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ABSTRACT

SANGWOOK KANG: STATISTICAL METHODS FOR CASE-CONTROL
AND CASE-COHORT STUDIES WITH POSSIBLY CORRELATED

FAILURE TIME DATA.
(Under the direction of Dr. Jianwen Cai.)

In large cohort studies, the major effort and cost typically arise from the assembling of

covariate measurements. Case-control and case-cohort study designs are widely used ones to

reduce the cost and achieve the same goals in such studies, especially when the disease rate

is low. In this dissertation, we consider analyzing the multivariate failure time data arising

from case-control and case-cohort studies.

First, we consider a case-control within cohort study with correlated failure times. A

retrospective dental study was conducted to evaluate the effect of pulpal involvement on

tooth survival (Caplan and Weintraub, 1997; Caplan et al., 2005). Due to the clustering of

teeth, the survival times of the matched teeth within subjects could be correlated and thus

the statistical methods for conventional case-control studies cannot not be directly applied.

We study the marginal proportional hazards regression model for data from this type studies.

Second, we consider a case-cohort study with multiple disease outcomes. A case-cohort

design was implemented in the Busselton Health Study (Cullen, 1972) and it was of interest

to study the relationship between serum ferritin and coronary heart disease and stroke events.

Since times to coronary heart disease and stroke events observed from the same subject could

be correlated, valid statistical method needs to take it into consideration. To this end, we

consider marginal proportional hazards regression model.

Third, we consider marginal additive hazards regression model for case-cohort studies with

multiple disease outcomes. Most modern analyses of survival data focus on multiplicative

models for relative risk using proportional hazards models. The additive hazards model,

which model the risk differences has often been suggested as an alternative to the proportional

hazards model.
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In each of the three cases, we propose a weighted estimating equation approach for model

parameter estimation, with different types weights to enhance the efficiency. The asymptotic

properties of the proposed estimators are derived and their finite sample properties are as-

sessed via simulation studies. The proposed method are applied to the aforementioned dental

study and the Busselton Health Study for illustration.
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CHAPTER 1

INTRODUCTION

Epidemiologic cohort studies and disease prevention trials often need the follow-up of

several thousand subjects or more for many years and thus can be prohibitively expensive

(Prentice, 1986). The major effort and cost typically arise from the assembling of covariate

measurements, such as expensive analysis of biological specimens, or assessment of exposure

from the raw covariate histories. When the disease rate is low, which is often the case, much

of the covariate information on disease-free subjects is largely redundant. To reduce the cost

in such studies and achieve the same goals as a cohort study, several study designs have been

proposed. Case-control and case-cohort study designs are the two most widely used ones

among them. In this dissertation, we develop statistical methods for these two study designs

with multivariate failure time data.

1.1 Marginal Hazards Regression for Case-Control within Co-

hort Studies with Possibly Correlated Failure Time Data

Case-control within cohort study involves the independent random sampling of subjects

with disease(cases) and without disease(controls) from a cohort that has already been enu-

merated. The covariate measurements are only assembled for the case-control samples. An

important assumption for these conventional case-control studies is the statistical indepen-

dence among subjects. However, in many biomedical studies, this assumption might not hold.

For example, in a retrospective cohort dental study (Caplan and Weintraub, 1997; Caplan



et al., 2005), it was of interest to evaluate the effect of pulpal involvement on tooth survival.

Root canal filled (RCF) teeth were used as an indicator of pulpal involvement. After cases and

controls were sampled, a non-RCF tooth was matched to the RCF tooth within each subject.

Here cases were defined as those who lost the RCF tooth, while controls were defined as those

who did not lose the RCF tooth during the study period. The survival times of the two teeth

within the same subject could be correlated and thus the independence assumption might

not be valid. The primary goal of the study is to evaluate the effect of pulpal involvement

on tooth survival. The fact that the survival times of the teeth from the same individual are

correlated is considered as a nuisance. In such case, a marginal model approach is appealing.

Failure time models from such retrospective case-control studies have been studied in the

literature. However, all these methods assume independent failure times and cannot be di-

rectly applied to multivariate failure time data. There is an extensive literature of statistical

methods for correlated failure time data from prospective cohort studies. However, these

methods cannot be directly applied to correlated failure time data from case-control. Work

for correlated failure time data from case-control studies has been limited. Some efforts have

been made to analyze failure time data from case-control family studies where the investiga-

tors are usually interested in estimating the strength of dependence of failure times within

family. Consequently, most of the methods concentrated on frailty models or parametric ap-

proach. When the correlation of the failure times is not of interest, as in the aforementioned

dental study, statistical inference procedure that is easy to conduct and has nice asymptotic

properties remains to be developed. It is desirable to develop hazard regression models for

the correlated failure time data from case-control within cohort studies which account for the

possible correlation within subject while avoiding the specification of the correlation structure.

1.2 Marginal Hazards Model for Case-cohort Studies with

Multiple Disease Outcomes

The case-cohort study design was originally proposed by Prentice (1986). Under the case-

cohort design, a random sample called subcohort is selected from the entire cohort. The
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covariate measurements are only assembled for the subjects in the subcohort and all the cases

(failures) who experience the disease of interest regardless of whether or not they are in the

subcohort. A key advantage of the case-cohort design is its ability to use the same subcohort

for several diseases or for subtypes of disease. For example, the case-cohort design was

implemented in the Busselton Health Study (Cullen, 1972). This study was conducted every

3 years from 1966 to 1981 and general health information for adult participants were collected

by means of questionnaire and clinical visit. It was of interest to study the relationship

between serum ferritin and coronary heart disease and stroke events. To reduce costs and

preserve stored serum, case-cohort sampling was used. In order to compare the effect of serum

ferritin on coronary heart disease and stroke, times to coronary heart disease and stroke events

need to be modeled simultaneously. Since times to coronary heart disease and stroke events

observed from the same subject could be correlated, valid statistical method needs to take it

into consideration.

The additive and multiplicative risk models provide the two principal frameworks for

studying the association between risk factors and disease occurrence or death. Most modern

analyses of survival data focus on multiplicative models for relative risk using proportional

hazards models, mostly due to desirable theoretical properties along with the simple interpre-

tation of the results and the wide availability of computer programs. However, epidemiologists

often are interested in the risk difference attributed to the exposure, and the risk difference

is known to be more relevant to public health because it translates directly into the number

of disease cases that would be avoided by eliminating a particular exposure (Kulich and Lin,

2000). Consequently, the additive hazards model, which model the risk differences, has often

been suggested as an alternative to the proportional hazards model.

For data from case-cohort study for a single disease outcome, estimating procedures have

been proposed in the literature for various models. However, methodologies to address analy-

sis of case-cohort data with multiple diseases outcomes have been limited. A commonly used

method for dealing with multiple diseases is to analyze each disease separately. This approach

does not allow comparison of the risk factors for different diseases, because it does not ac-

count for the induced correlation between outcomes (Langholz and Thomas, 1990). Statistical

3



methods which account for the correlation between outcomes is needed.

Motivated by these needs, we propose statistical methods for modeling correlated failure

time data from case-control within cohort studies and modeling multiple disease outcomes

with data from case-cohort studies. We will consider both the multiplicative as well as additive

models.

In the next chapter, we will review the relevant literature in these areas.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the literature on statistical methods for : 1) univariate failure

time data arising from case-control within cohort and case-cohort studies, 2) correlated failure

time data from prospective studies assuming random samples, and 3) failure time data from

case-control-family studies. The organization of the rest of this section is as following. We

review literature on statistical methods for univariate failure time data from case-control and

case-cohort studies in section 2.1, for correlated failure time data from prospective studies

assuming random samples in section 2.2, and for correlated failure time data from the so-

called case-control family studies in section 2.3. In section 2.4, we review the literature on

statistical methods for additive hazards models.

2.1 Univariate failure time models from cohort studies

The Cox proportional hazards model (Cox, 1972) has been the most widely used procedure

to study the effects of covariates on a failure time. The Cox model assumes that the hazard

function for the failure time T associated with a covariate vector Z is given by

λ(t|Z) = λ0(t) exp{βT
0Z(t)}, (2.1)

where λ0(t) is an unspecified baseline hazard function and β0 is a p × 1 vector of unknown

regression parameters.



Let C denote the potential censoring time, X = min(T,C) denote the observed time. Let

N(t) denote the counting process, Y (t) = I(X ≤ t) be an ‘at-risk’ indicator process and

∆ = I(T ≤ C) be an indicator for failure, where I(.) is an indicator function. The failure

time is assumed to be subject to independent right censorship. Let (Ti, Ci,Zi)(i = 1, . . . , n)

be n independent replicates of (T,C,Z) and τ denote the study end time.

The regression parameter β0 can be estimated by the partial likelihood score function

introduced by Cox (1975)

U(β) =
n∑

i=1

∆i

{
Zi(Xi)−

S(1)(β, Xi)
S(0)(β, Xi)

}
,

where

S(0)(β, t) = n−1
n∑

i=1

Yi(t) exp{β′Zi(t)},S(1)(β, t) = n−1
n∑

i=1

Yi(t) exp{β′Zi(t)}Zi(t)

The maximum partial likelihood estimator β̂, defined as the solution to the score equation

U(β) = 0, has been shown to be approximately normal in large samples with mean β0

and with a covariance matrix that can be consistently estimated by −{∂U(β)/∂β|
β=

ˆβ
}−1

(Andersen and Gill, 1982; Tsiatis, 1981).

2.1.1 Nested case-control studies

The nested case-control study design was originally suggested by Thomas (1977). Prentice

and Breslow (1978) clarified the conceptual foundations of the nested case-control study

and formally derived the conditional likelihood. The study consists of selecting a random

sample of controls at each distinguished failure time either without replacement or with

replacement independently across time. Specifically, suppose that at each observed failure

time, or age, ti(i = 1, . . . , L) exactly ñi1 = ñi1(ti) cases with exposure variables Z1, . . . ,Zñi1

and ñi0 = ñi0(ti) controls with exposures Zñi1+1, . . . ,Zñi1+ñi0 are sampled. Given that the

sample consists of individuals with these ñi1 + ñi0 risk vectors, the probability that the first

ñi1 such vectors actually correspond to the cases as observed and the remainder to controls

6



can be written, under a Cox proportional hazard model, as

exp{βT
0

ñi1∑
j=1

Zj}/
∑

l∈R(ñi1,ñi0)

exp{βT
0

ñi1∑
j=1

Zlj} (2.2)

where R(ñi1, ñi0) is the set of all subsets of size ñi1 from {1, . . . , ñi1+ñi0} and l = (l1, . . . , lñi1)

A conditional likelihood for β0 based on case and control samples of respective sizes ñi1

and ñi0 at the observed failure times, or ages, ti(i = 1, . . . , L) is simply the product of terms

(2.2) over the L distinct times

L∏
i=1

exp{βT
0

ñi1∑
j=1

Zj}/
∑

l∈R(ñi1,ñi0)

exp{βT
0

ñi1∑
j=1

Zlj}

 (2.3)

Note that (2.3) is of precisely the same form as the partial likelihood for prospective data.

However, the ‘risk-sets’ contributing to (2.3), instead of including all individuals known to be

at risk at time ti, includes only those actually sampled for the retrospective study at ti.

The asymptotic properties of the estimator have been formally derived (Goldstein and

Langholz, 1992; Borgan et al., 1995) using counting process and martingale theory (Ander-

sen et al., 1993). Several authors proposed improved estimators. Langholz and Thomas

(1991) proposed some sample reuse methods while Samuelsen (1997) used weighted estimat-

ing equations via inclusion probabilities. Chen and Lo (1999) and Chen (2001) made further

improvements by using modified weights.

2.1.2 Classical case-control studies

The classical case-control study design was mostly restricted to dose-response models

rather than dose-time-response models (Chen, 2001). There has been little development in

the literature on survival analysis for classical case-control sampling. Binder (1992) described

a procedure for fitting proportional hazards models to survey data with complex sampling

designs from the finite population including the classical case-control study.

In population-based surveys, {Xi,∆i,Zi(.)}(i = 1, . . . , n) are treated as fixed and B,

which is the solution to U(β) = 0, is the finite-population parameter of interest. Suppose

7



that a sample of size ñ is drawn via a complex design, such as case-control sampling for our

case. Binder (1992) proposed to estimate B by the estimating function

Û(β) =
n∑

i=1

wi∆i{Zi(Xi)−
Ŝ

(1)
(β, Xi)

Ŝ(0)(β, Xi)
},

where wi = 1
πi

if the ith member is selected in the sample and 0 otherwise, πi is the inclu-

sion probability of the ith member, Ŝ(0)(β, t) = n−1
∑n

i=1wiYi(t)eβ
TZi(t) and Ŝ

(1)
(β, t) =

n−1
∑n

i=1wiYi(t)Zi(t)eβ
TZi(t). Then n−

1
2 Û(B) is shown to asymptotically follow a zero-

mean normal distribution with covariance matrix V (B), and n
1
2 (B̂ − B) is shown to be

asymptotically normal with mean zero and covariance matrix D−1(B)V (β)D−1(B), where

D(β) = limn→∞−n−1 ∂U (β)

∂β
|β=B and

V (B) = lim
n→∞

n−1
n∑

i=1

n∑
j=1

πij − πiπj

πiπj
U i(B)U j(B)T ,

where πij is the probability of both the ith and the jth members being sampled and

U i(β) =
∫ τ

0

{
Zi(t)−

s(1)(β, t)
s(0)(β, t)

}{
dGi(t)−

Yi(t)eβ
TZi(t)dg(t)

s(0)(β, t)

}
,

S(l)(β, t) = n−1
n∑

i=1

Yi(t)Zi(t)l−1eβ
TZi(t), s(l) = lim

n→∞
S(l)(β, t), l = 1, 2,

Gi(t) = ∆iI(Xi ≤ t), G(t) = n−1
n∑

i=1

Gi(t) and g(t) = lim
n→∞

G(t).

Lin (2000) provided a formal justification of Binder’s method and also presented an al-

ternative approach which regards the survey population as a random sample from an infinite

universe and accounts for this randomness in the statistical inference. Under superpopulation

approach, the survey population are not treated as fixed quantities, but rather as a random

sample from the joint distribution of {X,∆,Z(·)}. Then the inclusion probabilities are al-

lowed to depend on F where F is the sigma-field generated by {Xi,∆i,Zi(·)}(i = 1, . . . , n),

i.e.,

πi = Pr(ξi = 1|F), i = 1, . . . , n

8



Then n−
1
2 Û(β0) is shown to be asymptotically normal with mean zero and covariance matrix

D(β0)+V (β0) and, thus, n
1
2 (B̂−β0) is shown to be asymptotically normal with mean zero

and covariance matrix

Σ = D−1(β0) +D−1(β0)V (β0)D
−1(β0)

where D−1(β0) is the variation due to the sampling of the survey population from the super-

population and D−1(β0)V (β0)D
−1(β0) is the variation due to the sampling of the survey

sample from the survey population which is the variance under the finite-population approach.

The sampling weights used in Binder (1992) and Lin (2000) are proportional to the inverse

of the sampling probability. Chen and Lo (1999) proposed similar type of weight for classical

case-control studies. Chen (2001) proposed a more efficient estimator by using local average

type of weights. Specifically, let 0 = t0 ≤ t1 ≤ · · · ≤ tan = τ and 0 = s0 ≤ s1 ≤ · · · ≤ sbn = τ

be two partitions of [0, τ). Use πi = rn(Xi,∆i), where

rn(t, d) =


Pn

l=1 ∆lξlI{Xl∈[ti−1,ti)}Pn
l=1 ∆lI{Xl∈[ti−1,ti)} if d = 1 and t ∈ [ti−1, ti) ,Pn

l=1(1−∆l)ξlI{Xl∈[sj−1,sj)}Pn
l=1(1−∆l)I{Xl∈[sj−1,sj)} if d = 0 and t ∈ [sj−1, sj) .

This is based on a simple idea of estimating each missing covariate by a local average. In

univariate failure time setting, with additional assumptions, the estimator using this weight

function is more efficient than the previous one using the inclusion probabilities. Specifically,

n−
1
2 Û(β0) is shown to be asymptotically normal with mean zero and covariance matrix

D(β0) + V (β0)− Γ(β0) where

Γ(β0) = lim
n→∞

N−1
n∑

i=1

n∑
j=1

πij − πiπj

πiπj
E(U i(β0)|Xi,∆i)E(U i(β0)|Xi,∆i)T ,

and n
1
2 (B̂−β0) is shown to be asymptotically normal with mean zero and covariance matrix

Σ = D−1(β0) +D−1(β0){V (β0)− Γ(β0)}D−1(β0).

9



Clearly, the asymptotic variance using local average type estimator of Chen (2001) is smaller

than the one using the inclusion probability. However, this approach requires the knowledge

of the failure or censoring times (Xi, i = 1, . . . , n) of all the members of the cohort which

might not be always available.

2.1.3 Case-cohort studies

As an alternative to the nested case-control design to reduce the number of subjects for

whom covariate data are required, Prentice (1986) proposed a case-cohort design. This design

involves the selection of a random sample, or a stratified random sample, of the entire cohort,

and the assembly of covariate histories only for this random subcohort and for all cases. The

subcohort in a given stratum constitutes the comparison set of cases occurring at a range of

failure times. The subcohort also provides a basis for covariate monitoring during the course

of cohort follow-up. The hazard function of the ith subject at time t assumes a relative risk

regression model (Cox, 1972) which has the form :

λi(t|Z(t)) = λ0(t)r{βT
0Zi(t)}, (2.4)

where r(x) is a fixed function with r(0) = 1. The pseudolikelihood function for the estimation

of β0 is given by

L̃(β0) =
n∏

i=1

rii/ ∑
l∈R̃(ti)

rli

∆i

, (2.5)

where rli = Yl(ti)r{βT
0Zl(ti)}, D(t) = {i|Ni(t) 6= Ni(t−)}, R̃(t) = D(t)∪C and C is a random

subcohort. The maximum pseudolikelihood estimate β̃p is defined by U(β̃p) = 0, where

U(β) = ∂ log L̃(β)/∂β =
n∑

i=1

Ui(β) =
n∑

i=1

∆i

cii − ∑
l∈R̃(ti)

bli/
∑

l∈R̃(ti)

rli

 (2.6)

and where bli = Yl(ti)Zl(ti)r′{βTZl(ti)}, cli = bli
(
r{βTZl(ti)}

)−1
and r′(u) = dr(u)/du.

Under some regularity conditions, n−
1
2U(β) can be shown to converge weakly to a normal

variate with mean zero and a variance matrix A. Therefore, n
1
2 (β̃p − β0) is shown to con-

10



verge in distribution to a normal variate with mean zero and a sandwich type of variance

matrix S = Ω−1AΩ−1. The asymptotic variance matrix can be consistently estimated by

nI(β̃p)−1Ṽ (β̃p)I(β̃p)−1 where

Ṽ (β) = I(β) + 2
n∑

j=1

∆j∆̃(tj)
∑

{k|tk<tj}

∆kvkj , (2.7)

with

I(β) = −∂
2 log L̃(β)
∂β∂βT

vkj = −
∑

i∈R̃(tj)

(
Bk + bjk − bik
Rk + rjk − rik

)T (
cij −

Bj

Rj

)
rijR

−1
j

Rj =
∑

l∈R̃(tj)

rlj , Bj =
∑

l∈R̃(tj)

blj and ∆̃(t) = 1 if R̃(t) 6= C, and 0 otherwise

A natural estimator for the cumulative baseline failure rate, Λ0(·) is proposed as

Λ̂0(t) = ñn−1

∫ t

0
[
∑
l∈C

Yl(w)r{Zl(w)β̃}]−1dN̄(w),

where N̄ = N1 + . . .+Nn.

This was shown to be able to be extended to a stratified model. Suppose that baseline

data available for the entire cohort are used to partition the cohort into Q strata, and that a

relative risk regression model

λq{t|Z(t)} = λ0q(t)r{βT
q Z(t)}, q = 1, . . . , Q,

is specified for the disease incidence rate in each stratum. A case-cohort approach to the esti-

mation of β0 = (βT
1 , . . . ,β

T
Q)T would involve the selection of a subcohort from each stratum

and the assembly of covariate histories for cases and subcohort members. A pseudolikelihood
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function for β0 can be written as a product of terms (2.5) over strata :

L̃st(β0) =
Q∏

q=1

nq∏
i=1

riiq/ ∑
l∈R̃q(tiq)

rliq

∆iq

where rliq = Ylq(tiq)r{βT
q Zlq(tiq)}, Dq(t) = {i, q|Niq(t) 6= Niq(t−)}, R̃q(t) = Dq(t) ∪ Cq and

Cq is a random subcohort from qth stratum. Thus, the corresponding score statistic is also a

sum of (2.6) over strata and has mean zero and variance can be estimated by the sum over

strata of matrices (2.7).

Self and Prentice (1988) developed asymptotic distribution theory for the case-cohort

maximum pseudolikelihood estimator and related quantities via using a combination of mar-

tingale and finite population convergence results using a slightly different pseudolikelihood

and variance estimator. In their formulation of the risk set, only members in the subcohort

were included while, in Prentice (1986), a nonsubcohort case that fails at time ti would be

considered at risk and was included in the risk set.

They considered the same type of relative risk regression model (2.4) for the hazard func-

tion. The maximum pseudolikelihood estimator, β̃sp, is defined as a solution to ∂ log L̃(β)/∂β =

0, where

log L̃(β) =
∑
i∈C

∫ τ

0
log r{βTZi(u)}dNi(u)−

∫ t

0
log

∑
i∈C̃

Yl(u)r{βTZl(u)}

 dN̄(u)

and where C̃ is a random subcohort of size ñ. Under some regularity conditions, β̃sp

is shown to converge to β0 in probability and n−
1
2 Ũ(β0) is shown to converge in distri-

bution to a Gaussian random variable with mean zero and covariance matrix given by

Σ(β0) = D(β0) + A(β0) where D(β) = − limn→∞ ∂2 log L̃(β)/∂β2 and A(β0), which re-

flects the contribution of the covariance among score components induced by sampling, has

very complicated expressions.

Thus, n1/2
(
β̃sp − β0

)
is shown to converge in distribution to a Gaussian random vari-

able with mean zero and covariance matrix given by D−1(β0) +D−1(β0)A(β0)D
−1(β0) by
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the usual Taylor series expansions. Consistent estimators for D(β0) and A(β0) have been

proposed. For the cumulative hazard function, Λ0(t), Λ̃0(t) has been proposed as a natural

estimator and is given by

Λ̃(t) = ñn−1

∫ t

0

∑
i∈C̃

Yi(u)r{β̃
T
spZi(u)}

−1

dN̄(u), (2.8)

n1/2(β̃sp − β0) and n1/2(Λ̃(·)− Λ0(·)) are shown to converge weakly and jointly to Gaussian

random variables with mean zero and the appropriate limiting covariance functions are pro-

vided.

It is also shown that Prentice (1986)’s estimator, β̃p, and β̃sp are asymptotically equiv-

alent provided an individual’s contributions to S(1) and S(0) are asymptotically negligible.

The variance estimator proposed by Prentice (1986) is somewhat different than the estima-

tor proposed by Self and Prentice (1988), however, it is shown to converge to D−1(β0) +

D−1(β0)A(β0)D
−1(β0).

The variance estimators proposed by Prentice (1986) and Self and Prentice (1988) are very

complicated. Wacholder et al. (1989) proposed a bootstrap estimate of the variance of β̃p

to avoid the direct estimation. However, this method is computationally very intensive so it

might be very time-consuming for large studies. Different ways of obtaining easily computed

variances estimators were proposed by Barlow (1994) and Lin and Ying (1993).

Barlow (1994) proposed a robust estimator of the variance based on the influence of an

individual observation on the overall score. He assumed a standard Cox proportional hazard

regression model for the relative risk

λi(t|Z(t)) = λ0(t)r(t),

where r(x) = exp{βT
0Z(x)}. He proposed a slightly different pseudolikelihood function than

those of Prentice (1986) or Self and Prentice (1988). The conditional probability of failure at

time tj is given by

pi(tj) =
Yi(tj)wi(tj)ri(tj)∑n

k=1 Yk(tj)wk(tj)rk(tj)

13



where the weight of the ith subject at time t, wi(t), is defined as

wi(t) =


1 if dNi(t) = 1,

m(t)/m̃(t) if dNi(t) = 0 and i ∈ C,

0 if dNi(t) = 0 and i /∈ C.

where m(t) is the number of disease-free individuals at risk at time t in the cohort, m̃(t)

is the number of disease-free individuals at risk at time t in the subcohort, and ri(t) =

exp{βT
0Zi(t)}. Note that the Prentice (1986)’s likelihood used an indicator function as a

weight, i.e., wi(t) = 1 if dNi(t) = 1 or i ∈ C, otherwise the weight is zero. The Self and

Prentice (1988)’s likelihood used a denominator summed over subcohort members only. In

Barlow (1994), estimation of β0 follows directly from the logarithm of the pseudolikelihood

function,
∑

t

∑
i dNi(t) log(pi(t)). The robust variance estimator was proposed using the

infinitesimal jacknife estimator and is given by :

V̂ar(β̃) =
1
n

n∑
i=1

êiê
′
i,

where êi = β̃ − β̃(−i) = I−1(β̃)ĉi(t0) is the change in β̃ if the ith observation is deleted. Let

ci(t0) denote the influence of an individual observation on the overall score for person i at

time t0 and it is given by

ci(t0) =
∫ t0

0
Yi(t)[dNi(t)− λi(t)][Zi(t)− E(t)]dN̄(t),

where E(t) =
∑n

k=1 pk(t)Zk(t). Let I−1(β̃) denote the inverse of the information matrix

generated by the pseudolikelihood. Then êi can be approximated by I−1(β̃)ĉi(t0), where

ĉi(t0) =
∫ t0

0
Yi(t)[dNi(t)− p̂i(t)][Zi(t)− Ê(t)]dN̄(t)

is an estimate of ci(t0) and p̂i and Ê(t) are the corresponding estimates of pi(t) and E(t)

replacing β by β̃.
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Lin and Ying (1993) proposed a general solution to the problem of missing covariate data

under the Cox regression model and the case-cohort designs were considered as a special case.

An approximated partial-likelihood score function was proposed for the estimation of the

regression parameters. A new variance-covariance estimator which is much easier to calculate

than that of Prentice (1986) or Self and Prentice (1988) has been also proposed.

A standard Cox proportional hazard regression model was assumed for the relative risk :

λi(t|Z(t)) = λ0(t) exp{βT
0Zi(t)}

Suppose that the data consist of iid random quintuplets {Xi,∆i,Zi(·),H0i(·),H i(·)} where

Zi(·) = {Z1i(·), . . . , Zpi(·)}T may not be completely observed, H0i(·) is an indicator function,

and H i(·) is a p × p diagonal matrix with indicator functions {H1i(·), . . . ,Hpi(·)} as the

diagonal elements. For the original case-cohort design, H i(·) = Ip, the p× p identity matrix,

and H0i(t) = 1 if and only if the ith subject belongs to the subcohort at time t. The

approximate partial-likelihood score function for estimating β0 can be written as

ŨH(β) =
n∑

i=1

∆iH i(Xi){Zi(Xi)−EH(β, Xi)} where

EH(β, t) = S
(1)
H (β, t)/S(0)

H (β, t) and S(r)
H (β, t) = n−1

∑n
i=1H0i(t)Yi(t) exp{βTZi(t)}Zi(t)⊗d,

d = 0, 1. β̃H is the root to the estimating equation {ŨH(β) = 0}. Under certain regularity

conditions, n1/2(β̃H −β0) is shown to be asymptotically normal with mean 0 and covariance

matrix A−1(β0)B(β0)A
−1(β0)T where

An(β) = −n−1∂ŨH(β)/∂β, A(β) = lim
n→∞

An(β),

B(β) = E{W 1(β)⊗2},

W i(β) = ∆iH i(Xi){Zi(Xi)− eH(β, Xi)}

−
∫ Xi

0
{h(t)/h0(t)}H0i(t) exp{βTZi(t)}{Zi(t)− eH(β, t)}λ0(t)dt

eH(β, t) = s
(1)
H (β, t)/s(0)

H (β, t), s(r)
H (β, t) = E{S(r)

H (β, t)}, h(t) = E{H1(t)} and

hj(t) = E{Hj1(t)}(j = 0, 1, . . . , p, r = 0, 1)
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The covariance matrix can be consistently estimated by A−1
n (β̃H)Bn(β̃H)A−1

n (β̃H) where

Bn(β̃) = n−1
n∑

i=1

Ŵ i(β̃), Ŵ i(β) = ∆iH i(Xi){Zi(Xi)−EH(β, Xi)}

− n−1
n∑

l=1

∆lYi(Xl)H0i(Xl)H l(Xl) exp{βTZi(Xl)}{Zi(Xl)−EH(β, Xl)}/S
(0)
H (β, Xl)

For the case-cohort design, the variance estimator A−1
n (β̃H)Bn(β̃H)A−1

n (β̃H) is much

easier to calculate than the estimators of Prentice (1986) and Self and Prentice (1988), espe-

cially in the presence of time-dependent covariates. Another advantage of the estimator by

Lin and Ying (1993) is that its form remains unchanged under multiple subcohort augmenta-

tions. Furthermore, incomplete covariate measurements on the cases are allowed. A natural

estimator of the cumulative baseline hazard function Λ0(t) =
∫ t
0 λ0(u)du has been proposed

and is given by

Λ̃(β̃H , t) =
n∑

i=1

I(Xi ≤ t)∆iH0i(Xi)

nS
(0)
H (β̃, Xi)

=
n∑

i=1

∫ t

0

H0i(s)dNi(s)

nS
(0)
H (β̃, s)

The process n1/2{Λ̃(β̃H , ·) − Λ0(·)} is shown to converge weakly to a Gaussian process with

mean 0 and covariance function

ψ(t, s) =
∫ min(t,s)

0

dΛ0(u)

s
(0)
H (β0, u)

+ J ′(t)A−1(β0)B(β0)A
−1(β0)J(s)

− J ′(t)A−1G(t)− J ′(t)A−1(β0)G(s) (2.9)

where

J(t) =
∫ t

0

s
(1)
H (β0, u)dΛ0(u)

s
(0)
H (β0, u)

,

G(t) = E

[∫ ∞

0

∫ min(t,v)

0

H01(u) exp{β′0Z1(u)}dΛ0(u)

s
(0)
H (β0, u)

×
{
H1(v)−

H01(v)
h0(v)

h(v)
}
{Z1(v)− eH(β0, v)}

×Y1(v) exp{βT
0Z1(v)}dΛ0(v)

]
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ψ can be consistently estimated by replacing the unknown quantities in (2.9) by their respec-

tive sample estimators. However, the authors suggested that this may not be the best choice

if H0i(Xi) = 0 for most of the nonzero ∆i’s. Thus, for the original case-cohort design, the

authors recommended using the formula (2.8) proposed by Self and Prentice (1988) instead.

Chen and Lo (1999) improved the pseudolikelihood estimators by using a class of estimat-

ing equations based on the partial likelihood score function. Chen (2001) further improved

the estimators by using a local type of average as weight in the estimating equations. Borgan

et al. (2000) considered stratified case-cohort sampling designs and proposed several methods

to analyze such study designs. Kulich and Lin (2004) developed a class of weighted estimating

equations with time-dependent weights under the stratified case-cohort designs.

The nested case-control and case-cohort study designs have their own advantages. Either

can lead to major cost savings relative to full-cohort approaches. A key advantage of the

case-cohort design over the nested case-control study is its ability to use the same subcohort

for several diseases or for subtypes of disease (e.g., Prentice, 1986; Wacholder et al., 1989;

Langholz and Thomas, 1990; Wacholder et al., 1991). The availability of the case-cohort

subcohort may be useful for study monitoring and can provide a natural comparison group

at all disease occurrence times for each of the multiple study diseases. However, the choice

between the two designs is less clear when only a single disease endpoint is to be studied. In

the case-cohort design, a subcohort member serves in the comparison group for all cases in

that individual’s risk period, whereas, in the nested case-control design, a matched control

does so only at the failure time(s) where the control is specifically selected. This fact can

lead to a modest efficiency advantage for the case-cohort estimator in some circumstances

(Kalbfleisch and Prentice, 2002). The nested case-control estimator has also some advantages

over case-cohort designs. The method of analysis is simple and more readily understood.

Langholz and Thomas (1991) showed that the nested case-control design may have greater

efficiency than the case-cohort design when there is moderate random censoring or staggered

entry into the cohort.
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2.2 Correlated failure time data

The approaches discussed thus far assume the independence between failure times. In

many biomedical studies, however, the independence between failure times might be violated.

Such data may arise because study subjects having may be grouped in a manner that leads

to dependencies within groups, or because individuals may experience multiple events. Such

correlated failure time data can be mainly classified into two types : parallel and longitu-

dinal. The failure times are unordered for parallel data, whereas the longitudinal data are

sequentially ordered. We focus on the methods for parallel data in this section.

In the following subsections, we will summarize the marginal model approach which leaves

the nature of dependence among related failure times completely unspecified and the frailty

model approach which formulate the nature of dependence explicitly.

2.2.1 Marginal Models

Wei et al. (1989) proposed to model the marginal distribution of each failure time variable

with a Cox-type proportional hazard model. In this approach, no particular structure of

dependence among distinct failure times on each subject is imposed. The form of the hazard

function for the kth type of failure time of the ith subject is given by

λk(t|Zki) = λk0(t) exp{βT
kZki(t)}, k = 1, . . . ,K, i = 1, . . . , n

The kth failure-specific partial likelihood (Cox, 1975) is

Lk(β) =
n∏

i=1

[
exp{βTZki(Xki)}∑

l∈Rk(Xki)
exp{βTZli(Xki)}

]∆ki

where Rk(t) = {i : Xki ≥ t} is the set of subjects at risk just prior to time t with respect to

the kth type of failure. The maximum partial likelihood estimator β̂k for βk is defined as the

solution to the likelihood equation ∂ logLk(β)/∂β = 0. Under certain regularity conditions,

β̂ is shown to be consistent for βk and n
1
2 (β̂

T

1 − βT
1 , . . . , β̂

T

K − βT
K)T is shown to converge

asymptotically to a zero mean multivariate normal random variable with covariance matrix
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Q where

Q̂ =


D11(β̂1, β̂1) . . . D11(β̂1, β̂K)

...
...

DK1(β̂K , β̂1) . . . DKK(β̂K , β̂K)


and where Dkl(βk,βl) can be consistently estimated by

D̂kl(β̂k, β̂l) = Â
−1
k (β̂k)B̂kl(β̂k, β̂l)Â

−1
l (β̂l),

Âk(βk) = n−1
n∑

j=1

∆kj

S(2)
k (βk, Xkj)

S
(0)
k (βk, Xkj)

−

(
S

(1)
k (βk, Xkj)

S
(0)
k (βk, Xkj)

)⊗2
 ,

B̂kl(β̂k, β̂l) = n−1
n∑

j=1

W kj(β̂k)W lj(β̂l)
T ,

W kj(βk) =

{
∆kj −

n∑
m=1

∆kmYkj(Xkm) exp{βT
kZkj(Xkm)}

nS
(0)
k (βk, Xkm)

}

×

{
Zkj(Xkm)−

S
(1)
k (βk, Xkm)

S
(0)
k (βk, Xkm)

}

and S(d)
k (βk, t) = n−1

n∑
i=1

Yki(t)Z⊗d
ki (t) exp{βT

kZki(t)}, d = 0, 1, 2

Lee et al. (1992) proposed to use similar approach for data that consist of large numbers

of small groups of correlated failure time observations. The marginal hazard function λik(t)

for the kth member in the ith stratum conditional on Zik = zik has the usual proportional

hazards form :

λ0(t) exp{β′0zik(t)}

where λ0(t) is the common baseline hazard function. Under the independence working corre-

lation assumption analogous to GEE for longitudinal data, the pseudo partial likelihood for

the estimation of β0 is

L(β) =
n∏

i=1

K∏
k=1

[
exp{βTZik(Xik)}∑n

j=1

∑K
m=1 Yjm(Xik) exp{βTZjm(Xik)}

]∆ik
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The corresponding score function is given by

U(β) =
n∑

i=1

K∑
k=1

∆ik

{
Zik(t)−

∑K
m=1 S

(1)
m (β, Xik)∑K

m=1 S
(0)
m (β, Xik)

}
(2.10)

The estimator β̂ is the solution to U(β) = 0. Under certain regularity conditions, β̂ is

shown to be consistent for β0 and the distribution of n1/2(β̂ − β0) is shown to converge

asymptotically to a normal distribution with mean zero and covariance matrix Γ(β0) which

can be consistently estimated by a sandwich type covariance estimator, I−1(β̂)B̂(β̂)I−1(β̂)

where

I(β) = n−1
n∑

i=1

K∑
k=1

∆ik

∑K
m=1 S

(2)
m (β, Xik)

S
(0)
m (β, Xik)

−

(
S

(1)
m (β, Xik)

S
(0)
m (β, Xik)

)⊗2
 ,

B̂(β̂) = n−1
n∑

i=1

K∑
k=1

K∑
m=1

ζ̂ikζ̂
T
im, ζ̂ik =

∫ τ

0

{
Zik(s)−

∑K
k=1 S

(1)
k (β̂, s)∑K

k=1 S
(0)
k (β̂, s)

}
dM̂ik(s)

M̂ik(s) = Nik(s)−
∫ s

0
Yik(u) exp{β′0Zik(u)}dΛ̂(u) and

Λ̂(s) =
∫ s

0

∑n
i=1

∑K
k=1 dNik(u)∑n

i=1

∑K
k=1 Yik(u) exp{β̂T

Zik(u)}

Liang et al. (1986) proposed another class of estimating functions for β0 under the propor-

tional hazard model considered by Lee et al. (1992). Their estimating function is similar

to (2.10), but they replaced
∑K

k=1 S
(1)
k (β, t)/

∑K
k=1 S

(0)
k (β, t), the conditional expected value

of the covariate vector for an individual observed to fail at time t, with the average of all

possible pairs collected from different clusters. Specifically, the score functions is given by

n∑
i=1

K∑
k=1

I(ni(Xik) > 0)∆ik

Zik(Xik)− n−1(Xik)
∑
j 6=i

∑
l

eik,jl(β, Xik)

 ,

where

eik,jl(β, t) =
Yik(t)Zik(t) exp{βTZik(t)}+ Yjl(t)Zjl(t) exp{βTZjl(t)}

Yik(t) exp{βTZik(t)}+ Yjl(t) exp{βTZjl(t)}
and

ni(t) =
∑
j 6=i

∑
l

Yjl(t)
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Under some regularity conditions, the resulting estimator, β̃, is shown to be consistent for β0

and the distribution of n
1
2 (β̃ − β0) is shown to converge asymptotically to a normal random

variable with mean zero.

Spiekerman and Lin (1998) and Clegg et al. (1999) independently extended the models

considered by Wei et al. (1989) and Lee et al. (1992) to a general model which includes

these two as special cases. They also developed the large-sample theory for the resulting

estimator of the regression parameter β0. Spiekerman and Lin (1998) also established the

uniform consistency and joint weak convergence of the Aalen-Breslow type estimators for the

cumulative baseline hazard functions.

All procedures discussed in this section thus far were based on the independence work-

ing model which weighs all observations equally. (Cai and Prentice, 1995, 1997) proposed

weighted estimating equations to enhance the efficiency of the estimators for β0. They sug-

gested the use of the inverse matrix of the correlation functions between counting process

martingales. Their results indicated that the efficiency improvements for the resulting esti-

mators are good if the correlations among failure times are high and censoring is not very

heavy.

2.2.2 Frailty Models

The marginal model approach previously discussed in this section does not model the intra-

subject correlation explicitly. When the interest resides in estimating the effect of risk factors

and the correlation among the failure times are considered as a nuisance, the marginal model

approach suits this purpose very well. However, in some settings, one might be interested in

the strength and nature of dependencies among the failure time components. For such cases,

the so-called frailty models have been proposed and studied by many authors.

The frailty model explicitly formulates the nature of the underlying dependence structure

through an unobservable random variable. This unknown factor is usually called individual

heterogeneity or frailty. The key assumption is that the failure times are conditionally in-

dependent given the value of the frailty. To illustrate this idea, consider a Cox proportional
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hazards model for subject i with respect to the kth event :

λik(t|Wi) = wiλ0(t) exp{βT
0 zik(t)} (2.11)

where the frailty terms {Wi}, i = 1, . . . , n are assumed to be independent and to arise from

a common parametric density. The commonly used one is the gamma distribution, mostly

for mathematical convenience. Various choices are possible for this density, which include the

positive stable distributions, the inverse Gaussian distributions and the log-normal distribu-

tions.

The parameter estimates are obtained through the EM algorithm, making use of the

partial likelihood expression in the maximization step as shown in Klein (1992). An alternative

approach is to use a penalized partial likelihood for the estimation of the shared frailty

(Therneau and Grambsch, 2001).

Note that β0 in (2.11) generally needs to be interpreted conditionally on the unobserved

frailty. There has been extensive debate over whether the unconditional specification of

the marginal hazard approach or the conditional specification of the frailty model approach

is more naturally related to the underlying mechanisms. The marginal model approach is

model-free regarding dependence assumptions. Since we do not impose a specific model on

the correlation structure, it is robust to the misspecification of correlation structure. This

approach may be advantageous over the frailty model approach when the main purpose of

the analysis is in finding the effect of covariates when the dependence is a nuisance. On the

other hand, the frailty model approach is particularly sensible, when the purpose is to assess

the dependence. Thus, the choice of the model depends on the goal of the specific study.

2.3 Case-control family studies

The literature reviewed in section 2.2 assume that the multivariate failure times data are

from prospective studies assuming random samples. However, for the multivariate failure

times data from the so-called case-control family studies, this assumption does not hold.

Case-control family studies have been used to assess the familial aggregation of a disease and
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the relationship between the disease and genetic or environmental risk factors. Such a case-

control family study identifies a sample of cases who develop the disease of interest and an

independent sample of matched controls who are free of disease at the time of ascertainment.

From each identified individual(proband), information collected includes disease outcomes(age

of onset or age of censoring) and risk factors of the proband and the relatives. Due to this

retrospective sampling of probands, methods for analyzing the correlated failure times data

discussed thus far cannot be directly applied. The retrospective likelihood for the case-control

family study can be constructed as follows. Consider a matched case-control family study

where one case proband is matched in age with one control proband. Each matched set

contains one case family and one control family, and there are a total of n matched set. Let i

denote the family (i = 1, . . . , 2n) and k denote the member in the family (j = 0, . . . ,mi). Let

the first n families be case families and the remaining families be control families. ∆ik is an

indicator variable for whether the individual developed the disease(∆ik = 1) or not(∆ik = 0),

and tik denotes the age of onset if ∆ik = 1 and censoring time if ∆ik = 0. Let (T i,∆i) =

{(Ti0, . . . , Timi), (∆i0, . . . ,∆imi)}. The superscript -1 is used to denote a vector with its first

component removed. Let Zi = (Zi0, . . . ,Zimi) denote the associated covariates for the ith

family of size mi + 1, with the first component in the vectors corresponding to the proband.

Then, the retrospective likelihood for the case-control family study is given by

L =
2n∏
i=1

Pr{(T−1
i ,∆−1

i ,Zi|(Ti1,∆i1)},

The likelihood can be factored as

L =
2n∏
i=1

Pr{Zi0|(Ti0,∆i0)} × Pr{Z−1
i |Zi0, (Ti0,∆i0)} × Pr{(T−1

i ,∆−1
i |Zi, (Ti0,∆i0)}

The second factor of the likelihood , Pr{Z−1
i |Zi0, (Ti0,∆i0)}, can be ignored due to the

reproducibility assumption for marginal models (Whittemore, 1995), i.e., Pr{(Tik,∆ik)|Zi} =

23



Pr{(Tik,∆ik)|Zik}. Thus, the likelihood can be reduced to

L =
2n∏
i=1

Pr{Zi0|(Ti0,∆i0)} × Pr{(T−1
i ,∆−1

i |Zi, (Ti0,∆i0)} (2.12)

Li et al. (1998) proposed a parametric likelihood approach. They assumed the marginal

distribution of ages of onset for each individual follows a proportional hazards model, which

is given by

λ(t|Z) = λ0(t) exp{β′0Z},

where some parametric model with a finite number of unknown parameters η for the baseline

hazard function λ0(t) was assumed. Li et al.(1998) replaced the first part of the likelihood in

(2.12) by the conditional likelihood of Prentice and Breslow (1978) to account for the match-

ing. The Clayton model (Clayton, 1978) was used to specify the multivariate distribution

of age of onset for the second part of the likelihood. Shih and Chatterjee (2002) extended

this parametric model by allowing for a semiparametric modeling of Λ0(·). They proposed a

Nelson-Aalen type of estimator for the cumulative baseline hazard function. However, their

approach required iterative procedure for the estimation of the parameters and the asymp-

totic properties of the resulting estimators are not yet developed. An alternative approach

was proposed by Hsu et al. (2004). They studied the random effect or frailty model, where

the term frailty represents the common unobserved risks shared by the family members. The

objective of this approach is to make inference about individual families, while the marginal

model coefficients (Li et al., 1998; Shih and Chatterjee, 2002) describe the effect of explana-

tory variables on the population average.

2.4 Additive hazards models

All the work discussed thus far was about the proportional hazards regression model, which

assumes multiplicative risk models. The risk difference is another commonly used measure

of association in epidemiology. The risk difference is more relevant to public health because

it translates directly into the number of disease cases that would be avoided by eliminating
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a particular exposure (Kulich and Lin, 2000). When the risk difference is the measure of

interest, the additive hazards model provides a useful alternative to the proportional hazards

model. For example, in studies of excess risk, where the background risk and excess risk

typically can have very different temporal forms, additive risk models seem to be biologically

more plausible than proportional hazards models (Huffer and McKeague, 1999). The hazard

function under the additive risk model for the failure time T associated with Z(·) takes the

form

λ(t|Z) = λ0(t) + βT
0Z(t) (2.13)

where λ0(t) is an unspecified baseline hazard function and β0 is a p-vector of regression

parameter. Lin and Ying (1994) proposed an estimator for model (2.13) and derived the

asymptotic properties. They proposed to estimate β0 from the following estimating function

which mimics the partial likelihood score function for the proportional hazards model

U(β) =
n∑

i=1

∫ τ

0
{Zi(t)− Z̄(t)}{dNi(t)− Yi(t)βTZi(t)dt}, (2.14)

where Z̄(t) =
n∑

j=1

Yj(t)Zj(t)/
n∑

j=1

Yj(t)

We obtain β̂ by solving U(β) = 0 for β, which has the explicit form

β̂ =

[
n∑

i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2dt

]−1 [ n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)}dNi(t)

]

where a⊗2 = aaT . Under some regularity conditions, β̂ is shown to be consistent for β0 and

the distribution of n1/2(β̂ − β0) is shown to converge asymptotically to a p-variate normal

with 0 and with a covariance matrix which can be consistently estimated by a sandwich type

covariance estimator A−1BA−1, where

A = n−1
n∑

i=1

∫ τ

0
Yi(t){Zi(t)− Z̄(t)}⊗2dt, B = n−1

n∑
i=1

∫ τ

0
{Zi(t)− Z̄(t)}⊗2dNi(t)
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The estimators for the cumulative baseline hazard Λ0(t) and the survival function S(t;z)

were proposed and their asymptotic properties were provided. To ensure the monotonicity,

modified estimators, Λ̂∗0(t) = maxs≤t Λ̂0(β̂, s), Ŝ∗(t;z) = mins≤t Ŝ(s;z), have been proposed.

These estimators were shown to be asymptotically equivalent to and preserve the asymptotic

properties of the original estimators.

Kulich and Lin (2000) applied additive hazards model to case-cohort study. They proposed

a weighted estimating equation which modified (2.14) as

UH(β) =
n∑

i=1

ρi

∫ τ

0
{Zi(t)− Z̄H(t)}{dNi(t)− Yi(t)βTZi(t)dt}, (2.15)

where Z̄H(t) =
n∑

j=1

ρjYj(t)Zj(t)/
n∑

j=1

ρjYj(t), ρi = ∆i + (1−∆i)ξi/pi and pi = Pr(ξi = 1)

The resulting estimator also has a closed form :

β̂H =

[
n∑

i=1

ρi

∫ τ

0
Yi(t){Zi(t)− Z̄H(t)}⊗2dt

]−1 [ n∑
i=1

∫ τ

0
{Zi(t)− Z̄H(t)}dNi(t)

]

They considered two subcohort sampling settings : (i) independent Bernoulli sampling with

arbitrary selection probabilities and (ii) stratified simple random sampling with fixed sample

size. Under some regularity conditions, n1/2(β̂H − β0) was shown to be asymptotically zero-

mean normal and consistent estimators for the covariance matrices were proposed under both

settings. Also, an estimator for the cumulative baseline hazard Λ0(t) is proposed and is given

as

Λ̂0H(t) =
∫ t

0

∑n
i=1 dNi(s)∑n
i=1 ρjYj(s)

−
∫ t

0
β̂HZ̄H(s)ds

and it is also shown that n1/2(Λ̂0H(t) − Λ0(t)) converges weakly to a zero-mean Gaussian

process on [0, τ ] and the consistent estimator for the covariance matrix is proposed.

The additive hazards model has been applied to interval censored data by Lin et al. (1998)

and Martinussen and Scheike (2002), to frailty models by Lin and Ying (1997), to cumulative

incidence rates by Shen and Cheng (1999), and to competing risks analysis of the case-cohort

studies by Sun et al. (2004). All this work has assumed mutual independence of the survival
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times.

Yin and Cai (2004) proposed a marginal additive hazards model approach for the corre-

lated or clustered survival data. They proposed the following additive hazards model

λikl(t;Zikl) = λ0k(t) + βT
0kZikl(t) (2.16)

where k denotes the failure type, l denotes the subject and i denotes the cluster. An estimating

function for β0k assuming working independence has been proposed and is given by

Uk(β) =
n∑

i=1

L∑
l=1

∫ τ

0
{Zikl(t)− Z̄k(t)}{dNikl(t)− Yikl(t)βTZikl(t)dt}, (2.17)

where Z̄k(t) =
n∑

j=1

L∑
l=1

Yjkl(t)Zjkl(t)/
n∑

j=1

L∑
l=1

Yjkl(t)

The resulting estimator, β̂k, which is the solution to Uk(β) = 0 is given by

β̂k =

[
n∑

i=1

L∑
l=1

∫ τ

0
Yikl(t){Zikl(t)− Z̄k(t)}⊗2dt

]−1 [ n∑
i=1

L∑
l=1

∫ τ

0
{Zikl(t)− Z̄k(t)}dNikl(t)

]

Under some regularity conditions, as n→∞, n1/2{(β̂1 − β01)T , . . . , (β̂1 − β01)T }T is shown

to converge in distribution to a zero-mean (p × K)-dimensional normal random vector. A

consistent estimator of the covariance matrix is proposed.

A natural estimator for the baseline cumulative hazard function for the kth failure type

is proposed and is given by

Λ̂0k(t; β̂k) =
∫ t

0

∑n
i=1

∑L
l=1 dNikl(s)− Yikl(s)β̂

T

kZikl(s)ds∑n
i=1

∑L
l=1 Yikl(s)

The estimators of the cumulative hazard function and the survival function for a spe-

cific subject with the covariate vector Z0(t) are proposed and are given by Λ̂k(t; β̂k,Z0) =

Λ̂0k(t; β̂k) +
∫ t
0 β̂

T

kZ0(u)du and Ŝk(t;Z0) = exp{−Λ̂k(t; β̂
T

k ,Z0)}. The asymptotic prop-

erties of these estimators are well established and the modified estimators, which ensure

monotonicity, are also proposed and are given by Λ̂∗k(t) = maxs≤t Λ̂0k(s) and Ŝ
∗
k(t;Z0) =
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mins≤t Ŝ
∗
k(s;Z0) for k = 1, . . . ,K. It was shown that these modified estimators still preserve

the asymptotic properties of the original estimators by similar arguments as in Lin and Ying

(1994).

Pipper and Martinussen (2004) also proposed a marginal additive hazards model approach

for clustered survival data. They also studied parametric shared frailty models to estimate

measures of dependence between failure times in a cluster, as well as marginal parameters.

To estimate both regression parameters and the association parameter in parametric shared

frailty models with marginal additive hazards, new estimating equations which are derived by

using the intensities in the observed filtration and the working independence estimators and

mimicking the way in which Lin and Ying (1994) obtained their estimator of the regression

parameter are proposed.

The additive and multiplicative risk models provide two major frameworks for studying

the association between risk factors and disease occurrence or death. Most modern analyses

of survival data focus on multiplicative models for relative risk using proportional hazards

models, mostly due to desirable theoretical properties along with the simple interpretation

of the results and the wide availability of computer programs. However, in many biomedical

studies, proportional hazards assumption might not be valid or the investigators are more

interested in risk differences than relative risks. In such cases, the additive risk model could

be a practical alternative to the proportional hazards model. O’Neill (1986) has also shown

that use of the proportional hazards model can result in serious bias when the additive hazards

model is correct.
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CHAPTER 3

MARGINAL HAZARDS REGRESSION

FOR CASE-CONTROL WITHIN

COHORT STUDIES WITH POSSIBLY

CORRELATED FAILURE TIME DATA

3.1 Introduction

Case-control study design is an efficient and economic method to ascertain a large number

of cases in a relatively short period of time. Often, the case-control study is conducted within

a well-defined cohort. For example, in occupational epidemiology, a commonly used approach

is to conduct a case-control study nested within a cohort that has already been enumerated.

The reason for conducting a case-control study even when a cohort can be enumerated is

usually that more information is needed than is readily available from records and it would

be too expensive to seek this information for everyone in the cohort Rothman (2002). Thus,

such a case-control study could greatly reduce the cost while achieving the same goals as

a cohort study. Failure time models from such retrospective case-control studies have been

studied in the literature (Thomas, 1977; Prentice and Breslow, 1978; Borgan et al., 1995;

Binder, 1992; Samuelsen, 1997; Chen and Lo, 1999; Lin, 2000; Chen, 2001). An important

assumption for these conventional case-control studies is the statistical independence among



subjects. However, in many biomedical studies, this assumption might not hold. For example,

in a retrospective cohort dental study (Caplan and Weintraub, 1997; Caplan et al., 2005),

it was of interest to evaluate the degree to which pulpal involvement affects tooth survival.

Root canal filled (RCF) teeth were used as an indicator of pulpal involvement. In this study,

cases were defined as those who lost the RCF tooth, while controls were defined as those

who did not lose the RCF tooth during the study period. After cases and controls were

sampled, a non-RCF tooth was matched to the RCF tooth within each subject. The survival

times of the two teeth within the same subject could be correlated and thus the independence

assumption might not be valid. The primary goal of the study is to evaluate the effect of

pulpal involvement on tooth survival. The fact that the survival times of the teeth from the

same individual are correlated is considered as a nuisance. In such case, a marginal model

approach is appealing. Examples like this one are very common in biomedical studies. For

example, case-control family studies have been frequently used to assess familial aggregation

of a disease and the relationship between the disease and genetic or environmental risk factors.

In such studies, independent cases and controls are identified and information are collected for

both cases and controls and their relatives. Since related individuals share common genetic

or environmental factors, their failure times could be correlated.

There is an extensive literature of statistical methods for correlated failure time data from

prospective cohort studies (Wei et al., 1989; Lee et al., 1992; Lin, 1994;Cai and Prentice,

1995,1997; Spiekerman and Lin, 1998; Clegg et al., 1999). However, these methods cannot be

directly applied to correlated failure time data from case-control within cohort studies. Work

for correlated failure time data from case-control within cohort studies has been limited.

Some efforts have been made to analyze failure time data from case-control family studies

(e.g.,Li et al., 1998; Shih and Chatterjee, 2002; Hsu et al., 1999; Hsu et al., 2004). For the

case-control family studies, investigators are usually interested in estimating the strength of

dependence of failure times within family. Consequently, most of the methods concentrated

on frailty models or parametric approach, with the exception of Shih and Chatterjee (2002).

In Shih and Chatterjee (2002), the authors considered a quasi-partial-likelihood approach for

simultaneously estimating the parameters in the marginal proportional hazard model and
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the association among family members. However, the asymptotic properties of the proposed

estimator were not clear and estimation of the variance of their estimator relied on a bootstrap

method. When the correlation of the failure times is not of interest, as in the aforementioned

dental study, statistical inference procedure that is easy to conduct and has nice asymptotic

properties remains to be developed. It is desirable to develop hazard regression models for

the correlated failure time data from case-control within cohort studies which account for the

possible correlation within subject while avoiding the specification of the correlation structure.

For univariate failure time data from complex sampling designs, Binder (1992) proposed

an estimating equation approach for fitting Cox’s proportional hazards models for complex

survey data and Lin (2000) studied the theoretical aspects of estimating procedures by Binder

(1992) and extended it to the super-population approach. The sampling weights used in

Binder (1992) are proportional to the inverse of the sampling probability. Samuelsen (1997)

considered the same type of weights when nested case-control design is involved and Chen

(2001) proposed a more efficient estimator by using different forms of weights. All these

methods assume independent failure times and cannot be directly applied to multivariate

failure time data.

In this chapter, we propose a weighted estimating equation approach for estimating the

parameters in the marginal hazards regression models for the correlated failure time data

from case-control studies within cohort. The rest of this chapter is organized as follows. The

proposed model and method of estimation are presented in Section 3.2, followed by the study

of the asymptotics in Section 3.3. In Section 3.4, we report some simulation results. The

methodology is illustrated in Section 3.5 using the aforementioned dental study. In Section

3.6, we give a few concluding remarks.

3.2 Modeling and Estimation

3.2.1 Marginal hazards Model

Let i indicate cluster and k indicate member within cluster. Let Tik denote the failure

time for member k of cluster i. In the aforementioned retrospective dental study example,
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i would indicate the patient, k would indicate the tooth within the patient, and Ti1, Ti2

would represent the failure time of the index tooth and the matching tooth, respectively, for

patient i. Let Cik denote the censoring time. We assume that Cik is independent of the

failure process conditional on covariates. Without loss of generality, we assume that there

are K members in each cluster. Varying cluster sizes can be accommodated by setting the

corresponding Cik to be equal to zero. In many practical cases, Cik = Ci for k = 1, . . . ,K.

The observed time is Xik = min(Tik, Cik) and ∆ik = I(Tik ≤ Cik) is an indicator for failure.

Note that the ‘at risk’ indicator process is given by Yik(t) = I(Xik ≥ t) for member k of

cluster i and let Nik = I(Xik ≤ t, ∆ik = 1) denote the counting process corresponding to Tik.

Let λik(t) and Mik(t) = Nik(t) −
∫ t
0 Yik(u) exp{βT

0Zik(u)}λ0(u)du denote the corresponding

marginal hazards function and a martingale with respect to the marginal filtration Fik(t) =

σ{Nik(s), Yik(s),Zik(s) : 0 ≤ s ≤ t}. Note that Mik(t) are not martingales with respect to

the joint filtration generated by all of the failure, censoring, and covariate history up to time

t, F(t) = ∨n
i=1 ∨K

k=1 Fik(t), due to the intraclass dependence. Let τ denote the study end

time.

Suppose that Tik arises from a marginal intensity process model of the form (Lee et al.,

1992)

λik(t) = Yik(t)λ0(t) exp{βTZik(t)}, (3.1)

where Zik(t) = (Z1ik(t), . . . , Zpik(t))′ is a p-dimensional vector of covariates for member k of

cluster i, and β is a p × 1 vector of fixed and unknown parameters. We assume that all the

time-dependent covariates in Zik(t) are “external”, i.e., they are not affected by the disease

processes, as described by (Kalbfleisch and Prentice (2002)).

3.2.2 Estimation of Regression Parameters and Cumulative Baseline Haz-

ard Function

Under the case-control within cohort study design, suppose we select ñ1 cases and ñ0

controls from the n1 cases and n0 controls, respectively, in the population. Let n = n1 + n0

and ñ = ñ1 + ñ0. Each case (control) has the same probability ñ1/n1 (ñ0/n0) to be selected.

32



Let πi denote this inclusion probability for the ith cluster and ξi denote the indicator for

being selected. The inclusion probability πi is allowed to depend on F(τ). We will refer to

these cases and controls as the index member and use k = 1 to indicate them. Note that by

the study design described in the previous section, K members in the ith stratum have the

same inclusion statuses, i.e., πik = πi and ξik = ξi for k = 1, . . . ,K.

We propose the following weighted estimating equations for estimating β0:

Û(β) =
n∑

i=1

K∑
k=1

∫ τ

0
wi

{
Zik(t)−

Ŝ
(1)

(β, t)

Ŝ(0)(β, t)

}
dNik(t) = 0, (3.2)

where

wi =
ξi
πi
, Ŝ

(d)
(β, t) = n−1

n∑
i=1

K∑
k=1

wiYik(t)Zik(t)⊗deβ
TZik(t) (d = 0, 1),

and a⊗0 = 1,a⊗1 = a, and a⊗2 = aaT for a vector a.

It is assumed that πi > 0 for all i.

Let Λ0(t) =
∫ t
0 λ0(s)ds. To predict the t-year survival probability for future patients with

specific covariates, a Breslow-Aalen type estimator of the baseline cumulative hazard function

is proposed and is given by:

Λ̂0(β̂, t) =
∫ t

0

∑n
i=1

∑K
k=1widNik(s)∑n

i=1

∑K
k=1wiYik(s)e

bβT
Zik(s)

where wi =
ξi
πi
. (3.3)

Note that when K = 1, i.e. when failure time data are from traditional case-control studies

without correlated components from the same cluster, the proposed estimators reduce to the

ones studied by Binder (1992) and Lin (2000) for complex survey data for univariate failure

time. When all the subjects are sampled, i.e. ξi = 1, πi =1, i = 1, . . . , n, the proposed

estimators reduce to the one studied by Lee et al. (1992) for random samples.

Suppose the information on the observed failure times of all the cohort members are

available. Under such situation, using only the inclusion probability πi might not be efficient

since it does not fully use the available information. Note that calculation of πi only requires
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the cohort size n0, n1 and the sample size ñ0, ñ1. Thus, in an attempt to increase the efficiency

of the estimator, a different type of weight which uses all the available information is desired.

To this end, we consider a local average estimator. The idea of the local average estimator

is to replace each missing covariate term by an appropriate local average. This estimator

was considered by Chen (2001) for independent data. We propose the following weighted

estimating equations for estimating β0. The form of the weighted estimating equations is the

same as the one with inclusion probabilities except that we replace πi with a local average.

Specifically,

Û c(β) =
n∑

i=1

K∑
k=1

∫ τ

0
wi

{
Zik(t)−

Ŝ
(1)

c (β, t)

Ŝ
(0)
c (β, t)

}
dNik(t) = 0, (3.4)

where

wi =
ξi

rn(Xi1,∆i1)
, Ŝ

(d)

c (β, t) = n−1
n∑

i=1

K∑
k=1

wiYik(t)Zik(t)⊗deβ
TZik(t), (d = 0, 1)

and

rn(t, d) =

∑n
j=1 ∆j1ξjI{Xj1 ∈ [tl−1, tl)}∑n
j=1 ∆j1I{Xj1 ∈ [tl−1, tl)}

if d = 1 and t ∈ [tl−1, tl) ,

=

∑n
j=1 (1−∆j1) ξjI{Xj1 ∈ [sm−1, sm)}∑n
j=1 (1−∆j1) I{Xj1 ∈ [sm−1, sm)}

if d = 0 and t ∈ [sm−1, sm) .

for some 1 ≤ l ≤ an and 1 ≤ m ≤ bn where 0 = t0 ≤ t1 ≤ . . . ≤ tan = τ and 0 =

s0 ≤ s1 ≤ . . . ≤ sbn = τ are two partitions of [0, τ). With additional assumptions, the

estimator using this weight function is expected to be more efficient than the previous one

using the inclusion probability in the sense that the former results in a parameter estimator

with smaller asymptotic variance. Note that as pointed out by Samuelsen et al., 2005, this

local average method can be described by a procedure called “Post-stratification” in survey

sampling literature. Specifically, after cases and controls are sampled, we divide the cohort

as well as the sampled data into strata constructed from using the additional information

(in this case, the failure times and censoring times for all the cohort members). Then, we

construct the weighted estimating functions as if the data were collected originally by stratified
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case-control sampling. The Breslow-Aalen type estimator of the baseline cumulative hazard

function Λ̂c
0(β̂c, t) will be in the form of (3.3) with wi = ξi/rn(Xi1,∆i1).

3.3 Asymptotic Properties

In this section, we describe the asymptotic properties of the proposed estimates. We

introduce the following notation for convenience:

S(d)(β, t) = n−1
n∑

i=1

K∑
k=1

Yik(t)Zik(t)⊗deβ
TZik(t),

s(d)(β, t) = E{S(d)(β, t)} (d = 0, 1, 2), e(β, t) =
s(1)(β, t)
s(0)(β, t)

,

v(β, t) =
s(2)(β, t)s(0)(β, t)− s(1)(β, t)⊗2

s(0)(β, t)2
, Z̃ik(β, t) = Zik(t)− e(β, t), and

Mez,ik(β) =
∫ τ

0
Z̃ik(β, t)dMik(t)

We assume the following set of conditions hold :

(A) (T i,Ci,Zi), i = 1, . . . , n are independent and identically distributed.

(B) Pr(Y (τ) > 0) > 0.

(C) |Zijk(0)|+
∫ τ
0 |dZijk(u)| < Cz <∞ almost surely for some constant Cz.

(D) The matrix A(β0) =
∫ τ
0 v(β0, t)s(0)(β0, t)λ0(t)dt is positive definite.

Note that the conditions (A)− (D) entail the following conditions (E) - (H):

(E) (Finite interval)
∫ τ
0 λ0(t)dt <∞.

(F) (Asymptotic stability) There exists a neighborhood B of β0 that satisfies the following

conditions, as n→∞,

(i) there exists scalar, vector and matrix functions s(0), s(1) and s(2) defined on B ×

[0, τ ] such that for d = 0, 1, 2, sup
t ∈ [0, τ ]

β ∈ B

||S(d)(β, t)− s(d)(β, t)|| p−→ 0;
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(ii) there exists a matrix Q(β) such that n−1
∑n

i=1 Var(
∑K

k=1 Mez,ik(β0)) −→ Q(β0).

(G) (Asymptotic regularity) For all β ∈ B, t ∈ [0, τ ] : s(1)(β, t) = ∂
∂β
s(0)(β, t), s(2)(β, t) =

∂2

∂β∂βT s
(0)(β, t) where s(d)(·, t) (d = 0, 1, 2) are continuous functions of β ∈ B, uniformly

in t ∈ [0, τ ] and are bounded on B × [0, τ ], s(0) is bounded away from zero on B × [0, τ ].

(H) (Lindeberg condition) There exists a δ > 0 s.t. as n→∞

n−1/2 sup
i,k,t

‖Zik(t)‖Yik(t)I
{
βT

0Zik(t) > −δ ‖Zik(t)‖
} p−→ 0.

The following additional conditions are also needed to ensure the desired asymptotic conver-

gence of case-control samples:

(I) (Nontrivial samples) For s = 0, 1 as n→∞,

(i) ens
ns

converges to a constant αs ∈ (0, 1) where αs is the realization of a function

α(W ) of a random variable W evaluated at W = s, i.e. α(W )|W=s = αs;

(ii) ensh
ns

converges to a constant wsh ∈ (0, 1) for all h = 1, . . . ,Hs where Hs is the

number of post-stratified groups in sth stratum.

(J) (Nontrivial cases) ns
n converges to a constant ps ∈ [0, 1] for s = 0, 1 as n → ∞ where

p1 + p0 = 1.

(K) (Asymptotic normality of samples) For all k = 1, . . . ,K, as n→∞,

n−1 sup
i,t

exp
{
2βTZik(t)

} p−→ 0, n−1 sup
i,t
‖Zik(t)‖2 exp

{
2βTZik(t)

} p−→ 0
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(L) (Asymptotic stability) For d = 0, 1, 2, as n→∞,

(i) sup
t,β

∥∥∥Ŝ(d)
(β, t)− s(d)(β, t)

∥∥∥ p−→ 0, and there exists a positive-definite matrix

V ∗(β) such that Var

(
n−1

n∑
i=1

K∑
k=1

Mez,ik(β0)

∣∣∣∣∣∆i1

)
−→ V ∗(β0)

(ii) sup
t,β

∥∥∥Ŝ(d)

c (β, t)− s(d)(β, t)
∥∥∥ p−→ 0, and there exists a positive-definite matrix

V ∗
c(β) such that Var

(
n−1

n∑
i=1

K∑
k=1

Mez,ik(β0)

∣∣∣∣∣Xi1,∆i1

)
−→ V ∗

c(β0)

Here and in what follows ‖ · ‖ is the Euclidean norm for vectors or matrices.

3.3.1 Asymptotic Properties of β̂ and Λ̂(β̂, t)

We summarize the asymptotic behavior of the regression parameter estimator under the

inclusion probability approach in the following theorem :

Theorem 3.1 Under the regularity conditions (A) - (L), β̂ solving (3.2) is a consistent

estimator of β0. Also n1/2(β̂−β0) is asymptotically normally distributed with mean zero and

with variance matrix of the form Σ(β0) = A−1(β0){Q(β0) + V (β0)}A−1(β0) where

Q(β) = E

( K∑
k=1

Mez,1k(β)

)⊗2
 , V (β) = E

[
1− α(∆11)
α(∆11)

Var

(
K∑

k=1

Mez,1k(β)

∣∣∣∣∣∆11

)]

Note that Σ(β0) has two sources of variations: A−1(β0)Q(β0)A
−1(β0) is the variation due to

the sampling of the cohort and A−1(β0)V (β0)A
−1(β0) is the variation due to the sampling

of the case-control sample from the cohort.

A(β0), Q(β0) and V (β0) can be consistently estimated by Â(β̂), Q̂(β̂) and V̂ (β̂) where
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Â(β) = −n−1∂Û(β)
∂β

, Q̂(β) = n−1
n∑

i=1

wi

(
K∑

k=1

M̂ez,ik(β)

)⊗2

,

V̂ (β) =
1∑

s=0

p̂s
1− α̂s

α̂s
V̂ar

(
K∑

k=1

Mez,1k(β)

∣∣∣∣∣∆11 = s

)
,

M̂ez,ik(β) = ∆ik

{
Zik(Xik)−

Ŝ
(1)

(β;Xik)

Ŝ(0)(β;Xik)

}

− n−1
n∑

j=1

wj

K∑
l=1

∆jlYik(Xjl)eβ
TZik(Xjl)

Ŝ(0)(β;Xjl)

Zik(Xjl)−
Ŝ

(1)
(β;Xjl)

Ŝ(0)(β;Xjl)

 ,

p̂s =
ns

n
, α̂s =

ñs

ns
, wi =

ξi
πi

and

V̂ar

(
K∑

k=1

M̂ez,1k(β)

∣∣∣∣∣∆11 = s

)
is a sample variance of

{
K∑

k=1

M̂ez,1k(β̂)

∣∣∣∣∣∆11 = s

}
for s = 0, 1.

We summarize the asymptotic properties of Λ̂0(β̂, t) in the following theorem :

Theorem 3.2 Under the regularity conditions (A) - (L), Λ̂0(β̂, t) is a consistent estimator of

Λ0(t). Also, n1/2
(
Λ̂0(β̂, t)− Λ0(t)

)
converges weakly to a zero-mean Gaussian process with

covariance function φ(t1, t2)(β0) + σ(t1, t2)(β0) at (t1, t2) where

φ(t1, t2)(β) = E

[(
K∑

k=1

φ1k(β, t1)

)(
K∑

m=1

φ1m(β, t2)

)]
,

σ(t1, t2)(β) = E

[
1− α(∆11)
α(∆11)

Cov

(
K∑

k=1

φ1k(β, t1),
K∑

m=1

φ1m(β, t2)

∣∣∣∣∣∆11

)]
,

φik(β, t) =
∫ t

0

dMik(u)
s(0)(β, u)

+ r(β, t)TA−1(β)Mez,ik(β), and

r(β, t) = −
∫ t

0
e(β, u)dΛ0(u).

φ(t1, t2)(β0) and σ(t1, t2)(β0) can be consistently estimated by φ̂(t1, t2)(β̂) and σ̂(t1, t2)(β̂)

where
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φ̂(t1, t2)(β) = n−1
n∑

i=1

wi

(
K∑

k=1

φ̂ik(β, t1)

)(
K∑

m=1

φ̂im(β, t2)

)
,

σ̂(t1, t2)(β) =
1∑

s=0

p̂s
1− α̂s

α̂s
Ĉov

(
K∑

k=1

φ1k(β, t1),
K∑

m=1

φ1m(β, t2)

∣∣∣∣∣∆11 = s

)
,

φ̂ik(β, t) =
∫ t

0

dM̂ik(u)

Ŝ(0)(β, u)
+R(β, t)T Â

−1
(β)M̂ez,ik(β),∫ t

0

dM̂ik(u)

Ŝ(0)(β, u)
=

∆ikI(Xik ≤ t)

Ŝ(0)(β, Xik)

− n−1
n∑

j=1

wj

K∑
l=1

∆jlI(Xjl ≤ t)Yik(Xjl)eβ
TZik(Xjl)

Ŝ(0)(β, Xjl)2
,

R(β, t) = −n−1
n∑

i=1

wi

K∑
l=1

∆ilI(Xil ≤ t)Ŝ
(1)

(β, Xil)

Ŝ(0)(β, Xil)2
and

Ĉov

(
K∑

k=1

φ1k(β, t1),
K∑

m=1

φ1m(β, t2)

∣∣∣∣∣∆11 = s

)
is a sample covariance for{(

K∑
k=1

φ̂1k(β̂, t1),
K∑

m=1

φ̂1m(β̂, t2)

)∣∣∣∣∣∆11 = s

}
for s = 0, 1.

3.3.2 Asymptotic Properties of β̂c and Λ̂c(β̂c, t)

Now, we describe the asymptotic properties of the model parameter estimators under the

local average approach. The asymptotic variance-covariance matrix is shown to have the

form of a proportionally allocated stratified sample. This is due to the post-stratification

argument when the original sampling is either simple random sampling or stratified simple

random sampling (Cochran, 1977). Our original sampling scheme is a stratified simple random

sampling where the strata are defined by case-status. Thus, we do not need the additional

assumptions imposed in Chen (2001) for local average method while those assumptions are

needed for other sampling schemes such as nest case-control sampling (Samuelsen et al., 2005).

We summarize the asymptotic behavior of the regression parameter estimator and Λ̂c
0(β̂c, t)

under the local average approach in the following two theorems:
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Theorem 3.3 Under the regularity conditions (A) - (L), β̂c solving (3.4) is a consistent

estimator of β0. Also, n1/2(β̂c − β0) is asymptotically normally distributed with mean zero

and with variance matrix of the form Σc(β0) = A−1(β0){Q(β0) + V c(β0)}A−1(β0) where

V c(β) = E

[
1− α(∆11)
α(∆11)

Var

(
K∑

k=1

Mez,1k(β)

∣∣∣∣∣X11,∆11

)]

Note that V c(β0) is not larger than V (β0) since

V c(β0) = E

[
1− α(∆11)
α(∆11)

E

{
Var

(
K∑

k=1

Mez,1k(β)

∣∣∣∣∣X11,∆11

)∣∣∣∣∣∆11

}]

≤ E

[
1− α(∆11)
α(∆11)

Var

(
K∑

k=1

Mez,1k(β)

∣∣∣∣∣∆11

)]

Hence, Σc(β0) is not larger than Σ(β0). A(β0),Q(β0) and V c(β0) can be consistently

estimated by Âc(β̂c), Q̂c(β̂c) and V̂ c(β̂c) where

Âc(β) = −n−1∂Û c(β)
∂β

, Q̂c(β) = n−1
n∑

i=1

wi

(
K∑

k=1

M̂
cez,ik(β)

)⊗2

,

V̂ c(β) =
1∑

s=0

Hs∑
h=1

ŵsh
1− α̂s

α̂s
V̂ar

(
K∑

k=1

Mez,1k(β)|X11 = h,∆11 = s

)
,

V̂ar

(
K∑

k=1

Mez,1k(β)|X11 = h,∆11 = s

)
= n−1

n∑
i=1

wi

×

[
K∑

k=1

M̂
cez,ik(β̂c) − Ê

(
K∑

k=1

Mez,ik(β0)

∣∣∣∣∣Xi1 = h,∆i1 = s

)]⊗2

,

M̂
cez,il(β) = ∆il

{
Zil(Xil)−

Ŝ
(1)

c (β, Xil)

Ŝ
(0)
c (β, Xil)

}
− n−1

n∑
j=1

wj

×
K∑

k=1

∆jkYil(Xjk)eβ
TZil(Xjk)

Ŝ
(0)
c (β, Xjk)

Zil(Xjk)−
Ŝ

(1)

c (β, Xjk)

Ŝ
(0)
c (β, Xjk)

 , wi =
ξi

rn(Xi1,∆i1)
and
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Ê

[(
K∑

k=1

Mez,ik(β0)

∣∣∣∣∣Xi1 = h,∆i1 = s

)]
is a local average of(

K∑
k=1

M̂
cez,ik(β̂c)

∣∣∣∣∣Xi1 = h,∆i1 = s

)
, i = 1, . . . , n using the partitions.

Theorem 3.4 Under some regularity conditions (A) - (L), Λ̂c
0(β̂c, t) is a consistent estimator

of Λ0(t). Also, n1/2
(
Λ̂c

0(β̂c, t)− Λ0(t)
)

converges weakly to a zero-mean Gaussian process

with covariance function φ(t1, t2)(β0) + σc(t1, t2)(β0) at (t1, t2) where

σc(t1, t2)(β) = E

[
1− α(∆11)
α(∆11)

Cov

(
K∑

k=1

φ1k(β, t1),
K∑

m=1

φ1m(β, t2)

∣∣∣∣∣X11,∆11

)]

φ(t1, t2)(β0) and σc(t1, t2)(β0) can be consistently estimated by φ̂c(t1, t2)(β̂c) and σ̂c(t1, t2)(β̂c)

where

φ̂c(t1, t2)(β) = n−1
n∑

i=1

wi

(
K∑

k=1

φ̂c
ik(β, t1)

)(
K∑

l=1

φ̂c
il(β, t2)

)
,

σ̂c(t1, t2)(β) =
1∑

s=0

Hs∑
h=1

ŵsh
1− α̂s

α̂s
Ĉov

(
K∑

k=1

φ1k(β, t1),
K∑

m=1

φ1m(β, t2)|X11 = h,∆11 = s

)
,

φ̂c
ik(β, t) =

∫ t

0

dM̂ c
ik(u)

Ŝ
(0)
c (β, u)

+Rc(β, t)T Â
−1

c (β)M̂
cez,ik(β),

∫ t

0

dM̂ c
ik(u)

Ŝ
(0)
c (β, u)

=
∆ikI(Xik ≤ t)

Ŝ
(0)
c (β, Xik)

− n−1
n∑

j=1

wj

K∑
l=1

∆jlI(Xjl ≤ t)Yik(Xjl)eβ
TZik(Xjl)

Ŝ
(0)
c (β, Xjl)2

,

Rc(β, t) = −n−1
n∑

i=1

wi

K∑
l=1

∆ilI(Xil ≤ t)Ŝ
(1)

c (β, Xil)

Ŝ
(0)
c (β, Xil)2

and

Ĉov

(
K∑

k=1

φ1k(β, t1),
K∑

m=1

φ1m(β, t2)

∣∣∣∣∣X11 = h,∆11 = s

)
= n−1

n∑
i=1

wi

×

[
K∑

k=1

φ̂c
ik(β̂, t1)− Ê

(
K∑

k=1

φik(β, t1)

∣∣∣∣∣Xi1 = h,∆i1 = s

)]

×

[
K∑

m=1

φ̂c
im(β̂, t2)− Ê

(
K∑

m=1

φim(β, t2)

∣∣∣∣∣Xi1 = h,∆i1 = s

)]
.
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The proofs of the theorems 3.1 and 3.4 are outlined in the last section of this chapter.

The consistency of the estimators for the hazards regression parameters were shown via an

extension of Foutz (1977)’s theorem. The key steps to show the asymptotic normality involved

the decomposition of the weighted estimating functions to the pseudo partial likelihood score

function for the full cohort data plus a term involving the sampling of the case-control samples

from the full cohort. This was based on a modified version of lemma 1 in Lin et al. (2000),

the strong embedding theorem (Shorack and Wellner, 1986), and the Kolmogorov-Centsov

Theorem (Karatzas and Shereve, 1988). The martingale convergence results (Andersen and

Gill, 1982) and the theory of modern empirical processes (van der Vaart and Wellner, 1996)

were used to show the asymptotic normality of the pseudo partial likelihood score function

for the full cohort data (Spiekerman and Lin, 1998). However, for the second part, the

martingale convergence results can no longer be applied since the weights are not predictable.

Thus, the theory of modern empirical processes (van der Vaart and Wellner, 1996) which does

not require the predictability condition was employed for the second part. The asymptotic

theory for sampling from finite population (Hájek, 1960) is also needed since it involves the

sampling without replacement from the cohort. The asymptotic independence of the two

terms and the Taylor expansion ensure the desired asymptotic normality of the estimators

for the hazards regression parameters. The uniform consistency of the cumulative baseline

hazards estimators and the weak convergence to a tight Gaussian processes were shown via

similar arguments mentioned above.

3.4 Simulations

Extensive Monte Carlo simulations have been conducted to examine the finite sample

properties of the proposed procedures. For each cluster, mimicking the setup for our mo-

tivating dental study example, failure times for two members (K=2) were generated via a

multivariate extension of the Clayton and Cuzick (1985), in which the joint survival function

for (T1, T2) given (Z1, Z2) is S(t1, t2;Z1,Z2) = {S1(t1;Z1)−1/θ + S2(t2;Z2)−1/θ − 1}−θ where
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Sk(t;Z) = Pr(Tk > t|Zk), k = 1, 2, is the marginal survival function for Ti given covariate Zi.

We considered a binary covariate with all the first members having 1 and second members

having 0 which is the case for the dental study example. We also considered a continuous

covariate where the continuous covariate was generated from the standard normal distribu-

tion. Exponential and Weibull distributions were considered for the marginal distribution of

the failure times. The parameter θ represents the degree of dependence of T1 and T2. The

smaller the value of θ, the stronger the dependence between T1 and T2. Values of 4, 1.25,

0.67, and 0.1 were considered for θ. This corresponds to a correlation of 0.237, 0.573, 0.762,

and 0.987 when β = 0 and no censoring. We used values of 0 and log(2) for the regression

parameter β. λ0 was set to 1 for exponential failure times. For Weibull failure times, the

scale parameter and the shape parameter were set to 1 and 0.5, respectively. Cohort sizes of

n = 1000, 2000 were considered. We conducted simple random sampling without replacement

within cases and controls independently. Approximately 80% and 90% of censoring propor-

tions were considered for each setup and 90% of the cases and the same number of controls

were sampled. The censoring times were generated from uniform(0, c) independently from

the failure times where c was determined to achieve the desired censoring proportions. For

each of the configuration studied, 2000 simulations were carried out.

Table 3.1 presents simulation summary statistics with marginal distribution with λ0 = 1

and for the binary covariate where the value of the first member is equal to one and the

value of the second member is equal to zero(Zi1 = 1 and Zi2 = 0). “mean β̂0” denotes

the average of the estimates of β0, “indep. s.e.” denotes the average of the estimates of

standard errors based on independence assumption, “proposed s.e.” denotes the average of

the estimates of standard errors based on the proposed method, “true S.D.” denotes the

sample standard deviation of the 2,000 estimates, and “95% coverage” denotes the coverage

rate of the nominal 95% confidence interval. Note that the sample size for the case-control

sample increases with increasing event proportion in our setup since we sample 90% of the

cases and the same number of controls. The simulation results suggest that the coefficient

estimates are approximately unbiased for the samples considered when β = 0, while the

coefficient estimates are relatively biased(4 - 12 %) when β = log(2) with small cohort and
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sample sizes(n = 1000, event proportion = 10%). However, as the cohort size or sample size

increases, the coefficient estimates improve and are approximately unbiased. The proposed

estimated standard errors provide a very good estimate of the true variability of β̂ while

standard errors based on independence assumption do not. As expected, the variance of

β̂ decreases as cohort size or sample size increases. The coverage rate of the nominal 95%

confidence intervals using the proposed method are in the 93% - 96% range in most of the

cases considered. Table 3.2 provides simulation summary statistics for the standard normal

covariate and Table 3 shows the results for the same setup as in Table 3.1 except that the

marginal distribution follows Weibull distribution with the scale parameter and the shape

parameter being set to 1 and 0.5, respectively. The findings are similar to those of Table 3.1.

We have also conducted simulations to compare the estimates with inclusion probability

and the local average method. Exponential failure times were generated with λ0 = 0.4 and

0.25 for β = 0 and log(2), respectively. The covariate Z was uniformly distributed on five

points m/5, 1 ≤ m ≤ 5. We considered the situation when the censoring times were dependent

on covariates. For each cluster i, the censoring time was generated from uniform distributions

on the interval with length 0.4 and centered at m∗/5 where m∗ was chosen such that it satisfies

(m∗ − 1)/5 <
∑K

k=1 Zik/K ≤ m∗/5(m∗ = 1, . . . , 5). Cohort sizes of n = 1000 and 2000

were considered. Under these setups, the proportion of failures is about 0.230 when β = 0

and is about 0.228 when β = log(2). For the local average approach, the partitions of the

time interval [0, τ) were defined as [0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.5), [0.5, 0.6),

[0.6, 0.7) and [0.7, τ) for cases and [0, 0.4), [0.4, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9),

[0.9, 1.0) and [1.0, τ) for controls where τ was set to a value bigger than the maximum value

of the failure and censoring times of the first members, say maxi(T i1,Ci1, i = 1, . . . , n) + 0.1.

Eighty percent of the cases were sampled and the same number of controls were sampled.

Table 3.4 displays a comparison between the estimators using inclusion probabilities and local

average method. Both methods perform reasonably well under the settings considered. The

results indicate that the local average method is more efficient than the inclusion probabilities

method when the censoring time depends on the covariate, especially when the correlations

of the failure times within a cluster is very high (θ = 0.1).
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3.5 Application to the Retrospective Dental Study

We applied our proposed method to data from the retrospective dental study of pulpal

involvement and tooth survival described in section 1. The sample was drawn from the

population of enrollees in the Kaiser Permanente Dental Care Program (KPDCP), a dental

HMO located in Portland, OR (Caplan and Weintraub, 1997). Enrollees are current or re-

tired employees(or their dependents) of companies with dental insurance through KPDCP.

As an indicator of pulpal involvement, root canal filled (RCF) teeth were used. Cases were

defined as those who lost the RCF tooth during 1987-1994 period, while controls were de-

fined as those who did not lose the RCF tooth during that period. After cases and controls

were sampled, a non-RCF tooth was matched to the RCF tooth within each subject. For a

matched non-RCF tooth, the contralateral tooth was selected if it was present. If that tooth

was missing or already had RCF on the RCF tooth’s access date(index date), the tooth of

the same type(anterior, premolar or molar) adjacent to the contralateral tooth was selected.

A total of 406 charts was requested, including 232 randomly selected from among 272 cases,

and 174 randomly selected from among 1523 controls. Two-hundred-and-two (202) subjects

were identified following the study eligibility criteria. Each of them has one RCT tooth and

a matched non-RCT tooth. Subject- and tooth- level covariates were then ascertained for

the RCF tooth and the matching non-RCF tooth from the electronic databases and from

radiographs (bitewing, periapical, panoramic) and clinical periodontal recordings taken most

recently before the RCF tooth’s access date. Databases and charts were examined to deter-

mine all treatment received by the study teeth between the index date and 12/31/94, and the

most recent radiograph was examined to validate extraction status. For both RCF and non-

RCF teeth, follow-up started on the index date and continued through the date of extraction

or 12/31/94, whichever came first. If an initially non-RCF tooth was accessed endodontically

during that interval, the tooth was censored on its endodontic access date.

We applied the proposed method to this data set to investigate the effect of RCF on tooth

survival. We also analyze the data using the unweighted method where the sampling scheme

was not taken into consideration. For the analyses, we included RCF status, Tooth type,
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Interaction between RCF status and Tooth type, Proximal contacts and Number of pockets

≥ 5mm as covariates and studied the effect of RCF on tooth survival. Tooth type is molar and

nonmolar. There were 176 molars and 228 nonmolars among 202 subjects. Proximal contacts

(PCs) are where teeth contact adjacent teeth in the same arch. RCF and non-RCF teeth

were classified as into one of four mutually exclusive groups: PC2 (teeth contacting adjacent

teeth on both front and back sides); PC1 (teeth contacting adjacent teeth only on one side);

PC0 (teeth with no adjacent contacting teeth); or PCABUT (teeth that were abuments for

bridges). Ninety percent of the sampled teeth falls either in PC1 or PC2. Periodontal pockets

are the spaces between the teeth and gums. Pocket depths had been recorded at six sites per

tooth. 5mm was chosen as a binary threshold representing “deep pockets”, and the number

of pockets of this depth (out of six possible sites per tooth) were counted. Two hundred and

seventy nine teeth(70%) do not have any periodontal pockets ≥ 5mm.

Table 3.6 provides hazard ratio(HR) estimates, the estimated standard errors, and the

associated p-values for the proposed method and naive(unweighted) method. The results

show strong evidence of significant RCF effect among molars. It indicates that for molars,

the hazard rate with RCF is approximately seven times as higher as that without RCF.

However, no statistically significant effect was seen among non-molars. The HR estimates for

the molars and nonmolars using naive method are biased and are 1.5 to 3 times higher than

those using the proposed method. For other variables, the teeth with 2 PCs and the number

of pockets show statistically significant effect. The hazard rate with the teeth with 2 PCs

is approximately 10 times lower than those with 0 PCs. Having one more pocket ≥ 5mm

increases the hazard rate by approximately 30%, however, this effect is marginal (p-value =

0.09).

3.6 Concluding Remarks

Motivated by the aforementioned dental study (Caplan and Weintraub, 1997; Caplan

et al., 2005), we have proposed methods of fitting marginal hazard regression models for the

multivariate failure time data from case-control within cohort studies. The primary interest of
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the study was to evaluate the effect of pulpal involvement on tooth survival. The correlation

between two teeth within the same subject is considered as a nuisance. This naturally led us

to consider marginal hazard regression models. Weighted estimating equations are proposed

for the estimation of the regression parameter. A Breslow-Aalen type estimator is proposed

for the cumulative baseline hazard functions. The proposed estimators are shown to be

consistent and asymptotically normally distributed. Two types of weights were considered in

estimation: the inverse of the inclusion probabilities and the local average. The latter requires

the additional information on the observed failure times of all the cohort members. It is more

efficient than the inclusion probability estimator when the censoring time is dependent on

some covariates which the failure time is also dependent on.

3.7 Proofs of the theorems

The following lemmas will be frequently used in proving the theorems.

Lemma 1 Let fn(t) and gn(t) be two sequences of bounded functions. For some constant τ ,

assume that the following conditions (a) - (c) hold where

(a) sup0≤t≤τ ‖fn(t)− f(t)‖ −→ 0, for some bounded function f(t),

(b) {fn(t)} are monotone on [0, τ ] and

(c) sup0≤t≤τ |gn(t)− g(t)| −→ 0 where g(t) is continuous on [0, τ ]. Then

sup
0≤t≤τ

∥∥∥∥∫ t

0
fn(s)dgn(s)−

∫ t

0
f(s)dg(s)

∥∥∥∥ −→ 0,

sup
0≤t≤τ

∥∥∥∥∫ t

0
gn(s)dfn(s)−

∫ t

0
g(s)df(s)

∥∥∥∥ −→ 0.

This lemma is a simple extension of lemma 1 of Lin et al., 2000. The proof follows that of

Lin et al. (2000) by replacing |.| with ‖.‖.

Lemma 2 Let W n(t) and Gn(t) be two sequences of bounded processes. For some constant

τ , assume that the following conditions (a) - (c) hold where
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(a) sup0≤t≤τ ‖W n(t)−W (t)‖ p−→ 0 for some bounded process W (t),

(b) W n(t) is monotone on [0, τ ] and

(c) Gn(t) converges to a zero-mean process with continuous sample paths. Then

sup
0≤t≤τ

∥∥∥∥∫ t

0
{W n(s)−W (t)}dGn(s)

∥∥∥∥ p−→ 0, sup
0≤t≤τ

∥∥∥∥∫ t

0
Gn(s)d{W n(s)−W (s)}

∥∥∥∥ p−→ 0.

Proof of lemma 2 Let G(t) be a limiting process of Gn(t). Then, by the strong embedding

theorem (Shorack and Wellner, 1986, p47-48), we can construct a new probability space

wherein (W n, Gn) converges almost surely to (W , G). Since W n(t) is monotone and G(t) is

continuous, by applying lemma 1, we have

sup
0≤t≤τ

∥∥∥∥∫ t

0
W n(s)dGn(s)−

∫ t

0
W (s)dG(s)

∥∥∥∥ a.s.−→ 0,

and

sup
0≤t≤τ

∥∥∥∥∫ t

0
W n(s)dGn(s)−

∫ t

0
W (s)dG(s)

∥∥∥∥ p−→ 0 (3.5)

in the original probability space. By (3.5), the following also holds

sup
0≤t≤τ

∥∥∥∥∫ t

0
W (s)d{Gn(s)−G(s)}

∥∥∥∥ p−→ 0 (3.6)

by replacing W n(s) with W (s). Now, one can write

∫ t

0
{W n(s)−W (s)}dGn(s) =

{∫ t

0
W n(s)dGn(s)−

∫ t

0
W (s)dG(s)

}
−

∫ t

0
W (s)d{Gn(s)−G(s)}.

Each of the two terms on the right-hand side of this equation converges to zero uniformly

in t in probability by (3.5) and (3.6). Thus,
∫ t
0{W n(s) −W (s)}dGn(s) converges to zero

uniformly in t in probability as n→∞. The other expression follows from the integration by

parts formula.
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Lemma 3 Suppose a cohort of size n can be divided into S mutually exclusive strata and

this stratification is based on a discrete random variable W whose information is available

for all the cohort members. Let ns denote the size of the sth stratum (s = 1, . . . , S). Let

Xsj’s be independent and identically distributed random variables and ξsj = (ξs1, . . . , ξsns)

be a random vector of ñs ones and ns − ñs zeros with each permutation equally likely. Let

ñs =
∑ns

j=1 ξsj denote the sample size drawn from the sth stratum. Then

Un = n−1/2
S∑

s=1

ns∑
j=1

(
ξsj

ñs/ns
− 1
)
Xsj

converges to a zero-mean normal random variable with the following covariance function

E
{(

1
α(W )

− 1
)

Var(XW1|W )
}

provided that

(a)
ns

n

p−→ ps ≡ P (W = s) ∈ (0, 1) and
ñs

ns

p−→ αs ∈ (0, 1) as n→∞, where

αs is the realization of a function α(W ) of a random variable W evaluated at

W = s, i.e. α(W )|W=s = αs,

(b) S2
s =

1
ns − 1

ns∑
j=1

(Xsj − X̄s)2
p−→ σ2

s = Var(XW1|W = s) 6= 0

where X̄s =
1
ns

ns∑
j=1

Xsj , and

(c)
max(Xsj − X̄s)2∑ns

j=1(Xsj − X̄s)2
−→ 0 as n→∞ for s = 1, . . . , S.

This is simply applying the Hájek (1960)’s asymptotic theory of random sampling without

replacement from a finite population within each strata. Specifically, write
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Un =
S∑

s=1

1√
n
ns

ns∑
j=1

(
ξsj
ñs

− 1
ns

)
Xsj

=
S∑

s=1

√
ns

n
·

√(
ns

ñs
− 1
)
S2

s ·

∑ns
j=1

(
ξsjens
− 1

ns

)
Xsj√

1
ns

(
nsens
− 1
)
S2

s

=
S∑

s=1

√
ns

n

(
ns

ñs
− 1
)
S2

s · U (s)
n .

On the basis of the conditions (a), (b) and (c), conditional on F(τ), U (s)
n converges to a

standard normal random variable by the Hájek (1960)’s asymptotic theory of random sampling

without replacement from a finite population. Since the resulting standard normal random

variable does not depend on F(τ), this is true unconditionally. Note that the sampling was

conducted independently across the strata. Then, together with the conditions (a) and (b),

we can use the Slutsky’s theorem and conclude that Un converges to a normal random variable

with mean zero and with the following covariance function

S∑
s=1

ps

(
1
αs
− 1
)

Var(XW1|W = s) = E
[(

1
α(W )

− 1
)

Var(XW1|W )
]
.

Lemma 4 Suppose that within each stratum S we have further classified the sample into Hs

mutually exclusive groups based on a discrete random variable V and the sizes of strata, nsh,

for h = 1, . . . ,Hs, s = 1, . . . , S, are known. Let ñsh =
∑nsh

j=1 ξshj denote the sample size drawn

from the hth stratum in the sth stratum. Then

Un = n−1/2
S∑

s=1

Hs∑
h=1

nsh∑
j=1

(
ξshj

ñsh/nsh
− 1
)
Xshj

converges to a zero-mean normal random variable with the following covariance function

E
{(

1
α(W )

− 1
)

Var(XWV 1|W,V )
}
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provided that

(a)
ns

n

p−→ ps ≡ P (W = s) ∈ (0, 1),
nsh

ns

p−→ qsh ≡ P (V = h|W = S) ∈ (0, 1), and

ñs

ns

p−→ αs ∈ (0, 1) as n→∞, where αs is the realization of a function α(W )

of a random variable W evaluated at W = s, i.e. α(W )|W=s = αs,

(b) S2
sh =

1
nsh − 1

nsh∑
j=1

(Xshj − X̄sh)2
p−→ σ2

sh = Var(XWV 1|W = s, V = h) 6= 0

where X̄sh =
1
nsh

nsh∑
j=1

Xshj , and

(c)
max(Xshj − X̄sh)2∑nsh

j=1(Xshj − X̄sh)2
−→ 0 as n→∞ for s = 1, . . . , S and h = 1, . . . ,Hs.

Proof of lemma 4 The number of samples in each stratum after post-stratification, ñsh, are

not fixed, but random. Note that conditioning on ñ = (ñ1, . . . , ñs) where ñs = (ñs1, . . . , ñsHs),

s = 1, . . . , S, we can apply standard results from independent simple random sampling within

strata. Thus,

E(Un|ñ,F(τ)) =
√
n
−1

S∑
s=1

Hs∑
h=1

nsh∑
j=1

E
{(

ξshj

ñsh/nsh
− 1
)
Xshj |ñsh,F(τ)

}
= 0, since

E (ξshj |ñsh,F(τ)) =
ñsh

nsh
, and Var(Un|ñ,F(τ))

=n−1
S∑

s=1

Var


Hs∑
h=1

nsh∑
j=1

(
ξshj

ñsh/nsh
− 1
)
Xshj |ñsh,F(τ)


=n−1

S∑
s=1

Hs∑
h=1

(
nsh

ñsh

)2

Var

nsh∑
j=1

ξshjXshj |ñsh,F(τ)


=n−1

S∑
s=1

Hs∑
h=1

(
nsh

ñsh

)2


nsh∑
j=1

Var (ξshjXshj |ñsh,F(τ))

+
nsh∑

j,k=1,j 6=k

Cov (ξshjXshj , ξshkXshk|ñsh,F(τ))


=n−1

S∑
s=1

Hs∑
h=1

(
nsh

ñsh

)2
 ñsh

nsh

(
1− ñsh

nsh

) nsh∑
j=1

X2
shj +

ñsh(ñsh − nsh)
n2

sh(nsh − 1)

×
nsh∑

j,k=1,j 6=k

XshjXshk


(

since Cov(ξshj , ξshk) =
ñsh(ñsh − nsh)
n2

sh(nsh − 1)

)
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= n−1
S∑

s=1

Hs∑
h=1

(
1
ñsh

)
(nsh − ñsh)


nsh∑
j=1

X2
shj −

1
nsh − 1

nsh∑
j,k=1,j 6=k

XshjXshk


= n−1

S∑
s=1

Hs∑
h=1

(
1
ñsh

)
(nsh − ñsh)

nsh

nsh − 1

nsh∑
j=1

(Xshj − X̄sh)2

= n−1
S∑

s=1

n2
s

Hs∑
h=1

(
nsh

ns

)2( 1
ñsh

− 1
nsh

)
S2

sh

Now the results from conditioning only on F(τ) can be obtained as follows.

E(Un|F(τ)) = E en(E(Un| ñ,F(τ))) = 0 and

Var(Un| F(τ)) = E en(Var(Un| ñ,F(τ))) + Var en(E(Un| ñ,F(τ)))

= E en
(

S∑
s=1

(
n2

s

n

) Hs∑
h=1

(
nsh

ns

)2( 1
ñsh

− 1
nsh

)
S2

sh

∣∣∣∣∣F(τ)

)

Note that given F(τ), ñsh is random, but ñs, nsh, and ns are not random; E en(Z(ñ)) is the

average of Z(ñ) over all possible values of ñ, and E en(ñsh|F(τ)) = ñsWsh, Var en(ñsh|F(τ)) =

ñsWsh(1−Wsh) where Wsh = nsh/ns. Since

1
ñsh

=
1

ñsWsh
· 1

1−
(
1− enshensWsh

)
=

1
ñsWsh

(
1 +

ñsWsh − ñsh

ñsWsh
+

1
(1− a∗)3

(ñsWsh − ñsh)2

(ñsWsh)2

)

by the Taylor series expansion where a∗ lies on the line segment between 0 and 1−ñsh/ñsWsh,

E
(

1
ñsh

∣∣∣∣F(τ)
)

= E
(

1
ñsWsh

+
ñsWsh − ñsh

(ñsWsh)2
+

1
(1− a∗)3

(ñsWsh − ñsh)2

(ñsWsh)3

)
=

1
ñsWsh

+ E(ñsWsh − ñsh)
(ñsWsh)2

+
1

(1− a∗)3
E(ñsWsh − ñsh)2

(ñsWsh)3

=
1

ñsWsh
+ 0 +

1
(1− a∗)3

1−Wsh

(ñsWsh)2

=
1

ñsWsh
+O(ñ−2

s )
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Therefore,

Var(Un| F(τ)) =
S∑

s=1

n2
s

n

{
Hs∑
h=1

W 2
sh

(
1

ñsWsh
+O(ñ−2

s )− 1
nsh

)
S2

sh

}

=
S∑

s=1

n2
s

n

{
Hs∑
h=1

(
Wsh

ñs
+O(ñ−2

s )−
W 2

sh

nsh

)
S2

sh

}

=
S∑

s=1

ns

n

{
Hs∑
h=1

(
ns

ñs
− 1
)
WshS

2
sh +O(ñ−1

s )

}

=
S∑

s=1

ns

n

Hs∑
h=1

(
ns

ñs
− 1
)
WshS

2
sh +O(ñ−1

s )

The first term is the variance of a proportionally allocated stratified sample while the second

term is O(ñ−1
s ) = O(n−1) = o(1) by condition (a). Thus, the asymptotic behavior of Un

conditioning on F(τ) under post-stratification can be asserted to be the same as that under

a proportionally allocated stratified sample. Therefore, by conditions (a), (b) and (c), Un

conditioning on F(τ) converges to a zero-mean normal random variable with the following

covariance function

lim
n→∞

S∑
s=1

ns

n

Hs∑
h=1

(
ns

ñs
− 1
)
WshS

2
sh + o(1) = E

{(
1

α(W )
− 1
)

Var(XWV 1|W,V )
}

Since the covariance function does not depend on F(τ), this argument is true unconditionally.

Proof of theorem 3.1 We first consider the proof of the consistency of Û(β0). Denote

n−1 times Û(β) by Un(β). Based on a straightforward extension of Foutz (1977), one can

show β̂ to be consistent for β0 provided: (i) ∂Un(β)/∂βT exists and is continuous in an open

neighborhood B of β0, (ii)∂Un(β0)/∂β
T
0 is negative definite with probability going to one

as n → ∞, (iii) ∂Un(β)/∂βT converges to A(β0) in probability uniformly for β in an open

neighborhood about β0, and (iv) Un(β) → 0 in probability.
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One can write

∂Un(β)
∂βT

= −n−1

∫ τ

0
V̂ (β, t)dN̂(t) where N̂(t) =

n∑
i=1

K∑
k=1

wiNik(t),

wi =
ξi
πi

and V̂ (β, t) =

{
Ŝ

(2)
(β, t)Ŝ(0)(β, t)− Ŝ

(1)
(β, t)⊗2

Ŝ(0)(β, t)2

}
. (3.7)

Then, (i) is clearly satisfied on the basis of (4.15) and by the continuity of each component.

Now, following Andersen and Gill (1982),

∥∥∥∥(−∂Un(β)
∂βT

)
−A(β)

∥∥∥∥ ≤

∥∥∥∥∥
K∑

k=1

∫ τ

0
{V̂ (β, t)− v(β, t)}n−1dN̄k(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑

k=1

∫ τ

0
{V̂ (β, t)− v(β, t)}dn−1

n∑
i=1

(wi − 1)Nik(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑

k=1

∫ τ

0
v(β, t)n−1dM̄k(t)

∥∥∥∥∥ +

∥∥∥∥∥
K∑

k=1

n−1
n∑

i=1

(wi − 1)
∫ τ

0
v(β, t)dMik(t)

∥∥∥∥∥
+

∥∥∥∥∫ τ

0
v(β, t){Ŝ(0)(β, t)− s(0)(β, t)}λ0(t)dt

∥∥∥∥ (3.8)

where N̄k(t) =
∑n

i=1Nik(t) and M̄k(t) =
∑n

i=1Mik(t).

Each of the terms on the right side of the above inequality will be shown to converge to

zero, uniformly in β ∈ B in the following.

The Lenglart inequality (Andersen and Gill, 1982, p1115) implies that, for any δ, ρ > 0,

there exists n0 such that for n ≥ n0,

P [n−1N̄k(τ) > c] ≤ δ

c
+ P [

∫ τ

0
S(0)(β0; t)λ0(t)dt > δ]

By Condition (F), for δ >
∫ τ
0 s

(0)(β0, t)λ0(t)dt, P [
∫ τ
0 S

(0)(β0; t)λ0(t)dt > δ] → 0 as n → ∞.

Then, limc↑∞ limn→∞ P [n−1N̄k(τ) > c] = 0. Conditions (G) and (L) imply

sup
t ∈ [0,τ ]

β ∈ B

‖V̂ (β; t)− v(β, t)‖ p−→ 0 as n→∞. Thus, it follows that the first term on the

right side of (4.16) converges to zero in probability, uniformly in β ∈ B, as n→∞.

By applying lemma 3, n−1/2
∑n

i=1(wi− 1)Nik(t) can be shown to be asymptotically normally
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distributed with mean zero. Here we have two strata (Cases and Controls) and the conditions

(I), (J), (L) and the fact that maxi |Nik − n−1
1 N̄k| ≤ maxi |Nik| = 1 ensure the conditions

(a), (b) and (c) in lemma 3 are satisfied. This implies n−1
∑n

i=1(wi − 1)Nik(t) converges to

zero in probability. Thus, together with sup
t ∈ [0,τ ]

β ∈ B

‖V̂ (β; t)−v(β, t)‖ p−→ 0 as n→∞, it

follows that the second term on the right side of (4.16) also converges to zero in probability,

uniformly in β ∈ B, as n→∞.

n−1
∑n

i=1

∫ τ
0 v(β, t)dMik(t) is a local square integrable martingale. Hence, the Lenglart in-

equality (Andersen and Gill, 1982, p1115) implies that, for any δ, ρ > 0, there exists n0

such that for n ≥ n0,

P
[∥∥∥∥n−1

∫ τ

0
{v(β, t)}ll′ dM̄k(t)

∥∥∥∥ > ρ

]
≤ δ

ρ2
+ P

[
n−1

∫ τ

0
{v(β, t)}2

ll′ S
(0)(β, t)λ0(t)dt > δ

]

where the subscript ll′ denotes the (l, l′) element of the indicated matrix. The boundedness

conditions (E), (F) and (G) ensure that the second term on the right side of the above

inequality converges to zero in probability, uniformly in β ∈ B as n → ∞ for any δ. Since

δ can be arbitrarily small, it follows that the left side of the above inequality also converges

to zero in probability, uniformly in β ∈ B as n→∞. Therefore, the third term on the right

side of (4.16) also converges to zero in probability, uniformly in β ∈ B, as n→∞.

The fourth term on the right side of (4.16) can be shown to converge to zero by applying

lemma 3. Without loss of generality, we assume for s = 1, i = 1, . . . , n1 denote cases and for

s = 0, i = 1, . . . , n0 denote controls. Then, for all k = 1, . . . ,K and s = 0, 1, one can write
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∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′dMik(t)− n−1

s

ns∑
i=1

∫ τ

0
{v(β, t)}ll′dMik(t)

∣∣∣∣∣
=

∣∣∣∣∫ τ

0
{v(β, t)}ll′{dNik(t)− Yik(t)eβ

TZik(t)dΛ0(t)}

− n−1
s

ns∑
i=1

∫ τ

0
{v(β, t)}ll′{dNik(t)− Yik(t)eβ

TZik(t)dΛ0(t)}

∣∣∣∣∣
≤

∣∣∣∣∫ τ

0
{v(β, t)}ll′dNik(t)

∣∣∣∣ +

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′n

−1
s

ns∑
i=1

dNik(t)

∣∣∣∣∣
+

∣∣∣∣∫ τ

0
{v(β, t)}ll′Yik(t)eβ

TZik(t)dΛ0(t)
∣∣∣∣ +

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′n

−1
s

ns∑
i=1

Yik(t)eβ
TZik(t)dΛ0(t)

∣∣∣∣∣
where the subscript ll′ denotes the (l, l′) element of the indicated matrix. Thus

max
i

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′dMik(t)− n−1

s

ns∑
i=1

∫ τ

0
{v(β, t)}ll′dMik(t)

∣∣∣∣∣
2

≤ max
i

(∣∣∣∣∫ τ

0
{v(β, t)}ll′dNik(t)

∣∣∣∣ +

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′n

−1
s

ns∑
i=1

dNik(t)

∣∣∣∣∣
+
∣∣∣∣∫ τ

0
{v(β, t)}ll′Yik(t)eβ

TZik(t)dΛ0(t)
∣∣∣∣ +

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′n

−1
s

ns∑
i=1

Yik(t)eβ
TZik(t)dΛ0(t)

∣∣∣∣∣
)2

Note that

max
i

∣∣∣∣∫ τ

0
{v(β, t)}ll′dNik(t)

∣∣∣∣ ≤ sup
β,t

|{v(β, t)}ll′ | ,

max
i

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′n

−1
s

ns∑
i=1

dNik(t)

∣∣∣∣∣ ≤ sup
β,t

|{v(β, t)}ll′ | ,

max
i

∣∣∣∣∫ τ

0
{v(β, t)}ll′Yik(t)eβ

TZik(t)dΛ0(t)
∣∣∣∣ ≤ sup

β,t,i

|{v(β, t)}ll′ | eβ
TZik(t)Λ0(τ) and

max
i

∣∣∣∣∣
∫ τ

0
{v(β, t)}ll′n

−1
s

ns∑
i=1

Yik(t)eβ
TZik(t)dΛ0(t)

∣∣∣∣∣ ≤ sup
β,t,i

|{v(β, t)}ll′ | eβ
TZik(t)Λ0(τ),

To verify the condition (c) in lemma 3, it suffices to show that

n−1
s supβ,t |{v(β, t)}ll′ | and n−1

s supβ,t,i |{v(β, t)}ll′ | eβ
TZik(t)Λ0(τ) converge to zero in prob-

ability as n → ∞. This holds by our conditions (E), (F), (G) and (K). Conditions (a)
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and (b) in lemma 3 are satisfied on the basis of conditions (I), (J) and (L). This implies∑K
k=1 n

−1
∑n

i=1(wi − 1)
∫ τ
0 v(β, t)dMik(t) converges to zero in probability.

On the basis of conditions (D), (E) and (F), the last term on the right side of (4.16) can be

shown to converge to zero in probability, uniformly in β ∈ B as n→∞. Therefore,

−∂Un(β)
∂βT

p−→ A(β) as n→∞ uniformly in β ∈ B

and, thus, (ii) and (iii) are satisfied.

For (iv), we can show that n−1/2Û(β) is asymptotically equivalent to n−1/2
∑n

i=1

∑K
k=1M ez,ik.

Specifically, write

n1/2Un(β) = n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
wi

{
Zik(t)−

Ŝ
(1)

(β, t)

Ŝ(0)(β, t)

}
dNik(t)

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
wi

{
Zik(t)−

Ŝ
(1)

(β, t)

Ŝ(0)(β, t)

}
dMik(t)

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
wiZ̃ik(β, t)dMik(t)

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
wi

{
e(β, t)− Ŝ

(1)
(β, t)

Ŝ(0)(β, t)

}
dMik(t)

= U1 + U2

Now, we will show that U2 converges to zero in probability as n→∞. Write U2 = U21 + U22

where

U21 = n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
e(β, t)− Ŝ

(1)
(β, t)

Ŝ(0)(β, t)

}
dMik(t) and

U22 =
K∑

k=1

∫ τ

0

{
e(β, t)− Ŝ

(1)
(β, t)

Ŝ(0)(β, t)

}
d

{
n−1/2

n∑
i=1

(wi − 1)Mik(t)

}

Note that, for fixed t, n−1/2
∑n

i=1Mik(t) is a sum of i.i.d. zero-mean random variables. Based

on conditions (C) and (E), Mik(t) is of bounded variation and therefore can be written as

a difference of two monotone functions in t. It then follows from the example of 2.11.16
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of van der Vaart and Wellner (1996, p215) that n−1/2
∑n

i=1Mik(t) converges weakly to a

zero-mean Gaussian process, say WM (t). It can be shown that E{WM (t) − WM (s)}4 ≤

C{Λ0(t)−Λ0(s)}2 for some constant C > 0. Specifically, E{WM (t)−WM (s)}4 = 3(E{WM (t)−

WM (s)}2)2 sinceWM (t) is a zero-mean normal random variable for a fixed t. Then E{WM (t)−

WM (s)}2 = EWM (t)2 + EWM (s)2 − 2 EWM (t)WM (s) = EWM (t)2 − EWM (s)2 for s ≤

t. Since EWM (t)2 = EMik(t)2 = E
[∫ t

0 Yik(u)eβ
TZik(u)λ0(u)du

]
, E{WM (t) − WM (s)}2 =

E
[∫ t

s Yik(u)eβ
TZik(u)λ0(u)du

]
≤ eCz E

[∫ t
s λ0(u)du

]
= C̃z(Λ0(t)−Λ0(s)) by the boundedness

condition (C). Since Λ0(·) is differentiable and λ0(·) is bounded on [0, τ ], ∃ a constant M ,

such that Λ0(t) − Λ0(s) ≤ M(t − s) for s ≤ t. Therefore, E{WM (t) −WM (s)}2 ≤ C∗z (t − s)

and E{WM (t)−WM (s)}4 ≤ 3(E{WM (t)−WM (s)}2)2 ≤ C̃∗z (t− s)2 for some constant C∗z .

Then, by the Kolmogorov-Centsov Theorem (Karatzas and Shereve, 1988, p53), WM (t)

has continuous sample paths. In addition, since Ŝ
(1)

k (β, t) and Ŝ
(0)
k (β, t) are of bounded

variations and Ŝ
(0)
k (β, t) is bounded away from 0, based on conditions (C), (G) and (L),

bS(1)

k (β,t)

bS(0)
k (β,t)

is of bounded variation and can be written as a sum of two monotone functions in

t, respectively. Specifically,
bS(1)

k (β,t)

bS(0)
k (β,t)

= Z∗
k1(t) − Z∗

k2(t) where both Z∗
k1(t) and Z∗

k2(t) are

nonnegative, monotone in t and bounded. Hence, it follows from lemma 2 that

U21 =
K∑

k=1

∫ τ

0

{
s(1)(β, t)
s(0)(β, t)

− Ŝ
(1)

(β, t)

Ŝ(0)(β, t)

}
n−1/2

n∑
i=1

dMik(t)
p−→ 0 as n→∞.

In similar manners, U22 will be shown to converge to zero in probability as n→∞. The

weak convergence of n−1/2
∑n

i=1(wi− 1)Mik(t) to a zero-mean Gaussian process follows from

lemma 3 and the example 3.6.14 of van der Vaart and Wellner (1996, p356). By employing

similar argument for n−1/2
∑n

i=1(wi − 1)
∫ τ
0 {v(β, t)}ll′dMik(t), conditions (E), (I), (J), (K)

and (L) ensure that the conditions (a), (b) and (c) in lemma 3 are satisfied. The limiting

process can be shown to have continuous sample paths via the Kolmogorov-Centsov Theo-

rem (Karatzas and Shereve, 1988, p53). Specifically, let W∗
M (t) be the limiting process of

n−1/2
∑n

i=1(wi − 1)Mik(t). Then E{W∗
M (t) − W∗

M (s)}4 = 3(E{W∗
M (t) − W∗

M (s)}2)2 since
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W∗
M (t) is a zero-mean normal random variable for a fixed t. Thus, for s ≤ t,

E{W∗
M (t)−W∗

M (s)}2 = E
{(

1
α(∆11)

− 1
)

Var(WM (t)−WM (s)|∆11)
}

≤ Cα E{Var(WM (t)−WM (s)|∆11)} for some constant Cα ≥ max
(

1
α0

− 1,
1
α1

− 1
)

≤ Cα Var(WM (t)−WM (s))

Therefore, by the same argument for WM (·), E{W∗
M (t) − W∗

M (s)}4 ≤ C∗α(t − s)2 for some

constant C∗α and W∗
M (t) has continuous sample paths by the Kolmogorov-Centsov Theorem

(Karatzas and Shereve, 1988, p53). It follows from lemma 2 that U22 converges to zero in

probability as n→∞. Hence, U2 converges to zero in probability as n→∞.

Now, one can write U1 = U11 + U12 where

U11 = n−1/2
n∑

i=1

K∑
k=1

Mez,ik(β) and U12 = n−1/2
n∑

i=1

K∑
k=1

(wi − 1)Mez,ik(β)

Then, under the regularity conditions, the first term is asymptotically zero-mean normal with

covariance matrix Q(β0) by Spiekerman and Lin (1998).

The second term can be shown to be asymptotically zero-mean normal with covariance matrix
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V (β0) by lemma 3. Specifically, write

∣∣∣∣∣
K∑

k=1

Mez,ik(β)− n−1
s

ns∑
i=1

K∑
k=1

Mez,ik(β)

∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Z̃ik(t)}l{dNik(t)− Yik(t)eβ

TZik(t)dΛ0(t)}

− n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Z̃ik(t)}l{dNik(t)− Yik(t)eβ

TZik(t)dΛ0(t)}

∣∣∣∣∣
≤

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Z̃ik(t)}ldNik(t)

∣∣∣∣∣ +

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Z̃ik(t)}ldNik(t)

∣∣∣∣∣
+

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Z̃ik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ +

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Z̃ik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
≤

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Zik(t)}ldNik(t)

∣∣∣∣∣ +

∣∣∣∣∣
K∑

k=1

∫ τ

0
{e(β, t)}ldNik(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)}ldNik(t)

∣∣∣∣∣ +

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{e(β, t)}ldNik(t)

∣∣∣∣∣
+

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Zik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ +

∣∣∣∣∣
K∑

k=1

∫ τ

0
{e(β, t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{e(β, t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
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where the subscript l denote the l element of the indicated vector. Thus, for s = 0, 1,

max
i

∣∣∣∣∣
K∑

k=1

Mez,ik(β)− n−1
s

ns∑
i=1

K∑
k=1

Mez,ik(β)

∣∣∣∣∣
2

≤ max
i

(∣∣∣∣∣
K∑

k=1

∫ τ

0
{Zik(t)}ldNik(t)

∣∣∣∣∣ +

∣∣∣∣∣
K∑

k=1

∫ τ

0
{e(β, t)}ldNik(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)}ldNik(t)

∣∣∣∣∣ +

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{e(β, t)}ldNik(t)

∣∣∣∣∣
+

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Zik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ +

∣∣∣∣∣
K∑

k=1

∫ τ

0
{e(β, t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{e(β, t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣
)2

Note that

max
i

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Zik(t)}ldNik(t)

∣∣∣∣∣ ≤ sup
t,i

K∑
k=1

|Zik(t)|

max
i

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)}ldNik(t)

∣∣∣∣∣ ≤ sup
t,i

K∑
k=1

|Zik(t)|

max
i

∣∣∣∣∣
K∑

k=1

∫ τ

0
{e(β, t)}ldNik(t)

∣∣∣∣∣ ≤ sup
β,t

K∑
k=1

|e(β, t)l|

max
i

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{e(β, t)}ldNik(t)

∣∣∣∣∣ ≤ sup
β,t

K∑
k=1

|e(β, t)l|

max
i

∣∣∣∣∣
K∑

k=1

∫ τ

0
{Zik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ ≤ sup
β,t,i

K∑
k=1

|Zik(t)| eβ
TZik(t)Λ0(τ)

max
i

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ ≤ sup
β,t,i

K∑
k=1

|Zik(t)| eβ
TZik(t)Λ0(τ)

max
i

∣∣∣∣∣
K∑

k=1

∫ τ

0
{e(β, t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ ≤ sup
β,t,i

K∑
k=1

|e(β, t)l| eβ
TZik(t)Λ0(τ)

max
i

∣∣∣∣∣n−1
s

ns∑
i=1

K∑
k=1

∫ τ

0
{e(β, t)}lYik(t)eβ

TZik(t)dΛ0(t)

∣∣∣∣∣ ≤ sup
β,t,i

K∑
k=1

|e(β, t)l| eβ
TZik(t)Λ0(τ)
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To verify the condition (c) in lemma 3, it suffices to show that n−1
s

∑K
k=1 supt,i |Zik(t)|,

n−1
s

∑K
k=1 supβ,t |e(β, t)l|, n−1

s

∑K
k=1 supβ,t,i |Zik(t)| eβ

TZik(t)Λ0(τ), and

n−1
s

∑K
k=1 supβ,t,i |e(β, t)l| eβ

TZik(t)Λ0(τ) converge to zero in probability as n → ∞ for

s = 0, 1. This holds by our conditions (C), (E), (G) and (K). Thus, condition (c) in lemma 3

is satisfied. Conditions (a) and (b) in lemma 3 are satisfied on the basis of conditions (I), (J)

and (L). This implies n−1/2
∑n

i=1(wi − 1)Mez,ik(β) converges to a mean-zero normal random

variable.

Note that U11 and U12 are independent since

Cov(U11, U12) = E(U11U12) = E(E(U11U12|F(τ))) = E(U11 E(U12|F(τ))) = 0.

Therefore, n1/2Un(β) is asymptotically normally distributed with mean zero and with finite

varianceQ(β0)+V (β0). Hence Un(β) converges to zero in probability. Thus, (iv) is satisfied.

By (i),(ii),(iii) and (iv), it follows that there is a unique sequence β̂ s.t. U(β̂) = 0 with

probability converging to one as n → 0 and with β̂ converging in probability to β0 by

extension of Foutz (1977, Thm.2,).

The asymptotic normality of β̂ follows from the consistency of β̂ and a Taylor series

expansion of Û(β).

62



Proof of theorem 3.2 One can make decomposition

n1/2{Λ̂0(β̂, t)− Λ0(t)}

= n1/2

{
Λ̂0(β̂, t)−

∫ t

0

dN̂(u)

nŜ(0)(β0, u)

}
+ n1/2

{∫ t

0

dN̂(u)

nŜ(0)(β0, u)
− Λ0(t)

}

= n1/2

∫ t

0

(
1

nŜ(0)(β̂, u)
− 1

nŜ(0)(β0, u)

)(
dN̂(u)−

K∑
k=1

n∑
i=1

wiYik(u)eβ
T

0Zik(t)dΛ0(u)

)

+ n1/2

∫ t

0

(
1

nŜ(0)(β̂, u)
− 1

nŜ(0)(β0, u)

)
K∑

k=1

n∑
i=1

wiYik(u)eβ
T

0Zik(t)dΛ0(u)

+ n1/2

∫ t

0

1

nŜ(0)(β0, u)

(
dN̂(u)− nŜ(0)(β0, u)dΛ0(u)

)
= n1/2

∫ t

0

(
1

nŜ(0)(β̂, u)
− 1

nŜ(0)(β0, u)

)
dM̂(u)

+ n1/2

∫ t

0

(
1

nŜ(0)(β̂, u)
− 1

nŜ(0)(β0, u)

)
nŜ(0)(β0, u)dΛ0(u)

+ n1/2

∫ t

0

1

nŜ(0)(β0, u)
dM̂(u) where (3.9)

M̂(t) =
K∑

k=1

n∑
i=1

(
wiNik(t)−

∫ t

0
wiYik(t)eβ

TZik(u)dΛ0(u)
)

One can write the first term of (4.25) as

K∑
k=1

∫ t

0

(
1

Ŝ(0)(β̂, u)
− 1

Ŝ(0)(β0, u)

)
dn−1/2M̄k(u)

+
K∑

k=1

∫ t

0

(
1

Ŝ(0)(β̂, u)
− 1

Ŝ(0)(β0, u)

)
d

{
n−1/2

n∑
i=1

(wi − 1)Mik(u)

}
(3.10)

By the Taylor expansion of Ŝ(0)(β̂, u)−1 around β0, the first term of (3.10), can be shown to

be equivalent to
K∑

k=1

∫ t

0
− Ŝ

(1)
(β∗, u)T

Ŝ(0)(β∗, u)2
(β̂ − β0)dn

−1/2
n∑

i=1

Mik(u) (3.11)

where β∗ is on the line segment between β̂ and β0. Again, Ŝ(0) and Ŝ
(1)

are bounded and sums

of monotone functions. Then, together with the consistency of β̂, Ŝ(0)(β∗, u), Ŝ
(1)

(β∗, u) and

the weak convergence of n−1/2
∑n

i=1Mik(t) with continuous sample paths, (4.26) converges
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to 0 uniformly in t in probability by applying lemma 2. By the same argument, together with

the weak convergence of n−1/2
∑n

i=1(wi − 1)Mik(t) with continuous sample paths, it follows

from lemma 2 that the second term of (3.10) converges to 0 uniformly in t in probability.

Combining these results, the first term of (4.25) converges to 0 uniformly in t in probability.

Again, by the Taylor expansion of Ŝ(0)(β̂, u)−1 around β0, it can be shown that the second

term of (4.25) is equal to

n1/2

∫ t

0

(
− Ŝ

(0)(β0, u)Ŝ
(1)

(β∗, u)T

Ŝ(0)(β∗, u)2

)
(β̂ − β0)dΛ0(u) (3.12)

Since n1/2(β̂ − β0) = A−1(β∗)n−1/2
∑K

k=1

∑n
i=1wiMez,ik + op(1), it follows from the con-

sistency of Ŝ(0)(β0, u), Ŝ(0)(β∗, u), Ŝ
(1)

(β∗, u), β̂ and the boundedness condition on Λ0(·)

that

(4.27) =

(
−
∫ t

0

s(1)(β0, u)T

s(0)(β0, u)
dΛ0(u)

)
A−1(β0)n

−1/2
K∑

k=1

n∑
i=1

wiMez,ik(β0) + op(1)

One can write the third term of (4.25) as

K∑
k=1

∫ t

0

1

Ŝ(0)(β0, u)
dn−1/2

n∑
i=1

Mik(u) +
K∑

k=1

∫ t

0

1

Ŝ(0)(β0, u)
d

{
n−1/2

n∑
i=1

(wi − 1)Mik(u)

}
(3.13)

Since Ŝ(0)(β0, u)−1 is a sum of two monotone functions in t and converges uniformly to

s(0)(β0, u), and n−1/2
∑n

i=1Mik(t) converges to a zero-mean Gaussian process with continuous

sample path, it follows from lemma 2 that the first term of (3.13) is asymptotically equivalent

to
K∑

k=1

∫ t

0

1
s(0)(β0, u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

by applying lemma 2. By the same argument, the second term of (3.13) is asymptotically

equivalent to
K∑

k=1

∫ t

0

1
s(0)(β0, u)

d

{
n−1/2

n∑
i=1

(wi − 1)Mik(u)

}
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By combining the results, we have

n1/2(Λ̂0(β̂, t) − Λ0(t)) = n−1/2
K∑

k=1

n∑
i=1

{∫ t

0

dMik(u)
s(0)(β0, u)

+ r(β0, t)
TA−1(β0)Mez,ik(β0)

}

+ n−1/2
K∑

k=1

n∑
i=1

(wi − 1)
{∫ t

0

dMik(u)
s(0)(β0, u)

+ r(β0, t)
TA−1(β0)Mez,ik(β0)

}
= UΛ

1 (β0, t) + UΛ
2 (β0, t)

The first term converges weakly to a zero-mean Gaussian process with covariance function

φ(t1, t2) at (t1, t2) (Spiekerman and Lin, 1998). The weak convergence of the second term

to a zero-mean Gaussian process with covariance function σ(t1, t2) at (t1, t2) follows from

lemma 3 and the example 3.6.14 of van der Vaart and Wellner (1996, p356). Note that

these two terms are independent since Cov(UΛ
1 , U

Λ
2 ) = E(UΛ

1 U
Λ
2 ) = E(E(UΛ

1 U
Λ
2 |F(τ))) =

E(UΛ
1 E(UΛ

2 |F(τ))) = 0. This completes the proof.

Proof of theorem 3.3 and 3.4 The consistency of β̂c and Λ̂0(β̂c, t), and the asymp-

totic normality of n1/2(β̂c − β0) and the weak convergence of n1/2(Λ̂0(β̂c, t)− Λ0(t)) can be

shown by similar arguments used for proving theorem 3.1 and 3.2 replacing lemma 3 with

lemma 4. Some conditions used in proving lemma 3 also need to be replaced. Specifically,

supt,β

∥∥∥Ŝ(d)
(β, t)− s(d)(β, t)

∥∥∥ p−→ 0, as n → ∞ for d = 0, 1, 2 in the asymptotic stability

condition for case-control samples, (L), needs to be replaced by

supt,β

∥∥∥Ŝ(d)

c (β, t)− s(d)(β, t)
∥∥∥ p−→ 0, as n→∞ for d = 0, 1, 2.
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TABLE 3.1: Summary of simulation results. Zi1 = 1 and Zi2 = 0.

event mean indep. proposed true 95%
β0 n proportion θ β̂0 s.e. s.e. S.D. Coverage

0 1000 10% 0.1 0.019 0.1434 0.2094 0.2177 0.913
0.67 0.035 0.1446 0.2976 0.3096 0.944
1.25 0.048 0.1450 0.3110 0.3268 0.948
4 0.038 0.1451 0.3234 0.3337 0.951

20% 0.1 0.001 0.1003 0.0822 0.0839 0.931
0.67 -0.003 0.1003 0.1348 0.1339 0.954
1.25 0.007 0.1004 0.1435 0.1437 0.947
4 0.001 0.1005 0.1522 0.1507 0.948

2000 10% 0.1 0.010 0.1005 0.1491 0.1589 0.919
0.67 0.019 0.1009 0.2090 0.2101 0.942
1.25 0.030 0.1013 0.2181 0.2139 0.955
4 0.024 0.1011 0.2248 0.2240 0.949

20% 0.1 0.003 0.0708 0.0579 0.0577 0.943
0.67 0.001 0.0708 0.0952 0.0960 0.945
1.25 0.005 0.0708 0.1013 0.1024 0.948
4 0.003 0.0709 0.1071 0.1061 0.948

0.693 1000 10% 0.1 0.734 0.1741 0.2483 0.2659 0.826
0.67 0.768 0.1795 0.3886 0.4203 0.927
1.25 0.789 0.1810 0.4136 0.4423 0.946
4 0.781 0.1818 0.4347 0.4564 0.950

20% 0.1 0.699 0.1195 0.1028 0.1027 0.949
0.67 0.706 0.1201 0.1708 0.1730 0.947
1.25 0.709 0.1201 0.1821 0.1852 0.942
4 0.699 0.1200 0.1933 0.1940 0.946

2000 10% 0.1 0.708 0.1209 0.1800 0.1891 0.913
0.67 0.734 0.1229 0.2747 0.2859 0.939
1.25 0.737 0.1232 0.2884 0.2964 0.945
4 0.732 0.1232 0.2990 0.3164 0.939

20% 0.1 0.693 0.0842 0.0725 0.7235 0.948
0.67 0.694 0.0843 0.1203 0.1172 0.960
1.25 0.702 0.0845 0.1284 0.1286 0.950
4 0.698 0.0845 0.1359 0.1363 0.945
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TABLE 3.2: Summary of simulation results. Zik ∼ N(0, 1).

event mean indep. proposed true 95%
β0 n proportion θ β̂0 s.e. s.e. S.D. Coverage

0 1000 10% 0.1 0.003 0.0722 0.1359 0.1382 0.946
0.67 0.001 0.0723 0.1558 0.1727 0.916
1.25 -0.005 0.0724 0.1589 0.1679 0.934
4 0.002 0.0721 0.1616 0.1653 0.933

20% 0.1 0.002 0.0504 0.0742 0.0744 0.941
0.67 0.000 0.0503 0.0805 0.0816 0.949
1.25 -0.001 0.0503 0.0814 0.0839 0.933
4 -0.002 0.0505 0.0833 0.0846 0.948

2000 10% 0.1 -0.001 0.0504 0.0956 0.0952 0.949
0.67 -0.003 0.0505 0.1114 0.1116 0.945
1.25 0.001 0.0507 0.1137 0.1193 0.930
4 -0.003 0.0506 0.1157 0.1133 0.951

20% 0.1 0.001 0.0355 0.0524 0.0525 0.950
0.67 -0.001 0.0355 0.0567 0.0566 0.950
1.25 0.001 0.0355 0.0576 0.0583 0.946
4 -0.003 0.0355 0.0585 0.0587 0.952

0.693 1000 10% 0.1 0.708 0.0763 0.1573 0.1678 0.922
0.67 0.709 0.0767 0.1717 0.1863 0.914
1.25 0.704 0.0763 0.1735 0.1873 0.919
4 0.706 0.0761 0.1763 0.1895 0.917

20% 0.1 0.698 0.0526 0.0836 0.0843 0.939
0.67 0.700 0.0527 0.0865 0.0891 0.937
1.25 0.695 0.0525 0.0866 0.0864 0.950
4 0.700 0.0527 0.0873 0.0890 0.938

2000 10% 0.1 0.705 0.0529 0.1133 0.1166 0.937
0.67 0.702 0.0531 0.1239 0.1293 0.932
1.25 0.704 0.0529 0.1244 0.1279 0.931
4 0.695 0.0530 0.1265 0.1298 0.934

20% 0.1 0.692 0.0370 0.0595 0.0609 0.940
0.67 0.694 0.0370 0.0610 0.0617 0.944
1.25 0.696 0.0370 0.0616 0.0594 0.952
4 0.695 0.0370 0.0617 0.0635 0.940
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TABLE 3.3: Summary of simulation results. Zi1 = 1, Zi2 = 0. Tik ∼Weibull(1, 0.5).

event mean indep. proposed true 95%
β0 n proportion θ β̂0 s.e. s.e. S.D. Coverage

0 1000 10% 0.1 0.013 0.1410 0.2106 0.2181 0.923
0.67 0.030 0.1423 0.2918 0.3052 0.934
1.25 0.041 0.1425 0.3030 0.3187 0.939
4 0.026 0.1424 0.3130 0.3183 0.951

20% 0.1 0.002 0.1000 0.0853 0.0850 0.945
0.67 0.005 0.1002 0.1362 0.1387 0.943
1.25 0.005 0.1000 0.1435 0.1435 0.952
4 0.003 0.1003 0.1517 0.1553 0.944

2000 10% 0.1 0.002 0.0992 0.1490 0.1536 0.934
0.67 0.022 0.0996 0.2048 0.2090 0.947
1.25 0.022 0.0996 0.2122 0.2143 0.953
4 0.022 0.0996 0.2182 0.2249 0.944

20% 0.1 0.002 0.0706 0.0602 0.0608 0.942
0.67 0.000 0.0706 0.0960 0.0953 0.952
1.25 0.003 0.0706 0.1015 0.1041 0.946
4 0.001 0.0706 0.1065 0.1051 0.953

0.693 1000 10% 0.1 0.729 0.1742 0.2617 0.2856 0.845
0.67 0.766 0.1792 0.3990 0.4212 0.935
1.25 0.773 0.1809 0.4169 0.4536 0.943
4 0.770 0.1831 0.4373 0.4919 0.944

20% 0.1 0.698 0.1215 0.1106 0.1098 0.945
0.67 0.704 0.1221 0.1808 0.1811 0.946
1.25 0.710 0.1221 0.1912 0.1926 0.946
4 0.702 0.1222 0.2019 0.2043 0.950

2000 10% 0.1 0.713 0.1212 0.1892 0.1976 0.920
0.67 0.735 0.1230 0.2803 0.2860 0.949
1.25 0.739 0.1235 0.2922 0.3075 0.941
4 0.730 0.1230 0.3003 0.3042 0.961

20% 0.1 0.697 0.0857 0.0778 0.0815 0.937
0.67 0.698 0.0858 0.1275 0.1281 0.952
1.25 0.700 0.0859 0.1349 0.1311 0.961
4 0.700 0.0859 0.1415 0.1399 0.953
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TABLE 3.4: Summary of simulation results. Inclusion probabilities vs. Local averages. The
covariate is uniformly distributed on five points, m/5, 1 ≤ m ≤ 5.

mean proposed true 95%
n β0 θ Approach β̂0 s.e. S.D. Coverage

1000 0 0.1 Inclusion Probabilities 0.004 0.2407 0.2399 0.949
Local Average -0.004 0.2214 0.2251 0.945

0.67 Inclusion Probabilities 0.001 0.2728 0.2703 0.949
Local Average 0.001 0.2624 0.2674 0.944

1.25 Inclusion Probabilities 0.002 0.2779 0.2803 0.953
Local Average 0.004 0.2682 0.2779 0.948

4 Inclusion Probabilities -0.006 0.2846 0.2845 0.954
Local Average -0.009 0.2759 0.2816 0.943

log(2) 0.1 Inclusion Probabilities 0.702 0.2478 0.2503 0.950
Local Average 0.699 0.2288 0.2343 0.944

0.67 Inclusion Probabilities 0.702 0.2821 0.2864 0.946
Local Average 0.693 0.2708 0.2800 0.940

1.25 Inclusion Probabilities 0.706 0.2866 0.2899 0.948
Local Average 0.692 0.2760 0.2839 0.943

4 Inclusion Probabilities 0.710 0.2928 0.2981 0.952
Local Average 0.697 0.2835 0.2875 0.952

2000 0 0.1 Inclusion Probabilities -0.001 0.1697 0.1712 0.949
Local Average -0.000 0.1568 0.1571 0.949

0.67 Inclusion Probabilities 0.004 0.1930 0.1883 0.956
Local Average 0.003 0.1866 0.1839 0.954

1.25 Inclusion Probabilities -0.000 0.1961 0.1940 0.956
Local Average -0.002 0.1903 0.1912 0.951

4 Inclusion Probabilities -0.001 0.2002 0.1962 0.957
Local Average -0.005 0.1955 0.1946 0.952

log(2) 0.1 Inclusion Probabilities 0.693 0.1747 0.1761 0.948
Local Average 0.696 0.1621 0.1641 0.946

0.67 Inclusion Probabilities 0.691 0.1992 0.2027 0.943
Local Average 0.695 0.1928 0.1943 0.945

1.25 Inclusion Probabilities 0.690 0.2023 0.2052 0.953
Local Average 0.694 0.1966 0.1990 0.945

4 Inclusion Probabilities 0.692 0.2070 0.2104 0.951
Local Average 0.692 0.2020 0.2062 0.946
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TABLE 3.5: Baseline characteristics of KPDCP data

RCF Non-RCF
Frequency % Frequency %

Tooth type Molar 88 43.6 88 43.6
Non-molar 114 56.4 114 56.4

Proximal contacts BA∗ 16 7.9 9 4.5
NBA∗∗/0 7 3.5 7 3.5
NBA/1 58 28.7 61 30.2
NBA/2 121 59.9 125 61.8

Pockets 0 138 68.3 141 69.8
1 30 14.9 27 13.4
2 17 8.4 21 10.4
3 9 4.4 9 4.4
4 7 3.5 1 0.5
5 0 0.0 3 1.5
6 1 0.5 0 0.0

DF coronal surfaces 0 7 3.5 29 14.4
1 9 4.4 21 10.4
2 50 24.8 49 24.3
3 136 67.3 103 50.9

DF roots surfaces 0 143 70.8 178 88.1
1 52 25.7 19 9.4
2 7 3.5 5 2.5

* : Bridge abutment, ** :Non-Bridge abutment
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TABLE 3.6: Data analysis for KPDCP data

Proposed Method Unweighted Method

Variable Level HR s.e p-value HR s.e p-value

RCF(Molar) 6.9 0.44 < 0.01 9.1 0.40 < 0.01

RCF(Non-molar) 1.8 0.57 0.30 4.7 0.30 < 0.01

Proximal Contacts

PC1 0.3 0.81 0.17 0.5 0.47 0.10

PC2 0.1 0.81 0.02 0.2 0.46 < 0.01

PCABUT 0.5 0.97 0.44 0.6 0.54 0.33

Number of Pockets≥ 5mm 1.3 0.15 0.09 1.2 0.09 0.08
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CHAPTER 4

MARGINAL HAZARDS MODEL FOR

CASE-COHORT STUDIES WITH

MULTIPLE DISEASE OUTCOMES

4.1 Introduction

In large cohort studies, the major effort and cost typically arise from the assembling of

covariate measurements. To reduce the cost in such studies and achieve the same goals as a

cohort study, several study designs have been proposed. Case-cohort study design is one of

the most widely used ones, especially when the disease rate is low. Under the case-cohort

design, a random sample called subcohort is selected from the entire cohort. The covariate

measurements are only assembled for the subjects in the subcohort and all the cases (failures)

who experience the disease of interest regardless of whether or not they are in the subcohort.

A key advantage of the case-cohort design is its ability to use the same subcohort for several

diseases or for subtypes of disease (e.g., Prentice, 1986; Wacholder et al., 1989; Langholz and

Thomas, 1990; Wacholder et al., 1991). For example, the case-cohort design was implemented

in the Busselton Health Study (Cullen, 1972). The Busselton Population Health Surveys are

a series of cross-sectional health surveys conducted in the town of Busselton in Western

Australia. Every 3 years from 1966 to 1981, general health information for adult participants

were collected by means of questionnaire and clinical visit. It was of interest to study the



relationship between serum ferritin and coronary heart disease and stroke events. To reduce

costs and preserve stored serum, case-cohort sampling was used. In order to compare the effect

of serum ferritin on coronary heart disease and stroke, times to coronary heart disease and

stroke events need to be modeled simultaneously. Since times to coronary heart disease and

stroke events observed from the same subject could be correlated, valid statistical methods

which take it into consideration need to be developed.

For data from case-cohort study for a single disease outcome, various estimating proce-

dures have been proposed in the literature. Prentice (1986) and Self and Prentice (1988) first

considered Cox model and proposed a pseudolikelihood approach based on the partial likeli-

hood function, where the risk set was appropriately estimated to incorporate the case-cohort

design. Lin and Ying (1993), and Barlow (1994) further discussed pseudolikelihood method

and provided different ways to obtain an easily computed variance for the estimators of re-

gression parameters. Chen and Lo (1999) improved the pseudolikelihood estimators by using

a class of estimating equations based on the partial likelihood score function. Chen (2001)

further improved the estimators by using a local type of average as weight in the estimat-

ing equations. Borgan et al. (2000) considered stratified case-cohort sampling designs and

proposed several methods to analyze such study designs. Kulich and Lin (2004) developed

a class of weighted estimating equations with time-dependent weights under the stratified

case-cohort designs.

Despite the progress in the methods for analyzing case-cohort data for a single disease

outcome, methodologies to address analysis of case-cohort data with multiple diseases out-

comes have been limited. A commonly used method for dealing with multiple diseases is to

analyze each disease separately. This approach does not allow comparison of the risk factors

for different diseases, because it does not account for the induced correlation between out-

comes (Langholz and Thomas, 1990). Statistical methods which account for the correlation

between outcomes are needed.

In this chapter, we propose a weighted estimating equation approach for estimating the

parameters in the marginal hazards regression models for the multivariate failure time data

from case-cohort studies with multiple disease outcomes. The rest of this chapter is organized
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as follows. We present the proposed model and method of estimation in Section 4.2. In Section

4.3, the asymptotic properties of the proposed estimators are studied. The finite sample

properties are investigated by simulations in Section 4.4. The methodology is illustrated in

Section 4.5 using the aforementioned Busselton Health Study.

4.2 Model and Estimation

Suppose that there are n independent subjects in a cohort study and there are K disease

outcomes of interest. Consider independent failure time response vectors T i = (Ti1, · · · , TiK)T ,

i = 1, · · · , n. For example, (Ti1, Ti2) may denote time for CHD and time for stroke for subject

i. Let Cik denote the potential censoring time for outcome k of subject i. We assume that Cik

is independent of the disease processes. In most practical cases, Cik = Ci for k = 1, . . . ,K.

The observed time is Xik = min(Tik, Cik). Let Nik(t) denote the counting process for outcome

k of subject i, Yik(t) = I(Xik ≥ t) denote an ‘at risk’ indicator process and ∆ik = I(Tik ≤ Cik)

denote an indicator for failure, where I(·) is an indicator function. Let Zik(t) be a p×1 covari-

ate vector corresponding to the kth disease outcome for subject i at time t. We assume that

all the time-dependent covariates in Zik(t) are “external”, i.e., they are not affected by the

disease processes, as described by Kalbfleisch and Prentice (2002). Let λik(t) denote the corre-

sponding marginal hazards function and Mik(t) = Nik(t)−
∫ t
0 Yik(u) exp{βT

0Zik(u)}λ0k(u)du

denote a martingale with respect to the marginal filtration Fik(t) = σ{Nik(s), Yik(s),Zik(s) :

0 ≤ s ≤ t}. Let Xi = (Xi1, · · · , XiK)T , i = 1, · · · , n, denote the observed failure time vector

and Zi(·) = (Zi1, · · · ,ZiK)T denote the covariate vector. Let τ denote the study end time.

Under the case-cohort design, suppose we select a subcohort of fixed size ñ from the cohort

by simple random sampling without replacement. This sampling may be done prospectively

or retrospectively. Let ξi denote the indicator for the ith subject being selected into the

subcohort and πi = Pr(ξi = 1) = α̃ = ñ/n denote the selection probability of the ith subject.

Here ξ1, . . . , ξn are correlated due to the sampling scheme. We assume that complete covariate

histories Zik(t)(0 ≤ t ≤ τ) are available for all the subcohort members and for the cases

outside the subcohort. For all the others, we assume that their censoring time information
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are available. Thus, the observable information for the kth disease outcome of the ith subject

when ξi = 1 or ∆ik = 1 is {Xik,∆ik, ξi,Zik(t), 0 ≤ t ≤ Xik} and when ξi = 0 and ∆ik = 0 is

{Xik,∆ik, ξi}.

4.2.1 Multiplicative intensity models

Suppose that Tik arises from a marginal intensity process model of the form (Cox, 1972)

λik(t|Zik(t)) = Yik(t) λ0k(t) eβ
T

0Zik(t), (4.1)

where λ0k(t) is an unspecified baseline hazard function for disease outcome k and β0 is a

p × 1 vector of fixed and unknown parameters. Note that a subject may experience all

K diseases, may also experience only some, or even none of the events of interest due to

right censoring. Model (4.1) can incorporate failure type specific effects and includes the

Wei et al. (1989) model, λik(t;Z∗
ik(t)) = λ0k(t)exp{βT

kZ
∗
ik(t)}, as a special case, i.e., dis-

ease specific effects can be obtained by defining β = (βT
1 , · · · ,βT

k , ...,β
T
K)T and Zik(t) =

[0T
i1,0

T
i2, · · · ,0T

i(k−1), {Z
∗
ik(t)}T ,0T

i(k+1), · · · ,0
T
iK ]T , where 0 are zero vectors. Notice the equiv-

alence of the risk scores under both notations: βTZik(t) = βT
kZ

∗
ik(t). The baseline hazard

function is explicitly disease-specific.

4.2.2 Estimation

If the elements of each T i were statistically independent and the data were complete, the

relative risk parameter β in (4.1) could be estimated by solving the partial likelihood (Cox,

1972) score equation U(β) = 0p×1, where

U(β) =
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(u)−

S
(1)
k (β, u)

S
(0)
k (β, u)

}
dNik(u), (4.2)

and S(d)
k (β; t) = n−1

∑n
i=1 Yik(t)Zik(t)⊗deβ

TZik(t) for d = 0, 1. Here, for a vector a, a⊗2 =

aaT , a⊗1 = a, and a⊗0 = 1. This estimating equation can be solved iteratively, for example,

by Newton-Raphson or Fisher Scoring method (Thistead, 1988).

75



Since the elements of each T i are not statistically independent and the data are not

complete, (4.2) cannot be calculated. Thus, we consider the following pseudo-likelihood score

equations U I(β) = 0p×1, where

U I(β) =
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(u)−

Ŝ
(1)

k (β, u)

Ŝ
(0)
k (β, u)

}
dNik(u), (4.3)

Ŝ
(d)

k (β, t) = n−1
∑n

i=1 ρik(t)Yik(t)Zik(t)⊗deβ
TZik(t) for d = 0, 1 and ρik(t) is a possibly time-

dependent weight function which has the following form:

ρik(t) = ξi/α̂k(t) where α̂k(t) =
∑n

i=1 ξiYik(t)∑n
i=1 Yik(t)

The estimator of the hazards regression parameter β0 is defined as the solution to this equation

and is denoted by β̂I . We will call this type of estimator as Estimator I.

Here α̂k(t) is the estimator of the true sampling probability α̃ and denotes the number of

sampled subjects divided by the number of subjects remaining in the risk set at time t. This

type of the weight function has been considered in the univariate failure time context. It

was first considered by Barlow (1994). Borgan et al. (2000) considered the same type of the

weight functions for stratified case-cohort studies(Estimator I). The estimator considered by

Self and Prentice (1988) is a special case and can be obtained by replacing α̂k(t) by α̃.

Let Λ0k(t) =
∫ t
0 λ0k(s)ds. A Breslow-Aalen type estimator of the baseline cumulative

hazard function is given by Λ̂I
0k(β̂I , t), where

Λ̂I
0k(β, t) =

∫ t

0

∑n
i=1 dNik(u)

nŜ
(0)
k (β, u)

. (4.4)

Note that α̂k(t) does not include the cases outside the subcohort and Estimator I needs

the covariate measurement of the cases outside the subcohort only at their failure times.

However, when the complete covariate measurement history is available for the cases outside

the subcohort, Estimator I might not be very efficient since it discards some of the available

information. To make better use of the available information, we consider the following
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pseudo-likelihood equations U II(β) = 0p×1, where

U II(β) =
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(u)−

S̃
(1)

k (β, u)

S̃
(0)
k (β, u)

}
dNik(u), (4.5)

S̃
(d)

k (β; t) = n−1
∑n

i=1 ωik(t)Yik(t)Zik(t)⊗deβ
TZik(t) for d = 0, 1 and ωik(t) is a possibly time-

dependent weight function which has the following form:

ωik(t) = ∆ik + (1−∆ik)ξi/α̂II
k (t) where α̂II

k (t) =
∑n

i=1 ξi(1−∆ik)Yik(t)∑n
i=1(1−∆ik)Yik(t)

The estimator of the hazards regression parameter β0 is defined as the solution to this equation

and is denoted by β̂II . We will call this type of estimator as Estimator II.

This weight function is defined to be equal to one for the cases regardless of their subcohort

membership and to α̂II
k (t)−1 for the sampled censored individuals. Thus, α̂II

k (t) is constructed

using only censored individuals. Unlike the weight function for Estimator I, it uses the

information from all the individuals sampled. Consequently, it is anticipated that this results

in a more efficient estimator. This approach also has been considered in the univariate failure

time data. It was first proposed by Kalbfleisch and Lawless (1988) and they considered a

time-invariant version of the weight functions, i.e., they used α̃ instead of α̂II
k (t). Borgan

et al. (2000) considered the same type of the weight functions in the univariate failure time

data from stratified case-cohort studies(Estimator II). To be able to use this approach, one is

required to assess complete covariate histories for the cases throughout their at-risk periods,

which might not be always available for prospective studies. In case of having complete

covariate histories for the cases, using this type of weights is expected to improve efficiencies.

The Breslow-Aalen type estimator of the cumulative baseline hazard function will have the

following form:

Λ̂II
0k(β, t) =

∫ t

0

∑n
i=1 dNik(u)

nS̃
(0)
k (β, u)

. (4.6)
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4.3 Asymptotic properties

In this section, we describe the asymptotic properties of the proposed estimates. We define

the following notation for convenience: For k = 1, . . . ,K,

s
(d)
k (β, t) = E{S(d)

k (β, t)} (d = 0, 1, 2), ek(β, t) =
s

(1)
k (β, t)

s
(0)
k (β, t)

,

vk(β, t) =
s

(2)
k (β, t)s(0)k (β, t)− s(1)

k (β, t)⊗2

s
(0)
k (β, t)2

,

Ak(β) =
∫ τ

0
vk(β, t)s

(0)
k (β, t)λ0k(t)dt,

Z̃ik(β, t) = Zik(t)− ek(β, t), and Mz̃,ik(β) =
∫ τ

0
Z̃ik(β, t)dMik(t).

Here and hereafter the norms for the vector a, matrix A, and function f are defined as the

following:

‖a‖ = max
i
|ai|, ‖A‖ = max

i,j
|Aij |, ‖f‖ = sup

t
|f(t)|

4.3.1 Asymptotic properties of β̂I and Λ̂I
0k(t)

We summarize the asymptotic behavior of β̂I in the following theorem :

Theorem 4.1 Under the conditions in the Appendix, β̂I solving (4.3) is a consistent esti-

mator of β0. Also n1/2(β̂I − β0) is asymptotically normally distributed with mean zero and

with variance matrix of the form ΣI(β0) = A(β0)−1{Q(β0) + 1−α
α V (β0)}A(β0)−1 where

A(β) =
K∑

k=1

Ak(β), Q(β) = E

(
K∑

k=1

Mz̃,1k(β)

)⊗2

,

V (β) = E

(
K∑

k=1

∫ τ

0
R1k(β, t)dΛ0k(t)

)⊗2

and Rik(β, t) = Yik(t) (Zik − ek(β, t)) eβ
TZik(t)
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A(β0), Q(β0) and 1−α
α V (β0) can be consistently estimated by Â(β̂I), Q̂(β̂I) and 1−eαeα V̂ (β̂I)

where

Â(β) = −n−1∂U
I(β)
∂β

, Q̂(β) = n−1
n∑

i=1

ξi
α̃

(
K∑

k=1

M̂z̃,ik(β)

)⊗2

,

V̂ (β) = n−1
n∑

i=1

ξi
α̃

(
K∑

k=1

∫ τ

0
R̂ik(β, t)dΛ̂I

0k(β, t)

)⊗2

,

∫ τ

0
R̂ik(β, t)dΛ̂I

0k(β, t) = n−1
n∑

j=1

∆jkYik(Xjk)eβ
TZik(Xjk)

Ŝ
(0)
k (β;Xjk)

Zik(Xjk)−
Ŝ

(1)

k (β;Xjk)

Ŝ
(0)
k (β;Xjk)

 ,

and M̂z̃,ik(β) = ∆ik

(
Zik(Xik)−

Ŝ
(1)

k (β;Xik)

Ŝ
(0)
k (β;Xik)

)

− n−1
n∑

j=1

∆jkYik(Xjk)eβ
TZik(Xjk)

Ŝ
(0)
k (β;Xjk)

Zik(Xjk)−
Ŝ

(1)

k (β;Xjk)

Ŝ
(0)
k (β;Xjk)

 .

To study the asymptotic properties of Λ̂I
0k(β̂I , t)(k = 1, . . . ,K), we define the following metric

space. Let D[0, τ ]K be a metric space consisting of right-continuous functions f(t) with left-

hand limits where f(t) = {f1(t), . . . , fK(t)}T and fk(t) : [0, τ ] → R. The metric for this

space is defined as dk(f , g) = supk,t∈[0,τ ]{|fk(t)− gk(t)| : 1 ≤ k ≤ K} for f , g ∈ D[0, τ ]K . We

summarize the asymptotic properties of Λ̂0k(β̂, t)(k = 1, . . . ,K) in the following theorem.

Theorem 4.2 Under the conditions in the Appendix, for each k = 1, . . . ,K, Λ̂I
0k(β̂I , t) con-

verges in probability to Λ0k(t) uniformly in t ∈ [0, τ ]. Also, W (t) = n1/2[{Λ̂I
01(β̂I , t) −

Λ0k(t)}, . . . , {Λ̂I
0K(β̂I , t)−Λ0K(t)}]T converges weakly to a zero-mean Gaussian process W(t)

in D[0, τ ]K where W(t) = (W1(t), . . . ,WK(t))T . The covariance function between Wj(t1) and

Wk(t2) is

φjk(t1, t2)(β0) = E{ν1j(β0, t1)ν1k(β0, t2)}+
1− α

α
E{ψ1j(β0, t1)ψ1k(β0, t2)}

where
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νik(β, t) = rk(β, t)TA(β)−1
K∑

m=1

Mz̃,im(β, t) +
∫ t

0
{s(0)k (β, u)}−1dMik(u),

ψik(β, t) =

{
rk(β, t)TA(β)−1

K∑
m=1

∫ τ

0
Rim(β, u)dΛ0m(u)

+
∫ t

0
Yik(u)

(
eβ

TZik(u) −
s
(0)
k (β, u)
EY1k(u)

)
dΛ0k(u)

s
(0)
k (β, u)

}
, and

rk(β, t) = −
∫ t

0
ek(β, u)dΛ0k(u).

φjk(t1, t2)(β0) can be consistently estimated by φ̂jk(t1, t2)(β̂I) where

φ̂jk(t1, t2)(β) = n−1
n∑

i=1

ξi
α̃
ν̂ij(β, t1)ν̂ik(β, t2) +

1− α̃

α̃
n−1

n∑
i=1

ξi
α̃
ψ̂ij(β, t1)ψ̂ik(β, t2),

ν̂ik(β, t) = r̂k(β, t)T Â(β)−1
K∑

m=1

M̂z̃,im(β) +
∫ t

0
{Ŝ(0)

k (β, u)}−1dM̂ik(u),

ψ̂ik(β, t) =

{
r̂k(β, t)T Â(β)−1

K∑
m=1

∫ τ

0
R̂im(β)dΛ̂I

0m(β, t)

+ n−1
n∑

j=1

∆jkI(Xjk ≤ t)Yik(Xjk)

Ŝ
(0)
k (β, Xjk)

(
eβ

TZik(Xjk) −
Ŝ

(0)
k (β;Xjk)

ÊY1k(Xjk)

)

r̂k(β, t) = −n−1
n∑

i=1

∆ikI(Xik ≤ t)Ŝ
(1)

k (β;Xik)

Ŝ
(0)
k (β;Xik)2

,

∫ t

0

dM̂ik(u)

Ŝ
(0)
k (β, u)

=
∆ikI(Xik ≤ t)

Ŝ
(0)
k (β;Xik)

− n−1
n∑

j=1

∆jkI(Xjk ≤ t)Yik(Xjk)eβ
TZik(Xjk)

Ŝ
(0)
k (β;Xjk)2

and ÊY1k(t) = n−1
n∑

i=1

Yik(t)

4.3.2 Asymptotic properties of β̂II and Λ̂II
0k(β̂II , t)

In this subsection, we will study the asymptotic properties of β̂II and Λ̂II
0k(β̂II , t). As

described in the Appendix, the techniques used in proving the asymptotic properties of β̂II

and Λ̂II
0k(β̂II , t) are very similar to those used for Estimator I. We summarize the asymptotic

behavior of the regression parameter estimator β̂II in the following theorem :
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Theorem 4.3 Under the conditions in the Appendix, β̂II solving (4.5) is a consistent esti-

mator of β0. Also, n1/2(β̂II −β0) is asymptotically normally distributed with mean zero and

with variance matrix of the form ΣII(β0) = A(β0)−1{Q(β0) + 1−α
α V II(β0)}A(β0)−1 where

V II(β) = E

[
K∑

k=1

(1−∆1k)
∫ τ

0

{
R1k(β, u)−

Y1k(u) E ((1−∆1k)R1k(β, u))
E ((1−∆1k)Y1k(u))

}
dΛ0k(u)

]⊗2

.

A(β0), Q(β0) and 1−α
α V II(β0) can be consistently estimated by Â

II
(β̂II), Q̂

II
(β̂II) and

1−eαeα V̂ II(β̂II) where

Â
II

(β) = −n−1∂U
II(β)
∂β

, Q̂
II

(β) = n−1
n∑

i=1

ξi
α̃

(
K∑

k=1

M̂
II

z̃,ik(β)

)⊗2

,

V̂ II(β) = n−1
n∑

i=1

ξi
α̃

K∑
k=1

n−1(1−∆ik)
n∑

j=1

∆jk

S̃
(0)
k (β;Xjk)

×
{
R̂

II

ik (β;Xjk)−
Yik(Xjk)Ê ((1−∆1k)R1k(β;Xjk))

Ê ((1−∆1k)Y1k(Xjk))

}]⊗2

,

M̂
IIez,ik(β) = ∆ik

{
Zik(Xik)−

S̃
(1)

k (β;Xik)

S̃
(0)
k (β;Xik)

}

− n−1
n∑

j=1

∆jkYik(Xjk)eβ
TZik(Xjk)

S̃
(0)
k (β;Xjk)

Zik(Xjk)−
S̃

(1)

k (β;Xjk)

S̃
(0)
k (β;Xjk)

 ,

Ê ((1−∆1k)R1k(β, t)) = n−1
n∑

i=1

(1−∆ik)
ξi
α̃
R̂

II

ik (β, t),

R̂
II

ik (β, t) =

{
Zik(t)−

S̃
(1)

k (β, t)

S̃
(0)
k (β, t)

}
Yik(t)eβ

TZik(t), and

Ê ((1−∆1k)Y1k(t)) = n−1
n∑

i=1

(1−∆ik)Yik(t).

The asymptotic properties of Λ̂II
0k(β̂II , t)(k = 1, . . . ,K) are summarized in the following the-

orem.

Theorem 4.4 Under the conditions in the Appendix, for each k = 1, . . . ,K, Λ̂II
0k(β̂II , t)

converges in probability to Λ0k(t) uniformly in t ∈ [0, τ ]. Also, W II(t) = n1/2[{Λ̂II
01(β̂II , t)−

Λ01(t)}, . . . , {Λ̂II
0K(β̂II , t)−Λ0K(t)}]T converges weakly to a zero-mean Gaussian processWII(t)
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in D[0, τ ]K where WII(t) = (WII
1 (t), . . . ,WII

K (t))T . The covariance function between WII
j (t1)

and WII
k (t2) is

φII
jk(t1, t2)(β0) = E{ν1j(β0, t1)ν1k(β0, t2)}+

1− α

α
E
{
ψII

1j (β0, t1)ψ
II
1k(β0, t2)

}
where

νik(β, t) = rk(β, t)TA(β)−1
K∑

m=1

Mez,im(β, u) +
∫ t

0
{s(0)k (β, u)}−1dMik(u), and

ψII
ik (β, t) =

[
rk(β, t)TA(β)−1

K∑
m=1

(1−∆im)

×
∫ τ

0

{
Rim(β, u)− Yim(u) E ((1−∆1m)R1m(β, u))

E ((1−∆1m)Y1m(u))

}
dΛ0m(u)

+ (1−∆ik)
∫ t

0
Yik(u)

eβTZik(u) −
E
(
(1−∆1k)Y1k(u)eβ

TZ1k(u)
)

E ((1−∆1k)Y1k(u))

 dΛ0k(u)

s
(0)
k (β, u)

 .
φII

jk(t1, t2)(β0) can be consistently estimated by φ̂II
jk(t1, t2)(β̂II) where

φ̂II
jk(t1, t2)(β) = n−1

n∑
i=1

ξi
α̃
ν̂II

ij (β, t1)ν̂II
ik (β, t2) +

1− α̃

n

−1 n∑
i=1

ξi
α̃
ψ̂II

ij (β, t1)ψ̂II
ik (β, t2),

ν̂II
ik (β, t) = r̂II

k (β, t)T Â
II

(β)−1
K∑

k=1

M̂
II

z̃,ik(β) +
∫ t

0
{S̃(0)

k (β, u)}−1dM̂ II
ik (u),

ψ̂II
ik (β, t) =

[
r̂II

k (β, t)T Â
II

(β)−1
K∑

m=1

(1−∆im)
∫ τ

0

{
R̂

II

im(β, u)

− Yim(u)Ê ((1−∆1m)R1m(β, u))

Ê ((1−∆1m)Y1m(u))

}
dΛ̂II

0m(β, u) + (1−∆ik)
∫ t

0
Yik(u)

×

eβTZik(u) −
Ê
(
(1−∆1k)Y1k(u)eβ

TZ1k(u)
)

Ê ((1−∆1k)Y1k(u))

 dΛ̂II
0k(β, u)

S̃
(0)
k (β, u)

 ,
r̂II

k (β, t) = −n−1
n∑

i=1

∆ikI(Xik ≤ t)S̃
(1)

k (β;Xik)

S̃(0)(β;Xik)2
,

∫ t

0

dM̂ II
ik (u)

S̃
(0)
k (β, u)

=
∆ikI(Xik ≤ t)

S̃
(0)
k (β;Xik)

− n−1
n∑

j=1

∆jkI(Xjk ≤ t)Yik(Xjk)eβ
TZik(Xjk)

S̃
(0)
k (β;Xjk)2

, and

Ê
(

(1−∆1k)Y1k(t)eβ
TZ1k(t)

)
= n−1

n∑
i=1

(1−∆ik)
ξi
α̃
Yik(t)eβ

TZik(t)
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The proofs of the theorems are outlined in the appendix.

4.3.3 Stratified case-cohort sampling

The main purpose of case-cohort study designs is to reduce the cost of assembling expensive

covariate measurement. Thus, we assume that these expensive covariate measurements are

available only for the subcohort members or cases outside the subcohort. However, some

covariate information such as gender or race might be available for all the cohort members.

Several authors including Borgan et al. (2000), and Kulich and Lin (2004) considered a

stratified case-cohort study designs for univariate failure time based on this extra information.

Our proposed estimating procedures for multiple disease outcomes can be easily extended to

this stratified case-cohort study designs.

Suppose the cohort is divided into Q mutually exclusive strata based on a discrete variable

S which are available for all the cohort members. This S may involve X, Z(.) and some

other variables related to X and Z(.) at the time of sampling. As in Kulich and Lin (2004),

we require that S affects the failure time only through the covariates. Then, we assume we

select the subcohort by simple random sampling without replacement within each strata and

this selection of the subcohort is independent across the strata. Let nq denote the number of

subjects in stratum q, ñq denote the size of subcohort in stratum q, and ξqi be the indicator

for subject i being sampled in the subcohort in stratum q. Then, for each q = 1, . . . , Q,

the selection probability of the ith subject being sampled in the subcohort in stratum q is

Pr(ξqi = 1) = ñq

nq
= α̃q. We will assume that α̃q → αq ∈ (0, 1) as n → ∞ for q = 1, . . . , Q.

Now, Model (4.1) can be extended to

λqik(t|Zqik(t)) = Yqik(t) λ0k(t) eβ
T

0Zqik(t), (4.7)

for q = 1, . . . , Q, i = 1, . . . , nq, and k = 1, . . . ,K where the subscript qik indexes the quantity

for outcome k of subject i in stratum q.

The estimating function (4.3) and a Breslow-Aalen type estimator of the baseline cumu-
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lative hazard function (4.4) can be extended to

U I
st(β) =

Q∑
q=1

nq∑
i=1

K∑
k=1

∫ τ

0

Zqik(u)−
̂̂
S

(1)

k (β, u)̂̂
S

(0)

k (β, u)

 dNqik(u), (4.8)

and ̂̂ΛI

0k(β, t) =
∫ t

0

∑Q
q=1

∑nq

i=1 dNqik(u)

n
̂̂
S

(0)

k (β, u)
(4.9)

where ̂̂S(d)

k (β, t) = n−1
∑Q

q=1

∑nq

i=1 ρqik(t)Yqik(t)Zqik(t)⊗deβ
TZqik(t) for d = 0, 1 and ρqik(t) is

an extension of ρik(t) which has the following form:

ρqik(t) = ξqi/α̂qk(t) where α̂qk(t) =
∑nq

i=1 ξqiYqik(t)∑nq

i=1 Yqik(t)
.

Similarly, the estimating function (4.5) and a Breslow-Aalen type estimator of the baseline

cumulative hazard function (4.6) can be extended to

U II
st (β) =

Q∑
q=1

nq∑
i=1

K∑
k=1

∫ τ

0

Zqik(u)−
˜̃
S

(1)

k (β, u)˜̃
S

(0)

k (β, u)

 dNqik(u), (4.10)

and ˜̃ΛII

0k(β, t) =
∫ t

0

∑Q
q=1

∑nq

i=1 dNqik(u)

n
˜̃
S

(0)

k (β, u)
(4.11)

where ˜̃S(d)

k (β, t) = n−1
∑Q

q=1

∑nq

i=1 ωqik(t)Yqik(t)Zqik(t)⊗deβ
TZqik(t) for d = 0, 1 and ωqik(t)

is an extension of ωik(t) which has the following form:

ωqik(t) = ∆qik + (1−∆qik)ξqi/α̂
II
qk(t) where α̂II

qk(t) =
∑nq

i=1 ξqi(1−∆qik)Yqik(t)∑nq

i=1(1−∆qik)Yqik(t)

The asymptotic properties of the proposed estimators under stratified case-cohort study de-

signs follow from the similar arguments for proving theorems 4.1 - 4.4. This is because

the sampling of the subcohort are independent across the strata and we can use the same

arguments used for proving theorems 4.1 - 4.4 within each strata. Thus, consistency and
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asymptotic normality of the proposed estimators remain unchanged, but some parts of the

asymptotic variances need to be replaced by the following quantities:

In theorem 4.1, 1−α
α V (β0) should be replaced by

∑Q
q=1 vq

1−αq

αq
V st(β0) where

V st(β) = E

(
K∑

k=1

∫ τ

0
Rq1k(β, t)dΛ0k(t)

)⊗2

,

Rqik(β, t) = Yqik(t) (Zqik(t)− ek(β, t)) eβ
TZqik(t) and vq = Pr(S = q).

In theorem 4.2, 1−α
α E{ψ1j(β0, t1)ψ1k(β0, t2)} should be replaced by∑Q

q=1 vq
1−αq

αq
E{ψq1j(β0, t1)ψq1k(β0, t2)} where

ψqik(β, t) =

{
rk(β, t)TA(β)−1

K∑
m=1

∫ τ

0
Rqim(β, u)dΛ0m(u)

+
∫ t

0
Yqik(u)

(
eβ

TZqik(u) −
s
(0)
k (β, u)

EYq1k(u)

)
dΛ0k(u)

s
(0)
k (β, u)

}
.

In theorem 4.3, 1−α
α V II(β0) should be replaced by

∑Q
q=1 vq

1−αq

αq
V st

II(β0) where

V st
II(β) = E

[
K∑

k=1

(1−∆q1k)
∫ τ

0
{Rq1k(β, u)

−
Yq1k(u) E ((1−∆q1k)Rq1k(β, u))

E ((1−∆q1k)Yq1k(u))

}
dΛ0k(u)

]⊗2

.

Finally, in theorem 4.4, 1−α
α E{ψII

1j (β0, t1)ψII
1k(β0, t2)} should be replaced by∑Q

q=1 vq
1−αq

αq
E{ψII

q1j(β0, t1)ψII
q1k(β0, t2)} where

ψII
qik(β, t) =

[
rk(β, t)TA(β)−1

K∑
m=1

(1−∆qim)
∫ τ

0
{Rqim(β, u)

− Yqim(u) E ((1−∆q1m)Rq1m(β, u))
E ((1−∆q1m)Yq1m(u))

}
dΛ0m(u) + (1−∆qik)

×
∫ t

0
Yqik(u)

eβTZqik(u) −
E
(
(1−∆q1k)Yq1k(u)eβ

TZq1k(u)
)

E ((1−∆q1k)Yq1k(u))

 dΛ0k(u)

s
(0)
k (β, u)

 .
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4.4 Simulations

We conducted extensive simulation studies to investigate the finite sample properties of the

proposed methods. Multivariate failure times were generated from the multivariate Clayton-

Cuzick model (Clayton and Cuzick, 1985; Oakes, 1989) in which the joint survival function

for (T1, · · · , TK) given (Z1, · · · , ZK) is:

S(t1, · · · , tK |Z1, · · · , ZK) =

 K∑
k=1

exp


∫ tk
0 λ0k(t)eβ

TZkdt

θ

− (K − 1)

−θ

,

where K takes integer values. We took the marginal distribution of Tk to be exponential

with failure rate λ0ke
βTZk . Note that θ(> 0) is a parameter which represents the degree

of dependence of Tk and Tk′(k, k′ = 1, · · · ,K). Smaller θ induces larger correlation. We

considered two types of events (K=2). λ0k was set to be equal to 2 for k = 1 and 4 for k = 2.

Covariates were simulated from Bernoulli distribution with probability 0.5 and standard nor-

mal distributions. Values of 0 and log(2) were used for β; and values of 4, 1.25, 0.8 or 0.1 were

considered for θ. The censoring time distribution were generated from uniform distribution

[0, u] with u chosen to depend on the desired percentage of censoring. We considered 97%,

90%, and 75% censoring. For each configuration, we simulated full cohort samples of size

n = 1000 and then selected two case-cohort samples from each full cohort data. For a heavy

censoring (97%), we also considered n = 3000 to have adequate sample size. The size of the

random subcohort ñ was set to have either the same expected number of controls and cases

or twice as many controls as cases. The sampling was conducted via simple random sampling

with fixed sample size. For each parameter combination, we ran R = 2, 000 simulations.

Tables 4.1 and 4.2 present simulation summary statistics with Bernoulli covariate Zik with

Pr(Zik = 1) = 0.5 for β̂I and β̂II , respectively. “mean β̂I” or “mean β̂II” denotes the average

of the estimates of β0, “proposed S.E.” denotes the average of the estimates of standard errors

based on the proposed method, “true S.D.” denotes the sample standard deviation of the 2,000

estimates, and “95% C.I.” denotes the coverage rate of the nominal 95% confidence interval.

The simulation results suggest that the coefficient estimates are approximately unbiased for
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the samples considered when β = 0, while the coefficient estimates are relatively biased(4 -

10 %) when β = log(2) with small event proportion (3%). The proposed estimated standard

errors provide a very good estimate of the true variability of β̂ in most of the cases. As

expected, the variance of β̂ decreases as the subcohort sample size increases. The coverage

rate of the nominal 95% confidence intervals using the proposed method are in the 93% -

96% range in most of the cases considered. However, when the event proportion is very small

(3%) and the expected number of cases and controls are the same in the sample (ñ = 31),

the proposed estimated standard errors were not very accurate and the coverage rate of the

nominal 95% confidence intervals using the proposed method tended to be underestimated

(90.6 % - 93.4 %). The magnitude of biases, inaccuracy and underestimation were bigger

for nonzero true regression parameter(β = log(2)) than β = 0. However, as the subcohort

sample size increases to ñ = 62, the results improve. Overall, β̂I and β̂II showed similar

results, however, as expected, β̂II was more efficient than β̂I in the sense that the variabilities

of the regression parameter estimates were smaller for β̂II .

Tables 4.3 and 4.4 provide simulation summary statistics for β̂I and β̂II with the standard

normal covariate, respectively. The findings are similar to those of tables 4.1 and 4.2. However,

the overall performance of the proposed estimators is better for the Bernoulli covariate than

the standard normal one. The proposed estimated coefficients and standard errors are more

accurate for the Bernoulli covariate. For a small event proportion (3%) and β = log(2), with

the normal covariate, the magnitude of biases get bigger (up to 25 %) and the coverage rate

of the nominal 95% confidence intervals tend to be more underestimated (83.8 % - 91.2 %).

As subcohort size increases to ñ = 62, the results improve. However, unlike the Bernoulli

covariate case, the improved results are still not satisfactory. Thus, we increased the cohort

size to n = 3000 and ran the simulation under the event proportion being equal to 3% and

β = log(2). Table 4.5 shows the results. Both methods perform reasonably well under the

settings considered. This indicates that at least 100 cases are needed for valid estimates.
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4.5 Analysis of Busselton Health Study

We applied the proposed methods to analyze data from Busselton Health Study (Cullen,

1972; Knuiman et al., 2003). The Busselton Health Surveys are a series of cross-sectional

health surveys conducted in the town of Busselton in Western Australia. Every 3 years from

1966 to 1981, general health information for adult participants were collected by means of

questionnaire and clinical visit. The population of this study is based on the 1,612 men and

women aged 40-89 years who participated in the 1981 Busselton Health Survey and had no

history of diagnosed CHD or stroke at that time. For both CHD or stroke, follow-up started

on the 1981 survey and continued through the date of first CHD event and the date of first

stroke event or December 31, 1998, whichever comes first. The subjects were treated as

censored if they left Western Australia in the middle.

It was proposed that body iron stores are positively related to coronary heart disease risk

(Sullivan, 1996). However, the accumulated epidemiologic evidence has been inconsistent and

it is of interest to examine this hypothesis in this population. There are several measures of

stored body iron and serum ferritin is regarded as the best biochemical measure of body iron

store (Cook et al., 1974). To reduce costs and preserve stored serum, a case-cohort sampling

was used.

We used a subset of the data for the analysis. We consider the case-cohort study to be

based on this subset. There were 1,212 cohort members with 217 CHD cases and 118 stroke

cases. The subcohort size was 360. Ferritin assays were conducted for all the cases and

subcohort members in the total cohort. Because of overlap between CHD/stroke cases and

the random subcohort, the total number of assayed sera samples was 536.

We applied our proposed methodology to this data set to study and compare the effect of

serum ferritin level on the risk of CHD and of stroke. For the analyses, we included several

variables as covariates to control for confounding factors. These variables were age (years),

blood pressure treatment, systolic blood pressure (mmHg), BMI, cholesterol (mmol/liter),

triglycerides (mmol/liter), diabetes treatment, hemoglobin (g/100 ml), and smoking (never,

former, current). The total number of cohort members we considered for the analyses was
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1,212 and the case-cohort analysis was conducted on the 536 subjects. The log of the serum

ferritin level was used in the model as the main risk factor and we allowed for serum ferritin

level to have different effects on the risk of CHD and stroke. We also considered whether the

effect of serum ferritin level on the risk of CHD and stroke was different by gender.

Table 4.6 shows the baseline characteristics of the subcohort sample by gender. About 44

% (n=159) of the subcohort members were men and 56% (n=201) were women. The average

age was around 59. The average of the Ferritin levels for men was about two times higher

(214.2 µg/L) than that for women (95.8 µg/L). The average of hemoglobin levels for men was

slightly higher (149.2 g/100ml) than that for women (137.2 g/100ml). More women seemed to

receive blood pressure treatment (21.9 %) than men did (15.7 %). There were more current or

former smokers for men. Other characteristics were similar for both genders. These patterns

and the average values were also similar to those from full cohort members, which means the

subcohort was a well representative of the full cohort.

Table 4.7 provides the results from the full model. Here full model means all the cardiovas-

cular risk factors were included in the model as covariates. As shown in the table, the hazard

ratio estimates for log of ferritin levels on CHD and stroke were similar (1.1 and 1.2) but

95 % C.I. indicated that neither of them were statistically significant at the level of alpha =

0.05 since both included 1 in the intervals. We performed a Wald-type of test to see whether

the common ferritin effect on CHD and stroke can be assumed. The test statistic was 0.3296

with corresponding p-value being equal to 0.57. Thus, there was weak evidence for a different

ferritin effect on CHD and stroke. We refit the model assuming the common ferritin effect on

CHD and stroke. 4.8 provides the results from the model with common ferritin effect. The

results showed weak evidence of the effect of ferritin level on the risk of CHD and stroke. The

hazard ratio estimates for log of ferritin level on the risk of CHD and stroke was 1.2 with

standard error of 0.11. Ninety-five percent C.I. indicated that this effect was not statistically

significant at the level of alpha = 0.05.

As mentioned above, we also fit the model which allowed different ferritin effect on CHD

and stroke by gender. Table 4.9 provides the results from this model. The results showed

that, both for men and women, there is no significant effect of ferritin level on the risk of
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CHD and stroke. This was also true after we assumed common effect of ferritin level on the

risk of CHD and stroke for both men and women, and refit the model.

4.6 Concluding remarks

We have proposed methods of fitting marginal hazard regression models for case-cohort

studies with multiple disease outcomes. Weighted estimating equations were proposed for the

estimation of the regression parameter. A Breslow-Aalen type estimator was proposed for

the cumulative baseline hazard functions. Two different types of weights were considered in

estimation: Estimator I and Estimator II. The former was a multivariate extension of Self and

Prentice (1988)’s estimator for univariate failure time data while the latter was a multivariate

extension of Kalbfleisch and Lawless (1988)’s estimator for univariate failure time data. The

proposed estimators were shown to be consistent and asymptotically normally distributed.

The latter was shown to be more efficient by the simulations results since the former does not

use the covariate information on cases outside the subcohort. This was shown to be easily

extended to a stratified case-cohort studies.

In this work, we have proved the properties based on simple random sampling without re-

placement for the subcohort. Other types of sampling schemes such as Bernoulli sampling

of the subcohort can be considered as well. Under Bernoulli sampling scheme, the main

asymptotic results can be easily shown to remain unchanged.

4.7 Proofs of the theorems

Outline of the Proofs of Theorem 4.1 - 4.4

We assume the following set of conditions hold :

(A) (T i,Ci,Zi), i = 1, . . . , n are independent and identically distributed.

(B) Pr(Y (τ) > 0) > 0.

(C) |Zijk(0)|+
∫ τ
0 |dZijk(u)| < Cz <∞ almost surely for some constant Cz.
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(D) The matrix Ak(β0) =
∫ τ
0 vk(β0, t)s

(0)
k (β0, t)λ0k(t)dt is positive definite.

Note that the conditions (A)− (D) entail the following conditions (E) - (H):

(E) (Finite interval)
∫ τ
0 λ0k(t)dt <∞, for all k = 1, . . . ,K.

(F) (Asymptotic stability) There exists a neighborhood B of β0 that satisfies the following

conditions, as n→∞,

(i) For all k = 1, . . . ,K, there exists scalar, vector and matrix functions s(0), s(1) and

s(2) defined on B × [0, τ ] such that for d = 0, 1, 2,

sup
t ∈ [0, τ ]

β ∈ B

||S(d)
k (β, t)− s(d)

k (β, t)|| p−→ 0;

(ii) there exists a matrix Q(β) such that n−1
∑n

i=1 Var(
∑K

k=1 Mz̃,ik(β0)) −→ Q(β0).

(G) (Asymptotic regularity) For all β ∈ B, t ∈ [0, τ ] and k = 1, . . . ,K : s
(1)
k (β, t) =

∂
∂β
s
(0)
k (β, t), s(2)

k (β, t) = ∂2

∂β∂βT s
(0)(β, t), where s(d)(·, t)(d = 0, 1, 2) are continuous

functions of β ∈ B, uniformly in t ∈ [0, τ ] and are bounded on B × [0, τ ], s(0) is

bounded away from zero on B × [0, τ ].

(H) (Lindeberg condition) There exists a δ > 0 s.t. as n→∞

n−1/2 sup
i,k,t

‖Zik(t)‖Yik(t)I
{
βT

0Zik(t) > −δ ‖Zik(t)‖
} p−→ 0.

The following additional conditions are also needed to ensure the desired asymptotic conver-

gence of case-cohort samples:

(I) (Nontrivial subcohort) As n→∞, α̃ = ñ
n converges to a constant α ∈ (0, 1).

(J) (Nontrivial cases) ns
n converges to a constant ps ∈ [0, 1] for s = 0, 1 as n → ∞ where

p1 + p0 = 1.

(K) (Asymptotic normality of samples) For all k = 1, . . . ,K, as n→∞,

n−1 sup
i,t

exp
{
2βTZik(t)

} p−→ 0, n−1 sup
i,t
‖Zik(t)‖2 exp

{
2βTZik(t)

} p−→ 0
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(L) (Asymptotic stability) As n→∞,

(i) There exists a positive definite matrix V (β0) such that

Var

{
n−1

n∑
i=1

K∑
k=1

∫ τ

0
Rik(β0, t)dΛ0k(t)

}
−→ V (β0) in probability

where Rik(β0, t) is defined in theorem 1;

(ii) There exists a positive definite matrix V II(β0) such that

Var

{
n−1

n∑
i=1

K∑
k=1

(1−∆ik)
∫ τ

0

(
Rik(β0, t)−

Yik(t) E(1−∆1k)R1k(β0, t)
E(1−∆1k)Y1k(t)

)
dΛ0k(t)

}

−→ V II(β0) in probability.

The following lemma together with lemmas 1 - 3 in Chapter 3 will be frequently used in

proving the theorems.

Lemma 5 Let ξ = (ξ1, . . . , ξn) be a random vector containing ñ ones and n − ñ zeros,

with each permutation equally likely. Let Bi(t), i = 1, . . . , n, be i.i.d. real-valued random

processes on [0, τ ] with E{Bi(t)} = µB(t), Var{Bi(0)} < ∞ and Var{Bi(τ)} < ∞. Let

B(t) = (B1(t), . . . , Bn(t)) and ξ be independent. Suppose that almost all paths of Bi(t) have

finite variation. Then,

n−1/2
n∑

i=1

ξi {Bi(t)− µB(t)} (4.12)

converges weakly in `∞[0, τ ] to a zero-mean Gaussian process and therefore

n−1
n∑

i=1

ξi {Bi(t)− µB(t)} (4.13)

converges in probability to 0 uniformly in t.

This lemma is an extension of the proposition in Kulich and Lin (2000).

Proof. Suppose first that theBi(t)’s have nondecreasing sample paths then the finite-dimensional

convergence follows from Hájek (1960)’s central limit theorem for finite population sampling

while the tightness follows from Example 3.6.14 of van der Vaart and Wellner (1996). In the
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general case, since almost every path b(t) of B(t) have finite variation, b(t) can be written

as b∗1(t) − b∗2(t), where b∗1(t) and b∗2(t) are nonnegative, nondecreasing in t. Hence Bi(t) =

B∗
i1(t)−B∗

i2(t), where B∗
i1(t) and B∗

i2(t) are marginally tight since they meet the condition of

Example 3.6.14 of van der Vaart and Wellner (1996). This implies that they are jointly tight.

The joint finite-dimensional convergence of the normalized n−1/2
∑n

i=1 ξi{B∗
i1(t) − µB∗

i1
(t)}

and n−1/2
∑n

i=1 ξi{B∗
i2(t) − µB∗

i1
(t)} follows again from Hájek (1960)’s central limit theorem

for finite population sampling. Therefore, n−1/2
∑n

i=1 ξi{Bi(t)− µBi(t)} converges weakly in

`∞[0, τ ] to zero mean Gaussian processes. It then follows that n−1
∑n

i=1 ξi{Bi(t) − µBi(t)}

converges to 0 in probability uniformly in t. This completes the proof of lemma 5.

Note that for our case, ξi is the subcohort membership indicator where the sampling

of the subcohort was conducted by simple random sampling without replacement. Thus,

it is clear that our ξi’s satisfy the conditions in lemma 5. Also note that for the sampling

from finite population, µB(t) = n−1
∑n

i=1Bi(t) and thus n−1/2
∑n

i=1 ξi{Bi(t) − µBi(t)} =

n−1/2
∑n

i=1

(
ξi − ñ

n

)
Bi(t) = n−1/2α̃

∑n
i=1

(
ξi

α̃ − 1
)
Bi(t).

Before we move onto the proofs of the theorems, we investigate the asymptotic properties

of the time-varying sampling probability estimator α̂k(t) =
Pn

i=1 ξiYik(t)Pn
i=1 Yik(t)

. These asymptotic

properties will be frequently used in proving the theorems.

For each k, it follows from the Taylor expansion of α̂k(t)−1 around α̃,

α̂k(t)−1 − α̃−1 = − 1
α2
∗(t)

(α̂k(t)− α̃) =
α̃

α∗(t)2
· 1∑n

i=1 Yik(t)

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}

where α∗(t) is on the line segment between α̂k(t) and α̃. Then,

n1/2
(
α̂k(t)−1 − α̃−1

)
=

α̃

α∗(t)2
· n∑n

i=1 Yik(t)
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}

By Glivenko-Cantelli lemma, n−1
∑n

i=1 Yik(t) converges to EY1k(t) in probability uniformly

in t. In view of lemma 5, n−1/2
∑n

i=1(
ξi

α̃ −1)Yik(t) converges to a zero-mean Gaussian process

since Yik(t) is bounded and monotone function in t. This implies n−1
∑n

i=1(
ξieα − 1)Yik(t)

converges to 0 in probability uniformly in t and consequently, α̂k(t) and α̃ converges to the
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same limit uniformly in t. This ensures α∗(t) also converges to the same limit as α̃. Combining

these results, it follows from Slutsky’s theorem that

√
n
(
α̂k(t)−1 − α̃−1

)
=

1
α̃EY1k(t)

1√
n

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}

+
(

α̃

α∗(t)2
· n∑n

i=1 Yik(t)
− 1
α̃EY1k(t)

)
1√
n

n∑
i=1

(
1− ξi

α̃

)
Yik(t)

=
1

α̃EY1k(t)
1√
n

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}
+ op(1) (4.14)

Now we prove theorem 4.1.

Proof of Theorem 4.1 We first consider the proof for the consistency of β̂I . Denote n−1

times U I(β) by U I
n(β). Based on a straightforward extension of Foutz (1977), one can show

β̂I to be consistent for β0 provided: (i) ∂U I
n(β)/∂βT exists and is continuous in an open

neighborhood B of β0, (ii)∂U I
n(β0)/∂β

T
0 is negative definite with probability going to one

as n → ∞, (iii) ∂U I
n(β)/∂βT converges to A(β0) in probability uniformly for β in an open

neighborhood about β0, and (iv) U I
n(β) → 0 in probability.

One can write

∂U I
n(β)

∂βT
= −n−1

K∑
k=1

∫ τ

0
V̂ k(β, t)d

n∑
i=1

Nik(t) where

V̂ k(β, t) =
Ŝ

(2)

k (β, t)Ŝ(0)
k (β, t)− Ŝ

(1)

k (β, t)⊗2

Ŝ
(0)
k (β, t)2

(4.15)

Then, (i) is clearly satisfied on the basis of (4.15) and by the continuity of each component.

Now, following Andersen and Gill (1982),

∥∥∥∥(−∂Un(β)
∂βT

)
−A(β)

∥∥∥∥ ≤

∥∥∥∥∥
K∑

k=1

∫ τ

0
{V̂ k(β, t)− vk(β, t)}n−1d

n∑
i=1

Nik(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑

k=1

∫ τ

0
vk(β, t)n−1d

n∑
i=1

Mik(t)

∥∥∥∥∥+
∥∥∥∥∫ τ

0
vk(β, t){S

(0)
k (β, t)− s

(0)
k (β, t)}λ0k(t)dt

∥∥∥∥ (4.16)

Each of the terms on the right side of the above inequality will be shown to converge to zero,

uniformly in β ∈ B in the following.
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To show the first term on the right side of (4.16), we will first show that

sup

t ∈ [0, τ ]

β ∈ B

∥∥∥V̂ k(β, t)− vk(β, t)
∥∥∥ p−→ 0 as n→∞ for k = 1, . . . ,K.

It suffices to show that sup
t∈[0,τ ],β∈B ‖Ŝ

(d)

k (β, t)−S(d)
k (β, t)‖ p−→ 0 as n→∞ for d = 0, 1, 2.

One can write

Ŝ
(d)

k (β, t)− S(d)
k (β, t) = n−1

n∑
i=1

(
ξi
α̃
− 1
)
Zik(t)⊗deβ

TZik(t)Yik(t)

− n−1
n∑

i=1

(α̃−1 − α̂k(t)−1)ξiZik(t)⊗deβ
TZik(t)Yik(t)

Then

∥∥∥Ŝ(d)

k (β, t)− S(d)
k (β, t)

∥∥∥ ≤ ∥∥∥∥∥n−1
n∑

i=1

(
ξi
α̃
− 1
)
Zik(t)⊗deβ

TZik(t)Yik(t)

∥∥∥∥∥
+
∣∣(α̃−1 − α̂k(t)−1)

∣∣n−1
n∑

i=1

ξi

∣∣∣Zik(t)⊗d
∣∣∣ eβTZik(t)Yik(t) (4.17)

For each j(j = 1, . . . , p), by the condition on Zikj(t), the total variation of

Zikj(t)⊗deβ
TZik(t)Yik(t) is also finite on [0, τ ]. Thus, by lemma 5, the first term on the right-

hand side of (4.17) converges to 0 in probability uniformly in t. The second term on the right-

hand side of (4.17) also converges to 0 in probability uniformly in t since α̂k(t)−1 − α̃−1 was

shown to converge to 0 in probability uniformly in t and n−1
∑n

i=1 ξi|Zik(t)⊗d|eβ
TZik(t)Yik(t)

converges to a finite quantity α̃E(|Z⊗d
ik |e

βTZik(t)Yik(t)) in probability uniformly in t and β

by lemma 5. Combining these results, Ŝ
(d)

k (β, t) and S(d)
k (β, t) were shown to converge to the

same limit uniformly and consequently, we have

sup

t ∈ [0, τ ]

β ∈ B

∥∥∥Ŝ(d)

k (β, t)− s(d)
k (β, t)

∥∥∥ p−→ 0 as n→∞ for d = 0, 1 (4.18)
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Since s(0)
k (β, t) is bounded away from zero on B × [0, τ ] by condition (G), it follows from the

above convergence results that for k = 1, . . . ,K, V̂ k(β, t) converges to vk(β, t) in probability

uniformly in t and β.

The Lenglart inequality (Andersen and Gill, 1982, p1115) implies that, for any δ, ρ > 0,

there exists n0 such that for n ≥ n0,

P [n−1N̄k(τ) > c] ≤ δ

c
+ P [

∫ τ

0
S

(0)
k (β0; t)λ0k(t)dt > δ]

By Condition (F), for δ >
∫ τ
0 s

(0)
k (β0, t)λ0k(t)dt, P [

∫ τ
0 S

(0)
k (β0; t)λ0k(t)dt > δ] → 0 as n→∞.

Then, limc↑∞ limn→∞ P [n−1N̄k(τ) > c] = 0. Thus, it follows that the first term on the right

side of (4.16) converges to zero in probability, uniformly in β ∈ B, as n→∞.

For the second term on the right side of (4.16), n−1
∑n

i=1

∫ τ
0 vk(β, t)dMik(t) is a local

square integrable martingale. Hence, the Lenglart inequality (Andersen and Gill, 1982, p1115)

implies that, for any δ, ρ > 0, there exists n0 such that for n ≥ n0,

P
[∥∥∥∥n−1

∫ τ

0
{vk(β, t)}ll′ dM̄k(t)

∥∥∥∥ > ρ

]
≤ δ

ρ2
+ P

[
n−1

∫ τ

0
{vk(β, t)}2

ll′ S
(0)
k (β, t)λ0k(t)dt > δ

]

where the subscript ll′ denotes the (l, l′) element of the indicated matrix. The boundedness

conditions (E), (F) and (G) ensure that the second term on the right side of the above

inequality converges to zero in probability, uniformly in β ∈ B as n → ∞ for any δ. Since δ

can be arbitrarily small, it follows that the left side of the above inequality also converges to

zero in probability, uniformly in β ∈ B as n → ∞. Therefore, the second term on the right

side of (4.16) also converges to zero in probability, uniformly in β ∈ B, as n→∞.

Again, the conditions (D), (E) and (F) ensure the boundedness of supt,β{vk(β, t)}ll′ and

Λ0k(τ) for k = 1, . . . ,K and l, l′ = 1, . . . , p. Thus, together with the uniform convergence of

Ŝ
(0)
k (β, t) to s(0)

k (β, t) in probability, the last term on the right side of (4.16) converges to zero

in probability, uniformly in β ∈ B as n→∞. Hence,

−∂U
I
n(β)

∂βT

p−→ A(β) as n→∞ uniformly in β ∈ B
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and, thus, (ii) and (iii) are satisfied.

For (iv), we will show that n−1/2U I(β0) is asymptotically equivalent to

n−1/2
∑n

i=1

∑K
k=1 Mz̃,ik(β0)+n−1/2

∑n
i=1

∑K
k=1(1−

ξieα )
∫ τ
0 Rik(β0, t)dΛ0k(t). Specifically, one

can decompose n1/2U I
n(β0) into two parts:

n1/2U I
n(β0) = n−1/2

n∑
i=1

K∑
k=1

∫ τ

0

{
Zik(t)−

S
(1)
k (β0, t)

S
(0)
k (β0, t)

}
dNik(t)

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
S

(1)
k (β0, t)

S
(0)
k (β0, t)

− Ŝ
(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

}
dNik(t) (4.19)

The first term on the right-hand side of (4.19) is the pseudo partial likelihood score function

for the full cohort data. This was shown to be asymptotically equivalent to

n−1/2
∑n

i=1

∑K
k=1 Mz̃,ik(β0) (Spiekerman and Lin, 1998). The second term on the right-hand

side of (4.19) can be further decomposed as

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
S

(1)
k (β0, t)

S
(0)
k (β0, t)

− Ŝ
(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

}
dNik(t)

=
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)

S
(0)
k (β0, t)

− Ŝ
(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

}
d

{
n−1/2

n∑
i=1

Mik(t)

}

+ n−1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)

S
(0)
k (β0, t)

− Ŝ
(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

}
n∑

i=1

Yik(t)eβ
T

0Zik(t)dΛ0k(t) (4.20)

Note that, for fixed t, n−1/2
∑n

i=1Mik(t) is a sum of i.i.d. zero-mean random variables. Based

on conditions (C) and (E), Mik(t) is of bounded variation and therefore can be written as

a difference of two monotone functions in t. It then follows from the example of 2.11.16

of van der Vaart and Wellner (1996, p215) that n−1/2
∑n

i=1Mik(t) converges weakly to a

zero-mean Gaussian process, say WMk(t). It can be shown that E{WMk(t) −WMk(s)}4 ≤

C{Λ0k(t) − Λ0k(s)}2 for some constant C > 0. Specifically, E{WMk(t) − WMk(s)}4 =

3(E{WMk(t)−WMk(s)}2)2 since WMk(t) is a zero-mean normal random variable for a fixed t.

Then E{WMk(t)−WMk(s)}2 = EWMk(t)2+EWMk(s)2−2 EWMk(t)WMk(s) = EWMk(t)2−

EWMk(s)2 for s ≤ t. Since EWMk(t)2 = EMik(t)2 = E
[∫ t

0 Yik(u)eβ
T

0Zik(u)λ0k(u)du
]
,

E{WMk(t)−WMk(s)}2 = E
[∫ t

s Yik(u)eβ
T

0Zik(u)λ0k(u)du
]
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≤ eCz E
[∫ t

s λ0k(u)du
]

= C̃z(Λ0k(t)−Λ0k(s)) by the boundedness condition (C). Since Λ0k(·)

is differentiable and λ0(·) is bounded on [0, τ ], ∃ a constant M , such that Λ0k(t)− Λ0k(s) ≤

M(t−s) for s ≤ t. Therefore, E{WMk(t)−WMk(s)}2 ≤ C∗z (t−s) and E{WMk(t)−WMk(s)}4 ≤

3(E{WMk(t) −WMk(s)}2)2 ≤ C̃∗z (t − s)2 for some constant C∗z . Then, by the Kolmogorov-

Centsov Theorem (Karatzas and Shereve, 1988, p53), WMk(t) has continuous sample paths.

In addition, since S(1)
k (β, t) and S(0)

k (β, t) are of bounded variations and S(0)
k (β, t) is bounded

away from 0, based on conditions (C), (F) and (G), S
(1)
k (β,t)

S
(0)
k (β,t)

is of bounded variation and can

be written as a sum of two monotone functions in t, respectively. Specifically, S
(1)
k (β,t)

S
(0)
k (β,t)

=

Z∗
k1(t)−Z∗

k2(t) where both Z∗
k1(t) and Z∗

k2(t) are nonnegative, monotone in t and bounded.

Since
bS(1)

k (β,t)

bS(0)
k (β,t)

is also of bounded variation based on (4.18) and conditions (C) and (G), by the

same argument, we can write
bS(1)

k (β,t)

bS(0)
k (β,t)

= Z∗∗
k1(t)−Z∗∗

k2(t) where both Z∗∗
k1(t) and Z∗∗

k2(t) are

nonnegative, monotone in t and bounded. Therefore,
bS(1)

k (β,t)

bS(0)
k (β,t)

is also a sum of two monotone

functions. Based on condition (F) and result in (4.18), it can be shown that both S(1)
k (β,t)

S
(0)
k (β,t)

and
bS(1)

k (β,t)

bS(0)
k (β,t)

converge to the same limit uniformly. Hence, it follows from lemma 2 that

K∑
k=1

∫ τ

0

{
S

(1)
k (β, t)

S
(0)
k (β, t)

− Ŝ
(1)

k (β, t)

Ŝ
(0)
k (β, t)

}
n−1/2

n∑
i=1

dMik(t)

=
K∑

k=1

∫ τ

0

{
S

(1)
k (β, t)

S
(0)
k (β, t)

−
s

(1)
k (β, t)

s
(0)
k (β, t)

}
n−1/2

n∑
i=1

dMik(t)

−
K∑

k=1

∫ τ

0

{
Ŝ

(1)

k (β, t)

Ŝ
(0)
k (β, t)

−
s

(1)
k (β, t)

s
(0)
k (β, t)

}
n−1/2

n∑
i=1

dMik(t)
p−→ 0 as n→∞

Thus, the first term on the right-hand side of (4.20) converges to 0 in probability uniformly

in t.

To investigate the asymptotic properties of the second term on the right-hand side of

(4.20), we first study the asymptotic expansion of n1/2
{
S

(d)
k (β, t)− Ŝ

(d)

k (β, t)
}

(d = 0, 1).
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One can write

n1/2
{
S

(d)
k (β, t)− Ŝ

(d)

k (β, t)
}

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
Zik(t)⊗deβ

TZik(t)Yik(t)

+ n−1/2
n∑

i=1

(
α̃−1 − α̂k(t)−1

)
ξiZik(t)⊗deβ

TZik(t)Yik(t)

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
Zik(t)⊗deβ

TZik(t)Yik(t)

+ n−1
n∑

i=1

 1
α̃EY1k(t)

n−1/2
n∑

j=1

(
ξj
α̃
− 1
)
Yjk(t)

 ξiZik(t)⊗deβ
TZik(t)Yik(t) + op(1) (by (5.6))

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
Zik(t)⊗deβ

TZik(t)Yik(t)

+ n−1/2
n∑

i=1

(
ξi
α̃
− 1
)

Yik(t)
EY1k(t)

n−1
n∑

j=1

ξj
α̃
Zjk(t)⊗deβ

TZjk(t)Yjk(t)

+ op(1) (4.21)

It follows from lemma 5 that n−1
∑n

j=1
ξjeαZjk(t)⊗deβ

TZjk(t)Yjk(t) converges to s(d)
k (β, t) in

probability uniformly in t. Thus, from (4.21)

n1/2
{
S

(d)
k (β, t)− Ŝ

(d)

k (β, t)
}

= n−1/2
n∑

i=1

{(
1− ξi

α̃

)
Zik(t)⊗deβ

TZik(t)Yik(t) +
(
ξi
α̃
− 1
)

Yik(t)
EY1k(t)

s
(d)
k (β, t)

}
+ op(1)

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

{
Zik(t)⊗deβ

TZik(t) −
s

(d)
k (β, t)
EY1k(t)

}
+ op(1) (4.22)

99



Now, the second term on the right-hand side of (4.20) can be further decomposed as

n−1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)

S
(0)
k (β0, t)

− Ŝ
(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

}
n∑

i=1

Yik(t)eβ
T

0Zik(t)dΛ0k(t)

= n1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)− Ŝ

(1)

k (β0, t)
}
dΛ0k(t)

− n1/2
K∑

k=1

∫ τ

0

{
S

(0)
k (β0, t)− Ŝ

(0)
k (β0, t)

} Ŝ(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

dΛ0k(t)

= n1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)− Ŝ

(1)

k (β0, t)
}
dΛ0k(t)

− n1/2
K∑

k=1

∫ τ

0

{
S

(0)
k (β0, t)− Ŝ

(0)
k (β0, t)

}
ek(β0, t)dΛ0k(t)

− n1/2
K∑

k=1

∫ τ

0

{
S

(0)
k (β0, t)− Ŝ

(0)
k (β0, t)

}{ Ŝ(1)

k (β0, t)

Ŝ
(0)
k (β0, t)

− ek(β0, t)

}
dΛ0k(t)

= n1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)− Ŝ

(1)

k (β0, t)
}
dΛ0k(t)

− n1/2
K∑

k=1

∫ τ

0

{
S

(0)
k (β0, t)− Ŝ

(0)
k (β0, t)

}
ek(β0, t)dΛ0k(t) + op(1) (4.23)

The last equality holds since
bS(1)

k (β0,t)

bS(0)
k (β0,t)

converges to ek(β, t) in probability uniformly in t,

n1/2{S(d)
k (β, t)− Ŝ

(d)

k (β, t)}(d = 0, 1) converges weakly to a zero-mean Gaussian process and

Λ0k(t) is bounded on t ∈ [0, τ ]. Then, based on (4.22),

(4.23) = n−1/2
K∑

k=1

n∑
i=1

∫ τ

0

(
1− ξi

α̃

)
Yik(t)

{
Zike

βT

0Zik(t) −
s

(1)
k (β0, t)
EY1k(t)

}
dΛ0k(t)

− n−1/2
K∑

k=1

n∑
i=1

∫ τ

0

(
1− ξi

α̃

)
Yik(t)

{
eβ

T

0Zik(t) −
s
(0)
k (β0, t)
EY1k(t)

}
ek(β0, t)dΛ0k(t) + op(1)

= n−1/2
K∑

k=1

n∑
i=1

∫ τ

0

(
1− ξi

α̃

)
Yik(t) (Zik − ek(β0, t)) e

βT

0Zik(t)dΛ0k(t)

− n−1/2
K∑

k=1

n∑
i=1

∫ τ

0

(
1− ξi

α̃

)
Yik(t)

EY1k(t)

(
s

(1)
k (β0, t)− s

(0)
k (β0, t)ek(β0, t)

)
dΛ0k(t) + op(1)

= n−1/2
K∑

k=1

n∑
i=1

(
1− ξi

α̃

)∫ τ

0
Rik(β0, t)dΛ0k(t) + op(1)
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where Rik(β, t) = Yik(t)Z̃ik(β, t)eβ
TZik(t), where Z̃ik(β, t) = Zik(t) − ek(β, t). The last

equality holds since s(1)
k (β0, t) − s

(0)
k (β0, t)ek(β, t) = 0. Therefore, the second term on the

right-hand side of (4.20) is asymptotically equivalent to

n−1/2
∑n

i=1

∑K
k=1

(
1− ξieα

) ∫ τ
0 Rik(β0, t)dΛ0k(t). Combining the above results, we have shown

that n1/2U I(β0) is asymptotically equivalent to

n−1/2
n∑

i=1

K∑
k=1

Mz̃,ik(β0) + n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)∫ τ

0
Rik(β0, t)dΛ0k(t) (4.24)

Under the regularity conditions, the first term on the right-hand side of (4.24) is asymptoti-

cally zero-mean normal with covariance matrix Q(β0) = E
(∑K

k=1 Mz̃,ik(β0)
)⊗2

by Spieker-

man and Lin (1998).

The second term on the right-hand side of (4.24) can be shown to be asymptotically zero-

mean normal with covariance matrix V (β0) by Hájek (1960)’s central limit theorem for finite

population sampling. Specifically, let a = (a1, . . . , ap)T be a p× 1 real valued vector. Then,

one can write

∣∣∣∣∣aT

(
K∑

k=1

∫ τ

0
Rik(β0, t)dΛ0k(t)

)
− n−1

n∑
i=1

aT

(
K∑

k=1

∫ τ

0
Rik(β0, t)dΛ0k(t)

)∣∣∣∣∣
=

∣∣∣∣∣
K∑

k=1

∫ τ

0
aT Z̃ik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)− n−1
n∑

i=1

K∑
k=1

∫ τ

0
aT Z̃ik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
≤

∣∣∣∣∣
K∑

k=1

∫ τ

0
aT Z̃ik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣+
∣∣∣∣∣n−1

n∑
i=1

K∑
k=1

∫ τ

0
aT Z̃ik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
≤

∣∣∣∣∣
K∑

k=1

∫ τ

0
aTZik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣+
∣∣∣∣∣

K∑
k=1

∫ τ

0
aTek(β0, t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑

i=1

K∑
k=1

∫ τ

0
aTZik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑

i=1

K∑
k=1

∫ τ

0
aTek(β0, t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
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Thus,

max
i

∣∣∣∣∣aT

(
K∑

k=1

∫ τ

0
Rik(β0, t)dΛ0k(t)

)
− n−1

n∑
i=1

aT

(
K∑

k=1

∫ τ

0
Rik(β0, t)dΛ0k(t)

)∣∣∣∣∣
2

≤ max
i

(∣∣∣∣∣
K∑

k=1

∫ τ

0
aTZik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣+
∣∣∣∣∣

K∑
k=1

∫ τ

0
aTek(β0, t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑

i=1

K∑
k=1

∫ τ

0
aTZik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑

i=1

K∑
k=1

∫ τ

0
aTek(β0, t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣
)2

Note that

max
i

∣∣∣∣∣
K∑

k=1

∫ τ

0
aTZik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣ ≤ sup
t,i

K∑
k=1

∣∣aTZik(t)
∣∣ eβT

0Zik(t)Λ0k(τ)

max
i

∣∣∣∣∣n−1
n∑

i=1

K∑
k=1

∫ τ

0
aTZik(t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣ ≤ sup
t,i

K∑
k=1

∣∣aTZik(t)
∣∣ eβT

0Zik(t)Λ0k(τ)

max
i

∣∣∣∣∣
K∑

k=1

∫ τ

0
aTek(β0, t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣ ≤ sup
t,i

K∑
k=1

∣∣aTek(β0, t)
∣∣ eβT

0Zik(t)Λ0k(τ)

max
i

∣∣∣∣∣n−1
n∑

i=1

K∑
k=1

∫ τ

0
aTek(β0, t)Yik(t)eβ

T

0Zik(t)dΛ0k(t)

∣∣∣∣∣ ≤ sup
t,i

K∑
k=1

∣∣aTek(β0, t)
∣∣ eβT

0Zik(t)Λ0k(τ)

To use Hájek (1960)’s theorem, the following conditions need to be verified. As n→∞,

(a) α̃ converges to a constant α ∈ (0, 1);

(b) n−1 maxi

∣∣∣aT
∑K

k=1

∫ τ
0 Rik(β0, t)dΛ0k(t)− n−1

∑n
i=1 a

T
∑K

k=1

∫ τ
0 Rik(β0, t)dΛ0k(t)

∣∣∣2 con-

verges to zero in probability, and

(c) (n−1)−1
∑n

i=1

(
aT
∑K

k=1

∫ τ
0 Rik(β0, t)dΛ0k(t)− n−1

∑n
i=1 a

T
∑K

k=1

∫ τ
0 Rik(β0, t)dΛ0k(t)

)2

converges to σ2 6= 0.

To verify (b), it suffices to show that n−1 supt,i

∑K
k=1

∣∣aTZik(t)
∣∣ eβT

0Zik(t)Λ0k(τ) and

n−1 supt,i

∑K
k=1

∣∣aTek(β, t)
∣∣ eβT

0Zik(t)Λ0k(τ) converge to zero in probability as n→∞. This

holds by our conditions (C), (E), (G) and (K). (a) and (c) are satisfied on the basis of condi-
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tions (I), (J) and (L)(i). This implies n−1/2
∑n

i=1 a
T
{∑K

k=1

(
1− ξieα

) ∫ τ
0 Rik(β0, t)dΛ0k(t)

}
converges to a mean-zero normal random variable. Therefore, by Cramer-Wold device,

n−1/2
∑n

i=1

∑K
k=1

(
1− ξieα

) ∫ τ
0 Rik(β0, t)dΛ0k(t) converges to a p-variate mean-zero normal

random variable with variance 1−α
α V (β0) = 1−α

α E
[∑K

k=1

∫ τ
0 R1k(β0, t)dΛ0k(t)

]⊗2
.

Note that n−1/2
∑n

i=1

∑K
k=1 Mz̃,ik(β0) and n−1/2

∑n
i=1

∑K
k=1(1−

ξieα )
∫ τ
0 Rik(β0, t)dΛ0k(t) are

independent since

Cov

(
n−1/2

n∑
i=1

K∑
k=1

Mz̃,ik(β0), n
−1/2

n∑
i=1

K∑
k=1

(
1− ξi

α̃

)∫ τ

0
Rik(β0, t)dΛ0k(t)

)

= E

{
n−1

n∑
i=1

K∑
k=1

Mz̃,ik(β0)
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)∫ τ

0
Rik(β0, t)dΛ0k(t)

}

= E

{
E

(
n−1

n∑
i=1

K∑
k=1

Mz̃,ik(β0)
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)∫ τ

0
Rik(β0, t)dΛ0k(t)

∣∣∣∣∣F(τ)

)}

= E

{
n−1

n∑
i=1

K∑
k=1

Mz̃,ik(β0)
n∑

i=1

K∑
k=1

E
(

1− ξi
α̃

∣∣∣∣F(τ)
)∫ τ

0
Rik(β0, t)dΛ0k(t)

}
= 0

Therefore, n1/2U I
n(β0) is asymptotically normally distributed with mean zero and with finite

variance Q(β0) + 1−α
α V (β0). Hence Un(β) converges to zero in probability. Thus, (iv) is

satisfied.

By (i),(ii),(iii) and (iv), it follows that there is a unique sequence β̂I s.t. U I(β̂) = 0 with

probability converging to one as n → 0 and with β̂I converging in probability to β0 by

extension of (Foutz, 1977, Thm.2).

The asymptotic normality of β̂I follows from the consistency of β̂I and a Taylor series

expansion of U I(β).
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Proof of Theorem 4.2 One can make decomposition

n1/2{Λ̂I
0k(β̂I , t)− Λ0k(t)}

= n1/2

{
Λ̂I

0k(β̂I , t)−
∫ t

0

d (
∑n

i=1Nik(u))

nŜ
(0)
k (β0, u)

}
+ n1/2

{∫ t

0

d (
∑n

i=1Nik(u))

nŜ
(0)
k (β0, u)

− Λ0k(t)

}

= n1/2

∫ t

0

(
1

nŜ
(0)
k (β̂I , u)

− 1

nŜ
(0)
k (β0, u)

)
d

n∑
i=1

Mik(u)

+ n1/2

∫ t

0

(
1

Ŝ
(0)
k (β̂I , u)

− 1

Ŝ
(0)
k (β0, u)

)
S

(0)
k (β0, t)dΛ0k(u)

+
∫ t

0

1

Ŝ
(0)
k (β0, u)

dn−1/2
n∑

i=1

Mik(u)

+ n1/2

∫ t

0

(
S

(0)
k (β0, u)− Ŝ

(0)
k (β0, u)

Ŝ
(0)
k (β0, u)

)
dΛ0k(u) (4.25)

By the Taylor expansion of Ŝ(0)
k (β̂I , u)−1 around β0, the first term of (4.25), can be shown

to be equivalent to

∫ t

0

(
− Ŝ

(1)

k (β∗, u)T

Ŝ
(0)
k (β∗, u)2

)
(β̂I − β0)d

{
n−1/2

n∑
i=1

Mik(u)

}
(4.26)

where β∗ is on the line segment between β̂I and β0. Again, Ŝ(0)
k (β∗, u) and Ŝ

(1)
k (β∗, u) are

of bounded variations and Ŝ
(0)
k (β∗, u) is bounded away from 0, therefore,

ˆS
(1)

k (β∗
,u)

Ŝ
(0)
k (β∗

,u)2
can be

expressed as a sum of two monotone functions in t. Then, together with the consistency

of β̂I , the uniform convergence of Ŝ(0)
k (β∗, u) and Ŝ

(1)
k (β∗, u), and the weak convergence

of n−1/2
∑n

i=1Mik(t) with continuous sample paths, (4.26) converges to 0 uniformly in t in

probability by applying lemma 2.

Again, by the Taylor expansion of Ŝ(0)
k (β̂I , u)−1 around β0, the second term on the right-hand

side of (4.25) is equivalent to

−n1/2

∫ t

0

Ŝ
(1)

k (β∗, u)T

Ŝ
(0)
k (β∗, u)2

(β̂I − β0)S
(0)
k (β0, u)dΛ0k(u) (4.27)
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By the consistency of β̂I , the uniform consistency of Ŝ(0)
k (β∗, u), S(0)

k (β0, u), and Ŝ
(1)

k (β∗, u),

and the boundedness of Λ0k(u) on [0, τ ], we have

−n1/2

∫ t

0

Ŝ
(1)

k (β∗, u)T

Ŝ
(0)
k (β∗, u)2

(β̂I − β0)S
(0)
k (β0, u)dΛ0k(u) = n1/2rk(β0, t)

T
(
β̂I − β0

)
+ op(1),

where rk(β, t) = −
∫ t
0 ek(β, u)dΛ0k(u). Since Ŝ

(0)
k (β0, u)−1 can be written a sum of two

monotone functions in t and converges uniformly to s(0)
k (β0, u)−1, where s(0)k (β0, u) is bounded

away from 0, and n−1/2
∑n

i=1Mik(u) converges to a zero-mean Gaussian process with con-

tinuous sample path, it follows from lemma 2 that the third term on the right-hand side of

(4.25) is asymptotically equivalent to

∫ t

0

1

s
(0)
k (β0, u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

For the last term on the right-hand side of (4.25), it follows from (4.21) and the uniform

convergence of Ŝ(0)
k (β0, t)−1 to s(0)k (β0, t)−1, where s(0)

k (β0, t) is bounded away from 0 that

n1/2

∫ t

0

(
S

(0)
k (β0, u)− Ŝ

(0)
k (β0, u)

Ŝ
(0)
k (β0, u)

)
dΛ0k(u)

=
∫ t

0

1

Ŝ
(0)
k (β0, u)

n−1/2
n∑

i=1

(
1− ξi

α̃

)
Yik(u)

{
eβ

T

0Zik(u) −
s
(0)
k (β0, u)
EY1k(u)

}
dΛ0k(u) + op(1)

= n−1/2
n∑

i=1

(
1− ξi

α̃

)∫ t

0
Yik(u)

{
eβ

T

0Zik(u) −
s
(0)
k (β0, u)
EY1k(u)

}
dΛ0k(u)

s
(0)
k (β0, u)

+ op(1)

Now, by combining the above results and using the asymptotic expansion of n1/2(β̂I − β0)

where

n1/2(β̂I − β0) = A(β0)
−1
{
n−1/2U(β0)

+ n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)∫ τ

0
Rik(β0, t)dΛ0k(t)

}
+ op(1)
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we have

n1/2(Λ̂I
0k(β̂I , t)− Λ0k(t))

= rk(β0, t)
TA(β0)

−1

{
n−1/2U(β0) + n−1/2

n∑
i=1

K∑
m=1

(
1− ξi

α̃

)∫ τ

0
Rim(β0, u)dΛ0m(u)

}

+
∫ t

0

1

s
(0)
k (β0, u)

d

{
n−1/2

n∑
i=1

Mik(u)

}
+ n−1/2

n∑
i=1

(
1− ξi

α̃

)

×
∫ t

0
Yik(u)

(
eβ

T

0Zik(u) −
s
(0)
k (β0, u)
EY1k(u)

)
dΛ0k(u)

s
(0)
k (β0, u)

= n−1/2
n∑

i=1

[{
rk(β0, t)

TA(β0)
−1

K∑
m=1

Mz̃,im(β0) +
∫ t

0

1

s
(0)
k (β0, u)

dMik(u)

}

+
(

1− ξi
α̃

){
rk(β0, t)

TA(β0)
−1

K∑
m=1

∫ τ

0
Rim(β0, u)dΛ0m(u)

+
∫ t

0
Yik(u)

(
eβ

T

0Zik(u) −
s
(0)
k (β0, u)
EY1k(u)

)
dΛ0k(u)

s
(0)
k (β0, u)

}]
+ op(1) (4.28)

= n−1/2
n∑

i=1

νik(β0, t) + n−1/2
n∑

i=1

(
1− ξi

α̃

)
ψik(β0, t) + op(1)

where

νik(β, t) = rk(β, t)TA(β)−1
K∑

m=1

Mz̃,im(β) +
∫ t

0

1

s
(0)
k (β, u)

dMik(u) and

ψik(β, t) = rk(β, t)TA(β)−1
K∑

m=1

∫ τ

0
Rim(β, u)dΛ0m(u)

+
∫ t

0
Yik(u)

(
eβ

TZik(u) −
s
(0)
k (β, u)
EY1k(u)

)
dΛ0k(u)

s
(0)
k (β, u)

.

Now, let W (1)(t) = (W (1)
1 (t), . . . ,W (1)

K (t))T where W (1)
k (t) = n−1/2

∑n
i=1 νik(β0, t) and

W (2)(t) = (W (2)
1 (t), . . . ,W (2)

K (t))T where W (2)
k (t) = n−1/2

∑n
i=1

(
1− ξieα

)
ψik(β0, t) for k =

1, . . . ,K. Then, W (1)(t) converges weakly to a zero-mean Gaussian process W(1)(t) =

(W(1)
1 (t), . . . ,W(1)

K (t))T in D[0, τ ]K where the covariance function between W(1)
j (t1) and

W(1)
k (t2) is E{ν1j(β0, t1)ν1k(β0, t2)} by Spiekerman and Lin (1998, Thm.2,). W (2)(t) also can

be shown to converge weakly to a zero-mean Gaussian processW(2)(t) = (W(2)
1 (t), . . . ,W(2)

K (t))T .
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Specifically, ψik(β0, t) is of bounded variation since rk(β0, t), Yik(t)eβ
T

0Zik(t) and EY1k(t) are

of bounded variations, EYik(t) and s(0)
k (β, t) are bounded away from zero, and A(β0) is pos-

itive definite based on conditions (B), (C), (D), (F), and (G). Thus, for any finite number of

time points (t1, . . . , tL), the finite dimensional distribution of W (2)(t) is asymptotically the

same as those of W(2)(t) by lemma 5 and Cramer-Wold device. Now, if we show the tight-

ness of W (2)(t), the proof for the weak convergence is completed. Since the space D[0, τ ]K

is equipped with the uniform metric, it suffices to show the marginal tightness of W (2)
k (t)

for each k. The marginal tightness follows directly by applying lemma 5 to W (2)
k (t). Thus,

W (2)(t) converges weakly to a zero-mean Gaussian process where the covariance function be-

tween W(2)
j (t1) and W(2)

k (t2) is 1−α
α E{ψ1j(β0, t1)ψ1k(β0, t2)}. Note that W(1)(t) and W(2)(t)

are independent since

Cov

n−1/2
n∑

i=1

νik(β0, t1), n
−1/2

n∑
j=1

(
1− ξj

α̃

)
ψjm(β0, t2)


= E

n−1
n∑

i=1

νik(β0, t1)
n∑

j=1

(
1− ξj

α̃

)
ψjm(β0, t2)


= E

E

n−1
n∑

i=1

νik(β0, t1)
n∑

j=1

(
1− ξj

α̃

)
ψjm(β0, t2)

∣∣∣∣∣∣F(τ)


= E

n−1
n∑

i=1

νik(β0, t1)
n∑

j=1

E
(

1− ξj
α̃

∣∣∣∣F(τ)
)
ψjm(β0, t2)

 = 0.

Therefore, W (t) = W (1)(t) + W (2)(t) converges weakly to a zero-mean Gaussian process

W(t) = W(1)(t) + W(2)(t) where the covariance function between Wj(t1) and Wk(t2) is

E{ν1j(β0, t1)ν1k(β0, t2)} + 1−α
α E{ψ1j(β0, t1)ψ1k(β0, t2)}. This completes the proof of the-

orem 4.2.

Proofs of Theorems 4.3 and 4.4 The asymptotic properties of Estimator II can

be shown by the similar arguments used for Estimator I. However, the resulting asymptotic

properties need some modifications and will involves (1−∆ik). This is because the asymptotic

expansion of n1/2
(
α̂II

k (t)−1 − α̃−1
)

includes the terms involving (1 − ∆ik). In addition, the

asymptotic expansion of n1/2
(
S̃

(d)

k (β, t)− S(d)
k (β, t)

)
(d = 0, 1) is different from the one using
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Estimator I and includes the terms involving (1 − ∆ik) as well. Specifically, for each k, it

follows from the Taylor expansion of α̂II
k (t)−1 around α̃,

α̂II
k (t)−1 − α̃−1 = − 1

α∗∗(t)2
(
α̂II

k (t)− α̃
)

=
α̃

α∗∗(t)2
· 1∑n

i=1(1−∆ik)Yik(t)

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}

where α∗∗(t) is on the line segment between α̂II
k (t) and α̃. Then,

n1/2
(
α̂II

k (t)−1 − α̃−1
)

=
α̃

α∗∗(t)2
· n∑n

i=1(1−∆ik)Yik(t)
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}

By Glivenko-Cantelli lemma, n−1
∑n

i=1(1 − ∆ik)Yik(t) converges to E ((1−∆1k)Y1k(t)) in

probability uniformly in t. In view of lemma 5, n−1/2
∑n

i=1

(
ξi

α̃ − 1
)

(1−∆ik)Yik(t) converges

to a zero-mean Gaussian process since (1−∆ik)Yik(t) is bounded and monotone function in t.

This implies n−1
∑n

i=1(
ξieα − 1)(1−∆ik)Yik(t) converges to 0 in probability uniformly in t and

consequently, α̂II
k (t) and α̃ converges to the same limit uniformly in t. This ensures α∗∗(t) also

converges to the same limit as α̃. Combining these results, it follows from Slutsky’s theorem

that

n1/2
(
α̂II

k (t)−1 − α̃−1
)

=
1

α̃E ((1−∆1k)Y1k(t))
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}

+
(

α̃

α∗∗(t)2
· n∑n

i=1(1−∆1k)Yik(t)
− 1
α̃E ((1−∆1k)Y1k(t))

)
1√
n

n∑
i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

=
1

α̃E ((1−∆1k)Y1k(t))
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}
+ op(1). (4.29)
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Likewise, for each k,

n1/2
{
S

(d)
k (β, t)− S̃

(d)

k (β, t)
}

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗deβ

TZik(t)

+ n−1/2
n∑

i=1

(
α̃−1 − α̂II

k (t)−1
)
(1−∆ik)ξiYik(t)Zik(t)⊗deβ

TZik(t)

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗deβ

TZik(t)

+ n−1
n∑

i=1

 1
α̃E ((1−∆1k)Y1k(t))

n−1/2
n∑

j=1

(
ξj
α̃
− 1
)

(1−∆jk)Yjk(t)


× (1−∆ik)ξiYik(t)Zik(t)⊗deβ

TZik(t) + op(1) ( by (5.24) )

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗deβ

TZik(t) + n−1/2
n∑

i=1

(
ξi
α̃
− 1
)

(1−∆ik)

× Yik(t)
E ((1−∆1k)Y1k(t))

n−1
n∑

j=1

(1−∆jk)
ξj
α̃
Yjk(t)Zjk(t)⊗deβ

TZjk(t)

 + op(1) (4.30)

It follows from lemma 5 that n−1
∑n

j=1(1−∆jk)
ξjeα Yjk(t)Zjk(t)⊗deβ

TZjk(t) converges to

E
(
(1−∆1k)Y1k(t)Z1k(t)⊗deβ

TZ1k(t)
)

for d = 0, 1, in probability uniformly in t. Thus, from

(4.30)

n1/2
{
S

(d)
k (β, t)− S̃

(d)

k (β, t)
}

= n−1/2
n∑

i=1

{(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗deβ

TZik(t)

+
(
ξi
α̃
− 1
)

(1−∆ik)
Yik(t)

E ((1−∆1k)Y1k(t))
E
(

(1−∆1k)Y1k(t)Z1k(t)⊗deβ
TZ1k(t)

)}
+ op(1)

= n−1/2
n∑

i=1

(1−∆ik)
(

1− ξi
α̃

)
Yik(t)

×

Zik(t)⊗deβ
TZik(t) −

E
(
(1−∆1k)Y1k(t)Z1k(t)⊗deβ

TZ1k(t)
)

E ((1−∆1k)Y1k(t))

+ op(1) (4.31)

It then follows from lemma 5 that both n1/2
{
α̂II

k (t)−1 − α̃−1
}

and n1/2
{
S̃

(d)

k (β, t)− S(d)
k (β, t)

}
converge weakly to zero-mean Gaussian processes, respectively. Consequently, both{
α̂II

k (t)−1 − α̃−1
}

and
{
S̃

(d)

k (β, t)− s(d)
k (β, t)

}
converge to 0 in probability uniformly in t,

respectively.
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Now, one can decompose n−1/2U II(β0) into two parts:

n−1/2U II(β0) = n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(u)−

S
(1)
k (β0, u)

S
(0)
k (β0, t)

}
dNik(u)

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
S

(1)
k (β0, u)

S
(0)
k (β0, u)

− S̃
(1)

k (β0, u)

S̃
(0)
k (β0, u)

}
dNik(u) (4.32)

While the first term on the right-hand side of (4.32) remains the same as that of Estimator

I, the second term needs modifications since it involves the weight functions. Specifically, the

second term on the right-hand side of (4.32) can be further decomposed as

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
S

(1)
k (β0, u)

S
(0)
k (β0, u)

− S̃
(1)

k (β0, u)

S̃
(0)
k (β0, u)

}
dNik(u)

=
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, u)

S
(0)
k (β0, u)

− S̃
(1)

k (β0, u)

S̃
(0)
k (β0, u)

}
d

{
n−1/2

n∑
i=1

Mik(u)

}

+ n−1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, u)

S
(0)
k (β0, u)

− S̃
(1)

k (β0, u)

S̃
(0)
k (β0, u)

}
n∑

i=1

Yik(u)eβ
T

0Zik(u)dΛ0k(u) (4.33)

Based on conditions (C) and (G), S̃
(d)

k (β0, u)(d = 0, 1) are of bounded variations and S̃(0)
k (β0, u)

is bounded away from 0. Therefore,
eS(d)

k (β0,u)

eS(0)
k (β0,u)

is of bounded variations. Along with the uni-

form convergence of S̃
(d)

k (β0, u) to s⊗d
k (β0, u)(d = 0, 1), by the same arguments used for

proving theorem 1, the first term on the right-hand side of (4.33) converges to 0 in probabil-

ity uniformly in t as n→∞.

By the same argument used for theorem 1, the second term on the right-hand side of (4.33)

can be shown to be equivalent to

n−1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)

S
(0)
k (β0, t)

− S̃
(1)

k (β0, t)

S̃
(0)
k (β0, t)

}
n∑

i=1

Yik(t)eβ
T

0Zik(t)dΛ0k(t)

= n1/2
K∑

k=1

∫ τ

0

{
S

(1)
k (β0, t)− S̃

(1)

k (β0, t)
}
dΛ0k(t)

− n1/2
K∑

k=1

∫ τ

0

{
S

(0)
k (β0, t)− S̃

(0)
k (β0, t)

}
ek(β0, t)dΛ0k(t) + op(1) (4.34)
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The above equality holds since
eS(1)

k (β0,t)

eS(0)
k (β0,t)

converges to ek(β0, t) in probability uniformly in

t, n1/2{S(d)
k (β0, t)− S̃

(d)

k (β0, t)}(d = 0, 1) converges weakly to a zero-mean Gaussian process

and Λ0k(t) is bounded on t ∈ [0, τ ]. Then, based on (4.31), the right-hand side of (4.34) is

equivalent to

n−1/2
K∑

k=1

n∑
i=1

∫ τ

0

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

×

Zik(t)eβ
T

0Zik(t) −
E
(
(1−∆1k)Y1k(t)Z1k(t)eβ

T

0Z1k(t)
)

E ((1−∆1k)Y1k(t))

 dΛ0k(t)

− n−1/2
K∑

k=1

n∑
i=1

∫ τ

0

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

×

eβT

0Zik(t) −
E
(
(1−∆1k)Y1k(t)eβ

T

0Z1k(t)
)

E ((1−∆1k)Y1k(t))

 ek(β0, t)dΛ0k(t) + op(1)

= n−1/2
K∑

k=1

n∑
i=1

(
1− ξi

α̃

)
(1−∆ik) (4.35)

×
∫ τ

0

(
Rik(β0, t)−

Yik(t) E ((1−∆1k)R1k(β0, t))
E ((1−∆1k)Y1k(t))

)
dΛ0k(t) + op(1).

whereRik(β, t) = Yik(t)Z̃ik(β, t)eβ
TZik(t). Combining the above results, we have shown that

n−1/2U II(β0) is asymptotically equivalent to

n−1/2
n∑

i=1

K∑
k=1

Mz̃,ik(β0) + n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
(1−∆ik)

×
∫ τ

0

(
Rik(β0, t)−

Yik(t) E ((1−∆1k)R1k(β0, t))
E ((1−∆1k)Y1k(t))

)
dΛ0k(t). (4.36)

The first term on the right-hand side of (4.36) was again asymptotically zero-mean normal

with covariance matrix Q(β0) = E
(∑K

k=1 Mz̃,ik(β0)
)⊗2

by Spiekerman and Lin (1998).

The second term on the right-hand side of (4.36) can be shown to be asymptotically zero-mean

normal with covariance matrix 1−α
α V II(β0) where

V II(β) = E

[
K∑

k=1

(1−∆1k)
∫ τ

0

{
R1k(β, u)−

Y1k(u) E ((1−∆1k)R1k(β, u))
E ((1−∆1k)Y1k(u))

}
dΛ0k(u)

]⊗2

.
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by Hájek (1960)’s central limit theorem for finite population sampling. Then, together

with the independence of the first term and the second term of (4.36), it follows that

n−1/2U II(β0) converges to zero mean normal random variable with finite covariance ma-

trix Q(β0) + 1−α
α V II(β0). Now, the consistency of β̂II and the asymptotic normality of

n1/2(β̂II − β0) will follow from the similar arguments used for proving theorem 1 if we re-

place α̂k(t), Ŝ
(d)

k (β, t)(d = 0, 1),U I(β) by α̂II
k (t), S̃

(d)

k (β, t)(d = 0, 1), and U II(β), and their

corresponding asymptotic properties which we have derived.

The asymptotic properties of Λ̂II
0k(β̂II , t) can also be shown by the similar arguments used

for proving theorem 2 with some modifications. Specifically,

n1/2{Λ̂II
0k(β̂II , t)− Λ0k(t)}

= n1/2

∫ t

0

{
1

nS̃
(0)
k (β̂II , u)

− 1

nS̃
(0)
k (β0, u)

}
d

n∑
i=1

Mik(u)

+ n1/2

∫ t

0

{
1

S̃(0)(β̂II , u)
− 1

S̃(0)(β0, u)

}
S

(0)
k (β0, u)dΛ0k(u)

+
∫ t

0

1

S̃
(0)
k (β0, u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

+ n1/2

∫ t

0

{
S

(0)
k (β0, u)− S̃

(0)
k (β0, u)

S̃
(0)
k (β0, u)

}
dΛ0k(u) (4.37)

By the Taylor expansion of S̃(0)
k (β̂II , u)−1 around β0, the first term on the right-hand side of

(4.37) is equivalent to

∫ t

0

(
− S̃

(1)

k (β∗∗, u)T

S̃
(0)
k (β∗∗, u)2

)
(β̂II − β0)d

{
n−1/2

n∑
i=1

Mik(u)

}
(4.38)

where β∗∗ is on the line segment between β̂II and β0. Then, as n → ∞, (4.38) converges

to 0 uniformly in t in probability by lemma 2 since
eS(1)

k (β,u)

eS(0)
k (β,u)

is of bounded variation, β̂II is

consistent for β0, and n−1/2
∑n

i=1Mik(u) converges weakly to a zero-mean Gaussian process

with continuous sample path.

Again, it follows from the Taylor expansion of S̃(0)
k (β̂II , u)−1 around β0, the uniform con-

vergence of S̃
(1)

k (β, u) and S̃
(0)

k (β, u), the consistency of β̂II for β0 and the boundedness of
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Λ0k(t) on [0, τ) that the second term is asymptotically equivalent to

n1/2rk(β0, t)
T
(
β̂II − β0

)
.

The third term can be shown to be asymptotically equivalent to

∫ t

0

1

s
(0)
k (β0, u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

by lemma 2 since S̃(0)
k (β0, u) is of bounded variation, converges uniformly to sk(β0, u) where

sk(β0, u) is bounded away from 0, and n−1/2
∑n

i=1Mik(u) converges weakly to a zero-mean

Gaussian process with continuous sample path.

For the last term on the right-hand side of (4.37), it follows from (4.31) and the uniform

convergence of S̃(0)
k (β0, t)−1 to s(0)k (β0, t)−1, where s(0)k (β0, t) is bounded away from 0 that

n1/2

∫ t

0

{
S

(0)
k (β0, u)− S̃

(0)
k (β0, u)

S̃
(0)
k (β0, u)

}
dΛ0k(u) = n−1/2

n∑
i=1

(
1− ξi

α̃

)
(1−∆ik)

×
∫ t

0
Yik(u)

eβT

0Zik(u) −
E
(
(1−∆1k)Y1k(u)eβ

T

0Z1k(u)
)

E ((1−∆1k)Y1k(u))

 dΛ0k(u)

s
(0)
k (β0, u)

Now by combining the above results and using the asymptotic expansion of n1/2(β̂II − β0)

where

n1/2(β̂II − β0) = A(β0)
−1

{
n−1/2U(β0) + n−1/2

n∑
i=1

(
1− ξi

α̃

)

×
K∑

m=1

(1−∆im)
∫ τ

0

{
Rim(β0, t)−

Yim(t) E ((1−∆1m)R1m(β0, t))
E ((1−∆1m)Y1m(t))

}
dΛ0m(t)

}
+ op(1),
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we have

n1/2
{

Λ̂II
0k(β̂II , t)− Λ0k(t)

}
= n−1/2

n∑
i=1

[{
rk(β0, t)

TA(β0)
−1

K∑
m=1

Mz̃,im(β0) +
∫ t

0

1

s
(0)
k (β0, u)

dMik(u)

}

+
(

1− ξi
α̃

){
rk(β0, t)

TA(β0)
−1

K∑
m=1

(1−∆im)
∫ τ

0
(Rim(β0, u)

− Yim(u) E ((1−∆1m)R1m(β0, u))
E ((1−∆1m)Y1m(u))

)
dΛ0m(u) + (1−∆ik)

∫ t

0
Yik(u)

(
eβ

T

0Zik(u)

−
E
(
(1−∆1k)Y1k(u)eβ

T

0Z1k(u)
)

E ((1−∆1k)Y1k(u))

 dΛ0k(u)

s
(0)
k (β0, u)


+ op(1)

= n−1/2
n∑

i=1

νik(β0, t) + n−1/2
n∑

i=1

(
1− ξi

α̃

)
ψII

ik (β0, t) + op(1)

where

νik(β, t) = rk(β, t)TA(β)−1
K∑

m=1

Mz̃,im(β, t) +
∫ t

0
{s(0)k (β, u)}−1dMik(u) and

ψII
ik (β, t) = rk(β, t)TA(β)−1

K∑
m=1

(1−∆im)
∫ τ

0
(Rim(β, u)

− Yim(u) E ((1−∆1m)R1m(β, u))
E ((1−∆1m)Y1m(u))

)
dΛ0m(u) + (1−∆ik)

∫ t

0
Yik(u)

(
eβ

TZik(u)

−
E
(
(1−∆1k)Y1k(u)eβ

TZ1k(u)
)

E ((1−∆1k)Y1k(u))

 dΛ0k(u)

s
(0)
k (β, u)

.

The asymptotic properties of n1/2{Λ̂II
0k(β̂II , t) − Λ0k(t)} follow from the similar arguments

used for proving theorem 4.2. This complete the proofs of theorems 4.3 and 4.4.
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TABLE 4.1: Summary of simulation results for β̂I : Zik ∼ Bin(0.5)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 0.014 0.4189 0.4546 0.914

0.67 0.013 0.4184 0.4353 0.932
1.25 0.000 0.4199 0.4494 0.922
4 0.005 0.4233 0.4608 0.920

62 0.1 0.007 0.3469 0.3596 0.925
0.67 0.006 0.3440 0.3463 0.932
1.25 0.005 0.3470 0.3564 0.927
4 -0.006 0.3485 0.3741 0.924

10% 111 0.1 0.005 0.2145 0.2224 0.942
0.67 0.007 0.2138 0.2170 0.951
1.25 -0.002 0.2139 0.2188 0.941
4 0.008 0.2139 0.2255 0.935

222 0.1 -0.002 0.1781 0.1811 0.944
0.67 0.008 0.1776 0.1765 0.945
1.25 0.003 0.1776 0.1792 0.945
4 0.003 0.1776 0.1824 0.939

25% 333 0.1 -0.006 0.1210 0.1224 0.950
0.67 0.003 0.1211 0.1241 0.946
1.25 -0.002 0.1211 0.1239 0.947
4 0.000 0.1211 0.1248 0.944

666 0.1 -0.005 0.0991 0.1002 0.949
0.67 0.002 0.0992 0.1013 0.947
1.25 -0.002 0.0991 0.0983 0.957
4 0.003 0.0992 0.0989 0.950

log(2) 3% 31 0.1 0.763 0.4279 0.4700 0.906
0.67 0.749 0.4297 0.4408 0.928
1.25 0.749 0.4333 0.4610 0.925
4 0.738 0.4326 0.4680 0.917

62 0.1 0.733 0.3562 0.3673 0.920
0.67 0.719 0.3527 0.3514 0.934
1.25 0.729 0.3567 0.3605 0.928
4 0.716 0.3562 0.3755 0.917

10% 111 0.1 0.710 0.2183 0.2259 0.938
0.67 0.709 0.2169 0.2214 0.950
1.25 0.702 0.2172 0.2204 0.942
4 0.697 0.2169 0.2298 0.937

222 0.1 0.697 0.1817 0.1828 0.950
0.67 0.705 0.1809 0.1819 0.950
1.25 0.702 0.1810 0.1823 0.952
4 0.695 0.1809 0.1858 0.948

25% 333 0.1 0.693 0.1243 0.1232 0.953
0.67 0.701 0.1238 0.1272 0.945
1.25 0.695 0.1236 0.1248 0.946
4 0.695 0.1236 0.1269 0.940

666 0.1 0.692 0.1026 0.1005 0.958
0.67 0.697 0.1020 0.1039 0.943
1.25 0.692 0.1018 0.0999 0.954
4 0.696 0.1019 0.1015 0.961
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TABLE 4.2: Summary of simulation results for β̂II : Zik ∼ Bin(0.5)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 0.009 0.4243 0.4508 0.917

0.67 0.001 0.4245 0.4338 0.931
1.25 -0.005 0.4250 0.4444 0.932
4 -0.009 0.4295 0.4570 0.923

62 0.1 0.006 0.3499 0.3570 0.930
0.67 0.005 0.3472 0.3445 0.937
1.25 0.003 0.3501 0.3529 0.931
4 -0.007 0.3518 0.3719 0.927

10% 111 0.1 0.004 0.2114 0.2178 0.941
0.67 0.007 0.2109 0.2130 0.948
1.25 -0.001 0.2110 0.2151 0.940
4 0.008 0.2109 0.2212 0.936

222 0.1 -0.003 0.1766 0.1791 0.945
0.67 0.007 0.1761 0.1751 0.953
1.25 0.003 0.1762 0.1773 0.944
4 0.003 0.1763 0.1807 0.943

25% 333 0.1 -0.007 0.1165 0.1175 0.951
0.67 0.003 0.1166 0.1194 0.947
1.25 -0.001 0.1166 0.1182 0.951
4 0.001 0.1166 0.1196 0.944

666 0.1 -0.006 0.0978 0.0985 0.948
0.67 0.001 0.0979 0.0998 0.946
1.25 -0.002 0.0978 0.0964 0.958
4 0.003 0.0979 0.0976 0.952

log(2) 3% 31 0.1 0.756 0.4324 0.4654 0.909
0.67 0.740 0.4334 0.4364 0.934
1.25 0.738 0.4365 0.4499 0.932
4 0.730 0.4374 0.4608 0.924

62 0.1 0.730 0.3588 0.3647 0.920
0.67 0.717 0.3552 0.3489 0.935
1.25 0.726 0.3595 0.3579 0.930
4 0.714 0.3589 0.3728 0.919

10% 111 0.1 0.706 0.2149 0.2206 0.940
0.67 0.710 0.2135 0.2175 0.947
1.25 0.701 0.2138 0.2156 0.943
4 0.696 0.2135 0.2249 0.940

222 0.1 0.696 0.1801 0.1814 0.946
0.67 0.705 0.1793 0.1798 0.952
1.25 0.701 0.1793 0.1797 0.949
4 0.696 0.1793 0.1844 0.944

25% 333 0.1 0.692 0.1196 0.1179 0.952
0.67 0.699 0.1190 0.1231 0.940
1.25 0.694 0.1188 0.1178 0.956
4 0.695 0.1188 0.1211 0.944

666 0.1 0.692 0.1012 0.0991 0.957
0.67 0.697 0.1006 0.1029 0.947
1.25 0.692 0.1003 0.0979 0.959
4 0.695 0.1004 0.0999 0.955
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TABLE 4.3: Summary of simulation results for β̂I : Zik ∼ N(0, 1)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 -0.003 0.2224 0.2321 0.924

0.67 0.001 0.2206 0.2388 0.911
1.25 0.002 0.2207 0.2367 0.916
4 0.010 0.2202 0.2521 0.904

62 0.1 -0.001 0.1774 0.1828 0.918
0.67 0.000 0.1755 0.1810 0.914
1.25 0.003 0.1769 0.1855 0.913
4 0.008 0.1756 0.1907 0.901

10% 111 0.1 0.004 0.1085 0.1144 0.940
0.67 -0.002 0.1086 0.1100 0.949
1.25 -0.002 0.1083 0.1138 0.941
4 -0.005 0.1082 0.1093 0.948

222 0.1 0.005 0.0892 0.0930 0.943
0.67 -0.002 0.0895 0.0901 0.944
1.25 -0.002 0.0894 0.0917 0.943
4 -0.002 0.0896 0.0885 0.949

25% 333 0.1 0.002 0.0608 0.0625 0.944
0.67 -0.001 0.0608 0.0610 0.950
1.25 -0.001 0.0608 0.0606 0.949
4 -0.001 0.0608 0.0608 0.951

666 0.1 0.000 0.0497 0.0505 0.947
0.67 0.001 0.0496 0.0499 0.947
1.25 0.000 0.0497 0.0497 0.951
4 0.000 0.0497 0.0501 0.948

log(2) 3% 31 0.1 0.845 0.3263 0.4055 0.895
0.67 0.857 0.3322 0.4113 0.875
1.25 0.851 0.3144 0.4047 0.867
4 0.877 0.3463 0.4606 0.860

62 0.1 0.764 0.2184 0.2504 0.911
0.67 0.758 0.2158 0.2522 0.907
1.25 0.759 0.2151 0.2501 0.904
4 0.779 0.2195 0.2617 0.894

10% 111 0.1 0.729 0.1336 0.1484 0.924
0.67 0.725 0.1328 0.1429 0.933
1.25 0.721 0.1327 0.1486 0.919
4 0.719 0.1319 0.1404 0.933

222 0.1 0.712 0.1044 0.1121 0.932
0.67 0.706 0.1037 0.1063 0.939
1.25 0.705 0.1037 0.1086 0.939
4 0.706 0.1035 0.1051 0.950

25% 333 0.1 0.703 0.0724 0.0761 0.945
0.67 0.701 0.0712 0.0719 0.950
1.25 0.700 0.0709 0.0741 0.940
4 0.700 0.0709 0.0748 0.929

666 0.1 0.695 0.0560 0.0565 0.954
0.67 0.694 0.0545 0.0557 0.951
1.25 0.695 0.0544 0.0561 0.944
4 0.696 0.0543 0.0553 0.948
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TABLE 4.4: Summary of simulation results for β̂II : Zik ∼ N(0, 1)

event mean proposed true 95%
β0 proportion ñ θ β̂II S.E. S.D. C.I.
0 3% 31 0.1 0.004 0.2284 0.2320 0.919

0.67 0.004 0.2235 0.2383 0.916
1.25 0.005 0.2239 0.2312 0.923
4 0.003 0.2209 0.2346 0.910

62 0.1 0.005 0.1822 0.1789 0.937
0.67 0.002 0.1805 0.1785 0.924
1.25 0.004 0.1793 0.1782 0.917
4 -0.001 0.1783 0.1840 0.913

10% 111 0.1 0.001 0.1064 0.1079 0.950
0.67 0.003 0.1065 0.1096 0.942
1.25 0.002 0.1067 0.1087 0.948
4 0.001 0.1073 0.1110 0.940

222 0.1 0.003 0.0883 0.0878 0.942
0.67 0.001 0.0885 0.0903 0.944
1.25 0.002 0.0885 0.0883 0.953
4 0.001 0.0890 0.0899 0.951

25% 333 0.1 -0.004 0.0585 0.0595 0.946
0.67 0.000 0.0584 0.0595 0.942
1.25 0.002 0.0584 0.0586 0.950
4 0.001 0.0584 0.0566 0.954

666 0.1 -0.002 0.0490 0.0493 0.949
0.67 0.001 0.0490 0.0494 0.950
1.25 0.003 0.0490 0.0492 0.948
4 0.001 0.0490 0.0476 0.957

log(2) 3% 31 0.1 0.808 0.2554 0.3029 0.843
0.67 0.814 0.2547 0.3114 0.836
1.25 0.799 0.2533 0.3036 0.838
4 0.797 0.2524 0.2994 0.853

62 0.1 0.748 0.2044 0.2236 0.897
0.67 0.751 0.2054 0.2306 0.886
1.25 0.742 0.2048 0.2217 0.912
4 0.749 0.2034 0.2251 0.892

10% 111 0.1 0.715 0.1182 0.1283 0.908
0.67 0.718 0.1170 0.1255 0.914
1.25 0.716 0.1167 0.1276 0.913
4 0.720 0.1170 0.1255 0.919

222 0.1 0.706 0.0969 0.1016 0.937
0.67 0.705 0.0959 0.1000 0.936
1.25 0.702 0.0959 0.0989 0.937
4 0.707 0.0962 0.0990 0.939

25% 333 0.1 0.698 0.0624 0.0651 0.935
0.67 0.696 0.0614 0.0628 0.941
1.25 0.696 0.0611 0.0619 0.940
4 0.698 0.0610 0.0625 0.937

666 0.1 0.694 0.0529 0.0549 0.938
0.67 0.695 0.0516 0.0532 0.945
1.25 0.694 0.0514 0.0517 0.950
4 0.695 0.0513 0.0514 0.942
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TABLE 4.5: Summary of simulation results: cohort size = 3,000, event proportion = 3 %,
β0 = log(2)

mean proposed true 95% mean proposed true 95%
Z n θ β̂I S.E.I S.D.I C.I.I β̂II S.E.II S.D.II C.I.II

Bin(0.5) 93 0.1 0.710 0.2655 0.2759 0.936 0.707 0.2652 0.2724 0.943
0.67 0.713 0.2662 0.2823 0.930 0.710 0.2971 0.2785 0.934
1.25 0.717 0.2675 0.2811 0.934 0.713 0.2672 0.2766 0.937
4 0.724 0.2663 0.2741 0.931 0.723 0.2662 0.2700 0.937

186 0.1 0.705 0.2173 0.2223 0.940 0.704 0.2172 0.2211 0.940
0.67 0.703 0.2189 0.2260 0.941 0.702 0.2209 0.2233 0.945
1.25 0.706 0.2188 0.2266 0.930 0.705 0.2188 0.2246 0.932
4 0.706 0.2177 0.2177 0.955 0.706 0.2177 0.2161 0.956

N(0, 1) 93 0.1 0.732 0.1517 0.1721 0.915 0.723 0.1435 0.1615 0.910
0.67 0.735 0.1513 0.1670 0.924 0.731 0.1445 0.1580 0.914
1.25 0.735 0.1517 0.1648 0.927 0.726 0.1436 0.1554 0.931
4 0.732 0.1513 0.1724 0.918 0.730 0.1442 0.1573 0.908

186 0.1 0.713 0.1197 0.1261 0.927 0.708 0.1160 0.1231 0.924
0.67 0.715 0.1194 0.1238 0.940 0.712 0.1160 0.1196 0.933
1.25 0.715 0.1201 0.1243 0.942 0.709 0.1159 0.1197 0.936
4 0.711 0.1195 0.1283 0.924 0.709 0.1157 0.1191 0.934

TABLE 4.6: Baseline characteristics of Busselton Health Study (subcohort sample)

Variables Male (n=159) Female (n=201)
mean (sd) or % mean (sd) or %

Ferritin (µg/L) 214.2 (177.04) 95.8 (80.95)
Log(Ferritin) 5.0 (0.90) 4.2 (0.94)
Age (years) 59.5 (10.92) 59.4 (11.35)
BMI (kg/m2) 26.1 (3.69) 25.5 (4.21)
Cholesterol (mmol/L) 6.2 (1.10) 6.4 (1.27)
Haemoglobin (g/100mL) 149.2 (9.87) 137.2 (9.07)
Systolic Blood Pressure (mmHg) 133.1 (20.01) 132.8 (20.25)
Triglycerides (mmol/L) 1.7 (1.16) 1.4 (0.86)
Diabetes Treatment (%) 1.9 2.5
Blood Pressure Treatment (%) 15.7 21.9
Smoke (Never) 32.7 68.2
Smoke (Former) 46.5 18.9
Smoke (Current) 20.8 12.9
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TABLE 4.7: Analysis of Busselton Health Study

Variables β̂I S.E.I HRI 95% C.I.I β̂II S.E.II HRII 95% C.I.II

Ferritin on CHD 0.16 0.113 1.17 (0.94, 1.46) 0.11 0.112 1.12 (0.90, 1.40)
Ferritin on Stroke 0.20 0.156 1.22 (0.90, 1.66) 0.20 0.159 1.22 (0.90, 1.67)
Age 0.06 0.009 1.06 (1.04, 1.08) 0.06 0.008 1.06 (1.05, 1.08)
BMI 0.03 0.021 1.03 (0.99, 1.08) 0.04 0.021 1.04 (1.00, 1.08)
Cholesterol -0.03 0.065 0.97 (0.86, 1.10) 0.01 0.058 1.00 (0.90, 1.13)
Triglycerides 0.23 0.076 1.26 (1.08, 1.46) 0.20 0.059 1.22 (1.09, 1.37)
Diabetes Treatment 0.19 0.457 1.21 (0.49, 2.98) 0.12 0.413 1.13 (0.50, 2.54)
Haemoglobin -0.01 0.008 0.99 (0.97, 1.01) 0.02 0.007 1.00 (0.99, 1.02)
BPT† 0.26 0.207 1.30 (0.87, 1.95) 0.29 0.196 1.33 (0.91, 1.95)
SBP‡ 0.01 0.005 1.01 (1.00, 1.02) 0.01 0.005 1.01 (1.00, 1.02)
Smoke (Former) 0.32 0.206 1.37 (0.92, 2.06) 0.34 0.198 1.40 (0.95, 2.06)
Smoke (Current) 0.49 0.241 1.62 (1.01, 2.60) 0.42 0.225 1.52 (0.98, 2.36)

†: Blood Pressure Treament, ‡: Systolic Blood Pressure

TABLE 4.8: Analysis of Busselton Health Study with Common Ferritin Effect

Variables β̂I S.E.I HRI 95% C.I.I β̂II S.E.II HRII 95% C.I.II

Ferritin 0.17 0.110 1.19 (0.96, 1.47) 0.14 0.107 1.16 (0.94, 1.43)
Age 0.06 0.009 1.06 (1.04, 1.08) 0.06 0.008 1.06 (1.05, 1.08)
BMI 0.03 0.021 1.03 (0.99, 1.08) 0.04 0.021 1.04 (1.00, 1.08)
Cholesterol -0.03 0.064 0.97 (0.86, 1.10) 0.01 0.058 1.00 (0.90, 1.12)
Triglycerides 0.23 0.076 1.26 (1.08, 1.46) 0.20 0.059 1.22 (1.09, 1.37)
Diabetes Treatment 0.19 0.459 1.21 (0.50, 2.97) 0.13 0.412 1.13 (0.51, 2.54)
Haemoglobin -0.01 0.008 0.99 (0.97, 1.01) -0.01 0.007 0.99 (0.98, 1.01)
BPT 0.26 0.207 1.30 (0.87, 1.95) 0.28 0.195 1.33 (0.91, 1.95)
SBP 0.01 0.005 1.01 (1.00, 1.02) 0.01 0.005 1.01 (1.00, 1.02)
Smoke (Former) 0.32 0.205 1.38 (0.92, 2.06) 0.34 0.196 1.41 (0.96, 2.07)
Smoke (Current) 0.49 0.241 1.62 (1.01, 2.60) 0.42 0.225 1.52 (0.98, 2.37)
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TABLE 4.9: Analysis of Busselton Health Study Considering Gender Effect

Variables β̂I S.E.I HRI 95% C.I.I β̂II S.E.II HRII 95% C.I.II

Ferritin on CHD (M)† -0.01 0.154 1.00 (0.74, 1.35) 0.06 0.164 1.06 (0.77, 1.46)
Ferritin on CHD (W)‡ -0.15 0.135 0.86 (0.66, 1.12) -0.06 0.150 0.96 (0.73, 1.27)
Ferritin on Stroke (M)† -0.01 0.189 0.99 (0.68, 1.43) 0.03 0.198 1.03 (0.70, 1.52)
Ferritin on Stroke (W)‡ 0.16 0.267 1.18 (0.70, 2.00) 0.35 0.299 1.42 (0.78, 2.56)
Age 0.07 0.009 1.07 (1.05, 1.09) 0.06 0.008 1.06 (1.04, 1.08)
BMI 0.02 0.023 1.02 (0.98, 1.07) 0.04 0.022 1.04 (0.99, 1.08)
Cholesterol 0.11 0.070 1.12 (0.98, 1.29) 0.06 0.067 1.07 (0.94, 1.22)
Triglycerides 0.17 0.069 1.18 (1.03, 1.35) 0.18 0.058 1.20 (1.07, 1.34)
Diabetes Treatment -0.16 0.417 0.85 (0.38, 1.93) 0.16 0.408 1.17 (0.53, 2.60)
Haemoglobin -0.01 0.007 0.99 (0.98, 1.01) -0.01 0.007 0.99 (0.97, 1.00)
BPT 0.45 0.199 1.56 (1.06, 2.32) 0.31 0.199 1.36 (0.92, 2.00)
SBP 0.01 0.005 1.01 (1.00, 1.02) 0.01 0.005 1.01 (1.00, 1.02)
Smoke (Former) -0.01 0.220 0.99 (0.64, 1.52) 0.12 0.221 1.12 (0.73, 1.73)
Smoke (Current) 0.10 0.232 1.10 (0.70, 1.73) 0.31 0.229 1.18 (0.87, 2.13)

†: For men, ‡: For women
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CHAPTER 5

ADDITIVE HAZARDS MODEL FOR

CASE-COHORT STUDIES WITH

MULTIPLE DISEASE OUTCOMES

5.1 Introduction

The additive and multiplicative risk models provide the two principal frameworks for

studying the association between risk factors and disease occurrence or death. Most modern

analyses of survival data focus on multiplicative models for relative risk using proportional

hazards models, mostly due to desirable theoretical properties along with the simple interpre-

tation of the results and the wide availability of computer programs. However, epidemiologists

often are interested in the risk difference attributed to the exposure, and the risk difference

is known to be more relevant to public health because it translates directly into the number

of disease cases that would be avoided by eliminating a particular exposure (Kulich & Lin,

2000). Consequently, the additive hazards model, which model the risk differences, has often

been suggested as an alternative to the proportional hazards model.

For univariate failure time data, Lin and Ying (1994) proposed a semiparametric estimat-

ing procedure using estimating equation approach and derived the large-sample theory of the

proposed estimators. Yin and Cai (2004) extended this procedure to the multivariate failure

time data using marginal model approach. Pipper and Martinussen (2004) also extended this



procedure to the clustered failure time data and studied parametric shared frailty models as

well.

All the aforementioned work assume the data are obtained fully for all the members in

the entire cohort. However, conducting epidemiologic cohort studies could be prohibitively

expensive and thus it might not be always feasible to obtain data for the full cohort. The case-

cohort study design (Prentice, 1986) is one of several study designs which have been proposed

in an attempt to reduce costs in expensive epidemiological cohort studies. The key idea of this

study design is to obtain the covariate measurements only on a random sample (subcohort)

from the entire cohort and all the subjects in the cohort who experience the disease of interest

(cases). The major cost typically arise from the assembling of covariate measurements and

much of the covariate information on disease-free subjects (controls) is largely redundant.

Thus, the case-cohort study designs are particularly useful for large-scale cohort studies with

low disease rate or for cohort studies where the measurements of covariates are expensive. A

key advantage of the case-cohort design is its ability to use the same subcohort for several

diseases or for subtypes of disease (e.g. Prentice, 1986; Wacholder et al., 1989; Langholz and

Thomas, 1990; Wacholder et al., 1991). For example, the case-cohort design was implemented

in the Busselton Health Study (Cullen, 1972). In this study, it was of interest to study the

relationship between serum ferritin and coronary heart disease and stroke events. To reduce

costs and preserve stored serum, case-cohort sampling was used. In order to compare the

effect of serum ferritin on coronary heart disease and stroke, times to coronary heart disease

and stroke events need to be modeled simultaneously. Since times to coronary heart disease

and stroke events observed from the same subject could be correlated, valid statistical method

needs to take it into consideration.

For a single disease outcome, Kulich and Lin (2000) developed the semiparametric in-

ference procedure for the case-cohort data. Sun, Sun and Flournoy (2004) extended this

approach to competing risks analysis. Despite the progress in the methods for analyzing

case-cohort data, methodologies to address analysis of case-cohort data with multiple diseases

outcomes have been limited. A valid statistical methods which account for the correlation

between outcomes is needed.
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In this chapter, we propose a weighted estimating equation approach for estimating the

parameters in the marginal additive hazards regression models for the multivariate failure

time data from case-cohort studies with multiple disease outcomes.

The rest of this chapter is organized as follows. The proposed model and method of

estimation are presented in Section 5.2. In Section 5.3, the asymptotic properties of the

proposed estimators are studied. The outlines of the proofs for the asymptotic results are

provided in the appendix. The finite sample properties are investigated by simulations in

Section 5.4. The methodology is illustrated in Section 5.5 using the aforementioned Busselton

Health Study. In Section 5.6, we give a few concluding remarks.

5.2 Model and Estimation

Suppose that there are n independent subjects in a cohort study and there are K dif-

ferent disease outcomes of interest. Consider independent failure time response vectors

T i = (Ti1, · · · , TiK)T , i = 1, · · · , n. For example, (Ti1, Ti2) may denote time for CHD and

time for stroke for subject i. Let Cik denote the potential censoring time for outcome k

of subject i. We assume that Cik is independent of the disease processes. In most prac-

tical cases, Cik = Ci for k = 1, . . . ,K. The observed time is Xik = min(Tik, Cik). Let

Nik(t) denote the counting process for outcome k of subject i, Yik(t) = I(Xik ≥ t) de-

note an ‘at risk’ indicator process and ∆ik = I(Tik ≤ Cik) denote an indicator for failure,

where I(·) is an indicator function. Let Zik(t) be a p × 1 covariate vector corresponding

to the kth disease outcome for subject i at time t. We assume that all the time-dependent

covariates in Zik(t) are “external”, i.e., they are not affected by the disease processes, as

described by Kalbfleisch and Prentice (2002). Let λik(t) denote the corresponding marginal

hazards function and Mik(t) = Nik(t)−
∫ t
0 Yik(u)

(
λ0k(u) + βT

0Zik(u)
)
du denote a martingale

with respect to the marginal filtration Fik(t) = σ{Nik(s), Yik(s),Zik(s) : 0 ≤ s ≤ t}. Let

Xi = (Xi1, · · · , XiK)T , i = 1, · · · , n, denote the observed failure time vector and Zi(·) =

(Zi1(·), · · · ,ZiK(·))T denote the covariate vector. Let τ denote the study end time.

Under the case-cohort design, suppose we select a subcohort of fixed size ñ from the cohort
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by simple random sampling without replacement. This sampling may be done prospectively

or retrospectively. Let ξi denote the indicator for the ith subject being selected into the

subcohort and πi = Pr(ξi = 1) = α̃ = ñ/n denote the selection probability of the ith subject.

Here ξ1, . . . , ξn are correlated due to the sampling scheme. We assume that complete covariate

histories Zik(t)(0 ≤ t ≤ τ) are available for all the subcohort members and for the cases

outside the subcohort. For all the others, we assume that their censoring time information

are available. Thus, the observable information for the kth disease outcome of the ith subject

when ξi = 1 or ∆ik = 1 is {Xik,∆ik, ξi,Zik(t), 0 ≤ t ≤ Xik} and when ξi = 0 and ∆ik = 0 is

{Xik,∆ik, ξi}.

5.2.1 Additive hazards models

In this subsection, we study marginal additive hazards regression model for multiple dis-

ease outcomes data from case-cohort studies.

We consider the following additive hazards model for Tik

λik(t|Zik) = λ0k(t) + βT
0Zik(t), (5.1)

where λ0k(t) is an unspecified baseline hazard function for disease outcome k and β0 is a p×1

vector of fixed unknown parameters. Note that a subject may experience all K diseases, may

also experience only some, or even none of the events of interest due to right censoring. The

baseline hazard function is explicitly disease-specific.

5.2.2 Estimation

If the data were complete, the true regression parameter β0 in (5.1) could be estimated

by solving the estimating function (Yin and Cai, 2004)

U(β) =
n∑

i=1

K∑
k=1

∫ τ

0
{Zik(t)−Zk(t)}{dNik(t)− Yik(t)βTZik(t)dt}, (5.2)
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where

Zk(t) =
∑n

i=1 Yik(t)Zik(t)∑n
i=1 Yik(t)

There exists an explicit solution β̂ to the estimating equations U(β) = 0p×1 and has the

following form:

β̂ =

[
n∑

i=1

K∑
k=1

∫ τ

0
Yik(t){Zik(t)−Zk(t)}⊗2dt

]−1 [ n∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)−Zk(t)}dNik(t)

]

where a⊗2 = aaT .

For data from case-cohort studies, (5.2) cannot be calculated since the data are not com-

plete. Thus, we consider the following weighted estimating function

U I(β) =
n∑

i=1

K∑
k=1

∫ τ

0
{Zik(t)−Z

ρ
k(t)}{dNik(t)− ρik(t)Yik(t)βTZik(t)dt}, (5.3)

where

Z
ρ
k(t) =

n∑
i=1

ρik(t)Zik(t)Yik(t)/
n∑

i=1

ρik(t)Yik(t)

and ρik(t) is a possibly time-dependent weight function which has the following form:

ρik(t) = ξi/α̂k(t) where α̂k(t) =
∑n

i=1 ξiYik(t)∑n
i=1 Yik(t)

The estimator of the hazards regression parameter β0 is defined as the solution to this equation

and is denoted by β̂I . β̂I has the following explicit form:

β̂I =

[
n∑

i=1

K∑
k=1

∫ τ

0
ρik(t)Yik(t){Zik(t)−Z

ρ
k(t)}⊗2dt

]−1 [ n∑
i=1

K∑
k=1

∫ τ

0
{Zik(t)−Z

ρ
k(t)}dNik(t)

]

We will call this type of estimator as Estimator I. Here α̂k(t) is the estimator of the true

sampling probability α̃ and denotes the proportion of sampled subjects among the number of

subjects remaining in the risk set at time t. This type of weight function has been considered

for multiplicative hazards models in the univariate failure time data. It was first considered

by Barlow (1994). Borgan et al.(2000) considered the same type of the weight functions
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for stratified case-cohort studies. The estimator considered by Self and Prentice (1988) is a

special case and can be obtained by replacing α̂k(t) by α̃.

Let Λ0k(t) =
∫ t
0 λ0k(s)ds. A Breslow-Aalen type estimator of the baseline cumulative

hazard function is given by Λ̂I
0k(β̂I , t), where

Λ̂I
0k(β, t) =

∫ t

0

∑n
i=1{dNik(u)− ρik(u)Yik(u)βTZik(u)du}∑n

i=1 ρik(u)Yik(u)

Note that the construction of α̂k(t) does not involve the cases outside the subcohort and β̂I

requires the covariate measurement of the cases outside the subcohort only at their failure

times. However, when the complete covariate measurement history is available for the cases

outside the subcohort, β̂I might not be very efficient since it discards some of the available

information. To make better use of the available information, we consider the following

pseudo-likelihood function

U II(β) =
n∑

i=1

K∑
k=1

∫ τ

0
ωik(t){Zik(t)−Z

ω
k (t)}{dNik(t)− Yik(t)βTZik(t)dt}, (5.4)

where

Z
ω
k (t) =

n∑
i=1

ωik(t)Zik(t)Yik(t)/
n∑

i=1

ωik(t)Yik(t)

and ωik(t) is a possibly time-dependent weight function which has the following form:

ωik(t) = ∆ik + (1−∆ik)ξi/α̂II
k (t) where α̂II

k (t) =
∑n

i=1 ξi(1−∆ik)Yik(t)∑n
i=1(1−∆ik)Yik(t)

The estimator of the hazards regression parameter β0 is defined as the solution to this equation

and is denoted by β̂II . We will call this type of estimator as Estimator II.

This weight function is defined to be equal to one for the cases regardless of their subcohort

membership and to α̂II
k (t)−1 for the sampled censored individuals. Thus, the construction of

α̂II
k (t) should involve only censored individuals. Unlike the weight function for β̂I , it uses

the information from all the individuals sampled. Consequently, it is anticipated that this

results in a more efficient estimator. This approach also has been considered for multiplicative
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hazards models in the univariate failure time data. It was first proposed by Kalbfleisch and

Lawless (1988) and they considered a time-invariant version of the weight functions, i.e., they

used α̃ instead of α̂II
k (t). Borgan et al.(2000) considered the same type of the weight functions

in the univariate failure time data from stratified case-cohort studies. For additive hazards

models, Kulich and Lin (2000) considered a time-invariant version of the weight functions for

the univariate failure time data. To be able to use this approach, one is required to assess

complete covariate histories for the cases throughout their at-risk periods, which might not

be always available for prospective studies. In case of having complete covariate histories for

the cases, using this type of weights is expected to improve efficiencies. The Breslow-Aalen

type estimator of the cumulative baseline hazard function is given by Λ̂II
0k(β̂II , t), where

Λ̂II
0k(β, t) =

∫ t

0

∑n
i=1 ωik(u){dNik(u)− Yik(u)βTZik(u)du}∑n

i=1 ωik(u)Yik(u)
(5.5)

5.3 Asymptotic properties

In this section, we describe the asymptotic properties of the proposed estimates. We define

the following notation for convenience: For k = 1, . . . ,K,

ek(t) = E (Y1k(t)Z1k(t))
E(Y1k(t))

, Ak = E
{∫ τ

0
Y1k(t)(Z1k(t)⊗2 − ek(t)⊗2)dt

}
Z̃ik(β, t) = Zik(t)− ek(β, t), and Mz̃,ik(β) =

∫ τ

0
Z̃ik(β, t)dMik(t).

Here and hereafter the norms for the vector a, matrix A, and function f are defined as the

following:

‖a‖ = max
i
|ai|, ‖A‖ = max

i,j
|Aij |, ‖f‖ = sup

t
|f(t)|

5.3.1 Asymptotic properties of β̂I and Λ̂I
0k(t)

We summarize the asymptotic behavior of β̂I in the following theorem :

Theorem 5.1 Under the conditions in the Appendix, β̂I solving (5.3) is a consistent esti-

mator of β0. Also n1/2(β̂I − β0) is asymptotically normally distributed with mean zero and
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with variance matrix of the form ΣI(β0) = A−1{Q(β0) + 1−α
α V (β0)}A−1 where

A =
K∑

k=1

Ak, Q(β) = E

(
K∑

k=1

Mz̃,1k(β)

)⊗2

,

V (β) = E

[
K∑

k=1

∫ τ

0

(
R1k(β, t)−

Y1k(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
))

dt

]⊗2

and Rik(β, t) = Yik(t)(Zik(t)− ek(t))(λ0k(t) + βTZik(t)).

The matrices A, Q(β0) and V (β0) can be consistently estimated by Â, Q̂(β̂I) and V̂ (β̂I)

where

Â = −n−1∂U
I(β)
∂β

, Q̂(β) = n−1
n∑

i=1

ξi
α̃

(
K∑

k=1

M̂z̃,ik(β)

)⊗2

,

V̂ (β) = n−1
n∑

i=1

ξi
α̃

[
K∑

k=1

∫ τ

0

(
R̂ik(β, t)−

Yik(t)Ê
(
Y1k(t) (Z1k(t)− ek(t))βTZ1k(t)

)
ÊY1k(t)

)
dt

]⊗2

,

M̂z̃,ik(β) =
∫ τ

0

(
Zik(t)−Z

ρ
k(t)

)
dM̂ik(β, t),

M̂ik(β, t) = Nik(t)−
∫ t

0
Yik(u)dΛ̂I

0k(β, u)−
∫ t

0
Yik(u)βTZik(u)du

R̂ik(β, t) = Yik(t)
(
Zik(t)−Z

ρ
k(t)

) (
dΛ̂I

0k(β, t) + βTZik(t)
)
,

Ê
(
Y1k(t) (Z1k(t)− ek(t))βTZ1k(t)

)
= n−1

n∑
i=1

ξi
α̃

(
Yik(t)

(
Zik(t)−Z

ρ
k(t)

)
βTZik(t)

)
,

and ÊY1k(t) = n−1
n∑

i=1

Yik(t).

To study the asymptotic properties of Λ̂I
0k(β̂I , t)(k = 1, . . . ,K), we define the following metric

space. Let D[0, τ ]K be a metric space consisting of right-continuous functions f(t) with left-

hand limits where f(t) = {f1(t), . . . , fK(t)}T and fk(t) : [0, τ ] → R. The metric for this

space is defined as dk(f , g) = supk,t∈[0,τ ]{|fk(t)− gk(t)| : 1 ≤ k ≤ K} for f , g ∈ D[0, τ ]K . We

summarize the asymptotic properties of Λ̂I
0k(β̂I , t)(k = 1, . . . ,K) in the following theorem.

Theorem 5.2 Under the conditions in the Appendix, for each k = 1, . . . ,K, Λ̂I
0k(β̂I , t) con-

verges in probability to Λ0k(t) uniformly in t ∈ [0, τ ]. Also, W (t) = n1/2[{Λ̂I
01(β̂I , t) −
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Λ0k(t)}, . . . , {Λ̂I
0K(β̂I , t)−Λ0K(t)}]T converges weakly to a zero-mean Gaussian process W(t)

in D[0, τ ]K where W(t) = (W1(t), . . . ,WK(t))T . The covariance function between Wj(t1) and

Wk(t2) is

φjk(t1, t2)(β0) = E{ν1j(β0, t1)ν1k(β0, t2)}+
1− α

α
E{ψ1j(β0, t1)ψ1k(β0, t2)}

where

νik(β, t) = rk(t)TA−1
K∑

m=1

Mz̃,im(β) +
∫ t

0
{EY1k(u)}−1dMik(u),

ψik(β, t) = rk(t)TA−1
K∑

m=1

∫ τ

0
{Rim(β, u)

− Yim(u)
EY1m(u) E

(
Y1m(u) (Z1m(u)− em(u))βTZ1m(u)

)}
du

+
∫ t

0
Yik(u)

{
βTZik(u)−

E
(
Y1k(u)βTZ1k(u)

)
EY1k(u)

}
du

EY1k(u)
and rk(t) = −

∫ t

0
ek(u)du.

φjk(t1, t2)(β0) can be consistently estimated by φ̂jk(t1, t2)(β̂I) where

φ̂jk(t1, t2)(β) = n−1
n∑

i=1

ξi
α̃
ν̂ij(β, t1)ν̂ik(β, t2) +

1− α̃

α̃
n−1

n∑
i=1

ξi
α̃
ψ̂ij(β, t1)ψ̂ik(β, t2),

ν̂ik(β, t) = r̂k(t)T Â
−1

K∑
m=1

M̂z̃,im(β) +
∫ t

0
{ÊY1k(u)}−1dM̂ik(β, u),

ψ̂ik(β, t) = r̂k(t)T Â
−1

K∑
m=1

∫ τ

0

{
R̂im(β, t)

−
Yim(t)Ê

(
Y1m(t) (Z1m(t)− em(t))βTZ1m(t)

)
ÊY1m(t)

}
dt

+
∫ t

0
Yik(u)

{
βTZik(u)−

Ê
(
Y1k(u)βTZ1k(u)

)
ÊY1k(u)

}
du

ÊY1k(u)
,

Ê
(
Y1k(u)βTZ1k(u)

)
= n−1

n∑
i=1

ξi
α̃
Yik(u)βTZik(u), and r̂k(t) = −

∫ τ

0
Z

ρ
k(t)dt.

5.3.2 Asymptotic properties of β̂II and Λ̂II
0k(β̂II , t)

In this subsection, we will study the asymptotic properties of β̂II and Λ̂II
0k(β̂II , t). We

summarize the asymptotic behavior of the regression parameter estimator β̂II in the following
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theorem :

Theorem 5.3 Under the conditions in the Appendix, β̂II solving (5.4) is a consistent esti-

mator of β0. Also, n1/2(β̂II −β0) is asymptotically normally distributed with mean zero and

with variance matrix of the form ΣII(β0) = A−1{Q(β0) + 1−α
α V II(β0)}A−1 where

V II(β) = E

[
K∑

k=1

(1−∆1k)
∫ τ

0

{
R1k(β, t)−

Y1k(t) E ((1−∆1k)R1k(β, t))
E ((1−∆1k)Y1k(t))

}
dt

]⊗2

.

The matrices A, Q(β0) and V II(β0) can be consistently estimated by Â
II
, Q̂

II
(β̂II) and

V̂ II(β̂II) where

Â
II

= −n−1∂U
II(β)
∂β

, Q̂
II

(β) = n−1
n∑

i=1

ξi
α̃

(
K∑

k=1

M̂
II

z̃,ik(β)

)⊗2

,

V̂ II(β) = n−1
n∑

i=1

ξi
α̃

[
K∑

k=1

(1−∆ik)
∫ τ

0

(
R̂

II

ik (β, t)− Yik(t)Ê ((1−∆1k)R1k(β, t))

Ê ((1−∆1k)Y1k(t))

)
dt

]⊗2

,

M̂
II

z̃,ik(β) =
∫ τ

0

(
Zik(t)−Z

ω
k (t)

)
dM̂ II

ik (β, t),

M̂ II
ik (β, t) = Nik(t)−

∫ t

0
Yik(u)dΛ̂II

0k(β, u)−
∫ t

0
Yik(u)βTZik(u)du,

R̂
II

ik (β, t) = Yik(t)
(
Zik(t)−Z

ω
k (t)

) (
dΛ̂II

0k(β, t) + βTZik(t)
)
,

Ê ((1−∆1k)R1k(β, t)) = n−1
n∑

i=1

ξi
α̃

(1−∆ik)R̂
II

ik (β, t)

and Ê ((1−∆1k)Y1k(t)) = n−1
n∑

i=1

(1−∆ik)Yik(t).

The asymptotic properties of Λ̂II
0k(β̂II , t)(k = 1, . . . ,K) are summarized in the following the-

orem.

Theorem 5.4 Under the conditions in the Appendix, for each k = 1, . . . ,K, Λ̂II
0k(β̂II , t)

converges in probability to Λ0k(t) uniformly in t ∈ [0, τ ]. Also, W II(t) = n1/2[{Λ̂II
01(β̂II , t)−

Λ01(t)}, . . . , {Λ̂II
0K(β̂II , t)−Λ0K(t)}]T converges weakly to a zero-mean Gaussian processWII(t)

in D[0, τ ]K where WII(t) = (WII
1 (t), . . . ,WII

K (t))T . The covariance function between WII
j (t1)
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and WII
k (t2) is

φII
jk(t1, t2)(β0) = E{ν1j(β0, t1)ν1k(β0, t2)}+

1− α

α
E
{
ψII

1j (β0, t1)ψ
II
1k(β0, t2)

}
where

νik(β, t) = rk(t)TA−1
K∑

m=1

Mez,im(β) +
∫ t

0
{EY1k(u)}−1dMik(u), and

ψII
ik (β, t) = rk(t)TA−1

K∑
m=1

(1−∆im)
∫ τ

0

{
Rim(β, u)− Yim(u) E ((1−∆1m)R1m(β, u))

E ((1−∆1m)Y1m(u))

}
du

+ (1−∆ik)
∫ t

0

{
βTZik(u)−

E
(
(1−∆1k)Y1k(u)βTZ1k(u)

)
E ((1−∆1k)Y1k(u))

}
Yik(u)du
EY1k(u)

.

φII
jk(t1, t2)(β0) can be consistently estimated by φ̂II

jk(t1, t2)(β̂II) where

φ̂II
jk(t1, t2)(β) = n−1

n∑
i=1

ξi
α̃
ν̂II

ij (β, t1)ν̂II
ik (β, t2) +

1− α̃

α̃
n−1

n∑
i=1

ξi
α̃
ψ̂II

ij (β, t1)ψ̂II
ik (β, t2),

ν̂II
ik (β, t) = r̂II

k (t)T
(
Â

II
)−1 K∑

k=1

M̂
II

z̃,ik(β) +
∫ t

0
{ÊY1k(u)}−1dM̂ II

ik (u),

ψ̂II
ik (β, t) =

[
r̂II

k (t)T
(
Â

II
)−1 K∑

m=1

(1−∆im)
∫ τ

0

{
R̂

II

im(β, u)

− Yim(u)Ê ((1−∆1m)R1m(β, u))

Ê ((1−∆1m)Y1m(u))

}
du+ (1−∆ik)

∫ t

0
Yik(u)

×

(
βTZik(u)−

Ê
(
(1−∆1k)Y1k(u)βTZ1k(u)

)
Ê ((1−∆1k)Y1k(u))

)
du

ÊY1k(u)

]
,

Ê
(
(1−∆1k)Y1k(u)βTZ1k(u)

)
= n−1

n∑
i=1

ξi
α̃

(1−∆ik)Yik(u)βTZik(u),

ÊY1k(u) = n−1
n∑

i=1

Yik(u) and r̂II
k (t) = −

∫ τ

0
Z

ω
k (t)dt.

The proofs of the theorems are outlined in the appendix.
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5.4 Simulations

Extensive simulation studies were conducted to investigate the finite sample properties

of the proposed methods. Failure times were generated from a multivariate extension of the

model of Clayton and Cuzick model (Clayton and Cuzick, 1985). The joint survival function

for (T1, · · · , TK) given (Z1, · · · , ZK) is:

S(t1, · · · , tK |Z1, · · · , ZK) =

[
K∑

k=1

exp

{∫ tk
0

(
λ0k(t) + βTZk(t)

)
dt

θ

}
− (K − 1)

]−θ

,

where K takes integer values and θ(> 0) is a parameter which represents the degree of

dependence of Tk and Tk′(k, k′ = 1, · · · ,K). Note that smaller θ induces larger correlation.

We considered two types of events (K=2). λ0k was set to be equal to 2 for k = 1 and 4 for

k = 2. Covariates considered were Bernoulli with probability 0.5 and Uniform (0, 3). We

examined regression parameters at β = 0 or log(2) and considered four different values for θ

(0.1, 0.8, 1.25 or 4). The censoring time distribution were generated from uniform distribution

[0, u] with u chosen to depend on the desired percentage of censoring. We considered 97%,

90%, and 75% censoring. For each configuration, we simulated full cohort samples of size

n = 1000 and then selected two case-cohort samples from each full cohort data. The sampling

was conducted via simple random sampling with fixed sample size. The size of the random

subcohort ñ was set to have either the same expected number of controls and cases or twice

as many controls as cases. For each data configuration, we ran R = 2, 000 simulations.

Tables 5.1 and 5.2 show simulation summary statistics with Bernoulli covariate Zik with

Pr(Zik = 1) = 0.5 for β̂I and β̂II , respectively. “mean β̂I” or “mean β̂II” denotes the average

of the estimates of β0, “proposed S.E.” denotes the average of the estimates of standard

errors based on the proposed method, “true S.D.” denotes the sample standard deviation of

the 2,000 estimates, and “95% C.I.” denotes the coverage rate of the nominal 95% confidence

interval. The simulation results suggest that the coefficient estimates were approximately

unbiased across the setups considered for β = 0, while a substantial overestimation of the

coefficients arised (up to 15 %) for β = log(2) with small event proportion (3%). However, as
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the subcohort sample size increased to ñ = 62, the results improved. The proposed estimated

standard errors appeared to closely approximate the true variabilities of β̂s in most of the

cases. The coverage rate of the nominal 95% confidence intervals using the proposed method

were in the 92.4% - 95.8% range. Overall, β̂I and β̂II performed reasonably well and showed

similar results. For all data configuration, the true variabilities of the regression parameter

estimates for β̂II were smaller than those for β̂I , however, the discrepancies were not very

large. Tables 5.3 and 5.4 provide simulation summary statistics for β̂I and β̂II with the

Uniform covariate, respectively. In general, the findings were similar to those of Tables 5.1

and 5.2.

5.5 Analysis of Busselton Health Study

We applied the proposed methods to a subset of the data from the Busselton Health Study

(Cullen, 1972; Knuiman et al., 2003). The population of this study was based on the 1,612

men and women aged 40-89 years who participated in the 1981 Busselton Health Survey and

had no history of diagnosed CHD or stroke at that time. This group of people was then

followed for both CHD or stroke and the follow-up continued through the date of first CHD

event and the date of first stroke event or December 31, 1998, whichever comes first. The

follow-up also ended when the subjects left Western Australia during this period.

In this analysis, our primary interest was on the assessment and the comparison of the

effect of body iron stores on the risk of CHD and stroke. Body iron stores were proposed to be

positively related to coronary heart disease risk (Sullivan, 1996). However, the accumulated

epidemiologic evidence has been inconsistent and it was of interest to examine this hypothesis

in this population. As a measure of body iron store, serum ferritin was used where serum

ferritin is regarded as the best biochemical measure of body iron store. In addition, we were

also interested in whether the effect of serum ferritin on the risk of CHD and stroke differed

by gender.

A case-cohort design was conducted to reduce costs and preserve stored serum in the

Busselton Health Study. Our analysis was based on a subset of the Busselton Health Study.
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There were 1,212 cohort members with 217 CHD cases and 118 stroke cases. The subcohort

size was 360. Ferritin assays were conducted for all the cases and subcohort members. Because

of overlap between CHD/stroke cases and the random subcohort, the total number of assayed

sera samples was 536.

The risk difference is one common measure of risk in epidemiology. It directly quantifies

the effect of serum ferritin level on the risk of CHD and stroke. Thus, in this analysis, we

considered the additive hazards model, which models the risk difference. We first analysed the

data by fitting the marginal additive hazards model with distinct serum ferritin effect level on

the risk of CHD and of stroke. To control for confounding factors, several cardiovascular risk

factors were included in the model as covariates. The risk factors included were age (years),

blood pressure treatment, systolic blood pressure (mmHg), BMI, cholesterol (mmol/liter),

triglycerides (mmol/liter), diabetes treatment, hemoglobin (g/100 ml), and smoking (never,

former, current). For ferritin, the log of the serum ferritin level was used.

Table 5.5 shows the additive hazards estimates, standard errors of the estimates and the

associated 95 % confidence intervals. Note that the values presented in this table are 102

times the original values for convenience. This is also the case for Tables 5.6 and 5.7 later.

As shown in the table, the additive hazards estimates for log of ferritin levels on both CHD

and stroke were not statistically significant at the level of α = 0.05. A Wald-type test for a

common ferritin effect on CHD and stroke showed a weak evidence of different ferritin effect

on CHD and stroke(test statistics = 0.7670, p-value = 0.38). Thus, we assumed a common

ferritin effect on CHD and stroke and refit the model. The results are presented in 5.6 and

show weak evidence of the effect of ferritin level on the risk of CHD and stroke.

We also considered a model with gender-specific serum ferritin effect on the risk of CHD

and stroke. Table 5.7 provides the results from this model. The results indicate that, both

for men and women, no statistically significant effect of ferritin level on the risk of CHD and

stroke could be found. This was also true after we assumed common effect of ferritin level

on the risk of CHD and stroke for both men and women. Therefore, there was no obvious

gender specific or overall effect of serum ferritin on the risk of CHD and stroke.
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5.6 Concluding remarks

We have proposed methods of fitting marginal additive hazard regression models for case-

cohort studies with multiple disease outcomes. The regression parameter estimates have

a closed form and thus can be obtained from the weighted estimating equations without

employing any numerical methods. A Breslow-Aalen type estimator was proposed for the

cumulative baseline hazard functions. The proposed estimator were shown to have desirable

asymptotic properties and to perform well under the practical sample sizes considered. The

proposed procedures could be naturally extended to stratified case-cohort studies or Bernoulli

sampling of the subcohort.

5.7 Proofs of the theorems

Outline of the Proofs of Theorem 5.1 - 5.4

We assume the following set of conditions hold :

(A) (T i,Ci,Zi), i = 1, . . . , n are independent and identically distributed.

(B) Pr(Y (τ) > 0) > 0.

(C) |Zijk(0)|+
∫ τ
0 |dZijk(u)| < Cz <∞ almost surely for some constant Cz.

(D) The matrix Ak = E
{∫ τ

0 Y1k(t)
(
Z1k(t)⊗2 − ek(t)⊗2

)
dt
}

is positive definite.

(E)
∫ τ
0 λ0k(t)dt <∞, for all k = 1, . . . ,K.

(F) As n→∞, α̃ = ñ
n converges to a constant α ∈ (0, 1).

(J) ns
n converges to a constant ps ∈ [0, 1] for s = 0, 1 as n→∞ where p1 + p0 = 1.

The following lemma along with the lemmas in the previous two chapters will be frequently

used in proving the theorems.

136



Lemma 6 Let Bi(t), i = 1, . . . , n, be i.i.d. real-valued random processes on [0, τ ] with

E{Bi(t)} = µB(t), Var{Bi(0)} < ∞ and Var{Bi(τ)} < ∞. Suppose that almost all paths of

Bi(t) have finite variation. Then,

n−1/2
n∑

i=1

{Bi(t)− µB(t)}

converges weakly in `∞[0, τ ] to a zero-mean Gaussian process and therefore

n−1
n∑

i=1

{Bi(t)− µB(t)}

converges in probability to 0 uniformly in t.

This lemma is given as the proposition in Kulich and Lin (2004).

Before we move onto the proofs of the theorems, we first investigate the asymptotic proper-

ties of the time-varying sampling probability estimator α̂k(t) =
Pn

i=1 ξiYik(t)Pn
i=1 Yik(t)

. These asymptotic

properties will be frequently used in proving the theorems.

For each k, it follows from the Taylor expansion of α̂k(t)−1 around α̃,

α̂k(t)−1 − α̃−1 = − 1
α∗(t)2

(α̂k(t)− α̃) =
α̃

α∗(t)2
· 1∑n

i=1 Yik(t)

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}

where α∗(t) is on the line segment between α̂k(t) and α̃. Then,

n1/2
(
α̂k(t)−1 − α̃−1

)
=

α̃

α∗(t)2
· n∑n

i=1 Yik(t)
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}

n−1
∑n

i=1 Yik(t) converges to EY1k(t) in probability uniformly in t by lemma 6 since Yik(t) is

bounded and monotone in t, where EY1k(t) is bounded away from 0 by condition (B). In view

of lemma 5, n−1
∑n

i=1(
ξieα − 1)Yik(t) converges to 0 in probability uniformly in t since, again,

Yik(t) is bounded and monotone function in t. Consequently, α̂k(t)−α̃ =
eαn−1

Pn
i=1

�
ξi
eα
−1
�
Yik(t)

n−1
Pn

i=1 Yik(t)

converges to 0 in probability uniformly in t. Hence, α̂k(t) and α̃ converge to the same limit

in probability uniformly in t. This ensures α∗(t) also converges to the same limit as α̃.
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Combining these results, it follows from Slutsky’s theorem that

n1/2
(
α̂k(t)−1 − α̃−1

)
=

1
α̃EY1k(t)

n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}

+
(

α̃

α∗(t)2
· n∑n

i=1 Yik(t)
− 1
α̃EY1k(t)

)
n−1/2

n∑
i=1

(
1− ξi

α̃

)
Yik(t)

=
1

α̃EY1k(t)
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
Yik(t)

}
+ op(1) (5.6)

Now we prove theorem 5.1.

Proof of theorem 5.1 We first consider the proof for the consistency of β̂I . Denote n−1

times U I(β) by U I
n(β). Based on a straightforward extension of Foutz (1977), one can show

β̂I to be consistent for β0 provided: (i) ∂U I
n(β)/∂βT exists and is continuous in an open

neighborhood B of β0, (ii)∂U I
n(β0)/∂β

T
0 is negative definite with probability going to one

as n → ∞, (iii) ∂U I
n(β)/∂βT converges to A in probability uniformly for β in an open

neighborhood about β0, and (iv) U I
n(β) → 0 in probability.

One can write

−∂U
I
n(β)

∂βT
= n−1

n∑
i=1

K∑
k=1

∫ τ

0

(
Zik(t)−Z

ρ
k(t)

)
ρik(t)Yik(t)Zik(t)Tdt

= n−1
n∑

i=1

K∑
k=1

∫ τ

0
ρik(t)Yik(t)

(
Zik(t)⊗2 −Zρ

k(t)
⊗2
)
dt (5.7)

Then, (i) is clearly satisfied on the basis of (5.7).

To verify conditions (ii) and (iii), we will first show that

sup
t∈[0,τ ]

∥∥Zρ
k(t)− ek(t)

∥∥ p−→ 0 as n→∞ for k = 1, . . . ,K.

It suffices to show that

sup
t∈[0,τ ] ‖n

−1
∑

i=1 ρik(t)Yik(t)Zik(t)⊗d − n−1
∑

i=1 Yik(t)Zik(t)⊗d‖ p−→ 0 as n → ∞ for
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d = 0, 1. One can write

n−1
∑
i=1

ρik(t)Yik(t)Zik(t)⊗d − n−1
∑
i=1

Yik(t)Zik(t)⊗d

= n−1
n∑

i=1

(
ξi
α̃
− 1
)
Yik(t)Zik(t)⊗d − n−1

n∑
i=1

(α̃−1 − α̂k(t)−1)ξiYik(t)Zik(t)⊗d.

Then,

∥∥∥∥∥n−1
∑
i=1

ρik(t)Yik(t)Zik(t)⊗d − n−1
∑
i=1

Yik(t)Zik(t)⊗d

∥∥∥∥∥
≤

∥∥∥∥∥n−1
n∑

i=1

(
ξi
α̃
− 1
)
Yik(t)Zik(t)⊗d

∥∥∥∥∥+
∣∣(α̃−1 − α̂k(t)−1)

∣∣n−1
n∑

i=1

ξiYik(t)
∥∥∥Zik(t)⊗d

∥∥∥ (5.8)

For each j(j = 1, . . . , p), the total variation of Yik(t)Zikj(t)⊗d is finite on [0, τ ] by condi-

tion (C). Thus, by lemma 5, the first term on the right-hand side of (5.8) converges to 0

in probability uniformly in t. The second term on the right-hand side of (5.8) also con-

verges to 0 in probability uniformly in t since α̂k(t)−1 − α̃−1 was shown to converge to 0

in probability uniformly in t and n−1
∑n

i=1 ξiYik(t)
∥∥Zik(t)⊗d

∥∥ converges to a finite quantity

αE(Y1k(t)‖Z1k(t)⊗d‖) in probability uniformly in t by lemma 5. Combining these results,

n−1
∑

i=1 ρik(t)Yik(t)Zik(t)⊗d and n−1
∑

i=1 Yik(t)Zik(t)⊗d were shown to converge to the

same limit uniformly. Note that n−1
∑

i=1 Yik(t)Zik(t)⊗d converges to E(Y1k(t)Z1k(t)⊗d) for

d = 0, 1 by lemma 6 since Yik(t)Zik(t)⊗d is of bounded variation by condition (C). Therefore,

we have

sup
t∈[0,τ ]

∥∥∥∥∥n−1
∑
i=1

ρik(t)Yik(t)Zik(t)⊗d − E(Y1k(t)Z1k(t)⊗d)

∥∥∥∥∥ p−→ 0 as n→∞ for d = 0, 1 (5.9)

Since EY1k(t) is bounded away from zero by condition (B), it follows from the above conver-

gence results that for k = 1, . . . ,K, Zρ
k(t) converges to ek(t) in probability uniformly in t as

n→∞.
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Now, (5.7) can be written as the followings:

n−1
n∑

i=1

K∑
k=1

∫ τ

0
ρik(t)Yik(t)

(
Zik(t)⊗2 −Zρ

k(t)
⊗2
)
dt

= n−1
n∑

i=1

K∑
k=1

∫ τ

0

ξi
α̃
Yik(t)

(
Zik(t)⊗2 −Zρ

k(t)
⊗2
)
dt

+ n−1
n∑

i=1

K∑
k=1

(
α̂k(t)−1 − α̃−1

)
ξi

∫ τ

0
Yik(t)

(
Zik(t)⊗2 −Zρ

k(t)
⊗2
)
dt (5.10)

Then, by the uniform convergence of Zρ
k(t) to ek(t), the first term on the right-hand side of

(5.10) is asymptotically equivalent to

n−1
n∑

i=1

K∑
k=1

∫ τ

0

ξi
α̃
Yik(t)

(
Zik(t)⊗2 − ek(t)⊗2

)
dt

Based on the uniform convergence of Zρ
k(t) to ek(t), α̂k(t)−1 to α̃−1 and lemma 5, the second

term on the right-hand side of (5.10) converges to 0 in probability uniformly in t. Thus, by

combining these results, we have

n−1
n∑

i=1

K∑
k=1

∫ τ

0
ρik(t)Yik(t)

(
Zik(t)⊗2 −Zρ

k(t)
⊗2
)
dt

= n−1
n∑

i=1

K∑
k=1

∫ τ

0

ξi
α̃
Yik(t)

(
Zik(t)⊗2 − ek(t)⊗2

)
dt + op(1) (5.11)

Since Yik(t)
(
Zik(t)⊗2 − ek(t)⊗2

)
is of bounded variation by condition (C) and

Yik(t)
(
Zik(t)⊗2 − ek(t)⊗2

)
’s are independent and identically distributed, it follows from lemma

5 that n−1
∑n

i=1

∑K
k=1

∫ τ
0

ξieα Yik(t)
(
Zik(t)⊗2 − ek(t)⊗2

)
dt converges to

E
[∑K

k=1

∫ τ
0

{
Y1k(t)(Z1k(t)⊗2 − ek(t)⊗2)

}
dt
]

in probability as n→∞. Hence,

−∂U
I
n(β)

∂βT

p−→ A as n→∞ (5.12)
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and, thus, (ii) and (iii) are satisfied.

For (iv), we will show that n−1/2U I(β0) is asymptotically equivalent to

n−1/2
n∑

i=1

K∑
k=1

Mz̃,ik(β0) + n−1/2
n∑

i=1

K∑
k=1

(1− ξi
α̃

)

×
∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt.

Specifically, one can decompose n1/2U I
n(β0) into the followings :

n1/2U I
n(β0) = n−1/2

n∑
i=1

K∑
k=1

∫ τ

0

(
Zik(t)−Z

ρ
k(t)

)
×

{
dMik(t) + Yik(t)λ0k(t)dt+ (1− ρik(t))Yik(t)βT

0Zik(t)dt
}

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
Zik(t)−Z

ρ
k(t)

)
dMik(t)

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
Zik(t)−Z

ρ
k(t)

)
ρik(t)Yik(t)λ0k(t)dt

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
(1− ρik(t))

(
Zik(t)−Z

ρ
k(t)

)
× Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt (5.13)

The second term on the right-hand side of (5.13) equals to 0. The first term on the right-hand

side of (5.13) can be further decomposed into the following two parts:

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(t)−Z

ρ
k(t)

}
dMik(t)

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(t)−Zk(t)

}
dMik(t)

+
K∑

k=1

∫ τ

0

{
Zk(t)−Z

ρ
k(t)

}
d

{
n−1/2

n∑
i=1

Mik(t)

}
(5.14)

The first term on the right-hand side of (5.14) is the pseudo partial likelihood score function

for the full cohort data. This was shown to be asymptotically equivalent to

n−1/2
∑n

i=1

∑K
k=1 Mz̃,ik(β0) (Yin and Cai, 2004). Note that, for fixed t, n−1/2

∑n
i=1Mik(t)
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is a sum of i.i.d. zero-mean random variables. Based on conditions (C) and (E), Mik(t) is of

bounded variation and therefore, it follows from lemma 6 that n−1/2
∑n

i=1Mik(t) converges

weakly to a zero-mean Gaussian process, say WMk(t). It can be shown that E{WMk(t) −

WMk(s)}4 ≤ C{Λ0k(t) − Λ0k(s)}2 for some constant C > 0. Specifically, E{WMk(t) −

WMk(s)}4 = 3(E{WMk(t)−WMk(s)}2)2 sinceWMk(t) is a zero-mean normal random variable

for a fixed t. Then E{WMk(t)−WMk(s)}2 = EWMk(t)2+EWMk(s)2−2 EWMk(t)WMk(s) =

EWMk(t)2 − EWMk(s)2 for s ≤ t. Since EWMk(t)2 = EMik(t)2 =

E
[∫ t

0 Yik(u)
(
λ0k(u) + βT

0Zik(u)
)
du
]
, E{WMk(t)−WMk(s)}2 =

E
[∫ t

s Yik(u)
(
λ0k(u) + βT

0Zik(u)
)
du
]
.Note that the conditions (C) and (E) ensure the bound-

edness of λ0k(·) and βT
0Zik(·) on [0, τ ]. Thus, by mean value theorem, there exists a con-

stant M , such that E
[∫ t

s Yik(u)
(
λ0k(u) + βT

0Zik(u)
)
du
]
≤ M(t − s) for s ≤ t. There-

fore, E{WMk(t) − WMk(s)}2 ≤ M(t − s) and E{WMk(t) − WMk(s)}4 ≤ 3(E{WMk(t) −

WMk(s)}2)2 ≤ M̃(t− s)2 for some constant M̃ . Then, by the Kolmogorov-Centsov Theorem

(Karatzas and Shereve, 1988, p53), WMk(t) has continuous sample paths. In addition, since

n−1
∑n

i=1 Yik(t)Zik(t) and n−1
∑n

i=1 Yik(t) are of bounded variations and n−1
∑n

i=1 Yik(t)

is bounded away from 0, based on conditions (B) and (C), Zk(t) is of bounded variation

and can be written as a sum of two monotone functions in t, respectively. Specifically,

Zk(t) = Z∗
k1(t) − Z∗

k2(t) where both Z∗
k1(t) and Z∗

k2(t) are nonnegative, monotone in t and

bounded. Since Zρ
k(t) is also of bounded variation based on (5.9) and conditions (B) and (C),

by the same argument, we can write Zρ
k(t) = Z∗∗

k1(t)−Z∗∗
k2(t) where both Z∗∗

k1(t) and Z∗∗
k2(t)

are nonnegative, monotone in t and bounded. Hence, it follows from lemma 2 that

K∑
k=1

∫ τ

0

{
Zk(t)−Z

ρ
k(t)

}
d

{
n−1/2

n∑
i=1

Mik(t)

}
=

K∑
k=1

∫ τ

0

{
Zk(t)− ek(t)

}
d

{
n−1/2

n∑
i=1

Mik(t)

}

−
K∑

k=1

∫ τ

0

{
Z

ρ
k(t)− ek(t)

}
d

{
n−1/2

n∑
i=1

Mik(t)

}
p−→ 0 as n→∞.

Thus, the second term on the right-hand side of (5.14) converges to 0 in probability uniformly

in t.
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Now, one can write the third term on the right-hand side of (5.13) as

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
(1− ρik(t))

(
Zik(t)−Z

ρ
k(t)

)
Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
1− ξi

α̃

)(
Zik(t)−Z

ρ
k(t)

)
Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
α̃−1 − α̂−1

k (t)
)
ξi
(
Zik(t)−Z

ρ
k(t)

)
Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt (5.15)

It follows from the uniform convergence of Zρ
k(t) to ek(t) and the boundedness of Λ0k(τ) that

the first term on the right-hand side of (5.15) is asymptotically equivalent to

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
1− ξi

α̃

)
(Zik(t)− ek(t))Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt.

Based on (5.6) and the uniform convergence of Zρ
k(t) to ek(t), the second term on the right-

hand side of (5.15) is

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
α̃−1 − α̂−1

k (t)
)
ξi
(
Zik(t)−Z

ρ
k(t)

)
Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt

= n−1
n∑

i=1

K∑
k=1

∫ τ

0

 1
α̃EY1k(t)

n−1/2
n∑

j=1

(
ξj
α̃
− 1
)
Yjk(t)


× ξi (Zik(t)− ek(t))Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt+ op(1)

= n−1/2
n∑

i=1

K∑
k=1

(
ξi
α̃
− 1
)∫ τ

0

Yik(t)
EY1k(t)

×

n−1
n∑

j=1

ξj
α̃

(Zjk(t)− ek(t))Yjk(t)
(
λ0k(t) + βT

0Zjk(t)
) dt+ op(1) (5.16)

It follows from lemma 5 that n−1
∑n

j=1
ξjeα (Zjk(t)− ek(t))Yjk(t) and

n−1
∑n

j=1
ξjeα (Zjk(t)− ek(t))Yjk(t)βT

0Zjk(t) converge to E ((Z1k(t)− ek(t))Y1k(t)) and

E
(
(Z1k(t)− ek(t))Y1k(t)βT

0Z1k(t)
)

in probability uniformly in t, respectively. Note that
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E ((Z1k(t)− ek(t))Y1k(t)) = E(Y1k(t)Z1k(t))−ek(t) EY1k(t) = 0. Thus, from (5.16), we have

n−1/2
n∑

i=1

K∑
k=1

(
ξi
α̃
− 1
)∫ τ

0

Yik(t)
EY1k(t)

×

n−1
n∑

j=1

ξj
α̃

(Zjk(t)− ek(t))Yjk(t)
(
λ0k(t) + βT

0Zjk(t)
) dt

= n−1/2
n∑

i=1

K∑
k=1

(
ξi
α̃
− 1
)∫ τ

0

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)
dt+ op(1)

Therefore, the third term on the right-hand side of (5.13) is asymptotically equal to

n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
×
∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt (5.17)

where

Rik(β, t) = Yik(t) (Zik(t)− ek(t))
(
λ0k(t) + βTZik(t)

)
.

Combining the above results, we have shown that n1/2U I
n(β0) is asymptotically equivalent to

n−1/2
n∑

i=1

K∑
k=1

Mz̃,ik(β0) + n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
×

∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt (5.18)

Under the regularity conditions, the first term on the right-hand side of (5.18) is asymptoti-

cally zero-mean normal with covariance matrix Q(β0) = E
(∑K

k=1 Mz̃,1k(β0)
)⊗2

by Yin and

Cai (2004).

On the basis of conditions (C) and (F), the second term on the right-hand side of (5.18) is

asymptotically zero-mean normal random variable with covariance matrix 1−α
α V (β0) where

V (β0) = E

[
K∑

k=1

∫ τ

0

{
R1k(β0, t)−

Y1k(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt

]⊗2

.
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This result follows from applying Hájek (1960)’s central limit theorem for finite population

sampling to

n−1/2
n∑

i=1

aT
K∑

k=1

(
1− ξi

α̃

)∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt

and then applying Cramer-Wold device where a = (a1, . . . , ap)T is a p× 1 real valued vector.

Note that n−1/2
∑n

i=1

∑K
k=1 Mz̃,ik(β0) and

n−1/2
∑n

i=1

∑K
k=1

(
1− ξieα

) ∫ τ
0

{
Rik(β0, t)−

Yik(t)

E Y1k(t) E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}
dt

are independent since

Cov

(
n−1/2

n∑
i=1

K∑
k=1

Mz̃,ik(β0), n
−1/2

n∑
i=1

K∑
k=1

(
1− ξi

α̃

)
×

∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt

)
= E

{
n−1

n∑
i=1

K∑
k=1

Mz̃,ik(β0)
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
×

∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt

}
= E

{
E

(
n−1

n∑
i=1

K∑
k=1

Mz̃,ik(β0)
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
×

∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt

∣∣∣∣F(τ)
)}

= E

{
n−1

n∑
i=1

K∑
k=1

Mz̃,ik(β0)
n∑

i=1

K∑
k=1

E
(

1− ξi
α̃

∣∣∣∣F(τ)
)

×
∫ τ

0

{
Rik(β0, t)−

Yik(t)
EY1k(t)

E
(
Y1k(t) (Z1k(t)− ek(t))βT

0Z1k(t)
)}

dt

}
= 0.

Therefore, n1/2U I
n(β0) is asymptotically normally distributed with mean zero and with vari-

anceQ(β0)+
1−α

α V (β0). Hence Un(β) converges to zero in probability. Thus, (iv) is satisfied.

By (i),(ii),(iii) and (iv), it follows that there is a unique sequence β̂I s.t. U
I(β̂I) = 0 with

probability converging to one as n → 0 and with β̂I converging in probability to β0 by an

extension of Foutz (1977, Thm.2).
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The asymptotic normality of β̂I follows from the consistency of β̂I and a Taylor series

expansion of U I(β) around β0.

Proof of Theorem 5.2 One can make decomposition

n1/2{Λ̂I
0k(β̂I , t)− Λ0k(t)}

= n1/2
{

Λ̂I
0k(β̂I , t)− Λ̂I

0k(β0, t)
}

+ n1/2
{

Λ̂I
0k(β0, t)− Λ0k(t)

}
= n1/2


∫ t

0

∑n
i=1

(
dNik(u)− ρik(u)Yik(u)β̂

T

I Zik(u)
)

∑n
i=1 ρik(u)Yik(u)

du

−
∫ t

0

∑n
i=1

(
dNik(u)− ρik(u)Yik(u)βT

0Zik(u)
)∑n

i=1 ρik(u)Yik(u)
du

}

+ n1/2

{∫ t

0

∑n
i=1

(
dNik(u)− ρik(u)Yik(u)βT

0Zik(u)
)∑n

i=1 ρik(u)Yik(u)
du

}

−n1/2

{∫ t

0

∑n
i=1 ρik(u)Yik(u)λ0k(u)∑n

i=1 ρik(u)Yik(u)
du

}
= n1/2

∫ t

0

∑n
i=1 ρik(u)Yik(u)(β0 − β̂I)TZik(u)∑n

i=1 ρik(u)Yik(u)
du+ n1/2

∫ t

0

∑n
i=1 dMik(u)∑n

i=1 ρik(u)Yik(u)

+ n1/2

∫ t

0

∑n
i=1 (1− ρik(u))Yik(u)

(
λ0k(u) + βT

0Zik(u)
)∑n

i=1 ρik(u)Yik(u)
du (5.19)

By the uniform convergence ofZρ
k(u) to ek(u), the first term of (5.19) is asymptotically equiva-

lent to n1/2rk(t)T
(
β̂I − β0

)
where rk(β, t) = −

∫ t
0 ek(u)du. Since

(
n−1

∑n
i=1 ρik(u)Y1k(u)

)−1

can be written a sum of two monotone functions in t and converges uniformly to {E (Y1k(u))}−1,

where E (Y1k(u)) is bounded away from 0, and n−1/2
∑n

i=1Mik(u) converges to a zero-mean

Gaussian process with continuous sample paths, it follows from lemma 2 that the second term

on the right-hand side of (5.19) is asymptotically equivalent to

∫ t

0

1
EY1k(u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

The last term on the right-hand side of (5.19) can be written as
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n1/2

∫ t

0

∑n
i=1 (1− ρik(u))Yik(u)

(
λ0k(u) + βT

0Zik(u)
)∑n

i=1 ρik(u)Yik(u)
du

=
∫ t

0

1
n−1

∑n
i=1 ρik(u)Yik(u)

n−1/2
n∑

i=1

(
1− ξi

α̃

)
Yik(u)

(
λ0k(u) + βT

0Zik(u)
)
du (5.20)

+
∫ t

0

1
n−1

∑n
i=1 ρik(u)Yik(u)

n−1/2
(
α̃−1 − α̂k(t)−1

) n∑
i=1

ξiYik(u)
(
λ0k(u) + βT

0Zik(u)
)
du

It follows from the uniform convergence of
{
n−1

∑n
i=1 ρik(u)Y1k(u)

}−1 to {E(Y1k(u))}−1,

where E(Y1k(u)) is bounded away from 0 and the boundedness of Λ0k(u) on [0, t] that the

first term on the right-hand side of (5.20) is asymptotically equivalent to

∫ t

0

1
EY1k(u)

n−1/2
n∑

i=1

(
1− ξi

α̃

)
Yik(u)

(
λ0k(u) + βT

0Zik(u)
)
du. (5.21)

Based on (5.6), the uniform convergence of
{
n−1

∑n
i=1 ρik(u)Y1k(u)

}−1 to {E(Y1k(u))}−1,

n−1
∑n

i=1 ξiYik(u) to EY1k(u) and n−1
∑n

i=1 ξiYik(u)βT
0Zik(u) to E

(
Y1k(u)βT

0Z1k(u)
)
, the

second term on the right-hand side of (5.20) is

∫ t

0

1
n−1

∑n
i=1 ρik(u)Yik(u)

n−1/2
(
α̃−1 − α̂k(t)−1

) n∑
i=1

ξiYik(u)
(
λ0k(u) + βT

0Zik(u)
)
du

=
∫ t

0

1
EY1k(u)

 1
α̃EY1k(u)

n−1/2
n∑

j=1

(
ξj
α̃
− 1
)
Yjk(t)


× n−1

n∑
i=1

ξiYik(u)
(
λ0k(u) + βT

0Zik(u)
)
du+ op(1)

= n−1/2
n∑

i=1

(
ξi
α̃
− 1
)∫ t

0

Yik(u)
(E (Y1k(u)))

2

{
E(Y1k(u))λ0k(u) + E(Y1k(u)βT

0Z1k(u))
}
du+ op(1)

(5.22)

Thus, it follows from (5.21) and (5.22) that the last term on the right-hand side of (5.19) is

equivalent to
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n−1/2
n∑

i=1

(
1− ξi

α̃

)∫ t

0
Yik(u)

{(
λ0k(u) + βT

0Zik(u)
)

−

(
λ0k(u) +

E
(
Y1k(u)βT

0Z1k(u)
)

EY1k(u)

)}
du

EY1k(u)
+ op(1)

= n−1/2
n∑

i=1

(
1− ξi

α̃

)∫ t

0
Yik(u)

{
βT

0Zik(u)−
E
(
Y1k(u)βT

0Z1k(u)
)

EY1k(u)

}
du

EY1k(u)
+ op(1)

Based on Taylor expansion of U I(β̂I) around β0 and the results in (5.12) and (5.18), we have

n1/2(β̂I − β0)

= A−1

{
n−1/2

n∑
i=1

K∑
m=1

Mz̃,im(β0) + n−1/2
n∑

i=1

K∑
m=1

(
1− ξi

α̃

)
×

∫ τ

0

(
Rim(β0, t)−

Yim(t)
EY1m(t) E

(
Y1m(t)(Z1m(t)− em(t))βT

0Z1m(t)
))}

du+ op(1).

Combining the above results, we have

n1/2(Λ̂I
0k(β̂I , t)− Λ0k(t))

= rk(t)TA−1

{
n−1/2

n∑
i=1

K∑
m=1

Mz̃,im(β0) + n−1/2
n∑

i=1

K∑
m=1

(
1− ξi

α̃

)∫ τ

0
(Rim(β0, u)

− Yim(u)
EY1m(u) E

(
Y1m(u) (Z1m(u)− em(u))βT

0Z1m(u)
))

du

}
+
∫ t

0

1
EY1k(u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

+ n−1/2
n∑

i=1

(
1− ξi

α̃

)∫ t

0
Yik(u)

{
βT

0Zik(u)−
E
(
Y1k(u)βT

0Z1k(u)
)

EY1k(u)

}
du

EY1k(u)

= n−1/2
n∑

i=1

[{
rk(t)TA−1

K∑
m=1

Mz̃,im(β0) +
∫ t

0

1
EY1k(u)

dMik(u)

}

+
(

1− ξi
α̃

){
rk(t)TA−1

K∑
m=1

∫ τ

0
(Rim(β0, u)

− Yim(u)
EY1m(u) E

(
Y1m(u) (Z1m(u)− em(u))βT

0Z1m(u)
))

du
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+
∫ t

0
Yik(u)

{
βT

0Zik(u)−
E
(
Y1k(u)βT

0Z1k(u)
)

EY1k(u)

}
du

EY1k(u)

}]
+ op(1) (5.23)

=n−1/2
n∑

i=1

νik(β0, t) + n−1/2
n∑

i=1

(
1− ξi

α̃

)
ψik(β0, t) + op(1)

where

νik(β, t) = rk(t)TA−1
K∑

m=1

Mz̃,im(β) +
∫ t

0

1
EY1k(u)

dMik(u) and

ψik(β, t) = rk(t)TA−1
K∑

m=1

∫ τ

0
(Rim(β, u)

− Yim(u)
EY1m(u) E

(
Y1m(u) (Z1m(u)− em(u))βTZ1m(u)

))
du

+
∫ t

0

{
βTZik(u)−

E
(
Y1k(u)βTZ1k(u)

)
EY1k(u)

}
Yik(u)du
EY1k(u)

.

Now, let W (1)(t) = (W (1)
1 (t), . . . ,W (1)

K (t))T where W (1)
k (t) = n−1/2

∑n
i=1 νik(β0, t) and

W (2)(t) = (W (2)
1 (t), . . . ,W (2)

K (t))T where W (2)
k (t) = n−1/2

∑n
i=1

(
1− ξieα

)
ψik(β0, t) for k =

1, . . . ,K. Then, W (1)(t) converges weakly to a zero-mean Gaussian process W(1)(t) =

(W(1)
1 (t), . . . ,W(1)

K (t))T in D[0, τ ]K where the covariance function between W(1)
j (t1) and

W(1)
k (t2) is E{ν1j(β0, t1)ν1k(β0, t2)} by Yin and Cai (2004, Thm.2). W (2)(t) also can be

shown to converge weakly to a zero-mean Gaussian processW(2)(t) = (W(2)
1 (t), . . . ,W(2)

K (t))T .

Specifically, ψik(β0, t) is of bounded variation since rk(t), Yik(t)Zikj(t) and EY1k(t) are of

bounded variations, EYik(t) is bounded away from zero, and A is positive definite based

on conditions (B), (C) and (D). Thus, for any finite number of time points (t1, . . . , tL), the

finite dimensional distribution of W (2)(t) is asymptotically the same as those of W(2)(t) by

lemma 5 and Cramer-Wold device. Now, if we show the tightness of W (2)(t), the proof for

the weak convergence is completed. Since the space D[0, τ ]K is equipped with the uniform

metric, it suffices to show the marginal tightness of W (2)
k (t) for each k. The marginal tight-

ness follows directly by applying lemma 5 to W (2)
k (t). Thus, W (2)(t) converges weakly to a

zero-mean Gaussian process where the covariance function between W(2)
j (t1) and W(2)

k (t2) is
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1−α
α E{ψ1j(β0, t1)ψ1k(β0, t2)}. Note that W(1)(t) and W(2)(t) are independent since

Cov

n−1/2
n∑

i=1

νik(β0, t1), n
−1/2

n∑
j=1

(
1− ξj

α̃

)
ψjm(β0, t2)


= E

n−1
n∑

i=1

νik(β0, t1)
n∑

j=1

(
1− ξj

α̃

)
ψjm(β0, t2)


= E

E

n−1
n∑

i=1

νik(β0, t1)
n∑

j=1

(
1− ξj

α̃

)
ψjm(β0, t2)

∣∣∣∣∣∣F(τ)


= E

n−1
n∑

i=1

νik(β0, t1)
n∑

j=1

E
(

1− ξj
α̃

∣∣∣∣F(τ)
)
ψjm(β0, t2)

 = 0.

Therefore, W (t) = W (1)(t) + W (2)(t) converges weakly to a zero-mean Gaussian process

W(t) = W(1)(t) + W(2)(t) where the covariance function between Wj(t1) and Wk(t2) is

E{ν1j(β0, t1)ν1k(β0, t2)} + 1−α
α E{ψ1j(β0, t1)ψ1k(β0, t2)}. This completes the proof of the-

orem 5.2.

Proof of theorems 5.3 and 5.4 The asymptotic properties of β̂II and Λ̂II
0k(β̂II , t) can

be shown by similar arguments used for β̂I and Λ̂I
0k(β̂I , t). However, the resulting asymptotic

properties need some modifications and will involves (1−∆ik). This is because the asymptotic

expansion of n1/2
(
α̂II

k (t)−1 − α̃−1
)

includes the terms involving (1 − ∆ik). In addition, the

asymptotic properties of n−1/2
∑n

i=1 ωik(t)Yik(t)Zik(t)⊗d and n−1
∑n

i=1 ωik(t)Yik(t)Zik(t)⊗d

for d = 0, 1 need to be investigated since these include the terms involving (1−∆ik) as well.

Specifically, for each k, it follows from the Taylor expansion of α̂II
k (t)−1 around α̃,

α̂II
k (t)−1 − α̃−1 = − 1

α∗∗(t)2
(
α̂II

k (t)− α̃
)

=
α̃

α∗∗(t)2
· 1∑n

i=1(1−∆ik)Yik(t)

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}
,

where α∗∗(t) is on the line segment between α̂II
k (t) and α̃. Then,

n1/2
(
α̂II

k (t)−1 − α̃−1
)

=
α̃

α∗∗(t)2
· n∑n

i=1(1−∆ik)Yik(t)
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}
.
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n−1
∑n

i=1(1 − ∆ik)Yik(t) converges to E ((1−∆1k)Y1k(t)) in probability uniformly in t by

lemma 6 since (1−∆ik)Yik(t) is bounded and monotone in t. In view of lemma 5, n−1
∑n

i=1(
ξieα−

1)(1−∆ik)Yik(t) converges to 0 in probability uniformly in t since (1−∆ik)Yik(t) is bounded

and monotone function in t. Consequently, α̂II
k (t)−α̃ =

eαn−1
Pn

i=1

�
ξi
eα
−1
�
(1−∆ik)Yik(t)

n−1
Pn

i=1(1−∆ik)Yik(t)
converges

to 0 in probability uniformly in t. Hence, α̂II
k (t) and α̃ converges in probability to the same

limit uniformly in t. This ensures α∗∗(t) also converges to the same limit as α̃. Combining

these results, it follows from Slutsky’s theorem that

n1/2
(
α̂II

k (t)−1 − α̃−1
)

=
1

α̃E ((1−∆1k)Y1k(t))
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}

+
(

α̃

α∗∗(t)2
· n∑n

i=1(1−∆1k)Yik(t)
− 1
α̃E ((1−∆1k)Y1k(t))

)
× n−1/2

n∑
i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

=
1

α̃E ((1−∆1k)Y1k(t))
n−1/2

{
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)

}
+ op(1). (5.24)

Likewise, for each k,

n−1/2

{
n∑

i=1

Yik(t)Zik(t)⊗d −
n∑

i=1

ωik(t)Yik(t)Zik(t)⊗d

}

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗d

+ n−1/2
n∑

i=1

(
α̃−1 − α̂II

k (t)−1
)
(1−∆ik)ξiYik(t)Zik(t)⊗d

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗d

+ n−1
n∑

i=1

 1
α̃E ((1−∆1k)Y1k(t))

n−1/2
n∑

j=1

(
ξj
α̃
− 1
)

(1−∆jk)Yjk(t)


× (1−∆ik)ξiYik(t)Zik(t)⊗d + op(1) ( by (5.24) )

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗d + n−1/2

n∑
i=1

(
ξi
α̃
− 1
)

(1−∆ik)

× Yik(t)
E ((1−∆1k)Y1k(t))

n−1
n∑

j=1

(1−∆jk)
ξj
α̃
Yjk(t)Zjk(t)⊗d

 + op(1) (5.25)
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Note that (1 −∆jk)Yjk(t)Zjk(t)⊗d is of bounded variation by condition (C). It then follows

from lemma 5 that n−1
∑n

j=1(1−∆jk)
ξjeα Yjk(t)Zjk(t)⊗d converges to

E
(
(1−∆1k)Y1k(t)Z1k(t)⊗d

)
for d = 0, 1, in probability uniformly in t. Thus, from (5.25)

n−1/2

{
n∑

i=1

Yik(t)Zik(t)⊗d −
n∑

i=1

ωik(t)Yik(t)Zik(t)⊗d

}

= n−1/2
n∑

i=1

{(
1− ξi

α̃

)
(1−∆ik)Yik(t)Zik(t)⊗d

+
(
ξi
α̃
− 1
)

(1−∆ik)
Yik(t)

E ((1−∆1k)Y1k(t))
E
(
(1−∆1k)Y1k(t)Z1k(t)⊗d

)}
+ op(1)

= n−1/2
n∑

i=1

(1−∆ik)
(

1− ξi
α̃

)
Yik(t)

×

{
Zik(t)⊗d − E

(
(1−∆1k)Y1k(t)Zik(t)⊗d

)
E ((1−∆1k)Y1k(t))

}
+ op(1) (5.26)

Therefore, based on (5.24) and (5.26) and by lemma 5, both n1/2
{
α̂II

k (t)−1 − α̃−1
}

and

n−1/2
{∑n

i=1 Yik(t)Zik(t)⊗d −
∑n

i=1 ωik(t)Yik(t)Zik(t)⊗d
}

converge weakly to zero-mean

Gaussian processes, respectively. Consequently, both
{
α̂II

k (t)−1 − α̃−1
}

and

n−1
{∑n

i=1 Yik(t)Zik(t)⊗d −
∑n

i=1 ωik(t)Yik(t)Zik(t)⊗d
}

converge to 0 in probability uniformly

in t, respectively. Note that the following uniform convergence follows directly from the above

results:

sup
t∈[0,τ ]

∥∥Zω
k (t)− ek(t)

∥∥ p−→ 0 as n→∞ (5.27)

since EY1k(t) is bounded away from 0 by condition (B).

One can write

−∂U
II
n (β)
∂βT

= n−1
n∑

i=1

K∑
k=1

∫ τ

0

(
Zik(t)−Z

ω
k (t)

)
ωik(t)Yik(t)Zik(t)Tdt

= n−1
n∑

i=1

K∑
k=1

∫ τ

0
ωik(t)Yik(t)

(
Zik(t)⊗2 −Zω

k (t)⊗2
)
dt (5.28)
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Based on (5.27), (5.28), and the uniform convergence of
(
α̂II

k (t)− α̃
)

to 0 and lemma 5, it

can be shown that

−∂U
II
n (β)
∂βT

p−→ A as n→∞ (5.29)

by using similar arguments as in proving theorem 5.1.

One can decompose n−1/2U II(β0) into two parts:

n−1/2U II(β0) = n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

{
Zik(t)−Z

ω
k (t)

}
dMik(t)

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
(ωik(t)− 1)

{
Zik(t)−Z

ω
k (t)

}
dMik(t) (5.30)

Based on conditions (B) and (C), n−1
∑n

i=1 ωik(t)Yik(t)Zik(t)⊗d(d = 0, 1) are of bounded

variations and n−1
∑n

i=1 ωik(t)Yik(t) is bounded away from 0. Therefore, Zω
k (t) is of bounded

variations. Along with the uniform convergence of Zω
k (t) to ek(t), by the similar arguments

used for proving theorem 5.1, the first term on the right-hand side of (5.30) is asymptotically

equivalent to

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
{Zik(t)− ek(t)} dMik(t).

The second term on the right-hand side of (5.30) can be further decomposed as the following:

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0
(ωik(t)− 1)

{
Zik(t)−Z

ω
k (t)

}
dMik(t)

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
ξi
α̃
− 1
)

(1−∆ik)
{
Zik(t)−Z

ω
k (t)

}
dMik(t)

+ n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
α̂II

k (t)−1 − α̃−1
)
ξi(1−∆ik)

(
Zik(t)−Z

ω
k (t)

)
dMik(t) (5.31)
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It follows from the uniform convergence of Zω
k (t) to ek(t) that the first term on the right-hand

side of (5.31) is asymptotically equivalent to

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
ξi
α̃
− 1
)

(1−∆ik) {Zik(t)− ek(t)} dMik(t)

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
1− ξi

α̃

)
(1−∆ik) {Zik(t)− ek(t)}Yik(t)

(
λ0k(t) + βT

0Zik(t)
)

The last equality holds since only censored observations contribute to this term.

Likewise, based on (5.24) and the uniform convergence of Zω
k (t) to ek(t), the second term on

the right-hand side of (5.31) is

n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
α̂II

k (t)−1 − α̃−1
)
ξi(1−∆ik)

(
Zik(t)−Z

ω
k (t)

)
dMik(t)

= n−1/2
n∑

i=1

K∑
k=1

∫ τ

0

(
α̃−1 − α̂II

k (t)−1
)
ξi(1−∆ik)

(
Zik(t)−Z

ω
k (t)

)
Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt

= n−1
n∑

i=1

K∑
k=1

∫ τ

0

 1
α̃E((1−∆1k)Y1k(t))

n−1/2
n∑

j=1

(
ξj
α̃
− 1
)

(1−∆jk)Yjk(t)


× ξi(1−∆ik) (Zik(t)− ek(t))Yik(t)

(
λ0k(t) + βT

0Zik(t)
)
dt+ op(1)

=n−1/2
n∑

i=1

K∑
k=1

(
ξi
α̃
− 1
)∫ τ

0
(1−∆ik)

Yik(t)
E((1−∆1k)Y1k(t))

×

n−1
n∑

j=1

ξj
α̃

(1−∆jk) (Zik(t)− ek(t))Yjk(t)
(
λ0k(t) + βT

0Zjk(t)
) dt+ op(1) (5.32)

It follows from lemma 5 that n−1
∑n

j=1
ξjeα (1−∆jk) (Zjk(t)− ek(t))Yjk(t) and

n−1
∑n

j=1
ξjeα (1−∆jk) (Zjk(t)− ek(t))Yjk(t)βT

0Zjk(t) converge to

E {(1−∆jk) (Z1k(t)− ek(t))Y1k(t)} and E
{
(1−∆jk) (Z1k(t)− ek(t))Y1k(t)βT

0Z1k(t)
}
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in probability uniformly in t, respectively. Thus, from (5.32),

n−1/2
n∑

i=1

K∑
k=1

(
ξi
α̃
− 1
)∫ τ

0
(1−∆ik)

Yik(t)
E((1−∆1k)Y1k(t))

×

n−1
n∑

j=1

ξj
α̃

(1−∆jk) (Zjk(t)− ek(t))Yjk(t)
(
λ0k(t) + βT

0Zjk(t)
) dt

= n−1/2
n∑

i=1

K∑
k=1

(
ξi
α̃
− 1
)∫ τ

0
(1−∆1k)

Yik(t)
E((1−∆1k)Y1k(t))

× E
{
(1−∆1k) (Z1k(t)− ek(t))Y1k(t)

(
λ0k(t) + βT

0Z1k(t)
)}
dt+ op(1)

Therefore, the second term on the right-hand side of (5.30) is asymptotically equal to

n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
(1−∆ik)

∫ τ

0

{
Rik(β0, t)−

Yik(t) E ((1−∆1k)R1k(β0, t))
E ((1−∆1k)Y1k(t))

}
dt

where

Rik(β, t) = Yik(t) (Zik(t)− ek(t))
(
λ0k(t) + βTZik(t)

)
.

Combining the above results, we have shown that n−1/2U II(β0) is asymptotically equivalent

to

n−1/2
n∑

i=1

K∑
k=1

Mz̃,ik(β0) + n−1/2
n∑

i=1

K∑
k=1

(
1− ξi

α̃

)
(1−∆ik)

×
∫ τ

0

(
Rik(β0, t)−

Yik(t) E ((1−∆1k)R1k(β0, t))
E ((1−∆1k)Y1k(t))

)
dt. (5.33)

The first term on the right-hand side of (5.33) is again asymptotically zero-mean normal with

covariance matrix Q(β0) = E
(∑K

k=1 Mz̃,1k(β0)
)⊗2

by Yin and Cai (2004).

The second term on the right-hand side of (5.33) can be shown to be asymptotically zero-mean

normal with covariance matrix 1−α
α V II(β0) where

V II(β) = E

[
K∑

k=1

(1−∆1k)
∫ τ

0

{
R1k(β, t)−

Y1k(t) E ((1−∆1k)R1k(β, t))
E ((1−∆1k)Y1k(t))

}
dt

]⊗2

.
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by Hájek (1960)’s central limit theorem for finite population sampling. Then, together with

the independence of the first term and the second term of (5.33), it follows that n−1/2U II(β0)

converges to zero mean normal random variable with finite covariance matrix Q(β0) +

1−α
α V II(β0). Now, the consistency of β̂II and the asymptotic normality of n1/2(β̂II − β0)

will follow from the similar arguments used for proving theorem 5.1 if we replace α̂k(t),

n−1
∑n

i=1 ρik(t)Yik(t)Zik(t)⊗d (d = 0, 1), and U I(β) by α̂II
k (t), n−1

∑n
i=1 ωik(t)Yik(t)Zik(t)⊗d

(d = 0, 1), and U II(β), respectively, and use their corresponding asymptotic properties we

have just derived.

The asymptotic properties of Λ̂II
0k(β̂II , t) can also be shown by the similar arguments used

for proving theorem 5.2 with some modifications. Specifically,

n1/2{Λ̂II
0k(β̂II , t)− Λ0k(t)}

= n1/2
{

Λ̂II
0k(β̂II , t)− Λ̂II

0k(β0, t)
}

+ n1/2
{

Λ̂II
0k(β0, t)− Λ0k(t)

}
= n1/2


∫ t

0

∑n
i=1 ωik(u)

(
dNik(u)− Yik(u)β̂

T

IIZik(u)
)

∑n
i=1 ωik(u)Yik(u)

du

−
∫ t

0

∑n
i=1 ωik(u)

(
dNik(u)− Yik(u)βT

0Zik(u)
)∑n

i=1 ωik(u)Yik(u)
du

}

+ n1/2

{∫ t

0

∑n
i=1 ωik(u)

(
dNik(u)− Yik(u)βT

0Zik(u)
)∑n

i=1 ωik(u)Yik(u)
du

}

− n1/2

{∫ t

0

∑n
i=1 ωik(u)Yik(u)λ0k(u)∑n

i=1 ωik(u)Yik(u)
du

}
= n1/2

∫ t

0

∑n
i=1 ωik(u)Yik(u)(β0 − β̂II)TZik(u)∑n

i=1 ωik(u)Yik(u)
du + n1/2

∫ t

0

∑n
i=1 ωik(u)dMik(u)∑n
i=1 ωik(u)Yik(u)

= n1/2

∫ t

0

∑n
i=1 ωik(u)Yik(u)(β0 − β̂II)TZik(u)∑n

i=1 ωik(u)Yik(u)
du + n1/2

∫ t

0

∑n
i=1 dMik(u)∑n

i=1 ωik(u)Yik(u)

+ n1/2

∫ t

0

∑n
i=1(ωik(u)− 1)dMik(u)∑n

i=1 ωik(u)Yik(u)

= n1/2

∫ t

0

∑n
i=1 ωik(u)Yik(u)(β0 − β̂II)TZik(u)∑n

i=1 ωik(u)Yik(u)
du + n1/2

∫ t

0

∑n
i=1 dMik(u)∑n

i=1 ωik(u)Yik(u)

+ n1/2

∫ t

0

∑n
i=1 (1− ωik(u))Yik(u)

(
λ0k(u) + βT

0Zik(u)
)∑n

i=1 ωik(u)Yik(u)
du (5.34)
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By the uniform convergence of Zω
k (u) to ek(u), the first term of (5.34) is asymptotically

equivalent to n1/2rk(t)T
(
β̂II − β0

)
where rk(t) = −

∫ t
0 ek(u)du.

The second term on the right-hand side of (5.34) is asymptotically equivalent to

∫ t

0

1
EY1k(u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

by lemma 2, since
(
n−1

∑n
i=1 ωik(u)Y1k(u)

)−1 is of bounded variation, converges uniformly to

(EY1k(u))
−1 where EY1k(u) is bounded away from 0, and n−1/2

∑n
i=1Mik(u) converges to a

zero-mean Gaussian process with continuous sample paths.

The last term on the right-hand side of (5.34) can be written as

n1/2

∫ t

0

∑n
i=1 (1− ωik(u))Yik(u)

(
λ0k(u) + βT

0Zik(u)
)∑n

i=1 ωik(u)Yik(u)
du

=
∫ t

0

1
n−1

∑n
i=1 ωik(u)Yik(u)

n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(u)

(
λ0k(u) + βT

0Zik(u)
)
du

+
∫ t

0

1
n−1

∑n
i=1 ωik(u)Yik(u)

n1/2
(
α̃−1 − α̂II

k (u)
)

× n−1
n∑

i=1

ξi(1−∆ik)Yik(u)
(
λ0k(u) + βT

0Zik(u)
)
du (5.35)

It follows from the uniform convergence of
{
n−1

∑n
i=1 ωik(u)Yik(u)

}−1 to {EY1k(u)}−1, where

EY1k(u) is bounded away from 0, that the first term on the right-hand side of (5.35) is

asymptotically equivalent to

∫ t

0

1
EY1k(u)

n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)Yik(u)

(
λ0k(u) + βT

0Zik(u)
)
du

Based on the uniform convergence of
{
n−1

∑n
i=1 ωik(u)Yik(u)

}−1 to {EY1k(u)}−1,

n−1
∑n

i=1
ξieα (1 − ∆ik)Yik(u) to E((1 − ∆1k)Y1k(u)), n−1

∑n
i=1

ξieα (1 − ∆ik)Yik(u)βT
0Zik(u) to

E((1−∆1k)Y1k(u)βT
0Z1k(u)), (5.24) and lemma 5, the second term on the right-hand side of

(5.35) is
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∫ t

0

1
n−1

∑n
i=1 ωik(u)Yik(u)

n1/2
(
α̃−1 − α̂II

k (u)
)

×n−1
n∑

i=1

ξi(1−∆ik)Yik(u)
(
λ0k(u) + βT

0Zik(u)
)
du

= n−1/2
n∑

i=1

(
ξi
α̃
− 1
)

(1−∆ik)
∫ t

0

Yik(u)
E ((1−∆1k)Y1k(u))

× E
(
(1−∆1k)Y1k(u)(λ0k(u) + βT

0Z1k(u))
) du

EY1k(u)
+ op(1)

By combining the above results, the last term on the right-hand side of (5.34) is

n1/2

∫ t

0

∑n
i=1 (1− ωik(u))Yik(u)

(
λ0k(u) + βT

0Zik(u)
)∑n

i=1 ωik(u)Yik(u)
du

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)

∫ t

0
Yik(u)

{(
λ0k(u) + βT

0Zik(u)
)

− E
(
(1−∆1k)Y1k(u)

(
λ0k(u) + βT

0Z1k(u)
))

E ((1−∆1k)Y1k(u))

}
du

EY1k(u)
+ op(1)

= n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)

∫ t

0
Yik(u)

×

{
βT

0Zik(u)−
E
(
(1−∆1k)Y1k(u)βT

0Z1k(u)
)

E ((1−∆1k)Y1k(u))

}
du

EY1k(u)
+ op(1)

Based on (5.34) and the above results, we have that

n1/2(Λ̂II
0k(β̂II , t)− Λ0k(t))

= n1/2rk(t)T
(
β̂II − β0

)
+
∫ t

0

1
EY1k(u)

d

{
n−1/2

n∑
i=1

Mik(u)

}

+ n−1/2
n∑

i=1

(
1− ξi

α̃

)
(1−∆ik)

×
∫ t

0
Yik(u)

{
βT

0Zik(u)−
E
(
(1−∆1k)Y1k(u)βT

0Z1k(u)
)

E ((1−∆1k)Y1k(u))

}
du

EY1k(u)
+ op(1) (5.36)
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Based on Taylor expansion of U II(β̂II) around β0 and the results in (5.29), (5.33) and (5.36),

we have

n1/2(Λ̂II
0k(β̂II , t)− Λ0k(t))

= rk(t)TA−1

{
n−1/2

n∑
i=1

K∑
m=1

Mz̃,im(β0) + n−1/2
n∑

i=1

K∑
m=1

(
1− ξi

α̃

)
(1−∆im)

×
∫ τ

0

(
Rim(β0, t)−

Yim(t)
E ((1−∆1m)Y1m(t)) E ((1−∆1m)R1m(β0, t))

)
dt

}
+
∫ t

0

1
EY1k(u)

d

{
n−1/2

n∑
i=1

Mik(u)

}
+ n−1/2

n∑
i=1

(
1− ξi

α̃

)
(1−∆ik)

×
∫ t

0
Yik(u)

{
βT

0Zik(u)−
E
(
(1−∆1k)Y1k(u)βT

0Z1k(u)
)

E ((1−∆1k)Y1k(u))

}
du

EY1k(u)
+ op(1)

= n−1/2
n∑

i=1

[{
rk(t)TA−1

K∑
m=1

Mz̃,im(β0) +
∫ t

0

1
EY1k(u)

dMik(u)

}

+
(

1− ξi
α̃

){
rk(t)TA−1

K∑
m=1

(1−∆im)

×
∫ τ

0

(
Rim(β0, u)−

Yim(u) E ((1−∆1m)R1m(β0, u))
E ((1−∆1m)Y1m(u))

)
du

+(1−∆ik)
∫ t

0
Yik(u)

{
βT

0Zik(u)−
E
(
(1−∆1k)Y1k(u)βT

0Z1k(u)
)

E ((1−∆1k)Y1k(u))

}

× du

EY1k(u)

}]
+ op(1) (5.37)

=n−1/2
n∑

i=1

νik(β0, t) + n−1/2
n∑

i=1

(
1− ξi

α̃

)
ψII

ik (β0, t) + op(1)

where

νik(β, t) = rk(t)TA−1
K∑

m=1

Mz̃,im(β) +
∫ t

0

1
EY1k(u)

dMik(u) and

ψII
ik (β, t) = rk(t)TA−1

K∑
m=1

(1−∆im)
∫ τ

0

(
Rim(β0, u)−

Yim(u) E ((1−∆1m)R1m(β0, u))
E(1−∆1m)Y1m(u)

)
du

+ (1−∆ik)
∫ t

0

{
βTZik(u)−

E
(
(1−∆1k)Y1k(u)βTZ1k(u)

)
E ((1−∆1k)Y1k(u))

}
Yik(u)du
EY1k(u)

.

159



The asymptotic properties of n1/2{Λ̂II
0k(β̂II , t) − Λ0k(t)} follow from the similar arguments

used for proving theorem 5.2. This complete the proofs of theorems 5.3 and 5.4.
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TABLE 5.1: Summary of simulation results for β̂I : Zik ∼ Bin(0.5)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 0.045 1.325 1.437 0.924

0.67 0.025 1.328 1.371 0.942
1.25 -0.001 1.327 1.420 0.937
4 -0.020 1.331 1.449 0.927

62 0.1 0.024 1.081 1.121 0.924
0.67 0.008 1.075 1.083 0.933
1.25 0.013 1.076 1.102 0.939
4 -0.022 1.081 1.151 0.928

10% 111 0.1 0.017 0.645 0.669 0.947
0.67 0.016 0.643 0.651 0.956
1.25 -0.005 0.642 0.660 0.944
4 -0.023 0.642 0.676 0.941

222 0.1 -0.005 0.532 0.541 0.948
0.67 0.023 0.530 0.527 0.956
1.25 0.011 0.530 0.534 0.945
4 -0.008 0.530 0.542 0.943

25% 333 0.1 -0.017 0.357 0.361 0.951
0.67 0.010 0.357 0.366 0.948
1.25 -0.005 0.357 0.365 0.949
4 0.001 0.356 0.367 0.946

666 0.1 -0.015 0.292 0.295 0.950
0.67 0.005 0.292 0.299 0.946
1.25 -0.005 0.291 0.289 0.957
4 0.009 0.291 0.290 0.950

log(2) 3% 31 0.1 0.794 1.443 1.555 0.931
0.67 0.775 1.443 1.484 0.946
1.25 0.754 1.438 1.544 0.936
4 0.718 1.445 1.570 0.934

62 0.1 0.744 1.162 1.201 0.935
0.67 0.723 1.159 1.153 0.942
1.25 0.742 1.158 1.190 0.935
4 0.688 1.164 1.238 0.933

10% 111 0.1 0.730 0.725 0.751 0.944
0.67 0.722 0.722 0.730 0.954
1.25 0.697 0.720 0.739 0.944
4 0.677 0.720 0.764 0.934

222 0.1 0.697 0.602 0.607 0.946
0.67 0.720 0.600 0.595 0.955
1.25 0.707 0.598 0.602 0.947
4 0.685 0.598 0.618 0.941

25% 333 0.1 0.683 0.399 0.403 0.951
0.67 0.711 0.400 0.407 0.948
1.25 0.687 0.398 0.403 0.949
4 0.697 0.398 0.410 0.944

666 0.1 0.683 0.327 0.331 0.955
0.67 0.703 0.326 0.331 0.951
1.25 0.684 0.325 0.320 0.958
4 0.703 0.326 0.325 0.956
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TABLE 5.2: Summary of simulation results for β̂II : Zik ∼ Bin(0.5)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 0.026 1.350 1.427 0.931

0.67 0.016 1.354 1.366 0.950
1.25 -0.019 1.350 1.404 0.942
4 -0.030 1.355 1.426 0.935

62 0.1 0.019 1.135 1.113 0.929
0.67 0.007 1.090 1.081 0.937
1.25 0.006 1.090 1.093 0.944
4 -0.027 1.095 1.141 0.937

10% 111 0.1 0.012 0.636 0.655 0.946
0.67 0.016 0.634 0.638 0.956
1.25 -0.001 0.634 0.648 0.945
4 -0.024 0.633 0.661 0.944

222 0.1 -0.007 0.528 0.535 0.951
0.67 0.020 0.526 0.523 0.953
1.25 0.011 0.526 0.529 0.946
4 -0.001 0.525 0.536 0.946

25% 333 0.1 -0.021 0.344 0.346 0.953
0.67 0.008 0.344 0.352 0.948
1.25 -0.004 0.343 0.348 0.954
4 0.003 0.343 0.351 0.947

666 0.1 -0.017 0.288 0.290 0.948
0.67 0.004 0.288 0.294 0.946
1.25 -0.004 0.287 0.283 0.957
4 0.008 0.287 0.286 0.952

log(2) 3% 31 0.1 0.776 1.471 1.549 0.937
0.67 0.766 1.496 1.482 0.951
1.25 0.732 1.459 1.517 0.948
4 0.707 1.469 1.551 0.939

62 0.1 0.741 1.179 1.192 0.942
0.67 0.723 1.175 1.150 0.944
1.25 0.734 1.171 1.178 0.939
4 0.681 1.178 1.229 0.938

10% 111 0.1 0.720 0.717 0.738 0.945
0.67 0.723 0.714 0.715 0.953
1.25 0.699 0.712 0.724 0.946
4 0.675 0.712 0.748 0.942

222 0.1 0.693 0.598 0.602 0.948
0.67 0.718 0.596 0.590 0.954
1.25 0.706 0.594 0.594 0.950
4 0.684 0.594 0.613 0.941

25% 333 0.1 0.678 0.384 0.387 0.952
0.67 0.707 0.384 0.392 0.948
1.25 0.687 0.383 0.384 0.956
4 0.698 0.383 0.391 0.941

666 0.1 0.680 0.322 0.324 0.954
0.67 0.702 0.322 0.326 0.951
1.25 0.685 0.321 0.314 0.953
4 0.702 0.322 0.319 0.958
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TABLE 5.3: Summary of simulation results for β̂I : Zik ∼ U(0, 3)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 0.046 2.236 2.437 0.917

0.67 0.029 2.233 2.366 0.927
1.25 0.016 2.259 2.384 0.931
4 0.007 2.261 2.365 0.934

62 0.1 0.004 1.805 1.886 0.920
0.67 0.012 1.796 1.864 0.929
1.25 0.001 1.828 1.881 0.927
4 0.022 1.814 1.828 0.929

10% 111 0.1 -0.013 1.109 1.131 0.951
0.67 0.003 1.119 1.139 0.955
1.25 -0.014 1.114 1.149 0.943
4 0.007 1.117 1.103 0.954

222 0.1 -0.006 0.919 0.917 0.954
0.67 -0.004 0.923 0.931 0.955
1.25 -0.005 0.920 0.955 0.944
4 0.011 0.921 0.928 0.944

25% 333 0.1 -0.012 0.618 0.603 0.951
0.67 -0.012 0.619 0.632 0.955
1.25 -0.011 0.620 0.630 0.946
4 -0.001 0.620 0.605 0.955

666 0.1 -0.010 0.505 0.494 0.954
0.67 -0.005 0.505 0.509 0.952
1.25 0.004 0.506 0.505 0.950
4 -0.017 0.505 0.493 0.959

log(2) 3% 31 0.1 0.788 2.479 2.695 0.911
0.67 0.801 2.481 2.617 0.929
1.25 0.780 2.510 2.642 0.936
4 0.761 2.512 2.630 0.933

62 0.1 0.708 2.005 2.088 0.923
0.67 0.744 1.994 2.063 0.935
1.25 0.727 2.032 2.087 0.925
4 0.743 2.018 2.039 0.927

10% 111 0.1 0.687 1.062 1.079 0.950
0.67 0.715 1.068 1.089 0.949
1.25 0.697 1.066 1.108 0.948
4 0.718 1.067 1.054 0.956

222 0.1 0.679 0.803 0.794 0.955
0.67 0.689 0.805 0.821 0.949
1.25 0.696 0.805 0.830 0.948
4 0.710 0.805 0.800 0.952

25% 333 0.1 0.683 0.689 0.668 0.954
0.67 0.690 0.689 0.704 0.951
1.25 0.688 0.691 0.704 0.945
4 0.697 0.690 0.675 0.957

666 0.1 0.683 0.564 0.547 0.956
0.67 0.693 0.564 0.567 0.951
1.25 0.702 0.565 0.566 0.948
4 0.675 0.564 0.546 0.958
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TABLE 5.4: Summary of simulation results for β̂II : Zik ∼ U(0, 3)

event mean proposed true 95%
β0 proportion ñ θ β̂I S.E. S.D. C.I.
0 3% 31 0.1 -0.002 2.278 2.405 0.921

0.67 -0.010 2.277 2.338 0.931
1.25 -0.010 2.302 2.364 0.936
4 -0.017 2.310 2.341 0.935

62 0.1 -0.007 1.831 1.874 0.926
0.67 0.005 1.820 1.854 0.933
1.25 -0.005 1.853 1.862 0.933
4 0.022 1.841 1.818 0.930

10% 111 0.1 -0.016 1.095 1.108 0.953
0.67 0.008 1.104 1.118 0.958
1.25 -0.014 1.099 1.138 0.943
4 -0.001 1.101 1.082 0.957

222 0.1 -0.011 0.912 0.906 0.951
0.67 -0.003 0.916 0.922 0.955
1.25 -0.005 0.913 0.946 0.946
4 0.006 0.913 0.914 0.949

25% 333 0.1 -0.012 0.595 0.581 0.958
0.67 -0.009 0.595 0.609 0.951
1.25 -0.005 0.597 0.606 0.951
4 -0.008 0.596 0.585 0.957

666 0.1 -0.009 0.298 0.486 0.957
0.67 -0.003 0.498 0.502 0.952
1.25 0.004 0.499 0.498 0.954
4 -0.016 0.498 0.487 0.954

log(2) 3% 31 0.1 0.734 2.529 2.658 0.919
0.67 0.759 2.527 2.587 0.934
1.25 0.737 2.558 2.624 0.938
4 0.736 2.566 2.599 0.939

62 0.1 0.697 2.035 2.071 0.928
0.67 0.735 2.021 2.051 0.938
1.25 0.719 2.061 2.068 0.932
4 0.742 2.048 2.022 0.930

10% 111 0.1 0.695 0.995 0.995 0.947
0.67 0.706 0.997 1.017 0.943
1.25 0.689 0.997 1.026 0.947
4 0.706 0.999 1.012 0.943

222 0.1 0.680 0.767 0.753 0.954
0.67 0.690 0.767 0.780 0.946
1.25 0.696 0.768 0.782 0.945
4 0.693 0.769 0.764 0.952

25% 333 0.1 0.682 0.664 0.642 0.956
0.67 0.692 0.664 0.679 0.948
1.25 0.694 0.665 0.675 0.950
4 0.689 0.665 0.654 0.955

666 0.1 0.683 0.556 0.537 0.957
0.67 0.695 0.556 0.561 0.950
1.25 0.702 0.557 0.559 0.954
4 0.677 0.556 0.540 0.954
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TABLE 5.5: Analysis of Busselton Health Study

Variables β̂I S.E.I 95% C.I.I β̂II S.E.II 95% C.I.II

Ferritin on CHD 0.15 0.106 (-0.06, 0.35) 0.11 0.106 (-0.10, 0.32)
Ferritin on Stroke 0.03 0.089 (-0.15, 0.20) 0.02 0.088 (-0.15, 0.19)
Age 0.04 0.008 (0.03, 0.06) 0.04 0.007 (0.03, 0.06)
BMI 0.01 0.021 (-0.03, 0.05) 0.02 0.021 (-0.02, 0.06)
Cholesterol -0.07 0.065 (-0.20, 0.06) -0.04 0.060 (-0.16, 0.07)
Triglycerides 0.26 0.118 (0.03, 0.49) 0.25 0.108 (0.04, 0.46)
Diabetes Treatment 0.71 0.939 (-1.13, 2.55) 0.74 0.911 (-1.04, 2.52)
Haemoglobin -0.01 0.007 (-0.02, 0.01) -0.01 0.006 (-0.02, 0.01)
BPT 0.35 0.264 (-0.17, 0.87) 0.40 0.262 (-0.12, 0.91)
SBP 0.01 0.005 (-0.01, 0.02) 0.01 0.004 (-0.01, 0.02)
Smoke (Former) 0.23 0.187 (-0.14, 0.59) 0.24 0.181 (-0.12, 0.60)
Smoke (Current) 0.29 0.200 (-0.11, 0.68) 0.22 0.186 (-0.14, 0.58)

TABLE 5.6: Analysis of Busselton Health Study with Common Ferritin Effect

Variables β̂I S.E.I 95% C.I.I β̂II S.E.II 95% C.I.II

Ferritin 0.09 0.084 (-0.08, 0.25) 0.06 0.082 (-0.10, 0.22)
Age 0.04 0.008 (0.03, 0.06) 0.04 0.007 (0.03, 0.06)
BMI 0.01 0.021 (-0.03, 0.06) 0.02 0.021 (-0.02, 0.06)
Cholesterol -0.07 0.065 (-0.20, 0.06) -0.04 0.060 (-0.16, 0.07)
Triglycerides 0.26 0.117 (0.02, 0.48) 0.25 0.108 (0.04, 0.46)
Diabetes Treatment 0.70 0.938 (-1.13, 2.54) 0.74 0.911 (-1.05, 2.52)
Haemoglobin -0.01 0.007 (-0.02, 0.01) -0.01 0.006 (-0.02, 0.01)
BPT 0.35 0.264 (-1.64, 0.87) 0.40 0.262 (-0.11, 0.92)
SBP 0.01 0.005 (-0.01, 0.02) 0.01 0.004 (-0.02, 0.02)
Smoke (Former) 0.23 0.187 (-0.14, 0.59) 0.24 0.181 (0.12, 0.59)
Smoke (Current) 0.28 0.200 (-0.11, 0.68) 0.22 0.185 (-0.15, 0.58)
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TABLE 5.7: Analysis of Busselton Health Study Considering Gender Effect

Variables β̂I S.E.I 95% C.I.I β̂II S.E.II 95% C.I.II

Ferritin on CHD (M) 0.05 0.224 (-0.39, 0.49) 0.01 0.227 (-0.43, 0.46)
Ferritin on CHD (W) -0.11 0.114 (-0.25, 0.20) -0.01 0.113 (-0.28, 0.16)
Ferritin on Stroke (M) -0.01 0.156 (-0.31, 0.30) -0.01 0.155 (-0.31, 0.30)
Ferritin on Stroke (W) 0.18 0.117 (-0.23, 0.22) -0.01 0.115 (-0.25, 0.19)
Age 0.04 0.008 (0.03, 0.06) 0.04 0.008 (0.03, 0.06)
BMI 0.01 0.021 (-0.03, 0.06) 0.02 0.021 (-0.02, 0.06)
Cholesterol -0.03 0.066 (-0.16, 0.10) -0.01 0.061 (-0.12, 0.12)
Triglycerides 0.23 0.117 (0.01, 0.46) 0.23 0.108 (0.01, 0.44)
Diabetes Treatment 0.76 0.926 (-1.05, 2.58) 0.81 0.878 (-0.91, 2.53)
Haemoglobin -0.02 0.008 (-0.04, -0.01) -0.02 0.007 (-0.03, -0.01)
BPT 0.43 0.264 (-0.09, 0.94) 0.47 0.260 (-0.04, 0.98)
SBP 0.01 0.005 (-0.01, 0.02) 0.01 0.005 (-0.01, 0.02)
Smoke (Former) 0.08 0.193 (-0.30, 0.45) 0.07 0.189 (-0.30, 0.44)
Smoke (Current) 0.23 0.202 (-0.16, 0.63) 0.17 0.187 (-0.20, 0.53)
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH

In this dissertation, we have studied statistical methods for multivariate failure time data

arising from case-control and case-cohort studies. Specifically, the following two different

scenarios were studied: 1) case-control within cohort studies with correlated failure time

data, 2) case-cohort studies with multiple disease outcomes.

Case-control and case-cohort studies are often used to save costs and efforts in cohort

studies. Many statistical methods have been proposed for such studies, however, most of

them were limited to univariate failure time data. Multivariate failure time data are frequently

encountered in many biomedical studies. Thus, the main contribution of this dissertation is

to provide statistical methods which address both multivariate feature of the failure times

and sampling schemes such as case-control or case-cohort study designs. Our focus was

on the situation where the primary interest of the studies was on the assessment of the

effect of covariate on time to main disease outcome of interest while the correlations among

the failure times within each subject were considered as nuisance. This naturally led us to

consider marginal hazard regression models. For the estimation of the regression parameters,

we developed weighted estimating equation approach where the weights were included to

appropriately account for the sampling schemes. The cumulative baseline hazard functions

were also studied and Breslow-Aalen type of estimates were proposed.

In Chapter 3, we have considered the marginal proportional hazards regression models

for correlated failure time data from case-control studies. Two different types of weights

were considered: the inverse of the inclusion probabilities and the local average. The latter



requires additional information on the observed failure times of all the cohort members but

was more efficient than the former when the censoring time is dependent on some covariates

which the failure time is also dependent on. In Chapter 4, we have considered the marginal

proportional hazards regression models for case-cohort studies with multiple disease outcomes.

Two different forms of time-varying weights were considered: one was a multivariate extension

of Self and Prentice (1988)’s estimator for univariate failure time data while the other was

a multivariate extension of Kalbfleisch and Lawless (1988)’s estimator for univariate failure

time data. In Chapter 5, we have considered the marginal additive hazards regression models

instead.

The asymptotic properties of the proposed estimators were studied and were shown to

provide desirable asymptotic properties such as consistency and asymptotic normality. Most

of the proofs relied on modern empirical processes theory instead of famous martingale con-

vergence results primarily due to lack of predictability in the weights.

We investigated the finite sample properties of the proposed methods via simulation stud-

ies. Simulation results under various different setups confirmed that the proposed methods

worked properly under reasonable finite sample sizes.

The proposed methods were applied to real-world data sets for illustration. We analysed

the KPCDP data in Chapter 3 and the Busselton Health Study in Chapters 4 and 5.

The proposed methods in this dissertation research can be extended in several directions:

First, in this dissertation, we incorporated weights to take the sampling feature into

account. Different types of weights were also considered in an effort to enhance efficiency.

Robins, Rotnitzky and Zhao (1994) considered the general problem of regression models with

missing covariates. They introduced a class of estimating equations which can achieve a

semiparametric efficiency bound. We will explore the possibility of extending their results in

multivariate survival data to obtain more efficient estimators.

Second, in some applications, as mentioned above, the proportional hazards assumption

may not always be true, or one may be interested in modeling association from different as-

pects. Thus, in my dissertation, we considered additive hazards models for multiple disease

outcome data from case-cohort studies as an alternative to multiplicative models. A natural
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extension would be to consider other types of models including, but not limited to the propor-

tional odds model, the accelerated failure time model, or the semiparametric transformation

model.

Third, we considered two different cohort sampling designs: case-control and case-cohort.

One may be interested in applying other types of study designs. For example, a nested case-

control study design is another type of cohort sampling design which has been of particular

interest. Applying this study design when multiple disease end points are to be evaluated

would be worth pursuing.

Last, but not least, an approach which extends to accommodate the measurement error

of the covariate is highly desired. Since both case-control and case-cohort studies are mostly

conducted retrospectively, the covariate measurement might be subject to errors. For exam-

ple, the covariate measurements which rely on self-report or are affected by the passage of

time are likely to contain errors. In such situation, it would be important to develop methods

which will account for covariate measurement error.
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