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ABSTRACT 

GUIYU ZHAO: The QSARome of the Receptorome: Quantitative Structure-Activity 
Relationship Modeling of Multiple Ligand Sets Acting at Multiple Receptors 

(Under the direction of Alexander Tropsha) 
 

Recent advances in High Throughput Screening (HTS) led to the rapid growth of 

chemical libraries of small molecules, which calls for improved computational tools and 

predictive models for Virtual Screening (VS). Thus this dissertation focuses on both the 

development and application of predictive Quantitative Structure-Activity Relationship 

(QSAR) models and aims to discover novel therapeutic agents for certain diseases. 

First, this dissertation adopts the combinatorial QSAR framework created by our lab, 

including the first application of the Distance Weighted Discrimination (DWD) method that 

resulted in a set of robust QSAR models for the 5-HT7 receptor. VS using these models, 

followed by the experimental test of identified compounds, led to the finding of five known 

drugs as potent 5-HT7 binders. Eventually, droperidol (Ki = 3.5 nM) and perospirone (Ki = 

8.6 nM) proved to be strong 5-HT7 antagonists.Second, we intended to enhance VS hit rate. 

To that end, we developed a cost/benefit ratio as an evaluation performance metric for QSAR 

models. This metric was applied in the Decision Tree machine learning method in two ways: 

(1) as a benchmarking criterion to compare the prediction performances of different 

classifiers and (2) as a target function to build QSAR classification trees. This metric may be 

more suitable for imbalanced HTS data that include few active but many inactive compounds. 
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Finally, a novel QSAR strategy was developed in response to the polygenic nature of 

most psychotic disorders, related mainly to G-Protein-Coupled Receptors (GPCRs), one class 

of molecular targets of greatest interest to the pharmaceutical industry. We curated binding 

data for thousands of GPCR ligands, and developed predictive QSAR models to assess the 

GPCR binding profiles of untested compounds that could be used to identify potential drug 

candidates. This comprehensive study yielded a compendium of validated QSAR predictors 

(the GPCR QSARome), providing effective in silico tools to search for novel antipsychotic 

drugs. 

The advances in results and procedures achieved in these studies will be integrated into 

the current computational strategies for rational drug design and discovery boosted by our lab, 

so that predictive QSAR modeling will become a reliable support tool for drug discovery 

programs.
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CHAPTER 1  

INTRODUCTION

1.1. Overview 

The drug discovery and development pipeline is a notoriously time-consuming and 

costly process. To successfully launch one New Chemical Entity (NCE) from the discovery 

stage to market takes about 15 years and hundreds of millions (Figure 1.1)[1]. Applying 

Computer-Aided Drug Design (CADD) strategies could provide both time- and cost-savings 

for drug research and development programs (i.e., integration of computational tools into the 

standardized pipeline should further raise the efficiency of drug design). 

As an integral part of CADD, Quantitative Structure-Activity Relationships (QSAR) is 

experiencing one of the most important periods in its history, highlighted by the availability 

of vast chemical databases with abundant bioactivity data, such as ChEMBL[2], PDSP[3], 

and dozens of others[4]. The explosive growth of such data provides a good opportunity for 

large-scale QSAR modeling across diverse pharmaceutically relevant targets. Resulting 

QSAR models could become valuable tools for identifying novel molecular probes and 

potential leads for drug discovery. 

To develop statistically robust QSAR models, our lab built a rigorous workflow for 

development and validation of QSAR models. Major stages of this workflow include the 

division of the original datasets into training, test, and external validation sets; Y-
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randomization validation; model selection based on given statistical performance; and Virtual 

Screening (VS)[5–8]. The underlying components of this workflow, such as data curation, 

development of ensemble models, hit rate of VS, or Applicability Domain (AD)[9][9], are all 

active research areas and further improvement in overall model predictivity can be expected 

through their advancements. 

This dissertation focuses on the target class of G Protein-coupled Receptors (GPCRs), a 

group of molecular targets of great interest to pharmaceutical industry[10]. As of 2003, the 

number of GPCRs in human genome from five main families (glutamate, rhodopsin, 

adhesion, frizzled/taste2, and secretin) had been estimated at over 800[11]. However, the true 

number is much higher now due to the known existence of alternatively spliced variants and 

editing isoforms of GPCRs. In addition, GPCRs with unknown functions (i.e., lack of known 

natural transmitters), called “orphan” GPCRs, account for a large portion of newly identified 

GPCRs[12].  

The impact of GPCRs on drug discovery is phenomenal. Previous studies suggest that 

at least one-third[13], and perhaps up to half[14] of currently marketed drugs target GPCR 

family members, which represent only around 3% of known molecular targets[15]. Actively 

ongoing studies of GPCRs such as deorphanization of orphan GPCRs provide huge 

opportunities for new drug discovery. For instance, the majority of drug targets related to 

central nervous system (CNS) disorders (e.g., depression, schizophrenia and bipolar disorder) 

belong to this receptor family. However, most antipsychotic drugs have complex GPCR 

polypharmacology, leading either to therapeutic effects or undesired adverse events. Thus, it 

will be beneficial to understand functioning bioprofiles of GPCR ligands to enhance their 

potential therapeutic effects and avoid possible adverse reactions. Our goal of focusing on 
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this receptor class is to search for antipsychotic drugs, both selective to a specific GPCR and 

those that non-selectively target a combination of critical GPCRs. 

1.2. Quantitative Structure-Activity Relationship (QSAR) 

Previous studies (e.g., SAR analysis) have shown that structural features of small 

molecules have significant effect on their physicochemical and biological properties. 

Compared with conventional SAR analysis, the QSAR analysis intends to quantitatively 

explain the relationship between chemical structures and the corresponding activity. The 

QSAR analysis is based on the assumption that compounds with similar structures are 

expected to exhibit similar properties (the Similarity Property Principle[16]). This 

assumption serves as a foundation behind experimental SAR studies by medicinal chemists, 

as well as the basis for computational QSAR studies since the 1960s when Dr. Corwin 

Hansch established the very first QSAR analysis to predict chemical solubility[17]. However, 

the definition of similarity is not straightforward because the estimated degree of similarity 

depends on a number of underlying factors such as molecular descriptors, variable selection 

methods, and the similarity metrics. 

To briefly explain the fundamental concepts, any QSAR method can be generally 

expressed in the following form[18]: 

)1.1.........(..........).........,,,(ˆP 21i nDDDk Κ=  

Where Pi is the biological activity of molecule I (dependent variable), D1, D2, …, Dn 

are independent variables, which are either calculated molecular descriptors or 

experimentally measured properties of molecule i, and k(Di) is a function that relate the 

descriptors to the biological activity Pi. k(Di) could be either linear (whose output is directly 

proportional to its input variables) or nonlinear (whose output is not directly proportional to 
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its input variables) function, depending on the expected relationship between the descriptor 

values D (input variables) and target property P (output). In essence, all machine learning 

techniques aim to find such mathematical representation of k(Di) that would best reproduce 

the trend in biological activities. 

The recent explosive growth of experimental data due to the technological advances in 

High Throughput Screening (HTS)[19–22] calls for the use of fast QSAR methods to 

establish QSAR models of large and complex data sets. During the past few decades of 

development, the field of QSAR has grown rapidly in terms of novel molecular descriptors, 

nonlinear regression methods, QSAR for toxicity and ADME (Absorption, Distribution, 

Metabolism, and Excretion), and 3D QSAR[23–28]. The differences among various QSAR 

approaches mainly depend on the descriptors used to characterize the molecules and the 

machine learning methods used to establish relationships between input descriptor values and 

biological activities. To list a few popular methods, nonlinear approaches of multivariate 

analysis include the Decision Trees[29], Random Forest (RF)[30], Artificial Neural 

Networks (ANN)[31], k Nearest Neighbors (kNN)[32], and Support Vector Machines 

(SVM)[33]. However, the most serious issue faced by these methods is the High-Dimension 

Low-Sample Size (HDLSS) problem, which means that the number of descriptors (usually 

from hundreds to thousands) is much greater than the number of samples in the studied 

dataset (less than a hundred compounds is common). To overcome this problem, we have 

applied recent developed Distance Weighted Discrimination (DWD) method[34] that was 

developed as a more robust alternative to SVM and is capable of handling HDLSS problem 

common for small modeling datasets. 
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 1.3. Validation Criteria for Virtual Screening 

Aside from interpretation of found relationships, important practical application of 

validated QSAR models is to screen large untested databases to assist the discovery of novel 

bioactive chemical entities [6,7]. At this point, two important aspects should be clarified: the 

classification of QSAR approaches based on the nature of the modeled response variable 

(target property), and the importance of rigorous model validation[9].  

Generally speaking, QSAR approaches can be grouped in to three classes according to 

the target properties (referred to as dependent variables or response variables in statistical 

data modeling sense): classification, category, and continuous QSAR[35]. To explain in more 

detail, classes of target properties are different from categories in terms of whether or not 

they can be ordered in some scientifically meaningful way. The former, also regarded as 

categorical unrelated, cannot be rank ordered, i.e., classes do not relate to each other in any 

continuum. For example, compounds belonging to different pharmacological classes 

(interacting with different receptors) or classified as drugs vs. non-drugs cannot be rank 

ordered. On the other hand, the categorical related, can be rank ordered as the classes of 

target properties that cover certain ranges of values, e.g., very active, active, moderately 

active, and inactive. For the purpose of subsequent analysis, such classes are often encoded 

numerically (for example, one for active or zero for inactive). Continuous QSAR is based on 

the real values covering certain range, e.g., pKi (log-transformed binding constant values), 

IC50, ED50, etc. Understanding this classification is very important when considering the 

nature of target property, its data quality, the choice of molecular descriptors and associated 

modeling techniques. Often, continuous activity data can be categorized and modeled as such 

to avoid fitting models to the experimental noise. 
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The choice of validation procedures and criteria is often dictated by the type of target 

properties which defines the classes of QSAR practices. For validation of QSAR models, Y-

randomization test (randomization of the response variable)[36] is often used to check for the 

possibility of chance correlation[37]. Y-randomization procedure is discussed in detail in 

Chapter 2. In addition, the most critical way to ensure the predictive power of a QSAR model 

is estimating its performance on a validation (test) set which was not used in model 

development[38]. The model must demonstrate a significant correlation between predicted 

and observed target activities of compounds in such an external dataset. The practical way to 

achieve this is to divide experimental data into the training and test sets[39]. The criteria to 

select models from the training set, however, can be subject to a series of filtering rules. 

Many authors apply the leave-one-out (LOO) or leave-some-out (LSO) cross-validation 

procedure to the entire modeling dataset, which is now considered as insufficient for rigorous 

model validation[40]. For continuous QSAR models, the outcome of this procedure is a 

cross-validated correlation coefficient q2 for the training set of compounds, and R2 for the test 

set, which are calculated respectively by the formulas[38]: 

)2.1....(..............................
)(

)~(
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2
2
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where iy , iy~ , and y (or y~ ) are the actual, predicted, and the average actual (or predicted) 

activities, respectively. We emphasize highly on the ability of the models to predict the 

activity of compounds in an external validation set, instead of only considering high q2 as an 
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indicator or even the ultimate proof of the predictive power of a QSAR model, which is often 

misleading and cannot guarantee the extrapolation power of respective models.  

Correct classification rate (CCR) is often used to evaluate the predictivity of a binary 

classification model (i.e., for a two categories of activity that are usually called “active” and 

“inactive”). CCR is the average of sensitivity (SE) and specificity (SP), which are calculated 

by below formulas[41]: 

)4.1.(..............................)(
FNTP

TP
SEySensitivit

+
=

 

)5.1.(..............................)(
FPTN
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SPySpecificit

+
=

 

)6.1........(........................................
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)7.1.(....................
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+++
+

=  

where TP, TN, FP, FN are true positives (accurately predicted actives), true negatives 

(accurately predicted inactives), false positives (inactives predicted as actives), and false 

negatives (actives predicted as inactives), respectively. Together they compose a confusion 

matrix (Figure 1.2) which is the common resort to evaluate a classifier. CCR is preferred as a 

performance measure of a classifier since it is not biased to the major class in the case of 

imbalanced data in which the minority class is often more important (e.g., active compounds 

are often fewer than inactive ones). However, predictive accuracy (Equation 1.7) simply 

favors performance of the majority class. 

It should be noted that data balancing is an important issue to consider before running a 

classification modeling. Most machine learning algorithms assume that their training sets are 

well balanced, and demonstrate poor performance when they deal with imbalanced data 
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sets[42]. However, in many cases we cannot control the influence of this imbalance issue by 

simply re-sampling the data sets (e.g., removal of certain cases in the major class). As a result, 

we need to resort to other algorithms resistant to the issue. 

1.4. Thesis Outline 

This dissertation concentrates on the application of QSAR approaches to discover novel 

antipsychotic drugs. Extensive efforts have been made in terms of data collection and 

curation, QSAR modeling, and the quest for suitable evaluation criteria. 

Chapter 2 illustrates the successful practice of identifying FDA-approved drugs with 

newfound 5-HT7 binding affinity by applying rigorous QSAR modeling workflow. The 5-

HT7 receptor, a member of the GPCR family, is postulated to be a potential drug target for 

psychotic disorders, especially for schizophrenia. A combi-QSAR approach established by 

our lab was used to develop predictive continuous models using k Nearest Neighbor (kNN) 

and classification models using Distance Weighted Discrimination (DWD). Models were 

rigorously validated by Y-randomization and demonstrated high accuracy in predicting 

external datasets. VS of the publically available compound database World Drug Index (WDI) 

followed by experimental testing successfully identified five known drugs with first 

identified 5-HT7 binding affinity. Two of these drugs have been confirmed as 5-HT7 receptor 

antagonists, which could be repositioned to treat schizophrenia. 

In Chapter 3, we propose a new evaluation metric, the Economic Ratio (ER), not only 

as a performance parameter for the developed models, but also as a target function during 

model training. After applying this metric with the Decision Tree (DT) machine learning 

method to various datasets, we found that some trees generated using ER differ in structure 

and performance from those generated using traditional metrics for branch selection. The 
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cost/benefit economic ratio, ER, can thus be used in two different but complementary ways: 

(1) as a benchmarking criterion to compare the prediction performances of various classifiers 

and (2) as a target function to build QSAR classification trees. 

In Chapter 4 and Chapter 5, we extend our modeling strategy to develop multiple robust 

predictors for a set of GPCR targets. The resulting models can be used to predict the binding 

bioprofiles of untested chemicals. In summary, we curated and integrated binding data for 

thousands of GPCR ligands extracted from both ChEMBL and PDSP databases. First, we 

used 5-HT1A as a scheme to decide what properties should be applied for data collection and 

modeling processes, which resulted in rigorous standards for both chemical and biological 

data curation. We then developed robust classification QSAR models based on the ligands of 

the large set of GPCRs; that is, 34 GPCRs in total including 5-HT1A. The validated models 

were applied to assess the GPCR binding profiles of 13 drugs not present in the modeling 

sets, and we found the accuracy was as high as 70.5%. This extensive study yielded a 

compendium of validated QSAR potency predictors, the GPCR QSARome, providing an 

effective in silico means to search for novel antipsychotic drugs and to unveil their complex 

polypharmacological nature. 
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Figure 0.1. R&D model yielding costs to successfully discover and develop a single new 
molecular entity (NME).  
Money unit: million. Work in process, WIP. Probability of successful transition from one 
stage to the next, p(TS). 
(Modified from Steven M. Paul, et al. Nature Reviews Drug Discovery, 2010, 9: 203-214.) 

 

 Predicted Negative Predicted Positive 

Actual negative TN FP 

Actual Positive FN TP 

Figure 0.2. The confusion matrix used to evaluate a classifier. 
Note: The columns are the predicted classes and the rows are the actual classes. TN is the 
number of negative cases corrected predicted (True Negatives), FP is the number of negative 
cases incorrectly predicted as positive (False Positives), FN is the number of positive cases 
incorrectly predicted as negative (FN), and TP is the number of positive cases correctly 
predicted as positive (True Positives). 
 
 



 
 

CHAPTER 2  

APPLICATION OF CURRENT CHEMINFORMATIC TECHNIQUES TO 

HUMAN 5-HT7 DATASETS TO BUILD VALIDATED AND 

PREDICTIVE QSAR MODELS FOR DRUG REPURPOSING

2.1. Introduction 

5-hydroxytryptamine (5-HT) receptors are involved in a large number of physiological 

and behavioral functions[43–46]. Many antipsychotic drugs act through multiple molecular 

targets including 5-HT receptors. Although it received little attention when first cloned in 

1993, the 5-HT7 receptor has become the most studied member of the 5-HT receptor family 

now[47]. Several distribution studies indicated that the 5-HT7 receptors are located mainly in 

thalamus, hippocampus, and hypothalamus with relatively lower concentrations in the 

amygdala and cerebral cortex[48,49]. Additionally, 5-HT7 receptor subtypes are found in 

smooth muscle cells and other peripheral tissues[50]. Scientific research on the 5-HT7 

receptor has mainly focused on its therapeutic effects for psychiatric disorders, especially for 

major depression[51] and schizophrenia[52]. Previous studies show that 5-HT7 antagonists 

modulate the level of 5-HT and thus increase neurogenesis, indicating 5-HT7 receptor is a 

promising molecular target for antidepressants[53]. A series of studies identify 5-HT7 

receptors as critical in hippocampus-dependent functions including learning and memory[54–

56]. In addition, the presence of 5-HT7 receptor subtypes in smooth muscle cells suggests 
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that 5-HT7 ligands could be effective therapeutic agents for migraine[57]. Other possible 

roles for the 5-HT7 receptor include hypertension[58] and irritable bowel syndrome[50,59]. 

Despite the fact that the 5-HT7 receptor is an attractive target for psychiatric disorders 

and many other diseases, no 5-HT7 ligands (antagonists or agonists) are currently available 

for clinical use.  Recent projects to identify potentially therapeutic 5-HT7 ligands have relied 

on high throughput screening or chemical optimization of existing 5-HT7 ligands[60–69]. 

Their results were limited by low hit rate or only modification of existing chemical scaffolds, 

and none of the ligands produced by their studies have proved successful in clinical practice. 

To address these problems, we employed QSAR modeling to search for potent 5-HT7 

ligands. Our laboratory has used a combinatorial QSAR strategy involving the machine 

learning method k Nearest Neighbor (kNN) for several years (cf., Figure 2.1). Previous 

studies demonstrate that virtual screening with combinatorial QSAR models yields diverse 

chemicals targeting the protein or pathway of interest[8,70–74]. In this study, we 

incorportated the Distance Weighted Discrimination (DWD)[34] method into our combi-

QSAR approach. Two datasets used as the basis for our modeling were provided by the 

NIMH Psychoactive Drug Screening Program (PDSP) and extracted from the World of 

Molecular Bioactivity (WOMBAT) database, respectively (see Materials and Methods). 

Little study has been done in this area with a search of literature uncovering only two 

publications focused on ligand-based modeling of 5-HT7 ligands. Based on a set of 22 5-HT7 

inverse agonists, Vermeulen et al.[75] built both a pharmacophore model and a CoMFA 

model (R2=0.97, SE=0.18). Using the  pIC50 values of 81 quinazolinone derivatives, Jalali-

Herav et al.[76] used a modified modeling approach which combined ant colony 

optimization (ACO) and adaptive neuro-fuzzy interference system (ANFIS) to generate 
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QSAR models (R2=0.775). Neither of these previous studies performed external validation of 

the their models or applied their models to virtual screening. 

Through use of rigorous external validation, we demonstrated that our QSAR models 

are predictive. Application of kNN models along with DWD classification models to virtual 

screening identified droperidol and perspirone as potent 5-HT7 binders. The subsequent 

binding assays confirmed that their binding affinity were at nano-molar level. Neither drug 

had previously been studied for its relationship to the 5-HT7 receptor and therefore, are both 

novel binders.  Most of the confirmed hits produced by the study are marketed drugs, 

indicating the methods may be useful in drug repurposing. 

2.2. Materials and Methods 

2.2.1. Data  

The original dataset provided by PDSP contained 137 compounds including 67 5-HT7 

binders (Ki values greater than 10,000nM) and 70 non-binders (Ki values less than 

10,000nM), whereas the dataset extracted from the WOMBAT database had 80 binders (See 

Supporting Information). Both datasets were curated according to the “Trust, but Verify” 

protocol established by our lab[77]. The binding affinity of 5-HT7 binders (Ki) provided by 

PDSP were measured as described previously[78]. Ki values, which spanned over four orders 

of magnitude for both datasets (cf., Figure 2.2), were converted to the pKi scale (-logKi) in 

which higher values indicated exponentially greater binding affinity. 

Virtual screening (VS) using developed models based on the datasets was applied to the 

curated World Drug Index (WDI) database containing ca. 52,000 compounds[79]. The VS 

hits were assayed by the same lab providing the PDSP dataset. 
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2.2.2. Generation of MolConnZ Descriptors  

The MolConnZ4.09 (MZ4.09) software[80] was used for the computation of a wide 

range of topological indices (descriptors) of molecular structures[81–88]. MZ4.09 produced 

more than 800 different descriptors. Descriptors with zero variance were eliminated from 

consideration. Also, if a pair of descriptors had correlation coefficient larger than 0.95, one 

would be eliminated. MZ4.09 descriptors were range-scaled because the absolute values of 

individual types could differ by orders of magnitude[32]. Range scaling prevents undesirable 

overweighting of descriptors with high ranges of values when calculating compound 

similarities in QSAR modeling procedures. Descriptor values for the entire dataset were 

scaled to be within the interval of [0,1]. 

2.2.3. Applicability Domain (AD) 

A QSAR model can predict the target property of any compound for which chemical 

descriptors can be calculated. However, if a compound is highly dissimilar from all 

compounds of the modeling set, reliable prediction of its activity is unlikely. A concept of 

AD was developed to avoid such an unjustified extrapolation in activity prediction. 

In regression modeling, AD was defined as the Euclidean distance threshold DT 

between a compound under prediction and the compound’s closest nearest neighbor in the 

training set. Euclidean distance dij between any two molecules i and j in the M-dimensional 

descriptor space (M is the number of selected descriptors) and DT was calculated as follows: 
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Here, y  is the average Euclidean distance between each compound and its k-nearest 

neighbors in the training set (where k is the parameter optimized in the course of QSAR 

modeling, and the distances are calculated using descriptors selected by the optimized model 

only), σ is the standard deviation of these Euclidean distances, and Z is an arbitrary cutoff 

parameter to control the significance level. We set the default cutoff value of Z (Zcutoff) at 0.5, 

which formally placed the allowed distance threshold at the mean plus one-half of the 

standard deviation. 

We also defined the AD in the entire descriptor space to exclude outliers for VS 

databases.  The same formula (2.2) was used with k=1 and Zcutoff=0.5, but Euclidean 

distances were calculated using all calculated descriptors. 

Thus, if the distance of the external compound from its nearest neighbor in the training 

set within either the entire descriptor space or the selected descriptor space exceeds these 

thresholds, a prediction is not made. This approach has been applied in our recent 

work[5,8,70,89]. 

2.2.4. Structural Outliers Exclusion  

A similarity search based on Euclidean distance was performed prior to modeling 

procedures to exclude structural outliers, i.e., compounds that are highly dissimilar to the 

majority in the dataset. In our studies, molecular dissimilarity is denoted by the Euclidean 

distance (Equation 1). For the PDSP dataset, Zcutoff values were set as 1.5  to keep 62 binders 

for regression modeling and 3.0 to include another 38 non-binders to compose a classificatin 

modeling set. For the WOMBAT dataset, Zcutoff value was 0.8 to exclude 14 outliers from the 

80 5-HT7 binders. 
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2.2.5. Modeling and External Evaluation Sets 

For all regression and classification datasets, 18% of the compounds were randomly 

selected and designated as the external evaluation set while the remaining compounds were 

deemed the modeling set. The compounds with the highest and lowest activity values were 

kept in the modeling set for regression modeling. The modeling sets were used for 

construction and selection of models while the external evaluation sets, which were not 

involved in the process of model development, were used to validate the predictive power of 

accepted models. 

2.2.6. DWD Classification Method  

Distance Weighted Discrimination (DWD) was developed by Marron et al.[34] to 

classify High-Dimension Low-Sample Size (HDLSS) datasets in a wide range of applied 

contexts. The method was invented to circumvent the drawback of the popular Support 

Vector Machines (SVM) method[33] in HDLSS settings, as illustrated in Figure 2.3. The toy 

data used there consist of two classes, each with 20 data points, that follow a 50 dimensional 

spherical Normal distribution. The only difference is that the means have been shifted. When 

the data have been projected onto the direction of shift, the result is shown in Figure 2.3a. 

The projections of the data are shown on the horizontal axis, and a random height is used for 

good visual separation. Smooth histograms also show the subpopluation nature of the data. 

Note that good separation of the classes is available from projecting the data onto this 

optimal direction. However, this direction is unknown, and is challenging to find from the 

full 50 dimensional data set. A potential candidate, called the Maximal Data Piling (MDP) 

direction, studied in Ahn and Marron (not published yet), is considered in Figure 2.3b. Note 

that in this direction, projections of the data for each class pile up at a single point (hence the 
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name). To make this happen, the MDP direction must be driven by small scale noise artifacts 

of the data. This indicates that this classification direction will have poor generalizability 

properties, which is confirmed by the large angle (58°) to the optimal direction. SVM 

provides a major improvement over MDP, as shown in Figure 2.3c. These projections show 

even better separation of the data (in fact this separation is maximized by the SVM 

direction). The much better generalizability of SVM is shown by the much smaller angle 

(36°) to the optimal direction. However, note that there are also some data piling issues for 

SVM, with a number of points piled on the margins (the boundaries of the empty region 

between classes). This again suggests undue influence from small scale noise artifacts which 

may be hampering generalizability. DWD overcomes this problem by modifying the 

underlying optimization problem, to one which allows all data points to have a stronger 

influence on the direction vector. In the resulting projection plot shown in Figure 2.3d, the 

projections are similarly separated, but there is no data piling. The beneficial effect of this is 

better generalizability, reflected by the even smaller angle of 26°. 

Like SVM, the computation of DWD is based on computationally intensive 

optimization, but while SVM uses well-known quadratic programming algorithms[90], DWD 

uses recently developed interior-point methods for so-called Second-Order Cone 

Programming (SOCP) problems[91]. Detailed comparison of DWD with SVM is given by 

Marron et al.[34]. In this study, Matlab-based algorithms of SVM and DWD were used 

(available at http://www.unc.edu/~marron/marron_software.html). 

2.2.7. Sphere Exclusion Algorithm  

For regression modeling, the modeling set was divided into multiple training and test 

sets. Ideally, the test sets should satisfy the following criteria: 1) The distribution of activities 
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in training and test sets should be similar. 2) Training set should be distributed within the 

entire area of the dataset distribution. 3) All points of the test set should be within the AD 

defined by the training set at least in the entire descriptor space. 4) Each point of the training 

set should be close to at least one point of the test set. Requirement 4) can be satisfied by 

dividing a dataset into a small number of bins and selecting one compound from each bin as 

well as most active and most inactive compound into the training set. The Sphere Exclusion 

algorithm developed by our lab and used in several publications[39,92] was applied to 

address criteria 2) – 4). 

2.2.8. kNN Regression Modeling Method  

The k Nearest Neighbor (kNN) QSAR method used in this study employs the kNN 

pattern recognition principle[93] and sphere exclusion mentioned above. In short, a subset of 

variables (descriptors) is selected randomly as a Hypothetical Descriptor Pharmacophore 

(HDP)[7]. The HDP is validated by leave-one-out cross-validation (LOO-CV), where each 

compound is eliminated from the training set and its 5-HT7 binding affinity is predicted as 

the weighted average of the binding affinity  of the k most similar molecules (k varies from 1 

to 5): 

∑
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In equations (2.3) and (2.4), y% is the predicted activity value of the compound and yi is 

the experimentally measured activity value of its i-th nearest neighbor. The dissimilarity di 

between the query molecule and its i-th nearest neighbor was represented by the Euclidean 
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distance (equation 2.1) between the corresponding points in the multidimensional descriptor 

space. Essentially, the neighbor with the smaller distance from a compound is given a higher 

weight wi in calculating the predicted activity.  

Simulated annealing was used to select the optimal list of variables, i.e. HDP. Details of 

the kNN method implementation including the description of the simulated annealing 

procedure used for stochastic sampling of the descriptor space, are given elsewhere[32].  

The following acceptance criteria were used for selecting regression QSAR 

models[38]: (i) leave-one-out (LOO) cross-validated q2 (which is also used as the target 

function, i.e., it is optimized by the QSAR modeling procedure); (ii) square of the correlation 

coefficient R (R2) between the predicted and observed activities; (iii) coefficients of 

determination (predicted versus observed activities2
0R , and observed versus predicted 

activities 2
0'R ); (iv) slopes k and k' of regression lines (predicted versus observed activities, 

and observed versus predicted activities) through the origin. These criteria  were calculated 

according to the following formulas: 
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where iy  and iy~  are observed and predicted activities, R0
2 and R'0

2 are the coefficients 

of determination for regressions through the origin for predicted vs. observed, and observed 

vs. predicted activities, respectively, k and k΄ are the corresponding slopes, and kyy r =0~  and 

ykyr ~'0 =  are the regressions through the origin for predicted vs. observed and observed vs. 

predicted activities.  

In this study, acceptance criteria for kNN regression models were set to (i) q2
≥0.7; (ii) 

R2
≥0.7; (iii) (R2-R0

2)/R2<0.1 and 0.90≤k≤1.10, or (R2-R'0
2)/R2<0.1 and 0.90≤k'≤1.10; (iv) |R0

2-

R'0
2|<0.2. 

2.2.9. Y-Randomization Test  

To establish model robustness, the Y-randomization (randomization of the response 

variable) test was carried out. This test consists of repeating all the calculations with 

scrambled activities of the training sets. The goal of the procedure is to evaluate the 

possibility that good statistical results are due to over-fitting or chance correlation. The 

statistical significance of QSAR models for training sets was evaluated with the standard 
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hypothesis testing method[94,95]. In this approach, two alternative hypotheses are 

formulated: (1) for H0, h=µ; (2) for H1, h>µ, where µ is the average value of q2 for random 

models and h is that for the actual models. The null hypothesis, H0, states that the QSAR 

models for the actual dataset are not significantly better than random models whereas the 

alternative hypothesis, H1, assumes the opposite (i.e., that the actual models are significantly 

better than the random models). Hypothesis rejection is based on a standard one-tail test, 

which involves the following procedure. 

(1) Determine the average value of q2 (µ) and its standard deviation (σ) for random 

models; 

(2) Calculate the Z score that corresponds to the average value of q2 (h) for the actual 

models: 

Z = (h- µ)/σ    (2.8) 

(3) Compare this Z score with the tabular critical values of Zc at different levels of 

significance (α)[96] to determine the level at which H0 should be rejected. If the Z score is 

higher than tabular values of Zc (cf., Table 2.1), one concludes that at the level of 

significance that corresponds to that Zc, H0 should be rejected while H1 should be accepted.  

2.2.10. Consensus Prediction and Virtual Screening (VS) using kNN Regression Models  

It is critical to validate QSAR models by assessing their prediction accuracy for an 

external evaluation set which was not used in model building and selection. Our previous 

experience suggests that results obtained by consensus prediction (i.e. by averaging 

predictions from multiple QSAR models) are often more accurate than predictions made by 

individual models. Compounds in the external evaluation set were predicted by all models 

that passed acceptance criteria. Each compound was predicted by a model only if the 
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compound was determined to be in the AD for that model. The average predicted activity, the 

variance of the prediction values, and the fraction of models that predict the activity (≥90% 

in this study) were calculated for each compound. 

Predictive QSAR models were used to virtually screen the WDI database. MZ4.09 

descriptors were calculated for each compound in the database and normalized based on the 

minimal and maximal values of each descriptor for the regression datasets and classification 

dataset, respectively. As illustrated in the workflow (cf. Figure 2.1), first, the DWD 

classification model was applied to filter out compounds that were predicted as non-binders; 

then consensus prediction using rigorously validated kNN-QSAR models was applied. Each 

compound was required to be within the global AD defined by the entire descriptor space. 

Furthermore, a compound was considered out of the AD if it was found out of the ADs of 

more than 10% of all used models. There was also a threshold on the standard deviation of 

estimations across all used models: if it was higher than 0.80, prediction was considered 

unreliable. Finally, available consensus hits were submitted for experimental validation. 

2.2.11. Experimental Validation of Screening Hits 

Experimental validation of the screened hits was performed as per the Assay Protocol 

Book available on the NIMH Psychoactive Drug Screening Program (PDSP) website 

(http://pdsp.med.unc.edu/), including both binding assay and functional assay methods[3]. 

2.3. Results and Discussion 

2.3.1. DWD Classification Modeling  

DWD and SVM classfication models were built and validated with the dataset 

composed of 100 compounds (62 binders and 38 non-binders) after similarity search (Zcutoff = 

3.0). It was then split into a training set (51 binders and 31 non-binders) and a test set (11 
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binders and 7 non-binders). The classification models discriminated binders and non-binders 

based on their projections on the DWD or SVM direction vectors. Compounds with 

projections larger than the DWD or SVM thresholds were predicted as binders, while those 

with smaller projections were predicted as non-binders. Correct Classification Rate (CCR) 

was calculated to evaluate the performance of the classification models: 









+=

012

1

N

TN

N

TP
CCR    (2.9) 

where N1 and N0 are the number of binders and nonbinders in the dataset, TP and TN 

are the number of known binders predicted as binders (true positives) and the number of non-

binders predicted as non-binders (true negatives). CCRs for the training and test sets were 

denoted as CCRtrain and CCRtest, respectively. 

The threshold of the SVM model (0.2) was determined by the average of the boundaries 

for binders and non-binders, whereas that of the DWD model (0.8) was determined by the 

intersection point of the probability distribution curves of the two classes. 

Results of the DWD and SVM classfication models built on the same dataset are shown 

in Figure 2.4. CCRtrain and CCRtest of the DWD model were 0.88 and 0.93, respectively. 

CCRtrain of the SVM was 1.00; however, the more meaningful CCRtest was only 0.72 (cf., 

Table 2.2). Furthermore, the range of the entire data points for SVM was narrower than that 

for DWD. As a result, we conclude that DWD is a better method to classify the status of two 

classes, especially when dealing with a relatively small dataset. 

2.3.2. kNN QSAR Regression Modeling  

Similarity analysis was performed as described above to exclude structural outliers in 

the original datasets. Consequently, 62 binders from PDSP and 66 binders from WOMBAT 

were remained to build respective regression models (Zcutoff =1.5 and 0.8, respectively). 
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The PDSP dataset was first randomly divided into a modeling set (51 binders) and an 

external evaluation set (11 binders). After applying the Sphere Exclusion algorithm to the 

modeling set, 29 splits of training and test sets were ultimately accepted. 216 models were 

accepted for further consensus prediction. These models satisfied all acceptance criteria. 

Y-randomization test was carried out with randomized activity values for the training 

sets. The largest q2 obtained from random dataset was 0.76 with poor R2=0.002. The Z score 

that corresponds to the average q2 value in the standard one-tail hypothesis test was 2.88, 

indicating that the level of significance α < 0.01 (cf., Figure 2.5 and Table 2.1). The result of 

Y-randomization test confirmed that the result obtained for the actual dataset was statistically 

better than those obtained for random datasets at the given level of significance, meaning that 

the actual kNN models were robust. 

2.3.3. Models Validation using External Evaluation Set  

The 216 kNN/MZ4.09 models based on the PDSP dataset that satisfied all acceptance 

criteria  were used to make a consensus prediction of the binding affinity of the external 

evaluation set. Figure 2.6 shows the correlation between experimentally measured and 

predicted binding affinity for this external evaluation set. Statistical results suggested the 

models have reasonable predictive abilities, with R2 of 0.61 and R0
2 of 0.59 for 11 

compounds. While most compounds were predicted within a reasonable range of log units, 

the compound ketanserin was a significant activity outlier (prediction error as large as 1.86 

log units). 

Modeling based on the WOMBAT dataset followed the same procedures, and the 

results from both PDSP and WOMBAT are summarized in Table 2.3. 
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2.3.4. QSAR-based Virtual Screening  

The accepted DWD and kNN models were selected for virtual screening based on their 

strong performance in model validation. The DWD classification model was applied first and 

filtered out about 39% compounds as non-binders from the WDI database. Then the 216 

kNN/MZ4.09 models based on the PDSP dataset with defined applicability domains were 

applied to screen the remained compounds. In consensus prediction, predicted pKi values 

from individual model were averaged. Finally, 43 structurally diverse hits with predicted pKi 

values greater than 7.98 were prioritized as the most potent consensus hits. 

For each consensus hit, we searched published literature and databases using both 

PubMed and the ChemoText knowledge base[97], but found that none of the compounds had 

ever been reported as 5-HT7 receptor binders. Some of the compounds, however, were 

reported as potent binders of related neural receptors, or possessing antipsychotic activities 

with unknown mechanisms of actions. 

2.3.5. Experimental Validation  

Based on the commercial availability of the concensus hits, seven hits were purchased 

(see supporting information) and submitted for binding affinity assay and then functional 

assay if identified as a binder. 

As shown in Table 2.4, droperidol and perospirone had the best Ki values as 3.5 nM and 

8.6 nM, respectively. Altanserin and clomipramine had moderate Ki values as 143 nM and 46 

nM, respectively. Pravadoline possessed micro-molar scaled binding affinity as 3.18 µM. The 

remaining two compounds showed no binding affinity to 5-HT7 receptor. The results showed 

a high hit rate for our virtual screening strategy (5 out of 7). Although the sample size was 
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too small to estimate the overall hit rate, more potential receptor binders are expected among 

those hits that are not currently available. 

Predictions of all above compounds by the kNN models based on the WOMBAT 

dataset are also summarized in Table 2.4. The results are very consistent with the predictions 

by the PDSP models. 

A functional assay of six hit compounds were then applied to identify their binding 

functions (agonist or antagonist). According to the primary functional assay results, 

droperidol and perospirone completely inhibited 5-HT7 receptor activity at the concentration 

of 10 µM, indicating both were 5-HT7 receptor antagonists. Other tested compounds 

including altanserin and clomipramine showed neither agonist activity nor antagonist activity 

(cf., Figure 2.7). 

Amisulpride was recently identified as a potent 5-HT7 receptor antagonist[94], a 

finding confirmed by [3H]LSD labelled competition binding assay (Ki = 11.5±0.7 nM). 

However, amisulpride had a lower affinity for [3H]5-CT labelled 5-HT7a receptors (Ki 

=135.5±15.8 nM), which was consistent with our VS prediction (Ki = 174.7 nM). Recently, 

Keiser MJ, et al. used chemical similarity to predict new molecular targets for known drugs - 

in nature, a drug-repurposing practice[95]. Their study confirmed that the drug N,N-

dimethyltryptamine (DMT) was associated with serotonergic receptors including the 5-HT7 

receptor. The Ki value of DMT to 5-HT7 receptor was reported as 210 nM in that publication, 

while the predicted Ki value by our models was 920 nM, which was in the acceptible range of 

prediction error. Lately, four compounds tested by Roth’s lab were found in our prediction 

list. These are fluspirilene (predicted pKi=7.52; experimental pKi=7.39), raloxifene (predicted 

pKi=7.87; experimental pKi=5.91), DO-897 (predicted pKi=6.74; experimental pKi=7.85), 
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and fendiline (predicted pKi=6.15; experimental pKi=5.51). The predictions of fluspirilene 

and fendiline by our models were nearly consistent with the tested results. These compounds 

discussed above were not included in our assay list, because their VS prediction scores were 

not on the top of our VS hit list. The confirmation of these hits as 5-HT7 ligands give further 

evidence that our models are reliable for virtual screening. 

2.3.6. Data quality and QSAR modeling  

It is also noticed in this study that data quality affected modeling results significantly. 

We also extracted 81 5HT7 binders with unique structures from the public online PDSP Ki 

database. Preparation of this dataset immediately brought our attention to the quality of the 

data. Most of the binders were studied in pharmacological context, and the same compound 

had variations in acitivty among different publications. Take a few of them for example (cf., 

Table 2.5), ergotamine had Ki values of 17.37, 138.03, and 1291 nM from three different labs; 

Ki values of ketanserin ranged from 206 to over 7943.28 nM; NAN-190 even had conflict Ki 

values (less and greater than 1000 nM, respectively). As mentioned before, ketanserin is also 

included in the external evaluation set of the PDSP dataset used successfully in this study, 

but it was an obviously activity outlier according to the external validation (cf., Figure 2.6A). 

Thus the accuracy of Ki value for ketanserin used in this study (162.5 nM) is questionable. 

Variations of more than three folds usually cause unreliability. Several treatments of this data 

according to species, radioligands, and even exclusion of compounds with the greatest 

acitivity variations all failed to generate successful QSAR models. 

2.4. Conclusions 

Our group has established a robust hit identification strategy that combines rigorously 

validated QSAR models and virtual screening[98,99]. It has been proved that the workflow is 
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capable of identifying potent compounds with novel chemical scaffolds. Specific cases are 

anticonvulsant agents[41], D1 dopaminergic antagonists[89] and HDAC inhibitors[72]. This 

paper shows that we can achieve even more promising results through a modified modeling 

strategy, and the strategy is quite sensitive to the data quality. To highlight the features in our 

current protocol, first, kNN models are built using variable selection to  select the  subset of 

descriptors that are predictive of biological activity. Second, DWD is a new statistical 

strategy to circumvent the overfitting problem commonly suffered by several popular 

classification methods like SVM. In this case, it classified 5HT7 binders and non-binders 

better than SVM (Figure 2.4) as indicated by CCRtest, so the incorporation of DWD into the 

classification screening methods could potentially enhance the hit rate achieved by kNN 

models. 

We subsequently used the rigorously validated models to screen the WDI database with 

over fifty thousand compounds, and selected 43 consensus hits that were predicted as potent 

5-HT7 binders. Seven commercially available hits were submitted for experimental 

validation. Among the seven, two were identified as potent 5-HT7 receptor binders, two were 

confirmed to have medium binding affinity, one had weak binding affinity, and the 

remaining two were confirmed to be false positives. As shown in Table 2.4, droperidol had 

the lowest Ki value as 3.50 nM. Futhermore, all of the five confirmed binders were tested in a 

functional assay. The two best binders, droperidol and perospirone, completely inhibited 5-

HT7 activity (cAMP production) at the concentration of 10 µM , and thus were identified as 

potent 5-HT7 antagonists. In addition, we have found no evidence in literature that these 

drugs have been tested against the 5-HT7 receptor, and therefore we believe that we have 

found novel 5-HT7 binders. 
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Additional six 5-HT7 binders confirmed by recent publications were also tested by our 

models. All were predicted as binders, in which amisulpride, DMT, fluspirilene, and 

fendiline were predicted quite close to the experimental results, with exception of raloxifene 

and DO-897. 

It is valuable that the two 5-HT7 antagonists identified by our study, droperidol and 

perospirone, are both marketed drugs. Droperidol was approved by FDA before 1984 (FDA 

cannot verify dates on drugs approved before 1984). It is used in conjunction with an opioid 

analgesic such as fentanyl (e.g. innovar) to maintain the patient in a calm state of 

neuroleptanalgesia before the surgery[100]. It is also used as an antiemetic[101] and for the 

control of agitation in acute psychoses[102]. Droperidol binds strongly to postsynaptic 

GABA receptors[103] and selectively block alpha-adrenergic receptors[104]. It also binds to 

dopaminergic receptors such as D2 and D4 receptors potently[105]. However, the exact 

mechanism of action is still unknown. Our study revealed that droperidol might act through 

the antagonism of the 5-HT7 receptor. In addition, since the 5-HT7 receptor has high 

correlation with psychotic diseases such as schizophrenia, droperidol may be repurposed as a 

drug to treat schizophrenia. Perospirone is a novel atypical antipsychotic drug approved in 

2001[106]. It was considered to act through antagonizing 5-HT2A and D2 receptors[107,108]. 

Since the 5-HT7 receptor pharmacologically resemble 5-HT2 receptors[78], perospirone may 

also target the 5-HT7 receptor in addition to the well-known 5-HT2A and D2 receptors. 

Overall speaking, our findings may unveil both the physiological roles of the 5-HT7 receptor 

and unknown mechanisms of action for certain drugs and chemicals. 
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Tables and Figures 

 

Figure 0.1. The workflow of QSAR model building, validation and virtual screening 
applied to the 5-HT7 dataset and WDI database. 
Number of compounds in each step is bracketed. 
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Figure 0.2. Distribution of pKi values of each dataset extracted from PDSP and 
WOMBAT.  
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Figure 0.3. The q2 and R2 distribution for 5-HT 7 kNN QSAR models built with actual activity 
data versus models generated with randomized data (Y-randomization).  
For each case, a total of 6090 models were generated using the cutoff of 0 for q2. The 
standard one-tail hypothesis test was conducted to evaluate the statistical significance of 
QSAR models for the actual data set. The Z score that corresponds to the q2 value is 2.88, 
indicating that the level of significance α < 0.01 (Zc = 2.33). 
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A                                                                   B 

Figure 0.4.Comparison of actual and predicted pKi for the external evaluation set using 
the best kNN models.  
A: External evaluation set (R2=0.61, R0

2=0.59); B: Training and test sets (q2=0.73, R2=0.81). 
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Figure 0.5. Functional assay of hit compounds against the 5-HT7 receptor.  
Droperidol and perospirone are receptor antagonists indicated by the reduced expression 
level of cAMP production. 
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Figure 0.6.Toy Example, illustrating potential for “data piling” problem in HDLSS 
settings, for discrimination using SVM.  
Figure A shows projection of the data on the theoretically optimal classification direction. 
Figure B is projection on the MDP direction (with poor generalizability, reflected by large, 
58°, angle to the optimal). Figure C is projection on the SVM direction (with some piling 
resulting in inferior generalizability, reflected by 36° angle). Figure D is projection on the 
DWD direction (with improved generalizability, reflected by a smaller, 26°, angle). 
  



36 
 

 

Figure 0.7. DWD and SVM classification models based on the 5- HT7 dataset. 
A: DWD classification model; B: SVM classification model. 
□ non-binders in training set; ○ binders in training set; *  non-binders in test set; ∆ binders in 
test set. 
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Figure 0.8. The 5-HT7 dataset promiscuous binding matrix on 11 receptors including 5-
HT 7.  
The compounds are numbered 1 to 62 (left to right in this figure). 
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Table 0.1. Frequently Used R Values and the Corresponding Critical Values of Zc for 
One-Tail Test. 

e
zy
2

2

2

−
=

πσ
α        for     4≥Z  

α  Zc 

0.10 1.28 
0.05 1.64 
0.01 2.33 
0.001 3.10 
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Table 0.2. Confusion matrices for DWD and SVM predicted on 18 external compounds  
 Predicted 

A
ct

ua
l  

DWD SVM 
Active Inactive Active Inactive 

Active 10 0 8 3 
Inactive 1 7 2 5 

Note: External compounds contain 11 active and 7 inactive compounds. 

 
 
Table 0.3. Consensus prediction of external test sets by kNN Models passed acceptance 
criteria based on PDSP and WOMBAT datasets. 

Dataset 
Modeling 
set size 

External 
set size 

No. of 
Descriptors 

No. of 
Models 

R2 k R0
2 k0 

PDSP 51 11 294 216 0.61 0.89 0.59 1.06 

WOMBAT 53 13 377 240 0.72 0.80 0.68 0.98 
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Table 0.4. Results of the experimental assays and drug information of seven hit 
compounds. 

Name 
*Predict Ki 

(nM) 

#Predict Ki 
(nM) 

Ki 

(nM) 
Function 

Therapeutic 
Category 

Altanserin 3.39 6.87 143.0 N/A 
Human 

neuroimaging 

Droperidol 3.24 22.76 3.50 Antagonist 
Butyrophenone 
antiemetic and 
antipsychotic 

Pravadoline 9.55 14.08 3184.0 N/A 
Cannabinoid 

analgesic 

Perospirone 7.08 14.31 8.60 Antagonist 
Atypical 

antipsychotic 

Clazolam 6.46 37.76 >10000 N/A N/A 

Clomipramine 13.80 2.44 46.00 N/A 
Tricyclic 

antidepressant; 
antiobsessional 

Sulazepam 14.13 13.54 >10000 N/A 
Sedative and 

anxiolytic 
*Predictions by the models based on the PDSP dataset; #Predictions by the models based on 
the WOMBAT dataset. 
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Table 0.5. Examples of activity variation for the 5-HT7 binders extracted from public 
PDSP Ki database. 

Name Radioligand Species 
Binding 

affinity (nM) 
References 

Ergotamine 

125I-LSD Rat 17.37 
Boess FG, et al., Neuropharmacology, 
1994; 33(3-4): 275-317. 

3H-5CT 
Guinea 

Pig 
138.03 

Z.P.To, et al., Br J Pharmacol., 1995; 
115(1): 107-16. 

3H-LSD Human 1291 PDSP certified data. 

Ketanserin 

125I-LSD Rat 206 
Shen Y, et al., J Biol Chem., 1993; 
268(24): 18200-4. 

3H-5CT Human 794.33 
Thomas DR, et al., Br J Pharmacol, 
1998; 124(6): 1300-6. 

3H-5HT Human 1334 
Bard Ja, et al., J Biol Chem, 1993; 
268(31): 23422-6. 

3H-5HT Rat >7500 
Ruat M, et al., Proc Natl Acad Sci, 
1993; 90(18): 8547-51. 

3H-5HT Rat >7943.28 
Eglen, RM, et al., Trends Pharmacol 
Sci, 1997; 18(4): 104-7. 

NAN-190 

125I-LSD Rat 79.1 
Lovenberg TW, et al., Neuron. 1993; 
11(3): 449-58. 

125I-LSD Rat <1000 
Boess FG, et al., Neuropharmacology. 
1994; 33(3-4): 275-317. 

3H-LSD Rat >1000 
Shen Y, et al., J Biol Chem., 1993; 
268(24): 18200-4. 

Risperidone 

3H-5HT Human 4.3 
Fernandez J, et al., J Med Chem, 2005; 
48(6): 1709-12. 

3H-LSD Human 6.6 PDSP certified data 
3H-LSD Rat 0.93 

Kongsamut S, et al., Eur J Pharmacol, 
1996; 317(2-3): 417-23. 

 
 



 
 

CHAPTER 3  

DEVELOPMENT OF ALGORITHM ECONOMIC RATIO (ER) 
AS BOTH A COST FUNCTION AND A VALIDATION 

MERIT FOR CLASSIFICATION QSAR MODELS

3.1. Introduction 

The pharmaceutical industry must rationally design programs in consideration of huge 

experimental costs at multiple stages in the drug development pipeline and also substantial 

potential benefits of successful drug discovery[1,109].  Safety tests both in animals and in 

humans as part of clinical trials place severe constraints on choosing therapeutic areas for 

drug development, which is part of the reason that Big Pharma tends to avoid projects 

targeting rare, or orphan, or third world diseases[110]. Computational methods such as 

Quantitative Structure-Activity Relationships (QSARs) have thus become increasingly 

important[111].  

Novel QSAR modeling methods continue to emerge focusing on one or another 

conventional figure of classifier metric.  For example, increasing sensitivity at the expense of 

specificity can be achieved with the Gaussian processes regression method of Obrezanova 

and Segall[112]. Alternatively, Bruce et al. compared Support Vector Machine (SVM), 

decision tree, and several ensemble decision tree methods by the percentage of correctly 

classified molecules[113]. Truchon and Bayly, instead, presented an analysis of several 

ranking metrics used to evaluate virtual screening methods[114]. Among important metrics 
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in their study was the area under the receiver operating characteristic curve (ROC) and the 

enrichment factor (EF). To our knowledge, none of these approaches connects directly with

the cost/benefit ratio of a testing strategy. 

By contrast, we established a new path called “Economic Ratio” (ER) that does not 

seek or reward high values of conventional metrics. Rather, we strive to build and evaluate 

classifiers that astutely consider only a subset of compounds and then predict hits with very 

few false positives in proportion to true positives. Thus we discount correct prediction of 

negatives. In some circumstances, our approach might be closely related to some of the 

actual decision-making processes of drug discovery. 

In summary, given the performance of a classifier constructed from historical 

experiments (represented by its prior probabilities), the cost of further bioactivity 

experiments, and the assumed benefit of a discovered hit, we propose a new procedure to 

decide whether or not additional testing guided by the classifier is likely to be cost-effective.  

As shown below, the models based on the cost/benefit ratio (applying the Economic Ratio we 

will define) yielded decision tree models with higher positive hit rates in some applications. 

3.2. Materials 

To compare our new procedure called Economic Ratio (ER) with current popular 

methods to build or choose QSAR classifiers, we employed fragment descriptors and 

historical experimental data. The decision tree learning technique was used because of its 

interpretability and its insensitivity to imbalanced datasets having few hits and many misses 

in the historical experiments, which is a common aspect of biological screening 

campaigns[115]. We also relied on accommodation of sparse descriptors by decision trees, 
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that is, accommodation of data sets in which most fragments are absent from most 

compounds.  

3.2.1. Datasets 

From five datasets (see Table 3.3) we built decision trees with branch variables selected 

with three target functions, namely, a new ER metric together with the traditional metrics 

CCR[5] and Gini impurity measure[29] (defined or introduced infra). 

All datasets were curated following the “Trust but Verify” procedures[77]. The Drug 

Bank database[116,117] was employed to evaluate chemical diversity of the virtual screening 

hits. 

3.2.1.1. P-Glycoprotein dataset (PGP). PGP is a member of the ABC transporter 

family implicated in intestinal transport, blood-brain barrier function, and multi-drug 

resistance of tumor cells[118,119]. We collected a dataset containing PGP substrates and 

non-substrates from the literature[5,120,121]. The activity classes depended on whether there 

are existing publications that document activity (substrate) or inactivity (non-substrate). The 

derived dataset was used for early calibration of our methods and also in 5-fold external 

cross-validation.  

3.2.1.2. Antimalarial dataset (ATM). Antimalarial activities of 3133 compounds were 

tested in St. Jude Children's Research Hospital[122]. Active inhibitors were defined to be 

compounds that had reproducible potency at concentrations less than 2 µM, while the 

remaining compounds were considered inactive.  After curation, 3123 compounds remained 

for use in this study. 

3.2.1.3. T. pyriformis dataset (TPY). The growth inhibition of the ciliated protozoan 

T. pyriformis is a toxicity screening tool developed and implemented by Schultz and co-
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workers[123]. The T. pyriformis toxicity dataset used by us was compiled in our previous 

study [124] from several publications of the Schultz group[125–129] as well as from data 

available at the Tetratox database website (http://www.vet.utk.edu/TETRATOX/). The T. 

pyriformis toxicity of each compound was expressed as the logarithm value of 50% growth 

inhibitory concentration in mg/L (IGC50). For the purpose of this study, IGC50 values less 

than zero were considered toxic. Our final dataset included 1085 unique compounds. 

3.2.1.4. 5HT2B dataset. The Psychoactive Drug Screening Program (PDSP) of the 

National Institute of Mental Health (NIMH) reported activity of roughly 800 FDA-approved 

drugs and drug-like molecules against 5-HT2B receptors[130]. After curation of the 

compounds, the final dataset consisted of 37 binders (pKi ≥ 5.0) and 573 non-binders (pKi < 

5.0) to 5HT2B receptors.  Detailed PDSP protocols were published online 

(http://pdsp.med.unc.edu/) and in Huang et al[130].  All chemical structures were obtained 

from PubChem as SDF files. 

3.2.1.5. Acute toxicity estimate (ATE) dataset. The acute toxicity data collection was 

described in detail elsewhere[131].  Briefly, 7385 distinct organic compounds were used with 

rat LD50 dose expressed as mg/kg bodyweight.  The endpoint selected for our study was 24 

hours following a single, oral dosage.  Based on the categories of acute toxicity by the 

Globally Harmonized System of Classification and Labeling of Chemicals[132], we defined 

Category 1 as toxic (LD50 < 50 mg/kg) and Category 4 and Category 5 as non-toxic (LD50 > 

300 mg/kg). 

3.2.2. Descriptors 

3.2.2.1. Simplex representation of molecular structures (SiRMS). Two-dimensional 

(2D) simplex descriptors (tetratomic fragments with fixed composition and topological 
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structure) are used for molecular structure representation. These fragment descriptors 

differentiate atoms based on atom type and other physical-chemical characteristics of an 

atom, e.g., partial charge[133], lipophilicity[134], refraction[135], and the ability of an atom 

to be a donor or acceptor in hydrogen bond formation[136,137]. The main advantages of 

SiRMS are the opportunity of analysis of molecules with pronounced structural differences 

and the revelation of individual molecular fragments (simplex combinations) promoting or 

suppressing investigated activity. SiRMS methodology was described earlier[138,139]. 

3.2.2.2. XCHEM fragments. Connected chains of atoms of variable length and 

branching are the basis of XCHEM descriptors. Prior to fragmentation, atomic labels are 

defined to include a desired subset of chemical and topological properties. Examples of 

applications in QSAR studies can be found elsewhere[140,141]. In the present study we have 

generated linear fragments from 2 to 8 atoms in length with 1 possible branch; the following 

features were used in the atomic labels: nuclear charge, valence, hybridization, number of 

hydrogen atoms, aromaticity, resonance, and membership in ring systems (3-membered 

cycles, 4-membered cycles, cyclic junctions, etc.). 

 After fragmentation of the modeling set, the fragments were filtered to require: (1) a 

fragment must occur in at least in five molecules of the training set; and (2) the mean activity 

of these host molecules must differ from the dataset’s average by at least by 0.1 (z-score). 

The remaining fragments were sorted by occurrence frequency and the top 200 of were then 

used as binary descriptors (i.e., with 0/1 values for absence/presence of a fragment in a 

molecule). Datasets were provided along with both SiRMS and XCHEM descriptors. 

Although comparison of descriptor selections was not among the goals of this study, no 

significant difference was observed between SiRMS and XCHEM applications. 
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3.3. Theoretical basis 

3.3.1. Evaluation of QSAR prediction performance 

Let PTP, PFP, PFN, and PTN denote the prior probabilities derived from application of a 

classifier to past experiments with designations TP (true positives), FP (false positives), FN 

(false negatives), and TN (true negatives).  Suppose the four prior probabilities of two 

classifiers called Q1 and Q2 are known to be as in the following Table 3.1. We see from 

Table 3.1 that if Q1 is presented with 1000 novel compounds, it will, on average, correctly 

declare one of 13 actual hits to be a hit. Within the same 1000 compounds we expect nine 

incorrect declarations of hits. Applied to 1000 novel compounds, classifier Q2 will on 

average correctly declare two of 13 actual hits to be hits�but incorrectly will declare 45 

misses to be hits. On average, Q1 finds one hit and Q2 finds two hits per 1000 compounds in 

which a total of 13 actual hits are included. 

Conventional wisdom would evaluate Q1 and Q2 on the basis of sensitivity, specificity, 

or their average (called Correct Classification Ratio (CCR)[5]), all calculated from the prior 

probability tables. By definition, sensitivity = TP/(TP+FN) and specificity = 

TN/(TN+FP)[142]. Another figure of metric for a classifier is the Right Fisher Exact Test 

(RFET)[143], yielding the probability that guessing with a certain ratio of hit guesses to miss 

guesses would be at least as accurate as the classifier at hand. All these measures for Q1 and 

Q2 are shown in Table 3.2. They and other calculations in this paper can be conveniently 

observed in spreadsheets in the Supporting Information of this paper. But how might the 

testing strategist use these classifier performance values to decide which of Q1 and Q2 to use 

(if either)? 



48 
 

3.3.2. Evaluating QSAR classifiers using cost/benefit ratio 

Tests are costly, but finding a hit is beneficial. Let us assume the cost per test is a 

constant C and the benefit per hit is a constant B. For a given classifier with known 

performance relative to historical data, the expected number of future tests needed to find a 

hit (including the test that yields the first hit) within a novel set of compounds is the 

reciprocal of the classifier true positive rate PTP.  This assumes that the set of possible 

compounds is large and that for practical purposes, removing a tested compound from the list 

does not significantly affect it size. Each false positive and also the first true positive cause a 

costly test. Thus the total cost of finding the first hit with cost C per test is C multiplied by 

the ratio of the total predicted positives to true positives. Therefore the cost/benefit ratio, 

determining whether or not the gamble of investing in costly tests is worthwhile, is  

Cost/benefit ratio =[ ] 






 +
×
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C   (3.1) 

The positive likelihood ratio (also called Positive Predictive Power[144]) is by 

definition the ratio of true positives to all declared positives[145]; this is equivalent to the 

inverse of the ratio: 
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used inside equation (3.1).  

Thus from equation (3.1) we define the economic ratio (ER): 

ER = 






 +

TP

FPTP

P

PP
     (3.2) 

Note ER can also be calculated directly using the number of TP and FP instances from 

the historical data that yield the prior probabilities. The importance of ER is that for any 
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values of cost C per test and benefit B per hit, the cost/benefit ratio of classical economics is 

simply C multiplied by ER, then divided by B.  Among other factors, a test strategist will 

desire the cost/benefit ratio to be as small as possible, certainly less than one. 

Suppose we can choose between classifiers Q1 and Q2 with past performance as 

described in Table 3.1. Conventional classifier analysis provides the values for sensitivity, 

specificity, etc. in Table 3.2. Suppose the benefit of a hit is 15 units of money and the cost of 

a test is one unit. Suppose also that we can neglect both the cost of populating the prior 

probability table (Table 3.1) and the ongoing cost of computationally applying the classifier 

to novel compounds. Table 3.2 in itself does not directly inform us of an economically 

preferable choice. However, applying equation (1) reveals the cost/benefit ratios of Q1 and 

Q2 to be 0.67 and 1.57, respectively. Thus the cost/benefit ratio of Q1 is much better than 

that of Q2 even though Q1 has much lower sensitivity and about the same specificity, CCR, 

and RFET (Table 3.2). We see instantly that Q1 is the better choice. 

In summary, once a valid prior probability table has been populated, the subsequent 

economic value as cost/benefit ratio of the classifier is readily expressed in equation (3.1); 

the same is not obviously reflected in some conventional figures of classification metric. 

3.4. Expanding ER as a Target Function 

It would seem reasonable to hypothesize that using ER as a target function during the 

growth of a decision tree would result in models with superior ER in prediction. To 

distinguish the same ratio used as target function and validation function of classification 

metric, we use ERc to denote calculation of ER as a target function and ERv to denote 

calculation of ER as a validation function. Likewise we define CCRc and CCRv. The validity 

of the hypothesis is clarified infra. 
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3.4.1. Decision tree construction 

Specifically, our goal was to build a classifier using experimental data that maps 

combinations of descriptors of a compound (for instance, chemical fragments) to a binary 

state: active or inactive, often emphasizing highly imbalanced data sets with far more 

inactive compounds than active. This goal can be described as follows. We start with a large 

number of compounds and descriptors, such as 1000 each. We seek a small number of 

descriptors, such as 10, that become decision nodes in a tree. Each node uses one descriptor 

and a certain threshold value to partition compounds by comparing their values for that 

descriptor with the threshold. In case of fragment descriptors, such comparison becomes a 

test for absence or presence of a structural fragment in a molecule. In our study, the leaves of 

the tree are designated: active, inactive, or inconclusive. As will be shown infra, we disregard 

correct prediction of inactive compounds, although some leaves are populated almost entirely 

by inactives.   

3.4.2. Tree construction algorithm 

A tree construction algorithm selects a descriptor for a branch node that meets an 

optimal splitting criterion such as minimal ERc (ER as branch target function), maximal 

CCRc, or maximal decrease of Gini impurity.  That is, the consequence of choosing a binary 

(0 or 1) descriptor is:  PR, NR = respectively the number of positive (active) or negative 

(inactive) compounds with the fragment and placed in the right side of a branch; and PL, NL = 

respectively the number of positive (active) or negative (inactive) compounds without the 

fragment and placed in the right side of a branch. 

ERc could be optimized (minimized) directly by equation (3.2) using only the rate of 

compounds with the fragment that are actually hits (PR) and the rate of compounds with the 



51 
 

fragment that are actually not hits (NR). However, we have found that such simplistic use of 

ERc can create a highly skewed tree like the one shown in Figure 3.1 based on the PGP 

dataset. Descriptor instances of this dataset were only 7% of all possible instances, yielding a 

sparse QSAR matrix. To a depth of four tests, a total of 63 compounds were allocated in the 

active leaves. All of the 63 actually were hits. Consequently ER = 1.00 (perfect) with 

coverage (the ratio of total predicted positives to modeling compounds) = 0.17. This tree 

predicted a hit by a sequence of tests for absence or presence of four fragment descriptors. 

To achieve a more balanced tree with optimization of ERc, we instead can select the 

descriptor that maximizes the following function ER∆  over all branch choices. 

LR
c ERER

wER
11

−×=∆                                  (3.3) 

Here w is a weight function defined at the branch as the smaller of two numbers: PR+NR 

and PL+NL, i.e., w = min (PR+NR, PL+NL).  ERR is the ERc of the right child node, and ERL is 

that of the left child node. The employment of w here biases descriptor choice toward those 

descriptors that allow many active cases and also have low ERc, not those that simply 

minimize ERc. We designate the target function defined by equation (3.3) as WERc 

(Weighted ERc), which can generate a nearly balanced tree using the same PGP data. In 

Figure 3.2, to a depth of four tests, a total of 122 compounds were allocated in the active 

leaves. 103 actually were hits. Consequently ER was 1.18 with coverage of 0.33. This tree 

(Figure 3.2) was more balanced than the tree built with ERc (Figure. 3.1). 

The tree grows from the root node by repeatedly applying the following steps to each 

node (based on CART algorithm[29]). A descriptor with small w (such as five or less, as in 

this paper) is considered to be unsatisfactory. Also unsatisfactory is any descriptor with an 



 

undesirable target function value (such as ER

for WERc application is shown in Fig

The Correct Classification Rate (CCR) is simply the average of sensi

specificity. Thus: 

=cCCR

Again addressing the PGP dataset, at each branch a descriptor

maximize the CCRc function

total of 107 compounds were predicted to be hits, of which 88 actually were hits. 

Consequently ER = 1.22 with coverage = 0.29. 

Gini impurity is a measure of the cost of misclassifying a randomly chosen compound 

from the set. It is used as the default target function in many popular decision tree methods 
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undesirable target function value (such as ERc of a leaf > 1.7, as in this paper). 

application is shown in Figure 3.3. 

The Correct Classification Rate (CCR) is simply the average of sensi
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Again addressing the PGP dataset, at each branch a descriptor can be

function, resulting in the tree in Figure 3.4. To a depth of four tests, a 

total of 107 compounds were predicted to be hits, of which 88 actually were hits. 

Consequently ER = 1.22 with coverage = 0.29.  
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It is used as the default target function in many popular decision tree methods 
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> 1.7, as in this paper). A flowchart 

The Correct Classification Rate (CCR) is simply the average of sensitivity and 
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total of 107 compounds were predicted to be hits, of which 88 actually were hits. 

Gini impurity is a measure of the cost of misclassifying a randomly chosen compound 
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Our goal in tree construction can be thought of as a tree without excessive depth and 

with several leaves that are entirely or mostly hits, all with acceptable coverage of 

compounds.  For example, designers at a certain stage of drug discovery might require at 

least 10% of compounds to be hits in addition to low ERv values.  

3.4.3. The advantage of application of ER as a target function 

The analysis supra is most useful when ER is applied to classifiers with prior 

probability tables unlike textbook cases that have high PTP and PTN values[113]. In those 

textbook cases the usual criteria of classifier metric (sensitivity, specificity, CCR, accuracy, 

and RFET) are all nearly optimal. That is, in those cases we see no distinguished 

conventional criterion that can be directly and confidently used in a management decision to 

deploy resources. Coverage is universal and ERv is so close to 1 that only the cost/benefit 

ratio C/B matters. By contrast, the cost/benefit ratio approach shines when: (1) a high rate of 

actual hits among predicted hits is absolutely essential; (2) the frequency of actual hits among 

all compounds is known to be low; and (3) low coverage (proportion of compounds that are 

predicted to be hits) is acceptable.  These factors are determined by the pipeline stage, the 

current capacity to execute experiments, and so on.  Our goal is a classifier that cautiously 

chooses which compounds can be predicted to be hits. This policy can be acceptable, for 

example, when a company faces test protocols that are expensive, possesses a large 

compound file (such as one million compounds), and seeks a much smaller number of hits 

(such as 100) because each actual hit automatically has excellent profit potential. Importantly, 

some data profiles seem to preclude construction of classifiers with high coverage, 

specifically data profiles in which most compounds include few or very few instances of 
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nonzero descriptor values, that is, when the descriptor matrix is sparse (almost entirely filled 

with 0 entries). 

3.5. Results and Discussion 

3.5.1. Model construction 

As an example a classifier with low PTP+PFP rate, we considered binary data from a 

testing program for PGP (p-glycoprotein) inhibitors[5]. The model employed 599 descriptors 

and 371 compounds. In the 599-by-371 matrix of descriptor instances, only 7% of entries had 

nonzero values (presence of descriptor). The complete matrix is in the Supporting 

Information. We constructed decision trees in which each branch descriptor was chosen to 

minimize ERc, or maximize WERc and CCRc (Figures. 3.1, 3.2, 3.4). 

The point of these figures is that sparse QSAR tables can yield useful predictions 

provided the economic ratio is deemed important and a low coverage is deemed acceptable. 

3.5.2. 5-fold external cross-validation 

Five datasets were employed to test the predictive power of the decision tree growing 

algorithm described in section 2.4.2. Target functions included WERc, CCRc, and best 

decrease of Gini impurity. The external test analysis followed a 5-fold cross-validation 

procedure, which means 20% of compounds from each dataset were extracted randomly for 

five times to compose an external validation set, i.e., a subset which is not involved in model 

construction, thus building a different model each time on the remaining 80% of compounds. 

As shown in Table 3.3, four datasets have about 5% of compounds active, but the PGP 

has over 50% of compounds active. Decision trees were built on respective modeling sets for 

the five datasets. The minimum satisfactory size of a node was set at five compounds. 

Partitions were defined to be satisfactory (for continuing tree building) as follows:  (1) TP 
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divided by (TP+FP) is greater than 0.6 for active leaves; and (2) TN divided by (TN+FN) is 

greater than 0.6 for inactive leaves. Otherwise, the leaf was defined to be inconclusive and 

was viewed as terminal. 

Table 3.4 shows the performance of predictions for 5-fold external cross-validation of 

trees built with the three target functions. Here if a leaf (node) was inconclusive, then 

compounds in that leaf were omitted for the statistical calculations. The external ERv values 

yielded by optimizing WERc were the lowest for ATM, ATE and TPY datasets containing 

only about 5% of compounds as actives; however, this is not true for the 5HT2B dataset 

which also contains 5% of the compounds as actives, but has a much lower absolute number 

of active compounds. Furthermore, WERc nearly resulted in the worst ERv values for the 

PGP dataset with more than half of compounds as actives. 

The primary hit rate of high throughput screening (HTS) usually does not exceed 

5%[146,147], so WERc is indeed worth considering in some cases. However, in the case of 

the 5HT2B dataset, the coverage of external prediction was very low. It points to the concern 

that too small a number of actives (37 in total for 5HT2B dataset) may produce inferior 

WERc models. Indeed, results in Table 3.4 showed that models built by WERc were not 

better than those optimally decreasing Gini impurity. 

In order to avoid over-training problems, our decision trees were usually pruned using 

procedure implemented CART algorithm[29] to exclude deep leaves. However, this led to 

excessively small coverage for constructed trees. In case of external prediction for the ATM 

dataset, there were only ~20% positives captured by each target function.  
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3.5.3. Chemical similarity analysis 

We hypothesized that decision tree models would find diverse hits, not just clusters of 

similar structures. We thus used the DrugBank database to virtually screen the PGP dataset 

whose active leaves tend to contain enough hits for diversity analysis. We found the screened 

hits were quite dissimilar to the modeling set compounds. The 69 compounds were captured 

by the biggest active leaf in the WERc-based tree model of PGP dataset. Figure 3.5 presents 

the distribution of Tanimoto coefficients (Tc) in the MACCS key fingerprints[148,149] 

descriptor space for the modeling set and for the hit compounds. The noticeable shift to the 

left indicates high divergence of the hits from the modeling compounds. The diversity among 

the hits alone was also superior to the diversity among the modeling set compounds, even 

though these hits came from only one active leaf. The reason for this is that, when evaluated 

by the full descriptors, hits identified by a few fragment descriptors may contain structural 

features not held by the modeling set. This analysis demonstrates that the decision tree 

method is to some extent capable of finding structurally diverse hits which are substantially 

different from the existing structures in the modeling set. 

3.5.4. Discussion 

Competent construction of a QSAR model requires knowledge of numerous pitfalls as 

explained by Dearden et al.[150]. Among other errors, they pointed to data errors including 

failure to consider heterogeneity of data, failure to use sufficiently varied data, redundancy of 

data, and limited domains of data that imply limited coverage. Some descriptor types might 

be mechanistically impossible to use or interpret. Model construction might fail to prevent 

over-fitting, fail to use statistics correctly, or fail to include adequate validation. Regarding 

statistical errors, Golbraikh et al.[38] warned against incorrect interpretation of q2 and 
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emphasized the need to employ an external validation set. Thus construction of a QSAR 

model is hardly a simple procedure[39]. 

In a recent publication, Swamidass, et al.[151] proposed a strategy of using models 

based on the economic supply-demand curve to enable an HTS test strategy. The optimal 

number of hits submitted for testing by confirmation tests was thus decided by economic 

rather than probabilistic analysis. Their work included consideration of economic factors of 

drug developers, and is consistent with our purpose to employ cost/benefit ratio and 

economic ratio in virtual screening.  

3.6. Conclusions 

We have devised a novel criterion for valuation of classifiers that in some 

circumstances captures the economic worth of bioactivity predictions, emphasizing prior 

probabilities of true positives (PTP) versus false positives (PFP). Our criterion, called 

"economic ratio", showed little relationship with conventional figures of classifier metric 

such as sensitivity, specificity, accuracy, etc. We also employed ER is in weighted form as 

target function WERc that seeks to avoid child nodes with very few compounds. Trees can be 

constructed by choosing each branch descriptor according to best values of WERc or 

conventional target functions. We observed good ERv values on external test sets in some 

cases as well as good diversity. However, successful application of our classifier methods 

might be restricted to highly skewed datasets containing only few active compounds. 

 

  



 

Tables and Figures 

Figure 0.1. Decision tree for PGP dataset grown to minimize ER
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Decision tree for PGP dataset grown to minimize ERc. 
 

 



 

Figure 0.2. Decision tree for PGP dataset optimized to maximize WER
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Decision tree for PGP dataset optimized to maximize WERc. 
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Figure 0.3. Main steps of ER-based Decision Tree Algorithm. 



 

Figure 0.4. Decision tree for PGP dataset optimized to maximize weighted CCR
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Decision tree for PGP dataset optimized to maximize weighted CCR
 

Decision tree for PGP dataset optimized to maximize weighted CCRc. 
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Figure 0.5. Distribution of Tanimoto coefficients (Tc) for all pairs of compounds in PGP 
modeling set and virtual screening hits.  
Blue: pairs of hits and modeling set compounds; green: pairs of hits; red: pairs of compounds 
within the modeling set. 
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Table 0.1. Examples of prior probability tables of two hypothetical QSAR classifiers 
called Q1 and Q2.  
The prior probabilities are PTP = true positive rate, PFP = false positive rate, PFN = false negative rate, 
and PTN = true negative rate. 
 

 
PTP PFP TFN PTN 

Q1 0.001 0.009 0.012 0.978 

Q2 0.002 0.045 0.011 0.942 

 
 
 
Table 0.2. Conventional performance measurements of the two QSAR models derived 
from the prior probabilities. 

 Sensitivity Specificity ER CCR RFET 

Q1 0.08 0.99 10 0.53 0.12 

Q2 0.15 0.95 22.5 0.55 0.12 
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Table 0.3. Datasets used for decision tree model construction and evaluation. 

 

Descriptor Dataset 

Type No. Active Inactive 

PGP Simplex 1128 258 204 

ATE Simplex 6631 284 6347 

ATM Simplex 2055 158 2975 

TYP Simplex 1404 58 1027 

5HT2B Simplex 1156 37 573 
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Table 0.4. Performance statistics of 5-fold external cross-validation. 

Dataset Target 
Function TP FP FN TN Sens. Spec. CCRv ERv 

PGP 

CCRc 168 62 88 141 0.66 0.69 0.68 1.37 

WERc 174 80 82 123 0.68 0.61 0.64 1.46 

Gini 167 60 89 143 0.65 0.70 0.68 1.36 

ATE 

CCRc 144 41 6310 140 0.50 0.99 0.75 1.31 

WERc 144 44 6305 142 0.51 0.99 0.75 1.28 

Gini 154 48 6301 132 0.54 0.99 0.77 1.31 

ATM 

CCRc 37 103 117 2870 0.24 0.97 0.60 3.78 

WERc 26 43 132 2922 0.16 0.99 0.58 2.65 

Gini 27 57 127 2916 0.18 0.98 0.58 3.11 

TPY 

CCRc 18 18 40 1009 0.31 0.98 0.65 2.00 

WERc 19 9 39 1018 0.33 0.99 0.66 1.47 

Gini 27 23 31 1004 0.47 0.98 0.72 1.85 

5HT2B 

CCRc 7 21 30 552 0.19 0.96 0.58 4.00 

WERc 7 15 30 558 0.19 0.97 0.58 3.14 

Gini 11 14 26 559 0.30 0.98 0.64 2.27 

 
Notes: 
CCR: Correct Classification Rate; 
WER: Weighted Economic Ratio; 
Sens.: sensitivity; 
Spec.: Specificity. 
 



 
 

CHAPTER 4  

PILOT STUDY FOR THE QSAROME PROJECT: 5-HT1A

4.1. Introduction 

In the past decade, most major pharmaceutical and biotech companies have experienced 

a rapid growth of publicly available databases caused by the innovative technologies that 

allow rapid synthesis and high throughput screening. However, such technologies are limited 

to the academics, and thus the academic research community has been lack of the freedom to 

quickly screen large scale databases for novel drug candidates against new pathways or 

targets. The situation has been gradually changed since the adoption of several critical 

programs initiated by National Institute of Health (NIH) and a few other academic 

institutions. For example, the NIH Molecular Libraries Roadmap Initiatives launched on the 

national Molecular Library Screening Centers Network (MLSCN)[152] to encourage the 

collaboration of academics to form a public high-throughput biological screening resource. 

The NIMH Psychoactive Drug Screening Program[3] is another abundant resource to quickly 

assay and provide annotated information of large scale compounds with their 

pharmacological and functional activity at Central Neural System (CNS) receptors, channels, 

and transporters. 

On the other hand, the explosive growth of publicly available large databases concurs 

with the plague of false annotations recorded in the databases[4]. While the percentage of 
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erroneous recordings in public databases is hard to estimate (error rates of the commercial 

databases, however, range from 0.1 to 3.4%, according to a recent study[153]), it is indeed a 

severe problem which would deteriorate the quality of QSAR modeling so badly that 

sometimes no valid QSAR models could be built from biological meaningful datasets[153]. 

Since the data generated by HTS experiments keep growing, it is more important than ever to 

address the issue of data quality that inherently affects the quality of models. 

Unfortunately, QSAR modelers often consider data curation as a trivial step and are 

lack of due diligence to clean the data thoroughly. For example, one study from NCI AIDS 

Antiviral Screen included more than 40,000 chemicals with associated activity in its library. 

Even a brief examination of these records by our lab revealed that about 10% of them should 

be curated or even removed before launching any QSAR modeling[77]. Yet this database 

was frequently used by others without thorough descriptions of data curation (more than 57 

citations by 2010). Another example is the Tetrahymena pyriformis aquatic toxicity data set 

which comprises 1093 compounds. Exactly this data set was used by at least eight research 

teams for QSAR modeling[124,137,154] including the organizers of CADASTER toxicity 

challenge (http://www.cadaster.eu). Later it appeared that amongst 1093 compounds there 

were six pairs of duplicated with toxicity range up to one logarithmic unit, which was caused 

by the simultaneous presence of organic acids and their salts in the dataset [77]. Contrary to 

any above-mentioned cases, we do believe that chemical record curation should be viewed as 

a separate and critical component of any cheminformatics research. In this chapter, we 

developed logical basic steps for data curation which could create a foundation for the 

subsequent QSARome project, which is explained thoroughly in the next chapter. However, 

we should point out that this is not a universal approach for any dataset; instead, it is the least 
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curation workflow that should be exercised. The protocols used here have proved to be 

efficient, and have been successfully tested on several individual datasets. It may not work on 

some difficult or ambiguous cases appearing in other datasets, which requires additional 

special treatments. Moreover, personal participation in the process, i.e., manual inspection 

and curation at the last stage of curation process, is absolutely necessary, because some errors 

that are obvious for human eyes will be missed by a computer. 

As the source of GPCRs ligands is promiscuous in several ways, e.g., species used to 

test the affinity (human or rat) and annotations for activity (Ki or IC50) are different, we 

intended to apply all data curation techniques to one receptor to verify which conditions will 

provide us predictive QSAR models. The example we choose from the target list is the 5-

HT1A receptor. It is the most widespread receptor among the seven subtypes of serotonin 

(a.k.a. as 5-hydroxytryptamine or 5-HT) receptors[155]. As one of the critical protein targets 

that mediate inhibitory neurotransmission, the activation of 5-HT1A receptor will help to 

relieve some CNS disorders such as anxiety, depression, schizophrenia and Parkinson’s 

disease[156–160]. Thus, discovery of new bioactive compounds targeting the 5-HT1A 

receptor (5-HT1A agonists) is attractive enough as an independent project. Here we not only 

made an individual effort to identify 5-HT1A binders, but also tried to establish a standardized 

routine for data curation and QSAR modeling of remaining GPCR targets (See Chapter 5 for 

details). 

4.2. Materials and Methods 

4.2.1. Dataset 

The 5-HT1A dataset was extracted from ChEMBL[2] and PDSP[3], with the 

information provided at Table 4.1. Only compounds with Ki values were collected, and then 
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grouped based on the sources of tested species, indicating that most of the compounds were 

tested on human and rat tissues, with a few tested on other kinds of species such as mouse, 

pig, and even rabbit (Table 4.1). The Ki values were expressed as mol/L, which were 

converted to negative log[1/(mol/L)] values (pKi) according to standard QSAR practices. 

4.2.2. Chemical Data Curation 

The curation procedures followed the protocol established by our lab. Figure 4.1 briefly 

describe the main steps for chemical curation. The entries with no recorded structural smiles 

(e.g., 114 entries for 5-HT1A dataset from PDSP) and compounds tested on tissues other than 

humans and rats (e.g., mice, pigs, rabbits, undefined, etc., as listed in Table 4.1 for details) 

were removed at the very beginning. Then the curation workflow could be divided into 

following steps: 

1) Removal of inorganics, mixtures, and organometallics (compounds containing bonds 

between carbon and a metal). The reason to remove inorganics is because most 

molecular descriptors can only be computed for organic molecules. Consequently, 

most cheminformatics and QSAR software does not process inorganic molecules. For 

many mixtures, it is common that only the largest fragment possesses the 

experimentally determined biological activity. So retaining the component with the 

highest molecular weight or largest number of atoms is widely used, including the 

given study. However, such simple treatment can only work on mixtures formed by a 

relatively large organic molecule and small inorganic molecules (e.g., hydrochlorides, 

hydrates, etc.). In the case of two equally similar components, we must use biological 

expertise to determine which one to be retained or completely delete the entire record. 

In addition, for compounds containing metal atoms or rare elements, it would be better 
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to remove the entire record. Dragon software only computes descriptors for molecules 

containing the following 38 atoms: H, B, C, N, O, F, Al, Si, P, S, Cl, Cr, Mn, Fe, Co, 

Ni, Cu, Zn, Ga, Ge, As, Se, Br, Mo, Ag, Cd, Ln, Sn, Sb, Te, I, Gd, Pt, Au, Hg, Tl, Pb, 

Bi[161]. As a result, molecules containing other common atoms such as Na and Mg 

will be rejected by Dragon software. However, we only retain the compounds 

containing H, C, O, N, S, P, F, I, Br, and Cl, because they represent the majority of 

compounds for QSAR modeling and drug discovery. 

2) Structural conversion and cleaning.  

This step refers to the conversion of SMILES strings recorded in the databases into 2D 

molecular graphs. It is better to compute descriptors from the 2D level than from 

SMILES due to the presence of wrong initial SMILES strings in the database. The 

wrong SMILES strings may be caused by manual drawing errors or conversion errors 

from 2D structures to SMILES. ChemAxon Standardizer was used in this study to 

accomplish this task because of its fast and simplified graphical tools, although other 

software like MOE, Sybyl, and OpenBabel can also be used. In the case of compounds 

present as salts in the records, we removed the metal counterions first and neutralized 

the remaining carbocations (or carbanions). 

3) Normalization of specific chemotypes.  

The same function groups could be represented by different structural patterns in the 

same dataset. One of the most common examples is the nitro group which can be 

represented by five different patterns as shown in the Figure 4.2. 

In such cases, we used ChemAxon Standardizer to convert all possible forms into one 

consistent chemotype so that two identical compounds represented by different 
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patterns would be recognized as duplicates by conventional similarity metrics. Without 

such conversion these compounds will have differences in calculated descriptors. The 

conversions in this study included classical settings of neutralization, aromatization, 

2D cleaning, and tautomerization (explained later). 

4) Treatment of tautomeric forms. 

Both ChEMBL and PDSP have compounds existing in several tautomeric forms. The 

most common ones are the keto-enolic tautomers. It was revealed by Young et al. that 

choosing different tautomeric forms would result in different prediction performance 

of QSAR models[153]. Ideally speaking, choosing the one based upon the mechanism 

of action is recommended. In this study, it is time-consuming and unrealistic to 

identify such information for each compound, so we chose the most stable tautomeric 

form at the most possible chemical system (e.g., neutral pH). 

5) Analysis/removal of duplicates. 

This is the most important issue to compile a clean dataset for QSAR modeling, since 

it is often observed that even published QSAR models were based on datasets in the 

presence of structural duplicates. Presence of duplicates is very common for datasets 

extracted directly from even the same database. However, identification of duplicates 

is risky if only use SMILES strings because often they are not recorded as canonical 

SMILES. In our case, all SMILES strings were treated by aforementioned steps, and 

then duplicates were identified based on the 2D molecular graphs by HiT QSAR 

software[138]. However, to ensure higher level of confidence we also confirmed the 

resulting datasets with ISIDA/Duplicates software, which is complementary to HiT 

QSAR but based on different algorithm of structural comparison. 
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4.2.3. Biological Data Curation 

Once the duplicates are identified, analysis of their biological activities is mandatory. In 

this dataset, we found that majority of duplicates (often more than two structures are identical) 

have remarkably different pKi values. As a consequence, pKi values for the duplicated 

structures were determined by following procedures: 

1) Calculate the standard deviations (SD) of pKi values for the identical structures. If SD 

was greater than 0.5, examine the underlying pKi values to confirm which scenarios it 

belonged to: a) one of the pKi values was significantly different from the others. In this 

case, this value should be excluded and the retained pKi values would be averaged to 

afford a determined pKi value for the identical structures. b) The associated pKi values 

varied from each other and the range of the pKi values were greater than 0.5 log units. 

In this case, there were no significant outliers and the reason to cause the variations 

was hard to identify (manual errors when the database was built, tested by different 

laboratories under different experimental conditions, variations in the protocol, etc.). 

We excluded all duplicates under such scenario. 

2) In some cases the duplicates were introduced by the aforementioned curation steps, for 

example, the removal of counterions in salts. Sometimes, a neutral compounds and its 

salt might be different in experimental properties. We would exclude both records if it 

belonged to such case. Otherwise, use the averaged pKi value if the properties showed 

no significant differences. 

3) For classification datasets (binders and non-binders determined by the threshold of pKi 

values), we examined the excluded duplicates due to high SDs again. If all pKi values 
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associated with the identical structures were higher (or lower) than the threshold, then 

one of the identical structures was added back to the class of binders (or non-binders). 

4.2.4. Generation of Descriptors 

Three different types of descriptors were used in this pilot study based on the curated 

SD file of the structures. All kinds of descriptors were process as follows. First, we removed 

all descriptors that had zero values or zero variance for all compounds. Furthermore, 

redundant descriptors were identified by analyzing correlation coefficients between all pairs 

of descriptors; if the correlation coefficient between two descriptor types for all modeling set 

compounds was higher than 0.95, one of them was randomly chosen and removed. As a 

result, the final numbers of descriptors depended on the size of each data set. Finally, the 

descriptors were range scaled to 0~1 based on the maximal and minimal values of each 

descriptor type in whole dataset. 

1) Dragon descriptors. These descriptors were calculated by the Dragon software 

v5.5[162]. Only 0D, 1D, and 2D descriptors were considered in this study. The initial 

number of Dragon chemical descriptors was as high as 2442, but reduced significantly 

by aforementioned process. 

2) 2D MOE descriptors that include physical properties, subdivided surface areas, atom 

counts and bond counts, Kier and Hall connectivity and kappa shape indices, 

adjacency and distance matrix descriptors, pharmacophore feature descriptors, and 

partial charge descriptors[82,83,88,163–166]. 

3) Simplex fragment descriptors. Generation of Simplex representation of molecular 

structure (SiRMS) was the same as what we used in Chapter 3. To stress the details, 

2D simplex descriptors (tetratomic fragments with fixed composition and topological 
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structure) are used for molecular structure representation. These fragment descriptors 

differentiate atoms based on atom type and other physical-chemical characteristics of 

an atom, such as partial charge[133], lipophilicity[134], refraction[135], and the ability 

of an atom to be a donor or acceptor in hydrogen bond formation[136,137]. The main 

advantages of SiRMS are the opportunity of analysis of molecules with pronounced 

structural differences and the revelation of individual molecular fragments (simplex 

combinations) promoting or suppressing investigated activity. 

4.2.5. kNN Modeling Algorithm 

Initially, a subset of descriptors is selected randomly. The model developed with this 

set of descriptors is validated by leave-one-out (LOO) cross-validation, where each 

compound is eliminated from the training set and its biological activity is predicted as the 

weighted average activity of its k (k= 1 to 9) nearest neighbors in the subspace of descriptors 

(Equation 4.1). The weights of neighbors, wi, decrease with distance, thus closer neighbors 

contribute to the calculated activity more: 
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Here ypred is predicted activity; di, wi and yi are Euclidean distance, weight and actual 

activity for the nearest neighbor i, respectively. A genetic algorithm was used to optimize the 

variable selection. 

4.2.6. Support Vector Machines (SVM) Modeling Method 

The SVM algorithm employed by this study was originally implemented in the open-

source LibSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). We used a windows 

version of this algorithm named WinSVM (developed by our group at UNC, available upon 
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request)[167] which provide users with a convenient graphical interface to prepare input data, 

to split compounds into training, test and validation sets, to set up parameters for SVM grid 

calculations (iterative and simultaneous grid optimization of SVM parameters), to launch and 

follow calculation progress in a powerful graphical interface, to select models with the best 

prediction performances on both training and internal test sets, and then apply them for the 

external test set as an ensemble consensus model with its defined applicability domain. The 

program also allows one to visualize molecular structures and various plots, making the use 

of SVM easier and more appropriate for QSAR modeling at Windows environment, in order 

to obtain robust and predictive models and apply them to virtual libraries as well. 

The core of SVM algorithm[33] is to search for the optimal hyper-plane separating the 

two classes in the descriptor space by maximizing the margin between the closest points of 

the two classes as shown by following equation: 
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where C is the penalty parameter and iξ  is the slack parameter. To make the dataset 

linearly separable, the data points are projected to a higher dimensional space by Radial 

Basis Kernel Function (RBF): 
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where γ is the kernel parameter. We used the in-house software WinSVM to determine 

the optimal parameters C. The search range of C and γ were from -3 to 16 and -15 to 1, 

respectively, with the step of 1. 
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4.2.7. Five-fold External Cross-Validation 

Five-fold external cross-validation (5FECV) has been used for the estimation of 

predictive power of developed models. During that the dataset was randomly split into five 

even subsets, each as an external test set predicted by selected models built upon the rest of 

four subsets (modeling set), i.e., each compound appeared in an external test set for once. 

Internal five-fold CV was applied for each of the five modeling sets. Selected models should 

meet the acceptance criteria defined by certain statistical performance metrics for the 

modeling sets such as q2 for continuous models and Correct Classification Rate (CCR) for 

classification models. 

a) Continuous Modeling. The goal of continuous modeling is to obtain regression models 

capable of predicting the exact pKi values of untested compounds correctly. To select 

predictive models, q2 for internal training sets and R2 for internal test sets should be 

both greater than 0.6. If none of the generated models met the acceptance criteria, then 

no predictions should be made; otherwise, consensus prediction was used to determine 

the predicted pKi values for compounds in the external test sets. 

b) Classification Modeling. Similarly, classification modeling aims to obtain predictive 

classification models capable of separating compounds from potent binders to weak or 

non-binders. The threshold to distinguish 5-HT1A binders and non-binders for the data 

set was determined as pKi = 7 (i.e., Ki = 100 nM). Models selected for prediction 

should have sensitivity (SE), specificity (SP), and CCR for both internal training sets 

and internal test sets greater than 0.7. Consensus prediction was used to determine 

which category (binders or non-binders) the compounds in the external test sets should 

belong to. 
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4.2.8. Virtual Screening (VS) 

Using developed models based on all kinds of descriptors and data tested on human 

species, VS was applied to the curated DrugBank database[116,117]. This is not a large 

database considering it only contains 6629 compounds, but is valuable for the purpose of 

drug repositioning. Applicability domain (AD) was applied as Zcutoff=0.5. 

4.3. Results and Discussion 

4.3.1. Curated Datasets 

First, we discarded 15 compounds tested on mouse tissues from ChEMBL, and 161 

compounds tested on species other than on human and rat from PDSP. Since the main aim of 

this pilot study was to compare modeling results under several different conditions, for 

example, sources of data and protocols for experimental properties, we compiled four 

datasets based on human and rat data collected from ChEMBL and PDSP (Table 4.2). 

Dataset I was composed of compounds tested on human tissues from ChEMBL. After 

structural curation and activity analysis, 155 entries were discarded due to identical structure 

and varied activities; 135 entries were discarded due to different isomeric forms and varied 

activities. Final dataset consisted of 1048 unique compounds. 

Dataset II was composed of compounds tested on rat tissues from ChEMBL. After 

structural curation and activity analysis, 81 entries were discarded due to identical structure 

and varied activities; 131 entries were discarded due to different isomeric forms and varied 

activities. Final dataset consisted of 804 unique compounds. 

Dataset III was composed of compounds tested on human tissues from PDSP. After 

structural curation and activity analysis, 294 entries were discarded due to identical structure 
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and varied activities; 36 entries were discarded due to different isomeric forms and varied 

activities. Final dataset consisted of 344 unique compounds. 

Dataset IV was composed of compounds tested on rat tissues from PDSP. After 

structural curation and activity analysis, 249 entries were discarded due to identical structure 

and varied activities; 4 entries were discarded due to different isomeric forms and varied 

activities. Final dataset consisted of 255 unique compounds. 

4.3.2. Activity Analysis 

After the duplicates were determined, we treated one set of compounds with identical 

structures as one duplicate case. Activity analysis of the multiple pKi values for the same 

duplicate case was conducted. Figure 4.2 showed the distribution of numbers of duplicate 

cases at various ranges of ∆pKi values (the difference between the maximal and minimal pKi 

values for the same duplicate case). It is obvious that most duplicate cases had ∆pKi values 

within 0.5 log units, so we excluded all data records associated with the cases having ∆pKi 

values greater than 0.5 log units, and assigned the averaged pKi values as the activity values 

for the cases kept in the modeling sets (one unique structure for each duplicate case is kept). 

There were some overlaps between Datasets I-IV. Figure 4.3 illustrated the numbers of 

overlapped compounds between each two of these four datasets (Venn diagram). The 

correlation of recorded pKi values for the overlapped compounds (Figure 4.4) has been 

investigated. From no more than 30 pairs of overlaps, such correlation coefficients between 

compounds tested on human and rat tissues were 0.64 and 0.84 for ChEMBL and PDSP, 

respectively. Thus, we did not merge human and rat data together because the correlation 

between them were not high enough. On the contrary, the correlation coefficients between 

compounds from different databases were as high as 0.89 and 0.94 for human and rat data, 
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respectively, indicating that most data from different databases are identical (probably taken 

from the same literature). 

In summary, activity analysis for the duplicated cases and correlation analysis for the 

overlaps helped us determine that QSAR models should be built separately on each datasets. 

However, compounds tested on the same species yet from different databases could be 

merged. To compare with a recent publication[168], we found that the number of compounds 

in 5-HT1A dataset after carefully curation is much smaller (less than 1,500 vs. over 4,000 in 

their study). Their dataset may be mixed with all sources of data. A similarity-based method 

was used to make predictions, but such practice is in doubt to be regarded as rigorous QSAR 

modeling. 

4.3.3. QSAR Modeling 

As illustrated by Figure 4.5, QSAR models were built using three types of descriptors 

(Dragon, MOE, Simplex), two types of modeling techniques (WinSVM, kNN), and two types 

of endpoints (continuous, classification). The number of compounds used to build continuous 

models was different from that used to build classification models. As mentioned earlier, 

compounds with variations of activity values for the same duplicate case were excluded from 

continuous modeling sets. However, if the multiple values for the same duplicate case were 

not greater (or less) than the threshold to classify the two classes of binders and non-binders, 

they would be assigned as non-binders (or binders), and should be added back to the 

classification modeling sets. Table 4.3 showed the number of compounds for each kind of 

modeling sets. 

Prediction accuracies in terms of R2 for continuous models and CCR for classification 

models are given in Tables 4.4-4.8. Tables 4.4-4.7 showed the prediction accuracies for each 
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fold, whereas Table 4.8 showed cumulative prediction performance of consensus WinSVM 

classification models. kNN models used innate local applicability domain (AD) while 

prediction accuracies of WinSVM models were provided both without and with AD applied. 

In each case, AD were applied as Zcutoff = 0.5. 

a) Continuous models. It appeared that continuous models based on Datasets I-IV were 

so poor that no models were obtained for some folds. While the numbers of accepted 

models were limited for other folds, R2 values for the prediction accuracies of external 

test sets hardly exceeded 0.6, even with AD applied which typically decreased the 

coverage of predictable external compounds yet no significant effect on improving the 

R2 values (Table 4.4 and 4.5 for WinSVM and kNN models, respectively). Regardless 

of the universal poor performance, models based on Simplex descriptors seemed to 

outperform those built on Dragon or MOE descriptors. 

b) Classification models. Contrary to continuous models, classification models showed 

excellent prediction accuracies with CCRs ranging from 0.71 to 0.82. Here we should 

point out the observation that the application of AD did not improve the prediction 

accuracies significantly. CCRs increased by 0~0.3, and sometimes even decreased by 

0.1. The coverage of predictable external compounds decreased to 70% to 81%. Even 

though AD did not show any advantage of improving prediction accuracies, previous 

studies stressed the importance of using AD when applying the models to much larger 

databases to afford higher level of prediction confidence. Finally, consensus prediction 

(Table 4.8) improved both CCRs and coverage of predictions, indicating advantage 

over models based upon individual fold or type of descriptors. 
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c) Cross prediction between the data obtained from different species (human or rat). 

From Figure 4.3, we know there were always certain compounds not included by other 

datasets among Datasets I-IV. It would be helpful to predict the absent compounds by 

models built on another dataset to determine whether these datasets could be merged if 

the prediction accuracies were high. For example, models based on Dataset I were 

used to predict the 775 compounds from Dataset II. It could help to determine whether 

models based on compounds tested on human tissues can predict the properties of 

compounds tested on rat tissues correctly. Cross prediction results were summarized in 

Table 4.9, which indicated that cross-prediction accuracies between the models built 

upon data from different species (human or rat) were so poor that CCRs were below 

0.7. On the contrary, cross-prediction accuracies between the models built upon data 

from same species (but different databases, ChEMBL or PDSP) were reasonably as 

high as 0.82. 

4.3.4. Virtual Screening (VS) 

Consensus VS hits were obtained by application of all developed models based on three 

types of descriptors (Dragon, MOE, and Simplex), two modeling methods (kNN and 

WinSVM), and human data only. A list of 15 VS hits were prioritized for further 

experimental testing (Appendix II).  

4.4. Conclusions 

We applied rigorous chemical and biological data curation for 5-HT1A dataset, one of 

investigated GPCR targets. Rigorous external validation allowed us to develop robust and 

predictive classification QSAR models based on various types of descriptors, modeling 
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techniques, types of endpoint, and chosen species. At the same time, no continuous models 

passed the external validation that, probably, caused by low quality of biological data. 

Cross-prediction of the models based on data tested on different species reinforced our 

decision to merge data from different databases but tested on the same species only. Since we 

are most interested in discovering drugs applying to humans, we will only collect data tested 

on human tissues. 
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Figures and Tables 

 

Figure 0.1. General dataset curation workflow and number of compounds kept after 
each step. 
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Figure 0.2. The nitro group which can be represented by five different patterns. 
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Figure 0.3. Distribution of activity variation for the duplicate cases. 
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Figure 0.4. Overlaps between the datasets.  
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Figure 0.5. Correlation of pKi values for the compounds from Datasets I-IV. 
▲ The chemicals that tested as pKi < 5 on rat organisms but > 5 in human organisms. 
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Figure 0.6. Types of descriptors, modeling methods, and 
models based upon Datasets I
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Types of descriptors, modeling methods, and variable properties 
based upon Datasets I-IV. 

 

 
properties of QSAR 
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Table 0.1. 5-HT1A dataset. 

Resource Organism Number of Compounds 

ChEMBL 

Humans 1351 

Rats 1002 

Mice 15 

Total 2368 

PDSP 

Humans 672 

Rats 508 

?Humans 14 

Bovine 17 

COS-7 16 

Mice 1 

Pigs 49 

Pigeons 5 

Porcine 1 

Guinea pig 1 

Rabbits 8 

UNDEFINED 49 

Total 1341 

 
 
Table 0.2. Four different datasets based on the resources and tested organisms. 

 Humans Rats 

ChEMBL 
Dataset I 

1048 
Dataset II 

804 

PDSP 
Dataset III 

343 
Dataset IV 

255 

 
Note: numbers represent the counts of compounds in each dataset. 
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Table 0.3. Numbers of compounds for all continuous and classification modeling sets. 

Dataset Continuous 
Modeling Set 

Classification Modeling Set 

Total Binders non-binders 

Dataset I 1048 1100 713 387 

Dataset II 804 843 430 413 

Dataset III 344 373 159 214 

Dataset IV 255 285 115 170 
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Table 0.4. Prediction performance (R2) of developed WinSVM continuous models. 

Datasets 
Dragon MOE Simplex 

w/o AD AD Cov. w/o AD AD1 Cov. w/o AD AD Cov. 

Dataset I NA NA NA 0.51 0.52 71% 0.51 0.53 72% 

Dataset II 0.49 0.53 71% 0.51 0.51 79% 0.49 0.53 71% 

Dataset III NA NA NA 0.43 0.49 68% 0.47 0.51 62% 

Dataset IV NA NA NA 0.49 0.53 73% 0.53 0.65 71% 
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Table 0.5. Prediction performance (R2) of developed kNN continuous models. 

Dataset Dragon MOE Simplex 

Dataset I N/A  0.09  0.44  

Dataset II 0.52  0.06  0.03  

Dataset III 0.24  0.31 0.35  

Dataset IV 0.34  0.28  0.40  

N/A: no models passed the acceptability criteria 
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Table 0.6. Prediction performance (CCR) of developed WinSVM classification models. 

Datasets 
Dragon MOE Simplex 

w/o AD AD Cov. w/o AD AD1 Cov. w/o AD AD Cov. 

Dataset I 0.75 0.77 73% 0.72 0.74 74% 0.76 0.76 73% 

Dataset II 0.82 0.82 75% 0.75 0.75 81% 0.77 0.77 70% 

Dataset III 0.80 0.81 76% 0.80 0.79 72% 0.79 0.80 75% 

Dataset IV 0.77 0.80 74% 0.71 0.70 74% 0.79 0.80 75% 
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Table 0.7. Prediction performance (CCR) of developed kNN classification models. 

Dataset Dragon MOE Simplex 

Dataset I 0.78 0.75 0.77 

Dataset II 0.80 0.76 0.77 

Dataset III 0.79 0.78 0.80 

Dataset IV 0.75 0.73 0.76 
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Table 0.8. Prediction performance of consensus WinSVM classification models. 

Dataset  Sensitivity Specificity CCR Coverage 

Dataset I w/o AD 0.86 0.68 0.77 100% 

AD 0.88 0.70 0.79 88% 

Dataset II  
w/o AD 0.80 0.76 0.78 100% 

AD 0.82 0.77 0.80 89% 

Dataset III  w/o AD 0.77 0.82 0.80 100% 

AD 0.80 0.81 0.81 86% 

Dataset IV w/o AD 0.71 0.86 0.79 100% 

AD 0.75 0.85 0.80 87% 
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Table 0.9. Prediction accuracies (CCR) of cross prediction between Datasets I-IV. 
External 

Modeling 
Dataset I Dataset II Dataset III Dataset IV 

Dataset I N/A 0.50 (775) 0.75 (153) NA 

Dataset II 053 (1019) NA NA 0.82 (77) 

Dataset III 0.63 (857) NA NA 0.67 (223) 

Dataset IV NA 0.71 (626) 0.74 (312) NA 

Note:  
1. Numbers in the brackets are the counts of compounds being predicted. 
2. “N/A” means no prediction was performed between the crossed datasets. 
 



 
 

CHAPTER 5  

QSAROME OF THE RECEPTOROME: QSAR MODELING OF 

MULTIPLE LIGAND SETS ACTING AT MULTIPLE RECEPTORS

5.1. Introduction 

G protein-coupled receptors (GPCRs) are transmembrane proteins functioning as the 

media to transduce external stimuli into intracellular signals. The biology and physiology of 

GPCRs have been considered for a long time as intriguing areas for scientific studies, and the 

excitement still persists. Their importance is highlighted by the fact that at least one third of 

currently marketed drugs target GPCRs[13]. The number of drugs that target GPCRs is still 

expected to increase considering the intense research effort for the elucidation of unknown 

functions of GPCRs and that only 10% of GPCRs are established drug targets so far[169]. As 

the panel of GPCRs grows sufficiently and functions are comprehensively characterized, a 

systematic analysis of the ‘receptorome’ (the portion of the proteome encoding receptors) is 

viable for important discoveries[10]. This approach has successfully helped to discover the 

molecular mechanisms underlying serious drug side effect, e.g., phen/fen-induced heart 

disease[170] and weight gain triggered by atypical antipsychotics[171]. 

In the QSAR field, the counterpart of receptorome summarized above could be referred 

to as the ‘QSARome’. Due to the recent advances in high-throughput screening and rapid 

growth of publicly available databases of biologically tested compounds[2,3], we are 

motivated to develop this efficient modeling protocol to help elucidate more complex actions 
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of chemicals and unknown functions of drug targets. In response to the disclosure of the 

poly-pharmacological nature of antipsychotic drugs[172], it is suggested that drugs

selectively targeting a combination of GPCRs might provide more benefits than single-action 

agents in many CNS disorders. This implication challenges the conventional QSAR practices 

where a specific target was often emphasized by virtue of focusing on relatively simple 

datasets. On the contrary, we should use sophisticated computational methods to develop a 

compendium of predictors based on available complex data. The compendium of predictors 

will in turn shed a light on the interaction of agents with their targets in a systematic way. 

Overall speaking, we expect QSARome to be an efficient complement to the approach of 

receptorome in the sense of both elucidating the actions of natural compounds and validating 

molecular targets for drug discovery[173]. 

To establish reliable QSARome predictors, we should notice that the explosive growth 

of publicly available large databases[4] concurs with the plague of false annotations recorded 

in the databases. It was even critiqued that more than half of the published studies from 

academic laboratories fell into the dilemma of reproducibility by subsequent confirmation 

experiments[174–176]. While the percentage of erroneous recordings in public databases is 

hard to estimate (error rates of the commercial databases, however, range from 0.1 to 3.4%, 

according to a recent study[153]), it is indeed a severe problem which would deteriorate the 

quality of QSAR modeling so badly that sometimes no valid QSAR models could be 

generated from biological meaningful datasets. Unfortunately, even experienced QSAR 

practitioners often make less effort on data curation and jump to the statistical quality of 

models too hastily. In the previous chapter, we designed clear and basic steps for data 

curation which could form a foundation for the subsequent QSARome project, and used the 
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5-HT1A receptor as an example to demonstrate the importance of data curation for QSAR 

modeling (Chapter 4). The established approach was employed as a universal approach for 

all datasets involved in the QSARome project, but should be adapted for specific issues when 

applying to other data. 

5.2. Datasets and Methods 

5.2.1. Datasets 

The datasets containing compounds which interact with 34 mostly studied GPCR 

targets were extracted from the databases of ChEMBL[2] and PDSP[3]. We focused on the 

compounds with Ki values tested on the human tissues, excluding the ones tested on rats, 

mice, or any other animal models. The Ki values were expressed as mol/L, which were 

converted to negative log[1/(mol/L)] values (pKi) according to standard QSAR practices. The 

structures of the data were verified following the protocol established by our group[77]. If 

there were different pKi values for one molecule with exactly the same type of interaction 

(either within the same database or across databases), the standard deviations were calculated. 

Then we excluded the molecules with the deviation greater than 0.5 and assigned average pKi 

values for the remaining molecules. Finally, unique compounds with interactions with the 34 

GPCRs were employed as the dataset for further modeling and validation studies. Chemical 

structures of all compounds and their experimental pKi values used in the study are available 

from the authors upon request. 

The above 34 GPCR targets included 10 serotonin receptors (5-HT1A, 5-HT1B, 5-HT1D, 

5-HT1E, 5-HT2A, 5-HT2C, 5-HT3, 5-HT5, 5-HT6, and 5-HT7), 7 adrenoceptors (α1A, α1B, α2A, 

α2B, α2C, β1, and β2), 5 dopamine receptors (D1, D2, D3, D4, and D5), 5 muscarinic receptors 

(M1, M2, M3, M4, and M5), 4 histamine receptors (H1, H2, H3, and H4), and 3 neurotransmitter 
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transporters (serotonin (SERT), norepinephrine (NET), and dopamine (DAT)). Recently, the 

affinity profiles (pKi values) of these protein targets to 13 antipsychotic drugs were 

released[172] and brought into our attention by Vidal and Mestres[168]. The 13 

antipsychotic drugs, which were utilized to constitute the external validation set, contained 

six first generation antipsychotics (chlorpromazine, fluphenazine, haloperidol, loxapine, 

thioridazine, and thiothixene) and seven second generation antipsychotics (clozapine, 

olanzapine, quetiapine, risperidone, zotepine, ziprasidone, and aripiprazole).  

ChEMBL is a database integrating literature reported bioactivities of drug-like small 

molecules. It contains 2D structures, calculated chemical properties (e.g., logP, Molecular 

Weight, etc.) and abstracted bioactivities (in our case, the binding constant Ki). The most 

recent version of ChEMBL_11 contains about 1.2 million compound records against 8,603 

targets, abstracted from more than 42,000 publications[2]. Compounds extracted from this 

database represented over 90% of the whole datasets we collected. 

The NIMH Psychoactive Drug Screening Program (PDSP) is a unique national resource 

devoted to discovering new treatments for mental illness. Dr. Roth has implemented many 

biological assays and made it a reliable source of antipsychotic drug-target interactions. 

Although PDSP provides a less portion of extracted compounds, it provides additional assay 

values to most existed compounds in ChEMBL, and certain values are labeled as PDSP 

certified activity, indicating higher reliability for the annotations. 

5.2.2. Descriptor Generation 

The QSARome models for all final unique compounds were developed with the 

chemical descriptors calculated by the Dragon software v5.5[162] based on the curated SD 

file of the structures. Only 0D, 1D, and 2D descriptors were considered in this study. The 
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initial number of Dragon chemical descriptors was as high as 2442, which was processed as 

follows. First, we removed all descriptors that had zero values or zero variance for all 

compounds. Furthermore, redundant descriptors were identified by analyzing correlation 

coefficients between all pairs of descriptors; if the correlation coefficient between two 

descriptor types for all modeling set compounds was higher than 0.95, one of them was 

randomly chosen and removed. As a result, the final total number of Dragon descriptors used 

for model building was reduced to 762, and the descriptors were normalized to 0~1 based on 

the maximal and minimal values of each descriptor type in whole dataset. A detailed 

explanation of descriptor generation and preparation procedures can be found elsewhere[18]. 

5.2.3. Building Models with Support Vector Machines (SVM) 

The Support Vector Machines (SVM) algorithm[33] packaged in the R program (e1071) 

was used in this study in the light of its popularity for machine learning. It serves as a general 

data modeling methodology where both the training set error and the model complexity are 

incorporated into a special loss function that is minimized during model development. 

Briefly, an SVM model finds a separating hyper-plane with a maximal margin in the feature 

space by minimizing the special loss function. To cope better with different classification 

tasks, e.g., linear vs. nonlinear correlations, a handful of kernel functions were developed to 

map the original descriptor space to a higher dimensional feature space for modeling purpose. 

In this study, we built models with the linear kernel. The cost was assigned from 0 to 10 with 

a step of 1 to search for the optimal separating margin. 

5.2.4. Applicability Domain (AD) 

If a query compound is highly dissimilar to all other compounds in the modeling set, its 

predicted activity by the developed models could be unreliable. Thus, it is critical to define a 
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proper Applicability Domain (AD) of a model. In this study, AD for each of the models was 

determined by a threshold Euclidean distance DT between each query compound and its 

nearest neighbors in the modeling set. DT was represented by all chemical descriptors 

(referred as the global AD) and calculated as follows: 

)1.5.........(..............................σZyDT +=  

where y  is the average Euclidean distance between each compound and its k nearest 

neighbors (k=1) in the modeling set, σ is the standard deviation of these Euclidean distances, 

and Z is an arbitrary parameter to control the significance level. Usually, the default Z value 

is 0.5, that is, the AD for a model places its boundary at one-half of the standard deviation 

calculated for the distribution of distances between each compound in the modeling set and 

its k nearest neighbors (k=1) in the same set. If the distance of a test compound from any of 

its nearest neighbors exceeds the threshold, the prediction is considered unreliable. However, 

by applying AD for each model, only a certain fraction of compounds in any external dataset 

is expected to fall within the AD. The fraction is therefore referred to as the coverage and 

should be considered for external prediction results. Detailed description of AD definition 

and calculation could be found in our previous publications[9,39]. 

5.2.5. Data Division for Model Building and Validation 

A set of 13 antipsychotic drugs (chlorpromazine, fluphenazine, haloperidol, loxapine, 

thioridazine, thiothixene, clozapine, olanzapine, quetiapine, risperidone, zotepine, 

ziprasidone, and aripiprazole)[168,172] which had bioactivities tested on all 34 GPCRs was 

set aside as the external set for evaluation of the prediction performance of built models. 

Although this external set is pretty small in comparison with the modeling datasets, it is a 
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valuable source to validate the obtained models because external compounds were not 

involved in any modeling procedure and were tested against all the investigated targets. 

Five-fold external cross-validation (5FECV) has been used for the assessment of 

predictive power of the developed models. For each of the 34 datasets, 20% of compounds 

were extracted randomly for five times (already chosen compounds were out of selection for 

each next time) to compose an external validation set. In this case, every compound will be 

set aside in the external sets for once. An SVM model was obtained each time on the 

remaining 80% of compounds. The overall CCR was then calculated based on the integrated 

predictions of the whole modeling set composed of the five external sets, with error bars 

calculated from the five corresponding CCRs (Figure 5.2). The importance of a sufficient 

external validation set was stated by our previous publications[38] and has been integrated 

long ago as a part of our predictive QSAR modeling workflow (Figure 2.1, Chapter 2). 

5.2.6. Y-Randomization test 

Y-Randomization test is a widely used validation technique to ensure the absence of 

chance correlations during obtaining of a QSAR model[177]. This test includes (i) randomly 

shuffling the dependent-variable vector, Y-vector of training sets (class labels in this study), 

and (ii) rebuilding models with the randomized activities (class labels) of the training sets. 

This procedure was applied to each of the five splits of each dataset. It is expected that the 

resulting QSAR classification models, built with randomized activities for the training set, 

should generally have low CCRs for training, test. It is likely that sometimes, though 

infrequently, high CCR values may be obtained because of a chance correlation or structural 

redundancy of the training set. However, if some QSAR classification models obtained in the 



104 
 

Y-randomization test have relatively high CCR, it implies that an acceptable QSAR 

classification model cannot be obtained for the given data set. 

5.2.7. Gap Filling and Virtual Screening (VS) 

The matrix of investigated activities used for modeling was dramatically sparse (only 

6.75% were filled), so developed and externally validated models were applied to fill up the 

gaps within the matrix. Because the descriptors were calculated and linearly normalized 

based on the whole data matrix, no further treatment of descriptors was needed. However, we 

did restricted ourselves to the most conservative applicability domain using Zcutoff = 0.5 when 

making predictions. Overall, 83.5% of the gaps were filled by exercising this AD criterion on 

QSAR predictions. 

5.3. Results and Discussion 

5.3.1. Curated Data Matrix 

It has been shown that an unclean dataset would lead to unsuccessful QSAR practices 

[77]. At the current stage of explosive growth of publicly available bioactivity databases, 

data curation becomes the most critical prerequisite for building any QSAR models, because 

all the databases contained certain percentage of different errors[4]. According to the 

protocol established earlier by our lab[77], we performed a thorough examination of the 

original data for inorganics, organometallics, mixtures, tautomers, and duplicates (See Table 

5.1 for examples). Furthermore, activity analysis was undergone by calculating the variations 

of these multiple values if the duplicates identified by the structures were associated with 

multiple pKi values to the same protein target (See Table 5.2 for example). In total, there 

were 1175 cases with standard deviations greater than 0.5 that should not be considered for 
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QSAR modeling unless all reported pKi values were above (or below) the corresponding 

cutoff values. 

In addition, we expected that activity variation between the datasets were biased to be 

smaller, because there must be a great number of the same bioactivities recorded by both 

databases, which would reduce the observed deviations. A complete identification of the 

duplicate records in both databases simultaneously, however, would be exhaustive and 

unrealistic as one has to examine all the corresponding references cited in both sources. 

Another issue found by our analysis was the wrong translation from literature to databases 

(See an example shown in Figure 5.1). The record was wrongly taken from the article[178] 

as 398 instead of 5.8 for pKi. Due to the scale of our study, we were incapable of removing 

such errors completely, but alert it here for database managers to beware of this issue. 

The final data matrix, constructed from 22,633 ChEMBL and 11,243 PDSP records, is 

composed of 9,088 unique compounds with cleaned bioactivities against 34 GPCR targets. 

However, only 6.75% of the matrix is filled, i.e., the data matrix is very sparse (Figure 5.7). 

5.3.2. Validation of SVM Models 

To streamline the modeling process, we applied the simple rule of cutoff adjustment to 

balance each dataset for classification modeling. Thus, dataset-specific cutoff value to 

distinguish binders and non-binders was determined based on the balance of these two 

classes within a given dataset. For most datasets, pKi = 7 was used as the cutoff values since 

the ratios of these two classes were restricted within [1/3, 3]. The exceptions were: 5-HT1E, 

5-HT3, 5-HT5, D5, H2, H3, M4, and M5. Composition and cutoff values for all 34 datasets are 

depicted in Figure 5.2. 
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The 5FECV results for the 34 SVM models developed for investigated GPCRs are 

shown in Figure 5.3. Our SVM models reached CCR above 0.70 for 33 out of 34 GPCR 

targets. For nine targets (5-HT2A, 5-HT3, 5-HT5, α1A, α1B, M3, M4, SERT, and NET), CCRs 

were even greater than 0.80. The only CCR below 0.70 is referred to 5-HT1E, which has the 

smallest size and contained only 37 defined binders. As a consequence, it is not surprised to 

observe a high deviation (0.16) of CCRs from 5FECV. Overall, we consider our approach is 

capable of assessing the GPCR binding profile of a query compound given it is within 

models’ applicability domains. 

5.3.3. Prediction Performance for the External Matrix 

As shown in Figure 5.4, the predicted GPCR bioprofiles of the 13 drugs were colored 

based on the prediction accuracy. The overall prediction accuracy was 70.6%. It is noted that 

thiothixene and quetiapine were out of AD for most models, and, expectedly, their 

predictions were as poor as 42.4% and 51.5%, respectively. The overall accuracy reached 

77.3% after exclusion of these two molecules. One should keep in mind that as an external 

set, 13 drugs for any individual model provide limited information. However, taking the 

external matrix as a whole gave us a certain level of confidence for the models’ predictive 

power. 

5.3.4. Filling the Gaps in the Matrix 

Developed predictive models were used for gap-filling in the initial data matrix. At this 

step, we excluded the compounds that were already tested and were active on more than 3 

GPCRs because they will not be selective, which resulted in 7,267 compounds that were 

expected to be valuable for further investigation. This yielded a mixed matrix with even less 

experimental bioactivities and the rest of them with predicted bioactivities. Figure 5.5 shows 
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the distribution of number of compounds that interact with the 34 GPCRs. The 7,267 

compounds were then ranked by the number of bound GPCR targets (either experimentally 

tested or predicted). Among those compounds, we identified 146 compounds that bind to 

only one or two GPCR targets (the “magic bullet”). In addition, it is also viable to select 

compounds with preferred binding profiles, which referred to as the “magic shotgun” that 

interact with a preferred class of GPCRs hypothesized to improve therapeutic effects and 

avoid some serious side effects[172]. 

The applicability domain was determined by Zcutoff = 0.5 when making predictions, and 

was an important element to consider when prioritizing compounds for further experimental 

testing, no matter for selective binders or nonselective binders that target a specific 

combination of GPCR targets. The coverage of overall predicted matrix, excluding the ones 

used in the modeling matrix, was 83.5%, varying from 59.5% to 95.0% for each target. 

5.3.5. Experimental Testing 

Based on the mixed matrix with both experimental and predicted pKi values, we ranked 

the compounds by the number of targets it will bind. Figure 5.6 shows the distribution of 

compounds targeting various numbers of GPCRs. As illustrated, most compounds interact 

with 7~15 targets. This is consistent with a recent study about binding profiles of a virtual 

molecule library GPB-13[179]. In their pure computational study, the active group of 

compounds averagely bound to 8 protein targets[15]. Taking applicability domain into 

consideration, a list of 148 selective ligands (binders for only 1 or 2 GPCRs) was provided 

for experimental testing (Appendix III). 



108 
 

5.4. Conclusions 

In this Chapter, we collected a full-scale interaction matrix of various chemicals tested 

against 34 well-studied GPCRs. Rigorous structural curation and activity analysis were 

performed to yield clean structures and standardized activity values, which constituted the 

foundation for our QSARome modeling. We thus built a compendium of SVM models based 

on each of the 34 GPCR datasets. The predictive power of each model was first examined by 

5-fold external cross-validation. Among our 34 predictors, 33 had CCRs greater than 0.70 

and nine of them greater than 0.80, indicating high predictive power for individual models. 

Furthermore, an external set of 13 drugs was utilized to assess the ability of these predictors 

as a whole to profile a given chemical’s polypharmacological characteristics. The accuracy 

of predicting the external matrix reached 70.6%. This strategy, as validated by various levels 

of external validation, is very meaningful to help discover antipsychotic drug candidates with 

favorable binding profiles, which will enhance therapeutic effects but avoid serious side 

effects. According to that, list of selective compounds (binders for only 1 or 2 GPCRs) was 

provided for experimental testing. 

Currently, the dimension of the external set (13 drug × 34 targets) and target diversity 

(31 aminergic GPCRs and 3 neurotransmitter transporters) are both limited. In order to obtain 

a higher level of confidence for QSARome models, we should rely on the experimental tests 

and generate even more well-rounded data for validation purpose. Nevertheless, to the best of 

our knowledge, this is the first robust QSAR modeling exercise that operates on multiple 

drug targets interacting with a large scope of rigorously curated compounds. In order to make 

our QSARome practices publicly available to general scientific community, all curated 

datasets and developed models would posted on-line on our ChemBench server[180]. 
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QSAR modeling has proved to be an efficient complement to in vitro screening. Most 

of previous QSAR studies including earlier works from our laboratory have focused on 

relatively “simple” datasets against a specific target in vitro. Nowadays, multiple biological 

responses have been measured for a set of compounds, thus the QSARome approach 

established by this study will again provide an efficient avenue to rapidly reveal drug-target 

interactions, unravel mechanisms of action, and evaluate chemical toxicity when expanded to 

other protein targets. 
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Figures and Tables 

 
Figure 0.1. An example of wrong translation from literature to ChEMBL. 
This is a piece of Table 8 from J. Med. Chem. 2006, 49, 2758-2771. Observed error is the 
recorded value “398” instead of the authentic value “5.8” for β2. 
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Figure 0.2. Data distribution and pKi cutoff values for each dataset. 
 

 
Figure 0.3. Prediction performance of SVM models. CCR is the cumulative CCR values 
of 5 external folds. 
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Figure 0.4. Prediction performance for the external matrix composed of 13 drugs.  
  



 

Figure 0.5. Number of binders (either experimental or predicted) to each GPCR target.
 

113 

Number of binders (either experimental or predicted) to each GPCR target.
 

 
Number of binders (either experimental or predicted) to each GPCR target. 



 

 

Figure 0.6. Distribution of compounds targeting various 
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Distribution of compounds targeting various numbers of GPCRs.
 

 
numbers of GPCRs. 
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Figure 0.7. The heat map of final curated matrix (part). 
Grey shows gaps without experimental assay values. Sparsity degree = 93.25%. 
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Table 0.1. Examples of chemical structure processing during basic data curation. 

Issues Source Before curation After curation 

Organometallics 

ChEMBL 

 

Deleted 

PDSP 

 

Deleted 

Salts 
or 

Mixtures 

PDSP 

  

PDSP 

  

Tautomers 
ChEMBL 

PDSP 
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Table 0.2. Prazosin – an example of excluded compound with multiple records and high 
activity deviation in both ChEMBL and PDSP. 

Prazosin 

 

Targets 5-HT2A α-1A D2 

Maximal 
deviation 

5 2.06 0.95 

Assay 
records 
(pK i) 

5.15 
5.45 
10.15 

9.16 
10.22 
8.74 
8.14 
9.29 
9.23 
9.23 

7.24 
7.51 
7.84 
7.97 
7.02 

 
 



 
 

CHAPTER 6  

CONCLUSIONS AND FUTURE DIRECTIONS

6.1. Application of current cheminformatic techniques to human 5-HT7 datasets 
to build validated and predictive QSAR classification models for drug 
repurposing. 

The 5-HT7 receptor is the newest member in the serotonin receptor family. However, it 

has recently become investigated more and more since many studies indicated that it is 

involved in a large number of psychological and behavioral functions. In Chapter 2 we used 

MolConnZ descriptors to generate continuous kNN models for 62 receptor binders. In 

addition, we obtained a classification DWD model for the same dataset enriched by 

additional 38 non-binders. All developed QSAR models were rigorously validated and 

possessed high external predictive power. Seven compounds, all of which were known drugs, 

with high predicted activity were identified by virtual screening of WDI database. 

Subsequent experimental testing confirmed that five of them were potent 5-HT7 receptor 

binders. Droperidol and perospirone were the most potent and had affinity to 5-HT7 receptor 

at nanomolar level. They were later identified as 5-HT7 antagonists by functional assays. 

The most critical contribution of our work is a new strategy to identify novel 

antipsychotic drugs from the source of FDA-approved drugs. Our findings led to potential 

repositioned drugs to treat psychotic disorders, especially for treating schizophrenia, since 5-

HT7 malfunction has been implicated in the disorder’s etiology. The computational strategy 
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attested in this study thus could be referred to as QSAR-aided Drug Repurposing. This is a 

good example of drug repositioning using in silico methods, which has garnered attention in 

light of the advantages they provide in accelerating drug discovery for neglected, rare, and 

orphan diseases[181]. Our strategy could be used along with other in silico approaches (e.g., 

Bayesian classification methods[182]) to help achieve this goal in the future studies. 

6.2. Development of algorithm Economic Ratio (ER) as both a cost function 
and a validation merit for classification QSAR. 

In this Chapter, we developed a new fitness metric, the Economic Ratio (ER), and 

applied this metric for QSAR modeling and Virtual Screening (VS). This was motivated by 

the fact that rapid growth of High Throughput Screening (HTS) databases concurs with the 

phenomenon that the majority of tested compounds have inactive annotations. As a 

consequence, most classification models face the issue of balancing the modeling set or 

otherwise have to accept the truth that VS results would be biased towards the class 

encompassing the larger number of compounds in the modeling set. ER, on the other hand, 

makes use of the imbalances in available datasets and enhances hit enrichment of VS when 

integrated with Decision Tree methods.  

Using five various binary datasets, we tested this ER in two different but 

complementary ways: 1) as an evaluation metric to assess the prediction performance of 

QSAR classifiers and 2) as a target function for model building using the Decision Tree 

algorithm. In the latter case, we used the weighted form of ER to avoid the over-fitting 

problem. The results showed that successful application of weighted ER was observed on 

highly imbalanced datasets containing few active compounds, suggesting that ER would be a 

good complement to traditional classification methods (e.g., kNN and SVM). Future efforts 
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of applying the modified Decision Tree method should focus on such unbalanced datasets, 

but as an evaluation metric, we highly recommend considering ER in addition to the 

conventional metrics such as sensitivity, specificity, accuracy, and correct classification rate. 

6.3. QSARome of the Receptorome: QSAR Modeling of Multiple Ligand Sets 
Acting at Multiple Receptors 

Chapter 4 and 5 focus on the development of QSARome models for predicting 

chemical binding profiles instead of binding affinity to a specific target. Conventional QSAR 

studies, including previous works from our laboratory, have dedicated their efforts to 

relatively simple datasets with a smaller number of similar compounds tested against a 

specific target. However, as more complex datasets (e.g., multiple biological responses 

measured for a set of compounds) emerge, we are now capable of systematically evaluating 

the binding profiles of untested chemicals. In this dissertation, we collected chemicals that 

were tested on 34 GPCRs associated with therapeutic or side effects of antipsychotic drugs, 

and developed highly predictive QSARome models after thorough curation of the original 

raw data. Most models achieved high CCRs when verified by individual 5-fold external 

cross-validation. Prediction accuracy reached 70.5% when applying the consensus of these 

models to predict the activity of 13 drugs with known binding affinities to the same 34 

GPCRs.  

Developed strategy, as proven by various levels of external validation, is very 

meaningful to help discover antipsychotic drug candidates with favorable binding profiles, 

which will enhance therapeutic effects but avoid serious side effects. According to that, list 

of selective compounds (binders for only 1 or 2 GPCRs) was provided for experimental 

testing. Moreover, to the best of our knowledge, this is the first robust QSAR modeling 
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exercise that operates on multiple drug targets interacting with a large scope of rigorously 

curated compounds. In order to make our QSARome practices publicly available to general 

scientific community, all curated datasets and developed models would posted on-line on our 

ChemBench server[180]. 

One of the foundations of developing successful QSARome models is the rigorous 

curation of the underlying datasets. The extensive curation effort was verified by the 5-HT1A 

dataset in Chapter 4. Ki data tested on human tissues and rigorous structural curation 

protocols proved to be essential for the subsequent success of QSARome modeling. 

Nevertheless, erroneous annotations are ubiquitous in large databases, and efforts of curation 

must be maintained continuously. We should strive to control these errors below a certain 

threshold to minimize their influence on model quality. Although the universal protocol 

established for the QSARome project seems to meet this goal, we recommend reasonable 

scrutiny, including manual inspection, of collected data regardless of how large the dataset 

might be. 

Our earlier work based on relatively simple datasets has helped us gain abundant 

experience on combinatorial QSAR modeling and rigorous validation schemes. However, the 

previous QSAR modeling strategies are ill-suited for handling data with multiple endpoints. 

Thanks to the launch of the ChemBench server[180], it will be much easier to build 

combinatorial QSARome models with the prompt generation of various types of chemical 

descriptors (e.g., Dragon, MolConnZ, and CDK[183]) and prepared modeling algorithms 

(e.g., Random Forest, SVM, and kNN). ChemBench can thus serve as a convenient one-stop 

platform for combinatorial QSARome modeling involving various descriptor types and 

machine learning methods. 
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The QSAR field has long been focusing on providing models with good statistics that 

fit known experimental data. However, we emphasize more on the predictive power of 

resulting models, e.g., capable of capturing virtual screening hits valid in real experiments. In 

view of our focus on experimental validation, we collaborate closely with Prof. Bryan Roth 

at the UNC Department of Pharmacology. Prof. Roth directs the NIMH Psychoactive Drug 

Screening Program (PDSP), a unique national resource devoted to discovering new 

treatments for mental illness. His laboratory has assay protocols ready to validate in silico 

predictions made by any QSAR models. In addition, it would be more meaningful if we 

could apply our approach to find drug-orphan GPCR pairs to help elucidate the functions of 

orphan GPCRs, which currently account for 40% of known GPCRs. Finally, we should 

continue to seek collaborations which could provide complementary expertise in hit 

validation against other protein targets, since our ultimate aim is to broaden the strategy to 

cover other valuable protein targets in addition to GPCRs. 

  



123 
 

Appendices 

Appendix I. Chemical structures and measured pKi values for 5-HT7 binding affinity of 
62 5-HT7 binders used in QSAR model building and validation.  
pKi:  experimentally measured activity (binding affinity). 

Mol. pKi Mol. pKi 
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Appendix II. Chemical structures of VS hits yielded by 5-HT1A models (DrugBank). 

DB_ID 
Prediction 

score Structure Name 

DB01049 1 

 

Ergoloid 

DB08543 1 

 

1-[2-hydroxy-3-(4-
cyclohexyl-phenoxy)-
propyl]-4-(2-pyridyl)-

piperazine 

DB01295 1 

 

Bevantolol 

DB00353 1 

 

Methylergonovine 

DB07543 1 

 

(2S)-1-(9H-Carbazol-4-
yloxy)-3-

(isopropylamino)propan-
2-ol 

DB07656 1 

 

n-[4-(1-
benzoylpiperidin-4-

yl)butyl]-3-pyridin-3-
ylpropanamide 

DB08023 1 

 

N-cyclohexyl-4-
imidazo[1,2-a]pyridin-3-
yl-N-methylpyrimidin-2-

amine 
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DB01253 1 

 

Ergonovine 

DB07973 1 

 

n-(1-isopropylpiperidin-
4-yl)-1-(3-

methoxybenzyl)-1h-
indole-2-carboxamide 

DB00243 1 

 

Ranolazine 

DB01570 0.8 

 

Beta-hydroxy-3-
methylfentanyl 

DB00496 0.6 

 

Darifenacin 

DB04471 0.6 

 

2-Phenyl-1-[4-(2-
Piperidin-1-Yl-Ethoxy)-

Phenyl]-1,2,3,4-
Tetrahydro-Isoquinolin-

6-Ol 

DB01267 0.6 

 

Paliperidone 
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Appendix III. Chemical structures and predicted binding targets for untested 
compounds within the QSARome data matrix.  

Name or  

ChEMBL Molregno 
Targets Smiles 

392109 5-HT2B O(C(=O)C=1CCCC=1c1cc(N)ccc1)C 

416709 5-HT1E Clc1cc(ccc1Cl)C=1CCCC=1C(=O)N(OC)C 

331114 5-HT1E P(Oc1c2c(n(cc2CCN(C)C)C)ccc1)(O)(O)=O 

CARBACHOL 5-HT1E O(CC[N+](C)(C)C)C(=O)N 

Quercetin 5-HT2c O1c2c(C(=O)C(O)=C1c1cc(O)c(O)cc1)c(O)cc(O)c2 

Prucalopride 5-HT3 Clc1cc(c2OCCc2c1N)C(=O)NC1CCN(CC1)CCCOC 

22826 5-HT3 Oc1cc2CCNc2cc1 

422004 5-HT3 O(C)c1c2c(NC(=O)C(C)(C2=O)c2ccccc2)cc(OC)c1 

7646 5-HT5 NCC(c1ccccc1)c1ccccc1 

438991 5-HT5 Oc1ccccc1CCN1CCCC1 

355471 5-HT6 S(=O)(=O)(Nc1cc(CCN)c(OC)cc1)c1ccccc1 

400598 5-HT6 Clc1ccc(cc1)C=1C2NC(CC2)C=1C(OC)=O 

2724 5-HT7 Oc1cc(ccc1)C1CCCN(C1)CCC 

582997 α1A Clc1cc(ccc1)C(=O)C(NCCC)C 

583005 α1A O=C(C(NC(C)(C)C)C)c1ccccc1 

583013 α1A Clc1cc(ccc1)C(=O)C(NC(C)C)C 

565536 α2A O(C)c1cc(N2CCN(CCN3CCN(CC3)C(C)C)C2=O)ccc1 

422046 β2 Brc1cc(ccc1OCc1ccccc1)C1(C)C(=O)c2c(NC1=O)cc(Cl)cc2Cl 

ISOPRENALINE D1 Oc1cc(ccc1O)C(O)CNC(C)C 

365731 D2 Clc1ccc(cc1)C(C(OC)=O)C1NCCCC1 

Cathinone D3 O=C(C(N)C)c1ccccc1 

Ephedrine D3 OC(C(NC)C)c1ccccc1 

Methcathinone D3 O=C(C(NC)C)c1ccccc1 

339502 D3 O(C)c1ccc(cc1)C(=O)C(N1CCCC1)CCC 

L-DOPA D3 Oc1cc(ccc1O)CC(N)C(O)=O 

423 D3 S(C)c1ccc(cc1)CC(N)C 

582926 D4 Fc1cc(ccc1F)C(=O)C(NC(C)(C)C)C 

299511 D4 O1c2c(cccc2)C(=O)CC1CN1CCN(CC1)Cc1ccccc1 

392134 H1 O(C(=O)C=1CCCCC=1c1cc([NH+](O)[O-])ccc1)C 

499031 H2 FCCOc1cccc(C(=O)C2CCN(CC2)CCc2ccc(OC)cc2)c1OC 
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439047 H2 s1cccc1CCN1CCCC1 

D-cystine H3 S(SCC(N)C(O)=O)CC(N)C(O)=O 

D-methionine H3 S(CCC(N)C(O)=O)C 

L-cysteine H3 SCC(N)C(O)=O 

L-cysteic-acid H3 S(O)(=O)(=O)CC(N)C(O)=O 

338970 H3 O(C(=O)c1ccc(cc1)C(=O)C(N1CCCC1)CCC)C 

206670 H3 O(CCc1nc[nH]c1)c1ccc(cc1)C(=O)C 

438654 H3 O(C)c1ccc(cc1)CCN1CCCC1 

Naproxen M1 O(C)c1cc2c(cc(cc2)C(C(O)=O)C)cc1 

ibuprofen M1 OC(=O)C(C)c1ccc(cc1)CC(C)C 

339144 M1 Clc1cc(ccc1Cl)C(=O)C(NCCCC)CCC 

392103 M1 O(C)c1ccc(cc1)C=1CCCC=1C(OC)=O 

392105 M1 FC(F)(F)Oc1ccc(cc1)C=1CCCC=1C(OC)=O 

392132 M1 Oc1ccc(cc1)C=1CCCCC=1C(OC)=O 

392380 M1 O(C(=O)C1CCCCC1c1ccccc1)C 

336399 M1 BrCC(C(OCC)=O)c1ccccc1 

336505 M1 O1CC(CC1=O)c1ccccc1 

336648 M1 BrCCCC(C(OCC)=O)c1ccccc1 

400589 M1 O(C(=O)C=1C2CC(CC2)C=1c1ccccc1)C 

PBR28 M4 O(c1ccccc1N(Cc1ccccc1OC)C(=O)C)c1ccccc1 

Rutin M5 O1C(COC2OC(C)C(O)C(O)C2O)C(O)C(O)C(O)C1OC1=C(O
c2c(C1=O)c(O)cc(O)c2)c1cc(O)c(O)cc1 

422029 M5 Clc1c2c(NC(=O)C(C)(C2=O)c2ccc(Cl)cc2)cc(Cl)c1 

438479 M5 n1ccccc1CCN1CCCC1C 

METHYLPHENIDA
TE 

DAT O(C(=O)C(C1NCCCC1)c1ccccc1)C 

273894 SERT N(CCC)(CCC)C1CCC(CC1)=CC#N 

66613 SERT O1c2cc(ccc2OC1)CC(NC)C 

TRAZODONE 5-HT2A, H2 Clc1cc(N2CCN(CC2)CCCN2N=C3N(C=CC=C3)C2=O)ccc1 

nimesulide β2, D3 S(=O)(=O)(Nc1ccc([NH+](O)[O-])cc1Oc1ccccc1)C 

PSILOCYBIN D3, M4 P(Oc1c2c([nH]cc2CCN(C)C)ccc1)(O)(O)=O 

PARECOXIB D3, H4 S(=O)(=O)(NC(=O)CC)c1ccc(cc1)-c1c(noc1C)-c1ccccc1 

CELECOXIB β2, D3 S(=O)(=O)(N)c1ccc(-n2nc(cc2-c2ccc(cc2)C)C(F)(F)F)cc1 

498962 5-HT2A, H2 Fc1ccc(cc1)CCN1CCC(CC1)C(=O)c1cccc(OCCF)c1OC 

498964 β2, H2 FCCOc1cccc(C(O)C2CCN(CC2)CCc2ccc(cc2)C)c1OC 



132 
 

513010 5-HT3, H2 O(C(=O)c1ccccc1)C1CC2N(C(CC2)C1C(OC)=O)C 

499028 5-HT2C, M4 FCCOc1cccc(C(=O)C2CCN(CC2)CCc2ccc(cc2)C)c1OC 

Diclofenac 5-HT2C, M3 Clc1cccc(Cl)c1Nc1ccccc1CC(O)=O 

Acetylsalicylic-acid α2B, H2 O(C(=O)C)c1ccccc1C(O)=O 

SalvinorinA 5-HT5, β2 O1C(CC2(C3C(CCC2C1=O)(C)C(CC(OC(=O)C)C3=O)C(OC
)=O)C)c1ccoc1 

421822 5-HT2C, M1 Clc1c2c(NC(=O)C(C)(C2=O)c2ccccc2)cc(Cl)c1 

422032 5-HT2C, H3 Clc1c2c(NC(=O)C(C)(C2=O)c2cc(O)ccc2)cc(Cl)c1 

422034 5-HT6, M5 Clc1c2c(NC(=O)C(C)(C2=O)c2ccc(O)cc2)cc(Cl)c1 

Hyperoside 5-HT6, M3 O1C(CO)C(O)C(O)C(O)C1OC1=C(OC=2C(=C1O)C(O)=CC(
=O)C=2)c1cc(O)c(O)cc1 

Quercitrin 5-HT6, H4 O1C(C)C(O)C(O)C(O)C1OC1=C(OC=2C(=C1O)C(O)=CC(=
O)C=2)c1cc(O)c(O)cc1 

498963 5-HT2C, H1 FCCOc1cccc(C(O)C2CCN(CC2)CCc2ccc([NH+](O)[O-
])cc2)c1OC 

499029 5-HT2C, H1 FCCOc1cccc(C(O)C2CCN(CC2)CCc2ccc(OC)cc2)c1OC 

499030 H2, H3 FCCOc1cccc(C(=O)C2CCN(CC2)CCc2ccc([NH+](O)[O-
])cc2)c1OC 

METHAMPHETAM
INE 

β2, H2 N(C(Cc1ccccc1)C)C 

Desvenlafaxine H2, H3 OC1(CCCCC1)C(CN(C)C)c1ccc(O)cc1 

SULPIRIDE β2, SERT S(=O)(=O)(N)c1cc(C(=O)NCC2N(CCC2)CC)c(OC)cc1 

258615 D2, D3 OC(C(NC(C)(C)C)C)c1ccccc1 

273862 α2C, D1 N(CCC)(CCC)C1CCC(=CC1)C#N 

392093 5-HT2A, M4 Clc1cc(ccc1Cl)C=1CCNCC=1C(OCC)=O 

392117 D2, D3 Clc1cc(ccc1)C=1CCCCC=1C(OC)=O 

392126 D5, M1 O(C(=O)C=1CCCCC=1c1ccccc1)C 

392379 5-HT1D, D5 FC(F)(F)Oc1ccc(cc1)C1CCCCC1C(OC)=O 

392385 M1, M2 FC(F)(F)c1ccc(cc1)C1CCCCC1C(OC)=O 

416696 M1, M2 Clc1cc(ccc1Cl)C=1CCCC=1C(=O)N(CC)CC 

416708 M1, M2 Clc1cc(ccc1Cl)C=1CCCC=1C(=O)NCCF 

416717 M1, M2 Clc1cc(ccc1Cl)C=1CCCC=1C(OCC(F)(F)F)=O 

582972 D3, M2 Clc1cc(ccc1)C(=O)C(N(C)C)C 

582990 M1, M2 Clc1cc(ccc1)C(=O)C(N1CCCCC1)C 

583011 D3, D4 Fc1cc(ccc1)C(=O)C(NC(C)(C)C)C 

583012 5-HT7, α1A Brc1cc(ccc1)C(=O)C(NC(C)(C)C)C 

583021 α1A, α2C Clc1cc(ccc1)C(=O)C(NC1CC1)C 

583030 5-HT7, D1 Clc1cc(ccc1)C(=O)C(NC1CCC1)C 
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583041 α1A, α2C Clc1ccc(cc1)C(=O)C(NC(C)(C)C)C 

Iproniazid α1A, M5 O=C(NNC(C)C)c1ccncc1 

NPA 5-HT7, α2C OC(=O)c1ccccc1C(=O)Nc1c2c(ccc1)cccc2 

229225 5-HT2A, M4 Fc1c2CCC(NC(C)C)Cc2ccc1 

520213 D4, M3 O1C2C(N(CC1)CCC)CCc1c2cc(cc1)C(O)=O 

DMA 5-HT5, D4 O(C)c1ccc(OC)cc1CC(N)C 

MEM α2C, DAT ClCOCCOC 

336434 5-HT1E, 5-HT6 BrC(CCCC(OCC)=O)c1ccccc1 

336442 5-HT2A, M5 O1C(CCCC1=O)c1ccccc1 

10383 D4, M1 [nH]1cc(nc1)CC(N)C 

10519 5-HT2C, M1 S(CCCN(C)C)C(N)=N 

549495 D4, M1 S(CCNC(N)=N)C(N)=N 

alpha-
methylhistamine 

D4, M3 [nH]1cncc1CC(N)C 

35034 5-HT3, M4 O(C)c1ccccc1N1CCN(CC1)CCNC(=O)c1cc(OC)ccc1 

87552 5-HT3, D2 o1c2cc(NC(=O)Nc3c4ncccc4ncc3)ccc2nc1C 

120076 5-HT1D, H4 Brc1cc(C(=O)NCC2N(CCC2)CC)c(OC)c(OC)c1 

156767 5-HT1D, α1A O(C)c1cc(ccc1OC)C(=O)CCC(=O)N1CCN(CC1)C(CC)CC 

231436 5-HT7, DAT N(CCN1CCc2c1cccc2)(C)C 

296993 5-HT1A, D4 Brc1cc(S(=O)(=O)N2CCC(N3c4c(COC3=O)cccc4C)CC2)c(O
C)cc1 

299512 α1A, H2 O1c2c(cccc2)C(=O)C=C1CN1CCN(CC1)Cc1ccccc1 

307784 5-HT6, M1 O=C(Nc1cc(ccc1)C)CN1CCN(CC1)c1ccncc1 

317542 D2, H2 S(=O)(=O)(Nc1cc(N)cc(OC)c1)c1ccc(N)cc1 

325220 5-HT1E, H4 FCCc1cc(C(=O)NCC2N(CCC2)CC)c(OC)c(OC)c1 

332586 5-HT1E, α2C S(=O)(=O)(n1c2c(cc1)c([NH+](O)[O-])cc([NH+](O)[O-
])c2)c1ccc(N)cc1 

350922 5-HT6, M3 O(C)c1ccccc1N1CCN(CC1)CCCN1C(=O)C(NC(=O)C)CC1=
O 

355470 H4, M3 S(=O)(=O)(Nc1cc(ccc1)CCN)c1ccccc1 

355501 β2, H2 S(=O)(=O)(Nc1cc(ccc1)CCCN)c1ccccc1 

383726 5-HT1D, H2 Clc1ccccc1COc1ccc(OCCCN2CCOCC2)cc1C(=O)N(C)C 

383728 M1, M3 O1CCN(CC1)CCCOc1cc(C(=O)N(C)C)c(OCc2ccccc2OC)cc1 

392106 M1, M2 S(=O)(=O)(C)c1ccc(cc1)C=1CCCC=1C(OC)=O 

400595 5-HT1D, 5-HT7 Clc1cc(Cl)ccc1C=1C2CC(CC2)C=1C(OC)=O 

408619 5-HT3, H3 n1(c2c(cccc2)cc1)Cc1ccc(N)cc1 
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421941 β2, H4 Clc1c2c(NC(=O)C(C)(C2=O)c2ccccc2)cc(OC)c1 

422033 H2, H4 Clc1c2c(NC(=O)C(C)(C2=O)c2ccc(OC)cc2)cc(Cl)c1 

422043 H2, H4 Clc1c2c(NC(=O)C(C)(C2=O)c2cc([NH+](O)[O-
])c(OC)cc2)cc(Cl)c1 

422044 5-HT6, H4 Clc1c2c(NC(=O)C(C)(C2=O)c2cc([NH+](O)[O-
])c(O)cc2)cc(Cl)c1 

422048 M5, DAT Brc1cc(ccc1O)C1(C)C(=O)c2c(NC1=O)cc(Cl)cc2Cl 

438478 α2A, DAT n1ccccc1CCN1CCCC1 

438651 5-HT7, H4 O(C)c1cc(ccc1)CCN1CCCC1 

438652 5-HT7, H4 O(C)c1cc(ccc1)CCN1CCCC1C 

438656 5-HT1E, 5-HT5 O(C)c1ccccc1CCN1CCCC1C 

438701 α1A, H4 O(C)c1ccccc1CCN1CCCC1 

438703 D1, H4 N1(CCCC1C)CCc1cc(ccc1)C 

438990 D1, D4 O[NH+]([O-])c1ccc(cc1)CCN1CCCC1C 

438996 H4, M3 O[NH+]([O-])c1ccc(cc1)CCN1CCCC1 

439048 α1A, H4 s1cccc1CCN1CCCC1C 

501019 α2A, H1 O(C(=O)c1[nH]c2c(cc(cc2)C(O)=O)c1)CC 

520792 5-HT2c, H1 Fc1cc(OC(F)(F)F)ccc1-c1ccc(cc1)CN1CC(OC1=O)C 

520864 5-HT3, D4 Fc1cc(OC(F)(F)F)ccc1-c1ncc(cc1)CN1CC(OC1=O)C 

626640 5-HT3, 5-HT6 O(C1CC(N(C1)C(=O)C)C(=O)N1CCCN(CC1)C1CCC1)c1ccc
nc1 

647925 5-HT1E, 5-HT5 O(c1cc(ccc1)C#N)c1ncc(cc1)C(=O)N1CCN(CC1)C(C)C 

648035 5-HT2A, H2 Fc1ccc(Oc2ncc(cc2)C(=O)N2CCCN(CC2)C)cc1 

DMT β2, D3 [nH]1cc(c2c1cccc2)CCN(C)C 
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