width of the operands, just like the addition itself. So, the energy spent in a reduced-

precision floating point adder will consist of the integer addition (such as my Brent-

Kung design) and the shifter energy, both of which will scale with precision. So, I

model the energy used by a floating point adder as the energy of an integer adder

with the understanding that my estimated energy will be less than the real energy by

an amount that will decrease along with the operating precision. I use the results of

my modified Brent-Kung adder design as the energy model for addition, EADD, as a

function of precision, p:

EADD (p) = BKEnergy [p] (5.1)
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5.5.2 Multiplication

Multiplication is modeled as integer multiplication at a given precision. Tong et al.

found that 81.2% of the energy consumed in floating point multiplication is spent in

the mantissa multiplication or over 98% when the rounding unit is disregarded, which

is the case for simple truncation (Tong et al., 2000). Therefore, I focus on the mantissa

multiplication, and use the results of a standard array multiplier, modified for variable-

precision operation with XY operand gating, as presented in Chapter 4, as my energy

model for multiplication:

EMUL (p) = ArrayXY Energy [p] (5.2)

5.5.3 Reciprocal/Reciprocal Square Root

Historically, several types of iterative reciprocal (RCP) and reciprocal square root (RSQ)

calculations have been used in hardware. SRT division converges upon the correct result

linearly, while Newton-Raphson (and others based on Newton’s method) (Chen et al.,

2005) and Goldschmidt (and other power series expansions) (Foskett et al., 2006) con-

verge quadratically to the result. In order to make use of my variable-precision designs,

I chose to model reciprocal and reciprocal square root computations with narrow bit-

width multiplications introduced by Ercegovac et al. (Ercegovac et al., 2000), based on

Taylor series expansion. This method consists of a reduction step, evaluation step, and

post-processing. Several iterations of the evaluation step are needed, for which some

operations require only p
4

bits of precision. (For my circuits, low precision is bounded at

8, so this term is constant, though it could be variable if the application called for such

low precisions that control of the lower bits were implemented.) When the energies for

all stages are summed, the total consumptions are as follows for a reciprocal (5.3) and

a reciprocal square root (5.4) operation:

ERCP (p) = log2 (p) ∗
[
5 ∗ EMUL

(p
4

)
+ EADD

(p
4

)]
+ EMUL (p) (5.3)

ERSQ (p) = log2 (p) ∗
[
4 ∗ EMUL

(p
4

)
+ EADD

(p
4

)
+ EMUL (p)

]
+ EMUL (p) (5.4)
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5.5.4 Dot Product

I modeled the energy consumed in 3- and 4-component dot product operations as the

sum of the energy in the constituent additions and multiplications:

EDP3 (p) = 3 ∗ EMUL (p) + 2 ∗ EADD (p) (5.5)

EDP4 (p) = 4 ∗ EMUL (p) + 3 ∗ EADD (p) (5.6)

5.5.5 Multiply-Add

Like dot products, a multiply-add operation can be modeled as a combination of a

multiplication and an addition:

EMAD (p) = EMUL (p) + EADD (p) (5.7)

5.5.6 MIN/MAX

Comparisons are typically implemented as a subtraction operation followed by checking

the sign bit of the result. Therefore, the energy of a MIN/MAX operation is simply

modeled as an addition:

EMIN/MAX (p) = EADD (p) (5.8)

5.5.7 Summary

Most arithmetic operations are built upon the addition and multiplication units. En-

ergy consumed in addition is purely linear with respect to precision, while multi-

plication’s energy trend is quadratic. Thus, I expect my experimental results to

have a second-degree polynomial curve, somewhere between purely linear and purely

quadratic, depending on the relative frequencies of use of these operations.

5.6 Experimental Setup

My static analysis requires no simulation or user-intervention, I simply require data

sets to analyze. To examine my programmer-directed approach, I modified several
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simple applications meant to demonstrate a single shader effect. This allows me to

demonstrate the ease of use of this approach as well as determine the tolerance to

precision reduction of cutting-edge pixel shaders. My automatic approach requires a

simulation environment to test my control schemes.

5.6.1 Programmer-Directed Precision Selection

I adapted several demo applications developed by NVIDIA and AMD (see Section

5.6.3) to show how they may appear to an artist developing an application for use on

variable-precision hardware. Ideally, the artist or programmer will have control over

two precisions per shader, as discussed in Section 5.3.2. However, modern applications

are written in a higher-level language, and I do not have access to the compiled assembly

program. This makes it difficult to divide the operations into two groups representing

instructions before and after the last texture fetch at runtime of a live application

(rather than a simulation). So, my programmer-directed approach will only make use

of one precision per shader. This is still enough to prove my concept, though, and I

still see significant savings, even with this limitation (see Section 5.7.3). Lastly, this

simplification precludes me from determining the errors introduced by the precisions

chosen by a static analysis; I am still able to present energy estimates for my static

analysis, however.

5.6.2 Simulator

I chose to use the ATTILA simulator (del Barrio et al., 2006) to test my reduced-

precision vertex and pixel shader approaches. Its designers have recently released a

version that can use traces of DirectX 9 applications captured by Microsoft’s PIX tool

(Microsoft, 2011a). This allows me to experiment on recent applications with modern

shaders.

I modified ATTILA in several ways. First, I added support for variable-precision

arithmetic to the GPU’s emulated arithmetic hardware. This allows me to specify a

single precision for the entire simulation. Next, I implemented independent precisions

per shader, as well as dual-precisions for before and after the last texture fetch of each

pixel shader. Finally, I added support for my various precision control techniques in

order to see how each behaved.

I also added extra logging functionality. The first type is activated when an oper-

ation is executed in a shader: the shader itself calculates the operation’s energy based
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on its current precision and logs this information for further analysis. The second type

is the ability to save transformed vertices so that errors in vertex positions can be

analyzed. (Color buffer logging was built-in to ATTILA already.)

5.6.3 Data Sets

The data sets used are different for each experiment: vertex shading, static analysis,

dynamic, and programmer-driven precision selection. My static approach uses the data

sets from both the other two selection approaches, since the shader programs require, at

most, a simple translation into a common format for analysis. The dynamic approaches

will require their own data sets that are compatible with their associated simulation

environments. I list these in detail below.

Vertex Shading

The applications that I simulated and analyzed at the vertex shader stage were “Doom

3,” “Prey,” “Quake 4,” and a simple torus viewer, all traces released by the ATTILA

group specifically for use with the simulator and seen in Figure 5.4. Several hundred

frames (to create useful videos) of the first two applications were simulated, and several

sample frames, used for energy and error analysis, were logged for all four applications.

The sample frames for the three games were chosen arbitrarily, and each included

a large amount of texture-mapped and lit 3D geometry as well as 2D user interface

components. Only a single frame was traced for the simple torus viewer. I simulated

these applications at a resolution of 640x480 pixels, which is a higher resolution than

all but the newest mobile devices. I also note that relative error is independent of

screen size, so the visual errors will not be any more noticeable at higher resolutions;

my approach will still apply to a range of devices.

Programmer-Directed Approach

I examine three recent pixel shader effects in the context of a shader editor that an

artist might use. These effects are shown in Figure 5.5: depth of field (AMD, 2008),

parallax mapping (NVIDIA Corporation, 2010), and screen space ambient occlusion

(NVIDIA Corporation, 2010).
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(a) Quake 4

(b) Prey

(c) Torus Viewer

Figure 5.4: Single frames simulated for error/energy purposes (“Doom 3” was
shown in Figure 5.1(a)). Three applications are commercial video games, but the
torus viewer has much simpler and more compact geometry.
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(a) Depth of Field

(b) Parallax Mapping

(c) Screen Space Ambient Occlusion

Figure 5.5: Data sets used to test my developer-driven dynamic precision control
techniques.
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(a) Half-Life 2: Lost Coast (1), 80 frames (b) Half-Life 2: Lost Coast (2), 80 frames

(c) Doom 3, 250 frames (d) Need for Speed: Undercover, 63 frames

(e) Metaballs, 2000 frames

Figure 5.6: Data sets used to test my closed-loop precision control techniques.

Automatic Approach

The ATTILA designers have released a number of traces for use with their simulator

(ATTILA, 2011). I use some of these traces, as well as some that I have captured, to

evaluate my techniques. The specific applications I used are, as seen in Figure 5.6, two

scenes from “Half-Life 2: Lost Coast” (Valve, 2005), “Doom 3” (id, 2005), “Need for
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Speed: Undercover” (EA Black Box, 2008), and a Metaball viewer (Baker, 2011).

5.7 Results

5.7.1 Vertex Shaders

As a frame of an application was simulated with ATTILA, information regarding its

transformed vertices was logged, and only those vertices that were within the view

frustum were analyzed. For those vertices that were on screen at full precision, the

error was found by taking the root of the squares of the x and y distances to the full

precision position. As in past work (Akeley and Su, 2006), clipped vertices were not

taken into account. The errors seen at precisions less than 8 bits were, for the most

part, far too high to make the applications usable, so only precisions greater than or

equal to 8 bits were simulated and analyzed for these examples. This correlates to the

minimum precision allowed for in the circuits I designed in Chapter 4.

Table 5.1: Summary of average error per vertex (in pixels) in a single frame
of applications simulated at various precisions. It is seen that each application’s
average error increases with a decrease in precision, as expected. Also, resolution
plays only a minimal role on relative screen space error. That is, doubling the
resolution effectively doubles the error of a transformed vertex so the relative
error is not affected. In the case of “Prey,” though, the relative error actually
lessens to a minor degree with an increase in resolution. Thus, increases in
display resolutions will not pose any problem to the efficacy of reduced precision
transformations.

Application Doom 3 Quake 4 Prey Torus

Resolution
320x240 640x480 320x240 640x480 320x240 640x480 640x480

Precision

8 10.54 21.02 7.33 14.62 7.72 14.17 1.169
10 5.34 10.68 1.62 3.20 1.26 2.25 0.355
12 1.32 2.60 0.49 0.93 0.46 0.80 0.089
14 0.33 0.64 0.11 0.21 0.14 0.23 0.020
16 0.10 0.14 0.02 0.04 0.03 0.05 0.006
18 0.02 0.04 0.01 0.01 0.01 0.01 0.002
20 0.01 0.01 ∼0.00 0.01 ∼0.00 ∼0.00 0.001
22 ∼0.00 ∼0.00 ∼0.00 ∼0.00 ∼0.00 ∼0.00 0
24 0 0 0 0 0 0 0
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Figure 5.7: Average screen space vertex position error for a single frame of several
applications rendered at 640x480 pixels. Note the log scale in the y-axis used to
show the minuscule errors at high precisions.

Comparing error versus precision across multiple applications reveals that the pat-

tern is consistent and is not limited to just one application. Table 5.1 lists data gathered

from each of the applications. Figure 5.7 shows that each application follows a sim-

ilar trend: very low errors which increase logarithmically as precisions are reduced.

Though the trends in each application are very similar, they are not identical or on the

same scale. This suggests that the errors seen in reduced-precision vertex shading is

content-dependent and predicting errors without knowing the data itself is impossible.

The low error of the torus model may be due to its relative simplicity. Its geometry

is compact and regular, similar to that of other mobile 3D applications, such as a

global positioning system (GPS) display or graphical user interface (GUI), while the

other applications have vertices both very close as well as very far away in all regions

of the screen that are subject to disparate transform matrices. The XY errors are quite

small and even less of a factor in application usability than when first considered. A

user may not even see a screen space error of several pixels as an artifact, since this

error would be shared by all triangles that share that vertex. So, all related geometry

would be moved, not just a vertex or triangle here and there, making the error less

visible. Partly for this reason, the XY error is not the limiting factor when choosing a

reduced precision.

Z Errors

Significant screen space error did manifest itself at very low precisions, but the limiting

factor in usability was due to Z errors. Videos made from frames rendered at different
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precisions reveal that Z errors are visible long before XY errors in the transformed

geometry.

As mentioned above, XY errors will be shared among triangles sharing a particular

vertex, so they will not be seen as actual errors until progressive viewpoints cause the

error to be manifested differently. Much more apparent are errors in the depth of a

vertex. As precision drops, the depths of transformed vertices begin to converge to a

more and more limited set of values. This results in z-fighting, seen in the vending

machines in Figure 5.1(c), which, since it flickers from frame to frame, is much more

immediately apparent to a user than slight vertex displacement.

This trend has an important implication: the precision at which XY errors become

unreasonable is much lower than the precision at which depth errors become unreason-

able. There are several ways that developers can address this issue. These methods are

well known to developers and artists, as z-fighting is a problem even at full precisions.

Reduced precisions require more aggressive use of these techniques. If hardware depth

testing is disabled in areas prone to z-fighting and the correct draw order is observed,

there will be no ambiguity as to which of two coplanar polygons should be drawn.

This will eliminate the z-fighting artifact, but could add an extra step to the graphics

programmer’s pipeline. Also, when an artist designs a model for an application, such

as the vending machines, designing them so that there are not two near-coplanar faces

can greatly delay the onset of z-fighting artifacts as precision is reduced.

Energy Savings

The energy characteristics of the applications were as generally expected, given my

energy model: the energy usage was higher at higher precisions, and decayed quadrat-

ically (due to the multiplication unit’s savings) towards lower precisions. The energy

savings compared to the unmodified circuitry (far-left data point of each curve: “Base”)

is significant, even for the variable-precision circuitry running at full precision (“24”),

due to the ability to perform intermediate computations of RCP/RSQ operations with

less precision. Full-precision hardware does not have this immediate savings. Further-

more, work involved in transforming vertices is not dependent on screen size, so the

results were identical for the same frame of a given application at different sizes. Figure

5.8 shows the graph of simulated power versus precision for the sample frames of each

application.

I also present a method of characterizing the tradeoffs in energy and image quality

in reduced precision rendering. I allow the designer and user of an application to choose
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Figure 5.8: Power consumption of vertex shaders as a function of precision, which
shows the expected convergence towards zero. “Base” precision is the consump-
tion for the unmodified, full-precision circuitry. Variable-precision hardware al-
lows for reduced-precision intermediate calculations in RCP/RSQ operations leading
to immediate savings in the case of “Doom 3” and “Quake 4.”
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Figure 5.9: Energy-error tradeoff curves for all simulated vertex shaders at
640x480 pixels (note the log scale on the Error axis). At the far left of each
data set is the data point for 8 bits of precision, increasing by one to the right,
with 24 bits of precision (0 error) represented on the far right of each set with
an error of 0.0001 pixels due to the logarithmic scaling. Error is the screen space
distance between full- and reduced-precision vertices.

a balance between energy savings and image quality appropriate to their needs. Figure

5.9 shows the energy-error tradeoff curves for all simulated applications. Energy usage

is normalized for each application so savings are readily apparent as a percentage of the

total energy consumed. I found that XY errors did not cause any perceptible quality

degradation when these errors were less than a tenth of a pixel on average. Furthermore,

applications did not become unusable until the errors in x and y exceeded, on average,

89



a pixel. At these errors, energy saved was roughly 75% and 85%, respectively. However,

actual savings were not quite this pronounced, since z-fighting limited the utility of the

applications before XY errors grew to an unacceptable level.

5.7.2 Pixel Shaders

Now, let us turn from the errors seen in vertex transformations and focus on the results

of reducing the precision of pixel shaders. I first show the errors and energy savings

that result from my static analysis technique. I then compare these results with my two

dynamic approaches. Note: all errors reported are per-component (R,G,B) per pixel,

for both average and peak signal-to-noise ratio (PSNR) results.

5.7.3 Precision Selection

Static Analysis

My static approach assumes a full 24 bits of precision for every instruction before the

last texture fetch in each shader, but determines the lowest safe precision for an error

tolerance of 1 out of 255 per channel in the final output for the remaining instructions.

Table 5.2 shows the average precision over all instructions for each of my sample appli-

cations. The reductions are not high, except in the case of the metaballs application,

since it had no instructions before the last texture fetch, and the instructions after the

last texture fetch are very simple.

Table 5.2: Statically determined precisions.

Scene Precision

HL2LC1 19.2
HL2LC2 19.0
Doom 3 19.7
NFS 21.8
Metaballs 9.7
SSAO 20.1
Parallax 23.3
DoF 18.5
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Dynamic Selection

There are several dimensions in which I can vary my dynamic approach: sampling

frequency, sampling pattern, local error threshold, and control method. In this section,

I discuss how each of these will change the final output and finally choose an optimum

set of parameters that maximize energy savings and minimize errors. I present the

results of exploring the first three parameters for the HL2LC2 scene; other data sets

gave similar results. In the sampling rate and type explorations, dynamic precision

control is in use; so, the precision will be changed as required by the control algorithm

which will lead to slightly different precision streams per curve in the graphs. However,

I still see strong trends in the results for each of the data sets.
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Figure 5.10: Various sampling rates give different approximations of the global
error trends in pixel shaders. Sampling more shaded pixels will allow the appli-
cation to respond to errors more quickly but carry the cost of expending more
energy and time. Sampling fewer pixels will lead to a slower response with less
overhead. However, regardless of the sampling frequencies I used (between 1 and
10%; any more would carry too high an overhead), the average of the sampled
errors (overlaid points) agrees closely with the global averages (lines).

A dynamic analysis requires that errors be monitored at runtime. This will incur

some overhead when pixel shaders are executed twice, at both full and reduced pre-

cisions. However, this overhead need not be prohibitively high; I show that sampling

a small subset of the shaded pixels can give an accurate approximation of the global

error. The overhead, then, will be roughly equal to the fraction of the total pixels

that are sampled. Figure 5.10 shows how different sampling rates lead to global error
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Figure 5.11: Sampling every nth fragment (“strided” sampling) performs nearly
as well as random sampling (both at a rate of 1%). Therefore, I use the simpler
sampling scheme in my final automatic system.
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Figure 5.12: Local error thresholds greater than 1 out of 255 do not give signifi-
cant precision savings to warrant their higher errors.
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approximations and indicates that infrequent sampling leads to the same result as more

frequent sampling rates. Further, Figure 5.11 shows that simply sampling every nth

generated fragment is just as effective as sampling errors randomly. Neither of these

sampling approaches have the potential drawbacks that a screen space based pattern

might, such as needing to reconfigure the sampling pattern every frame. Finally, Figure

5.12 (generated from the statistics of the final frame of the HL2LC2 scene) shows that

increasing the local error threshold significantly increases the final image error, but

does not yield equivalent precision savings.
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Figure 5.13: As each program progresses, dynamic precision selection will change
the average precision used by the program.

Figure 5.13 shows how the precisions change for each application as the traces

progress. The average precision used in each application decreases initially as the

precision is lowered without any above-threshold errors. Next, the precision curve levels

out as the precisions are held constant due to errors seen in the data stream. After

this, more errors may be seen, causing the precisions to rise slightly. Finally, each

curve may fluctuate due to changes in precision distributions; different workloads will

lead to different shaders (and their respective precision selections) performing different

fractions of the overall work. Currently, my control algorithms do not consider lowering

the precision after it has been raised due to an unacceptable error, so the final decrease

in the precision of the HL2LC2 scene is due to a different workload. However, this
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type of extension to my control schemes is natural and straightforward, since a new

workload may be tolerant to lower precisions than those seen previously.

I see in Figure 5.14 that the precision reductions are greater with my dynamic

approach than with my static approach. This is for two reasons: first, the actual

data is used, rather than worst-case operands; and second, I am able to vary the

precisions of operations both before and after the last texture fetch. Another important

observation about my automatic approach is that the simpler control methods perform

very competitively with the more complex methods. As expected, my “simple with

delay” approach performs better than my “simple” approach in most cases, but never

worse. My “texture priority” approach seems to perform no better - this is likely

because when it reacts to a large error by raising the pre-LTF precision, the “simple”

algorithm makes the same decision for different reasons; it was simply the pre-LTF

precision that was being increased at that point.

The relative performance of my “dual-test” heuristics is not consistent; in the

HL2LC1 scene, they both perform worse than the simpler algorithms. However, in

Doom 3, they perform much better. This is also the one test scene in which my “sim-

ple with delay” approach does no better than the plain “simple” approach. Both these

facts can be attributed to the following observation: errors seen late in the application

were due to arithmetic imprecision, not texture fetches. This indicates that the delay

added in the “simple with delay” approach was not of sufficient length to allow for

these errors to manifest themselves before the pre-LTF precision was decreased. So,

the complex approaches, the “dual-test” methods, were able to take advantage of this

inherent shortcoming in the “simple” approaches. The straightforward way to com-

bat this is to enforce a longer delay and allow for sampling more data. While this

would mean a longer settling time, it could still be on the order of a few seconds. This

period of time’s slightly higher energy (due to the pre-LTF precision not yet having

been reduced) would likely be dwarfed by the savings seen in the lifetime of the entire

application.

So, I recommend the following for use in a dynamic error-monitoring system: sam-

pling every 100th generated fragment (both sparse and regular), a minimal error thresh-

old (1 out of 255), and a simple control method. This combination of settings gives

low final image errors with minimal overheads and acceptable response times. It is this

combination that I use to generate my error and energy results in Section 5.7.3.
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Overall Errors

In Section 5.4.4, I observed that the measured local errors in each shader do not cor-

respond to the errors seen in the final image. Here, I offer evidence that supports the

feasibility of my static and automatic approaches despite this shortcoming. First, I

simulated over sixty frames of each data set and was not able to tell any difference

between the reduced- and full-precision frames. Furthermore, there were no tempo-

ral effects observed from the gradual reduction in precision in my automatic selection

method. Finally, I quantified the errors by measuring their PSNR, presented in Figure

5.15. The steady-state values are all above 40dB. Similarly, I quantify the errors seen

in my programmer-directed approach in Table 5.3, which all have similarly high PSNR

values.
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Figure 5.15: With both a 1% strided sampling scheme and a local error threshold
of 1 out of 255 for the closed-loop system (solid lines) and my static technique
(dashed lines), the errors for each of the data sets are not noticeable. This
indicates that a low local error threshold is sufficient to limit final image errors
to unnoticeable levels in modern applications.

Energy Savings

I now present the predicted energy savings in the arithmetic of the pixel shader and its

contribution to the GPU’s savings as a whole. I use the energy saving characteristics
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Figure 5.16: Energy savings achievable in fragment shaders with variable-
precision hardware. The solid line represents the savings seen by my automatic
approach, while the corresponding dashed lines are the savings seen by my static
approach. In each case, the dynamic approach saves more energy.

of my variable-precision circuits (Chapter 4) to estimate the energy saved by the pixel

shader’s arithmetic. For my work, I consider the “pixel shader’s arithmetic” to be only

the actual computation performed in the ALU; instruction and data fetching, as well

as control logic, are not counted in this number. In order to translate this local savings

into the context of the GPU as a whole, I use my GPU energy model from Chapter

3 that shows that an average of 33% of the energy in the GPU is spent in the pixel

shader’s arithmetic.

To be clear, my savings only apply to the shader’s arithmetic circuitry; I do not

yet see savings in transmitting or storing data in memories, register files, etc., or in

control logic. Control logic, though, will be amortized over some number of ALUs.

Savings due to reading and writing reduced-precision data is now an important topic

since I have shown that such data is usable in modern applications. However, my

results must be seen in this context. Since my baseline energies came from actual

measurements of hardware, I can be confident in their relative magnitudes. I was

not able to differentiate between the energy of performing arithmetic and reading and

writing operands, though, so I have presented my findings at the finest granularity
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possible. In the future, the relative costs of arithmetic and register file accesses will

lead to a more accurate estimate.

Table 5.3: Programmer-directed errors and energy savings.

Directed Static

Scene Precision PSNR Savings Precision Savings

SSAO 13.0 53.4 71% 20.1 49%
Parallax 15.2 39.7 61% 23.3 -2%
DoF 12.0 45.6 79% 18.5 33%

In each case, my dynamic approaches outperform a static analysis in terms of energy

savings. In Figure 5.16, I see that my dynamic approaches save, after settling on final

operating precisions, roughly 71% of the energy in the pixel shader’s arithmetic. My

static approach, on the other hand, has very limited energy savings, 31% on average,

except in the simplest of cases - the Metaballs application. I see similar results for

my programmer-directed approach, shown in Table 5.3, including one case in which

the static approach led to higher energy consumption than the baseline, due to the

slightly less efficient variable-precision hardware having to operate at full precision for

a majority of the operations.

Table 5.4: Strengths and weaknesses of precision selection techniques.

Approach Savings HW Cost Developer Effort

Static Low Low Low
Directed High Low Medium
Runtime Automatic High High Low

5.8 Conclusion

I have shown that there is a tradeoff inherent in variable-precision vertex and pixel

shaders between the error and energy savings for an application. After developing

an energy model for the shader stage of a GPU, I simulated several applications at

different precisions. Further, I have explored the relationship between rendering error

and energy savings in order to help developers and users of mobile applications choose

an operating range to find an acceptable mix of error and energy savings to prolong

battery life.
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I have also presented several methods for choosing a safe operating precision for

modern pixel shaders. I first statically analyzed the shaders used by several graphics

applications to determine a safe reduced precision. Then, I developed two dynamic

precision determination schemes - the first directed by the application programmer,

the second an automatic error-monitoring approach. When considering the metrics

of energy savings, ease of implementation, and ease of use, there is no clear winner.

In Table 5.4, I summarized the strengths and weaknesses of each. However, when I

also considered that my static and automatic approaches cannot take the error in the

final image into account, the programmer-directed approach began to pull ahead. It

was able to save up to 79% of the energy in the pixel shader stage’s arithmetic, or up

to 20% of the overall GPU energy without incurring any errors that the application’s

programmer or artist deemed unacceptable. The hardware overhead for this method is

only that involved in the variable-precision hardware itself, and no runtime monitoring

or control is necessary.

Hardware Feedback Control

One possible hardware implementation for my closed-loop feedback controllers uses

redundant hardware to sample and calculate the full-precision results of each shader.

This will most easily fit into some level of the grouping of ALUs on a GPU; an extra

full-precision ALU per group of 32, 64, or 128 (depending on the architecture) that

mirrors the operation of the “last” ALU in the group will provide sufficient sampling.

This ALU need not be modified for variable-precision operation. It will fetch the same

data as the ALU it mirrors, so it will not see significant energy or latency overheads

due to needing different data.

The difference between the full- and reduced-precision ALU results could be calcu-

lated by dedicated hardware, which will then store the necessary information (just a

bit flag indicating an error was detected in the case of my “simple” controllers) in a

specific memory location for the driver to query. The driver will decide how to handle

this flag based on the current state of the control system.

5.8.1 Future Work

Having shown that the pixel shader stage can save up to 20% and that the vertex

shader stage can save up to 10-15% of the GPU’s energy by using my proposed variable-

precision circuits and control methods, I can now turn to producing even more savings
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in other areas of the pipeline. With shader outputs needing fewer bits to represent

equivalent fragment and vertex data, there is no need to transmit and store these bits,

either on- or off-chip. So, I will look into static and dynamic RAMs and data buses

(each a major part of a GPU’s data path) to determine the possible energy savings.

There is still work to be done in the area of variable-precision computation, though.

Currently, I assume that control overhead and local data storage costs are negligible; a

more complete estimate or measure of energy savings would include these quantities.
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Chapter 6

Energy Savings in Communication

6.1 Motivation

As I have mentioned before, communication can be more expensive from an energy

standpoint than computation of data (Keckler et al., 2011). Saving energy in off-chip

communication usually involves compression, while on-chip communication relies on

bus encoding, caching, and other techniques. So, I explore compression of full- and

reduced-precision data in this chapter, as well as improvements to the compression

used on GPUs for full-precision data. Further, I look into an approach to saving energy

in reading and writing reduced-precision data to on-chip memories, another significant

source of power consumption.

6.2 Related Research

Compression of numerical data has been well-studied. Common to nearly every ap-

proach is the encoding of errors of predicted values rather than the values themselves.

This has been used in several approaches to compressing floating-point scientific data

(Lindstrom and Isenburg, 2006; Ratanaworabhan et al., 2006; Burtscher and Ratana-

worabhan, 2009; Hidetoshi and Yokoo, 1994). All the viable methods for compressing

geometry, color, and depth buffers in graphics applications known to the authors use

this basic technique with specialized schemes for particular applications.

6.2.1 Geometry Buffer Compression

Compressing geometry data can be more complicated than just compressing coherent

position values due to associated connectivity and property data. Connectivity data



indicates which vertices are grouped together to form faces in a three-dimensional mesh,

and property data determines the colors, normals, binormals, any number of texture

coordinates, etc. for these vertices and faces. Deering presented the first major work on

geometry compression which approached all of these facets of geometric data in a lossy

manner, achieving compression rates of 6-10x (Deering, 1995). More recently, there has

been work on the lossless compression of geometry (Isenburg et al., 2005), which led to

compression rates of 30-50%.

The details of geometry compression used in commercial hardware are not readily

available. Examining patents shows that most work in the area deals heavily with

connectivity data (Gruetzmacher, 2010), an approach which is too complicated to map

well to the streaming nature of graphics hardware. I found few patents on geometry

compression issued directly to makers of commercial GPUs. Wittenbrink and Or-

dentlich take advantage of data that remains uniform for a series of vertices or faces in

order to reduce transmitted data (Wittenbrink and Ordentlich, 2005). Other publicly-

available information pertains to geometry and tessellation shaders (Goel and Martin,

2009; Ramey et al., 2008; Dmitriev and Moreton, 2011). (These techniques are two

types of “geometry amplification,” which generate new vertex data from existing vertex

data. Since geometry amplification is orthogonal to numerical compression, they can

be used together for even higher bandwidth savings.) Danilak cites pixel compression

specifically, but makes no mention of compressing vertex data, despite its storage and

transmission on and to multiple GPUs (Danilak, 2009).

6.2.2 Color/Depth Buffer Compression

Historically, color and depth buffers in GPUs have had primarily integer formats. Ras-

musson et al. provide a thorough summary of the state-of-the-art in color buffer com-

pression, with an emphasis on integer formats (RGBA8) (Rasmusson et al., 2007). A

similar summary exists for depth buffer compression (Hasselgren and Akenine-Möller,

2006). Hardware-accelerated decompression of compressed formats are mostly based

upon S3’s Texture Compression (S3TC, or DXTC) (Iourcha et al., 1999). Many for-

mats used for different purposes have sprung from this format (Microsoft, 2011b), as

well as incremental improvements (Yifei and Dandan, 2010). Most of these texture

compression schemes are asymmetric; the data is compressed just once when authored

on a single host CPU but decompressed many times on the GPU. So, compression can

take an arbitrary amount of time, but decompression must be fast and simple.
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Compression of floating-point buffers in hardware is a recent development with the

advent of floating-point buffer formats. Commercial techniques have not been made

public. Ström et al. present a method for compressing 16-bit floating-point color

and depth buffers in a unified manner, with several limitations (Ström et al., 2008).

That scheme does not allow negative values and assumes the alpha channel is 1.0f.

Later work (Wennersten and Ström, 2009) specifically addressed compression of the

alpha channel in color data, but using these two separate compressors for color data

introduces complexity. Further work has been performed to allow for lossy compression

of color buffers (Rasmusson et al., 2009), which further decouples color and depth buffer

compression.

6.3 Improving Compression of Off-Chip Data

A GPU’s performance is ultimately limited by many factors. Historically, memory

bandwidth and computational power have been limiting factors for different workloads.

Recently, power consumption became as important. Though chips have gotten more

capable in terms of number of processors and computing power, available memory

bandwidth has not increased at the same rate, a trend that is expected to continue

(Keckler et al., 2011). Furthermore, there is a limit to the power that can be used to

drive a chip; there are practical considerations such as heat, fan noise, and power supply

limitations to take into account. In this section, I focus on a method to reduce memory

traffic by compressing the data transferred to and from off-chip buffers. While my

approach (and the state-of-the-art in lossless buffer compression (Ström et al., 2008))

does not reduce the amount of memory used to store the data, it directly impacts the

amount of data that is transferred. As a result, both memory bandwidth requirements

and energy consumption are reduced, relieving pressure on two major bottlenecks.

Data compression in GPUs has become commonplace in two areas: texture and

buffer compression. Texture compression is a particular type of general buffer compres-

sion that is performed once off-chip during asset authoring; these compressed textures

are then decompressed on-chip many times during execution of the graphics program.

So, texture compression is usually asymmetric, and can often be lossy, since a human is

in the loop during compression to verify that results are acceptable. As buffer compres-

sion is performed on-chip, it is often much simpler than texture compression. While

there has been much prior work on buffer compression, most of it is targeted to integer

formats. This work instead focuses on the relatively new floating-point buffer formats,
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for which very little prior work exists. These formats are important for GPGPU appli-

cations and complicated multi-pass graphics techniques.

I develop a general-purpose lossless compression scheme that is able to handle data

from any source: color, depth, geometry, and GPGPU buffers. This is a departure

from most past techniques, which go to great lengths to exploit knowledge of the

buffer’s contents. As GPUs become more general-purpose, I believe that such codec

specialization hinders generality. My goal is to remain buffer-agnostic so that I can

reasonably compress any set of data. I target lossless compression in order to serve

general data producers and consumers; I cannot assume that a general application can

handle lossy compression without destroying its functionality. As this compressor is

expected to be used heavily in rendering color and depth data, I retain random-access

read- and write-ability to the same degree as in past work: 8x8 tiles are stored together,

and geometry is exposed at a similar granularity.

The state-of-the-art in lossless compression of GPU floating-point buffers targets

16-bit floating-point color and depth data (Ström et al., 2008). I examine this work

and its performance on 32-bit floating-point buffers to serve as a comparison to my

general-purpose codec architecture. I also suggest two enhancements, applicable to

both existing work and my proposed compressor, that lead to higher compression ratios.

The specific suggestions I make in this section are as follows:

� a unified codec architecture capable of handling any type of buffer without regard

for its contents,

� dynamic selection of compression buckets,

� examination of an alternate encoder for compressing residuals, and

� range reduction for variable-precision data.

6.3.1 Description of the Current State-of-the-Art

Before presenting my novel approaches, I first discuss the design and operation of an

existing lossless floating-point color/depth buffer compression/decompression scheme

(Ström et al., 2008).

The input to the compressor block is an 8x8 tile of RGB(A) pixels or depth values

represented as 16-bit floating-point numbers, and the output is a stream of bits that will

be tagged with how the input was compressed: uncompressed, “fast-cleared” (consisting
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of a single value), or compressed to 25% or 50% of its original size. Each tile’s tag will

depend on the compressability of its contents and is stored in a “tile map” that maps

tiles to their compression rates to enable random accesses (mandated by graphics APIs).

These floating-point numbers are interpreted as integers so any arithmetic performed

is exact and not subject to rounding errors, as might be the case with floating-point

arithmetic. The 8x8 tile is divided into four 4x4 tiles for further processing. For color

data, the red channel is encoded, then the difference between the green and the red,

and finally the difference between the blue and the green channels, to take advantage of

any correlation between color channels. Tiles that include negative numbers or alpha

values less than one are ignored and stored uncompressed.

Each 4x4 tile is handled similarly. Starting at the top-left value, the difference

between one value and the next is computed along the top row (D1,1 = V1,1−V2,1, D2,1 =

V2,1 − V3,1, etc.) and left column (D1,2 = V1,2 − V2,2, D2,2 = V2,2 − V3,2, etc.), implicitly

predicting each value from the preceding one. These integer differences are encoded (as

described in the next paragraph) with the hope that the difference between values will

be small and therefore more compactly represented. A more complicated prediction

scheme intended to minimize these differences is used for the remaining 3x3 values,

choosing either the value above, to the left, or an average of these two as the predicted

value. This is intended to handle cases where there is a discontinuity within the tile that

would lead to poorly predicted values. A guide bit for values along this discontinuity

indicates how the values are to be predicted (and reconstructed). Further, there may

be a “restart value” (requiring a 4-bit position and 15-bit value) to indicate a more

fitting starting point for values on the other side of the discontinuity. To better handle

discontinuities, the entire tile may be rotated 90 degrees counter-clockwise (indicated

with a single bit). The beginning of the encoded data stream, then, is a single restart

bit, optional restart position and value, a rotate bit, and the top-left value.

Difference values are encoded with a Golomb-Rice encoder. Since the input val-

ues were all positive, the differences can be represented with 16 bits, which are then

mapped to the positive domain with a simple reversible transformation which ensures

that numbers with similar magnitudes will appear sequentially. Negative values are

multiplied by 2n− 1 while positive values are multiplied by 2n. Thus, values of -1 and

+1 will both have small representations. To encode a value, it is divided by some power

of two, 2k, to yield a quotient and a remainder. Unary encoding is used to encode the

quotient, q : a series of q ones with a terminal 0. The k bits of the remainder are

stored in binary. The best k value for each 2x2 block in a 4x4 sub-tile is found through
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exhaustive search and then shared among the four values, stored before the quotient

and remainder data. The rest of the encoded stream is as follows: k values (16 bits), a

variable number of guide bits, and Golomb-Rice bits (quotient and remainder data).

6.3.2 Proposed General-Purpose Compressor Design

My general-purpose compressor is based on the approach described in Section 6.3.1. At

a high level, my design is meant to handle any type of data: not only color and depth,

as in past work, but also geometry or general-purpose data. As GPGPU applications

become more prevalent, I believe it would be of great benefit to the simplification of

hardware if a single compression/decompression block could serve all clients with good

compression rates. To support this, I must accept negative numbers to my compressor,

be able to handle data of various layouts (not just square tiles), and still allow for

random access to the data. I describe the modifications necessary for each of these

capabilities in following sections.

As shown below, due to the general nature of my design, I do not need the guide

bits, restart bits (flag/value/position), or rotate bit. This simplifies both the hardware

necessary for my design and the encoding/decoding effort. Further, I do not need to

store these bits, which saves space; though, of course, I cannot use them for their

intended purpose if they would be helpful.

Handling negative values

Handling negative values is not straightforward. When input floating-point values

are negative, they will have information in the sign bit. When operating under the

stipulation that all input values to be compressed are positive, this sign bit is always

zero, and so the difference between two floating-point numbers interpreted as integers

will never overflow. With varying sign bits, this is not always the case, and overflow

can occur when subtracting or re-mapping the difference values, a necessary step in

many encoding schemes, including Golomb-Rice encoding. To avoid overflow, I specify

that subtraction and remapping take place immediately prior to encoding. Integer

hardware that can handle numbers one bit larger than the values themselves can be

used to keep track of this overflow without needing to handle storage and transmission

of a non-power-of-two number of bits, which would be necessary if further processing is

to be performed on residual values. Since I perform direct encoding and do not need to

compute guide bits and restart values, I can make this simplification that is unavailable
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to past work. While the discontinuity around 0.0f when floats are interpreted as integers

will lead to disproportionately large residuals and hurt compression rates, functionality

is not affected.

Arbitrary numbers of attributes

Rather than hard-wiring my compressor to deal with some fixed tile size, I must allow

it to handle buffers of any layout. To this end, I let the compressor work on vectors

of data instead of tiles. To construct a vector of values, the stride of the data is

necessary. For geometry data, this stride is readily available from the vertex buffer

descriptor. An example will make this approach clear. Consider a vertex attribute

buffer containing (x,y,z ) positions, (xn, yn, zn) normals, and (u,v) texture coordinates

for each of N vertices. The stride of this data layout is (3+3+2) values * 4B = 32B per

vertex. Using this stride in my scheme, then, the x value of the positions would first

be compressed. The first value, x0, is stored uncompressed, followed by the encoded

difference between the first and second values, x1-x0, and so on. Incrementing the offset

by 4B and repeating the stride allows me to encode the remaining attribute values.

This approach has two major benefits. First, it does not assume any particular

shape of data; it is simply repeated for each vector. Second, it exploits much of the

available coherence in the data. It is much more likely that neighboring x values will

be related, rather than the x and y values of a particular vertex. In the case of color

data (r, g, b, a), a tile is stored one-dimensionally in memory, not in two dimensions.

This means that it will be input to the compressor as a series of pixels, and each vector

of data will be comprised of a single color component if the correct stride is observed.

This addresses an issue noted in past work (Wennersten and Ström, 2009)—existing

compression formats assume coherence between color channels where there may not be

any. However, if there is coherence between color channels, I will not exploit it without

further effort, as past work (Ström et al., 2008) has done.

Enabling random access

Random access of input data is key in many common uses of graphics hardware. For

color and depth data, hardware access is at the tile level. Geometry has no such

predefined subdivision finer than an addressable buffer. The user, though, is free to

start rendering at any point in the buffer or update only certain parts of it between

rendering commands, such as when animating a subset of particles that are still in
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a “live” state in a larger particle system. To allow this, I simply compress a subset

of the buffer at a time. For instance, in the above example with N vertices, I will

not compress all N vertices at once. Instead, the first C vertices will be compressed,

then the second C vertices, and so on. There is a tradeoff inherent in the size of the

subset. The fewer vertices I define as a subset, the finer the addressing granularity is.

Also, as a Golomb-Rice encoder encodes difference values, it shares some parameters

for the whole compressed buffer. The smaller C is, the better values shared among the

subset will fit the data, leading to a smaller representation. However, as C shrinks,

these values will be replicated more often and may not be different enough to warrant

a unique value. I experimented with different subset sizes and found that a size of 64

gives good results for all my data sets.

If random access were not a requirement, such as in streaming general-purpose

computations, several simplifications would become available. Most importantly, com-

pressed blocks would not be constrained by a quantized compression rate; a continuum

of compression rates could be supported rather than just a subset. With this relaxation,

the stored data could be compacted, saving space in memory as well as bandwidth.

Therefore, there would also be no need for the buffer map, since reading and writing

data would happen sequentially from a start address. If a buffer can be declared as

read-only, such as most geometry buffers, I could also compact the stored data, since

there would be no chance of having to write more data than could fit into the alloted

space.

6.3.3 Proposed Techniques

Here, I discuss two proposed techniques for increasing the efficiency of any given hard-

ware compression scheme: (i) an algorithm for the dynamic selection of compression

buckets for buffer maps and (ii) an encoder that can be more efficient for encoding

residual values than the unary encoding used in standard Golomb-Rice compression.

These novel techniques target two different areas that play a major role in determining

the amount of data transmitted: the assignment of an overall compression ratio (which

I call a compression “bucket”) and the encoding of residual values. These techniques

can be used independently if one or the other fits a particular compression scheme.
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Bucket Selection

In past work, buckets have been chosen by the hardware designer and set statically

in the hardware itself. Typical bucket values are “Fast Clear (FC), 25%, 50%, and

Uncompressed” (Ström et al., 2008). However, this poses two problems. First, the

buckets that best capture one buffer may not serve another buffer as well. Second, in

my work with variable-precision data, the buckets that best fit a particular buffer at

a high precision may limit the savings possible when the precision is reduced. There

are two simple approaches one might take. First, seeing that these buckets are too

optimistic for some buffers (see Section 6.3.6), one could choose higher buckets, such

as “FC/50%/75%.” However, this will limit the compression rates achievable by highly

compressible data sets. Another straightforward approach is to increase the number of

buckets, say from four to eight. However, this would increase the storage needed by

the buffer map. (In past work, this was called the “tile map;” I feel that “buffer map”

better describes its use in a general compressor, which may or may not be tile-based.)

The buffer map’s presence in an on-chip cache is very important, as every access to

memory depends on its contents. So, increasing its size is not a viable option.

Listing 6.1: Dynamic Bucket Selection

Bucket ass ignBucket ( u int inS i z e , u int outS i ze ) {
Bucket s m a l l e s t = chooseSmal l e s t ( inS i z e , outS i ze ) ;
i f ( s m a l l e s t in chosenBuckets )

return s m a l l e s t ;
i f ( bucketCount < maxBuckets )

chosenBuckets [ bucketCount++] = s m a l l e s t ;
else

s m a l l e s t = nextLargest ( chosenBuckets , s m a l l e s t ) ;
return s m a l l e s t ;

}

I seek to assign buckets dynamically for every unique buffer, be it a render buffer,

depth map, final frame buffer, or input geometry buffer. Each buffer will store its

currently selected buckets in its descriptor. I constrain my algorithm in four ways.

First, I do not allow more than four buckets per buffer, which keeps the size of the

buffer map the same as in past work—2 bits per buffer. Second, by necessity, the

“uncompressed” bucket is non-negotiable; I must assume that there will be input data

that will not be able to be compressed at all. This leaves three available buckets

that can be chosen dynamically. Third, I am not allowed a pre-pass to examine the
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buffer; it must be compressed on-the-fly. Lastly, I allow a bucket granularity of eighths.

While having even more bucket options with a smaller size may perform better, it

is unreasonable to expect finer granularities when reading from memory. My 1/8th

granularity buckets for 32-bit data are the same size as the 1/4th buckets used for

16-bit data in past research.

My dynamic bucket selection algorithm is a three step process. First, the smallest

bucket (again, in one eighth increments) that will fit the output data is chosen. If this

bucket is already in use, then the algorithm is complete and that bucket is used in the

buffer map. If this bucket it not in use and there is still an “open” bucket, this open

bucket is set to be the chosen bucket and is written to the buffer map. In the worst

case, the smallest bucket cannot be used, and the next largest bucket must be used

from the already-chosen list. This process is illustrated in Listing 6.1. The extra data

structure, the “bucket list,” will take up 9 bits—3 bits (8 choices) for each of 3 buckets

(since the first bucket is always “uncompressed”)—and will be stored alongside the

buffer map for the data since they are accessed in tandem. As a block is decompressed,

the buffer map indicates which entry (0–3) in the bucket list contains the compression

rate, which then dictates how much data to request from memory.

Fibonacci Encoder

I saw larger residuals (compared to the size of the input value) than seen in past work

when compressing color and depth data with my general compressor (Ström et al., 2008;

Rasmusson et al., 2007). There are three reasons for this: negative values, frequent un-

clamped values, and a larger mantissa to total representation ratio. Allowing negative

values can cause differing sign bits, leading to differences with maximum magnitudes

in common cases. Further, since general data is not expected to be commonly in the

range of [0.0..1.0], like color, normal, and many depth formats, differing exponents for

neighboring data values will lead to larger residuals, even in same-sign values. Lastly,

32-bit floating-point numbers will be left with relatively more information after sub-

traction than 16-bit floating-point numbers, as used in past work. This is due to the

ratio of mantissa bits to overall bits in the two representations—23:32 (∼3:4) for 32-bit

data, and 10:16 (5:8) for 16-bit data. Taking all this into account, I explored using an

encoder other than unary encoding to store quotient values generated by a standard

Golomb-Rice encoder.

I used a Fibonacci encoder (Fraenkel and Klein, 1996) to alleviate pressure caused

by larger residual values. Fibonacci code words share several important properties with
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unary code words; they satisfy the prefix condition, are instantaneous, and map smaller

values to smaller code words. This last point is important when the expected values

cluster around zero, as they do in numerical data. The main difference is that the

size of unary code words grows linearly with value encoded, whereas Fibonacci code

words grow sub-linearly. This allows for larger values to be encoded before the code

word reaches a prohibitive length. While unary codes are shorter for small values (<4),

Fibonacci codes will be more efficient for these expected larger residual values.

The key insight to the Fibonacci encoding is that any positive integer can be repre-

sented as a sum of non-consecutive Fibonacci numbers in the series ‘(1,)1,2,3,5. . . ’. To

encode a value v, find the largest Fibonacci number less than or equal to v. Decrease v

by this number, and seed the encoded value with a ‘1.’ While there are more Fibonacci

numbers, repeat the following steps: 1. Move to the next lesser Fibonacci number.

2. If this number is less than v, decrease v by this number and prepend a ‘1’ to the

encoded value; otherwise, prepend a ‘0.’ At the end of this process, append a final

‘1,’ causing ‘11’ to finish the stream. Since this encoding takes a greedy approach to

computing the sum, no other consecutive ‘1’s will be found in the stream. For instance,

the integer value ‘12’ is encoded as shown in Table 1. This code requires only 6 bits,

while encoding ‘12’ with a unary code would require 13 bits (‘1111111111110’).

Table 6.1: Encoding the value ‘12’ as a Fibonacci code gives ‘101011.’
1 2 3 5 8 13 . . . ’1’
1 0 1 0 1 1

Hardware Implementation

My proposals are able to be implemented in hardware without any major changes in

the architecture. Fibonacci coding, while nontrivial, is not particularly difficult. The

necessary Fibonacci numbers could be stored in a look-up table; to encode a maximum

difference of 33 bits, less than 50 Fibonacci numbers are needed. To encode a value,

the algorithm simply marches backwards through the numbers, logging whether or not

a number is in the sum and subtracting any included Fibonacci numbers from the

encoded value.

Dynamic bucket selection is able also to be implemented in hardware. Each buffer

already carries with it a descriptor of some type. For color buffers, this holds com-

ponent and data formats; geometry data has a data layout header. This is where the
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chosen buckets for this buffer could be located at a cost of 12 extra bits (to encode

10 possible states for three different buckets). Decompression of data is only slightly

more complicated with the addition of the bucket list. Since the descriptor information

must be available to read and write the correct data in any case, the chosen buckets

will also be available before consulting the buffer map. The combination of the chosen

buckets and the buffer map will allow the memory controller to request only as many

lines as necessary. Compressing data requires only a slight modification to Ström et

al.’s approach. Rather than just assigning one of three buckets based on the input

and output size, the buffer is first assigned to one of eight preliminary buckets; this

is no more complicated than before. After this, the chosen buckets for the buffer are

consulted and possibly updated. Since, as when reading, the chosen buckets and buffer

map are available in local memory, accessing these lists is fast and cheap.

6.3.4 Compressing Reduced-Precision Data

In Chapter 5, I performed variable-precision arithmetic on the GPU by only using

the most significant p bits of the mantissa in computations. Since this leaves 23-p bits

unused, it is unnecessary to move these bits off-chip. Taking advantage of this, I modify

the range of the values input to the compressor. As values are input to the compressor,

a standard step is to reinterpret the floating-point values as integers. By dropping bits

on the right that have been ignored by variable-precision arithmetic, I can lessen the

magnitude of the values, and therefore the magnitude of the difference between them,

which determines the size of the encoded stream.

The precision of the data undergoing compression or decompression is constant per

buffer and assumed to be stored in the data descriptor. For color buffers, this header

commonly contains information such as width, height, number of components, and

compression used (in hardware which supports multiple compression schemes). For

input geometry, this would be the vertex buffer declaration, which holds information

about each stream, such as data type, number of components, and, in some cases,

intended use. By storing the buffer’s precision with this standard collection of data,

I do not have to store it with the buffer data itself, avoiding overheads. It would be

possible to store the precision of each compressed buffer and opportunistically perform

variable-precision compression for data that happens to have a number of trailing zeros

in the same way that standard compression takes advantage of leading zeros. However,

I found that trailing zeros in full-precision data are not common enough to overcome
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the overheads of storing precision with the buffer data.

This approach is different from past techniques in several ways. First, though

Rasmusson et al. describe a similar system of quantization, theirs is intended to perform

lossy compression (Rasmusson et al., 2009). Therefore, they also monitor errors at

runtime and scale back quantization when it could lead to larger errors. My approach

is lossless, though it operates on data that has been quantized. The difference is that

the quantization step for variable-precision data has been performed by the artist or

programmer (see Chapter 5) and has been judged acceptable; I do not risk incurring

more errors. Further, Rasmusson et al. performed quantization on the residuals of

the predicted values (Rasmusson et al., 2009). Over the span of a tile, this leads to

errors as values are reconstructed erroneously from previous values. Since I quantize the

input values themselves, errors do not compound; the input value can be reconstructed

exactly.

6.3.5 Experimental Setup

I seek to report compression rates seen by real applications during use. Therefore, I

do not look merely at the final color or depth data for a frame; rather, I treat each

intermediate draw stage when possible for a realistic estimate of saved bandwidth. (A

more complete simulator would perform compression on a cache eviction, leading to

many more partially-covered tiles. However, I do not have access to this level of detail

in the rendering pipeline. As a result, the presented results will be optimistic.) To do

this, I log intermediate buffers from running applications as vectors of floating-point

values. I can replay these buffers in a custom simulator and infer which tiles were

changed as the result of any given step. These tiles are then re-compressed with the

new data, and the bits spent in transferring old and new tile data is counted towards

a running total for the experiment. Similarly, I examine the actual vertex data fetched

during execution and count only it. During simulation of a buffer, dynamic bucket

selection is coherent; that is, the buckets chosen during the first pass on the buffer do

not change for successive passes.

I do not explicitly model a cache hierarchy. While such a model would change my

absolute results for amount of data transferred, it will not impact my compression rates.

Further, any model I devised would be an approximation and lacking the context of

a full graphics system; such a full model is out of the scope of this work. Thus, my

work should be viewed as presenting novel compression techniques for general data with
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resulting compression rates, not as a prediction of ground-truth bandwidth savings.

Several implementation details must be noted for adapting the baseline technique

(Ström et al., 2008) to handle 32-bit variable-precision data. First, the constant error

threshold used to select guide bits needs to be much larger; I found 228 to work well for

all data sets. Second, to support variable-precision values, this error threshold must

be updated when the range of input values changes. This is as simple as shifting this

error value at the same time that the values themselves are shifted, and by the same

amount.

Data Sets

To test my algorithms, I have used different buffers from several applications seen

in Figures 6.1–6.3. For my test color buffers, I used scenes from a high dynamic

range (HDR) rendering demo, a depth of field demo (AMD, 2008), a smoke simulation

visualization, a parallax mapping demo (NVIDIA Corporation, 2010), and a demo that

generates terrain data on the GPU to use for rendering (“Map”) (Persson, 2006). For

testing depth buffer compression, I used depth maps generated and manipulated by

an application which demonstrates different shadow mapping techniques (Lauritzen,

2007), as well as from the video games “Need for Speed: Undercover” (“NFS:U”) (EA

Black Box, 2008) and “Crysis” (Crytek, 2007). I also used input geometry from these

two games to test my compression techniques on vertex positions and attributes, as

well as geometry from “Crysis: Warhead” (Crytek Budapest, 2008) and several scenes

of “Half-Life 2: Lost Coast” (Valve, 2005).

It is worth noting that the “Depth of Field” and “Map” examples encode extra

information in the alpha channel of the RGBA render target. “Depth of Field” en-

codes the depth of the scene to use in further processing, while “Map” uses the RGB

channels to encode normals of procedurally-generated terrain and the alpha channel to

encode this terrain’s height. These data sets are not compressible by past work without

modification. However, my unified system allows for compression of these nonstandard

uses. In the interest of testing more data sets, I will disregard the fourth channel in

these two data sets when presenting results of the existing compressor modified with

my proposed techniques (dynamic bucket selection, Fibonacci encoding). When com-

paring my unified compressor with the past approach, however, I do include the fourth

channel to show the benefit of a general compression scheme.
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(a) DoF (b) HDR

(c) Parallax (d) Map

(e) Smoke

Figure 6.1: Color buffers used to test my compression techniques.

6.3.6 Results and Discussion

In this section, I present the compression rates achieved by the state-of-the-art lossless

color and depth buffer compressor (Rasmusson et al., 2007) as well as my general-

purpose compressor. I examine the impact of my three proposed techniques (dynamic
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(a) Crysis (b) Caravan (c) Soldier

(d) NFS:U

Figure 6.2: The depth buffer data sets used to test my compression schemes. (I
have removed the ground plane from the “Caravan” scene for ease of viewing;
my simulations included it.)

bucket selection, Fibonacci encoding, and variable-precision data compression) on these

two compressors. To limit the complexity of my findings, I will present each new section

having implemented the previous sections’ proposals. Fibonacci encoding is compared

to unary encoding with dynamic bucket selection enabled, and so on.

Dynamic Bucket Selection

I first examine my dynamic bucket selection algorithm and results, shown in Figure 6.4

for my general purpose (“Unified”) and modified existing (“Tiled”) approaches. The

first three columns of each data set show buckets of “FC/25%/50%,” as in past work

(Ström et al., 2008), “FC/50%/75%,” a simple approach to correcting for optimistic

buckets, and dynamic bucket selection. The final column of each data set (“Raw”)

shows the compression achieved if buckets were not imposed; the data could no longer

be accessed randomly, but higher compression could be achieved. I view this as a goal,
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(a) NFS:U (b) HL2:LC

(c) Crysis (d) Crysis: Warhead

Figure 6.3: Applications from which I extracted geometry buffers for compres-
sion.

though it is unachievable in all but contrived cases in which compression rates align

perfectly with bucket values.

Dynamic bucket selection outperformed static bucket selections in 22 out of 27 test

cases. For my general purpose compressor, dynamic bucket selection was generally

beneficial. It outperformed the two static bucket selections in 11 out of 16 cases,

and by an average of 1.26x for color and geometry data. It was roughly comparable

for depth data, which was already significantly compressed. Dynamic bucket selection

outperforms the unmodified tile compressor in each case (by an average of 1.34x). Some

test sets were simply not compressible by the “FC/25%/50%” or “FC/50%/75%” static

bucket choices. The finer granularity coupled with the data-dependence of my algorithm

leads to better-fitting buckets and better compression rates by an average of 1.25x over

all tests.
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Figure 6.4: My dynamic bucket selection algorithm’s performance on my pro-
posed (“Unified”) and state-of-the-art (“Tiled”) compressors. In general, dy-
namic selection outperforms static selection by an average of 1.2x for my unified
compressor and 1.3x for the tiled compressor. Ideal performance is seen in the
“Raw” column.

Fibonacci Encoding

I enable dynamic bucketing when investigating the use of a Fibonacci encoder (Figure

6.5). I expected this encoder to outperform the unary encoder in most cases, since large

values can map to smaller code words. The modified “tiled” compressor does not show

much difference; neither encoder can be said to be definitively better. However, 12 out

of 16 test cases in my unified compressor benefit from the replacement of the unary

encoder with a Fibonacci encoder, by an average of 1.12x. The difference was especially

positive in depth buffers, where the average increase was 1.33x. When unary encoding

proved to be better (only 4 cases), the difference was no more than 1.04x. The average
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Figure 6.5: Performance of a Golomb-Rice encoder with standard unary and
proposed Fibonacci encoders. Though the overall improvement through the Fi-
bonacci encoder was only 1.06x, my unified compressor saw an average improve-
ment of 1.12x, and one test case improved by 1.7x when using the Fibonacci
encoder.

for both compressors was a 1.06x increase, and replacing the unary encoder with a

Fibonacci encoder significantly improved compression rates in several cases. While

one test case did show a 1.7x improvement over Golomb-Rice encoding, the Fibonacci

encoder was not a clear improvement.

General-Purpose Data Compression

Figure 6.6 shows how my proposed unified compressor, with dynamic bucket selection

and Fibonacci encoding, compares with the original and similarly-modified version

of the state-of-the-art tile-based color and depth compressor (Ström et al., 2008). I
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Figure 6.6: Performance of an existing compressor, that compressor augmented
with dynamic bucket selection and Fibonacci encoding, and my proposed com-
pressor with these enhancements. My unified compressor outperformed the base-
line and enhanced baseline compressors by averages of 1.4x and 1.2x, respectively.

Table 6.2: Compression rates of geometric data sets.

Data Set Compressed Bandwidth (%)

Crysis 30.3
Crysis: Warhead 55.6
NFS:U 37.0
HL2LC1 28.6
HL2LC2 23.8

have omitted geometric data sets from this comparison, as their compression in on-

chip hardware is novel to my work. Instead, Table 6.2 presents the compression rates

achieved by my general purpose compressor on these data sets.

I see that in many cases, my proposed general-purpose compressor achieves bet-

ter bandwidth savings. Clearly, this should be investigated further, but I propose a

possible explanation: incoherent data and uncorrelated channels. The benefit of the

specialized tile compressor stems from its guide bits, restart values, and rotation bit.

These extra flags are intended to exploit 2D coherence in a single channel of data, say

the red channel of a color buffer. When no such coherence exists, then these bits are

overhead with no benefit. This tile-based approach also assumes that color channels

are correlated, which, as noted in follow-up work (Wennersten and Ström, 2009), is

not necessarily the case. My general-purpose compressor is able to exploit much of the

same coherence without the overheads of unnecessary guide bits. There are times when

these extra bits and channel correlation can make a difference, though, such as in color
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Figure 6.7: Compression rates achieved by my general-purpose compressor on
color, depth, and geometry data as the precision of the data is reduced.

buffers with smoothly-changing or blocky colors (“smoke” and “parallax”). My pro-

posed general-purpose compressor outperforms the state-of-the-art for 16-bit floating
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point data adapted for 32-bit data and is also able to handle many more types of data.
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Figure 6.8: Range reduction of variable-precision data is much more effective
when used with dynamic bucket selection (HDR1 scene).

Variable-Precision Compression

As the precision of the input data is reduced, I can likewise reduce the range of that

data, leading to smaller residuals. The effect of this range reduction on compression

performance of color, depth, and geometry is shown in Figure 6.7. In general, I see a

very promising trend: reducing the precision of the input data allows for significantly

better compression rates. One minor departure from this trend occurs in some of the

depth buffers. There is a discontinuity where the compressed size increases as precision

decreases; this is an artifact of the dynamic bucketing. As the precision drops, new

buckets are chosen, which do not fit all of the data well until precision drops further.

However, this behavior still allows for savings and is better than having static buckets.

Figure 6.8 shows the necessity of using dynamic bucketing with range reduction.

The compression rate gains expected by the range reduction of variable-precision

data is hard to predict without knowing the behavior of a particular application. Chap-

ter 5 has shown that the precision in some applications can be reduced by up to 12

bits with no noticeable errors. This type of reduction could lead to significant extra

bandwidth savings.
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6.4 Signal Gating of On-Chip Data

There are many areas in which data is stored on-chip, such as L1 and L2 caches,

register files, and dedicated caches for texture and constant data. This data is accessed

at some level for every operation performed on each vertex and pixel. In this section,

I present an approach for saving energy when transmitting reduced-precision from a

processor‘s register file to its L1 cache. I leave transmission across a crossbar to the L2

and beyond for future work. However, it is highly likely that a similar approach could

apply to these levels of the hierarchy, as driving data buses from a cache can consume

significant energy (Rodriguez and Jacob, 2006). I discuss possible approaches to these

remaining levels in Section 6.4.4.

6.4.1 Approach

Reduced-precision data will have unused bits in the lower positions, so any bus activity

spent on these bits is wasted effort since future computations will ignore these bits. My

approach, then, is to disable any switching activity on the lines that carry these unused

bits. The program being executed on each processor could change very frequently

(NVIDIA Corporation, 2009), which means that the precision could also change. In

turn, this means that it is not enough to count on the data stream to have back-to-back

zeros in the lower bits; some active way to suppress transitions is necessary to save the

maximum energy.

I propose the use of a latch at the sending side of a data bus, if such a latch is not

already in use. When the data line contains valid data, the latch will be enabled; when

the line contains unused bits, the latch will remain disabled, holding the current value

on the line, regardless of the input data. This will suppress unnecessary transitions on

the bus lines.

The latches that regulate data at the sending end of the bus will be enabled or

disabled, depending on the precision of the data being transmitted. Changing state

will not be a free operation; there will be some energy associated with both enabling

and disabling the latch. This energy will be part of the penalty for changing precision.

The other main penalty will be sending the precision information (4 bits for controlling

up to 16 bits of precision) to the receiving end so it can decide how to deal with the

gated bits.
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6.4.2 Experimental Setup

I use LTSpice (Linear Technology, 2010) to simulate three simplex lines over two dis-

tances: 100µm and 1mm. The shorter length is driven by a single buffer stage after

the latches, while three repeaters drive each of the longer lines, with neighboring lines’

repeaters staggered. An RC ladder with 20 divisions approximates the resistance on

the line and capacitance of the lines to each other and ground. The capacitance used

for each line is 200fF/mm, and the resistance is 4.5kΩ/mm (Nguyen et al., 2005). I

used a 45nm HP process from Arizona State University’s Predictive Technology Model

(Nanoscale Integration and Modeling Group, Arizona State University, 2012; Cao et al.,

2000; Zhao and Cao, 2006; Balijepalli et al., 2007) to build the latches and drivers, which

were powered with a Vdd of 1V. I drove each line with random signals for 500 clock

cycles at 666MHz, while logging the energy spent in driving just the middle line. To

find the energy savings possible, I ran the same simulation several times with different

configurations of enabled latches. This led to a model to estimate the energy used

by a single line based on the latch states of it and its neighbors. I performed similar

experiments to find the energy required for enabling and disabling a latch. Thus, my

model also includes the penalty for turning bus lines on and off.

It is important to note that a more complete study of bus energy would consider

the different combinations of transitions seen by the three wires, rather than a random

model (Zhang et al., 2008; Satyanarayana et al., 2009; Fan and Fang, 2011). This type

of experiment would likely reveal more pronounced crosstalk characteristics that are

not seen in my results. However, the data seen at this level of a GPU will likely have

more coherence in the upper bits (especially if color and depth values are clamped to

1.0f), while the lower bits will likely change more from value to value. Since it is these

lower bits that will be disabled, they will lead to greater energy savings compared to

gating the higher bits. So, this method is a conservative estimate; a more accurate

simulation might lead to even more promising results.

I exercised this model with data from real applications. For several games, I logged

100,000 output pixels from a single frame simulated by ATTILA (del Barrio et al.,

2006). Each shader was sampled at the same frequency, so the mix of precisions in

the final pixel selections is the same as the full frame. I built a simple simulator to

send these pixel values across a bus and count transitions. Since a single processor may

work on a different program at any given clock cycle, I allowed the “burst length” of the

simulator to vary. This is simply how many 32-bit floating-point values from a given

124



shader are sent in a row before another shader program is chosen to send data, which

may affect the energy consumption of the bus due to the line enable/disable penalty.

Table 6.3: Energy used in one bit line over a distance of 100µm.

Disabled Lines Energy per Transition (fJ) Savings (%)

None 80.532 0.0
1 Neighbor 80.868 −0.42
Self and 1 Neighbor 0.478 99.41
Self and Both Neighbors 0.545 99.32

Table 6.4: Energy used in one bit line over a distance of 1mm.

Disabled Lines Energy per Transition (fJ) Savings (%)

None 256.948 0.0
1 Neighbor 255.592 0.5
Self and 1 Neighbor 0.93176 99.64
Self and Both Neighbors 0.87848 99.66

6.4.3 Results

Tables 6.3 and 6.4 show the results of the energy simulations for the three simplex

lines over two distances. These tables indicate that the influence of neighboring wires

is minimal when tested with random data patterns. More importantly, the greater

than 99% savings when disabling a latched line shows that the savings will be nearly

proportional to the number of gated lines. This is a very promising result, though

the overall savings will depend on the latch penalties (as discussed above). Finally,

the savings are roughly the same at both wire lengths, implying that this approach is

applicable to simplex buses of arbitrary distances.

Table 6.5 shows the penalties for enabling and disabling a latch. These penalties

are very small when compared to the energy necessary to drive a line, especially when

the data must travel a long distance. These latch penalties, coupled with the penalties

for sending the encoded precision values, will lessen the benefit of disabling lines; the

degree to which these penalties will detract from the overall savings will be revealed by

simulating different applications’ mix of precisions and data patterns.

When simulating various applications with these energy values, significant energy

can be saved, regardless of the burst length, as shown in Figure 6.9. Sending 8 values (or
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two RGBA pixels) at a given precision is enough to achieve most of the energy savings

possible, as the extra savings at burst lengths over 8 are modest for all applications

tested. However, it is highly likely that more than 8 values will be sent in a row in

practice, as each multiprocessor computes values for 16 or 32 pixels at a time. The

maximum savings possible will depend on the mix of precisions used in the application,

but is between 13–48% for the applications I tested (see Table 6.6).

Table 6.5: Latch enable/disable penalties.

Action Energy Penalty (fJ)

Enable 0.479
Disable 10.049
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Figure 6.9: Energy savings in the bus between a processor’s register file and L1
cache for several applications. Sending any number of values at the same reduced
precision saves energy, but the savings increases as more values with the same
precision are sent in a row.

6.4.4 Other Levels of the Memory Hierarchy

I have explored a possible data path from a multiprocessors’ register file to its L1,

though there are other levels of the memory hierarchy that consume significant energy.

The L1 to L2 data path likely involves some sort of global interconnect, such as a

crossbar. This type of bus is much more complicated than the simplex lines I explored

above; switched duplex lines will connect various elements. These duplex lines will
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Table 6.6: Application precisions and maximum savings (for a burst length of 64
over a 1mm simplex bus).

Application Average Precision Maximum Savings (%)

HL2LC1 10.94 36.34
HL2LC2 10.17 44.08
Doom 3 9.75 37.54
NFS 19.39 13.09
Metaballs 8.20 47.25

likely be driven by tri-state buffers to switch between reading and writing. Signal

gating at this level may take a different form from the latches used above. It may be

possible to use the Hi-Z state of the tri-state buffers on both ends of the data path

to allow the lines to float and a pull-down transistor at the destination to ensure a

constant signal. If this approach is found to cause signal integrity problems or spurious

activity in the repeaters along the longer wires, though, latches may be used to disable

transitions as above.

Another complication is the propagation of precisions from level to level of the

hierarchy. At the register file and L1 level, the precision information is local to the

multiprocessor, so will be available at one or both locations. Higher in the hierarchy,

at the L2 and global memory levels, it will likely be necessary to consult the current

rendering or computational state to determine the precision to use when reading or

writing data. The necessary additional complexity will depend on the existing steps in

address translation on a particular architecture, so this approach may be feasible, but

a different technique may be necessary to keep the overheads to an acceptable limit.

6.5 Conclusion

I have designed a general-purpose compression and decompression scheme for 32-bit

floating-point data on graphics hardware. It both outperforms an existing 16-bit com-

pressor (Ström et al., 2008) adapted to handle 32-bit data and is able to compress

general data. I have shown this capability by presenting promising compression rates

for geometry data (vertex positions, normals, texture coordinates, etc.) for real-world

applications. Average rates for color, depth, and geometry data are 1.5x, 7.9x, and

2.9x, respectively.

Furthermore, I have proposed two novel techniques applicable to any hardware
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compression scheme: dynamic bucket selection and the use of a Fibonacci encoder.

These proposals increased compression ratios by averages of 1.25x and 1.06x, with

maximum improvements of 2.4x and 1.7x, respectively. Note that these are not just

compression rates, this also takes quantized storage into account. So, these results

should not be viewed as a single tile seeing an improvement of 1.25x (for example) but

as several tiles remaining unchanged, and several others improving by 2x. I believe

that these techniques are suitable for a hardware implementation and discussed my

justification. Lastly, I have shown that extra savings are available by using range

reduction on variable-precision data. The additional savings will depend on the specific

application but are expected to be between 5% and 20%, for overall color, depth, and

geometry compression rates of 1.9x, 10.7x, and 3.6x, respectively.

I have also conducted a preliminary exploration of the savings possible in on-chip

communication by performing Spice simulations of 3 simplex lines and expanding the

results into a larger on-chip bus model. By applying a form of signal gating on bus

lines from a multiprocessor‘s register file to its L1 cache, an average savings of 36%

(between 13–48%) is possible when transmitting reduced-precision data from five test

applications.

6.5.1 Future Work

My dynamic bucket selection algorithm has been shown to work well in practice. How-

ever, its performance is dependent on the order in which the data is seen; a flipped or

rotated buffer could drastically change the results. Extensions to this algorithm may

be possible, such as delaying the selection of a bucket until some minimum number of

chunks fall into it. Another approach may be to dynamically re-select buckets with the

realization that moving a selected bucket from a smaller value to a higher value does

not pose any functional problems; any buffers mapped to the selected bucket will still

fit in its new value.

Compression of 32-bit data is important, but many scientific applications also make

use of 64-bit floating-point representations. This is an obvious extension of my 32-

bit unified compressor. Handling 32- and 16-bit data with a 64-bit compressor need

not be complicated, however, if dynamic range reduction is also used. For example,

32-bit values can be promoted to 64-bit values and padded with zeros on the right.

Since the comparison constant is chosen for 64-bit values, dynamic range reduction

will handle shifting this value at the same time that the data values are shifted by
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32 bits. The efficiency of the compressor will then be identical to the efficiency of a

32-bit compressor, though far more general. This idea can also be used to handle 16-bit

data in a 64-bit compressor, or even 16-bit data in my 32-bit compressor. This will

also allow for very common 8-bit formats to be compressed with my scheme. While

techniques targeted at 8-bit data will not be used in my general-purpose compressor,

these often-used formats can still be handled. I will have to test this technique before

reporting any performance results, though the extra hardware and control will likely

mean that a dedicated 8-bit compressor will be more energy-efficient than my suggested

approach for 8-bit data sets.

Compression of geometry buffers is often able to be asymmetric; many game applica-

tions have geometry that is authored once and read many times. Thus, it is reasonable

to expect that a two-pass algorithm could be used on the data after authoring in order

to choose the best buckets for a particular buffer. My dynamic selection decompression

scheme would still be necessary to make use of these buffers, as used buckets are still

a subset of the available buckets.

There are still many areas to explore in on-chip communication energy efficiency. I

have only addressed possible savings in simple buses, such as from a register file to an

L1 cache. More complex interconnects remain, such as those from the L1 to a shared

L2, which may involve a crossbar or other switched network. Moreover, savings in data

storage, such as in register files, caches, and SRAMs, may be available. Further work

will examine each of these areas.
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Chapter 7

Summary and Conclusion

7.1 Summary

GPUs are used across the continuum of computers—mobile devices, personal comput-

ers, and high-performance computing (HPC) servers. In each of these domains, energy

consumption is increasingly becoming a primary concern to hardware and software de-

signers. Mobile devices, such as cellular phones and tablets, are constrained by their

batteries; the more energy-efficient the device, the longer it will last before requiring

user intervention to recharge or replace the battery. The performance of personal com-

puters and HPC servers is limited by the power that can be drawn from the power

supply and then dissipated on the chip. Were these computers to be more efficient,

they could operate at higher frequencies on the same power budget. In Chapter 1,

I proposed a method to trade off precision for energy in the operation of the graph-

ics pipeline, allowing for longer battery lifetimes or higher performance (depending on

the larger context of the GPU). Now, let me recap how the pieces of my work—an

energy model, variable-precision arithmetic hardware, and explorations in saving en-

ergy in both the computation and communication of data—fit together to enable these

tradeoffs.

7.1.1 Energy Model

I presented an energy model for graphics applications on GPUs in Chapter 3. My

model works by aggregating the energy used in each operation in the pipeline (both

programmable and fixed-function stages, and both memory and arithmetic operations)

to estimate the overall energy used by the hardware. Thus, no time-consuming simu-

lations or repeated run-time monitoring of existing hardware is needed; hypothetical



architectures can be explored without having to build or simulate test chips. I vali-

dated my model with different scenes from three commercial games and found it to be

accurate to within 10–15% for each test. I then used the model in two case studies: an

algorithmic study to find the most energy-efficient method to perform vector normal-

ization and an architectural study to determine how efficient a tiled renderer might be

when rendering the test scenes.

This model, then, allows for rapid and accurate estimates of the energy efficiency

of both existing and in-design hardware for any workload. Further, it estimates the

energy used by each section of the graphics pipeline, giving insight into the most fruitful

avenues to explore for energy savings. This also allows me to translate savings in any

one section to savings in the context of the entire GPU.

7.1.2 Variable-Precision Hardware

Hao and Varshney were the first to look at variable-precision arithmetic in the graphics

pipeline (Hao and Varshney, 2001), though it was for performance reasons. Since I seek

to save energy, I developed variable-precision arithmetic circuits that use less energy as

fewer bits are computed; this is the subject of Chapter 4. These are standard adders

and multipliers that have been modified to accommodate fine-grain power gating to

save both dynamic and leakage power. The energy versus precision curves are very

promising; the adders have linear savings with each bit of reduced precision, and the

multipliers have quadratic savings. I use the energy characteristics of these arithmetic

circuits in later sections to estimate energy savings in graphics applications. Lastly, the

timing and area overheads are acceptable and small, and they do not preclude mobile

or desktop hardware from using these circuits.

7.1.3 Energy Savings in Computation

With an energy model and variable-precision circuits in hand, in Chapter 5, I explored

the energy savings possible in the computation of data in vertex and pixel shaders. As

precision is reduced in either of these places, different types of errors are manifested,

so I categorized and, where possible, quantified these errors. Using a GPU simulator,

I developed and presented several techniques for choosing an operating precision that

will yield significant energy savings without incurring intolerable errors. Using one such

technique in which the artist is responsible for choosing the precision for each effect

used in an application, up to 79% of the energy in the pixel shader’s arithmetic could be
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saved (with an average savings of 70% for the applications tested with this technique).

Similar savings are possible for the computation in vertex shaders.

7.1.4 Energy Savings in Communication

Having shown that energy can be saved by reducing the precision of data’s computation,

the hardware can take advantage of unused bits in the data’s representation when

moving data around and off of the chip. So, in Chapter 6, I look at approaches for

saving energy in the communication of data. Data is usually compressed before it

is read from or written to an off-chip memory, such as the GPU’s global DRAM.

I propose two enhancements (dynamic bucket selection and Fibonacci encoding) for

existing compression schemes that increase their compression rates by an average of

1.25x and 1.06x, with maximum improvements of 2.4x and 1.7x, respectively. I also

describe a new unified compressor that is able to operate on any type of data, not just a

subset of color and depth buffers, thereby overcoming a major limitation of past work.

This new compressor achieves compression rates of 1.5x, 7.9x, and 2.9x for color, depth,

and geometry buffers, respectively. As the last piece in data compression, I propose

a method for compressing reduced-precision data, which allows additional energy and

bandwidth savings of from 5–20%, depending on the application.

I also conducted a preliminary exploration into saving energy in on-chip communi-

cation. By using signal gating on simplex buses, such as from a multiprocessor’s register

file to its L1 cache, linear energy savings can be realized as the number of bits gated

increases. The aggregate savings will depend on the usage pattern of this bus, since

switching precisions will carry with it a penalty, so I developed a simple simulator that

will estimate this overall savings given an application’s mix of the data and precisions

used by each shader. For several test applications, savings were between 13–48%, with

an average of 36%.

7.2 Future Work

In performing this research, I explored many avenues for energy savings as thoroughly

as I could. However, there are still many relatively untouched areas or topics that

warrant further investigation, and I discuss them in this section.
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7.2.1 Energy Model

Though my model takes into account both fixed-function and programmable units, I

did not characterize the energy necessary to perform triangle setup. I expect this cost

will be relatively low in relation to the other operations but cannot be certain with-

out performing directed tests and measuring the energy requirements. Further, the

GPU (NVIDIA’s 8300GS) for which I developed my model is not the most up-to-date

architecture or transistor process available. The 80nm transistors used in this card

have very different characteristics than the newest 28nm (and smaller) technologies,

and there have been architectural changes in recent years that will affect the model’s

accuracy on newer hardware. These changes may require more directed tests to find, for

example, the relative energy costs of L1 and L2 cache accesses. Lastly, when applying

my model to different graphical applications, I was forced to estimate many aspects

of the workload seen on the hardware; results would likely be much more reliable and

accurate if a more direct way of finding values for model parameters were available.

Applications with vastly different characteristics may require additional model param-

eters.

7.2.2 Variable-Precision Hardware

Though my designs show that trading off energy for precision is a viable approach to

saving energy, they are not sufficient for a completely accurate estimation of absolute

savings. First, I have designed integer arithmetic circuits, while any implementation

in a GPU would need floating-point support. So, extra hardware to support the addi-

tion and multiplication of floating-point exponents and sign bits, as well as rounding,

is needed. Also, these operations may be pipelined, so intermediate latches may be

necessary to store the data after each stage. Second, these various circuits need to be

assembled into an FPU to be functional in larger tests; there are control overheads that

are not accounted for in my designs. Finally, these circuits were designed and simulated

for a technology size of 130nm; this is quite large by today’s standards and should be

updated before proceeding further. This updating process may lead to different energy

savings characteristics that lead to different types of power gating designed to amortize

the cost of a header or footer switch over more gated transistors, as power gating is

currently applied to larger groups of transistors than those used in my designs.

In my designs, I forced a granularity of per-bit power gating; it may be interesting

to explore the savings possible with power gating at a coarser granularity, e.g. at every
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other bit. In this scenario, the timing and area penalties may be lower, control circuitry

more compact, and control algorithms not as complicated, all while still allowing for

significant savings. The realizable energy reductions will depend on the precisions

tolerated by the final applications running on the hardware.

7.2.3 Energy Savings in Computation

I focused on the vertex and pixel shader stages of the graphics pipeline, but there are

currently other stages that warrant their own investigations: the geometry, tessellation,

and compute shaders. This last stage is meant to enhance interoperability between

graphics and general-purpose computations, and so its execution on variable-precision

hardware could be approximated with GPGPU applications running as CUDA pro-

grams. In any case, I have not performed any tests on GPGPU applications, despite

promising results found in reduced-precision physics simulations (Yeh et al., 2006; Yeh

et al., 2009). In the HPC domain, researchers are accustomed to using the highest

precision available, and will likely not want to risk reducing the precision of their com-

putations for energy savings. It will likely be necessary to perform automatic algorithm

restructuring and static precision analysis to guarantee maximum errors and achieve

significant energy savings.

7.2.4 Energy Savings in Communication

In the compression of data for off-chip transmission, I explored simple approaches

to handling the data. For example, I proposed a simple scheme for dynamic bucket

selection. While, in many of my test cases, this works well, it is dependent on the

order in which the data appears. There may be a different (but still simple and easy

to implement in hardware!) heuristic that leads to better-fitting buckets for the whole

data set. For instance, this could take the form of changing the 62.5% entry in a bucket

list also containing 37.5% and 50% to 75%; this would not affect the correctness of the

already compressed data’s decompression, but it may allow for more buffer chunks to

be compressed. I also made the assumption that all data buffers are writeable; in

reality, many geometry buffers are read-only. This fact may open new opportunities

for asymmetric decompression, perhaps by using a two-pass algorithm on the data as

it is authored, similar to texture compression.
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