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ABSTRACT 

Qi Yang: Exploring and harnessing PEG-immune system interactions  

to engineer targeted stealth nanoparticles 

(Under the direction of Samuel K. Lai) 

 

Effective nanoparticle drug delivery to tumor cells typically relies on prolonged systemic 

circulation of the nanoparticles to allow for extravasation and accumulation in tumor tissue, as 

well as targeting ligands on the nanoparticles that can mediate receptor-specific uptake by target 

tumor cells. Due to the ability of polyethylene glycol (PEG) to effectively reduce nonspecific 

protein binding and cell clearance, PEGylation has become a commonplace strategy for 

formulating long-circulating nanoparticle systems. However, the precise characteristics (e.g., 

PEG molecular weight and density) that influence the interactions between PEG-coated 

nanoparticles and phagocytic immune cells remain poorly understood for many nanoparticle 

systems, and findings from human studies suggest that the body is further able to mount PEG-

specific humoral responses to PEG-coated agents. Additionally, the presence of targeting ligands 

on the nanoparticle surface may also compromise the extended circulation profile of PEG-coated 

nanoparticles. To address these challenges and gaps in our understanding, in this dissertation 

quantitative approaches and systematic analyses were utilized to 1) evaluate the interactions 

between phagocytic cells and various PEG coatings on polymeric nanoparticles, 2) determine the 

prevalence and concentrations of different anti-PEG antibody isotypes amongst the general 

human population, and 3) apply an alternative approach for PEGylated nanoparticle delivery to 

tumors. The results indicated that extremely dense PEG coatings (RF/D >> 2.8) are required to 
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effectively minimize nonspecific clearance by immune cells. Using competitive ELISAs and 

engineered antibody standards, the anti-PEG IgG1-4 and IgM levels in a large number of healthy 

human samples were quantified, with the majority of samples possessing detectable anti-PEG 

IgG and/or IgM. Finally, a multistep targeting (i.e., pretargeting) approach was tested for the 

delivery of biotin PEG-modified nanoparticles to disparate tumor cells in vitro and in vivo. The 

analytical methodologies and overall findings described here can inform future studies of 

PEGylated nanoparticle-immune system interactions and nanoparticle targeting strategies. 
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CHAPTER 1: INTRODUCTION 

1.1 Nanoparticle and MPS clearance 

 The application of nanotechnology to delivery of therapeutic and/or diagnostic agents has 

become an important area of pharmaceutical science, with several nanoparticle formulations 

already on the market and many more in development [1]. Nanoparticles are commonly defined 

as being 1-100 nm in diameter, though submicron-sized particles are often also included in this 

category. Nanoparticles can protect their cargo from the biological microenvironment, alter drug 

solubility, and provide controlled drug release. Furthermore, owing to their unique 

physicochemical properties (e.g., size, shape, surface charge), nanoparticle formulations can also 

significantly improve an encapsulated drug’s biodistribution and bioavailability, and 

consequently its pharmacokinetic and pharmacodynamics profile, compared to free drug [2]. In 

addition, by reducing the level of free drug in the blood, nanoparticles can reduce toxicity 

associated with drug accumulation in nontarget tissue and broaden the drug’s therapeutic 

window. It is important to note, however, that the use of nanoparticles can also introduce new 

problems. For example, liposomal formulations of doxorubicin exhibit reduced cardiotoxicity 

compared to the free drug but increase the likelihood of side effects such as hand-foot syndrome 

[3]. 

A major biological barrier encountered by nanoparticles injected into the systemic 

circulation is rapid clearance by mononuclear phagocyte system (MPS) cells (e.g., Kupffer cells 

in the liver and macrophages in the spleen and lymph nodes). The MPS comprises a branch of 

the innate immune system that, among other functions, is responsible for the elimination of 
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foreign materials, including bacteria, viruses, and fungi. Similar to these naturally occurring 

particles, nanoparticles can be rapidly opsonized by adsorption of plasma proteins such as serum 

albumin, complement factors, apolipoproteins, and immunoglobulins, generating an abundant 

protein corona that marks the nanoparticles for receptor-mediated phagocytosis by MPS cells [4]. 

The process of opsonization and sequestration by MPS cells is extremely efficient: unmodified 

nanoparticles can be fully eliminated from systemic circulation within minutes [5, 6]. 

 

1.2 Nanoparticle PEGylation 

Surface modification of nanoparticles with polyethylene glycol (PEG) was first 

introduced in the 1990s to reduce the rapid clearance of nanoparticles by MPS cells [5]. 

Currently, PEG remains the most popular compound within the genre of so-called “stealth” 

polymers—polymers that, when grafted on the surface of nanoparticles, can reduce their 

opsonization and subsequent immune cell-mediated clearance. In the case of PEG, these effects 

are largely due to its hydrophilicity and high flexibility, which generates a thick, amorphous 

hydration shell that repels nonspecific protein adsorption and improves colloidal stability [4, 6, 

7]. Thus, modification with PEG (i.e., PEGylation) can significantly prolong nanoparticle 

circulation times in the blood, increasing the half-life of nanoparticles to several hours or even 

days [8, 9]. 

Although PEGylation is a frequently exploited nanoparticle modification strategy, the 

extent to which PEGylation improves nanoparticle circulation times remains highly variable [9]. 

The diverse classes of nanoparticle systems (e.g., liposomal, micellar, metallic, polymeric, silica, 

and carbon nanoparticles) have necessitated the development of a variety of PEGylation 

strategies, including post-insertion of PEG-lipids, surface conjugation to reactive groups, 
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adsorption of PEG-containing surfactants, and particle formulation using PEG copolymers. 

Nanoparticle composition and formulation processes not only affect the PEGylation method(s) 

that can be used but also introduces different limitations on the density of PEG grafting that can 

be achieved. As a result, PEG coating characteristics (e.g., PEG density, PEG MW, potential 

PEG shedding) can vary greatly. An additional complicating factor is the lack of methods to 

accurately measure the extent of PEG grafting on most nanoparticles. Overall, the precise 

characteristics of PEG coatings that influence opsonization and clearance of PEG-coated 

nanoparticles by MPS cells remain not well-understood. 

 

1.3 Humoral immune responses 

Adaptive immunity is critical for immune defense against reinfection by foreign 

pathogens. In contrast to innate immune responses that rely on recognition of shared features of 

pathogens, adaptive immune responses are mediated by immune cells and humoral 

macromolecules, particularly antibodies, that can bind specific epitopes on individual foreign 

molecules (i.e., antigens). Antibodies are Y-shaped proteins with complementarity-determining 

regions (CDRs) at the ends of their two arms that can bind target epitopes (Fig. 1.1). 

Recombination and hypermutation of antibody gene segments produces a diverse and random 

pool of antibodies able to recognize a wide array of potential antigens and to adapt in order to 

bind antigens with high affinity [10]. Antibodies are produced by B lymphocytes and are 

classified into IgG, IgM, IgA, IgD and IgE isotypes, with IgG further divided into IgG1, IgG2, 

IgG3, and IgG4 subclasses. Upon binding, antibodies can opsonize, agglutinate, and/or directly 

neutralize pathogens, thereby preventing pathogens from reaching and infecting more host cells. 

Additionally, antibodies can activate the complement cascade, as well as facilitate the 
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elimination of infected cells through antibody-dependent cell-mediated cytotoxicity. Generally, 

antibodies are produced by B cells after activation by helper T cells, although certain antigens 

(i.e., T cell-independent antigens) are able to activate B cell antibody production without 

stimulation from T cells. Upon initial exposure to an antigen, IgM antibodies are produced after 

a lag phase of 1-2 weeks, typically followed by a peak of IgG antibodies as the differentiated B 

cells undergo class-switching. Long-lived plasma cells and memory B cells generated after the 

primary response can result in more rapid secondary antibody responses, which are 

predominantly IgG. However, the features of induced antibody responses can vary depending on 

the specific antigen, dose, route of exposure, and individual host genetics and environmental 

exposure [11]. For example, IgG1 (~60% of all IgG) is typically associated with responses to 

protein antigens and memory B cell induction, whereas IgG2 (~30% of all IgG) is commonly 

induced by polysaccharide antigens, often in a T cell-independent manner that may not generate 

a meaningful memory response [12]. 

While humoral responses are invaluable for defense against infectious pathogens, these 

same mechanisms can limit the safety and efficacy of exogenous therapeutic molecules. For 

example, monoclonal antibodies (MAb) of murine origin were first introduced in the 1980s, but 

their success was limited by the induction of strong anti-mouse antibodies in the majority of 

patients. Indeed, >85% of patients treated with muromonab-CD3, the first clinically approved 

MAb, developed antibodies against the drug [13, 14]. In an effort to reduce immunogenicity, the 

pharmaceutical industry has transitioned from fully murine to chimeric, humanized, and finally 

fully human MAb formats (Fig. 1.1), but even fully human antibodies may induce some immune 

responses [13, 15]. Anti-drug antibodies pose a major challenge to effective therapy not only due 

to neutralization and/or rapid clearance of antibody-bound drugs, which can reduce or 
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completely abrogate drug efficacy, but also because they can induce serious, potentially life-

threatening, side effects such as anaphylactic and hypersensitivity reactions [16-18].  

Antibodies can potentially form against foreign components of nanoparticle carriers, 

including PEG. Although PEG was long assumed to be immune inert due to its ability to resist 

protein binding, growing evidence indicates that both animal subjects and human patients treated 

with PEGylated drugs can develop antibodies to PEG, leading to a marked reduction in the 

efficacy of PEGylated systems and/or unexpected anti-PEG antibody-associated side effects [19, 

20]. Interestingly, PEG-specific antibodies have even been observed among “treatment-naïve” 

donors [21, 22]. Unfortunately, the overall prevalence, systemic concentration, and potential 

clinical impact of these anti-PEG antibodies is currently unclear. A thorough characterization of 

anti-PEG antibodies among the general population will likely have important implications for the 

future clinical use of the many PEGylated drugs on the market and in development. 

 

 
 

Figure 1.1. Antibody structure. Antibodies are Y-shaped macromolecules composed of two heavy and 

two light chains. Within these chains, the variable heavy and light domains (VH and VL, respectively) 

contain the complementarity-determining regions (CDRs) responsible for antigen binding, and the 

effector functions of the antibody are determined by the constant domains (CL, CH1, CH2, and CH3), in 

particular the CH2 and CH3 domains, which comprise the Fc region that is recognized by complement 

proteins and various receptors on immune cells. Chimeric antibodies contain nonhuman VH and VL 

sequences, whereas in humanized antibodies, only the CDR sequences are of nonhuman origin. Figure 

was modified from Ref [23] with permission from Nature Publishing Group. 
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1.4 Nanoparticle drug delivery to tumors 

The application of nanomedicine to oncology has been largely driven by the unique 

properties of tumor tissues. Once tumors develop beyond a critical size, typically 1-2 mm
2
, 

angiogenesis is required to supply adequate nutrients to support further tumor growth [24]. This 

neovascularization is induced through the release of vascular endothelial growth factor (VEGF) 

and other proangiogenic factors by the tumor cells. However, the unbalanced secretion of these 

factors, results in abnormal and heterogeneous vessels with irregular function and structure, 

characterized by fenestrations in the endothelium that range from hundreds of nanometers to 

several micrometers in size [25, 26]. Combined with a lack of adequate draining lymphatic 

vessel formation for most tumors, the “leaky” vasculature allows the preferential extravasation 

and accumulation of macromolecules and nanoscale materials in tumor tissues, compared to 

normal tissue with tight endothelial vessel linings. This phenomenon, termed the enhanced 

permeability and retention (EPR) effect, is the basis for “passive” targeting of tumors using 

nanoparticles, as any sufficiently long-circulating nanoparticle smaller than the tumor vessel 

fenestrations should be able to exploit the EPR effect to accumulate in tumor tissues [27]. 

Another feature of tumor cells is overexpression of various cell surface receptors. 

Through the introduction of ligands (e.g., antibodies, small molecules, peptides, aptamers) that 

specifically bind to these overexpressed receptors, researchers can generate nanoparticles that 

“actively” bind tumor cells and undergo receptor-mediated endocytosis. However, tumor 

biodistribution of actively targeted nanoparticles remains largely dependent on the EPR effect. 

Because the inclusion of a large number of targeting ligands may offset the long circulation 

characteristics of PEG coatings, the targeting ligand density must be carefully tuned and 
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optimized for each nanoparticle formulation to balance the stealth properties imparted by 

PEGylation and the ability to specifically target cancer cells. 

 

1.5 Thesis overview 

In this thesis, my goal is to provide a blueprint for the engineering of nanoparticle 

systems that can better target specific cells and tissues by rigorously characterizing the 

interactions of PEGylated nanoparticles with cells and antibodies of the immune system. This 

goal is divided into the following three aims: 

Aim 1: Elucidate interactions between PEGylated nanoparticles and innate immune 

system. I synthesized a series of PEGylated nanoparticles with carefully tuned physicochemical 

properties comprised of a range of PEG molecular weights and densities. Next, I developed an 

indirect fluorogenic probe-based assay to quantify the number of PEG groups conjugated onto 

the nanoparticles. I further assessed the influence of PEG MW and grafting density on 

nanoparticle uptake by cultured human macrophage-like cells and primary human leukocytes 

using flow cytometry and monitored the systemic circulation time of various PEGylated 

nanoparticles in BALB/c mice using intravital imaging and pharmacokinetics analysis.  

 Aim 2: Investigate human adaptive immune responses against PEG (anti-PEG 

antibodies). To enable quantitative analysis of pre-existing anti-PEG antibody responses in 

humans, I engineered a variety of chimeric anti-PEG monoclonal Ab standards. Using these 

standards in combination with rigorously validated competitive ELISAs, I was able to quantify 

the levels of anti-PEG IgM and different subclasses of anti-PEG IgG (IgG1-4) in both 

contemporary and historical human samples. The relationship between anti-PEG antibody levels 

and various demographic factors such as age, gender, and race was explored.  
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Aim 3: Evaluate the use of a pretargeting strategy for nanoparticle delivery to 

heterogeneous tumors. I synthesized densely PEGylated model polymeric nanoparticles with a 

range of surface biotin groups and, using flow cytometry, determined the optimal biotin ligand 

density required to maximize specific uptake by B-cell and T-cell tumor cells pretargeted with 

streptavidin-based bispecific fusion proteins recognizing CD20 (B cell-specific) or TAG72 (T 

cell-specific). I also evaluated the utility of this pretargeted nanoparticle strategy in single or dual 

tumor-bearing nude mice by first dosing with the bispecific fusion protein(s), followed by the 

biotinylated PEGylated nanoparticles and measuring nanoparticle biodistribution using whole-

organ imaging.  
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CHAPTER 2: BACKGROUND ON HUMORAL ANTI-PEG IMMUNITY
*
 

2.1 Introduction 

Extended circulation of proteins and nanoparticle therapeutics is often necessary to 

achieve adequate drug concentrations in target tissues [9, 28, 29]. Unfortunately, many peptide 

and protein drugs are rapidly degraded and/or cleared from the systemic circulation due to their 

small size [30], and nanoparticulate drug carriers are readily eliminated by the cells of the 

mononuclear phagocyte system (MPS) [9, 31]. To overcome these challenges, proteins and 

nanoparticles are frequently conjugated to various hydrophilic polymers, which can significantly 

reduce degradation and opsonization, consequently extending the circulation half-lives of the 

modified therapeutics [28, 32]. These polymers are frequently referred to as “stealth” polymers, 

reflective of their ability to render proteins and particles inert to the biological environment.  

Polyethylene glycol (PEG) has been, and continues to be, the most widely used stealth 

polymer in drug delivery, with over a dozen PEGylated pharmaceuticals currently on the market 

and many more in clinical testing [9, 29]. PEG has a long history of safe use in humans, and the 

polymer is classified under the Generally Recognized As Safe (GRAS) category by the FDA. 

Despite the frequent use of PEG to extend circulation kinetics, a number of investigators have 

observed the rapid clearance of some PEGylated systems upon repeated administration [19, 33]. 

This “accelerated blood clearance” phenomenon was ultimately attributed to the formation of 

PEG-specific antibodies [34]. Indeed, animals that receive repeated doses of PEGylated systems 

often generate a potent IgM antibody response to PEG, which causes the complete elimination of 
                                                      
*
This chapter is based on an article that previously appeared in WIREs Nanomedicine and Nanobiotechnology. The 

original citation is as follows: Yang Q, Lai SK. WIREs Nanomed Nanobiotechnol. 2015, 7(5), 655-77. 
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subsequent doses of PEGylated agents from the circulation within minutes to a few hours [19]. 

The induction of anti-PEG antibodies (anti-PEG Abs) in humans was also observed in recent 

clinical trials of PEGylated proteins and has been correlated with poor drug efficacy [35, 36]. 

Interestingly, there is emerging evidence that anti-PEG Abs can be found in the general 

population in individuals who likely have never received PEGylated therapeutics injected 

systemically [21, 37]. As many more PEGylated protein and nanoparticle therapeutics are 

expected to enter the market over the next several years, an improved understanding of the 

prevalence, induction, and effects of anti-PEG immunity is undoubtedly critical for the continued 

clinical use of PEGylated systems. 

 

2.1.1 Advantages and physicochemical properties of effective stealth PEGylation 

The stealth properties of PEG are rooted in several distinctive molecular and physical 

characteristics. First, PEG is exceedingly hydrophilic, with each ethylene glycol subunit (-CH3-

CH3-O-) surrounded by a minimum of 2-3 water molecules [38, 39]. Thus, PEG coatings 

generate a hydration shell with a large excluded volume that sterically prevents 

biomacromolecules from penetrating into the polymer layer and binding to the underlying core 

via hydrophobic or electrostatic interactions [7, 40, 41]. Second, PEG is highly flexible and 

exhibits high chain mobility, which results in an exceedingly large number of polymer chain 

conformations. As a result, any substantial reduction in the conformational freedom of PEG, 

including the displacement of PEG chains by intruding biomacromolecules, is 

thermodynamically unfavorable [42-44]. Together, these features greatly suppress interactions 

between PEGylated systems and the biological environment.  
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For proteins, PEG conjugation decreases enzymatic degradation, opsonization, and 

immunogenicity of the protein core [30]; PEGylation can also improve stability and solubility 

[29]. Additionally, the resulting increase in the hydrodynamic diameter can reduce renal 

elimination and improve the biodistribution and pharmacokinetics of PEGylated proteins [30]. 

For nanocarriers, PEGylation reduces opsonization and MPS cell clearance, resulting in 

significantly prolonged circulation kinetics [31, 32]. For oncological applications, this effect 

often leads to greater tumor distribution via the enhanced permeability and retention (EPR) 

effect, while decreasing accumulation in non-targeted organs [9]. PEGylation can also improve 

nanocarrier stability and minimize the premature release of cargo therapeutics. Finally, PEG 

coatings have been shown to decrease nanocarrier association with structural components of 

mucus and extracellular matrix, thereby improving distribution and delivery to regions such as 

mucosal surfaces and brain tissues [45, 46]. 

Naturally, the effectiveness of PEG as a nanoparticle coating polymer is critically 

dependent on the density and resulting conformations assumed by conjugated PEG chains. The 

thickness of the PEG coating is dictated by its Flory radius (RF; a function of the molecular 

weight) and the distance between two neighboring PEG chains (D; a function of the PEG coating 

density) [47]. When neighboring PEG chains are sparsely packed and do not overlap, PEG 

occupies a diffuse volume generally termed a “mushroom” conformation (RF/D ≤ 1). As more 

PEG polymers are introduced, the excluded volume and repulsion by neighboring PEG chains 

cause the polymer to transition from a diffuse conformation to a more extended “brush” 

conformation (RF/D > 1) [4, 9], eventually reaching a “dense brush” regime, where the height of 

the PEG layer exceeds the RF by at least two-fold (at RF/D > 2.8) (Fig. 2.1a) [43, 48, 49]. The 

mushroom/brush transition has long been considered to be the critical threshold at which PEG 
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begins to exhibit stealth polymer functions. However, we and others have recently found that 

both rigid polymeric and metallic nanoparticles require PEG grafting densities far exceeding the 

minimum for brush conformation to demonstrate effective stealth nanoparticle behavior [49, 50]. 

Indeed, maximal reduction of uptake by mouse and human phagocytes in vitro required at least a 

dense brush PEG coating (Fig. 2.1b), and PEG grafting densities extending well into the dense 

brush conformation were necessary for the evasion of serum protein adsorption (Fig. 2.1c), as 

well as to achieve sustained circulation in vivo.  

 

 
 
 

Figure 2.1. Impact of PEG density and conformation. a) The conformation adopted by PEG chains at 

various grafting densities. At low grafting densities (RF /D ≤ 1), the PEG chains adopt a diffuse 

“mushroom” conformation. At higher densities, the PEG chains are increasingly able to repel 

opsonization and cell uptake as they transition into a more extended “brush” conformation (RF /D > 1) 

and eventually reach a “dense brush” regime (RF/D > 2.8). b) Uptake of PEG5k-grafted gold NPs by 

mouse J774A.1 macrophage-like cells. A PEG5k density of 0.16 PEG/nm
2
 corresponds to brush 

conformation; all other PEG densities correspond to dense brush conformation. c) Qualitative analysis of 

the serum proteins adsorbed onto 30 nm gold NPs modified with varying amounts of PEG5k. A PEG5k 

density of 0.24 PEG/nm
2
 corresponds to brush conformation; all other PEG densities correspond to dense 

brush conformation. Panels B and C were reprinted with permission from Ref [50] (copyright 2012 ACS), 

and panel A was adapted with permission from Ref [49] (copyright 2014 ACS). 

 

2.2 PEG-specific immunity in animal models 

2.2.1 The first report of anti-PEG Abs in vivo 

Because proteins are generally excluded from densely PEG-coated surfaces, it is 
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convenient and intuitive to assume that PEG should be immunologically inert and escape binding 

by antibodies. However, in 1983, less than a decade after the introduction of protein PEGylation, 

Richter and Akerblom reported the generation of PEG-specific antibodies following 

intramuscular (i.m.) or subcutaneous (s.c.) injections of various PEG-modified proteins in 

Complete Freund’s Adjuvant [51]. In contrast, they found that free PEG (MW 10-5.9 x 10
3
 kDa) 

administered under similar conditions exhibited little to no immunogenicity. This landmark study 

demonstrated for the first time that antibodies can be formed against PEG polymers. Later 

studies confirmed that not only can anti-PEG Abs be elicited by immunization with PEGylated 

proteins [52, 53], but also that the induction of PEG-specific immunity can occur in the absence 

of adjuvants [54, 55].  

 

2.2.2 Accelerated blood clearance of PEGylated systems is attributed to anti-PEG Abs 

While single doses of PEGylated therapeutics often demonstrate extended system 

circulation times in vivo, some PEGylated systems exhibit rapid elimination upon repeated 

administration. For example, Moghimi and Gray reported in 1997 that when long-circulating 

polystyrene particles coated with poloxamine 908 (a PEG-containing surfactant) were 

administered 3-4 days after an initial dose, the particles were swiftly cleared from systemic 

circulation by MPS cells in rats [56]. Similarly, Dams et al. and several other groups observed 

that repeated weekly dosing of empty PEG liposomes also significantly reduced the circulating 

half-lives of the subsequent doses (Fig. 2.2a), with a corresponding increase in liver 

accumulation and hepatic clearance (Fig. 2.2b), as well as moderate increases in splenic 

accumulation (Table 2.1) [33, 57-60]. This unexpected effect was termed the “accelerated blood 

clearance” (ABC) phenomenon, and the biological factors underlying the phenomenon remained 
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unclear for a number of years after its discovery. Because the infusion of “naïve” mice with 

plasma from animals pre-dosed with poloxamine-coated polystyrene beads failed to generate an 

ABC effect, Moghimi and Gray suggested that the observed phenomenon was not due to plasma 

factors but rather potentially resulted from an change in phagocyte receptor expression and/or 

activity elicited by the initial particle dose [56]. In contrast, Dams et al. reported that the 

transfusion of blood or serum from rats pre-treated with PEGylated liposomes generated an ABC 

effect and observed that this effect was dependent on the presence of a heat-labile, 150-kDa 

serum factor. Because ABC was observed for serum depleted of IgG or IgM, they proposed that 

the observed effect was likely due to complement protein(s) [33]. However, because the extent of 

IgM depletion appeared incomplete, the involvement of residual IgM could not be discounted. 

Although Laverman et al. did not identify the specific immune factors responsible, they observed 

that the ABC phenomenon occurs in two phases: the induction phase, when the immune system 

is primed by the initial injection, and the effectuation phase, when the pharmacokinetics and 

biodistribution of the PEGylated therapeutics are affected by the resulting immune response [60]. 

Since then, mounting and irrefutable evidence has established that anti-PEG Abs can be 

elicited by PEGylated systems and is likely responsible for the observed ABC that can greatly 

alter the pharmacokinetics and efficacy of PEGylated therapeutics in vivo. Ishida et al. first 

observed that the serum of pre-treated rats, as compared to naïve animals, demonstrated greater 

antibody adsorption onto PEGylated liposomes, suggesting that antibodies were the dominant 

serum factor responsible for the ABC effect [61, 62]. Soon afterwards, the same group reported 

that intravenous injection of PEGylated liposomes strongly induced the production of PEG-

specific antibodies (Fig. 2.2c) [63], and the presence of these antibodies was correlated with 

hepatic clearance [34]. Cheng et al. demonstrated that the injection of monoclonal anti-PEG IgM 
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into naïve mice resulted in the rapid clearance of PEGylated therapeutic proteins (e.g., 38-fold 

reduction in systemic concentration compared to uninjected control) [55, 64]. Numerous other 

groups have subsequently corroborated the relationship between anti-PEG Abs and the ABC 

phenomenon [65-70]. The observed anti-PEG Ab response is predominantly IgM [34, 69, 71, 

72], although the development of anti-PEG IgG has also been reported (Fig. 2.2c and d, Table 

2.1) [53, 65, 73].  

Anti-PEG Ab-mediated complement activation may also be involved in the MPS 

clearance of repeatedly dosed PEGylated therapeutics. Antibodies, particularly IgM, can 

efficiently activate the complement system, and opsonization by complement proteins such as 

C3b facilitates particle phagocytosis and clearance. Serum from rats generating an ABC response 

demonstrated complement activation upon incubation with PEGylated liposomes [74], and heat-

treatment (complement inactivation) of this serum abrogated the first-pass hepatic clearance of 

PEGylated liposomes [75]. A proteomics analysis indicated that, after the induction of anti-PEG 

Abs, PEGylated liposomes are predominantly bound by plasma IgM and complement proteins 

(i.e., C1, C3) in mice [76]. Additionally, complement proteins can disrupt liposomal membranes; 

indeed, the leakage of cargo epirubicin from PEG-liposomes was associated with complement 

activation [77] Altogether, these results suggest that complement can play an important role in 

the ABC of PEGylated liposomes, although the role of complement in the ABC of various non-

liposomal PEGylated systems (e.g., polymeric nanoparticles, proteins) remains to be further 

investigated. 

The development of anti-PEG Abs and its resulting effects on clearance has been 

reported not only in a variety of animal models, ranging from rodents, rabbits, and canines to 

non-human primates [33, 52, 70, 78], but also for different classes of PEGylated systems, 
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including polymeric nanoparticles, micelles, adenovirus, and proteins (Table 2.1) [54, 68, 79]. 

Across fifteen studies, the presence of anti-PEG Abs reduced the circulation half-lives of 

PEGylated agents by 2- to 10-fold on average and increased the hepatic and splenic 

accumulation by roughly 2- to 5-fold and 1- to 2-fold, respectively. These results clearly 

underscore the potency and impact of anti-PEG immunity, which represents a particularly 

important concern in light of increasing number of PEGylated therapeutic proteins and 

nanomedicines that are FDA-approved or currently in clinical development. Indeed, recent FDA 

guidelines recommend screening for anti-PEG Abs when evaluating the potential 

immunogenicity of therapeutic proteins [80]. 

 

 

 

 

 
Figure 2.2. Accelerated blood clearance and anti-PEG antibodies in animal models. a) Amount of 
99m

Tc-labeled PEGylated liposomes remaining in circulation after i.v. administration in rats quantified by 

scintigraphic image analysis. (●) indicates the first dose, and (○) indicates the second dose given 7 days 

later. b) Tissue biodistribution of 
99m

Tc-labeled PEGylated liposomes in rats for the initial injection 

(control) and for second doses given after 7, 14, 21, or 28 days. *p < 0.05, **p < 0.01. c) PEG-specific 

antibodies responses after an initial injection of PEGylated liposomes (0.001 μmol/kg) in rats, as 
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determined using ELISA. *p < 0.05, ***p < 0.005. d) PEG-specific antibodies responses after an initial 

injection of PEGylated liposomes (100 μg/animal) in mice, as determined using ELISA. Panels A and B 

were reprinted from Ref [33]; panel C was reprinted from Ref [63] with permission from Elsevier; and 

panel D was reprinted from Ref [65] with permission from Elsevier. 

 

2.2.3 Immunological mechanism(s) of anti-PEG Ab induction 

Given PEG’s well-documented anti-fouling properties, the induction of PEG-specific 

antibodies no doubt appears paradoxical, and the precise mechanism(s) underlying the formation 

of anti-PEG Abs has received much attention. To date, research efforts have primarily focused 

on elucidating the cellular processes involved in the generation of PEG-specific immunity in 

rodent models after repeated intravenous (i.v.) dosing of PEGylated liposomes. 

In both rats and mice, splenectomy prior to or immediately following the injection of an 

initial dose of PEGylated liposomes dramatically reduced the extent of anti-PEG IgM responses, 

whereas splenectomy performed 4 or more days after the initial injection did not eliminate the 

ABC of PEGylated systems, suggesting that splenic cells serve as the primary site of anti-PEG 

Ab induction [54, 61, 72, 81]. In addition, the ABC phenomenon appears to involve B cells 

functioning through T-cell independent (TI) mechanisms, as T cell-deficient nude mice, but not 

SCID mice (B and T cell-deficient), generated an ABC response to both empty and nucleic acid-

containing PEGylated liposomes [72, 81, 82]. In general, marginal zone B cells are involved in 

immune responses to TI antigens [83]. Consistent with a TI response to PEG, splenic marginal 

zone B cell depletion in rats eliminated the formation of PEG-specific IgM antibodies, and 

PEGylated liposomes are initially localized in the marginal zone upon repeat injection [84].  

Due to PEG’s structural similarity to other highly repetitive polymeric antigens such as 

microbial polysaccharides, the research groups of Kiwada and Ishida have explored the 

possibility of a type 2 T-cell independent (TI-2) mechanism (Fig. 2.3) [19, 83]. In this proposed 

mechanism, the initial dose of a PEGylated therapeutic first enters the spleen, where it comes in 
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contact with marginal zone B cells and crosslinks surface antibodies present on these cells, 

triggering the production of PEG-specific IgM antibodies. Then, the induced anti-PEG IgM 

binds to subsequent doses of PEGylated agents in the circulation and activates complement 

binding, ultimately resulting in hepatic clearance through Kupffer cell uptake [19]. 

While the majority of published findings on the induction of anti-PEG are consistent with 

this TI-2 mechanism, there are a small number of studies that present contrasting results. TI 

responses typically do not induce significant memory or antibody class switching unless there is 

strong co-stimulation by non-cognate immune cells and/or secreted factors such as cytokines 

(e.g., IL-1, IL-6, TNFα) [85-87]. While IgM is indeed the dominant anti-PEG Ab isotype 

observed, a few studies have reported anti-PEG IgG responses [53, 65, 73]. For example, Judge 

et al. observed a strong initial IgM response that was replaced by an elevated IgG response 

(peaks at day 7 and 20, respectively) after a single dose of PEGylated liposomes (Fig. 2.2d) [65].
 

Whether PEG-specific IgG was formed due to exceptional B cell stimulation that generated class 

switching or to the induction of anti-PEG Abs through non-TI-2 mechanisms remains unclear. 

The ABC phenomenon was also elicited after the s.c. injection of PEGylated solid nanoparticles, 

leading Zhao et al. to suggest that regional lymph nodes can also directly produce anti-PEG 

immune responses [88]. However, because a minor amount of the s.c. administered nanoparticles 

were distributed to the spleen, the involvement of splenic lymphocytes cannot be excluded. 

Additionally, macrophage depletion prior to an initial dose of PEGylated liposomes completely 

abrogated the ABC of subsequent doses of PEGylated liposomes in rats, suggesting the potential 

dependence of anti-PEG Ab induction on non-B cell populations as well [60]. 

Reflective of the immunological pathway(s) responsible for the formation of anti-PEG 

immunity, there are also substantial variations reported for the formation of long-term memory 
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responses. In many studies, the ABC effect is generated 3-7 days after the initial dose (Fig. 2.2a 

and b) and diminishes over the period of a couple weeks [67, 72]. Nevertheless, Semple et al. did 

report an anti-PEG IgM response that persisted for at least 50 days in dogs (1, 2, 3, or 7 d dosing 

intervals), highlighting the potential for long-term ABC responses in vivo and the need to further 

evaluate not only acute but also long-term anti-PEG Ab responses [81].  

  

 

 

  

Figure 2.3. Proposed type-2 T-cell independent (TI-2) response mechanism for the formation of 

anti-PEG Abs and the ABC effect. Splenic B cells are stimulated by an initial dose of PEGylated 

therapeutic and produce anti-PEG IgM. These antibodies then associate with subsequent doses of 

PEGylated systems and activate complement proteins, which then opsonize PEGylated system and lead to 

its eventual clearance through hepatic MPS cells. Reprinted from Ref [19] by permission from Macmillan 

Publishers Ltd.  

 

2.2.4 Properties of the anti-PEG Ab epitope 

How anti-PEG Abs specifically bind to PEG polymers remains a mystery, as is the 

antigenic determinant that leads to anti-PEG Ab responses. As noted above, TI-2 antigens are 

typically composed of identical, repeating epitopes that crosslink B cell receptors to generate 

significant and prolonged activation of B cells without co-stimulation by T cells [19, 83]. The 
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typical PEG chain lengths for modified nanoparticles and proteins are approximately 1-5 kDa 

and 5-40 kDa, respectively, which covers a range from several tens to hundreds of ethylene 

glycol subunits and could readily and extensively crosslink any receptors capable of binding 

PEG. Richter and Akerblom reported hapten inhibition of anti-PEG Ab precipitation with PEG 

of 300 MW, suggesting that the antigenic epitope of PEG may consist of a 6-7 subunit region 

[51]. This value has been commonly cited as the size of the anti-PEG Ab binding epitope. 

Nevertheless, a recent study observed that tri(ethylene glycol) (MW 150-160) was bound by anti-

PEG Abs in direct and competitive ELISAs (see section 2.5 for methods of anti-PEG Ab 

detection) [89]. We have likewise found that both anti-PEG IgM and IgG can bind to polymers 

composed of repeating methacrylate PEG300 subunits (Fig. 2.4). Together, these findings suggest 

that the anti-PEG Ab binding epitope could be smaller than the proposed 6-7 subunit length.  

Since free PEG is known to be non-immunogenic, the antigenic determinant for anti-PEG 

Abs has been suggested to occur at the linkage between PEG and other materials. Based on the 

observations that anti-PEG Abs induced by hydrophobic PEGylated micelles were able to bind to 

PEGylated liposomes, and vice versa, whereas hydrophilic PEGylated micelles avoided the 

induction of and opsonization by anti-PEG Abs, Shiraishi et al. proposed that the anti-PEG Ab 

epitope is the interphase between a hydrophobic core and conjugated PEG groups [69]. 

Nevertheless, because free PEG can inhibit anti-PEG Ab binding in competitive ELISAs and 

hemagglutination assays [51, 52], at least some of the observed anti-PEG Ab responses must be 

specific to PEG itself. Due to the disparity in the immune responses to free PEG versus 

PEGylated therapeutics, as well as the frequent immunogenicity of therapeutic agents that 

require PEGylation, PEG has been proposed to function as a hapten (i.e., a molecule that elicits 

immune responses only when conjugated to a carrier agent) [35, 37]. 
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Figure 2.4. Preliminary studies of mouse anti-PEG IgG and IgM binding to poly(methacrylate 

PEG300) [P(OEG300)]. a) Dot blot of mouse anti-PEG IgG binding to unmodified polystyrene beads 

(COOH) or polystyrene beads coated with PEG5k or P(OEG300). b) Binding of mouse anti-PEG IgM 

antibodies to magnetic polystyrene beads coated with PEG5k or P(OEG300) was determined using ELISA. 

 

2.2.5 Factors influencing the formation of anti-PEG immunity and ABC in animals 

The ABC phenomenon and immune responses to PEG are affected by a number of 

factors such as the dosing regimen [67], animal model [78], drug/cargo incorporation [90], 

nanocarrier/protein identity and composition [51, 59], and PEG structure [54, 91]. For example, 

the dosing interval that generates a maximal ABC response is dependent on the timing for anti-

PEG Ab formation, which typically peaks at 3-7 days post-injection (Fig. 2.2a and b).
 
Additional 

doses administered after less than 48 h or more than 4 weeks typically exhibit extended 

circulation times comparable to the initial dose [92, 93]. High doses of PEGylated therapeutics 

can also influence anti-PEG Ab formation, likely due to the induction of immune tolerance or B 

cell anergy [34, 62]. Encapsulated drug cargo can also play a key role in PEG-specific immune 

responses to PEGylated nanocarriers. For example, the incorporation of immunostimulatory 

substances such as CpG DNA enhances anti-PEG Ab responses [94], while the loading of 

cytotoxic chemotherapeutics can directly suppress anti-PEG Ab induction [60, 95, 96], likely 

through the direct killing or impaired proliferation of B cells. Additionally, the presence of 

endotoxins, which can elicit strong inflammatory responses, may have potentially affected the 
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immunogenicity of the administered PEGylated agents; however, only a small number of studies 

reported testing for endotoxin contaminants [56, 65, 81]. The composition and physicochemical 

properties (e.g., size [68, 97], lipid membrane rigidity [78], curvature, PEG density and terminal 

groups [52, 54, 66]) of PEGylated systems can also affect anti-PEG Ab induction and ABC 

responses. For an excellent review of these various factors, please refer to Ref [19]. 

 

2.3 Anti-PEG immunity in humans 

PEGylation has been critical to the success of numerous therapeutic agents currently on 

the market, including uricase, interferon-α, and liposomal doxorubicin, as well as many protein 

and nanomedicines currently drugs in clinical trials [30, 98, 99]. However, a growing body of 

evidence clearly suggests that the induction of anti-PEG Abs is possible in humans. In contrast to 

most animal studies, the anti-PEG Ab response in humans is more skewed towards IgG isotype 

antibodies (Table 2.2). Interestingly, we and others have found that a significant fraction of the 

normal population actually possesses pre-existing anti-PEG (i.e., the presence of PEG-specific 

antibodies in the absence of treatment with PEGylated therapeutics), which may become even 

more prevalent in the years ahead [100]. Both pre-existing and induced anti-PEG Abs present 

significant challenges to the clinical efficacy of PEGylated therapeutics [37, 100]. 
 

 

2.3.1 Pre-existing anti-PEG Abs in the general population 

In 1984, Richter and Akerblom first observed that 0.2% and 3.3% of normal subjects and  

untreated allergy patients, respectively, exhibited relatively high titers of mostly anti-PEG IgM 

(Table 2.2) [101]. Almost 20 years later, Armstrong et al. reported a much higher incidence rate 

of 27-28% among normal healthy subjects [100]. Interestingly, they observed predominantly 
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PEG-specific IgG, with 19%, 5%, and 3% of the total individuals possessing IgG only, IgM only, 

and both IgM and IgG antibodies, respectively. The reasons for the discrepancy in the observed 

anti-PEG Ab incidence rates are unclear. Both studies utilized passive hemagglutination of PEG-

modified RBCs to detect PEG-specific antibodies, so the differences are unlikely to be caused by 

the method of detection. In light of the decades-long gap between the reports, these variations 

could reflect a substantial increase in the prevalence of pre-existing anti-PEG Abs in the general 

population, but this hypothesis has not been carefully assessed. 

How pre-existing anti-PEG are generated in individuals who have never received any 

formal treatment with PEGylated therapeutics remains largely unknown. As a GRAS product, 

PEG is widely used in cosmetics, processed foods, pharmaceuticals, agriculture, and industrial 

manufacturing. PEG-containing surfactants, as well as PEG itself, are found in the vast majority 

of household and hygiene products (e.g., soap, shampoo, toothpaste, lotion, detergent). It is 

natural to assume that frequent exposure to PEG could lead to the inevitable formation of anti-

PEG Abs, but this constant exposure does not offer insight into the actual mechanism(s) 

underlying anti-PEG immunity. While we have no direct supportive evidence to date, we wish to 

offer the following speculation: the human body is frequently subjected to insults (e.g., 

abrasions, lacerations, skin tears) that may result in local inflammatory responses and 

recruitment of immune cells. Due to the ubiquitous presence of PEG in products used in daily 

life, as well as in many disinfecting agents (e.g., soaps and detergents used to clean wounds), 

PEG is likely present at or introduced to sites of inflammation. The presence of PEG in close 

proximity to highly active immune cells, particularly in an immunostimulatory environment 

containing microbes and/or bactericidal chemicals, may be sufficient to drive the induction of 
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anti-PEG Abs. Subsequent persistent exposure to PEG-containing products may further induce a 

robust memory immune response to the polymer. 

Beyond the initial reports by Richter and Akerblom and by Armstrong et al., the 

prevalence of pre-existing anti-PEG Abs has been further reported in both healthy donors and 

untreated controls of clinical trials (Table 2.2). Tillmann et al. observed an incidence rate of 7%-

8% in healthy individuals and in hepatitis and lupus patients, whereas 44% of hepatitis C patients 

were found to be positive for anti-PEG Abs prior to treatment with PEGylated interferon [102]. 

Treatment-naïve gout and hemophilia patients and patients with phenylketonuria demonstrated 

pre-existing anti-PEG Ab incidence rates of 19%, 6%, and 16%, respectively [103-105]. In 

addition, 38% of pediatric leukemia patients receiving unmodified asparaginase were also found 

to possess anti-PEG Abs [106]. Importantly, the relatively high incidence rate in this study was 

observed for patients with a mean age of 8.8 years, suggesting that anti-PEG Abs can be 

developed relatively early in life. 

 

2.3.2 Induction and effects of anti-PEG Abs in individuals treated with PEGylated therapeutics 

Studies of PEGylated therapeutics in humans began nearly three decades ago, but early 

results indicated that anti-PEG Ab responses were non-existent or clinically insignificant in 

humans. In a clinical trial of PEG-modified allergens, 50% of allergy patients had high anti-PEG 

Ab titers after one year of hyposensitization treatment, compared to 3.3% of untreated patients 

[101]. However, the occurrence of anti-PEG Abs did not appear to prime further immune 

responses, as the anti-PEG Ab incidence rate decreased to 28.5% in patients receiving two years 

of treatment. The potential effect of anti-PEG Abs on the efficacy of hyposensitization treatment 

or adverse effects was not examined. Ten of seventeen patients (59%) treated with PEG-
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modified bovine adenosine deaminase (PEG-ADA, Adagen) generated IgG anti-PEG-ADA 

antibodies, but competitive ELISAs using ADA and different PEGylated proteins indicated that 

these antibodies were formed against ADA rather than the PEG moiety [107]. In a study of 

hepatitis C (HCV) patients, the presence of pre-existing anti-PEG Abs in 44% of the patients did 

not appear to affect the efficacy of antiviral PEG-interferon therapy [102]. The potential reasons 

for the apparent lack of anti-PEG Ab effects, including immune impairment and hepatic damage 

caused by HCV, were not explored.  

Unlike most studies that report anti-PEG Ab responses in only a subset of patients, 100% 

of phenylketonuria patients developed PEG-specific Abs within 6 weeks of a s.c. injection of 

PEGylated phenylalanine ammonia lyase (PEG-PAL) [103]. Although the authors found that 

neither pre-existing nor induced anti-PEG Abs appeared to influence the efficacy of a single dose 

of PEG-PAL, peak therapeutic efficacy was observed on day 6, whereas testing for anti-PEG 

Abs was performed on days 0, 14, 28, and 42. Thus, the potential effects of the observed anti-

PEG responses on the activity of multiply-dosed PEG-PAL is unclear. Importantly, two patients 

in the study later experienced severe adverse reactions to i.m. injections of medroxyprogesterone 

acetate, which contains both free PEG and polysorbate as excipients. While there is insufficient 

data to prove causation or statistical significance, this observation indicates that future studies 

should also investigate whether anti-PEG responses may impact not only the repeated 

administration of PEGylated therapeutics but also the use of pharmaceutical formulations 

comprising free PEG or PEG-containing chemicals excipients.   

The correlation between the presence of anti-PEG Abs and reduced therapeutic efficacy 

of PEGylated drugs has been observed for only two PEG-modified proteins to date: PEG-

asparaginase (PEG-ASNase) and PEG-urate oxidase (PEG-uricase, pegloticase) (Table 2.2). In 
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pediatric acute lymphoblastic leukemia patients treated with PEG-ASNase, anti-PEG IgM 

antibodies were observed in 46% of the patients, and the presence of anti-PEG Abs was strongly 

correlated with the rapid clearance of PEG-ASNase and loss of protein activity (Fig. 2.5a) [106]. 

In contrast, anti-PEG Abs present in patients treated with unmodified ASNase exhibited no effect 

on therapeutic protein clearance or activity (Fig. 2.5b). Because serum samples were only 

collected after treatment, it is not clear whether the observed anti-PEG Abs were induced or pre-

existing. However, given that 38% of patients treated with control ASNase also exhibited anti-

PEG Abs, the authors suggested that the antibodies observed in the PEG-ASNase group were 

likely pre-existing. 

In the earliest clinical trial of PEG-uricase, 38% of refractory gout patients developed 

anti-PEG Abs, which was correlated with poor efficacy, after a single s.c. injection of the 

PEGylated drug [98]. This PEG-specific antibody response demonstrated apparent class 

switching, with IgM and IgG predominating at days 3-7 and 7-14, respectively, after injection. 

One patient was later re-challenged with PEG-uricase and demonstrated an anamnestic antibody 

response to the PEGylated protein [98]. In a separate study, anti-PEG Ab responses were 

generated in 35% of gout patients after a single i.v. infusion of PEG-uricase, and anti-PEG Ab 

formation also associated with rapid protein clearance [108]. Additionally, one patient with a 

pre-existing anti-PEG Ab response exhibited a correspondingly reduced half-life for PEG-

uricase.  

Repeated dosing of PEG-uricase generated two distinct patient populations: responders 

(sustained low plasma uric acid levels) and non-responders (early decrease in plasma uric acid 

levels followed by a rebound to baseline levels) (Fig. 2.5c) [22, 109]. The production of high 

titer anti-PEG-uricase antibodies, most of which appeared to be specific to PEG (Fig. 2.5d), was 
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correlated with the loss of PEG-uricase activity [22]. Similar results were obtained in a study by 

Hershfield et al., with 37% of treatment-naïve patients establishing an anti-PEG Ab response and 

non-responsive to PEG-uricase treatment by the end of the clinical trial; half of these anti-PEG 

Ab responses were pre-existing [104]. Three patients that received PEG-uricase during previous 

studies (1-3 years prior) were also non-responsive to the new round of treatment, exhibiting loss 

of PEG-uricase efficacy earlier than the affected treatment-naïve patients (2-7 days vs. ~2 

weeks). Interestingly, of the demographic characteristics (e.g., age, gender, BMI, renal function) 

examined during the repeated dosing studies, only age (>60-70 years) and organ recipient status, 

both of which involve some level of immunoinsufficiency, were found to be associated with 

reduced anti-PEG Ab formation [22, 104]. In addition to rapid PEG-uricase clearance, anti-PEG 

Ab-positive individuals also demonstrated an increased rate of infusion reactions [98, 104, 109], 

but the precise involvement of anti-PEG Abs in adverse reactions to PEG-uricase and other 

PEGylated therapeutics remains unclear [35].  

In recent clinical trials of pegnivacogin, a PEGylated RNA aptamer, the presence of pre-

existing anti-PEG Ab has alarmingly been associated with first-dose allergic reactions to the 

PEGylated drug. A phase IIb study of pegnivacogin was terminated after 3 patients (out of 640) 

developed serious allergic reactions, one of which was deemed life-threatening, within less than 

thirty minutes of a first dose of the drug [17]. Competitive ELISA analysis of the patient samples 

indicated that all three patients possessed high levels of pre-existing antibodies against PEG 

(>97
th

 percentile for all analyzed samples), but no antibodies against the aptamer itself. In a 

subsequent phase III trial, pre-existing anti-PEG Ab were also linked with severe allergic 

reactions to pegnivacogin [110]. Eighty-three percent of patients with severe allergic reactions to 

treatment possessed anti-PEG Ab at baseline, compared to 15% of patients who did not 
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experience any adverse reactions. For patients with anti-PEG IgG levels one- or three-fold above 

the assay cutoff point, the likelihood of experiencing a severe allergic reaction was 5% and 16%, 

respectively. The authors suggested that the presence of both high anti-PEG Ab levels and large 

dose of PEGylated drug (~0.8 PEG mg/kg, i.v. bolus) was a key factor in the observed 

anaphylactic responses, although other unidentified contributing factors are also likely involved 

[17, 110]. 

 

 

 
Figure 2.5. Anti-PEG antibodies in human patients. Anti-PEG IgM vs. asparaginase (ASNase) activity 

for patients treated with a) PEG-ASNase and b) ASNase. Flow cytometry was used to detect anti-PEG 

Abs bound to PEG hydrogel (TentaGel-OH) particles. c) Mean serum uric acid (sUA) levels in patients 

receiving biweekly i.v. infusions of PEG-uricase. Normal sUA levels are typically defined as ≤6 mg/dL 

(indicated by gray dashed line). d) Mean anti-PEG Ab titers in patients receiving biweekly i.v. infusions 

of PEG-uricase. Panels A and B were reprinted from Ref [106], and panels C and D were modified from 

Ref [22].  

 

2.3.3 Clinical implications of and strategies to overcome anti-PEG Abs 

The first-dose allergic reactions to pegnivacogin and the reduced efficacy of PEG-

ASNase and PEG-uricase in the presence of anti-PEG Abs highlights the potential impact of 



29 

 

PEG-specific immune responses on the growing clinical use of PEGylated therapeutics and 

underscores the need to incorporate testing for anti-PEG Abs in clinical trials of PEG-containing 

drugs. Standard laboratory tests (see section 2.5) that can quantitatively and accurately measure 

anti-PEG Ab levels and determine a patient’s anti-PEG Ab status are crucial to this effort, as 

suggested by others [21, 35, 111]. Importantly, clinical trial designs must screen for pre-existing 

anti-PEG immunity, as well as monitor treatment history, since previous exposure to PEGylated 

therapeutics could prime future responses to subsequent therapy with PEGylated drugs. 

Furthermore, the true extent of anti-PEG Abs in the human population and the factors that lead to 

anti-PEG Ab immunity must be further investigated. 

In addition to an improved understanding of the prevalence and development of anti-PEG 

immunity in humans, strategies to avert or overcome anti-PEG Ab responses must be developed. 

Unfortunately, the effect of important dosing regimen factors identified in animal studies 

remains to be fully evaluated in human subjects. In the clinical trials of PEG-uricase, neither the 

dose (0.5-24 mg/patient), dosing interval (2-4 weeks), nor route of administration (s.c. or i.v.) 

appeared to affect anti-PEG Ab induction or its effects [22, 98, 104], but these results must be 

corroborated for other PEGylated drugs. The use of cleavable or sheddable PEG has been 

demonstrated to decrease or eliminate anti-PEG Ab and ABC responses in vivo [65, 81, 112], but 

the rapid loss of the stealth PEG coating also significantly reduces the circulation half-life and 

may render the modified therapeutics ineffective. As was observed for a small number of organ 

transplant recipients, co-treatment with immunosuppressive agents may be able to effectively 

reduce anti-PEG Ab induction [104], but these drugs also can generate undesirable side effects 

and health risks that may contraindicate their use in patients with existing illnesses [113]. Once 

the precise mechanisms of human anti-PEG Ab induction are better understood, the use of drugs 
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that specifically target immunological pathways related anti-PEG immunity may allow the 

specific suppression of anti-PEG Ab generation while avoiding unwanted side effects.  

The use of alternative stealth polymers such as chitosan, poly(carboxybetaine), poly(2-

oxazaline), XTEN peptide, and poly(glycerol) has also received growing attention [114-117]. 

These polymers are less ubiquitous in everyday household items and thus may not encounter the 

problem of pre-existing antibodies. Nevertheless, antibodies against various natural and synthetic 

repeating polymers have been reported [118, 119], suggesting that stealth polymers other than 

PEG may also prove immunogenic upon repeated administration in humans. In individuals with 

induced or pre-existing anti-PEG Abs, the elimination of circulating anti-PEG Abs could be 

achieved through selective plasmapheresis, although the use of such a complicated procedure 

clearly poses additional cost burdens and may not be warranted if alternative strategies to remove 

anti-PEG Abs are available. Additionally, it may be possible to overwhelm PEG-specific 

immune responses by simply administering a much greater dose of the PEGylated therapeutic 

[60, 81, 120]. Nevertheless, dosage increases will obviously be limited by the maximum 

tolerated dose and potential toxicity to various clearance organs. A conceptually similar but more 

desirable approach would be to first saturate pre-existing anti-PEG Abs with free, low molecular 

weight PEG. Indeed, Moghimi reported that the administration of free PEG and PEG-containing 

molecules 1-3 h prior to a second dose of poloxamine-modified polystyrene beads reduced the 

ABC of these particles in rats [121]. Further animal and human studies are needed to confirm the 

safety and efficacy of such a strategy. 

 

2.4 Ongoing questions regarding anti-PEG antibodies 

There are many questions related the phenomenon of anti-PEG Abs, particularly as it applies  
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to human patients, that are of great interest to the scientific and clinical communities. While a 

full discussion of these questions is beyond the scope of this review, we wish to highlight a few 

of them below: 

 How are anti-PEG Abs able to specifically bind PEG polymers? Due to PEG’s flexible, 

neutral, and hydrophilic character, the precise antibody-polymer interactions that allow 

anti-PEG Abs to specifically bind to such an amorphous target in the absence of 

hydrophobic and electrostatic interactions are of interest.  

 What is the immunological pathway of anti-PEG Ab formation in humans? The features 

of human anti-PEG Ab responses (i.e., pre-existing anti-PEG Abs, high prevalence of 

IgG, and memory responses to PEGylated products) suggests that the mechanisms 

underlying PEG-specific immunity may differ greatly between humans and animal 

models currently used to study anti-PEG immunity. Due to the difficulty of performing 

mechanistic studies in humans, the use of animal models that more accurately 

recapitulate human anti-PEG Ab responses are necessary to improve our understanding 

of anti-PEG immunity, including that elicited by long-term exposure to PEG and PEG-

containing products. 

 What factors predispose individuals towards anti-PEG Ab formation and are certain 

portions of the human population more, or less, inclined towards anti-PEG immunity? 

The majority (≥50%) of patients treated with PEGylated therapeutics do not appear to 

develop anti-PEG Abs, and the reasons underlying the incongruity of anti-PEG immune 

responses remain largely unknown. Increased age and immunosuppressive treatments 

were found to be associated with reduced anti-PEG Ab induction in response to PEG-

uricase [22, 104]. Further analysis of patients receiving PEGylated therapeutics may 
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identify other factors that affect PEG-specific immunity, as well as reveal additional 

strategies to manage anti-PEG Ab responses. 

 What is the current and likely future prevalence of pre-existing anti-PEG Abs? The 

reported prevalence of anti-PEG Abs varies significantly, with values ranging from as 

low as 5% to over 40%. Thus, a precise estimate of the level of anti-PEG Abs in both the 

general and special populations is sorely needed. Additionally, given the disparity in the 

incidence rate between early and more recent studies, the potential for further increases in 

the prevalence of pre-existing anti-PEG Abs must be explored. 

 How can anti-PEG immunity be efficiently and effectively managed in a clinical setting? 

Strategies to overcome pre-existing and/or induced anti-PEG Abs, including the 

administration of an excess dose of PEGylated therapeutic or prior injection of free PEG 

polymer, should be further investigated. 

 

2.5 Detection of anti-PEG Abs by validated ELISA methods 

Anti-PEG Abs have been detected in animal models and humans using a variety of 

methods, including passive hemagglutination, immunodiffusion, flow cytometry, Western 

blotting, and enzyme-linked immunosorbent assays (ELISAs) [51, 65, 73, 106]. Of these 

methods, ELISAs can simultaneously provide high sensitivity, rapid screening of multiple 

samples, and antibody isotype/subclass detection. As a result, most recent studies have used 

ELISAs almost exclusively to analyze anti-PEG Ab responses. However, for many reports of 

anti-PEG Abs, particularly those using animal models, antibody specificity to the PEG moiety 

was not always thoroughly confirmed. Indeed, most in vivo studies of treated animals only 

performed direct ELISAs using plates coated with the same PEGylated material (e.g., PEG-lipid) 
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that was injected; thus the possibility that induced antibodies were actually bound to the carrier 

rather than PEG itself cannot be fully discounted. As noted by others, there is a critical need for 

more rigorous, validated anti-PEG Ab detection methods [35, 100]. In our opinion, both direct 

and competitive ELISAs should be used in combination to confirm the PEG-specificity of anti-

PEG Abs with the application of proper controls and conditions (see Fig. 2.6), as was carried out 

in some recent human trials [22, 98, 104]. Standard curves can be generated using commercially 

available anti-PEG Abs (e.g., mouse, rat, rabbit, chicken, goat, and monkey host Abs) to quantify 

induced or pre-existing anti-PEG Abs. Additionally, the validation of ELISA protocols (e.g., 

determination of precision, sensitivity, reagent interference) must be performed and reported [22, 

104]. Importantly, the use of Tween and other PEG-containing detergents must be avoided, as 

they can significantly reduce the sensitivity of anti-PEG Ab detection assays [52]. The 

development of standardized laboratory tests that can quantitatively and accurately measure anti-

PEG Ab levels is crucial to furthering our understanding of anti-PEG immunity.  

 

 
  

Figure 2.6. ELISA methods for detection of anti-PEG antibodies. a) Direct and b) competitive 

enzyme-linked immunosorbent assays (ELISAs) should be used in combination to determine the PEG-

specificity of Ab responses induced after treatment with a PEGylated agent (PEG-Ag1), as well as pre-

existing anti-PEG Abs. In direct ELISAs, PEG specificity can be confirmed by the cross-reactivity of 

anti-PEG Abs to plates coated with pure PEG polymers (see a4) or other PEGylated materials (see a3). In 

competitive ELISAs, PEG specificity can be confirmed via the inhibition of anti-PEG Ab binding by 

increasing concentrations of free PEG (see b4) or other PEGylated materials (see b3). Additionally, anti-

PEG Abs should not directly bind to non-PEGylated treatment agents (see a1) nor be competitively 

inhibited in their presence (see b1). 
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2.6 Conclusions 

Because of its ability to significantly prolong the circulation of nanoparticles and 

proteins, as well as its presumed lack of immunogenicity, PEG has been widely used to modify 

various therapeutic agents. However, a growing body of evidence indicates that potent and 

specific antibody responses can be generated against the PEG polymer, and anti-PEG Ab 

induction can lead to substantial reductions in the circulation half-life and therapeutic efficacy of 

PEGylated drugs in both animal models and humans. In light of the relatively high prevalence of 

pre-existing and induced anti-PEG Ab responses observed in clinical studies, PEG-specific 

immunity will likely pose a major challenge to the increasing number of PEGylated therapeutics 

used in the clinic. An improved understanding of the precise means by which anti-PEG Abs 

develop and are able to bind to the polymer are needed, as are strategies to overcome the 

challenge of PEG-specific immunity. 

  



 

Table 2.1. Examples of anti-PEG Ab and/or accelerated blood clearance responses to PEGylated systems. 

Type of PEGylated 
system 

Animal model Dose*
,† Dosing 

interval* 
Parameters of initial or 

control dose 
Parameters of 

subsequent dose(s) 
Fold change in 

parameters
‡ 

Anti-PEG Ab 

response
# 

Ref 

PEGylated liposome Balb/c mice 0.01-1 μmol PL/kg 5-7 d N.D. N.D. - IgM + (no to 
weak) IgG 

[72] 

         

PEGylated liposome Std:ddY mice 25 μmol PL/kg 10 d t1/2,β 12.9 h 
Cl 0.07 mL/h 
AUC0-24h 
486%dose∙h/mL 

t1/2,β 6.3 h 
Cl 0.2 mL/h 
AUC0-24h 
221%dose∙h/mL 

0.5 (t1/2,β) 
2.9 (Cl) 
0.5 (AUC0-24h) 

N.D. [57] 

         

PEGylated liposome KM mice 0.1 μmol PL/kg (initial); 5 
μmol PL/kg (subsequent) 

6 d 44%IDblood,4h 
13%IDliver,4h 

12%IDspleen,4h 

14%IDblood,4h 
28%IDliver,4h 

18%IDspleen,4h 

0.3 (%IDblood,4h) 
2.2 (%IDliver,4h)  
1.5 (%IDspleen,4h) 

0.2 (t1/2), 0.2 (AUC)
º
 

IgM
§
 [78] 

         

PEGylated liposome Wistar rats 0.001 μmol PL/kg - N.D - - IgM + (weak) 
IgG 

[63] 

         

PEGylated liposome Wistar rats 5 μmol PL/kg 7 d t1/2,α 2.4 h 
52.5%IDblood,4h 
8.1%IDliver,4h 

2.2%IDspleen,4h 

t1/2,α 0.1 h 
0.6%IDblood,4h 
46.4%IDliver,4h 

6.3%IDspleen,4h 

0.04 (t1/2,α) 
0.01 (%IDblood,4h) 
5.7 (%IDliver,4h) 
2.9 (%IDspleen,4h) 

N.D. [33] 

         

PEGylated liposome Wistar rats 0.001 μmol PL/kg (initial); 
5 μmol PL/kg (subsequent) 

4-6 d t1/2 14.8 h 
Clh <1 mL/min 
8%IDliver,24h 
8%IDspleen,24h 

t1/2 0.3-1.8 h 
Clh 25-55 mL/min 
67-72%IDliver,24h 
8-12%IDspleen,24h 

0.02-0.12 (t1/2) 
>25-55 (Clh) 
8.4-9.0 (%IDliver,24h) 
1.0-1.5 (%IDspleen,24h) 

IgM
 

[71] 

         

PEGylated liposome Wistar rats 0.001 μmol PL/kg (initial); 
5 μmol PL/kg (subsequent) 

5 d 51%IDblood,24h 
6%IDliver,24h 

<2%IDblood,24h 
68%IDliver,24h 

<0.02 (%IDblood,24h) 
11 (%IDliver,24h) 

IgM + (weak) 
IgG 

[61] 

         

PEGylated liposome Wistar rats 5 μmol PL/kg 7 d 76.4%IDblood,4h 
15%IDliver,4h 

0.6%IDblood,4h 
68%IDliver,4h 

0.01 (%IDblood,4h) 
4.5 (%IDliver,4h) 

N.D. [60] 

         

PEGylated liposome Sprague-
Dawley rats 

7 μmol PL/kg 7 d t1/2 16.7 h 
Cl 1.7 mL/h 
AUC 856 μg∙h/mL 

t1/2 0.2 h 
Cl 74.3 mL/h 
AUC 17 μg∙h/mL 

0.01 (t1/2) 
43.7 (Cl) 
0.02 (AUC) 

IgM
§ [68] 

         

PEGylated liposome Dunkin-Hartley 
guinea pigs 

0.1 μmol PL/kg (initial); 5 
μmol PL/kg (subsequent) 

6 d 34%IDblood,4h 
12%IDliver,4h 

<2%IDspleen,4h 

12%IDblood,4h 
37%IDliver,4h 

<2%IDspleen,4h 

0.4 (%IDblood,4h) 
3.1 (%IDliver,4h)  
~1 (%IDspleen,4h) 

0.6 (t1/2), 0.6 (AUC)
º
 

IgM
§ [78] 

         

PEGylated liposome Rhesus monkey 5 μmol PL/kg 7 d t1/2 87.5 h 
17.6%IDliver,4h 

t1/2 14.2 h 
41.2%IDliver,4h 

0.2 (t1/2) 
2.3 (%IDliver,4h) 

N.D. [33] 

         

1
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Type of PEGylated 
system 

Animal model Dose*
,† Dosing 

interval* 
Parameters of initial or 

control dose 
Parameters of 

subsequent dose(s) 
Fold change in 

parameters
‡ 

Anti-PEG Ab 

response
# 

Ref 

PEGylated liposome Rabbits 9 mg PL/animal 7 d N.D. N.D - IgG
¶,∆

 [73] 
         

PEGylated liposome Japanese white 
rabbits 

0.1 μmol PL/kg (initial); 5 
μmol PL/kg (subsequent) 

6 d 47%IDblood,4h 
15%IDliver 

4%IDspleen 

13%IDblood,4h 
35%IDliver 

6%IDspleen 

0.3 (%IDblood,4h) 
2.3 (%IDliver,4h)  
1.5 (%IDspleen,4h) 

0.5 (t1/2), 0.4 (AUC)
º
 

IgM
§
 [78] 

         

PEGylated pDNA 
liposome 

ICR mice 100 μg pDNA/animal 7 d 80%IDblood,1h 
8%IDliver,1h 
2%IDspleen,1h 

23%IDblood,1h 

41%IDliver,1h 
4%IDspleen,1h 

0.3 (%IDblood,1h) 
5.1 (%IDliver,1h) 
2.0 (%IDspleen,1h) 

IgG + IgM
∆
 [65] 

         

PEGylated ODN  
vesicles  

ICR mice 50 mg PL/kg, 10 mg 
ODN/kg 

7 d 70%IDblood,1h 6%IDblood,1h 0.1 (%IDblood,1h) 
 

IgM
§ [81] 

         

PEGylated Gd 
liposome 

C57BL/6 and 
Balb/c mice 

5 μmol PL/kg 7 d 11%IDblood,6h 

9%IDliver,6h 
10%IDspleen,6h 

<0.5%IDblood,6h 

31%IDliver,6h 
1%IDspleen,6h 

<0.05(%IDblood,6h) 
3.4 (%IDliver,6h)  
0.1 (%IDspleen,6h) 

IgM
∆
 [69] 

         

PEGylated Hb 
vesicles 

ddY mice 0.1 mg Hb/kg 7 d t1/2 2.7 h 
Cl 3.7 mL/h 
AUC 27.1%dose∙h/mL 

t1/2 1.3 h 
Cl 22.3 mL/h 
AUC 4.5%dose∙h/mL 

0.5 (t1/2 ) 
6.0 (Cl) 
0.2 (AUC) 

IgM [122] 

         

PEGylated EPI 
liposome 

Wistar rats 1 μmol PL/kg, 0.08 EPI/kg 
(initial); 5 μmol PL/kg, 0.4 
mg EPI/kg (subsequent) 

7 d 52%IDblood,4h 

16%IDliver,4h 
8%IDspleen,4h 

8%IDblood,4h 

36%IDliver,4h 
15%IDspleen,4h 

0.2 (%IDblood,4h) 
2.3 (%IDliver,4h)  
1.9 (%IDspleen,4h) 

IgM
§
 [77] 

         

PEGylated DXR 
liposome 

Beagle dogs 0.67 μmol PL/kg and 2 mg 
DXR/m

2
 

3 wk t1/2 24.1 h 
Cl 1.5 mL/h/kg 
AUC0-∞ 76.0 μg∙h/mL 

t1/2 1.5 h 
Cl 127.8 mL/h/kg 
AUC0-∞ 0.6 μg∙h/mL 

0.06 (t1/2) 
85.2 (Cl) 
0.01 (AUC0-∞) 

IgM
§
 [120] 

         

PEGylated TOPO 
liposome 

Beagle dogs 0.5 mg TOPO/kg 7 d Cmax 7.9 mg/L 
Cl 0.4 mL/min/kg 
AUC0-t 1.4 mg∙min/mL 

Cmax 1.7 mg/L 
Cl 6.7 mL/min/kg 
AUC0-t 0.1 mg∙min/mL 

0.2 (Cmax) 
16.8 (Cl) 
0.07 (AUC0-t) 

IgM
§
 [66] 

         

PEGylated solid 
lipid nanoparticle 

Wistar rats 5 μmol PL/kg (initial s.c., 
subsequent i.v.) 

7 d AUC0-4h 27.3 mg∙h/L 
8 μg/g (liver, 4 h) 
9 μg/g (spleen, 4 h) 

AUC0-4h 6.6 mg∙h/L 
25 μg/g (liver, 4 h) 
26 μg/g (spleen, 4 h) 

0.2 (AUC0-4h) 
3.1 (liver, 4 h) 
2.9 (spleen, 4 h) 

IgM
§ [88] 

         

PEGylated solid 
lipid nanoparticle 

Kunming mice  10 μmol PL/kg 7 d 71.3%IDblood,0.5h 

5.4%IDliver,0.5h 
4%IDspleen,0.5h 

42.6%IDblood,0.5h 

23.3%IDliver,0.5h 
9%IDspleen,0.5h 

0.6 (%IDblood,0.5h) 
4.3 (%IDliver,0.5h) 
2.3 (%IDspleen,0.5h) 

N.D. [70] 

         

PEGylated solid 
lipid nanoparticle 

Beagle dogs  2 μmol PL/kg 7 d t1/2,β 3.4 h 
Cl 0.2 mL/min/kg 
AUC0-24h 90.6 mg∙h/L 

t1/2,β 1.6 h 
Cl 0.4 mL/min/kg 
AUC0-24h 34.0 mg∙h/L 

0.5 (t1/2,β) 
2.0 (Cl) 
0.4 (AUC0-24h) 

IgM
§
 [70] 
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Type of PEGylated 
system 

Animal model Dose*
,† Dosing 

interval* 
Parameters of initial or 

control dose 
Parameters of 

subsequent dose(s) 
Fold change in 

parameters
‡ 

Anti-PEG Ab 

response
# 

Ref 

PEGylated emulsion Wistar rats 5 μmol PL/kg 7 d AUC0-0.5h 30.8 mg∙h/L 
50%IDblood,1h 

11 μg/g (liver, 12 h) 
14 μg/g (spleen, 12 h) 

AUC0-0.5h 10.8 mg∙h/L 
7%IDblood,1h 

22 μg/g (liver, 12 h) 
23 μg/g (spleen, 12 h) 

0.4 (AUC0-0.5h) 
0.1 (%IDblood,1h) 
2.0 (liver, 12 h) 
1.6 (spleen, 12 h) 

IgM
§ [91] 

         

PEGylated micelle Sprague-
Dawley rats 

7 μmol PL/kg 7 d t1/2 8.8 h 
Cl 3.3 mL/h 
AUC 442 μg∙h/mL 

t1/2 9.6 h 
Cl 3.5 mL/h 
AUC 408 μg∙h/mL 

1.1 (t1/2 )
◊
 

0.9 (Cl)
◊
 

1.1 (AUC)
◊ 

IgM
§ [68] 

         

PEG-PBLA micelles C57BL/6 and 
Balb/c mice 

3 mg/kg 7 d 65%IDblood,6h 50%IDblood,6h 0.8 (%IDblood,6h)
◊
 IgM

∆ [69] 

         

PEG-PLGA ETO 
nanoparticles 

Wistar rats 0.01-1 mg polymer/kg 
(initial); 20 mg polymer/kg, 
8 mg/kg ETO (subsequent) 

7 d t1/2 3.5 h 
Cl 0.6 mL/min 
AUC 3.7 mg∙min/mL 

t1/2 1.0-1.2 h 
Cl 3.2-3.3 mL/min 
AUC 0.6 mg∙min/mL 

0.3 (t1/2) 
5.3-5.5 (Cl) 
0.2 (AUC) 

IgM
§ [67] 

         

PEG-PLA PGE1 
nanoparticles 

Wistar rats 133 μg PGE1/kg 7 d AUC0-24h 6.4 μg∙min/mL 
50%IDblood,3h 

AUC0-24h 1.1 μg∙min/mL 
3%IDblood,3h 

0.2 (AUC0-24h) 
0.06 (%IDblood,3h) 

IgM
§,∆ [79] 

         

Poloxamine-coated 
polystyrene 
nanoparticles 

Wistar rats 3.5 mg polystyrene/kg, 5-7 
mg poloxamine/kg 

4 d 66.3%IDblood,3h 

9.4%IDliver,3h 

1.1%IDspleen,3h 

11.5%IDblood,3h 

50.1%IDliver,3h 

6.1%IDspleen,3h 

0.2 (%IDblood,3h) 
5.3 (%IDliver,3h) 

5.5 (%IDspleen,3h) 

N.D. [56] 

         

PEG-adenovirus Wistar rats 10
11

 particles/animal - N.D. - - IgM
§,∆

 [54] 
         

PEG-BSA Wistar rats 1 μg/animal - N.D. - - IgM
§,∆

 [54] 
         

PEG-uricase Sprague-
Dawley rats 

1 mg/kg 7 d 20-26 h (t1/2,β) N.D. - IgM
∆
 [123] 

         

PEG-uricase, PEG-
IFNα, PEG-HSA 

New Zealand 
white rabbits 

N.D.
 

7 d N.D. N.D. - Ig
ф,∆ [52] 

         

PEG-OVA, PEG-SOD, 
PEG-Rag 

New Zealand 
white rabbits 

100 μg/animal (i.m.) with 
Freund’s adjuvant

 
4 wk N.D. N.D. - Ig

ф,₤,∆ [51] 

 

*
 
Treatment conditions that generated a maximal ABC and/or anti-PEG Ab response; 

† 
i.v. administration, unless otherwise indicated;

 ‡ 
fold change calculated as 

(subsequent dose)/(initial dose);
 # 

anti-PEG Ab detection was performed using ELISA, unless otherwise indicated; 
º 
data not available for individual injections; 

§ 

anti-PEG IgG was not evaluated; 
¶ 
anti-PEG IgG detection was performed using Western blotting and IgM was not evaluated; 

∆
 antibody specificity to PEG 

confirmed through cross-reactivity and/or competition with other PEGylated agents or free PEG; 
◊
 no ABC effect was observed; 

₤
 anti-PEG Abs were detected 

using passive hemagglutination and radial immunodiffusion; 
ф
 antibody isotype was not evaluated or could not be determined. 

N.D., not determined or not stated; PL, phospholipid; pDNA, plasmid DNA; ODN, oligonucleotide; Hb, hemoglobin; EPI, epirubicin; DXR, doxorubicin; TOPO, 

topotecan; ETO, etoposide, PGE1, prostaglandin E1; BSA, bovine serum albumin; IFN, interferon; HSA, human serum albumin; OVA, ovalbumin; SOD, 

superoxide dismutase; Rag, ragweed pollen extract.  
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Table 2.2. Human studies and clinical trials demonstrating anti-PEG Ab responses. 

PEGylated 
therapeutic 

Dosing regimen Anti-PEG Ab 

isotype* 
Pre-existing anti-PEG Ab 
incidence rate 

Induced/post-treatment 
anti-PEG Ab incidence 
rate 

Effects of anti-PEG Abs Method of anti-
PEG Ab 
detection 

Ref 

PEGylated 
bee venom or 
ragweed 
extract 

47-4,630 μg 
(median 
cumulative dose), 
6-40 total weekly 
or biweekly 
injections 

IgM
† Healthy donors: 0.2% (1/453) 

high titer (≥1:32), 4.9% 
(22/453) any titer 
Untreated allergy patients: 
3.3% (3/92) high titer (≥1:32), 
20.6% (19/92) any titer 

1 treatment course: 50% 
(29/58) high titer (≥1:32), 
78% (45/58) any titer 
2 treatment courses: 29% 
(8/28) high titer (≥1:32), 
86% (24/28) any titer 

N.D. Agglutination [101] 

        

PEG-IFN-2α 

(Pegasys
®
) or 

PEG-IFN-2β 

(PegIntron
®
) 

N.D. N.D. Healthy controls: 7% (2/29) 
NASH patients: 7% (2/30) 
SLE patients: 8% (3/40) 
HCV patients: 44% (30/68) 

No observed increase in 
anti-PEG 

No observed effects on HCV 
antiviral treatment 

ELISA [102] 

       

PEG-
asparaginase 

(Oncaspar
®
)  

1,000 U/m
2
 i.v. 

infusion  
IgG + IgM 
(69%) 
IgM (31%) 

Unmodified asparaginase group: 38% (6/16) 

PEG-asparaginase group: 46% (13/28)
# 

Strongly correlated with 
rapid PEG-ASNase clearance 
and loss of activity 

Agglutination, 

flow cytometry
∆
 

[106] 

        

PEG-PAL 0.01-0.10 mg/kg 
single s.c. dose 

IgG + IgM 
(72%) 
IgG (18%) 

Treatment-naïve patients: 16% 
(4/25) 

100% (21/21) No observed effect on drug 
efficacy; associated with 
adverse reactions to 
subsequent administration 
of other PEGylated 
therapeutics 

N.D. [103] 

        

PEG-uricase 

(Krystexxa
®
/ 

Puricase) 

4-24 mg single s.c. 
dose 

IgG + IgM Treatment-naïve patients: 0% 
(0/13) 

38% (5/13) Associated with rapid PEG-
uricase clearance and loss of 
activity, as well as late 
injection site reactions 

ELISA
∆
 [98] 

        

PEG-uricase 

(Krystexxa
®
/ 

Puricase) 

0.5-12 mg single 
i.v. infusion 

IgG
§
 Treatment-naïve patients: 4% 

(1/24) 
35% (8/23) Associated with rapid PEG-

uricase clearance and loss of 
activity 

ELISA
∆
 [108] 

        

PEG-uricase 

(Krystexxa
®
/ 

Puricase) 

8 mg biweekly or 
monthly i.v. 
infusions over 6 
months 

IgG + IgM
¶ N.D. 33% (69/212) Correlated with rapid PEG-

uricase clearance and loss of 
activity, as well as increased 

risk of infusion reactions
¶
 

ELISA
∆
 [22] 
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PEGylated 
therapeutic 

Dosing regimen Anti-PEG Ab 

isotype* 
Pre-existing anti-PEG Ab 
incidence rate 

Induced/post-treatment 
anti-PEG Ab incidence 
rate 

Effects of anti-PEG Abs Method of anti-
PEG Ab 
detection 

Ref 

PEG-uricase 

(Krystexxa
®
/ 

Puricase) 

8 mg i.v. infusion 
at 3-week 
intervals, 5 doses 

IgG + IgM
ф

 Treatment-naïve patients: 19% 
(5/27) 
Previously treated patients: 
100% (3/3) 

23% (5/22) Associated with rapid PEG-
uricase clearance and loss of 
efficacy, as well as a 2-fold 
increase in the risk of 
infusion reactions 

ELISA
∆
 [104] 

        

Peginterferon 
beta-1a 

125 µg s.c. at 2- 
or 4-week 
intervals for 1 or 2 
years 

IgG and/or 
IgM

£
 

Treatment-naïve patients: 6% 
(82/1468) 

1 year: 7% (97/1397) 
2 years: 7% (95/1363) 

No observed effect on drug 
efficacy or incidence of 
adverse effects 

ELISA
∆
 [124] 

        

Pegnivacogin 1 mg/kg i.v. bolus IgG
§
 Treatment-naïve patients:  

estimated 36% 
N.D. Associated with serious 

allergic reactions in 3 out of 
640 patients 

ELISA
∆
 [17] 

        

Pegnivacogin 1 mg/kg i.v. bolus IgG
§
 Treatment-naïve patients:  

15% (13/87) control-treated or 
non-allergic patients, 71% 
(17/24) allergic patients, 83% 
(15/18) severely allergic 
patients, 94% (15/16) patients 
suffering allergic reactions 
within 1 h 

N.D. Association between anti-
PEG IgG levels and the 
severity of allergic reactions 
to pegnivacogin 

ELISA
∆
 [110] 

        

- - IgG (69%) 
IgM (18%) 
IgG + IgM 
(12%) 

Healthy donors: 27-28% 
(94/350-97/350) 

- - Agglutination, 

flow cytometry
∆
 

[100] 

        

- - IgG (43%) 
IgM (42%) 
IgG + IgM 
(15%) 

Healthy donors: 23% 
(307/1310) 
Hemophilia patients: 6% 
(7/110)

§
 

- - ELISA
∆
 [124] 

 

*
 
Indicated as percentage of total anti-PEG-positive individuals; 

†
as determined by mercaptoethanol denaturation; 

‡
 serum samples were typically collected after 

the initial dose; 
#
 pre-existing and induced anti-PEG Abs could not be differentiated because anti-PEG Ab levels were determined in post-analysis; 

∆
 antibody 

specificity to PEG confirmed through cross-reactivity and/or competition with other PEGylated agents or free PEG; 
§
 anti-PEG IgM was not evaluated or 

reported; 
¶ 
results for anti-PEG-uricase antibodies, no comparable results available for anti-PEG; 

ф
 anti-PEG IgM results available for only 2 patients; 

£
 

breakdown between anti-PEG IgG and IgM was not specified. 
 

N.D., not determined or not reported; IFN, interferon; NASH, non-alcoholic steatohepatitis; SLE, systemic lupus erythematous; HCV, hepatitis C virus; PAL, 

phenylalanine ammonia lyase.  
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CHAPTER 3: BACKGROUND ON HETEROGENEOUS TUMOR TREATMENT AND 

BISPECIFIC PROTEIN-MEDIATED PRETARGETED DRUG DELIVERY
2
 

3.1 Introduction 

Targeted drug delivery for cancer offers the potential to significantly improve the 

therapeutic index of anticancer agents by increasing drug concentration at tumor sites while 

reducing side effects and toxicity in non-targeted tissues. A long-standing approach in the field 

has been to exploit the leaky tumor vasculature in tumor tissues by encapsulating therapeutic 

cargo into nanoparticles that remain sufficiently stable when introduced to the systemic 

circulation in order to reach and extravasate into cancer tissues. To further facilitate selective 

delivery into cancer cells, many researchers have functionalized nanoparticles with ligands that 

bind specific receptors on cancer cells, a strategy commonly referred to as “active” targeting 

[125]. Unfortunately, the accumulation of both ligand-free and ligand-conjugated systems in 

tumors is generally modest at best, limiting the efficacy of various therapies against cancer [126, 

127].  

Due to advances in the genetic and phenotypic analysis of tumors, tumor heterogeneity 

has recently emerged as yet another biological barrier that could limit efficient distribution, 

retention, and uptake of ligand-conjugated nanoparticles at tumor sites [126, 128, 129]. Tumor 

heterogeneity also encompasses the highly variable expression of target receptors, both 

intertumorally between patients or different tumors and intratumorally within a given tumor, and 

has been reported for a wide range of human tumors [130, 131]. Due to the absence or 
                                                      
2
This chapter is based on an article that previously appeared in the Journal of Controlled Release. The original 

citation is as follows: Yang Q, Parker CL, McCallen JD, Lai SK. J Control Release. 2015, 220(Pt B):715-26. 
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suboptimal expression of their target receptor on many tumor cell subpopulations, actively 

targeted drug carriers, which typically consist of single-ligand nanoparticles, are unable to 

effectively bind and internalize into the full spectrum of tumor cells present in any particular 

tumor. As noted by Bae et al., “aiming at cancer cells with a single surface marker results in 

aiming at a single population among mixed populations which are constantly changing and 

moving” [126]. Inadequate drug delivery to all cancer cell subpopulations typically results in 

only partial suppression of the cancer and eventually leads to tumor regrowth and/or the 

emergence of therapy-refractory tumor cell populations [132-134]. Thus, targeting strategies that 

can directly address the challenges associated with tumor heterogeneity and enable effective 

delivery of nanoparticles are sorely needed. 

One promising targeting strategy is to decouple molecular homing and delivery of 

therapeutics into two separate steps. This approach involves first introducing bispecific proteins 

(BsPs) that can specificially bind (i.e., “pretarget”) cancer cells, followed by the administration 

of a drug-carrying effector such as a nanoparticle that can be captured by the BsPs accumulated 

on the surface of tumor cells (Fig. 3.1). By introducing multiple distinct BsPs, a single effector 

nanoparticle could in theory bind with molecular specificity to the full diversity of cancer cells 

present in any particular tumor. In this review, we will discuss the concept of, important 

considerations for, and key challenges associated with exploiting the pretargeted strategy to 

enhance the delivery of therapeutics to heterogeneous tumors. 
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Figure 3.1. Strategies for the delivery of nanoparticle drug carriers and/or radioisotopes to tumor 

cells. These strategies include a) non-targeted, b & c) directly targeted (1-step), and d & e) pretargeted 

(multistep) approaches. a) Passively targeted nanoparticles coated solely with stealth polymers typically 

do not exhibit specific interactions with tumor cells. b) Radioimmunotherapy (RIT) uses radiolabeled 

tumor receptor-specific antibodies to deliver therapeutic doses of radiation to target cells. c) Modification 

with receptor-specific ligands allows the active targeting of nanoparticles (NPs) to tumor cells, which 

commonly induces receptor-dependent internalization. d) Pretargeted radioimmunotherapy (PRIT) splits 

tumor targeting and radioisotope delivery into sequential steps: 1) binding of bispecific proteins (BsPs) to 

target receptors and 2) binding of radiolabeled effector molecules to the BsPs. e) For pretargeted drug 

delivery systems, 1) bispecific proteins (BsPs) bind target receptors, and 2) a drug-loaded effector 

nanoparticle binds to the BsPs, which should ideally result in internalization. 

 

3.2 Conventional cancer targeting strategies: passive targeting 

In 1986, Matsumura and Maeda discovered that macromolecules can preferentially 

accumulate in tumors due to anatomical and pathophysiological differences between solid 

tumors and healthy tissue [27, 135, 136]. Specifically, tumors initiate extensive angiogenesis to 

maintain their rapid growth, but the newly formed blood vessels display abnormal architecture 

including fenestrated endothelial lining of vessel walls [135-137]. The more permeable tumor 

vasculature then allows macromolecules and nanoparticles to extravasate from the bloodstream 
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and accumulate in the tumor [136, 137]. Presumably poor lymphatic drainage further permits 

enhanced retention of drug delivery systems within tumors [135, 137]. The combination of leaky 

tumor vasculature and impaired lymphatic drainage constitute the phenomenon termed the 

enhanced permeability and retention (EPR) effect. 

Harnessing the EPR phenomenon simply requires nanoparticles to (i) fall within an 

appropriate size range and (ii) evade rapid elimination by the mononuclear phagocytic system 

(MPS). While smaller nanoparticles can naturally extravasate more efficiently than larger 

nanoparticles, most studies suggest the tumor vasculature in mouse xenografts can permit 

extravasation of nanoparticles ranging from 10 to 200 nm in diameter [136, 138-140], with some 

studies reporting EPR of particles up to 500 nm in diameter [137, 141]. In addition to size, 

prolonged circulation kinetics also directly improve the extent of nanoparticle extravasation 

through leaky tumor blood vessels by maximizing the number of times a nanoparticle will pass 

through the tumor vasculature [135, 141]. Polyethylene glycol (PEG) was among the first 

“stealth” polymers used to extend liposome and other nanoparticle circulation times by 

minimizing opsonin adsorption and nanoparticle elimination by MPS cells, and PEGylation is 

the most widely adopted strategy to enhance nanoparticle tumor uptake via EPR [135-137, 141]. 

Other coating polymers used to improve particle circulation profiles, and thereby exploit the EPR 

effect, include flexible, hydrophilic polysaccharides such as dextran, hyaluronic acid, and 

chitosan [142, 143]; synthetic polymers such as polyvinyl alcohol [144] and 

polyvinylpyrrolidone [145]; zwitterionic polymers [146, 147]; and polyoxazolines [148]. Indeed, 

dextran-, hyaluronic acid-, chitosan-, and N-(2-hydroxylpropyl) methylacrylamide (HPMA)-

coated particles all exhibited improved EPR-mediated tumor accumulation due to prolonged 

circulation [28, 149-151]. Because nanoparticles of the appropriate size and with MPS-resistant 
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surface chemistry can naturally achieve a low to moderate level of tumor targeting without using 

specific ligands, these non-molecularly targeted systems are frequently classified as passively 

targeted.  

It is important to note that the EPR effect is highly variable and may not be readily 

exploitable for all tumors [152]. For example, hepatocellular and renal cell carcinomas are 

characterized by high vascular density and exhibit increased EPR effects compared to low 

vascular density pancreatic and prostate cancers that demonstrate diminished EPR effects [152, 

153]. Additionally, EPR of drug carriers is not observed homogenously throughout individual 

tumors, as the central foci of tumors tend to be characterized by necrotic [152, 154], hypoxic 

[152, 155], and hypovascular areas [135] that do not display the EPR effect [27, 156, 157]. EPR 

heterogeneity may also vary between primary tumor and metastases [125]. Therefore, harnessing 

EPR to enhance therapeutic responses in the clinic requires an improved understanding of how 

tumor heterogeneity impacts the EPR effect both within and between tumors [125, 136, 152, 158, 

159]. 

 

3.3 Conventional cancer targeting strategies: active targeting 

To further improve nanoparticle-based delivery to cancer cells, numerous investigators 

have developed nanoparticles decorated with ligands specific to receptors overexpressed on 

cancer cells, an approach generally termed active targeting [125]. Ligands on actively targeted 

systems are typically grafted to the distal end of polymer chains that are used to coat the particles 

and provide prolong circulation kinetics [141]. These systems are presumed to effectively 

extravasate from the tumor vasculature based on the underlying stealth polymer coating, while 

the presence of ligands can facilitate nanoparticle binding to and subsequent internalization into 
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specific tumor cells expressing the corresponding receptor [141, 160]. Actively targeted systems 

were thought to directly address the shortcoming of inefficient cellular uptake of passively 

targeted systems [137, 141]. Numerous targeting ligands have been utilized to actively target 

nanoparticles to cancer cells, including antibodies and antibody fragments [161, 162], aptamers 

[163], peptides [164], proteins, sugars [165], and low molecular weight ligands such as folate 

[166]. For excellent reviews of the features and design of actively targeted systems, please refer 

to Refs [125, 141, 160, 167] 

Unfortunately, active targeting systems face several challenges that may limit their 

efficacy in practice. The target cell surface receptors must be highly overexpressed or selectively 

expressed solely on malignant cells, as opposed to healthy cells, to maximize tumor-specific 

delivery [167-169]. Additionally, the choice and density of ligand are critical to optimizing the 

effect of the targeting moiety. Greater ligand density was previously assumed to enhance 

nanoparticle targeting to tumors in vivo due to generally observed improvements in cancer cell 

uptake in vitro [168]. Nevertheless, an increasingly number of studies have shown that maximal 

accumulation of nanoparticles in tumors in vivo is typically achieved with an intermediate ligand 

density [168, 170-173]. For example, increasing the surface aptamer density on polymeric 

nanoparticles actually resulted in reduced tumor accumulation and increased particle distribution 

in the liver [170]. The poor in vivo performance of particles with high ligand densities was 

attributed to ligand shielding or adulteration of the underlying stealth polymer coat, leading to 

rapid MPS clearance and a reduction in the fraction of particles that can reach and extravasate 

into tumors [168, 169]. 
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3.4 Tumor heterogeneity and implications for targeted drug delivery systems  

Variations in accumulated genetic mutations, which can be further exacerbated by 

alterations in the local tumor microenvironment, frequently lead to genomically distinct 

subclonal populations within the same tumor or between tumor lesions. This in turn creates a 

phenomenon termed tumor heterogeneity, which describes the functional and phenotypic profile 

differences between cancer cells such as cellular morphology, gene expression, metabolism, 

motility, proliferation, level of drug resistance, and metastatic potential. Additionally, the highly 

variable presence of stromal cell populations such as fibroblasts, immune cells, and endothelial 

cells within tumors is critical in shaping the tumor microenvironment [174, 175]. Interactions 

between the non-tumor cell populations and tumor cells contribute to different tumor 

phenotypes, impact tumor response to various therapies, and influence disease progression [176, 

177].  

Tumor heterogeneity (Fig. 3.1) encompasses both (i) intertumoral heterogeneity, which 

describes differences between tumors in an individual patient as well as clinical response 

differences between patients with the same tumor subtype, and (ii) intratumoral heterogeneity, 

which refers to the genetic, epigenetic, and phenotypic features that vary within malignant cell 

populations of the same tumor mass [178]. Intratumoral heterogeneity is further classified into 

spatial heterogeneity, which refers to differences between distinct anatomical regions or 

individual cells within a tumor, and temporal heterogeneity, which refers to changes in a tumor’s 

molecular profile and receptor expression over time. An example of intratumoral spatial 

heterogeneity is the highly discordant HER2 expression observed in different areas within a 

single biopsy from HER2-positive metastatic breast cancer patients (Fig. 3.3a) [179]. Temporal 
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heterogeneity can be observed for relapsed lesions that exhibit a disparate molecular profile, 

compared to their original tumor.  

In addition to morphological and spatiotemporal variations within the same tumor or 

between primary tumors, tumor heterogeneity can also directly result from metastasis. Metastatic 

heterogeneity (Fig. 3.2) has been observed to include (i) discordant biomarker or receptor 

expression between metastases arising from distinct subclonal populations in the primary tumor 

(“intermetastatic” heterogeneity) and (ii) heterogeneity within individual metastases 

(“intrametastatic” heterogeneity), which may have a substantial impact on therapeutic outcome 

[131, 174, 178, 180, 181]. For example, Gerlinger et al. reported a case of intrametastatic 

heterogeneity in which significant changes in the mutational profiles of spatially separated 

biopsy samples from primary renal-cell carcinomas and metastases were identified using next-

generation sequencing [182]. Additionally, Albino et al. observed intermetastatic heterogeneity 

in a melanoma patient whose multiple metastases displayed contrasting morphologies and 

surface antigen expression [181]. Other studies have also investigated variable estrogen, 

progesterone, and HER2 receptor expression between primary breast tumors and metastases, 

with discordance rates that varied greatly from 18% to 54% [174, 183, 184]. Additional types of 

heterogeneity include non-genetic phenotypic and functional heterogeneity [184] and tumor 

microenvironment heterogeneity [174, 175]. Because tumor cells interact with their environment, 

tumor microenvironment heterogeneity exerts a crucial influence on disease progression. For 

example, the heterogeneous distribution of stromal cells, extracellular matrix organization, and 

especially hypoxic regions within the tumor microenvironment may promote metastasis and 

development of drug resistance [174].  
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 Tumor heterogeneity has been reported in a wide range of human tumors such as breast 

[174, 179], non-small cell lung [185, 186], ovarian [174, 187-189], prostate [174, 190], and 

lymphoma [191] and poses a significant challenge for diagnosis, prognosis, and efficacy of 

molecularly-targeted therapies (Fig. 3.3b) [189, 192]. The presence of heterogeneous cancer cell 

populations within tumors will likely limit the efficacy of any therapeutics targeted against any 

single tumor-associated receptor, leading to poor/varied outcomes, including cancer recurrence 

and therapeutic resistance [130, 178]. For example, the heterogeneous expression of programmed 

death 1 (PD-1) was reported in two distinct T-cell subpopulations and differentially impacted 

survival in patients with follicular lymphoma [191]. Similarly, heterogeneous HER2 expression 

in breast cancer has prompted treatment stratification in the clinic based on receptor expression 

[174]. Indeed, intratumoral HER2 heterogeneity, both genetic and spatial, affected the 

trastuzumab treatment responses and survival of patients with HER2-positive metastatic breast 

cancer [179]. Only a small fraction of trastuzumab-treated patients achieved complete disease 

eradication, and the majority of patients developed relapsed tumors that were resistant to 

trastuzumab therapy due to the proliferation of HER2-negative breast cancer cells. 

 In addition to therapy with monoclonal antibodies such as trastuzumab, variable target 

receptor expression in heterogeneous tumors also presents a critical bottleneck for actively 

targeted drug delivery systems. The common active targeting approach, in which drug-loaded 

particles are surface modified with a single ligand group, cannot target and facilitate intracellular 

delivery to the full diversity of malignant cells. One potential strategy is the administration of a 

cocktail of single-ligand particles. Unfortunately, this would pose considerable challenges and 

substantial cost burden in the context of particle formulation and complexity in clinical 

evaluation [169], which has generally limited particles to one or two distinct targeting ligand 
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groups. More importantly, a single universal targeted nanoparticle cocktail for all patients is 

unlikely to succeed due to interpatient heterogeneity; inadequate levels or the complete lack of 

corresponding target cells for a significant fraction of the ligand-modified particles could lead to 

increased hepatic and splenic biodistribution and, correspondingly, reduced tumor accumulation. 

Alternatively, multiple different targeting ligands could be theoretically conjugated onto the 

surface of a single nanoparticle. However, as discussed above, increased density of ligands 

beyond a particular threshold will likely trigger rapid MPS clearance of the particles.  

 

  

 

 

Figure 3.2. Different types of tumor heterogeneity. Spatial heterogeneity refers to differences between 

distinct anatomical regions or individual cells within a tumor, while temporal heterogeneity illustrates 

changes in a tumor’s molecular profile over time. Intermetastatic heterogeneity arises from distinct 

subclonal populations in the primary tumor, and intrametastatic heterogeneity reflects the discordant 

molecular profiles of cells within individual metastases. 
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Figure 3.3. Clinical tumor heterogeneity. a) Spatial heterogeneity in HER2 expression between three 

different areas of an invasive ductal carcinoma biopsy sample. HER2 amplification was confirmed using 

immunohistochemistry (IHC) and silver in situ hybridization (SISH). H&E, ×200; IHC, ×200; SISH, 

×400. Reprinted with permission from Lee et al. [179]. b) Progression free survival (top) and overall 

survival (bottom) of high-grade serous ovarian cancer patients treated with platinum-based chemotherapy 

and surgery, stratified by degree of clonal expansion (CE). CE reflects the accumulation of mutations that 

promote cell expansion into varying subclonal populations from the original cell. Higher CE is correlated 

with divergent subclonal populations and thus greater tumor heterogeneity. Reprinted with permission 

from Schwarz et al. [189].  

 

3.5 Pretargeted radioimmunotherapy (PRIT) 

The discovery that human tumor-associated antigens could be used as targets for 

antibodies to differentiate tumors from normal tissue helped spawn the field of monoclonal 

antibody (MAb)-based immunotherapy of cancer. The multiple applications of cancer 

immunotherapy include radioimmunotherapy (RIT) (Fig. 3.1b), which uses radioisotope-

conjugated Mabs to treat radiosensitive tumors such as non-Hodgkin’s lymphoma (NHL) [193]. 

Unfortunately, the therapeutic efficacy of RIT is limited by the long circulatory half-life of many 

MAbs, as well as high non-specific deposition of the MAbs in normal organs, resulting in low 

tumor-specific delivery of radiation and significant toxicity [194].  
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To overcome the shortcomings of radioimmunotherapy (RIT), many researchers have 

adopted a multistep approach (Fig. 3.1d) to more specifically deliver radionuclides to tumor cells 

by first injecting BsPs that contain a tumor cell binding domain and an effector binding domain. 

Subsequently, radiolabeled effector molecules are introduced and interact with BsPs bound on 

the surface of tumor cells. Such an approach has been termed pretargeted radioimmunotherapy 

(PRIT) [195, 196]. Because the BsPs are non-radioactive and the radiolabeled effector molecules 

typically consist of modified small molecule metal chelators that can be rapidly cleared, PRIT 

can significantly improve the therapeutic index of radioisotope treatment compared to RIT [194, 

197, 198], as well as increase the maximum tolerated dose for radionuclides [196]. Pagel et al. 

demonstrated that anti-CD45 PRIT improved the specificity of radiation delivery to leukemia in 

a rodent model, delivering twice as much radiation to bone marrow and five times more activity 

to the spleen than conventional RIT [199, 200]. In vivo PRIT was able to mediate broad tumor 

growth suppression and prolonged survival with the use of BsPs against receptors expressed at 

different levels on lymphoma cells, with CD20 and HLA-DR proving to be superior targets 

compared to CD22 [201, 202]. CD38-specific PRIT achieved tumor-to-blood ratios as high as 

638:1 after 24 hours for a multiple myeloma model, compared to a ratio of ~1:1 with 

conventional RIT [203]. Subbiah et al. reported that treating athymic mice bearing Ramos 

human Burkitt's lymphoma xenografts with a pretargeted system consisting of anti-CD20 scFv-

conjugated streptavidin (SA) and 
90

Y-DOTA-biotin cured 100% of mice with allowable toxicity, 

whereas conventional RIT with 
90

Y-1F5 at the same dose produced no cures, generated profound 

pancytopenia, and was lethal to all mice [204]. Zhang et al. demonstrated that both 
90

Y-DOTA-

biotin and 
213

Bi-DOTA-biotin could both be used in combination with anti-CD25 scFv-
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conjugated SA for PRIT of a murine T-cell lymphoma xenograft model, with the beta-emitter 

90
Y curing 10 of 10 mice and alpha-emitter 

213
Bi curing 7 of 10 mice [205].  

 These encouraging results with PRIT studies in animal models led to clinical studies of 

PRIT, which have yielded promising results with reasonable tumor response rates and limited 

toxicity [206]. Forero et al. evaluated the pharmacokinetics and immunogenicity of an anti-CD20 

scFv-SA conjugate in 15 patients with NHL [207]. Although the complete remission rate was 

low (2 of 15), the majority (12/15) patients exhibited no signs of hematologic toxicity, 

suggesting that the dose of radionuclide could be further increased. Another phase I/II PRIT 

clinical trial was performed using a chimeric anti-CD20 IgG-SA in combination with 
90

Y-

DOTA-biotin. Six of seven NHL patients demonstrated significant tumor regression, with an 

estimated tumor-to-whole body dose ratio of 38:1. While six of the ten patients developed 

humoral responses to streptavidin, the transient nature of the responses appeared to result in no 

significant long-term effects [208, 209]. Kraeber-Bodere et al. evaluated the therapeutic efficacy 

of PRIT using a bispecific monoclonal antibody that binds to carcinoembryonic antigen (CEA) 

and to a 
131

I-labeled effector molecule for PRIT of medullary thyroid cancer. Of the 17 patients 

treated, 4 reported pain relief, 5 demonstrated minor tumor responses, and 4 achieved biological 

responses (decrease in thyrocalcitonin); however, 9 patients also generated human anti-mouse 

antibodies [210-212].  

While PRIT has led the way in preclinical and clinical studies of pretargeting, it is 

important to note that the applications for pretargeted strategies extend far beyond radiotherapy. 

For example, solid cancers, which will account for more than 90% of all newly diagnosed cancer 

cases and deaths in the United States in 2015 [213], are significantly more resistant to 

radioimmunotherapy compared to hematological malignancies such as NHL. To date, little is 
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known about whether the pretargeting approach can enhance the delivery of other therapeutic 

agents such as nanoparticle drug carriers that can encapsulate and slowly release chemodrugs to 

solid tumors.  

 

3.6 Pretargeted drug delivery to heterogeneous tumors 

The growing interest in precision/personalized medicine, coupled with the incomplete 

treatment of heterogeneous cancers using common passively or single-ligand targeted therapies 

that can give rise to recurrent, more aggressive, and/or drug-resistant tumors [131, 178] 

highlights the need for alternative nanoparticle targeting strategies to improve treatment 

responses. The modular nature of pretargeted systems is particularly useful in addressing the 

challenge of and many barriers to effective drug delivery to heterogeneous tumors [174] because 

it enables pretargeted systems to be targeted to new or different tumor antigens by simply 

modifying the tumor binding domain of BsPs, as opposed to direct, ligand-based targeting 

systems that would require the formulation of a new nanoparticle system. This flexibility is 

expected to markedly reduce the production costs and complexity, as well as the potential 

regulatory burden, for pretargeted nanoparticles. Another equally appealing feature of 

pretargeting is the ability to pretarget multiple receptors simultaneously. The administration of a 

cocktail of pretargeting BsPs that can all bind to the same drug carrier could in theory enable the 

delivery of a drug carrier to the full spectrum of a patient’s cancer cells (Fig. 3.4). Drug cocktails 

containing mixtures of different MAbs have already been applied to cancer therapy, with one 

combination of pertuzumab, trastuzumab, and docetaxel significantly improving the overall 

survival of patients with HER2-positive breast cancer [214]. Antibody mixtures have also been 

used for in vitro and in vivo imaging and diagnosis of tumors [215, 216]. Additionally, 
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pretargeting with individual or mixed BsPs was able to differentially label a range of human 

tumor cell lines in vitro (Fig. 3.5a) [217, 218]. To our knowledge, no studies have been 

published on the simultaneous use of multiple pretargeting BsPs to enhance nanoparticle delivery 

to date, although Khaw et al. did report the receptor-dependent efficacy of doxorubicin 

nanoparticles pretargeted with anti-HER2 affibody-based BsPs in a dual tumor model [219]. In 

that study, tumor growth inhibition was achieved for HER2-positive BT-474 breast cancer 

tumors, while the HER2-negative BT-20 breast cancer tumors were simultaneously unresponsive 

to the treatment, further emphasizing the opportunity for improved cancer treatment through 

appropriate targeting of all tumor cell populations.  

 

 

 

 

Figure 3.4. Pretargeted delivery of nanoparticles (NPs) to heterogeneous tumors. 1) A cocktail of 

bispecific proteins (BsPs) is administered and allowed to fully clear from systemic circulation prior to 2) 

dosing with nanoparticles that can be captured by BsPs on the tumor cell surface. To enable effective 

targeting of multiple tumor cell subpopulations using a single nanoparticle, the tumor antigen-binding 

domain (Figure 3.1e) of the BsPs can be modified to reflect the full diversity of tumor cells, while the 

effector (NP)-binding domain remains the same for all BsPs. 
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Figure 3.5. Diagnostic magnetic resonance profiling of human tumor cell lines, fibroblasts, and 

leukocytes using a pretargeted approach in vitro. The cells were labeled using various trans-

cyclooctene (TCO)-conjugated antibodies followed by tetrazine-modified magneto-fluorescent 

nanoparticles (Tz-MFNPs) prior to the measurement of the transverse relaxation rate (R2). Figure 

reprinted with permission from Haun et al. [217].  

 

3.7 Biological and pharmaceutical aspects and considerations of pretargeted drug delivery 

As multicomponent systems, the potential arsenal of pretargeted therapies is sizeable and 

highly diverse. Thus, many features (e.g., choice of target receptor/antigen, binding pair 

technology, and drug carrier) must be taken into account when developing a pretargeted drug 

delivery system to maximize transport of drug cargo to target cells and overall therapeutic 

efficacy. Because only a few publications have evaluated the use of pretargeting for nanoparticle 

delivery, the majority of the current knowledge about optimal pretargeted conditions have been 

gleaned from in vivo PRIT studies, but, due to the overlap of components for multistep targeting 
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approaches (Fig. 3.1d & e), many of the lessons learned from PRIT likely apply to pretargeted 

nanocarriers. 

 

3.7.1 Binding pairs 

A key consideration of any pretargeted delivery approach is the binding interaction 

between the pretargeting BsP and nanoparticle effector, as the affinity of the binding pair directly 

influences the capture and retention of the drug carrier at the tumor site. In addition, the 

immunogenicity of the BsP and its interactions with endogenous ligands can also alter the 

efficacy of pretargeted therapies [193].  

The first binding pairs used in pretargeted systems were based on antibody-hapten 

interactions. In 1985, Reardan et al. reported the development of antibodies against indium 

chelates of EDTA, and suggested the possibility of bispecific antibodies that can simultaneously 

recognize target antigens and metal chelates [194, 220]. Soon afterwards, Goodwin et al. 

developed an early pretargeted imaging approach using a murine tumor model through the 

injection of anti-chelate antibodies, followed by the administration of a radiolabel [221]. Since 

then, a number of antibodies against various haptens have been utilized for binding to effector 

molecules, including anti-DTPA complex [222, 223], anti-peptide [224-226], anti-methotrexate 

[227], and anti-cotinine antibodies [228]. In addition to bispecific antibodies [223, 224, 229], a 

range of antibody fragments and derivatives have been developed as pretargeting BsPs [193, 

228, 230]. Most antibodies, including those used to capture radioisotope-carrying effector 

molecules in PRIT, exhibit nanomolar to high picomolar affinity (KD ~10
-7

-10
-10

 M) for the 

antigen target on the surface of cancer cells [220, 227, 231]. Because PRIT typically uses single 

radionuclide-loaded agents, the improvement of antibody-hapten binding through multivalency 



57 

 

can significantly enhance the specificity of radioisotope localization and retention in tumor sites 

[224, 230, 231]. For example, the application of pretargeted bivalent haptens, termed the affinity 

enhancement system (AES), was able to improve the tumor biodistribution of bivalent 
111

In-

diDTPA by more than 7-fold compared to monovalent 
111

In-DTPA (tumor biodistribution: 

52.9% vs. 7.6% ID/g at 1 h and 92.5% vs. 0.9% ID/g at 72 h, respectively) [232].  

As a binding pair with one of the strongest noncovalent binding affinities (KD ~10
-14

-10
-15

 

M), the streptavidin (SA)-biotin system was quickly adopted by the pretargeting field [233, 234]. 

Additionally, SA is a tetravalent protein and could enable the capture of multiple biotinylated 

drug molecules. SA and biotin can be attached to tumor-specific pretargeting proteins and/or 

effector molecules through a variety of methods, including direct conjugation [204, 235, 236], 

genetic engineering of fusion proteins [237-239], and enzymatic conjugation [240]. While SA-

based PRIT systems have demonstrated increased tumor specificity and higher therapeutic 

indices relative to directly targeted systems [204, 239] and have even been evaluated in clinical 

trials [207, 236, 241], the immunogenic nature of SA, a bacterial protein, represents a major 

challenge to widespread clinical use of SA-biotin binding pairs [207, 209]. The immunogenicity 

of SA can be reduced through site-specific mutations [242, 243], although it remains unclear 

whether these SA mutants will be sufficiently hypoimmunogenic to allow for repeated dosing in 

humans. The problem of interference from endogenous biotin [244], which necessitates the use 

of biotin-free feed for in vivo studies, could also be potentially addressed by SA mutants that 

selectively bind bis-biotin instead of biotin [245, 246]. Other proteins that naturally bind to 

specific substrates (e.g., enzymes) can also be modified to bind to exogenous molecules for use 

in pretargeting, although only a few such systems have been reported in the literature [247, 248]. 
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The majority of published pretargeted and multistep targeting systems utilize antibody-

hapten or protein-ligand interactions, but research in areas such as complementary synthetic 

nucleic acids and peptides and bioorthogonal chemistry continues to generate novel classes of 

binding pairs. Morpholinos (MORFs) are the most popular class of synthetic nucleic acid analogs 

for pretargeting using complementary nucleic acids and have been evaluated preclinically in 

combination with tumor-specific pretargeting antibodies and a variety of radionuclides [249-

253]. In addition to relatively low immunogenicity, optimized complementary morpholinos 

exhibit high specificity and binding affinity [254], and the use of bivalent MORFs may further 

enhance affinity [255]. Bioorthogonal chemistry comprises reactions that can rapidly occur in a 

living system with high selectivity and without any off-target reactions or toxicity. These 

properties enable pretargeting using small molecule binding pairs with low immunogenicity, 

although the relative merits of different bioorthogonal chemistries vary based on reaction 

kinetics, complexity of synthesis, and stability of the resulting conjugate (see refs [193, 256, 

257]). Rossin et al. demonstrated the feasibility of using “click” chemistry for pretargeting of 

radioisotopes in vivo by treating tumor-bearing mice with an anti-TAG72 antibody (CC49) 

modified with trans-cyclooctene (TCO), which then reacted with 
111

In-tetrazine (
111

In-Tz) 

administered 24 h later [258]. The CC49-TCO predosed mice exhibited a tumor uptake of 4.2% 

ID/g and tumor-to-muscle (T/M) ratio of 13.1, compared to tumor uptake and T/M ratios of 0.3% 

ID/g and 0.5 and 1% ID/g and 2.1 for unmodified CC49 and control Ab-TCO groups, 

respectively. Further preclinical studies have confirmed the utility of TCO-tetrazine and other 

bioorthogonal chemistries for tumor imaging and treatment [193, 259-261]. 

 While all of the aforementioned classes of binding pairs have also been used in the 

pretargeting of nanoparticles and other potential drug carriers [217, 262-264], the ability of 



59 

 

pretargeted systems to actually deliver therapeutics to tumor cells has only been evaluated in a 

few studies [219, 265-267]. Pretargeted poly-lysine polymers [268], liposomes [269], and carbon 

nanotubes [270] have been used to deliver higher doses of encapsulated or conjugated 

radionuclides to both solid tumor and hematologic cancer cells, suggesting that the application of 

nanocarriers could further improve the efficacy of PRIT. In the context of cancer chemotherapy, 

pretargeted biotinylated polymeric nanoparticles loaded with pactilaxel (PTX) increased the in 

vitro cell killing of glioma and breast cancer cells, relative to free drug or Taxol and nontargeted 

nanoparticles [265, 266]. The injection of an anti-HER2 affibody-anti-DTPA Fab complex 

(BAAC) 8 h prior to the administration of 
99m

Tc-DTPA-succinylated polylysine enabled the 

specific labeling of tumors (5.3% ID/g vs. 0.5% ID/g for anti-DTPA Fab-pretargeted particles) 

[219]. BAAC pretargeting of doxorubicin- and DTPA-conjugated polyglutamic acid produced 

tumor growth inhibition results that were similar to those of free doxorubicin, but pretargeting 

through the combination of BAAC and polymer-drug conjugate minimized weight loss in mice 

relative to the free drug treatment [219], underscoring the ability of pretargeting to improve the 

therapeutic index of chemotherapeutics in vivo.  

Although BsP considerations such as immunogenicity and competition with endogenous 

ligands apply to both PRIT and pretargeted nanoparticles, other features and characteristics of 

binding pairs required for pretargeted drug delivery systems may differ from those for 

pretargeting based on small molecule effectors. Nanoparticles are inherently highly multivalent 

due to their large surface area, which allows the grafting of tens to possibly thousands of a given 

binding partner moiety. Thus, BsPs with lower affinity to a hapten may still be able to capture 

hapten-coated nanoparticles with high avidity compared to individual radiolabeled haptens. 

However, as is the case with actively targeted systems, the incorporation of peptides, nucleic 
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acids, proteins and other macromolecular components onto drug carrier particles could 

negatively impact their circulation kinetics and efficiency of extravasation into tumors. For 

highly asymmetric binding pairs that consist of a large protein and a smaller moiety (e.g., SA-

biotin, antibody-hapten), the smaller, the more immunologically inert moiety should be assigned 

to the effector nanoparticle, rather than the BsP, to minimize MPS clearance. Steric 

considerations may further support the modification of drug carriers with smaller BsP-binding 

components. For instance, Haun et al. reported that, in addition to relatively to providing a 10- to 

15-fold increase in cell binding relative to directly targeted iron oxide nanoparticles, a 

pretargeted antibody-TCO/Tz-NP system demonstrated significantly higher fluorescent labeling 

of various tumor cell lines, compared to an antibody-biotin/avidin-NP system [217]. The authors 

attributed this difference to the large footprint of avidin (~67 kDa) on the particles, which likely 

resulted in the reduced accessibility and valency of biotin-binding sites. The use of a PEG spacer 

for TCO-antibody modificiation also improved the pretargeting of quantum dots by reducing 

masking of reactive groups [271].  

 

3.7.2 Target antigen(s) 

A diverse array of receptors and other antigens overexpressed on tumor cells have been 

exploited for active targeting of nanoparticles and for RIT [125, 272]. In contrast, the number of 

target cancer antigens/receptors suitable for pretargeted approaches is certainly more limited. 

The multistep nature of pretargeting requires that the tumor cell-binding BsP must remain on the 

tumor cell surface to capture subsequently injected effector drug carriers. Indeed, the majority of 

PRIT studies to date utilize BsPs that target epitopes generally considered to be non-

internalizing, including CD20, CD45, TAG72, and CEA [197, 207, 237, 255, 264, 267, 270]. 
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However, Liu et al. observed the fairly rapid internalization of radiolabeled anti-TAG72 and 

anti-CEA antibodies, with about 60% of the antibodies internalized by LS174T colon carcinoma 

cells after 5 h [250]. Similarly, although HER2 is thought to be an internalizing epitope, 

pretargeting using bispecific antibodies against HER2 mediated enhanced tumor accumulation in 

vivo [219, 228, 273]. Whether these apparently counterintuitive results are due to differences in 

antibody internalization kinetics between in vitro and in vivo conditions (e.g., differences in 

receptor density, receptor turnover rates, and/or endocytosis and cell signalling pathways), 

dosing of the pretargeting molecules at sufficiently high levels that compensate for loss due to 

antigen/BsP internalization, or other factors remains unknown. 

While the pretargeting molecule should initially remain non-internalized, many 

therapeutics require intracellular delivery to be effective and/or exhibit maximal potency; thus, 

the ideal pretargeted nanoparticle must be internalized only after binding of the drug carrier (Fig. 

3.1). Although internalization mediated by a non-internalizing pretargeting molecule may appear 

paradoxical, cellular entry could be achieved by relying on the eventual endocytosis of bound 

receptors or, more preferably, through multivalent nanoparticle binding effects such as 

crosslinking of receptors. Mulvey et al. observed that anti-A33-MORF conjugates remained 

stably on the surface of LS174T cells for up to 24 h, and that the addition of complementary 

MORF-modified carbon nanotubes resulted intracellular punctate staining indicative of 

internalization (Fig. 3.6) [270]. In contrast, free complementary MORFs failed to induce 

internalization (Fig. 3.6). Gunn et al. similarly reported that iron oxide nanoparticles pretargeted 

to CD20-expressing cells were found in endosomes, as visualized by transmission electron 

microscopy [262]. These results suggest that BsPs that bind non-internalizing epitopes can still 

facilitate pretargeted intracellular delivery of nanocarriers.  
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Figure 3.6. Internalization of pretargeted single-walled carbon nanotubes (SWNTs). LS174T (A33-

positive) colon carcinoma cells were preincubated anti-A33 antibodies conjugated to morpholino 

oligonucleotide (anti-A33-MORFs) for 4 h prior to washing and further incubation with complementary 

MORF (cMORF)-SWNT-AlexaFluor 647 or free cMORF-AlexaFluor 647. Figure reprinted with 

permission from Mulvey et al. [270]. 

 

3.7.3 Pharmacokinetics and biodistribution 

The theoretical improvements in the therapeutic index of drug delivery systems that can 

be achieved using pretargeting are based on the decoupling of the tumor targeting vs. drug-

carrying functions. This in turn implies that the efficacy of a given pretargeted system is 

dependent on the pharmacokinetics and biodistribution of each component. One of the most 

important requirements is that the pretargeting BsPs are maximally cleared from systemic 

circulation prior to the administration of the drug carrier, particularly for pretargeted systems 

based on high affinity binding pairs such as SA-biotin. Indeed, SA-coated liposomes were 

detectable in circulation for at least 24 h after i.v. administration in mice, whereas SA-coated 

liposomes premixed with biotinylated anti-Thy1.2 antibodies prior to dosing were rapidly cleared 
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within 4 h [267], illustrating the potential problem of circulating BsP binding to effector 

nanoparticles before the particles can extravasate into the tumor. Correspondingly, Karacay et al. 

found that, while an anti-CEA IgG x anti-DTPA Fab’ conjugate demonstrated superior tumor 

labeling relative to F(ab’)2 x Fab’ and Fab’ x Fab’ constructs, the F(ab’)2 x Fab’ conjugate 

provided better pretargeting of a divalent DTPA peptide due to the high residual blood 

concentration of IgG x Fab’ even 6 days after administration [222]. In order to simultaneously 

optimize tumor distribution and retention along with systemic clearance, a variety of techniques 

have been used to modify the size, valency, and composition of pretargeting BsPs, including the 

“dock-and-lock” method [274, 275] and fusion protein engineering [207, 237, 247]. 

An alternative approach to ensure elimination of residual pretargeting molecules from the 

systemic circulation is the use of clearing agents (CAs) prior to the dosing of nanoparticles or 

therapeutic effector molecules. These multivalent agents are generally designed to bind tightly to 

the pretargeting molecules and are sufficiently large enough to be rapidly cleared from the 

systemic circulation without extravasating into tumors. Previously reported CAs include 

secondary antibodies [276] and avidin [277], as well as biotinylated and galactosylated human 

serum albumin [278] and dendrimers [200, 237]. The use of a CA can effectively purge 

circulating BsP molecules (reducing blood concentrations by up to 10-fold) without affecting the 

tumor accumulation of pretargeting molecules [237, 277, 279]. The potential drawback of CA 

use is the addition of yet another dose and wait step to the course of therapy. For example, the 

use of CAs with the sequential combination of biotinylated antibodies, SA, and finally 

biotinylated radionuclide resulted in a 5-step PRIT strategy (biotinylated MAb/avidin 

CA/streptavidin/ biotinylated CA/biotinylated radiolabeled chelate) [280, 281]. Although the 

radioimmunotherapy was well-tolerated and effective in glioma patients, with a median survival 
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of 33.5 months (compared to 8 months for untreated control patients) in a nonrandomized phase 

I/II study, the need for several parenteral injections to deliver a single dose of radiation or drug 

not only introduces a high degree of complexity but also increases the cost of therapy. A simpler 

2-step approach is likely far more preferable, particularly when using antibody-hapten binding 

pairs. These pretargeted systems appear to better tolerate the presence of minute amounts of 

uncleared pretargeting BsP, possibly due to the lower affinity and the dissociation of BsP-

effector complexes formed in the blood [282].  

The pharmacokinetics of the pretargeted drug carrier must also be taken into 

consideration. Because the commonly utilized pretargeting molecules are generally much smaller 

than nanoparticle drug carriers, the overall tumor distribution and accumulation of pretargeted 

systems is therefore limited by the circulation and extravasation kinetics of the drug carrier. To 

minimize premature elimination from the circulation and maximize tumor accumulation, drug 

carriers should be effectively coated with stealth polymers, whereas the use of bulky, charged, 

and/or hydrophobic moieties to facilitate particle binding to the pretargeting molecule should be 

avoided if possible. As noted in the previous section, this latter requirement may affect the 

choice of binding pair technology for pretargeted nanoparticle systems, as well as the assignment 

of binding pair components to the BsP and effector particle. For example, if using a SA-biotin 

binding system, the nanoparticle should be biotinylated, with the SA component in the 

pretargeting molecule, rather than vice versa. 

 

3.8 Challenges and unknowns 

 The combination of a bispecific pretargeting cocktail with nanoparticle drug carriers is a 

promising but vastly underexplored approach to targeting nanoparticles to heterogeneous tumors. 
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Thus, many aspects of this proposed strategy must be rigorously evaluated to confirm its 

suitability for clinical applications. 

 One of the major challenges is that a greater dose of pretargeting BsP could potentially 

reduce nanoparticle binding and accumulation to tumor cells. Because tumor receptor expression 

varies both spatially and temporally, and receptor testing is typically performed on primary 

tumor biopsies obtained close to the time of diagnosis, “personalized” pretargeting cocktails 

based on those patient biopsy results is unlikely to capture the full heterogeneity of cancer cells 

in a patient over time, particularly for relapsed and/or highly metastatic tumors [130]. Thus, truly 

personalized pretargeted therapy would greatly benefit from improvements in noninvasive 

molecular profiling of cancers [178, 283]. As an alternative to the fine-tuning of individual 

pretargeting cocktails, the properties of BsPs could be optimized to allow rapid elimination of 

non-binding BsPs from the circulation. The mechanism, rate, and extent of pretargeting BsP 

clearance with and without the use of clearing agents must be carefully investigated, particularly 

since Pagel and colleagues observed that the administration of high doses of MAb-SA conjugates 

specific to receptors poorly expressed on certain lymphoma tumors overloaded the capacity of 

mice to hepatically clear MAb-SA/CA complexes, resulting in low tumor-to-normal organ 

biodistribution ratios and toxicity [201, 284]. The increased doses of total protein required for a 

cocktail pretargeting approach may also affect the immunogenicity of the pretargeting BsPs 

used. 

 Additionally, the limited number of appropriate target receptor/antibody combinations 

that have been evaluated for pretargeting to date may hinder the development of useful 

pretargeting cocktails. The main driving forces behind the discovery of novel tumor-specific 

receptors and their corresponding ligands/antibodies are diagnostic biomarkers, imaging 
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applications and targeted drug and MAb therapy. Unfortunately, few of these studies focus on 

non-internalizing antibodies, a critical requirement of pretargeting. However, the use of 

(pre)clincially validated ligands and therapeutic MAbs could lead to fortuitous combinations for 

pretargeting. For example, anti-CD20 MAbs can induce apoptosis clinically [285], and anti-

CD20 Fab’ fragments linked to MORFs have been found to also induce apoptosis of B-cell 

lymphomas in vitro and inhibit development of diffuse tumors in vivo upon crosslinking by 

cMORF-modified polymers [263]. The use of antibodies with inherent therapeutic efficacy for 

pretargeting of drug carriers could allow for synergistic treatment effects. Improvements in the 

generation of diverse bispecific proteins and antibodies will also certainly expand the diversity of 

available pretargeting molecules [274, 275, 286]. 

Other concerns regarding the application of pretargeted drug delivery systems include the 

clinical feasibility of multistep parenteral injections and the poor tumor accumulation of many 

drug carriers in patient tumors. Similar to passively and actively targeted nanoparticles, the 

tumor accumulation of pretargeted drug carriers would still rely on the EPR effect [267], which 

has been found to be highly variable [158].  

 

3.9 Conclusion 

Despite marked advances in biotechnology, nanotechnology and drug delivery, effective 

therapy for cancer remains exceedingly challenging, with few treatment options that can provide 

durable suppression or elimination of the tumor without resulting in eventual recurrence and/or 

the development of drug-resistant tumors. Emerging insights into tumor physiology have 

underscored tumor heterogeneity as one of the key bottlenecks to targeted therapy. The concept 

of pretargeting using a cocktail of bispecific pretargeting proteins combines the strengths of 
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precision medicine and personalized medicine by offering the potential to deliver nanoparticle 

therapeutics to diverse cell populations while avoiding the pharmacokinetic pitfalls typically 

associated with actively targeted nanoparticles. Although the radioimmunotherapy field has 

offered substantial evidence supporting the pretargeting strategy, its application for enhancing 

targeted delivery of nanoparticle therapeutics remains underexplored to date. We believe further 

rigorous evaluation of pretargeted NP systems is both warranted and needed to confirm whether 

pretargeting can indeed prove superior to current passive and active targeting approaches. 
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CHAPTER 4: EFFECT OF PEG DENSITY AND CONFORMATION ON IMMUNE 

CELL UPTAKE
3
 

4.1 Introduction 

Due to the flexible, neutral, and hydrophilic nature of poly(ethylene glycol) (PEG), PEG 

grafting can create a thick and dynamic hydration shell that renders the adsorption of 

biomacromolecules to PEG-coated surfaces thermodynamically highly unfavorable [7, 42, 287]. 

As a result, PEGylation reduces the aggregation of liposomes and other particles, as well as the 

adsorption of various serum proteins to the underlying particle core [40, 41, 50, 288]. These 

effects in turn decrease opsonization and clearance by the mononuclear phagocyte system (MPS) 

[31] and prolong the circulation kinetics of PEG-modified nanoparticles [32, 289, 290]. The 

resulting improved pharmacokinetics have been critical to the clinical success of many 

PEGylated therapeutics for systemic applications, including proteins [29, 291] and liposomes 

[99, 292]. PEG coating has similarly been used to reduce particle interactions with constituents 

of other biological environments, including mucus secretions [45, 293] and extracellular matrices 

[46, 294]. 

Naturally, the effectiveness of the “stealth” behavior of PEG-modified nanoparticles is 

critically dependent on the density and conformation of the surface PEG chains. The adopted 

PEG conformation is dictated by the grafting distance (D: the distance between two closest 

neighboring PEG anchors, which is inversely correlated to the grafting density) and the Flory 

radius (RF) of the PEG coils, which is directly dependent on the PEG molecular weight. At low 
                                                      
3
This chapter is based on an article that previously appeared in Molecular Pharmaceutics. The original citation is as 

follows: Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Mol Pharm. 2014, 11(4):1250-8. 
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grafting densities (RF/D ≤ 1), PEG chains adopt a diffuse “mushroom” conformation. At 

increasing grafting densities (RF/D>1), the PEG chains transition into a more extended “brush” 

conformation [47], eventually reaching a “dense brush” regime when the PEG layer thickness 

exceeds the RF by at least two-fold (RF/D>2.8, see Materials & Methods section for calculation) 

[43, 48].  

The ability to resist protein adsorption and evade clearance by immune cells is generally 

thought to require, at minimum, sufficient PEG coverage to coat the underlying particle core, 

which occurs at grafting densities at the mushroom/brush transition when PEG chains begin to 

overlap [4, 9, 295]. However, whether grafting at the mushroom/brush transition is sufficient to 

render polymeric nanoparticles effectively stealth in complex biological environments, including 

the systemic circulation that is rich in proteins and cells, remains not well understood. There are 

large variations in the circulation kinetics reported for different PEGylated nanoparticles in the 

literature, with some exhibiting systemic half-lives in excess of many hours but others persisting 

for only minutes [9, 48, 50, 296]. These differences are likely attributed in part to variations in 

the density of surface PEG grafting among different particle systems and formulations. For 

polymeric particles, differences between the chemical structures and concentrations of various 

polymers, as well as the properties of the organic solvents and/or surfactants utilized can all 

influence the efficiency with which PEG chains phase separate to or adsorb onto the nanoparticle 

surface [9]. In the case of liposomes, the extent of surface PEG grafting is also limited by 

colloidal instability due to the excess incorporation of PEG-conjugated lipids [296]. 

In addition to limitations in effective PEGylation, there are also significant technical 

hurdles associated with quantifying surface PEG grafting, especially on biodegradable polymeric 

particles [9]. Formulating particles using PEG conjugated with fluorophores or other labels at its 
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terminus can enable the quantitative assessment of PEG associated with particles, but these 

approaches fail to discriminate between surface vs. embedded PEG. Other PEG analysis methods 

are generally limited to specific classes of nanoparticles and often require complex 

methodologies and instrumentation [43, 297-299]. The presence of a PEG coating on 

nanoparticles is thus most frequently inferred by changes in the particle ζ-potential, which 

provides at best a cursory analysis confirming the presence of an indeterminate amount of PEG. 

Among the few papers that have specifically quantified PEG coating density, the majority report 

grafting densities ranging from <0.1 to at most ~1.2 PEG/nm
2 
[9, 46, 48, 300].

 

To circumvent these challenges and gain improved mechanistic insight into the structure-

function relationship between PEG coatings and their interactions in biological environments, we 

covalently conjugated amine-functionalized PEG to prefabricated, monodisperse polystyrene 

(PS) beads with well-defined densities of surface carboxylic acid groups via standard 

carboiimide chemistry. This method enabled us to precisely tune the extent of surface PEG 

grafting (the solid PS core would prevent PEG penetration into the particle) simply by varying 

the input NH2:COOH ratio. Interestingly, this approach also enables PEG grafting on particles at 

sufficient densities to achieve not only brush but even dense brush conformations. Using these 

well-characterized nanoparticles, we systematically explored the effect of the PEG coating 

density and PEG MW on the reduction in particle uptake by immune cells and clearance in vitro 

and in vivo. 

 

4.2 Materials and methods 

4.2.1 PS-PEG synthesis and characterization 

Carboxylate-modified green fluorescent polystyrene (PS) beads with mean diameters of  
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93 and 100 nm were purchased from Bang’s Laboratories (Fishers, IN, USA) and Invitrogen 

(Carlsbad, CA, USA), respectively. The surface COOH densities of the particles (2.1 and 5.1 

COOH/nm
2
 for 93 and 100 nm beads, respectively) were calculated from the mEq/g values 

provided by the manufacturers. Methoxy PEG amine (NH2-PEG) 2 and 5 kDa in MW were 

obtained from Rapp Polymere (Tuebingen, Germany); 10 kDa and 20 kDa from JenKem (Allen, 

TX, USA); and 207, 383, and 559 Da from ThermoScientific (Waltham, MA, USA). NH2-PEG 

was conjugated to the PS particles, as previously described [301, 302]. Briefly, the beads were 

washed thrice with MilliQ H2O and resuspended in 50 mM borate buffer (pH 7.8). Methoxy PEG 

amine was added to the PS beads at varying PEG:COOH ratios, and 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC, Invitrogen) and N-hydroxysulfosuccinimide (S-NHS, 

ThermoScientific) were added at five-fold molar excess of PEG. The EDC/S-NHS reaction was 

allowed to proceed overnight at RT. The reaction mixture was quenched with excess glycine, and 

the PEG-modified particles were washed with MilliQ H2O and resuspended in water to stock 

concentrations (~10-20 mg/mL). The hydrodynamic size and ζ-potential of the synthesized 

particles were determined by dynamic light scattering and laser Doppler anemometry, 

respectively, using a Zetasizer Nano (Malvern, UK).  

 

4.2.2 Direct fluorescent quantification of the PEG coating density 

Fluorescent PEG was used to directly quantify the PEG grafting density. Rhodamine B 

and Cy5 PEG amine (5 kDa) were purchased from NanoCS (New York, NY, USA). Maleimide 

ATTO 590 and ATTO 610 were obtained from Sigma-Aldrich (St. Louis, MO, USA). The 

fluorophores were conjugated in excess onto thiol PEG amine (5 kDa, JenKem) via overnight 

incubation at RT in PBS/methanol (80%/20%) or PBS. Unreacted dye was removed using an 
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Amicon Ultra-0.5 mL filter device MWCO 3 kDa (Millipore, MA, USA). The different 

fluorescent PEG amines (5 kDa) were mixed with methoxy PEG amine at a 1:4, 1:20, or 1:40 

ratio, followed by conjugation to PS beads at various total PEG:COOH ratios. The fluorescence 

of the PS-PEG Rhodamine B, Cy5, ATTO 590, and ATTO 610 particles were measured at 

570/595, 645/675, 590/625, and 610/640 nm, respectively, using a SpectraMax 2 microplate 

reader (Molecular Devices, CA, USA). Sample fluorescence was compared to a standard curve 

generated using free PEG-fluorophores to quantify the number of conjugated fluorescent PEG 

groups and the effective total PEG grafting. 

 

4.2.3 PEG coating density quantification by PDAM assay 

The residual carboxylic groups present on the PS-PEG particles were quantified using 1-

pyrenylyldiazomethane (PDAM; Invitrogen), a fluorogenic compound that rapidly reacts with 

free carboxylate groups [303].
 
The PS-PEG beads (1 L) were diluted in 20 L of Pluronic F127 

solution (15 mg/mL) in a half-area black 96 well plate. Ten microliters of a saturated PDAM 

solution (~0.3 mg/mL in methanol) were added to each well, and the PDAM and particle 

fluorescence intensities were measured at 340/395 and 480/520 nm, respectively, using a 

SpectraMax 2 microplate reader. The sample PDAM fluorescence was compared to a standard 

curve of unmodified PS beads to determine the residual carboxylic group density (% COOH). 

The density of conjugated PEG groups (P) was calculated using the following equation: 𝑃 =

𝐶 × (100 − %𝐶𝑂𝑂𝐻), where C is the density of COOH groups present on the unmodified PS 

bead. Duplicate samples were tested per run, and the grafting estimates reflect an average of at 

least three independent experiments. To confirm the PDAM assay results, non-fluorescent PS 

beads (110 nm diameter; Bang’s Laboratories) modified with PEG ATTO 590 at varying 
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PEG:COOH ratios were analyzed using the PDAM assay, and the indirectly estimated PEG 

density was compared to the PEG density directly quantified using ATTO 590 fluorescence. 

 

4.2.4 PEG conformational regime calculations 

The Flory radius RF and grafting distance D were determined using the following 

equations: 𝑅𝐹 = 𝛼𝑁
3

5⁄ , 𝐴 =
1

𝑃
, and 𝐷 = 2√

𝐴

𝜋
; where α is the monomer length of PEG (0.35 nm), 

N the number of PEG repeats, and A the area occupied per PEG chain. The mushroom and brush 

conformations were defined by RF/D ≤ 1 and RF/D>1, respectively [47]. The dense brush 

conformation occurs when the thickness of the PEG layer (𝐿 =
𝑁𝛼

5
3⁄

𝐷
2

3⁄
) exceeds the RF by at least 

two-fold (i.e., when RF/D>2.8) [43, 48].  

 

4.2.5 THP-1 culture and uptake assay 

Human monocytic THP-1 cells were obtained from the University of North Carolina at 

Chapel Hill’s tissue culture facility and were maintained at 5 × 10
5
 cells/mL in RPMI 1640 

medium containing 10% fetal bovine serum and 1X penicillin-streptomycin, with incubation at 

37°C and 5% CO2. For the uptake studies, THP-1 cells seeded into 24 well plates at 1.70 × 10
5
 

cells/mL were differentiated in culture medium containing 200 nM phorbol 12-myristate 13-

acetate (PMA; Sigma-Aldrich) [304]. The PMA-containing medium was removed 3 d later and 

replaced with fresh culture medium, followed by incubation with carboxylate PS or PS-PEG 

particles at a 1:10
4
 cell-to-particle ratio for 4 h, 12 h, or 24 h; the fluorescent nanoparticle 

concentrations were determined by comparison to stock nanoparticles of known concentration. 

Flow cytometry was performed using a FACSCanto instrument (BD, Franklin Lakes, NJ, USA), 
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and propidium iodide (Invitrogen) staining was used for live/dead cell determination. At least 

10,000 events were recorded per sample, and the data were analyzed using BD FACSDiva 

software. The data represents n=3 independent experiments performed in triplicate.  

 

4.2.6 Primary human leukocyte culture and uptake assay 

Individual human buffy coat units were purchased from Innovative Research (Novi, MI, 

USA). The peripheral blood mononuclear and polymorphonuclear cells were collected by Ficoll-

Paque Premium separation and were resuspended at 3 × 10
6
 cells/mL in RPMI 1640 medium 

containing 25 mM HEPES, 1X penicillin-streptomycin, 1X sodium pyruvate, 0.1% β-

mercaptoethanol, and 10% human serum. For uptake studies, leukocytes were seeded in 96 well 

plates and incubated with carboxylate PS or PS-PEG particles at a 1:10
4
 cell-to-particle ratio for 

4 or 24 h, with incubation at 37°C and 5% CO2 and shaking at 200 rpm. After detachment with 

trypsin and washing with cold PBS, the cells were incubated with Fc block for 5 min on ice 

(eBioscience, San Diego, CA, USA). For the detection of cell surface markers, monoclonal 

mouse anti-human antibodies IgG1κ CD56 APC-eFluor® 780, CD16 APC, or CD14 APC-

eFluor® 780 (eBioscience); IgMκ CD66b PerCP-Cy5.5 (BD); or IgG1κ CD3 APC (Invitrogen) or 

CD19 PE were incubated with the cells for 20 min in the dark on ice. SYTOX® Blue dead cell 

stain (Invitrogen) was added prior to cell analysis for live/dead cell determination. Flow 

cytometry was performed using a Dako CyAn instrument (Beckman-Coulter, Brea, CA, USA). 

At least 50,000 events were recorded per sample, and the data were analyzed using Kaluza 

software (Beckman-Coulter). The data represents n=3 independent experiments performed in 

triplicate. 
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4.2.7 Intravital imaging of particle circulation 

Female BALB/c mice (20-24 g body weight) were obtained from Charles River 

Laboratories (Wilmington, MA, USA), and all animal experiments carried out in accordance 

with an animal use protocol (#12-137) approved by the University of North Carolina Animal 

Care and Use Committee. Intravital imaging was performed according to a previously published 

protocol [48, 305]. Briefly, the mice were anesthetized with isoflurane, and a tail vein catheter 

was inserted. After the hair was removed from the left ear, the mice were placed onto a heated 

stage (37°C) in a prone position with the left ear immobilized by taping onto an aluminum block. 

The vasculature was located manually on an IV 100 Olympus laser scanning microscope by the 

detection of green autofluorescence from red blood cells under white light excitation. A 

suspension of green fluorescent PS or PS-PEG5 kDa particles (300 µg/20 g mouse, n=3-4 per 

group) in a total of 100 µL PBS was slowly injected via the catheter, followed by a 50 µL flush 

of PBS and imaging with a 488 nm laser for 2 h at 5 s intervals. To analyze the particle blood 

circulation, the image files from each scan were exported to ImageJ, and the images were 

stacked in groups of 4. For each sample scan, the region of interest containing the vasculature 

was analyzed for the fluorescent signal. If needed, a correction for variation in laser intensity or 

drift was performed by background correcting each image to the signal from a vasculature-free 

region of the scan. The data were exported to GraphPad Prism for area under the curve (AUC) 

analysis.  

 

4.2.8 PS-PEG biodistribution 

After 2 h, the mice were sacrificed, and tissues (heart, liver, kidneys, spleen, lungs) were 

collected. Blood was also collected by cardiac puncture and added in 100 µL aliquots to a black 
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96 well plate. The tissues from treated and untreated animals were imaged using an IVIS Kinetic 

fluorescence imaging system with excitation at 465 nm. The fluorescent signal present in the 

tissues was calculated as a percentage of the total recovered fluorescence for the collected tissue 

samples. The fluorescence of particles in the blood was measured using a SpectraMax 2 

microplate reader and compared to a standard curve generated using green fluorescent PS beads 

added to untreated blood. The collected liver and spleen tissues were homogenized using an 

Omni Bead Ruptor 24 (Omni, Kennesaw, GA, USA) at a speed of 5.65 m/s for two cycles of 45 

sec, followed by centrifugation at 15,000 rpm for 5 min at room temperature. The fluorescence 

of particles in the tissues was measured using a SpectraMax 2 microplate reader and compared to 

a standard curve generated using green fluorescent PS beads added to untreated homogenized 

tissues. 

 

4.2.9 Extended circulation and biodistribution of densely PEGylated particles 

Additional mice (n=4 per group) were injected with densely PEGylated particles (5 kDa 

PEG, 3.61 PEG/nm
2
; 300 µg/20 g mouse) in a total of 100 µL PBS via the tail vein, and the mice 

were sacrificed at various time points (0, 12, 24, and 48 h). Tissues (heart, liver, kidneys, spleen, 

lungs) and blood were collected, and the tissue distribution and particle concentration in the 

blood were determined (see above). PK analysis of the blood concentration data was conducted 

with PKSolver; one- and two-compartment models were fit to the data to determine the best fit 

[48, 306]. 

 

4.2.10 Statistical analysis 

Group comparisons were performed using one-way ANOVA, followed by Tukey’s post 
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 hoc test, on SAS 9.3 software. A p-value<0.05 was considered to indicate statistical 

significance. All data are presented as mean ± S.D. 

 

4.3 Results 

4.3.1 Synthesis and characterization of PS-PEG nanoparticles 

ζ-potential measurements are commonly used to confirm and infer the density of PEG 

coating on charged nanoparticles. Thus, we decided to begin by evaluating whether the ζ-

potential can serve as an adequate measure of the extent of PEG grafting on various PS-PEG 

nanoparticles covering a broad range of input PEG:COOH ratios and PEG lengths (Table 4.1). 

Although we found that the particles generally exhibited increasingly neutral ζ-potentials with 

increasing input PEG:COOH ratios (Fig. 4.1a), we observed a virtually neutral ζ-potential for 

particles formulated with relatively low PEG:COOH ratios. This result underscored the inability 

of ζ-potential measurements to accurately quantify even moderately dense PEG coatings. The 

particle hydrodynamic diameter also scaled with increasing PEG density, but similar to the ζ-

potentials measurements, the difference in hydrodynamic diameters were only slightly correlated 

to the total final PEG coating, as determined by the fluorimetric assay described later (Fig. 4.1b). 

To more sensitively quantify PEG grafting, we directly conjugated fluorescently labeled 

PEG polymers to PS nanoparticles. Across four different fluorophores at various labeling ratios, 

we consistently observed that we were able to finely tune the PEG grafting density simply by 

varying the input PEG:COOH ratio and that we could reliably obtain exceedingly dense PEG 

grafting at excess input PEG ratios (Fig. 4.1c). Because terminal fluorophores may influence 

particle interactions with immune cells, we further explored whether we could estimate the PEG 

grafting density by quantifying the residual COOH groups on PS-PEG nanoparticles using 
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fluorogenic 1-pyrenylyldiazomethane (PDAM, MW 242.3). These indirect quantification values 

were highly correlated to PEG densities quantified using fluorophore-conjugated PEG (Fig. 

4.1d), underscoring the rigor and accuracy of this indirect measurement approach. More 

importantly, this method allowed us to accurately measure the grafting density of PS-PEG beads 

modified solely with methoxy-PEG-amine, thus eliminating the potentially confounding 

influence of conjugated fluorophores on particle uptake. The PEG grafting densities on all 

particles used in subsequent in vitro and in vivo experiments were determined using this indirect 

PDAM assay.  

 

 
 
Figure 4.1. Direct and indirect characterization of PS-PEG density. a) Surface charge and b) 

hydrodynamic diameter of 100 nm polystyrene (PS) beads conjugated with amine PEG (207-20,000 Da) 

at various PEG:COOH ratios. Linear regression was performed using SAS 9.3 software. c) The extent of 

PEG grafting on 100 nm PS particles at various input PEG:COOH ratios was directly quantified using 

fluorescent NH2-PEG5 kDa (Rhodamine B, Cy5, ATTO 590 and ATTO 610). d) The PEG densities on PS-

PEG5 kDa ATTO 590 particles were indirectly measured by quantifying residual COOH groups using 1-
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pyrenylyldiazomethane (PDAM). The linear fit (y=1.01x-0.04; linear regression was performed by 

minimization of sum of squares) suggests strong agreement between the two methods. The data represents 

n≥2 independent experiments performed in at least triplicate.  

 

4.3.2 Influence of PEG coating characteristics on particle uptake by cultured macrophage cells 

Improved evasion of phagocytic uptake and clearance by MPS cells is a principal 

outcome of PEGylation. To investigate the minimum PEG grafting density necessary to suppress 

uptake of polymeric nanoparticles by macrophages and other immune cells, we first prepared PS-

PEG nanoparticles conjugated with different amounts of 5 kDa PEG and quantified their uptake 

by differentiated human THP-1 cells (a macrophage-like cell line) via flow cytometry. We found 

that coating PS-PEG with ≥0.8 PEG/nm
2
, which translates to PEG grafted at RF/D≥4.7, 

effectively suppressed particle uptake by THP-1 cells (defined by ≥20-fold reduction in uptake 

relative to uncoated PS particle control) for at least 24 h (Fig. 4.2). In contrast, particles that were 

less densely PEGylated but still possessed a brush PEG coat (~0.2 PEG/nm
2
;
 
RF/D=2.6) did not 

evade THP-1 uptake as readily, and these particles exhibited continued uptake over time, as 

reflected by greater cellular mean fluorescence at 12 and 24 h than at 4 h (Fig. 4.2b). We next 

evaluated the influence of PEG MW (range: 207 Da–20 kDa) at grafting densities exceeding 1.2 

PEG/nm
2
 (RF/D>3.6, except 559 Da PEG with RF/D=1.7). Contrary to previous findings that 

suggest very short PEGs cannot adequately reduce particle uptake [307-309], we found that even 

PEGs with as few as 12 ethylene oxide subunits (559 Da) were able to effectively reduce uptake 

when grafted at densities exceeding 1.2 PEG/nm
2
.  

To correlate the observed cell uptake to the theoretical PEG conformational regime, we 

mapped particle uptake by human THP-1 macrophages to a phase diagram reflecting a wide 

range of PEG MWs and grafting densities (Fig. 4.3). We found that effective suppression of 

macrophage uptake required dense brush PEG at surface densities substantially exceeding the 
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mushroom-brush transition (RF/D =1; dashed line), which is often cited as the threshold for 

achieving effective stealth behavior [9, 295]. Nearly all formulations that exhibited a ≥20-fold 

reduction in THP-1 uptake relative to the unmodified particle control possessed PEG coatings 

with RF/D values in excess of 2.8 (dotted line, Fig. 4.3), indicative of PEG grafting in the dense 

brush regime. For longer PEG chains (≥10 kDa), although the inherently greater RF suggests that 

even a minimal PEG coating (~0.1 PEG/nm
2
) should theoretically generate PEG grafting in the 

dense brush regime, we found that a significantly higher PEG density (RF/D>8) was required to 

maximally reduce macrophage uptake/cell association. 

 

 

 
 

 

Figure 4.2. Differentiated THP-1 cell uptake of PS-PEG beads. The a) uptake, relative to unmodified 

PS beads, and b) mean cellular fluorescence intensity of differentiated human THP-1 cells incubated with 

PEG-coated particles with various grafting densities (0.1-1.5 PEG/nm
2
; 5 kDa) and PEG MWs (207 Da - 
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20 kDa; coating density >1.3 PEG/nm
2
) was quantified using flow cytometry. All data represents at least 

n=3 independent experiments performed in triplicate. # indicates P<0.01 vs. control PS beads. 

 

 

 

 

Figure 4.3. Phase diagram of particle uptake by differentiated THP-1 cells. Uptake at 4 h is shown as 

a function of PEG length (MW) and coating density (PEG groups/nm
2
). The gray shading represents the 

various RF/D values; the transitions between the mushroom-brush and brush-dense brush conformations 

are indicated by the dashed (RF/D=1.0) and dotted (RF/D=2.8) lines, respectively. All data represents at 

least n=3 independent experiments performed in triplicate. 

 

4.3.3 Influence of PEG coating characteristics on particle uptake by primary human peripheral 

leukocytes 

The blood contains an abundance of circulating white blood cells such as monocytes and 

neutrophils that represent the earliest phagocytic cells that systemically dosed nanoparticles 

would encounter upon intravenous administration. Therefore, we sought to test whether the PEG 

coating characteristics that effectively suppressed uptake by cultured human THP-1 macrophages 

can similarly evade uptake by primary human leukocytes. We isolated peripheral blood 

mononuclear cells and polymorphonuclear leukocytes from the blood of healthy human donors, 
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incubated them with PS-PEG and control beads, and quantified particle uptake by various cells 

populations (e.g., monocytes, neutrophils) using flow cytometry. Although PEGylated particles 

with RF/D>2.8 exhibited markedly reduced uptake by both granulocytes and monocytes (Fig. 

4.4), the extent of reduced uptake relative to uncoated PS particles was not quite as effective 

compared to with THP-1 cells. Primary human lymphocytes did not exhibit substantial uptake of 

either the control or PEGylated particles (Fig. 4.4c). 

 

 

Figure 4.4. Primary human peripheral blood leukocyte uptake of PS-PEG beads. The a) uptake, 

relative to unmodified PS beads (COOH), and b) mean cellular fluorescence intensity of primary human 

immune cells incubated with various PEG-coated particles was quantified by flow cytometry. All data 

represents at least n=3 independent experiments performed in triplicate. # indicates P<0.01 vs. control PS 

beads. c) Representative flow cytometry histograms for the untreated (red), unmodified PS (green), and 

PS-PEG (blue; 5 kDa, 0.91 PEG/nm2) groups with various primary human leukocyte populations. 
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4.3.4 Influence of PEG coating characteristics on particle circulation kinetics in vivo 

Intravital imaging (IVIM) is an excellent tool for quantifying the circulation times of 

particles over relatively short durations (≤ 2 h) in real-time. Because we anticipated that 

inadequately PEGylated particles would be quickly eliminated from the circulation, we decided 

to use IVIM to evaluate the circulation kinetics of particles with different PEG grafting densities 

following tail vein injection. In particular, we chose to perform our studies in BALB/c mice, 

which exhibit enhanced Th2 immune activity that leads to markedly faster particle clearance than 

those commonly observed with Th1-prone C57BL6 mice [310]. Prolonged circulation of 

polymeric nanoparticles appeared to require PEG grafting substantially beyond the minimum for 

a dense brush regime (Fig. 4.5a-b). Very densely coated particles, with ≥1.5 PEG/nm
2
 

(RF/D≥6.6), were able to effectively evade clearance and persist in systemic circulation (<20% 

cleared after 2 h). In contrast, particles with slightly less dense PEG coatings, even those within 

the brush or dense brush regimes (RF/D=2.0 and 4.2, respectively), were largely eliminated 

within 2 h, resulting in rapid accumulation in the liver (Fig. 4.5c), presumably due to clearance 

by MPS cells.  

We next monitored the circulation kinetics and tissue biodistribution of the very densely 

coated PS-PEG nanoparticles (≥1.5 PEG/nm
2
, RF/D≥6.6) across longer time scales (0, 12, 24, 

and 48 h). The trend of reduced PEG blood clearance of these particles at 2 h directly translated 

to prolonged circulation times in excess of 24 h (Fig. 4.6a). The best-fit one-compartment model 

yielded a half-life of 14 h for the very densely PEGylated particles (Table 4.2), a 450-fold 

increase relative to the unmodified PS beads. Upon their eventual elimination, they were found 

primarily accumulated in the liver (Fig. 4.6b). Interestingly, we observed very little particle 
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accumulation in the spleen (<10% of the total recoverable dose, and ~8- to 10-fold less than the 

particle dose in the liver). 

 

 

Figure 4.5. Circulation and biodistribution of PS-PEG beads. a) Blood circulation profiles of PS and 

various PS-PEG5kDa beads observed using intravital microscopy. The data represent the fraction of the 

maximum fluorescence for particles in each animal and were collected from n=3-4 BALB/c mice. b) Area 

under the curve (AUC, fluorescence*sec) plot for the blood profiles of PS and various PS-PEG5 kDa beads 

observed using intravital imaging. # indicates P< 0.01. c) The biodistribution of the different formulations 

2 h after i.v. injection in each animal was quantified from the 2D fluorescent image signal intensities and 

confirmed through fluorimetric analysis of the homogenized whole tissue samples.  

 

 
 

Figure 4.6. Circulation and biodistribution of densely modified PS-PEG beads. a) The blood 

circulation profile of very densely PEGylated particles with RF/D≥6.6 over an extended time period 
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(n=4); dashed line represents the fit for a one-compartment model. b) The biodistribution of PS-PEG 

beads with very dense surface coating after i.v. injection in each animal was quantified from the 2D 

fluorescent image signal intensities and confirmed through fluorimetric analysis of the homogenized 

whole tissue samples.  

 

4.4 Discussion 

Evasion of uptake and clearance by MPS cells, and consequently prolonged circulation 

and/or improved targeting to specific tissues, remains a critical challenge for systemically 

administered nanomedicines. Numerous physicochemical properties have been exploited to 

engineer nanoparticles that can persist in the circulation, including controlling particle size [311, 

312], surface chemistries [28, 313], shape [314], and rigidity/deformability [305]. Among these 

approaches, the most frequently adopted strategy is PEGylation, motivated in part by its clinical 

success in extending the circulation times and improving the efficacies of many protein and 

liposomal therapeutics. Despite the long history of PEG modifications in drug delivery, the 

precise extent of surface PEG grafting on polymeric nanoparticles necessary to effectively evade 

uptake by various immune cells remains poorly defined. The convenient assumption is that PEG 

coatings that adequately coat the underlying particle core, attained when individual PEG chains 

begin to overlap at the mushroom-brush transition, should effectively resist binding by 

surrounding biomacromolecules and cells [4, 9, 295].  

Surprisingly, we observed that rigid polymeric nanoparticles must be coated with PEG at 

a very dense brush regime (RF/D≥2.8; equivalent to >1 PEG/nm
2
 for ~2 kDa PEG) to effectively 

evade uptake by macrophages and peripheral leukocytes in vitro, as well as achieve sustained 

circulation in vivo. Our findings differ substantially from a number of recent reports that suggest 

PEG grafting near the mushroom-brush interface appeared to be exceptionally inert in biological 

environments. Perry et al. found that grafting ~0.1 PEG5k/nm
2
 (RF/D ~1.5) onto PEG hydrogel 

nanoparticles, whereby the PEG grafting was quantified using fluorescein-labeled PEG, afforded 
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markedly longer circulation times [48]. The discrepancy is likely attributed in part to the 

presence of PEG in the particle core, as well as the soft mechanical nature of hydrogel 

nanoparticles [305]. Nance et al. likewise reported that latex beads grafted with ~0.1 PEG5k/nm
2
, 

estimated using 
1
H NMR with bis(trimethylsilyl) benzene as an internal standard, exhibited 

improved diffusion in the extracellular space of brain tissues [46]. However, compared to the 

leukocyte-rich environment of the blood or the macrophage-rich environment in MPS organs 

such as the liver and spleen, brain tissues possessed far fewer macrophages and immune cells for 

particles to encounter, particularly during the relatively short time scales in the study. In good 

agreement with our findings, Walkey et al. observed that PEG5k, when coated at a minimum 

density of ~0.5 PEG/nm
2
 (RF/D ~3.5) effectively suppressed the uptake of 90 nm gold 

nanoparticles by cultured mouse macrophages in vitro [50]. It should be noted that the RF/D 

threshold is influenced by the PEG MW; although the RF/D ≥ 2.8 threshold appears to be a 

reasonable fit for PEG MWs commonly used in nanoparticle drug delivery (1-5 kDa), we found 

that a higher RF/D was necessary for longer PEG chains (≥10 kDa). It remains to be determined 

whether this discrepancy is a result of differences in the effective RF when polymers are grafted 

at very high densities, as the tendency for distinct polymer chains to entangle and inter-penetrate 

with each other is dependent on MW.  

In light of the long-held notion that PEG grafting at the mushroom-brush transition or 

brush regime should confer sufficient stealth properties, the need for PEG grafting at densities 

substantially exceeding its Flory radius (beyond even a moderately dense brush regime) to evade 

uptake by immune cells may seem perplexing. However, PEG is hydrophilic, flexible, and 

capable of assuming an almost infinite number of spatial configurations over very short time 

intervals [315]. Thus, even when PEG is grafted at densities where neighboring chains begin to 
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overlap, there is likely periodic and relatively frequent appearance of gaps exposing the inner 

particle core when two neighboring PEG chains assume an extended conformation 

simultaneously. In line with this hypothesis, Walkey et al. found that high PEG grafting densities 

in the dense brush regime were necessary to minimize adsorption of serum proteins on PEG-

coated gold nanoparticles; the thickness and composition of the adsorbed “protein corona” has 

been demonstrated to have a profound impact on the biological fate of PEGylated particles both 

in vitro and in vivo [50, 316, 317]. Indeed, the extremely high concentrations of proteins and 

other biomacromolecules in the blood create an environment whereby each nanoparticle 

constantly collides with a very large number of individual molecules capable of interacting with 

the underlying core. Thus, even very short-lived appearance of gaps in the PEG coating may be 

efficiently exploited by proteins and other biomacromolecules in the immediate vicinity, 

eventually leading to opsonization and clearance by the immune system. Therefore, to effectively 

eliminate gap formation in the PEG coating, the particle surface would likely need to be coated 

by an abundance of protruding PEG chains, at a PEG grafting density corresponding to a very 

dense brush regime.  

Unfortunately, for biodegradable polymeric particles formed by conventional solvent 

diffusion or single emulsion methods using PEG-containing block copolymers, PEG coatings in 

the dense brush regime may not be readily achievable. The vast majority of such PEG-coated 

nanoparticles in literature exhibit moderately negative or positive -potentials indicative of 

inadequate PEG coverage, which reflects inefficient phase separation of PEG from the emulsion 

core to the organic/aqueous solvent interface, perhaps due to steric impediment by other PEG 

chains [9]. The inadequate PEG coatings observed with many nanoparticle systems implies that 

there is likely room for further improvements in PEGylation methodologies. One such approach 
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is “grafting from” methods such as those involving living radical polymerization (e.g., atom 

transfer radical polymerization [ATRP]) can enable higher density polymer grafting than 

“grafting to” strategies, particularly on 2D surfaces [318, 319]. Here, we demonstrate that 

“grafting to” strategies based on covalent conjugation, which likely facilitates greater PEG 

grafting density compared to post-insertion, adsorption, or phase separation strategies [50, 320], 

can also facilitate sufficient grafting density to readily resist uptake by immune cells.   

Beyond improving PEGylation, there is also a sore need for improved methods to 

characterize PEG coatings, as the current lack of sensitive methods to quantify surface PEG 

chains presents a critical hurdle to validating any improvements in PEGylation. As shown in Fig. 

4.1, commonly used ζ-potential measurements are, at best, an insensitive inference of PEG 

grafting density and a poor predictor of the effective stealth properties of the resulting 

nanoparticles. Other PEG quantification methods such as NMR, XPS, and measurement of 

residual, unbound PEG often fail to differentiate between total and surface PEG or require 

complex methodologies and instrumentation that are not readily available [43, 50, 297, 300]. The 

most desirable solution would be a label-free, quantitative assay for surface PEG grafting that 

can be readily adopted across a diverse array of nanoparticle platforms.   

The primary mechanism of nanoparticle elimination from the systemic circulation has 

long been attributed to efficient phagocytic clearance by resident macrophages in the liver and 

spleen, in part because both organs represent primary sites of particle accumulation in vivo. 

Consequently, a common approach to evaluate the stealth properties of PEGylated particles is to 

measure uptake by different cultured macrophage cell lines such as mouse RAW264.7 

macrophages. Nevertheless, emerging evidence suggests that a considerable portion of PEG-

coated nanoparticles may instead be eliminated from the systemic circulation via uptake by 
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circulating monocytes and granulocytes. For example, Jones et al. found that in mice prone to 

Th2 immune responses (e.g., BALB/c mice), circulating monocytes and granulocytes accounted 

for a significant portion of PEG hydrogel nanoparticle clearance [310]. Patient monocyte 

function was also able to serve as a predictor of rapid elimination of Doxil in some refractory 

ovarian cancer patients [321]. In agreement with these findings, we observed that even very 

densely PEGylated latex beads did not evade uptake by primary human monocytes and 

granulocytes as readily compared to differentiated THP-1 cells (Fig. 4.3 and 4.4). Our results 

suggest that in vitro uptake studies using primary monocytes and granulocytes may provide a 

more rigorous screen of the stealth properties of PEG-coated particles than conventional studies 

using tissue culture-adapted macrophages. 

 

4.5 Conclusions 

Grafting PEG onto particles is a common approach to extend circulation times essential 

for many nanomedicine applications. Here, we systematically varied PEG MW and grafting 

densities to identify PEG coating characteristics that effectively evade uptake of polymeric 

nanoparticles by immune cells in vitro and in vivo. We found that particle interactions with MPS 

cells is critically dependent on the conformation of individual PEG chains and that a very dense 

brush conformation is essential to extending particle circulation times. Our results underscore the 

broad need to rigorously assess the density of PEG coatings in nanoparticle systems, as well as 

the need for improved PEGylation strategies. 
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Table 4.1. PS-PEG density, hydrodynamic diameter, ζ-potential, and theoretical RF/D and PEG 

conformation values. 

Core PS Size 
(d. nm) 

PEG MW 
(Da) 

PEG Density 
(PEG/nm

2
) 

Particle Size 
(d. nm) 

ζ-potential 
(mV) 

RF/D 
PEG 

Conformation 

93 - 0.0 ± 0.2 95 ± 2 -48 ± 2 - - 

100 - 0.0 ± 0.1 109 ± 4 -55 ± 5 - - 

93 207 1.1 ± 0.2 120 ± 6 -7 ± 13 0.8 mushroom 

93 207 1.3 ± 0.1 96 ± 1 9 ± 5 0.9 mushroom 

100 207 4.1 ± 0.5 121 ± 7 18 ± 3 1.6 brush 

93 383 0.2 ± 0.2 112 ± 11 -27 ± 2 0.5 mushroom 

93 383 1.3 ± 0.2 106 ± 6 9 ± 4 1.3 brush 

100 383 4.4 ± 0.2 129 ± 23 16 ± 3 2.4 brush 

93 559 0.2 ± 0.2 97 ± 1 -36 ± 4 0.6 mushroom 

93 559 0.5 ± 0.2 112 ± 10 -6 ± 5 1.0 brush 

93 559 1.4 ± 0.1 99 ± 5 9 ± 3 1.7 brush 

100 559 3.6 ± 0.5 133 ± 11 7 ± 1 2.7 brush 

93 2 kDa 0.2 ± 0.1 101 ± 3 -38 ± 8 1.3 brush 

93 2 kDa 0.8 ± 0.3 107 ± 3 -2 ± 2 2.7 brush 

93 2 kDa 1.3 ± 0.1 128 ± 6 -5 ± 8 3.5 dense brush 

93 2 kDa 1.4 ± 0.2 105 ± 3 -2 ± 4 3.6 dense brush 

93 2 kDa 1.6 ± 0.1 139 ± 18 1 ± 3 3.9 dense brush 

100 2 kDa  4.2 ± 0.2 141 ± 4 1 ± 1 6.3 dense brush 

93 5 kDa 0.1 ± 0.2 108 ± 8 -46 ± 5 2.0 brush 

93 5 kDa  0.2 ± 0.2 105 ± 5 -45 ± 3 2.6 brush 

93 5 kDa 0.6 ± 0.2 105 ± 1 4 ± 7 4.2 dense brush 

93 5 kDa 0.8 ± 0.2 110 ± 3 -2 ± 3 4.7 dense brush 

93 5 kDa 0.9 ± 0.2 109 ± 2 -4 ± 2 5.1 dense brush 

93 5 kDa 1.2 ± 0.2 108 ± 1 1 ± 3 5.8 dense brush 

93 5 kDa 1.5 ± 0.2 135 ± 9 0 ± 2 6.6 dense brush 

100 5 kDa 3.6 ± 0.1 134 ± 6 -1 ± 1 10.1 dense brush 

93 10 kDa 0.4 ± 0.1 113 ± 3 -2 ± 1 5.3 dense brush 

93 10 kDa 1.2 ± 0.1 116 ± 1 -0 ± 3 8.8 dense brush 

93 10 kDa 1.5 ± 0.1 135 ± 6 0 ± 4 9.7 dense brush 

100 10 kDa 3.0 ± 0.2 134 ± 5 -0 ± 1 13.9 dense brush 

93 20 kDa 0.1 ± 0.1 100 ± 2 -46 ± 2 4.6 dense brush 

93 20 kDa 1.4 ± 0.2 136 ± 5 -0 ± 1 14.3 dense brush 

100 20 kDa  2.4 ± 0.1 147 ± 4 1 ± 2 18.9 dense brush 
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Table 4.2. PK model and parameters for various PS-PEG5 kDa particles (n=3-4).  

PEG Density 
(PEG/nm

2
) 

RF/D Best-fit Model R
2 

t1/2 (h) 
CL 

(mL/h)*  
AUC0-t 

(mg/mL*h)* 

VD 
(mL)* 

COOH - One-compartment 0.991 0.03 -
 

- - 

0.1 2.0 One-compartment 0.995 0.11 - - - 

0.6 4.2 One-compartment 0.991 0.41 - - - 

3.6 10.1 One-compartment 0.999 13.51  0.088 3.13  1.71 
 

[*] Due to the relatively rapid clearance of the carboxylate PS and 0.1 and 0.6 PEG/nm
2
 PS-PEG5 kDa particles within 

2 h, the normalized intravital imaging data were used to generate PK models, and the volume of distribution (VD) 

and other related parameters cannot be determined accurately using this data.   
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CHAPTER 5: ANALYSIS OF PRE-EXISTING ANTI-PEG ANTIBODIES IN THE 

GENERAL POPULATION
4
 

5.1 Introduction 

Immunogenicity encompasses the entirety of innate, humoral, and cellular immune 

responses against therapeutic molecules and is frequently associated with the induction of 

antibodies that directly bind to therapeutic molecules (i.e., anti-drug antibodies) after the initial 

or repeated administration of the drug. Both innate and adaptive immune responses can result in 

decreased efficacy or treatment failure due to either direct neutralization of the therapeutic 

molecules [322] or inadequate drug dosing at target cells/tissues because of altered 

pharmacokinetics and biodistribution [323]. Worse, hypersensitivity reactions may lead to 

adverse or even fatal reactions to a therapy [324, 325]. While major strides have been made to 

reduce immunogenicity, such as development of humanized or fully human monoclonal 

antibodies, immunogenicity continues to be a major concern for safety and efficacy of many 

novel drug products [326]. 

An emerging class of anti-drug antibodies are those that specifically recognize and bind 

poly(ethylene glycol) (PEG), a synthetic polymer routinely used both as an excipient in 

pharmaceutical formulations and also as a polymer conjugate to improve the stability and 

circulation kinetics of protein drugs and nanocarriers [9, 29]. PEG is a hydrophilic and highly 

flexible polymer comprised of repeating subunits of ethylene glycol ([-CH2-CH2-O-]n). Because 

densely PEG-grafted surfaces are exceptionally resistant to protein adsorption [7, 9, 295], PEG 

                                                      
4
 This chapter is based on an article submitted to Analytical Chemistry. 
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has long been assumed to possess little to no immunogenicity, and PEGylation has even been 

used to mitigate the immunogenicity of therapeutic proteins [327]. Although the potential 

immunogenicity of PEG was underappreciated at the time, Richter & Akerblom in 1983 reported 

the possibility that PEGylated proteins, unlike free PEG that generated minimal responses, can 

actually induce PEG-specific antibodies [51]. Later on, various research groups observed that 

repeat doses of otherwise long-circulating nanocarriers modified with PEG or PEG-containing 

molecules were rapidly cleared by mononuclear phagocyte system (MPS) cells in rodent and 

other animal models [33, 56]. These early in vivo observations were eventually categorized into a 

phenomenon termed the accelerated blood clearance (ABC) effect, whereby the first dose of a 

PEG-containing agent induces anti-PEG antibodies (anti-PEG Ab) that then opsonize and 

facilitate rapid elimination of subsequent doses of PEGylated therapeutics [19]. In nearly all 

animal studies, anti-PEG Ab responses were largely mediated by IgM class antibodies and were 

transient in nature [20, 71]. 

Growing evidence suggests that human patients can also generate immune responses to 

PEG-modified therapeutics, with significant effects on clinical outcomes. The presence of anti-

PEG Ab has been associated with rapid clearance of various PEGylated proteins in clinical trials 

[104, 106], as well as anaphylactic or hypersensitivity reactions after the administration of PEG-

containing formulations [103, 110]. In contrast to most anti-drug antibodies, an important feature 

of human anti-PEG Ab responses is that these Ab can be found even in “treatment-naïve” 

individuals (i.e., as “pre-existing” anti-PEG Ab) [20], presumably due to prior exposure to PEG. 

Indeed, PEG and PEG-derivatives are common ingredients in personal care, beauty, and 

household cleaning products (e.g., soap, sunblock, cosmetics, detergent), as well as processed 

foods. Given the popular use of PEG in biologics and nanomedicines as well, the presence of 
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pre-existing anti-PEG Ab poses significant concerns for the efficacy and safety of a wide range 

of therapeutics. 

Despite these serious implications, the true prevalence and levels of pre-existing anti-

PEG Ab responses remains not well understood. The reported prevalence of pre-existing anti-

PEG Ab varies widely across different studies, ranging from <1%-44% [17, 20, 105]. In addition 

to natural variations among subjects, the differences are likely due in part to the use of assay 

techniques such as hemagglutination tests or endpoint dilution ELISAs with different 

sensitivities and specificities of detection. Here, we sought to rigorously characterize pre-existing 

anti-PEG Ab in the general population by measuring the prevalence, concentration and isotype of 

anti-PEG Ab in contemporary and historical plasma and serum samples from healthy adults. To 

enable reproducible quantitation of anti-PEG Ab that could serve as a reference for future 

investigations, we generated chimeric monoclonal anti-PEG IgG and IgM with known binding 

affinities to PEG, and used them as standards in quantitative competitive ELISA assays.  

 

5.2 Materials and methods 

5.2.1 Human plasma and serum samples 

Whole blood (K2-EDTA anticoagulant) from 68 individual healthy subjects was 

purchased from Bioreclamation (Hicksville, NY, USA), and the samples were centrifuged at 

1500 g for 15 min at room temperature. Aliquots of the top plasma layer were collected and 

stored at -80°C until use. An additional 309 frozen plasma samples from healthy subjects were 

purchased from ProMedDx (Norton, MA, USA); samples were thawed, aliquoted, and stored at -

20°C until use. Serum collected during the periods 1970-1979, 1980-1989, and 1990-1999 (30, 

30, and 19 samples, respectively) from patients with no history of malignancies were purchased 
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from Mayo Clinic Bioservices (Rochester, MN, USA) and were thawed, aliquoted, and stored at 

-20°C until use. Patient demographics are listed in Table 5.1. 

 

5.2.2 Chimeric anti-PEG antibody standards 

Sequences for chimeric anti-PEG Ab were generated by combining the VH/VL regions of 

commercially available murine anti-PEG Ab (6.3 IgG1 and AGP.3 IgM; IBMS Academia Sinica) 

[328] with the CH1/CL and Fc regions of human IgG1-4 or IgM Ab. Plasmids encoding chimeric 

heavy, light-chains, along with J-chain (IgM only) were co-transfected into Expi293 cells 

(ThermoFisher) and grown for 72 h. The chimeric 6.3 (c6.3) IgG antibodies were purified from 

expression supernatant by single-step protein A/G purification (ThermoFisher) and assessed for 

purity by SDS-PAGE electrophoresis. Chimeric AGP.3 (cAGP.3) IgM antibodies were used 

directly from expression supernatant. 

The concentration of the c6.3 IgG1-4 and cAGP.3 IgM standards were determined using 

ELISA. Briefly, high-binding half-area 96-well Costar plates (Corning) were coated with 500 

ng/mL of anti-human Fab (#I5260, Sigma-Aldrich) or anti-human IgM (#609-1107, Rockland 

Immunochemicals) capture antibody in 50 nM bicarbonate buffer (pH 9.6) overnight at 4°C. The 

chimeric antibodies were diluted in 1% milk in PBS-0.05% Tween and detected using anti-

human IgM HRP (#609-1307, 1:75000 dilution Rockland Immunochemicals), anti-human IgG 

HRP (#709-1317, 1:15000 dilution, Rockland Immunochemicals), and/or corresponding IgG 

subclass secondary antibodies (see Methods & Materials Anti-PEG Ab ELISA section). Pooled 

human IgG1 (Sigma-Aldrich), IgG2 (Abcam), IgG3 (Sigma-Aldrich), IgG4 (Sigma-Aldrich), 

and IgM (ImmunoReagents, Raleigh, NC, USA) were used as quantitation standards. 
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The KD of the generated chimeric Ab were determined using an Octet QK instrument 

(ForteBio, Menlo Park, CA, USA). Streptavidin biosensors were loaded with biotin-PEG10k and, 

following a baseline step in DPBS with 0.01% bovine serum albumin (BSA), the sensors were 

then exposed to c6.3 IgG1-4 or cAGP.3 at 0–100 nM in DPBS-0.01% BSA. Dissociation was 

monitored in DPBS-BSA. Raw data was processed using ForteBio’s Data Analysis Software 6.4.  

 

5.2.3 Anti-PEG Ab ELISA 

For detection of PEG-specific antibodies, 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-methoxy PEG5k (DSPE-PEG; Nanocs, New York, NY, USA) was coated 

onto medium-binding half-area 96-well Costar plates (Corning) at 50 µg/mL in DPBS overnight 

at 4°C. After blocking the plates with 5% non-fat milk in DPBS, the plasma or serum samples, 

which were diluted 5- to 200-fold in 1% non-fat milk in DPBS, were added in the presence or 

absence of free diol-PEG8k (4 mg/mL) and incubated for 1 h, followed by washes with DPBS. 

Antibodies bound to the DSPE-PEG coat were detected using the following detection antibodies 

and 1-step Ultra TMB (ThermoFisher): anti-human IgG1 HRP (A10648, 1:1000 dilution, 

ThermoFisher); mouse anti-human IgG2 (05-3500, 1:1000 dilution, ThermoFisher) along with 

anti-mouse IgG HRP secondary (sc-2005, 1:4000 dilution, Santa Cruz Biotechnology); anti-

human IgG3 HRP (#053620, 1:1000 dilution, Invitrogen); anti-human IgG4 HRP (A10654, 1:750 

dilution, ThermoFisher); or anti-human IgM HRP (#609-1307, 1:15000 dilution, Rockland 

Immunochemicals). After stopping the HRP reaction with 2 N sulfuric acid, the absorbance at 

450 nm was measured using a Spectramax M2 plate reader (Molecular Devices). All wash and 

incubation steps were performed using DPBS without any surfactant, as commonly used 

surfactants such as Tween contain PEG chains, which could artificially alter the ELISA results 
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[52]. All assays included the respective c6.3 IgG1-IgG4 or cAGP.3 IgM standard curves (range 

0-275 ng/mL), and the level of anti-PEG Ab present in the samples was determined using a 5-PL 

regression curve of the absorbance, which was corrected for the non-specific background of 

sample wells treated with free diol-PEG8k. Total anti-PEG IgG was calculated as the sum of the 

anti-PEG IgG1-IgG4 levels. 

Detection cut-offs were established based on the corrected absorbance of the lowest 

standard curve point for each c6.3 IgG1-4 and cAGP.3 IgM standard curve according to the 

method described by Frey et al. [329]. Assay precision was established by calculating the 

average coefficient of variation (CV%) for all detectable standard curve points, and the accuracy 

was calculated as 100% x observed concentration/expected concentration for all detectable 

standard curve points (Table 5.2). To further confirm the specificity of the ELISA results, free 

methoxy-PEG40k-myoglobin (PEG-MYO, Alfa Aesar) was used instead of free diol-PEG8k, and 

the calculated anti-PEG IgG1 concentrations obtained using the two different competitive 

molecules was compared for a range of samples.  

 

5.2.4 Human antibody isotyping quantification  

The levels of total IgG1, IgG2, IgG3, IgG4, and IgM in the human plasma and serum 

samples were quantified using a Bio-Plex Pro human isotyping 6-plex panel kit (BioRad) on a 

Luminex MAGPIX instrument (EMD Millipore) in duplicate according to the manufacturer’s 

instructions. Samples were diluted 1:40000 in the provided isotyping diluent. The total IgG1, 

IgG2, IgG3, IgG4, and IgM concentrations were calculated using MILLIPLEX Analyst 5.1 

software, and the total IgG was calculated as the sum of the total IgG1-IgG4 levels. 
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5.2.5 Statistical analyses 

Transformations for the anti-PEG IgM and IgG, as well as IgG1 and IgG2, variables were 

investigated using the Box-Cox procedure within generalized linear models. The covariates of 

interest were as follows: gender, age, age categorized, race, and historical time period (i.e, 1970-

1979, 1980-1989, 1990-1999, and contemporary). The PEG IgM and IgG variables were also 

dichotomized to ‘above’ and ‘below’ their respective predetermined detection thresholds. 

Fisher’s exact tests were used to evaluate general association for data categorized into 

contingency tables with nominal categories. Multivariable general linear models were also 

explored. Since this was an exploratory study, nominal (or unadjusted) p-values have been 

reported. P-values >0.05 were considered significant. Statistical analyses were performed using 

SAS version 9.4 (SAS Institute), and all graphs were generated using Graphpad Prism version 

6.0. 

 

5.3 Results 

5.3.1 Validation and specificity of ELISA assays for measuring anti-PEG Ab levels 

Previous studies of anti-PEG Ab responses generally measured relative amounts of PEG-

binding Ab through either hemagglutination assays with PEG-coated red blood cells or endpoint 

dilution ELISAs that determine Ab status based on absorbance readings above an often arbitrary 

threshold [22, 100, 104-106, 109]. Unfortunately, both methods only estimate the relative 

amounts of Ab present, making comparisons between studies difficult. Quantitative ELISA 

offers the potential to provide precise measurements of absolute antibody concentrations but 

requires well-characterized Ab standards with a human Ab backbone in order to convert 

measured absorbance to absolute amounts of Ab. One potential challenge to such an approach is 
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that endogenous serum Ab responses in individuals are undoubtedly polyclonal in nature. 

Generally, monoclonal Ab may not be appropriate as antibody standards for characterizing a 

polyclonal response, since polyclonal Ab can bind different portions of a pathogen or even 

different regions of a particular antigen and thus can accumulate to a greater extent on the 

pathogen surface compared to a monoclonal Ab. However, since the PEG backbone consists of 

identical ethylene glycol repeats, the chimeric monoclonal Ab standards we developed should 

bind the same epitope as a polyclonal anti-PEG Ab response. This led us to engineer chimeric 

monoclonal anti-PEG IgM and IgG1-4 based on merging human IgG1-4 and IgM backbones 

with PEG-binding VH and VL domains previously isolated from mouse IgM and IgG [328]. As 

expected, the 4 subclasses of chimeric anti-PEG IgG all possessed relatively similar binding 

affinities, with KD values spanning the range of 4.8 x 10
-9

 to 5.8 x 10
-9

 M (Table 5.3). The KD for 

chimeric anti-PEG IgM was 6.8 x 10
-11

. 

A frequent criticism of prior anti-PEG ELISA measurements was the lack of 

confirmation of specificity to PEG. To ensure that we were indeed detecting PEG-specific Ab, 

we performed competitive binding with free diol-PEG8k, and only reported signal that was 

saturated by the free PEG. Using this competitive ELISA setup with chimeric Ab standards, our 

assay afforded sensitive detection of anti-PEG Ab, with final detection cut-off limits of 14.2, 

15.1, 3.9, 4.4, and 6.4 ng/mL for anti-PEG IgG1, IgG2, IgG3, IgG4, and IgM, respectively 

(Table 5.2). To further confirm specificity to PEG, we also tested an additional ELISA format 

using a methoxy-PEG40k-myoglobin conjugate as the competing molecule instead of diol-PEG8k 

and found comparable anti-PEG Ab levels for a range of samples (Fig. 5.1).  

In animals, anti-PEG Ab have been found against both the PEG backbone (CH2-CH2-O 

repeating units) and PEG terminal groups such as methoxy and hydroxy moieties [52, 89]. Here, 
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we chose to focus on backbone-specific anti-PEG Ab by using a methoxy-PEG5k-lipid as the 

capture antigen and free diol-PEG8k as the competing molecule in our competitive ELISA assay, 

for a number of reasons. First, the PEG backbone is by definition common to all PEGylated 

therapeutics, whereas terminal groups on different PEGylated systems can technically vary, even 

though all current PEGylated products currently on the market utilize methoxy-terminal PEG. In 

addition, Hershfield et al. found that binding of induced and pre-existing anti-PEG Ab was 

significantly inhibited by free diol-PEG10k, leading the authors to conclude that anti-PEG Ab 

detected were backbone-specific [104]. Similarly, Ganson et al. demonstrated that competition 

with free diol-PEG10k and methoxy-PEG10k reduced binding of pre-existing anti-PEG Ab to 

pegloticase to an equal extent [17]. Other existing literature reports of pre-existing and induced 

anti-PEG Ab against other commercially available PEGylated drugs, including peginterferon 

beta-1a [124] and pegfilgrastim [330], did not specify the terminal groups of the PEG molecules 

used to confirm the specificity of anti-PEG Ab. Thus, while we can be certain that the reported 

Ab responses must encompass Ab that binds the PEG backbone, the same may not be true of 

PEG terminal groups.  

 

 
 

Figure 5.1. Confirmation of anti-PEG ELISA specificity. Comparison between the anti-PEG IgG 

levels determined through competitive ELISAs using free diol-PEG8k or free methoxy-PEG40k-myoglobin 

(PEG-MYO). 
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5.3.2 Anti-PEG Ab levels in the contemporary population 

To quantify the levels and prevalence of pre-existing PEG-specific Ab in the general 

population, we screened a total of 377 commercially sourced plasma samples from healthy 

human blood donors for anti-PEG IgG and IgM levels using the competitive ELISA assay with 

diol-PEG8k described above. Interestingly, we found that a high proportion of the plasma 

samples possessed detectable anti-PEG Ab levels. PEG-specific Ab levels statistically (90% 

confidence interval) above the detection cut-off limits were detected in ~72% of individuals, 

with 18%, 25% and 30% of all samples possessing anti-PEG IgG only, anti-PEG IgM only, and 

both anti-PEG IgG and IgM, respectively (Table 5.4). Our findings differ substantially from 

previously reported prevalence rates for pre-existing anti-PEG Ab, which ranged from <1% to 

44% [20, 101, 102], with more recent studies averaging 20%-30% for healthy donors or 

treatment-naïve patients [17, 104, 105, 124], and which were generally determined using 

hemagglutination and endpoint dilution ELISAs. In our study, since most individuals exhibited 

only low anti-PEG Ab levels, the high prevalence of anti-PEG Ab is likely attributed in part to 

the high sensitivity of our competitive ELISA method (detection cut-off limits 2-15 ng/mL). 

Indeed, the majority of these “positive” plasma specimens had only low levels of anti-PEG Ab, 

with geometric mean anti-PEG IgG and IgM concentrations of 52 ng/mL and 22 ng/mL, 

respectively (Fig. 5.2a-b). Using higher threshold values, ~37% of samples possessed anti-PEG 

Ab above 100 ng/mL (28% IgG only, 6% IgM only, 3% both IgG and IgM), and plasma samples 

with anti-PEG IgG and/or IgM above 500 ng/mL represented only 8% of the total (Table 5.4), 

which would more closely align with the reported values in the existing literature. 

Various IgG subclasses reflect different humoral immune responses and effector 

functions [12]. Thus, we evaluated the levels of different subclasses of anti-PEG IgG (IgG1-4) 
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among the contemporary human plasma samples. Interestingly, detected anti-PEG IgG were 

almost exclusively of the IgG1 and IgG2 subclasses, with IgG2 as the dominant subclass (57% 

positive individuals, geometric mean 41 ng/mL) vs. IgG1 (26% positive individuals, geometric 

mean 12 ng/mL) (Table 5.5, Fig. 5.3). All 97 serum samples that were positive for anti-PEG 

IgG1 also contained anti-PEG IgG2. PEG-specific IgG3 and IgG4 were rarely detected (Table 

5.5, Fig. 5.3). In individuals positive for anti-PEG IgG, anti-PEG IgG1, IgG2, IgG3 and IgG4 

accounted for ~16%, 83%, 0% and 1% of the total detectable anti-PEG IgG on average. For 

comparison, the relative abundance of all IgG subclasses in humans is ~60%, 32%, 4% and 4% 

for IgG1-4, respectively [12]. 

We next performed linear regression analysis to evaluate the relationship between the 

prevalence and levels of pre-existing anti-PEG Ab and available demographics factors such as 

age, gender, and race. Both the concentration and prevalence of anti-PEG IgG, but not anti-PEG 

IgM, decreased with greater age (p<0.01), with a 63% reduction in the prevalence between the 

oldest vs. youngest age group (Fig. 5.4a-d). However, the extent of correlation between the anti-

PEG IgG and age was weak, with R
2
<0.10 for most analyses (Fig. 5.5). The prevalence and 

serum levels of anti-PEG IgG were not correlated to gender, whereas females were slightly more 

likely to possess anti-PEG IgM (p<0.01) (Fig. 5.4e-h). No observed relationship was found for 

race with anti-PEG IgM and IgG (Fig. 5.4i-l). Similar to total anti-PEG IgG, anti-PEG IgG1 and 

IgG2 concentrations were correlated with age (all p<0.01) but not gender or race (Fig. 5.4). To 

determine whether the observed relationship with age was attributed to reduction in total 

antibody levels, we quantified the total concentrations of human IgG1-4 and IgM in all samples. 

The amount of anti-PEG IgG, IgG1 and IgG2 as a fraction of the total IgG, IgG1 and IgG2 

levels, respectively, also decreased with age (all p<0.01) but not with race or gender (Fig. 5.6), 
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indicating that the decline in prevalence and levels of anti-PEG Ab is not attributed to a broad 

decrease in total Ab. Whether the relationship between anti-PEG IgG and age reflects overall 

changes in the immune system with age (e.g., reduced B cell repertoire or reduced isotype 

switching from low affinity IgM to higher affinity IgG) [331], decreased affinity of the PEG-

specific IgG in older vs. younger individuals, differences in recent or total lifetime exposure to 

PEG, or other factors remains unclear. 

 

 
 

 

Figure 5.2. Anti-PEG IgG and IgM in the general population. Frequency distribution of a) anti-PEG 

IgG and b) anti-PEG IgM levels in contemporary human plasma samples (n=377). GMC: geometric mean 

concentration, CI: 95% confidence intervals for the GMC. Cumulative frequency distribution of c) anti-

PEG IgG and d) anti-PEG IgM levels in contemporary human plasma samples. Light gray lines represent 

the 90% CI, and detection cut-off limits are indicated by the vertical gray dashed lines. 

 

 

 

  



 

 

 

 

 

 

 

 
 
 

Figure 5.3. Anti-PEG IgG1-4 in the general population. Frequency distribution of a) anti-PEG IgG1, b) IgG2, c) IgG3, and d) IgG4 levels in 

contemporary human plasma samples (n=377). GMC: geometric mean concentration, CI: 95% confidence intervals for the GMC. Cumulative 

frequency distribution of e) anti-PEG IgG1, f) IgG2, g) IgG3, and h) IgG4 levels in contemporary human plasma samples. Light gray lines 

represent the 90% CI, and detection cut-off limits are indicated by the vertical gray dashed lines. 
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Figure 5.4. Anti-PEG IgM, IgG, IgG1, and IgG2 levels in healthy individuals by a-d) age group, e-h) gender, i-l) and race (n=377). The 

data are depicted using Tukey’s method for box-and-whisker plots, with samples outside of the whiskers shown as open circles.  
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Figure 5.5. Relationship between anti-PEG Ab levels and age. Linear regression of log concentrations of A) anti-PEG IgM, B) anti-PEG IgG, 

C) anti-PEG IgG1, and D) anti-PEG IgG2 concentrations and age by decade. The fitted regression line is shown in red, with 95% confidence 

intervals shown in gray. 
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Figure 5.6. Anti-PEG IgM, IgG, IgG1, and IgG2 prevalence in healthy individuals by a-d) age group, e-h) gender, and i-l) race (n=377). 
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5.3.3 Anti-PEG Ab levels in historical samples 

In the earliest report of human anti-PEG antibodies, Richter and Akerblom observed pre-

existing anti-PEG Ab in <5% of healthy donors [101]. Since then, the reported values for pre-

existing anti-PEG Ab compiled across various clinical studies and reports has spanned a wide 

range, with more recent studies reflecting higher prevalence rates, typically >20% [20, 100, 105]. 

To determine whether these disparities reflect a true increase in anti-PEG Ab levels among the 

population over time or are likely attributed to differences in sensitivity of detection assays, we 

obtained healthy human serum samples banked from the 1970s, 1980s and 1990s, and quantified 

the levels of anti-PEG Ab in these samples. We detected anti-PEG IgG alone, anti-PEG IgM alone, 

and both anti-PEG IgG and IgM in 20%, 19%, and 16% of all historical samples, respectively 

(Table 5.6, Fig. 5.7). Although the overall prevalence of anti-PEG Ab among the historical samples 

was slightly lower than among the contemporary samples (p<0.001), the observed prevalence rates 

of anti-PEG Ab were far higher than those previously reported in historical human samples (e.g., 

0.2%-4.9% in healthy donors in 1984 [101]). In contrast, the anti-PEG IgG and IgM concentrations 

did not differ significantly between the historical and contemporary samples. Other major 

characteristics of the anti-PEG Ab response, such as higher concentrations of IgG relative to IgM 

and the presence of IgG2 as the dominant anti-PEG IgG subclass, were consistent between 

historical and contemporary samples as well (Fig. 5.7-5.9). The amount of total antibody present in 

the historical serum samples was similar to that in the contemporary plasma samples (Fig. 5.10), 

indicating that the obtained samples remained intact over years of storage and were unlikely to 

have negatively impacted the measured anti-PEG Ab levels. We observed no clear relationship 

between any demographic factors and anti-PEG Ab prevalence or concentration for the historical 

samples, although the small sample size likely limited the power of our analysis. 



 

 

 

Figure 5.7. Anti-PEG IgG and IgM in historical samples. Frequency distribution of anti-PEG IgG and IgM levels in historical human serum 

samples collected in the a-b) 1970s, e-f) 1980s, and i-j) 1990s (n=30, 30, and 19, respectively). GMC: geometric mean concentration, CI: 95% 

confidence intervals for the GMC. Cumulative frequency distribution of anti-PEG IgG and IgM levels in historical human serum samples collected 

in the c-d) 1970s, g-h) 1980s, and k-l) 1990s. Light gray lines represent the 90% CI, and detection cut-off limits are indicated by the vertical gray 

dashed lines. 
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Figure 5.8. Anti-PEG IgG1-4 levels in historical samples. Frequency distribution of anti-PEG IgG1 (panels a,e,i), IgG2 (panels 

b,f,j), IgG3 (panels c,g,k), and IgG4 (panels d,h,l) in human serum samples from the 1970s (panels a-d), 1980s (panels e-h), and 

1990s (panels i-l) (n=30, 30, 19, respectively). GMC: geometric mean concentration, CI: 95% confidence intervals for the GMC.  
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Figure 5.9. Anti-PEG IgG1-4 prevalence in historical samples. Cumulative distribution of anti-PEG IgG1 (panels a,e,i), IgG2 

(panels b,f,j), IgG3 (panels c,g,k), and IgG4 (panels d,h,l) in human serum samples from the 1970s (panels a-d), 1980s (panels e-h), 

and 1990s (panels i-l) (n=30, 30, 19, respectively). Light gray lines represent the 90% CI, and detection cut-off limits are indicated by 

the vertical gray dashed lines.  
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Figure 5.10. Total antibody levels in contemporary and historical samples. Frequency distribution of total a) IgM, b) IgG, c) 

IgG1, d) IgG2, e) IgG3, and f) IgG4 in contemporary human plasma samples (row 1) and serum samples from the 1990s (row 2), 

1980s (row 3), and 1970s (row 4) (n=377, 19, 30, 30, respectively).  
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5.4 Discussion 

Immune responses to therapeutic agents can reduce or completely eliminate their 

efficacy, as well as lead to undesirable side effects such as hypersensitivity and anaphylactic 

reactions that pose significant concerns for patient safety. Although PEG was long thought to be 

non-immunogenic and had even been used to reduce the immunogenicity of protein antigens, 

growing evidence suggests that both animals and humans can form antibodies that specifically 

recognize the PEG component of various PEGylated therapeutics [17, 22, 89]. A particularly 

concerning phenomenon is the potential presence of anti-PEG Ab in treatment-naïve individuals 

without previous exposure to specific PEGylated therapeutics (i.e., individuals with pre-existing 

anti-PEG Ab). Here, we observed a surprisingly high prevalence of pre-existing anti-PEG Ab in 

the general contemporary population, with ~72% of the samples possessing detectable levels of 

anti-PEG IgG and/or IgM, including a small fraction of samples (~8%) that exhibited modest to 

high levels of either anti-PEG Ab (Table 5.4). The widespread prevalence of anti-PEG Ab 

underscores the importance of assessing potential Ab responses to the growing number of 

PEGylated protein and drug delivery systems that are in development, in clinical trials, and on 

the market [332]. 

Our findings differ substantially from previously reported prevalence rates for anti-PEG 

Ab that ranged from <1% to 44% [20, 101, 102]. Those estimates are generally based on 

hemagglutination and end-titer ELISAs that utilize subjective threshold cut-offs with limited 

sensitivity, and estimates can be difficult to interpret across the various assay formats. Since 

most individuals exhibited only low anti-PEG Ab levels, the high prevalence of anti-PEG Ab in 

our study is likely attributed in part to the high sensitivity of our competitive ELISA method 

(detection cut-off 2-15 ng/mL). Using more stringent thresholds such as 100 ng/mL or 500 
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ng/mL, only 37% and 8% of the contemporary samples, respectively, would be considered 

positive for anti-PEG Ab, which would more closely align with the reported values in the 

existing literature. 

It has been recently hypothesized that anti-PEG immunity may be gaining in prevalence, 

based on a comparison of the results from Richter and Akerblom in 1984 (detectable and high 

titer anti-PEG Ab in 4.9% and 0.2% of healthy donors, respectively) [101] to later results such 

that those of Armstrong et al. in 2003 (27%-28% of their healthy donors) [100], with the 

increased use of PEG in household, food, beauty, and health products being a primary driver of 

the gaining prevalence. However, albeit only from a limited number of specimens, we found that 

over 50% of the serum samples from 1970s-1990s actually possessed anti-PEG Ab, which 

suggests that the hypothesis of emerging anti-PEG prevalence may not be true. Instead, 

immunological responses to PEG are likely longstanding yet underappreciated, and the 

increasing incidence of adverse events with PEG-modified therapeutics may simply reflect its 

increasing parenteral use in pharmaceutical and clinical settings. 

Given the generally strong safety profile of many PEG-modified therapeutics, and 

assuming that the prevalence and concentrations of anti-PEG Ab measured here are correct, our 

findings would seem to support the conclusion that low to perhaps even modest levels of 

circulating anti-PEG Ab in most individuals would not adversely affect the safety and efficacy of 

PEG-modified therapeutics. In other words, below certain threshold concentrations, anti-PEG Ab 

in the blood may not accumulate on a substantial fraction of injected PEG-modified therapeutics 

at a sufficient level or at a sufficiently rapid rate, and thus would not meaningfully alter their 

PK/PD or trigger adverse immunological responses. Consistent with this hypothesis, in several 

recent clinical trials, accelerated clearance or adverse reactions to PEGylated drug have primarily 



115 

 

been reported in subjects with high titers of anti-PEG Ab [17, 22, 103]. Unfortunately, the 

precise threshold concentrations of anti-PEG Ab that could begin to impact the safety and 

efficacy of PEG-modified therapeutics remain poorly understood, and would likely vary 

depending on the specific therapeutic(s) in use. It should be noted that antibody levels as low as 

100 ng/mL have been associated with altered pharmacokinetics of monoclonal Ab drugs due to 

anti-drug Ab, as well as vaccine efficacy [333-335]. Thus, the possibility exists that the PK/PD, 

as well as safety profile, of certain PEGylated proteins and drug delivery systems may be 

sensitive to modest levels of circulating anti-PEG Ab. This possibility, coupled with the small 

but not trivial number of healthy individuals who exhibit high levels of pre-existing anti-PEG 

Ab, suggests that sensitive detection and precise quantitation of anti-PEG Ab levels in a clinical 

setting will be essential to ensuring the safe use of PEGylated drugs in all target patient 

populations going forward. 

The mechanism through which antibodies can be generated against a polymer that 

demonstrates strong anti-fouling properties remains a mystery. In rodent models intravenously 

dosed with PEGylated liposomes, anti-PEG Ab formation has been proposed to occur through a 

T-cell independent mechanism involving splenic B cells [19, 61]. This process generates anti-

PEG IgM almost exclusively, and does not induce memory; hence, depending on the frequency 

of administration, the accelerated blood clearance effect, as well as adverse reactions mediated 

by anti-PEG IgM can be largely minimized in animal studies [57, 67, 336]. In contrast to these in 

vivo results, we found a mixture of anti-PEG IgG and IgM in the human samples, with higher 

levels of IgG than IgM and far more IgG2 than IgG1. IgG2 antibodies are often associated with 

T-cell independent antibody induction, which appears to support the mechanism of anti-PEG Ab 

induction observed in mice. The IgG2 subclass is primarily responsible for antibody responses to 
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polysaccharide antigens [12]; PEG, as a highly repetitive and hydrophilic polymer, may bear 

some structural resemblance to such antigens. However, it should be noted that high levels of 

anti-PEG IgG2 alone do not necessarily signify a solely T-cell independent mechanism of 

antibody induction. The presence of anti-PEG IgG1, which was found in approximately half of 

all anti-PEG IgG2-positive individuals and comprised ~16% of the total anti-PEG IgG/individual 

on average, reflects a likely complex and variable mechanism of anti-PEG Ab formation. 

IgG antibodies are a hallmark of immunological memory in humoral immune response. 

The high presence of detectable anti-PEG IgG, even if the average baseline concentrations is 

low, implies that immunological memory likely exists in the majority of the population that 

could in turn result in rapid increase of anti-PEG Ab following dosing of PEGylated drugs. 

When combined with the increasing use of PEGylation, this reality could present a unique 

medication management and polypharmacy issue, as patients may have elevated levels of pre-

existing anti-PEG Ab in response to an unrelated therapeutic prior to receiving the PEG-

modified therapy of interest. Even the inclusion of PEG as an inactive ingredient could pose a 

challenge for individuals with sufficiently high anti-PEG Ab levels, as evidenced by the serious 

adverse reactions experienced by two patients in a clinical trial for PEGylated phenylalanine 

ammonia lyase who received unrelated intramuscular injections of contraceptives containing 

PEG as an excipient [103]. Interestingly, Lubich et al. reported that repeated measurements of 

anti-PEG levels in some individuals can vary over time in the absence of known treatment with 

PEGylated drugs [105]. Further understanding of the mechanism, risk factors, critical threshold, 

and other characteristics of anti-PEG Ab would significantly improve our ability to identify, 

mitigate, or avoid PEG-related immunogenicity in patients.  
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5.5 Conclusions 

PEG has a variety of useful applications in the pharmaceutical industry, and a number of 

PEGylated therapeutics have been highly successful. However, growing evidence from recent 

clinical trials suggests that the presence of high anti-PEG Ab levels, including pre-existing 

humoral responses, can abrogate the efficacy of PEG-modified drugs or result in serious adverse 

reactions. Using a rigorously validated quantitative ELISA method, we detected low levels of 

anti-PEG IgG and IgM in the majority of the population, and high levels (>500 ng/mL) in a 

small but non-trivial number of individuals. The presence of anti-PEG implies the existence of 

immunological memory that could result in rapid elevation of anti-PEG Ab levels. In light of the 

increasing number of PEG-modified or PEG-containing pharmaceutical products on the market, 

we believe it is prudent to introduce regular monitoring of anti-PEG Ab responses in patients 

receiving PEGylated therapies, as it could affect clinical trial design, testing, and dosing 

regimens for PEGylated therapeutics. 



118 

 

Table 5.1. Summary of patient demographics for contemporary and historical samples. 

 Contemporary 

(n=377) 

1970-1979 

(n=30) 

1980-1989 

(n=30) 

1990-1999 

(n=19) 

Age, n (%)     

    ≤19 18 (5%) 0 (0%) 1 (3%) 0 (0%) 

    20-29 56 (15%) 8 (27%) 5 (17%) 0 (0%) 

    30-39 65 (17%) 7 (23%) 5 (17%) 0 (0%) 

    40-49 62 (16%) 8 (27%) 5 (17%) 9 (47%) 

    50-59 69 (18%) 7 (23%) 5 (17%) 5 (26%) 

    60-69 53 (14%) 0 (0%) 5 (17%) 4 (21%) 

    ≥70 54 (14%) 0 (0%) 4 (13%) 1 (5%) 

Gender, n (%)     

    Male 226 (60%) 15 (50%) 15 (50%) 13 (68%) 

    Female 151 (40%) 15 (50%) 15 (50%) 6 (32%) 

Race, n (%)     

    Caucasian 200 (53%) 30 (100%) 30 (100%) 19 (100%) 

    Black/African American 49 (13%) 0 (%) 0 (%) 0 (%) 

    Hispanic 42 (11%) 0 (%) 0 (%) 0 (%) 

    Asian 37 (10%) 0 (%) 0 (%) 0 (%) 

 

 

 

 

 

 

 

Table 5.2. ELISA assay details for anti-PEG IgG1, IgG2, IgG3, IgG4, and IgM. 

 Anti-PEG IgG1 Anti-PEG IgG2 Anti-PEG IgG3 Anti-PEG IgG4 Anti-PEG  
IgM 

Detection threshold  14.2 ng/mL 15.1 ng/mL 3.9 ng/mL 4.4 ng/mL 6.4 ng/mL 

Precision (CV%) 24 ± 6% 24 ± 9% 35 ± 10% 26 ± 6% 32 ± 10% 

Accuracy (%) 103 ± 8% 102 ± 4% 99 ± 6% 101 ± 3% 102 ± 4% 
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Table 5.3. Binding kinetics of chimeric anti-PEG IgG and IgM. 

 c6.3 anti-PEG 
IgG1 

c6.3 anti-PEG 
IgG2 

c6.3 anti-PEG 
IgG3 

c6.3 anti-PEG 
IgG4 

cAGP.3 anti-PEG 
IgM 

KD (M) 5.8 ± 0.2 x 10
-9

 5.3 ± 0.2 x 10
-9

 4.8 ± 0.08 x 10
-9

 5.1 ± 0.2 x 10
-9

 6.6 ± 0.4 x 10
-11

 

kon (1/M•s) 6.7 ± 0.07 x 10
4 

8.6 ± 0.1 x 10
4
 7.1 ± 0.04 x 10

4
 4.9 ± 0.04 x 10

4
 1.1 ± 0.03 x 10

7
 

koff (1/s) 3.9 ± 0.07 x 10
-4

 4.6 ± 0.08 x 10
-4

 3.4 ± 0.04 x 10
-4

 2.5 ± 0.05 x 10
-4

 7.1 ± 0.02 x 10
-4

 

R
2 

0.993 0.993 0.998 0.997 0.974 

 

 

 

 

 

Table 5.4. Prevalence of anti-PEG IgG and IgM in contemporary human plasma samples 

(n=377). 

Prevalence of anti-PEG Ab response Total Ab IgG IgM IgG and IgM 

 Positive individuals, n (%) 273 (72%) 67 (18%) 93 (25%) 113 (30%) 

 Individuals ≥100 ng/mL, n (%) 139 (37%) 107 (28%) 22 (6%) 10 (3%) 

 Individuals ≥500 ng/mL, n (%) 30 (8%) 26 (7%) 4 (1%) 0 (0%) 

 

 

 

 

 

Table 5.5. Prevalence of anti-PEG IgG1-4 in contemporary human plasma samples (n=377). 

Prevalence of anti-PEG Ab response  IgG1  IgG2  IgG3  IgG4 

 Positive individuals, n (%) 97 (26%) 214 (57%) 5 (1%) 3 (1%) 

 Individuals ≥100 ng/mL, n (%) 19 (5%) 83 (22%) 0 (0%) 0 (0%) 

 Individuals ≥500 ng/mL, n (%) 1 (0%) 19 (5%) 0 (0%) 0 (0%) 
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Table 5.6. Prevalence of anti-PEG IgG and IgM in historical human serum samples collected 

from the 1970s, 1980s, and 1990s (n=30, 30, 19, respectively). 

 Prevalence of anti-PEG Ab response Total Ab IgG IgM IgG and IgM 

1
9

7
0

s  Positive individuals, n (%) 14 (47%) 8 (27%) 2 (7%) 4 (13%) 

 Individuals ≥100 ng/mL, n (%) 9 (30%) 9 (30%) 0 (0%) 0 (0%) 

 Individuals ≥500 ng/mL, n (%) 2 (7%) 2 (7%) 0 (0%) 0 (0%) 

1
9

8
0

s  Positive individuals, n (%) 18 (60%) 5 (17%) 8 (27%) 5 (17%) 

 Individuals ≥100 ng/mL, n (%) 7 (23%) 7 (23%) 0 (0%) 0 (0%) 

 Individuals ≥500 ng/mL, n (%) 2 (7%) 2 (7%) 0 (0%) 0 (0%) 

1
9

9
0

s  Positive individuals, n (%) 12 (63%) 3 (16%) 5 (26%) 4 (21%) 

 Individuals ≥100 ng/mL, n (%) 8 (42%) 5 (26%) 2 (11%) 1 (5%) 

 Individuals ≥500 ng/mL, n (%) 3 (16%) 1 (5%) 2 (11%) 0 (0%) 
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CHAPTER 6: PRETARGETING WITH BISPECIFIC FUSION PROTEINS TO 

FACILITATE DELIVERY OF NANOPARTICLES TO MOLECULARLY DISTINCT 

TUMORS 

6.1. Introduction 

Effective delivery of therapeutic drug molecules or imaging contrast agents to cancer cells 

continues to be one of the biggest challenges in cancer therapy and diagnostics. Strategies used to 

target nanoparticles to cancer cells generally exploit unique features of tumor physiology such as 

(1) the poorly formed and leaky blood vessels that facilitate enhanced nanoparticle extravasation 

from the tumor vasculature relative to normal vasculature (i.e., the Enhaced Permeation and 

Retention [EPR] effect), and (2) the differential expression of surface receptors relative to normal 

tissues [135, 141]. Unfortunately, the extent of the EPR effect varies substantially among different 

tumors and different subjects [152, 156]. “Stealth” nanoparticles that rely solely on “passive 

targeting” via the EPR effect are also poorly internalized, limiting the efficiency of intracellular 

delivery [137, 141]. Although, “actively targeted” nanoparticles with tumor-specific ligands can 

theoretically bind and internalize into specific tumor cells, they are often quickly eliminated from 

the circulation due to rapid mononuclear phagocyte system (MPS) clearance [125]; this can result 

in a far lower fraction of the administered dose of ligand-conjugated nanoparticles extravasating at 

target tissue(s) relative to passively targeted nanoparticles. Indeed, in numerous reports in the 

literature, actively targeted nanoparticle systems did not appreciably improve nanoparticle delivery 

to tumors when compared to passively targeted nanoparticles [126, 337, 338]. 
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The aforementioned challenges are further exacerbated by tumor heterogeneity, which 

encompasses the functional and phenotypic differences between cancer cells such as cellular 

morphology, gene and protein expression, metabolism, motility, proliferation, level of drug 

resistance, and metastatic potential. Tumor heterogeneity can be caused by variations in 

accumulated genetic mutations, along with alterations in the local tumor microenvironment, that 

frequently lead to genomically distinct subclonal populations within the same tumor or between 

tumor lesions [131, 178]. In turn, the existence of diverse cancer cell populations poses a major 

challenge to targeted delivery of diagnostic and/or therapeutic agents. Single ligand-conjugated 

nanoparticles generally fail to facilitate delivery to the diverse range of cells present in a given 

tumor lesion or patient [126]. Tumor heterogeneity can also result in variable EPR effects within 

different regions of the same tumor. As a result, many cancers are only partial suppressed after 

treatment with nanomedicines, leading to eventual tumor regrowth and/or the development of 

drug-resistant tumors. A potential solution involves the conjugation of multiple ligands onto a 

single nanoparticle. Unfortunately, such an approach would not only incur exorbitant 

developmental costs but also require conjugation of excess targeting ligands that would likely 

result in rapid phagocytic clearance of the modified particles. Most current nanoparticle-based drug 

delivery strategies fail to deliver adequate therapeutic payload to the full spectrum of tumor cells 

present in a given patient. 

A recently emerged strategy to facilitate targeted delivery of therapeutics is “pretargeting,” 

which involves first introducing pretargeting molecules that can specifically bind the tumor cells of 

interest and then capture the therapeutic and/or diagnostic payload administered in a second 

injection (Fig. 6.1). Pretargeting in the form of pretargeted radioimmunotherapy (PRIT) has been 

extensively studied in vivo and in human subjects to improve the delivery of radioactive payload 
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relative to antibody-radiolabel drug conjugates [195] and has generally shown greater tumor 

specificity and safety compared to conventional radioimmunotherapy [194]. Despite the 

considerable success of PRIT, pretargeting has rarely been applied to improve drug delivery by 

polymeric nanoparticles. Consequently, the potential applications, limitations, and challenges of 

this targeting strategy remain largely unknown [339]. A particular attractive feature of pretargeting 

is the theoretical ease in increasing the breadth of nanoparticle targeting to heterogeneous and 

molecularly distinct tumors simply by tuning the combination of pretargeting molecules used. For 

a given pretargeting molecule, the tumor-binding domain can be modified, while the nanoparticle-

binding domain remains unchanged (Fig. 6.1). In this study, we sought to evaluate whether 

pretargeting with two different pretargeting bispecific fusion proteins (FPs) consisting of single-

chain variable fragments (scFvs) linked to streptavidin (SA), which have been successfully used in 

PRIT [207, 340], can enhance the delivery of the same biotinylated polymeric nanoparticles 

simultaneously to corresponding T- and B-lymphoma cells in vitro and in vivo. 

 

 

Figure 6.1. Schematic illustration of pretargeted nanoparticle delivery to a heterogeneous 

population of lymphoma cells. In the first step, a cocktail of pretargeting fusion proteins (FPs), based on 
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streptavidin linked to single-chain variable fragments, is used to specifically label Raji B-cell lymphoma 

(CD20
+
) and Jurkat T-cell lymphoma (TAG72

+
) cells. In the second step, biotin-functionalized 

nanoparticles are administered and will be captured by FPs bound to the surface of target cells. 

 

6.2. Materials and methods 

6.2.1 Preparation and characterization of PS-PEG-biotin nanoparticles 

Carboxylate-modified yellow-green fluorescent polystyrene (PS) beads with mean 

diameters of ~100 nm were purchased from Invitrogen (Carlsbad, CA, USA). The surface COOH 

densities of the particles (3.4 COOH groups/nm
2
) were calculated from the mEq/g values provided 

by the manufacturer. Methoxy PEG amine (mPEG-NH2, 3 and 5 kDa) was purchased from 

JenKem (Allen, TX, USA), and biotin PEG amine (bPEG-NH2, 3 kDa) was obtained from Rapp 

Polymere (Tuebingen, Germany). Amine-modified PEGs were conjugated to the PS particles as 

previously described [341]. Briefly, the beads were washed thrice with MilliQ H2O and 

resuspended in 50 mM borate buffer (pH 7.8). mPEG-NH2 and bPEG-NH2 were added to the PS 

beads at varying methoxy PEG:biotin PEG ratios, and 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC; Invitrogen) and N-hydroxysulfosuccinimide (S-NHS; 

Thermo Scientific, MA) were each added at five-fold molar excess of total PEG amine. The 

EDC/S-NHS reaction was allowed to proceed overnight at RT. The reaction mixture was quenched 

with excess glycine, and the PEG-modified particles were washed with MilliQ H2O and 

resuspended in water to stock concentrations (~20 mg/mL). The hydrodynamic size and ζ-potential 

of the synthesized particles were determined by dynamic light scattering and laser Doppler 

anemometry, respectively, using a Zetasizer Nano ZS (Malvern, UK). The final PEG grafting 

density was indirected quantified using a 1-pyrenylyldiazomethane (PDAM; Invitrogen)-based 

assay, as previously described [341]. Biotin conjugation was confirmed using a dot blot assay: 1 µg 

of each PS-PEG or PS-PEG-biotin bead was blotted onto a nitrocellulose membrane, blocked with 
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5% nonfat milk in PBS-Tween 20 (PBS-T) for 1 h at room temperature, incubated with 

streptavidin-horseradish peroxidase (SA-HRP, 1:5000 dilution) for 1 h at room temperature, and 

then detected using an ECL kit (BioRad, Hercules, CA, USA) and a FluorChemE imaging system 

(Protein Simple, San Jose, CA, USA).  

 

6.2.2 Cell culture and cell uptake assay 

Human monocytic THP-1, Raji B cell lymphoma, and Jurkat T-acute lymphoblastic 

leukemia cells were obtained from the University of North Carolina at Chapel Hill Tissue Culture 

Facility and were maintained at 1 x 10
6
 cells/mL in RPMI 1640 medium containing 10% fetal 

bovine serum and 1X penicillin-streptomycin, with incubation at 37°C and 5% CO2. The anti-

CD20 (αCD20) fusion proteins (1F5(scFv)4SA [239, 342], B9E9(scFv)4SA [343]) and anti-TAG72 

(αTAG72) fusion proteins (CC49(scFv)4SA[262]) were generously provided by the Oliver Press 

group (Fred Hutchinson Cancer Research Center). For the phagocytic uptake studies, THP-1 cells 

seeded into 24 well plates at 1.70 x 10
5 
cells/mL were differentiated in culture medium containing 

200 nM phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich, St. Louis, MO, USA) [341]. The 

PMA-containing medium was removed 3 days later and replaced with fresh culture medium, 

followed by incubation with various PS-PEG-biotin particles at a 1:10
4 
cell:particle ratio for 12 h. 

For the lypmhoma cell uptake studies, 1 x 10
5
 cells were seeded into 96-well plates and incubated 

with 500 nM fusion protein (FP) for 4 h. After washing to remove unbound FP, the cells were then 

incubated with various PS-PEG-biotin beads for 12 h at a 10
4
:1 particle:cell ratio. Flow cytometry 

was performed using a FACSCanto instrument (BD, Franklin Lakes, NJ, USA). At least 10,000 

events were recorded per sample, and the data were analyzed using BD FACSDiva software. The 

data represent n = 3 independent experiments performed in triplicate. 
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6.2.3 Pharmacokinetics and biodistribution of biotinylated nanoparticles  

Female BALB/c mice (19−24 g body weight) were obtained from Charles River 

Laboratories (Wilmington, MA, USA), and all animal experiments carried out in accordance with 

an animal use protocol (#14-098) approved by the University of North Carolina Animal Care and 

Use Committee. The mice were injected with fully modified PS-PEG-biotin nanoparticles (15 

mg/kg, i.v.) in a total of 100 μL of PBS via the tail vein, and the mice were sacrificed at various 

time points (0, 1, 2, and 6 h). Tissues (heart, liver, kidneys, spleen, lungs) and blood were 

collected, and the tissue biodistribution of the particles was determined using an IVIS Kinetic 

fluorescence imaging system with excitation at 465 nm. The fluorescence of particles in the blood 

was measured using a SpectraMax 2 microplate reader and compared to a standard curve generated 

using green fluorescent PS beads added to untreated blood. PK analysis of the blood concentration 

data was conducted with PKSolver using a one-compartment model fit to the data [49, 306]. 

 

6.2.4 Biodistribution of pre-targeted nanoparticles in mouse models containing single and dual 

tumors 

Female athymic nude mice (20-24 g body weight) were obtained from the University of 

North Carolina at Chapel Hill Small Animal Core, and all animal experiments carried out in 

accordance with an animal use protocol (#14-054) approved by the University of North Carolina 

Animal Care and Use Committee. For single tumor-bearing mice, the animals were inoculated with 

Raji cells (2.5 x 10
7
 cells each) on the right flank, and, for dual tumor-bearing mice, the animals 

were also inoculated with Jurkat cells (2.5 x 10
7
 cells each) on the left flank. The mice were 

maintained on a biotin-free diet (Harlan Laboratories, Indianapolis, IN, USA) for at least 7 d prior 

to the start of the biodistribution studies. After the tumors reached ≥100 mm
3
 in size, αCD20 
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and/or αTAG72 FP (250 µg each) were administered i.v., followed by P/S-PEG-biotin particles (15 

mg/kg, i.v.) after 24 h. After another 24 h, the mice were sacrificed, and tissues (heart, liver, 

spleen, lungs, kidneys, tumors) were collected. The tissues from treated and untreated animals 

were imaged using an IVIS Kinetic fluorescence imaging system with excitation at 465 nm. The 

fluorescent signal present in the tissues was calculated as a percentage of the total recovered 

fluorescence for the collected tissue samples.  

 

6.2.5 Statistical analysis 

Group comparisons were performed using one-way ANOVA, followed by Dunnett’s post 

hoc test, on SAS 9.3 software. A p-value <0.05 was considered to indicate statistical significance. 

All data are presented as mean ± SD. 

 

6.3. Results 

6.3.1 Synthesis and characterization of PS-PEG-biotin 

Pretargeting molecules based on scFv chains linked to SA represent an appealing platform 

for proof-of-concept studies due to the exceptionally high affinity between biotin and streptavidin. 

To formulate biotinylated nanoparticles for use with the SA-based pretargeting molecules, we 

prepared a series of densely PEGylated polystyrene beads (~100 nm diameter) with different molar 

ratios of terminal biotin substitution, ranging from 0-100 mol% of all grafted PEG chains. All 

particles ranged between ~110-140 nm in average diameter (Fig. 6.2a), exhibited nearly neutrally 

charged surfaces (≥-10 mV) (Fig. 6.2a), and possessed very dense PEG coverage (≥ 2.0 PEG/nm
2
) 

irrespective of the biotin density (Fig. 6.2b). The total number of biotin groups per nanoparticle 

was estimated based on the number of grafted PEG chains and the input molar ratio of biotin PEG 
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(Fig. 6.2c); increasing biotin substitution at higher biotin PEG ratios was validated by a dot blot 

assay (Fig. 6.3).  

Presentation of surface ligands at high densities typically result in increased phagocytic 

clearance of nanoparticles [168, 170, 344]. Although biotin is exceedingly small (244 Da) and is a 

naturally occurring molecule in biological systems, we decided to quantify the uptake of PS-PEG-

biotin beads by differentiated human macrophage-like THP-1 cells in vitro. Similar to beads 

modified with only methoxy PEG (0 mol% biotin), which are exceptionally resistant to uptake by 

phagocytic cells and exhibit prolonged circulation profiles in vivo [341], PS-PEG-biotin 

nanoparticles effectively evaded uptake by differentiated THP-1 cells across all biotin densities 

(Fig. 2d). 

 

  
 

Figure 6.2. PS-PEG-biotin nanoparticle characterization. a) Hydrodynamic diameter (white bars) and 

surface charge (diamonds) of unmodified PS beads (COOH) and beads modified with varying mol% of 
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biotin PEG. b) Total PEG density of unmodified PS beads (COOH) and beads modified with varying 

mol% of biotin PEG. c) Estimated biotin PEG density and number for various PS-PEG-biotin beads. d) 

Mean cellular fluorescence intensity (MFI) of differentiated human THP-1 cells incubated with PS-

COOH, PS-PEG and PS-PEG-biotin beads. # indicates P < 0.01 vs. PS-COOH beads. The data represent 

n ≥ 2 independent experiments performed in at least triplicate. 

 

 

  

 

Figure 6.3. Dot blot confirming the relative biotin density on PS-COOH, PS-PEG and PS-PEG-

biotin beads.  

 

6.3.2 Pretargeted delivery of PS-PEG-biotin nanoparticles in vitro 

To validate our hypothesis that pretargeting cells with different bispecific FPs can 

facilitate specific delivery of nanoparticles to distinct lymphoma cells, we measured the binding 

of various PS-PEG-biotin nanoparticles with different levels of biotin substitution to Raji (B 

lymphoma; CD20
+
/TAG72

-
) and Jurkat (T lymphoma; CD20

-
/TAG72

+
) cells pretargeted with 

bispecific streptavidin-based fusion proteins containing scFvs against CD20 or TAG72. In both 

cell lines, when pretargeted with the corresponding FP, increasing surface biotin density 

improved nanoparticle binding (Fig. 6.4). In contrast, no significant differences in nanoparticle 

binding were observed between particles of varying biotin density, even at the highest biotin 

densities, in the absence of FP and when pretargeted with control FP (i.e., TAG72 FP for Raji 

cells and CD20 FP for Jurkat cells). Pretargeting of Raji cells with CD20 FP resulted in a 

~15-fold greater uptake of fully biotinylated PS-PEG-biotin nanoparticles (100 mol% biotin) 

compared to methoxy PEG-coated nanoparticles without biotin functionalization (i.e., PS-PEG; p 

< 0.01), as well as ~9- and 6- fold greater nanoparticle uptake than with no FP or pretargeting 

using TAG72 FP, respectively (p < 0.01). Similarly, in Jurkat cells, pretargeting with TAG72 
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FP enhanced the binding of fully biotinylated PS-PEG-biotin nanoparticles by ~18-fold 

compared to PS-PEG nanoparticles without biotin (p < 0.01), as well as by ~8- and 6-fold 

relative to cells pretreated with no FP or CD20 FP, respectively (p < 0.01). Compared to 

nanoparticles with lower biotin substitution, the fully biotinylated PS-PEG-biotin nanoparticles 

exhibited the greatest uptake with pretargeting yet were resistant to uptake by macrophage-like 

THP-1 cells in vitro; thus, we proceeded with subsequent in vivo studies using fully biotinylated 

PS-PEG-biotin nanoparticles. 

 

 

 

Figure 6.4. Pretargeted nanoparticle delivery to B- and T-cell lymphomas in vitro. a) Raji and b) 

Jurkat cells preincubated with or without CD20- or TAG72-specific pretargeting fusion proteins (FPs) for 

4 h, followed by incubation with various PS-PEG-biotin beads for 12 h. The mean cellular fluorescence 
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intensity (MFI) was quantified using flow cytometry. All data represent at least n = 3 independent 

experiments performed in triplicate. # indicates P < 0.01 vs. no FP group and control FP group. 

 

 

6.3.3 PS-PEG-biotin circulation kinetics and tissue biodistribution 

Since effective accumulation of nanoparticles in tumor tissue is thought to be highly 

dependent on the extended circulation times in the blood, we evaluated the circulation kinetics 

and tissue biodistribution of fully biotinylated PS-PEG-biotin nanoparticles in normal BALB/c 

mice. Interestingly, despite the demonstrated resistance to macrophage uptake in vitro (Fig. 

6.2d), we observed very rapid elimination of the PS-PEG-biotin nanoparticles from the blood 

(Fig. 6.5a), with a circulation half-life of only ~40 min. Similar to most nanoparticle systems, the 

liver, along with the spleen, represents the primary organ of nanoparticle disposition, both in 

relative (%ID/g) and absolute (%ID) quantities (Fig. 6.5b). Although the in vivo pharmacokinetic 

profile of the fully biotinylated PS-PEG-biotin particles did not reflect prolonged circulation that 

was expected based on the in vitro THP-1 uptake results or the extended circulation kinetics of 

similar nanoparticles modified with only methoxy-PEG (e.g., t1/2 ~14 h) [341], we nevertheless 

proceeded to evaluate the tumor targeting potential of pretargeting in vivo using the fully 

biotinylated PS-PEG-biotin nanoparticles due to the high cell-specific uptake observed in vitro. 
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Figure 6.5. Circulation kinetics and tissue biodistribution of fully biotinylated nanoparticles. a) The 

blood circulation profile of PS-PEG-biotin (100 mol%) particles in normal BALB/c mice (n ≥ 3). The 

dashed line represents the fit for a one-compartment model used to calculate the circulatory half-life (t1/2), 

volume of distribution (VD), and clearance (CL). b) Tissue biodistribution of fully biotinylated PS-PEG-

biotin at various time points after i.v. injection. Injected dose/g (%ID/g; top) and injected dose (%ID; 

bottom) was quantified from the 2D fluorescent organ image signal intensities. All data represent the 

mean ± SD of at least n = 3 animals. 

 

6.3.4 Biodistribution and tumor accumulation of pretargeted PS-PEG-biotin nanoparticles in 

single tumor mouse model  

To determine whether pretargeting could enable specific delivery of biotinylated 

nanoparticles to tumors in spite of the poor circulation kinetics of the PS-PEG-biotin (100 mol%) 

beads, we dosed single Raji tumor-bearing mice with 250 g of CD20 or TAG72 FP and then, 

24 h later, administered 15 mg/kg of PS-PEG-biotin nanoparticles. Pretargeting with CD20 FP 

significantly increased the amount of nanoparticles distributed in the Raji tumor (p < 0.05), with 

a ~4-fold increase in the tumor %ID/g compared to no FP and control TAG72 FP (Fig. 6.6a). 

Prior administration of CD20 or TAG72 did not significantly affect the biodistribution of PS-
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PEG-biotin beads to normal organs, and the nanoparticles were mainly distributed in the liver 

and spleen, as is common for the clearance of particles ~100 nm in size (Fig. 6.6b). In agreement 

with the short circulation half-life observed in BALB/c mice, no particles were detectable in 

circulation when the animals were sacrificed at 24 h post-injection (data not shown). 

 

 

Figure 6.6. Organ biodistribution of pretargeted PS-PEG-biotin nanoparticles in single tumor-

bearing mice. a) Raji tumor biodistribution and b) normal organ biodistribution of pretargeted PS-PEG-

biotin at 24 h. Tumor cells were pretargeted with CD20 or TAG72 FPs (250 μg each), followed by 

nanoparticle injection after 24 h. All data represent the mean ± SD of at least n = 4 animals. Tissue 

injected dose/g (%ID/g; top) was quantified from the 2D fluorescent organ image signal intensities. * 

indicates p < 0.05 vs. no FP and TAG72 groups. 

 

6.3.5 Biodistribution and tumor accumulation of pretargeted PS-PEG-biotin nanoparticles in 

dual tumor mouse model  

Despite the convenience and ease of xenograft models, a major shortcoming with tumor 

xenografts is that the animals are typically inoculated with a homogenous population of cancer 

cells with an identical genetic background, which naturally suppresses delivery challenges 

associated with tumor heterogeneity. To evaluate pretargeted nanoparticle delivery to distinct 

tumor cell populations in vivo, we decided to inoculate athymic nude mice with Raji and Jurkat 

cells on the right and left flanks of the same mice, respectively, to generate a dual tumor 
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xenograft model. The animals were then given 250 g each of CD20 and/or TAG72 FP, 

followed by 15 mg/kg of PS-PEG-biotin nanoparticles after 24 h. The use of FP pretargeting 

increased the amount of particles found in both the Raji and Jurkat tumors (Fig. 6.7a), with the 

combination FP group exhibited ~4-fold higher tumor accumulation compared to the no FP 

group for Raji tumors (p < 0.05). While the combined use of CD20 and TAG72 FPs appeared 

to increase PS-PEG-biotin present in Jurkat tumors as well, no statistically differences were 

found between groups, likely due to high mouse-to-mouse tumor variability. The extent of 

nanoparticle accumulation, as measured by %ID/g, was substantially different between the Raji 

and Jurkat tumors, with markedly higher accumulation in Raji vs. Jurkat tumors (3.5%ID/g and 

12.5%ID/g vs. 1.4%ID/g and 4.4%ID/g without FP and with combined FP, respectively), likely 

reflecting differences in tumor physiology and extravasation of the nanoparticles. Similar to the 

results above with single tumor-bearing mice, pretargeting did not significantly alter the 

biodistribution of the particles to normal organs compared to the no FP control (Fig. 6.7b); the 

vast majority of particles were found in the liver and spleen, and the nanoparticles were 

completely eliminated from systemic circulation by 24 h (data not shown).  
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Figure 6.7. Organ biodistribution of pretargeted PS-PEG-biotin nanoparticles in dual tumor-

bearing mice. a) Raji (left) and Jurkat (right) tumor biodistribution and b) normal organ biodistribution 

of pretargeted PS-PEG-biotin at 24 h. Tumor cells were pretargeted with CD20 and/or TAG72 FPs 

(250 μg each), followed by nanoparticle injection after 24 h. All data represent the mean ± SD of at least 

n = 4 animals. * indicates p < 0.05 vs. no FP and TAG72 groups. 

 

6.4. Discussion 

The complexity of the tumor physiology and its microenvironment, including inter- and 

intra- tumoral heterogeneity, necessitates the exploration of alternative, multi-faceted strategies 

that can more effectively deliver therapeutics to the full spectrum of tumor cells than can be 

typically achieved with single ligand-conjugated nanoparticles. Notably, many of the 

shortcomings of common delivery systems for chemotherapy are the same deficiencies 

associated with conventional radioimmunotherapy. Nevertheless, despite the promise and early 

success of PRIT, the use of pretargeting molecules to enhance nanoparticle delivery has 
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remained largely underexplored to date. The few studies that have investigated pretargeting of 

nanoparticles to cancer cells [263, 264, 266, 267, 270, 339] all evaluated delivery to a 

homogeneous cell population in vivo, or relied on multiple unique pairs of pretargeting 

molecules and nanoparticles for detection of different cancer cells. This overlooks one of the 

primary advantages to pretargeting: by decoupling cellular targeting from nanoparticle 

design/formulation, the same nanoparticles can easily be targeted to multiple different cells by 

simply tuning the pretargeting molecule(s) used. Here, in good agreement with theory, we 

demonstrated that pretargeting can enhance cellular delivery of a single nanoparticle formulation 

to at least two molecularly distinct lymphoma cells in vitro and in vivo. Although many further 

improvements are needed, we believe the pretargeting approach, precipitated by the convergence 

of biotechnology, nanotechnology and drug delivery, represents a promising strategy that could 

more effectively deliver therapeutics to diverse cell populations. Improved therapeutics delivery 

to different cells simultaneously may in turn lead to more durable suppression or elimination of 

the tumor while minimizing eventual recurrence and/or the development of drug-resistant 

tumors. 

The origins of the pretargeting concept is rooted in the pioneering work of Press and 

colleagues, who widely explored pretargeting as a strategy to overcome the shortcomings of 

conventional radioimmunotherapy, in particular the non-specific deposition of radiolabeled 

MAbs in normal organs that result in low tumor-specific delivery of radiation and significant 

toxicity [194]. By utilizing bispecific proteins that are non-radioactive, along with radiolabeled 

effector molecules that can be rapidly cleared, PRIT significantly improved the therapeutic index 

of radioisotope treatment compared to conventional radioimmunotherapy [194, 197, 198] and 

increased the maximum tolerated dose for radionuclides [196]. Pretargeting has been broadly 
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tested for a variety of blood malignancies in vivo including leukemia (CD45), B cells (CD20, 

HLA-DR and CD22) and multiple myeoloma (CD38), achieving tumor-to-blood ratios ranging 

from 2:1 to 638:1, and markedly improved survival rates [199-205]. These encouraging results in 

animal models have translated into clinical studies of PRIT, which to date have yielded 

promising results with reasonable tumor response rates and limited toxicity in phase I/II trials 

[345, 346].  

The extent of nanoparticle targeting to the B- and T- lymphoma tumors in our mouse 

model remain limited relative to other organs, particularly the liver and spleen. One possible 

reason is inadequate accumulation of the pretargeting molecules within the tumor milieu [238, 

347]. When coupled with the relatively weak affinity between scFvs and the tumor, this likely 

results in limited retention and binding of extravasated pretargeting molecules on cancer cells in 

the tumor and, consequently, limited capture of the nanoparticles by bound FP on cancer cells. 

For both single and dual tumor-bearing mice, we observed an increase in nanoparticle tumor 

accumulation with CD20 FP, even in the case of CD20
-
 Jurkat tumors, suggesting that more 

CD20 FP may have extravasated into and remained at the tumor site compared to TAG72 FP. 

This nonspecifically accumulation of pretargeting FP in the tumor tissue may have agglutinated 

subsequently dosed nanoparticles that extravasated into the tumor, thus improving nanoparticle 

retention rather than enabling specific homing and binding to target cancer cells, which may 

have required further penetration into the tumor tissue.  

We had initially hypothesized that the presence of biotin on the surface of nanoparticles 

would not compromise the prolonged circulation of densely biotinylated PEGylated 

nanoparticles. The hypothesis was based in part on the low MW of biotin relative to the MW of 

PEG and the effective pretargeting observed with PRIT using biotinylated radiolabels, and was 
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supported by the limited uptake by macrophage-like cells in vitro. Nevertheless, fully 

biotinylated nanoparticles were quickly eliminated in mice; at 6 hours post-injection, and there 

was no detectable amount of PS-PEG-biotin nanoparticles in the blood compared to ~70% of the 

injected dose for previously evaluated PS-PEG-methoxy nanoparticles [341]. The poor 

circulation kinetics likely limited the fraction of the injected nanoparticle dose that could reach 

and extravasate at the tumor site. Since biotin is a naturally occurring vitamin, we speculate that 

the rapid accumulation of biotin-modified nanoparticles, particularly in the liver, can probably be 

attributed the presence of vitamin receptors in the liver and on MPS cells [348, 349] combined 

with the highly multivalent nature of biotin presentation on nanoparticles. Together, this likely 

led to more efficient capture of nanoparticles decorated with multiple biotin groups than 

radioisotopes functionalized with a single biotin group. The poor nanoparticle circulation 

kinetics might be partially resolved by lowering the biotin density on the nanoparticle surface, 

thus widening the time window during which the particles can circulate and permeate into 

tumors. Nevertheless, reduced surface biotin density would also decrease the binding rate of 

nanoparticles to the pretargeting FPs present on the cell surface and in the tumor site. Instead, we 

expect the use of alternative binding pairs (i.e., nanoparticle-pretargeting molecule linkages) 

would avoid the problematic use of biotinylation and improve nanoparticle circulation and 

extravasation, as well as overcome immunogenicity commonly observed with streptavidin. 

However, the likely reduction in nanoparticle-pretargeting FP affinity (relative to that of 

streptavidin-biotin bonds) would reduce the efficiency of pretargeting molecules crosslinking 

nanoparticles to target cells. In our opinion, the development of pretargeting molecules with high 

binding affinities to both cells and nanoparticles and bio-inert binding pairs represent the most 

critical challenge for future development of pretargeted delivery of nanoparticles.  
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The use of multiple pretargeting molecule combinations have been previously evaluated 

for PRIT of lymphoma with variable expression of CD20, CD22, and HLA-DR [202, 284]. 

Interestingly, the authors found that a single pretargeting molecule treatment provided superior 

tumor-to-normal organ ratios and survival rates, whereas a cocktail of three different pretargeting 

molecules (against CD20, CD22 and HLA-DR) resulted in increased liver biodistribution of the 

radioactive payload and increased toxicity. In contrast, pretargeting with CD20 and/or TAG72 

FPs did not alter nanoparticle biodistribution to normal organs in single and dual tumor-bearing 

mice in our study (Fig. 6.6-6.7). This disparity in the effects of extraneous pretargeting 

molecules most likely resulted from differences in the features and properties of the therapeutic 

agents used. Unlike the small-molecule radionuclide carriers used in the PRIT studies, the 

majority of systemically dosed nanoparticles are eventually eliminated by MPS organs such as 

the liver and spleen, which may eclipse any changes in biodistribution caused by mismatched 

pretargeting FP administration. Nevertheless, the potential effects of pretargeting molecules 

cocktails on nanoparticle biodistribution and toxicity should be further evaluated in the future, 

particularly for different pretargeting molecule/nanoparticle combinations. 

 

6.5 Conclusions  

Tumor heterogeneity presents a complex delivery challenge, as nanoparticle drug carriers must 

accumulate in tumor tissue while also maximally targeting the diverse cell populations present 

within a given tumor and/or patient. Here, we explored the simultaneous use of multiple 

pretargeting bispecific fusion proteins to enhance nanoparticle delivery to heterogeneous target 

cell populations. We found that increasing amounts of surface biotin on the nanoparticles 

enabled highly specific cell uptake by tumor cells pretargeted by corresponding fusion proteins 
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in vitro, and, for single tumor-bearing mice, pretargeting with tumor-specific fusion protein also 

significantly improved nanoparticle tumor accumulation even in the face of the poor circulation 

kinetics of the biotinylated nanoparticles. Additionally, in dual tumor-bearing mice, the use of 

pretargeting with a fusion protein cocktail directly increased nanoparticle delivery to both tumor 

types. Our findings support further investigations into the use of pretargeting fusion protein 

cocktails as an alternative targeting strategy to enhance nanoparticle delivery to a diverse array 

of molecularly distinct target cells. 
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CHAPTER 7: CONCLUSIONS AND PERSPECTIVES 

In this dissertation, I systematically investigated the interactions between PEGylated 

nanoparticles and both the innate and adaptive immune system, which play a crucial role in 

determining the biological fate of PEGylated nanoparticles but remain poorly understood in 

general. Additionally, to overcome limitations associated with active targeting of nanoparticles 

to tumors, I evaluated a pretargeting approach for homing of nanoparticles to tumors through the 

use of bispecific fusion proteins. The findings presented in this dissertation provide a basis for 

engineering the next generation of nanoparticle systems for targeted delivery of therapeutics.  

PEGylation continues to be the most popular strategy for extending the systemic 

circulation of nanoparticle systems, but the critical characteristics of PEG that enable stealth 

properties for PEG coatings remain underexplored for most nanoparticle systems. I developed an 

indirect assay to measure the PEG density on PS nanoparticles, and used PS-PEG beads carefully 

engineered to encompass a range of PEG MW and densities to evaluate the impact of these PEG 

coating characteristics on uptake by MPS cells in vitro and in vivo. I found that exceptionally 

high PEG densities, whereby each chain assumes a dense brush conformation, were necessary 

for nanoparticles to evade immune cell clearance. Interestingly, the necessary PEG grafting 

density for prolonged systemic circulation in vivo was even more stringent than those deduced 

from the in vitro differentiated THP-1 studies. Indeed, no difference in THP-1 cell uptake was 

observed between PS-PEG beads with 0.6 and ≥1.5 PEG/nm
2
 (both dense brush PEG) at 4 h, 

with only minor differences at 12 h and 24 h; however, the circulatory half-lives of these 

nanoparticles were 0.4 h vs. 13.5 h, respectively, a >30-fold difference. The major disparity 
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between the in vitro and in vivo results highlights the need for improved cell culture models that 

will better predict potential MPS cell clearance in animal models, and likely human patients as 

well. The use of primary human MPS cells, which appeared to take up even very densely 

modified PS-PEG nanoparticles more avidly than the differentiated THP-1 cells, along with 

much longer experimental time points (e.g., >48 h) may enable more rigorous screening for 

nanoparticle systems that can effectively evade sequestration by the immune system in vivo.  

In contrast to the findings here, others have reported PEGylated nanoparticles with far 

lower PEG densities, resulting in brush or mushroom conformation PEG, that nevertheless 

exhibit prolonged systemic circulation [8, 48, 289]. These discrepancies likely result from the 

varying properties of the underlying nanoparticles. Indeed, nanoparticle features such as size, 

shape, and deformability are critical design parameters that also influence MPS uptake and 

elimination [6]. At extremes (e.g., particle diameters >200 nm [350] or soft nanoparticles with 

high deformability [351]), the influence of these parameters may exceed that of PEGylation. 

Thus, the PEG density and conformation requirements for evading immune cell uptake must be 

evaluated within the context of each individual nanoparticle class/type. For more rigid polymeric 

nanoparticles sized ~100 nm or below, the observed relationship between PEG density and 

conformation and in vitro and in vivo interactions with MPS cells likely holds, and similar PEG 

coating requirements have been reported for metallic nanoparticles [50]. To satisfy these 

requirements, a “grafting to” strategy involving conjugation of PEG chains to reactive groups on 

the nanoparticle surface was used to achieve high PEG surface densities; however, such “grafting 

to” approaches are rarely used to formulate polymeric drug carrier systems. Instead, PEGylation 

of most polymeric nanoparticle systems typically relies on PEG copolymers or coating with 

amphiphilic PEG-containing molecules, which may result in lower surface PEG densities due to 
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poor or variable partitioning of PEG to the nanoparticle surface. An interesting approach would 

be the synthesis of functional polymeric drug carriers with high surface densities of reactive 

groups such as COOH or NH2 (e.g., using block copolymers with large hydrophobic blocks and 

short highly charged hydrophilic blocks) that would allow grafting of PEG chains at tunable 

densities and MWs.  

Despite the popularity of nanoparticle PEGylation, as well as PEGylation of protein and 

other macromolecule drugs, recent studies have shown that antibodies that can bind PEG, 

typically referred to as anti-PEG Ab, can be induced in humans. In particular, several reports 

have described the existence of pre-existing anti-PEG Ab, which raises potential concerns about 

the widespread use of various PEG-containing drugs in humans. Unfortunately, our current 

understanding of the prevalence and concentration of anti-PEG Ab amongst the general 

population remains limited, due in part to the lack of appropriate reagents for evaluating such 

responses. Using competitive ELISAs with various chimeric anti-PEG Ab standards prepared for 

this purpose, I measured the level and prevalence of pre-existing anti-PEG Ab in contemporary 

plasma and historical serum samples from healthy donors. Surprisingly, I found that the majority 

of samples analyzed (>70% and >50% of contemporary and historical samples, respectively) 

contained detectable levels of anti-PEG Ab. These values were far higher than the incidence 

rates of pre-existing anti-PEG Ab observed from clinical trials of PEGylated drugs and other 

studies [17, 100, 104, 105, 124], likely because the quantitative ELISA method used here offers 

much greater detection sensitivity than the end-titer ELISA and/or hemagglutination assays 

employed in previous reports. Indeed, most of the samples positive for anti-PEG Ab contained 

only low levels of anti-PEG IgG and/or IgM, often <100 ng/mL.  
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Part of PEG’s enduring appeal as a component of pharmaceutical formulations has been 

its long history of safe use in humans, and the clinical implications of anti-PEG Ab, particularly 

at low levels, remains unclear. The efficacy of certain PEGylated drugs (e.g., PEG-interferon-2α 

and β [102, 124] and PEG-phenylalanine ammonia lyase [103]) does not appear to be affected by 

anti-PEG Ab. In contrast, pre-existing and/or induced anti-PEG Ab has been associated with 

rapid clearance of PEG-uricase [98, 104] and PEG-asparaginase [106], as well as serious adverse 

reactions to both a PEGylated aptamer drug [17, 110] and contraceptive containing PEG as an 

excipient [103]. These effects were generally observed for individuals with high-titer anti-PEG 

Ab, suggesting the possibility of critical threshold(s) above which anti-PEG Ab can mediate 

clearance of and/or adverse immune responses to PEGylated drugs. Such thresholds will likely 

be dependent on the specific PEGylated drug being administered, as well as the immunological 

status and genetics of individual patients. While it may not directly result in altered 

pharmacokinetic profiles or toxicity upon initial dosing, the presence of low level anti-PEG Ab 

may reflect immunological memory against PEG that could be readily triggered upon exposure 

to PEGylated therapeutics, particularly those dosed through parental routes of administration, 

and ultimately result in a rapid increase in the levels of anti-PEG Ab after treatment. 

Due to the immunogenicity of PEG, researchers have been exploring alternative polymers 

to PEG, such as zwitterioinic polymers, other hydrophilic polymers, “self” peptides, and 

autologous cell membrane coatings [6, 115, 147]. However, these approaches are far from 

clinical approval and/or may not be applicable to large classes of therapeutics, such as protein 

drugs. Given the long history of relatively safe use of PEG, it is unlikely that PEG will be 

abandoned in the near future, nor does it need to be. With numerous PEGylated therapeutics on 

the market and in clinical development, further research should be conducted to better 
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understand the potential clinical impact of anti-PEG Ab, as well as mechanisms and factors 

involved in anti-PEG Ab induction. Improved monitoring of patient anti-PEG Ab levels prior to 

and during treatment with certain PEGylated drugs, along with tracking of previous exposure to 

PEG and PEGylated drugs, will likely help to offer a more complete view of PEG-specific 

adaptive immunity in humans, and may provide crucial insights into dosing regimens that could 

enable effective and safe use of PEGylated systems even in individuals with anti-PEG immunity. 

Additionally, animal models that better recapitulate the features of potential anti-PEG Ab 

responses in humans (e.g., mixture of IgG and IgM isotypes, predominance of IgG2 subclass, 

PEG-specific immunological memory, induction through continuous low-dose PEG exposure) 

should be developed. 

Researchers often rely on a combination of PEGylation and ligand-based active targeting 

to improve nanoparticle delivery to cancer cells. However, the use of PEG coatings can offset the 

beneficial effects of ligand modification and vice versa; PEGylation provides extended systemic 

circulation but can also hinder ligand-receptor binding, whereas surface ligand groups enable 

specific cell uptake but can also result in rapid nanoparticle clearance by MPS cells even with 

well PEGylated systems [125, 170]. In this dissertation, I investigated a pretargeting approach 

for nanoparticle delivery to tumor cells. Pretargeting with bispecific fusion proteins that bind to 

both tumor cell receptors and effector nanoparticles may enable both efficient cellular targeting 

and extended circulation of nanoparticles. Furthermore, the use of a cocktail of bispecific fusion 

proteins that all bind to the same nanoparticle but recognize different tumor cell receptors should 

theoretically enable targeting of the same nanoparticles to heterogeneous mixtures of tumor cells. 

Using streptavidin-based fusion proteins that recognize distinct lymphomas (i.e., αCD20 to Raji 

B-lymphoma and αTAG72 FP to Jurkat T-lymphoma), I found that pretargeting resulted in high 
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receptor-specific cell uptake of biotinylated nanoparticles in vitro and enhanced tumor 

biodistribution in vivo, compared to no FP controls. 

While multistep drug delivery approaches such as pretargeting can offer important 

advantages, they also introduce additional complexity in terms of pretargeting molecule design 

and nanoparticle formulation. For example, the pharmacokinetics/pharmacodynamics of each 

component must be taken into account to enable optimal accumulation of the delivery payload at 

target tissue(s). An additional challenge in the use of pretargeting approaches is the selection of 

appropriate binding pairs for in vivo and clinical use. The streptavidin-biotin binding pair offers 

one of the highest non-covalent binding affinities (Kd ~10
-14

-10
-15

 M), allowing more effective 

capture of nanoparticles by cell surface-bound FPs. Unfortunately, streptavidin-based fusion 

proteins are immunogenic and are thus a poor choice for drug delivery applications in humans 

[207, 209]. Additionally, biotin modification, at densities that enabled optimal specific cell 

targeting and minimal differentiated THP-1 cell uptake in vitro, surprisingly led to rapid 

nanoparticle clearance in vivo, with fully modified PS-PEG-biotin possessing a circulating half-

life of only 40 min. Therefore, while the availability of previously developed streptavidin-based 

FPs targeting different tumor cell receptors allowed for convenient testing of pretargeted 

nanoparticle delivery to molecularly distinct tumors, the combination of streptavidin-based FPs 

and biotinylated NPs does not appear to represent an ideal platform for further development. One 

very promising direction is to harness the body’s ability to generate PEG-specific humoral 

responses by replacing the streptavidin component of the pretargeting FPs with anti-PEG Ab 

sequences. The development of anti-PEG Ab-PEG binding pairs has the added advantage of 

being compatible with the multiple PEGylated nanoparticles and macromolecule drugs in 

development or already available the market. With additional modifications of the FP sequences 
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and structure to optimize tumor accumulation, binding to target receptors, and capture of PEG-

coated nanoparticles, such an approach may help realize the full potential of pretargeting for 

drug delivery to heterogeneous tumors by combining efficient cell targeting and extended 

circulation kinetics provided by fully PEGylated drug carriers.  
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