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ABSTRACT 

Andrew Dale Fant: The Effect of Data Curation on the Accuracy of Quantitative Structure-
Activity Relationship Models 

(Under the direction of Alexander Tropsha) 

 

In the 33 years since the first public release of GenBank, and the 15 years since the 

publication of the first pilot assembly of the human genome, drug discovery has been awash 

in a tsunami of data.  But it has only been within the past decade that medicinal chemists 

and chemical biologists have had access to the same sorts of large-scale, public-access 

databases as bioinformaticians and molecular biologists have had for so long. The release of 

this data has sparked a renewed interest in computational methods for rational drug design, 

but questions have arisen recently about the accuracy and quality of this data. The same 

question has arisen in other scientific disciplines, but it has a particular urgency to 

practitioners of Quantitative Structure-Activity Relationship (QSAR) modeling. By its nature 

QSAR modeling depends on both activity data and chemical structures. While activities are 

usually expressed as numerical scalar values, a form ubiquitous throughout the sciences, 

chemical structures (especially that must be interpretable as such by computer software) are 

stored in a variety of specialized formats which are much less common and mostly ignored 

outside of cheminformatics and related fields. 

While previous research has determined that a 5% error rate in data being used for 

modeling can cause a QSAR model to be non-predictive and useless for its intended purpose, 

and workflows have been proposed which reduce the effect of inconsistent chemical 

structure representations on model accuracy, a fundamental question remains: “how 
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accurate are the structure and activity data freely available to researchers?” To this end, we 

have undertaken two surveys of data quality, one focusing on chemical structure information 

in Internet resources and a second examining the uncertainty associated with compounds 

reported in the medicinal chemistry literature as abstracted in ChEMBL. The results of these 

studies have informed the creation of an improved workflow for the curation of structure-

activity data which is intended to identify problematic data points in raw data extracted from 

databases so that an expert human curator can examine the underlying literature and 

resolve discrepancies between reported values.  This workflow was in turn applied to the 

creation of two QSAR models that were used to implement a virtual screen seeking 

molecules capable of binding to both the serotoninergic reuptake transporter and the alpha 

2a receptor. While no suitable compounds were identified in the initial screening process, 

regions of chemical space that may yield truly novel alpha 2a receptor ligands have been 

identified. These regions can be targeted in future efforts. 

Basing data curation workflows on manual processes by human curators is not 

particularly viable, as humans have a tendency to introduce errors by inattention even as 

they identify and repair other problems.  Computers cannot effectively curate data either.  

While they are highly accurate when programmed properly, they lack human creativity and 

insight that would allow them to determine which data points represent truly inaccurate 

information.  In order to effectively curate data, humans and computers must both be 

incorporated into a workflow that harnesses their strengths and limits their liabilities.  
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Chapter 1: Introduction 

 

“Everything starts somewhere, though many physicists disagree. But people have always 
been dimly aware of the problem with the start of things. They wonder how the snowplow driver 

gets to work, or how the makers of dictionaries look up the spelling of words.” 
Hogfather -Terry Pratchett  

 

Over 2000 years ago, Democratus suggested that the universe was made up of atoms 

and that the structure of the atoms might be responsible for their properties in obvious 

mechanical ways. For example, water would be made up of smooth atoms that glide over 

each other, while iron might be made of atoms with hooks that hold it together and make it 

strong. While this was a pre-scientific idea arising from an exercise in philosophy, it is 

nonetheless one of the earliest expressions of a major goal of chemistry: explaining the 

properties of substances in terms of their atomic and molecular structures and being able to 

possibly design new substances with desired substances by carefully arranging atoms in 

molecules. 

By the time of Lavosier and Dalton, much of this grand goal was a distant dream  

while modern atomic theory was developing and the question of what everything was 

actually made of came to the forefront. But as organic synthesis was shown to be possible by 

Wohler (and then profitable by Perkin) the desire to rationally understand (and then 

predict) the properties of compounds in terms of their structures reemerged. Less than 20 

years after the commercial introduction of mauvine and the birth of large scale organic 

chemical production, Alexander Crum Brown and Thomas Fraser recast Democritus’ 

philosophical musings into more scientific form and proposed that the physiological action 
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of a substance is a function of the chemical structure 4. As years passed, experiments 

demonstrated the merit of this concept, including the correlation of cytotoxicity with 

decreasing water solubility in organic compounds by Richet in 18935, and the parallel 

discoveries by Overton and Meyer a few years later that the water/oil partition coefficient 

also correlated with the ability of organic compounds to induce lethargy and surgical coma6 

(this is the source of the popular rumor that gaseous anesthetics are non-specific drugs that 

work entirely by disrupting the dynamic flow of lipid-bilayers in the cell membrane7).  

Simultaneously with this foundational work in chemistry, physicians and biologists 

were laying the foundations of modern pharmacology by considering how small molecules 

might interact with other components of biological systems. The work of John Langley in the 

latter half of the 19th century on the contrary physiological effects of atropine and pilocarpine 

is considered one of the foundational points of receptor biology. By examining how each of 

those compounds could selectively counteract the effects of the other, Langley conceived of 

specific receptors in cells which could interact with chemicals with certain properties (in this 

case, a quarternary amine). This concept was furthered by the advocacy of Paul Ehrlich at 

the turn of the 20th century as he sought specific compounds that would act as antibacterial 

agents. Ehrlich suggested in his lock and key hypothesis of drug action that it was not merely 

the presence of certain groups in a compound that would cause a compound to work, but 

specific structural features of the drug which would mediate interactions with a receptor 

“like a key turning in a lock” 8. 

Shortly before the outbreak of the Second World War, Louis Hammett was 

examining the acidity of benzoic acid derivatives and how it related to the rate of amide 

formation when trimethylamine is introduced into a reaction vessel with one. He noted that 

there was an almost linear relationship when the acidity (as pKa) when reaction rates were 

plotted against each other for either the meta- or para-substituted benzoic acids3. 
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Ultimately, this analysis yielded a set of constants relating to the electron donating or 

withdrawing properties of the substituted group that was invariant across multiple kinds of 

reactions. This constant, sigma (σ), captures many of the properties of different substituent 

groups in a way that mirrors the experience and intuition of working chemists in that 

substituents with similar sigma values, such as chloro- and bromo- or methyl- and 

isopropyl- will have similar effects on chemical reactivity when substituted on the same base 

structure. Equally important, however, is that the sigma constant allows for a congeneric 

series of compounds to be described numerically in terms of the difference in their 

structures. 

These developments culminated in Corwin Hansch’s 1962 publication of a model of 

the ability of phenoxy acids to promote plant growth by an auxin-like mechanism9. This 

model used the sigma parameter to describe the ability of a given substituent group to 

activate or deactivate an aromatic ring to further substitution, and a water/octanol partition 

coefficient to describe a given molecule’s ability to penetrate into cells. This lead to 

experiments in predicting small molecule activities in other biological systems and 

ultimately to the formulation of the Hansch equation10, for many years the starting point for 

much of the work in quantitative structure-activity relationships (QSAR) in biological 

systems. 

The Hansch formulation of QSAR was not without its shortcomings. In particular, it 

depended heavily on experimental data for not only the activity values, but also for the 

hydrophobic parameters that it depended upon. The Hansch laboratory at Pomona College 

was as much an analytical lab that determined the water/n-octanol partition coefficient for 

thousands of compounds of interest as it was a statistical modeling team. Hansch also 

depended heavily on collaborators in other disciplines to provide assay values for his 

laboratory to model. Industrial researchers were able to obtain additional consistent assay 
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values for novel compounds more easily and began to apply the Hansch-Fujita analysis to 

problems of drug discovery, and new computational tools began to offer the possibility of 

calculating hydrophobicities instead of measuring them for novel compounds. These 

datasets remained small, normally containing no more than thirty compounds (often as few 

as five or ten) and many of the most interesting ones remained undisclosed by the 

pharmaceutical companies who collected them. In their view, the synthesis of new 

compounds and their assaying required a significant investment of time and expense, so it 

would be foolish to just give the results away. Similarly, the synthesis and testing of a SAR 

series in an academic laboratory required a relatively wide set of necessary skills and did not 

match well with the research goals of the majority of academic researchers. A few QSAR 

datasets were nevertheless assembled and became heavily relied upon for methods 

development and training new practitioners in the art of model building. QSAR was a 

technology hobbled by a lack of access to data. 

Ultimately, this situation changed because of two technological advances in 

chemistry. The first has its roots in solid-phase supported syntheses of peptides. These 

methods required the development of highly efficient, selective reactions that tolerated a 

variety of substituent groups. In particular, the construction of peptidic amide bonds became 

well optimized. This advance led to the development of more general combinatorial 

chemistry techniques, where thousands or millions of compounds are synthesized from 

combining two series of fragments which both bear one of the two requisite groups for a 

generic coupling. Starting in the early 1980s, synthetic chemists often were able to use 

combinatorial techniques to elaborate on an initial lead compound against a given target and 

quickly create an entire SAR series to attempt the optimization of a new drug or probe. 

The second advance which enabled large-scale QSAR was the development of the 

high-throughput screen (HTS). Much as the desire for efficient chemical synthesis of novel 
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peptides drove the development of more general combinatorial chemistry methods, the 

transition of the pharmaceutical industry to target-based approaches in the 1970s, coupled 

with the advances in robotics first seen in heavy industry around the same time, allowed 

biological assays to move from being labor intensive and tissue- or organism-based to being 

constrained by the availability of materials. For radioligand displacement or flu0rometric 

assays that might only require 15 to 60 minutes to run, converting to HTS technologies 

allowed organizations to increase their throughput two to three orders of magnitude by 

migrating those experiments to 96- or 384-well plate formats. This transition also simplified 

collaborations between assay developers and synthetic chemists or computational modelers. 

Whereas screening a set of compounds against a target might have been several day’s work 

for a technician or student, there was little more effort involved in setting up a screen for 50 

or 100 compounds than there was in setting up for a single compound. Eventually, funding 

would become available for shared screening facilities to be developed, providing assay 

services for chemical biologists in the non-profit sector at low marginal cost to their research 

programs. The trade-off for this low cost, however, is usually that the assay results must be 

made available to the general public. Further advancing the general availability of chemical 

data have been projects such as ChemSpider1, and the purchase and conversion to public 

access of the StARlite database by the Wellcome Trust and EMBL-EBI.  

The increased availability of HTS to the broad base of researchers, coupled with the 

ensuing surge in chemical activity data has allowed chemistry to become part of the era of 

Big Data and data science. “Big Data” has become something of a buzz-word since its coining 

sometime around 1990. It is a shorthand term which encompasses the increasing tendency 

of raw data of multiple forms to be stored in a computer-readable format that can then be 

winnowed, sorted, and recombined to hopefully identify trends and patters which no single 

human could manually identify or extract. The key aspects of big data vary from source to 

source, but there seems to be a general agreement that for something to be in the realm of 
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big data, the source material needs to be in electronic form that is at least an order of 

magnitude more than can be reasonably handled in the core memory of the largest available 

computers and that the analysis needs to be computationally complex enough that it 

necessitates the use of parallel computing techniques to complete in a reasonable time 

scale11. A no less incomplete, but arguably more authoritative definition was recently given 

by Phillp Bourne, the director for big data projects at NIH, entitled “What Big Data Means 

To Me.” In it, Bourne suggests that Big Data is an emergent property of organizations which 

have transformed their operations into a truly digital enterprise and moved all their 

functional data into electronic storage, allowing correlation of that data to make new 

connections and gain new insight into their core processes2. He cites the example of a 

hypothetical university where all laboratory data is stored in an electronic repository, and a 

chemistry graduate student’s research into an organism being used for bioremediation of 

toxic waste is correlated with an MD/PhD student’s research notes on neurodegenerative 

diseases by virtue of having several genes annotated as being of interest in both data sets, 

thus leading to a connection, collaboration, and small-molecule analog of that gene’s 

product showing promise in pre-clinical testing. While this is certainly a best-case scenario, 

it certainly identifies the enthusiasm felt by many of the proponents of Big Data as an 

approach to science. 

The changes that have allowed chemistry to become a big data-driven undertaking 

follow, but mirror, the evolution of biology into a data-driven, mechanistic discipline. In 

biology, these changes can be traced to the determination of pioneers in gene sequencing 

and molecular genetics to ensure that their research results would not be locked up in 

printed formats and/or private data silos, but rather would be freely exchangeable in the 

spirit of peer-reviewed research. To this day, it is almost uniformly required that new genetic 

or protein sequences be submitted into public repositories before they can be discussed in 

the peer-reviewed literature. Similarly, researchers are expected to make available vectors 
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for new sequences and constructs as a condition of publication. In crystallography and 

expression analysis, other public repositories fill analogous roles. The publication of a 

manuscript is not a right conferred by the willingness to pay page charges, but rather an 

accession to cooperative mutual exchanges with the larger community. 

Data science and Big Data are popular topics with pundits, futurists, and seers right 

now, but they do not represent an effortlessly sunny future for researchers, bedecked with 

rainbows and populated by friendly unicorns. Big Data cannot magically overcome all the 

mundane problems that are currently being seen in biomedical research, however. In 2011, 

researchers at Bayer examined 67 completed projects, and found that it was impossible to 

replicate the findings of almost two-thirds of them12. Likewise, a survey of high-impact 

journals in cancer research by a group at Amgen in 2012 found that attempting to replicate 

the findings of fifty-three high-profile reports failed in forty-seven cases13. The question of 

data quality and reproducibility is serious enough that Francis Collins, the director of the 

NIH, published an editorial suggesting that some new projects in translational medicine may 

be required to show independent validation of results before being used as the basis for 

further funding proposals14. It seems obvious that there is a problem with data reliability 

when a peer-reviewed journal offers an editorial entitled “Reproducibility: Six Flags for 

suspect work” which offers exactly that, a list with explanatory text that offers to help 

researchers know when the results in a report are potentially too good to be true15. 

One might think that, as a computational discipline, bioinformatics would be more 

resistant to errors. Unfortunately, this is not the case. In 2009, Phillip Bourne’s group 

published a paper suggesting targets in tuberculosis that might be susceptible to interacting 

with already approved drugs for other, unrelated conditions16. Two years later, he revisited 

the workflow for this project with a group of computer scientists who had no particular 

background in computational biology17. Their goal was to recreate the workflow and results 
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described in that paper with only that paper as a reference. This attempt failed spectacularly, 

with only one out of fourteen distinct steps in the workflow successfully recreated. The 

restrictions on the researchers attempting to reproduce the project were then loosened, and 

they were allowed to consult other resources: first, the documentation for various programs 

being utilized, and second, the researchers who actually did the research described in the 

original paper. After checking external documentation, only half of the fourteen workflow 

steps were successfully reproduced, and after consulting with the experts on the process, all 

fourteen were functional. However, the results from the workflow did not exactly reproduce 

the original results. The compounds identified in the original workflow were reisolated, with 

similar but not exactly identical p values for significance, and many other compounds that 

had not appeared in the original paper were identified with acceptably low p values. In the 

conclusions, it is proposed that there are multiple sources for these problems, including the 

relentless addition of new data to public, web-based data repositories, the embedding of 

significant parameter values in run scripts that are not made part of the manuscript, and 

using manual editing processes in text editors or spreadsheets over scripted transformati0ns 

which can be audited and checked as long as the code exists17. 

Even if the work completed is perfectly documented, this does not ensure its 

accuracy. A short trip through the computational biology literature reveals multiple kinds of 

errors that are made, arising from either mechanical error or a basic misunderstanding of 

the tools available. For example, logic errors in programs from incorrectly mixing 0-offset 

indexing in arrays and 1-offset indexing arise both because scientific developers make logic 

errors in coding their algorithms and because they have been crossing back and forth 

between languages that use different conventions18. A recurrent problem stems from the use 

of Excel as an intermediate data storage, editing, and export tool. In 2004, it was noted in 

BMC Bioinformatics that datasets with gene names that can be parsed as dates were being 

inappropriately renamed as those dates; DEC1, OCT4 and SEPT9 were being renamed as 1-
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Dec, 4-Oct, and 9-Sept, respectively19,20. A solution is to be careful when importing CSV data, 

to explicitly mark columns with gene names as text, and not to allow Excel to auto-detect 

date information. This problem is not unusual. It occurs in other forms in other domains, 

both scientific and non-scientific. In cheminformatics, Excel will often attempt to either 

parse CAS registry numbers as dates or as subtraction formulas. In spite of this, a decade 

later, people still find these mangled gene names in supposedly curated datasets. Similarly, a 

recurrent issue that NCBI deals with is complaints about supposed errors in GenBank 

records by users who misunderstand the relationship between GenBank and RefSeq (RefSeq 

is a curated database where incorrect information is corrected, GenBank is an archival 

database of sequence information as reported in the literature or by direct submission by the 

sequencer) 21. An even more basic error comes from novice users who do not fully 

comprehend that Linux is fully case-sensitive, and so is the grep command by default. 

Failing to specify a case-insensitive search has repeatedly caused difficulty in workflow 

scripts that were supposedly production ready, causing relevant data to be omitted from 

compiled subsets of larger databases. 

For practitioners of cheminformatics, these examples are useful cautionary tales. 

They are, however, not the only evidence that there are problems needing to be addressed in 

the sources of data we use and the methods we use to handle it once it has been compiled 

and extracted.  

In 2008, Douglas Young and colleagues published a study showing that there were 

erroneous chemical structures in their own QSAR models, even though they had used 

reputable commercial vendors as the source of those structures22. Furthermore, they 

determined that there was an error rate of up to 3.4% in those sources, and that having 

errors at that proportion was enough to cause significant error in their models. Their 

conclusion was that errors in chemical structure are more common than had been suspected, 
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and that for the majority of compounds examined, the inaccuracy of the structures resulted 

in a decrease in the predictability of the compound’s toxicity22. 

Similarly, in 2010, our laboratory showed the need for chemical structures to be 

standardized and to have any duplicate values removed from a data set being used for QSAR 

modeling. Errors were identified for about 10% of the structures in the NCI’s AIDS antiviral 

screen, and there were six pairs of duplicated compounds with pIGC50 values differing by up 

to one whole log unit in a well-known data set for aquatic toxicity23. The ultimate estimate of 

an acceptable error rate in QSAR data was that anything above 5% would result in models 

with poor external predictivity and erratic performance in general. In order to identify 

duplicates and prevent difficulties with descriptor calculation arising from the presence of 

unsupported atoms, Tropsha, et al., provide a detailed workflow for the handling of chemical 

structures associated with a QSAR model23. 

Most recently, Tiikkainen, et al., compared the contents of three major bioactivity 

databases: ChEMBL, WOMBAT, and Liceptor24. ChEMBL is a publicly available bioactivity 

database based on the formerly commercial StARlite database which seeks to cover as much 

of the traditional medicinal chemistry literature as possible25. WOMBAT is a commercially 

curated database that seeks to provide highly accurate values for various biological 

measurements of use in the pharmaceutical industry26, and Liceptor is another commercial 

bioactivity database that seeks to cover as much of the peer-reviewed and patent literature as 

is possible27. Between the databases, they have 5,013,463 activities recorded, but only 1.5% 

of these (73,076) are actually present in all three sources. Four different values were 

compared for each shared activity: the ligand structure, the target identity, the value of the 

reported activity and the type of activity reported. In cases where one source differed from 

the other two, that source was presumed to be the incorrect one, while in cases where all 
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three values differed, there was no a priori way to detect which one was correct. These 

results are summarized in Table 1.1. 

 Ligand Errors Target Errors Value Errors Type Errors 

ChEMBL 2181  (5.2 %) 1454  (3.2 %) 445  (1.1 %) 9  (0.0 %) 

Liceptor 2968  (7.1 %) 1134  (2.6 %) 1072  (2.5 %) 72  (0.1 %) 

WOMBAT 2491  (6.0 %) 819  ( 1.8 %) 510  (1.2 %) 94  (0.2 %) 

Discordant 2429  (5.9 %) 214  (0.5 %) 54  (0.2 %) 0  (0 %) 

Table 1.1: Raw occurrence of different error types and specific error rate estimates for each 
data source considered. (After Tiikkainen 24) 

 

After the initial counts of divergent values, a limited subset of 45 inconsistent activity 

values were selected from the list of all inconsistencies and manually checked in the primary 

literature. Of these, 37 (82.2 %) correctly identified the incorrect value as being the 

discordant entry while in three (6.7%) cases, the majority value was incorrect. In the 

remaining five cases, the correct value could not be ascertained because of insufficient 

information in the source. It is worth noting that this method primarily identifies situations 

where the compilation process for the database or the storage method for the database is 

introducing errors. This analysis obviously cannot identify when errors were introduced by 

the initial preparation and publication of the primary manuscript. It is also noteworthy that 

the represented chemical structures by themselves have an error rate above the 5% threshold 

identified by Fourches, et al., for the construction of reliable models21. Nevertheless 

predictive models are regularly constructed from the ChEMBL and WOMBAT databases. In 

many cases, the ability to construct successful models can be attributed in many cases to the 

fact that many of the structural errors identified in both WOMBAT and ChEMBL are, in fact, 
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stereochemical errors which would not be noted by conventional 0D, 1D and 2D descriptors 

(38% of ChEMBL and 60% of WOMBAT). 

QSAR models have traditionally been used early in the drug-discovery process, for 

virtual screening and for assessing the relative merits of alternate analogue series. 

Researchers further along the pipeline in preclinical development might apply models to 

predict physical properties, pharmacokinetic and pharmacodynamic parameters, and 

possible toxicological consequences, but these models are still primarily for the internal use 

of researchers. This is slowly changing. The REACH registration initiative under 

development in the European Union seeks to ultimately rely entirely on computational 

models as the first pass of their hazardous materials classification scheme28. Similar 

programs are under early investigation by the United States Environmental Perfection 

Agency. The US Food and Drug Administration is also exploring ways that chemical models 

can expedite their own regulatory missions. These are exciting times to be practicing 

cheminformatics, but these and other initiatives will rapidly fall from grace and burn if the 

models being produced are inaccurate in their predictions, either because of their 

foundation on bad data, or for another cause. Developing mechanisms to police the data and 

prevent bad information from being incorporated into new models is a task that needs to be 

undertaken now.  

There are two primary criteria for data to be useful in almost any technical arena. 

The data must be in a consistent and useful state, and they must be accurate. In the past 

decade, machine-readable bioactivity data has become increasingly available to the research 

community though common repositories, and multiple tools and processes for information 

standardization have become widespread. Problems with data quality stubbornly persist, 

with apparent error rates in those repositories exceeding the recommended threshold 

proposed by the cheminformatics community. While there are currently efforts underway to 
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reduce these error rates at the compilation stages (e.g. some of the additional functionality 

included in recent ChEMBL releases), there is still a need for an extension of the workflow 

proposed in Fourches, et al., that addresses issues with biological data, and that provides 

more explicit guidance for which data points should be removed during the deduplication 

process. It is the intention of this work to elucidate and index the origin and magnitude of 

errors found in both chemical structure data (Chapter 2) and bioactivity data (Chapter 3). 

This information stands as the basis for the aforementioned extension to the existing 

curation workflow. Finally, these principles are applied to the creation of QSAR models 

suitable for virtual screening experiments seeking to identify ligands showing affinity for two 

major targets in the central nervous system (Chapter 4). 
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Chapter 2: Chemical Structure Accuracy  

 

“Do not consider it proof just because it is written in books, for a liar who will deceive with 
his tongue will not hesitate to do the same with his pen” 

Mosheh ben Maimon 

Summary 

It has been established for some time that chemical structures occurring in public 

and private chemical data sets are not 100% accurate.  Multiple estimates have been made of 

the fraction of incorrect structures in large data sets ranging from 3.4 to 10%. This is 

particularly a problem for QSAR modeling, as it is also known that having more than one 

incorrect structure in twenty is sufficient to undermine the accuracy of a QSAR model.   As 

bioactivity databases become larger and more accessible, it becomes possible to construct 

QSAR models with data for more compounds from more sources.  This makes manual 

verification of chemical structures a slower and more tedious process, and also increases the 

risk that a functional group may be inconsistently represented in two or more structures, 

which is as detrimental as an outright structural error to the quality of the overall model. 

The goal of this study is to compare the methods that modelers might use to assign 

structures to a list of named chemical compounds and then to compare the accuracy of 

several different sources that might be used by chemists to resolve names to structures. 

Initially, a list of non-systematic names of well-defined chemical substances was 

needed. Small molecule drugs were chosen as search targets because they are well described 

in both scientific publications and regulatory filings, possess clear (but arbitrary) names, and 

are of relatively broad interest. A list of top-selling drugs from 2006 was obtained and 

filtered to yield 151 generic names.  Four groups of cheminformaticians independently 
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devised workflows to find the chemical structure corresponding to each name, and retrieve 

that structure in machine and human readable formats. Two groups developed manual 

consensus search methods that directly searched several well-known structure repositories 

(one with manual comparison and transfer of structural information, and the other using 

automated comparisons and transfer in machine-readable formats). One group made 

automated searches of a pre-existing, pre-curated internal structure database which was 

developed, in part, using many of the same sources that the previous two groups searched. 

The final group used an automated live search of Internet resources with consensus 

consolidation of structures to find the structure associated with a given name. This yielded 

four sets of 151 chemical structures.  Representatives from each team discussed any 

mismatches between structures for each compound, and a consensus gold list was finalized 

reflecting the best structure identified for each compound.  This gold list was then used to 

search several public chemical structure databases. For each of these databases, the number 

of hits returned for searches on each name and the number of times that searching by a 

name returned the same structure as the gold list were returned. Finally, incorrect structures 

from both the initial gold list assembly and searches of public databases were examined to 

determine what kinds of errors were predominant. 

After the assembly of the gold list, each group’s accuracy as compared to the final 

gold list was evaluated.  No team correctly identified all 151 chemical structures and there 

was an initial consensus of opinion for approximately 75% of all compounds.  The two 

groups which combined manual curation with automated matching and structure handling 

had the best performance with 3 and 6 incorrect structures.  The UNC group which relied 

more heavily on visual comparisons and manual structure comparisons had 14 incorrect 

structures, while the fully automated Internet search group had 30 structures in error.  

Statistical testing found a significant difference between the fully automated results and all 

other results, no significant difference for the automated structure handling groups, and a 
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marginal difference between the manual handling group and one of the two automated 

structural handling groups. Comparing the gold list to five major sources for chemical 

structure information, no single source had all 151 structures correct.  The accuracies of the 

sources ranged from 75 to 93% compared to the gold list; three of the five sources returned 

more than one structure for at least some of the chosen names. Two problem areas were also 

identified in the software used for some portions of the workflow that negatively affected 

0ne group’s results. 

This work is significant because it places some quantitative limits on the 

performance of manual and automated chemical structure resolution when multiple sources 

exist. Because Internet data sources are not annotated and curated to a uniformly high level 

of accuracy, fully automatic searches for chemical structure information are unlikely to 

return structures of high enough quality for meaningful QSAR modeling.  We reaffirm the 

need for a manual structure curation strategy in QSAR model development, and show the 

desirability of strategies that combine computational structure handling with human pattern 

recognition to yield the highest quality data sets for modeling. Finally, we provide an 

illustration of the advantages of MIABE and other data standards that allow continuous 

electronic propagation of chemical structure data, thereby eliminating the errors introduced 

by manual reentry of chemical structures. 

Introduction 

Molecular structure has been a defining issue in chemistry as long as the discipline 

has existed. Many of the greatest successes in organic synthesis were motivated by the desire 

to prove the proposed structure of a natural product correct by reproducing it in vitro and 

demonstrating that compounds from both sources have identical properties. This need for 

accuracy extends beyond the laboratory. Any situation where chemical structures are used to 

define the identity of a compound will perforce be concerned with the accuracy of the 
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structures presented. Beyond utilitarian concerns about chemical structures, generating and 

using accurate structures is a matter of professional pride and competency for chemists. 

Graphical chemical structures have their antecedents in the early 19th century work of 

Dalton and Thompson and began to be standardized between 1860 and 1871 by groups of 

European chemists 1 . By the time of Gilbert Lewis and his electron configuration structures 

in the early 20th century, organic chemists had informally agreed on conventions for the 

presentation of structural information that are the antecedent of IUPAC’s 2008 Graphical 

Representation Standards for Chemical Structure Diagrams 2 . While Gmelin’s Handbook 

predates this era (beginning publication in 1817) and Beilstein’s Handbuch began 

publication immediately after the first standards emerged in 1881, they undertook to ensure 

that their data sources provided structural information along with names, physical 

properties and reactions of listed compounds 3 . Similarly, when the American Chemical 

Society began publication of Chemical Abstracts in 1907, structural information was 

included for compounds appearing in the chemical literature. The effort to maintain 

structural information about known compounds took a leap forward in 1965 with the 

introduction of CAS Registry services that provided unique, externally-visible identifiers for 

chemical substances 4 . 

All of this structural information, however, was accumulating almost entirely in 

printed form and with few efficient options for structural searches. Attempts were made to 

enable structure-based searching of the chemical literature, including the CAS Ring Systems 

Index that classified compounds based on the structure of their topological backbones and 

the use of systematic nomenclature to index compounds by name. These lacked, however, an 

efficient way to go from structure to common name or to find other compounds similar to a 

given compound. While a faithful copy of the structure might be obtained by photocopying, 

including a structure in a new document almost inevitably required duplicating the 
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structural diagram manually, with the inherent risks of errors accumulating during that 

process. 

Since the first representation standards were propagated from the first International 

Chemical Congress in Karlsruhe in 1860 5 , significant efforts had been made in representing 

chemical structures in typographic form. While these attempts presented an easy 

mechanism of including chemical structures in typeset documents without the expense of 

engraving a separate plate for chemical structure diagrams, they were suboptimal because of 

the limited ways that stereo and regio-isomers could be represented. Further, it was difficult 

to visualize ways in which topologically distant parts of a complex molecule might become 

geometrically close and interact. By 1950, there were several groups working on better 

methods to store chemical structures as alphanumeric strings including, most notably, 

William Wiswesser, who developed the eponymous Wiswesser Line Notation 1 . This, and 

several other, encodings allowed chemical structures to be stored easily as alphanumeric 

strings on punched cards and be searched and collated by IBM’s ubiquitous Hollerith 

technology and, more significantly, using the ever-growing installed base of electronic 

computers. 

The widespread deployment of mainframe computers, combined with the demands 

of maintaining card indices for the expanding number of chemical structures appearing in 

the literature, led CAS to migrate to computerized databases as part of the roll-out of their 

REGISTRY service in 1965. Further developments in search technology, and the growth of 

commercial dial-up telecomputing providers, led CAS to allow information specialists 

remote access to their registry through a customized graphical terminal. They subsequently 

collaborated with FIZ Karlsruhe by launching STN International in 1983 4 . By 1990, STN 

Express had replaced customized terminals and complicated text queries, allowing non-

specialists to search and access chemical structure information from any modem-equipped 
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personal computer. While access was slow by current standards and very expensive 

(individual searches could run into hundreds of dollars of access fees), chemists could draw 

a chemical structure and determine if it had been reported before, without having to 

meticulously convert the structure to a systematic name or learn complicated line-notations 

for the search. 

Cotemporally, the Internet, a packet-switched data network originally developed by 

BBN, UCLA and Stanford University under contract for DARPA in the late 1960s, appeared. 

While it was originally envisioned solely as a test-bed for robust messaging technologies, 

researchers at major universities, government agencies, and a few fortunate corporate 

laboratories quickly discovered the wonder of near instantaneous communications and 

remote access between distant computer facilities. Beyond computer networking 

researchers, some of the earliest adopters of this technology were molecular biologists and 

others interested in what has evolved into bioinformatics. They used the new technology to 

share genetic and protein sequence information, bypassing the need to manually rekey 

information from publications or to generate portable storage media and ship them to 

different locations.  

When the US National Science Foundation removed their restrictions on commercial 

use of the NSFnet backbone in the early 1990s, Internet access and utilization exploded. By 

1995, the National Library of Medicine (NLM) had placed their Index Medicus and PubMed 

abstracts services online, and CAS followed suit. A major difference was that the NLM 

offered their service for free (eliminating the expensive requirement of multiple phone lines 

and banks of modems) while CAS still charged by the search. By that time, the Protein Data 

Bank held 3814 structures and GenBank held 425,000,000 bases in over 600,000 distinct, 

identified genes. Some websites showed chemicals structures by embedded graphics and 

private collections of chemical structures existed in machine-readable form. However, there 
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were few tools for searching and no publically available, free, central repository for chemical 

structures. 

This changed by the beginning of the 21st century, due to the efforts of Peter Murray-

Rust, Henry Rzepa and many others who had observed the effect that open data access had 

on the development of bioinformatics.  They advocated for better standards for chemical 

information storage on the Internet and easier access to that data 6 . With the founding of 

Wikipedia in 2001, the wiki concept of user-editable content on a web site was applied on a 

new scale and the idea of crowd-sourcing information collection came to the public 

consciousness.  Of particular interest this discussion, in their quest to collect as much of 

human knowledge as possible, Wikipedia authors and editors had begun adding machine 

readable forms of chemical structures to the pages of some compounds. With the ubiquity of 

web search engines such as Google, AltaVista, and Jeeves, the idea of searching the Internet 

directly for chemical structure data became feasible. 

By 2004, the number of machine readable chemical structures available on the 

Internet had begun to grow exponentially. The first major source to appear was PubChem, 

funded as a joint project by the NLM and the NIH Molecular Roadmap Libraries Program in 

2004 7 . While initially intended as a chemical structure repository to support dissemination 

of the results of HTS assay screens against novel targets by academic groups, it incorporated 

data from several other NIH sources, including structures referenced in published papers 

covered by the NIH’s open access requirements. 

Drawing on the release of PubChem, the increasing amount of chemical structure 

information on Wikipedia, multiple electronic catalogs from chemical suppliers, and several 

smaller collections, ChemSpider was founded in 2007 as an experiment in applying 

crowdsourcing methodologies to scientific data 8 . Any interested person was invited to 

create an account, submit novel chemical structures with names and any other available 
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data, and correct or validate the work of other users. The database grew rapidly and began a 

partnership with Wikipedia where chemical structure data would be automatically retrieved 

from ChemSpider for display on the appropriate Wikipedia pages. The Royal Society of 

Chemistry acquired the service in 2009, and while still supporting crowd-sourced curation 

of chemical structures, ChemSpider expanded into other facets of open science. These 

aspects include archiving chemical spectra and synthesis methods, providing automated 

structure validation services and providing chemical data for the OpenPHACTS project, an 

EU project aiming to provide better quality structured pharmacological information to 

researchers as an accelerator for drug discovery 9 . 

In 2008, the Welcome Trust acquired the rights to a structure-activity database, 

StARlite, from Galapagos NV and donated the data, in turn, to the European Bioinformatics 

Institute 10 . This database abstracted bioactivity information from the published literature 

(in particular the medicinal chemistry literature as represented primarily by the Journal of 

Medicinal Chemistry, Bioorganic and Medicinal Chemistry and BOMC Letters. Each 

compound appearing in conjunction with a bioactivity value was encoded in a machine-

readable format and stored in a relational database with the reported value, a citation and 

other relevant information. Since the original release in 2009, new values and structures 

from an increasing number of journals have been added, as well as HTS screening results 

from DrugMatrix, multiple industrial screening programs against malaria and tuberculosis, 

and other specialized target campaigns.  

Not all structures are equally good, however. In April of 2011, the National Chemical 

Genomics Center of the NIH released a specialized chemical information browser that 

connected to a new chemical database called the NCGC Pharmaceutical Collection. This 

database, which combined biological and chemical structure information from NIH, FDA, 

and private sources, was intended to provide information about all approved active drug 
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ingredients in the United States as a service supporting drug-repurposing projects. About 

2,750 small molecule drugs were included in the release. The launch was conducted to 

significant public fanfare including a press release with a quote from NIH director Francis 

Collins, waves of announcements on social media and chemical blogs, and publication of a 

paper in Science-Translational Medicine 11 . Unfortunately, in a blog entry dated April 28 of 

the same year, Tony Williams noted multiple errors in the data (including bad charge 

balances, missing and incorrect stereochemistry, and valence errors) from a preliminary 

scan of the data set 12 . Those errors could be detected without close comparison of the 

structures to known correct standards. An extended discussion ensued over these and other 

issues (such as the annotation of stearic acid as one of the six structures given for neomycin 

as shown in Table 2.1). While an improved database was released relatively quickly with 

cooperation from Williams and other members of the community, the collection’s reputation 

was already tarnished. The admission by the NCGC team that structure curation was an 

afterthought assigned to a junior team member did not help their credibility 13 . 

 

 

Table 2.1: Incorrect (left) and correct (right) structures for neomycin	  

 

While such an event described may be embarrassing to those involved and their 

superiors, uncertainties about chemical structures can lead to bigger problems. In 2012, in 

the course of solving the complex structure of Abl tyrosine kinase bound to bosuntinib (a 

novel kinase inhibitor developed by Pfizer), Nicholas Levinson of Stanford University noted 
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an anomaly in the electron density of the bosuntinib 14 . Examination of  another group’s 

structure of bosuntinib bound to a different kinase showed that, similarly to his own work, 

the electron density seemed to be at 3 position of a substituted phenyl ring (which is 

supposedly unsubstituted) rather than at the 2 position (where a chlorine atom is supposed 

to be, contributing significant electron density). Upon closer examination, his worst fears 

were confirmed. The material that the chemical supplier sold as bosuntinib was, in fact a 

regioisomer where the 2-chlorine and 3 hydrogens on the pendant phenyl ring were 

exchanged and, in addition, another chlorine (at the 4-position) and a methoxy group (at the 

5 position) were also exchanged (Table 2.2). The two laboratories had purchased their 

supplies of the ligand from two different suppliers. Further investigation determined that, of 

16 companies claiming to sell bosuntinib, only 2 of them in fact were providing that 

compound and not the regioisomer. Given that the compound used in the earlier structure 

was purchased in 2006, there is uncertainty over which compound has been used in 

experiments since at least that time. With 100 PubMed hits and 300 SciFinder hits, there are 

many papers which stand to have incorrect structures in them. It appears that the 

regioisomer is still a (less effective) kinase inhibitor, which limits the impact of this 

particular error, but the potential impact of mis-mapping a name and structure in another 

case like this one is large indeed.  

Problems with chemical structure accuracy can also have financial consequences. In 

1998, Lilly was issued Canadian Patent 2,163,446, a combined design and utility patent 

covering the use of sildenafil and analogs to treat erectile dysfunction. In this patent, Lilly 

makes a total of 27 claims regarding these compounds, but only one chemical structure was 

provided, a Markush structure with 4 substitution positions. All of the claims referenced a 

dizzying set of options for each substitution (one justice estimated that there were 260 

quintillion compounds in these first claims). In the discussion of the claims, Lilly provided a 
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list of multiple combinations of R groups that were most preferred for pharmaceutical use in 

erectile dysfunction. But nowhere in the patent did they explicitly identify the structure of 

sildenafil, the approved and marketed compound 15 . In 2012, the Supreme Court of Canada 

ruled that this patent was invalid because of this omission, which violates the requirement 

that a patent provide sufficient information about an invention for it to be reproducible by 

other craftpersons 16 . While the court reversed themselves on technical grounds regarding 

standing a year later, the core principle of full disclosure was upheld. This ruling would have 

opened the door to the marketing of generic sildenafil in Canada two years sooner than 

would have been the case if the patent had been upheld. While this single case cannot be 

held up as the source of Lilly’s financial ills, the cost of litigation and uncertainty over the 

forecasting of future sales certainly contributed to their bleaker revenue outlook and 

depressed share price. 

In all three of these cases, there was uncertainty about the relationship between a 

named chemical compound and its structural formula. The impact on the parties closest to 

the ambiguity varied, but in all three cases, the structural information and ambiguous 

designation was available to the general public in machine-readable formats. In the first 

case, the express goal was to provide structures to the research community. In the second 

 
 

bosuntinib  NOT bosuntinib  

Table 2.2: Correct (left) and incorrect (right) structures of bosuntinib 
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case, the erroneous structure was given in the published version of multiple scientific 

papers, but also in electronic catalogs provided by vendors of the misidentified regioisomer. 

In the last case the patent information, including reprints of the actual application, is freely 

available from the Canadian Intellectual Property Office.  There are almost no safeguards to 

prevent a public-minded Internet user from taking the (incorrect) information present in 

any of those sources and adding it to Wikipedia or ChemSpider or even just putting it in a 

post on their own blog with an InChI key or other text–only representation. 

As previously discussed, QSAR modeling is very sensitive to data inaccuracies. A 

combined biological and chemical error rate of 5% is enough to reduce the performance of a 

model sufficiently that it will not pass acceptance criteria or, in extreme cases, can prevent 

the model from converging to a solution at all 17 . With the increase of readily available data, 

web services such as Chembench and OCHEM, and regulatory agencies relying more and 

more on computational models for initial screening, there are more non-specialists who will 

download datasets for a given target or endpoint and attempt to build a  model. With no 

need to manually recode the structures being used, there is a strong temptation to not even 

look at the chemical structures being used and assume that if the computer can read it, it 

must be correct. Obviously this represents a risk to at least themselves in wasted time and 

incorrect assumptions. 

This phenomenon raises the question of how accurate freely available chemical 

structures on the Internet are. Multiple confounding factors make this seemingly innocent 

question complicated. First, there is no master index for the Internet. Even Google only gets 

the parts that are not behind unlinked CGI queries and that have not been posted as 

inhospitable to webcrawlers (via a spiders.txt file). Furthermore, not all structures are 

created equal. Some of them, like urea or benzene are well known and have been studied 

over a long period of time; others are from recently synthesized polymers or novel natural 
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products. It would be difficult to manually assess the accuracy of a structure that has only 

been reported once without digging deeply into experimental details and spectra. 

Assembling a list of chemicals for structural resolution ab initio would appear to be a 

complex problem. 

One class of compounds that has well-defined common names and has well-defined 

chemical structures for almost all members is approved small-molecule drugs. The various 

government marketing approval mechanisms and good manufacturing processes (GMP) 

require that the active pharmaceutical components are both well-characterized and that they 

are identified by names that are systematic (with regards to mechanism of action), yet 

entirely synthetic. Because this structure/name mapping is of interest to a broader swath of 

the general population than the chemical literature in general, there are more resources 

available to the public at large which provide this information, both in print and, either 

freely or for a fee, electronically.  In an ideal world, this mapping would be correct 

everywhere, for all approved drugs.  We recognize this as a naïve assumption and will 

assume that errors will occur.    

While we expect to find errors in the structure/name mapping, we do not know 

where they will be found. Assuming that one source is always authoritative could lead us to 

assign an erroneous chemical structure as correct.  There is no ab initio way to determine 

how many carbon atoms link the two ring systems in fluphenazine, for example. Rather than 

attempt to designate one source as completely trusted, having multiple sources of 

information allows a consensus correct structure can be identified. Having multiple groups 

of cheminformaticians resolve the names to structure mappings independently, using their 

own preferred methods, and then comparing the results with each other and allowing 

discrepancies to be discussed until agreement is reached is more likely to result in the 

correct structure/name mapping to be found. In addition, this would allow us to compare 
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how well individual methods for structural resolution perform. Once the searches and 

comparison of results are complete, the end result is a set of structure/name mappings 

(referred to as a master list or gold list) whose accuracy we are highly confident in. That list 

can, in turn, be compared to individual data sources to evaluate the structural accuracy of 

those individual sources. 

In order to test our hypothesis that accurate chemical structural information can be 

found on the Internet when proper data-handling and curation practices are followed, we 

joined forces with three other teams of cheminformatics researchers: a group from the Royal 

Society of Chemistry (RSC) headed by Tony Williams, a group from AstraZeneca headed by 

Sorel Murtesan, and a group based at IMIM in Barcelona under Jordi Mestres. Each team 

provided their own preferred workflows with differing amounts of manual intervention and 

curation. By having each team return a set of chemical structures corresponding to a list of 

drug names, we can estimate the effect that different search practices have on the accuracy 

of the structures returned*.  

The objection can be raised that this method is not a perfect replication of the typical 

QSAR data assembly process where most of the data is taken from analog series in a small 

number of papers in the public literature or a private data repository.  It may, in fact, be 

more realistic to start with a series of IUPAC names, such as are provided in the 

experimental details of most medicinal chemistry publications.  This would, however, 

decrease the effect of (or totally eliminate) two sources of errors: the mapping of non-

systematic names (such as an internal registry code name, or a proprietary or generic 

product name) to a chemical structure, and the cumulative effect of structures being copied 

from source to source (either manually or by automated methods).  While it is true (and 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Each	  group	  wrote	  an	  initial	  description	  of	  their	  structure	  resolution	  workflow	  which	  was	  used	  as	  the	  basis	  of	  
the	  descriptions	  given	  in	  the	  Methods	  section.	  Each	  was	  modified	  for	  consistency	  in	  presentation	  and	  clarity.	  
All	  errors	  and	  inaccuracies	  are	  the	  fault	  of	  the	  editor,	  not	  the	  original	  teams. 
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discussed elsewhere in this work) that most compounds in the public drug discovery 

literature are only described once, many of the tool compounds which have become 

ubiquitous in cell biology are known almost exclusively by a trivial name when used and a 

chemical structure is not commonly provided when the compound is cited; finding the 

structure for such a compound can be surprisingly complicated.  In the latter case, when a 

structure is copied from source to source, there is a finite (although unestimated) probability 

that an error will be introduced.  This probability, while variable depending on the specifics 

of how the copying occurs, is incremental; each copy will increase the overall chance that the 

structure will be perturbed. Using structures that are of more general interest for this survey 

means that there will be more opportunities for errors to be introduced.  In many ways, this 

work is designed to test for worst-case scenarios in name to chemical structure resolution. 

The accuracy achieved when data are obtained from a small selection of papers that disclose 

all chemical structures necessary is likely to be better.  These results are useful in their 

ability to identify effects that would probably be lost in a more homogeneous sample. 

Methods 

Creation of initial drug name list 

The list of drug names to be resolved was obtained from the Wikipedia page “List of 

largest selling pharmaceutical products” as of 2006 18 . This data was cited as being obtained 

from the July 2007 issue of MedAdNews, although the supposed generic names for each 

drug had been added by an unidentified editor during the transfer to Wikipedia. These 

names were actually more of a hindrance than useful because whoever added the 

information did so inaccurately and stripped out parts of names that were presumed to refer 

to counterions added in formulation. Crestor became rosuvastatin, not rosuvastatin calcium 

and Atrovent was listed as ipratropium instead of ipratropium bromide. Unfortunately, this 

meant that CellSept was called mycophenolate instead of mycophenolate mofetil (removing 
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information about the ester form actually present), and Co-amoxyclav was identified as 

amoxicillin, completely ignoring the clavulanic acid component of the drug acting to inhibit 

beta-lactamases. The list was simplified by removing vaccines, monoclonal antibodies, 

organometallic compounds, synthetic polymers, and any polypeptide that was composed 

entirely of the alpha amino acids (in their naturally occurring stereoisomers) that are used in 

mammalian protein biosynthesis. Proteins containing unnatural residues, including D-

amino acids were retained. This yielded a list of 152 drug names which participants were to 

associate with chemical structures. Premarin and Premapro were initially on the list (as one 

entry), but were removed due to difficulties in identifying a complete list of active 

components in those products, leaving 151 entries on the list in total. 

For each distinct active pharmaceutical ingredient (API) in the listed drug, teams were to 

provide a machine-readable structure for the API in the most neutral charge state possible, 

(in MOL format) 19 with any pharmacologically inactive small ions removed (and with any 

pro-drug protecting groups removed). An electronic image of that structure represented in 

standard chemical notation was also requested, along with notes on any oddities or 

difficulties found in the process of associating a structure with the name. 

University of North Carolina Workflow 

Initially, we used ChemIDPlus 20 , DrugBank 21 , ChemSpider 8 , and Wikipedia 22  for 

establishing the systematic name from the generic names of each compound of the initial 

name list. These systematic names were used to manually redraw the structure for each 

compound because of our concerns about the quality of stereochemical information in the 

different sources. Our initial assumption was that it would be easier to redraw the structures 

than to identify specific errors, especially in chirality. Usually, the systematic names of the 

query compounds in the databases were in better agreement than drawn structures. In the 
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most difficult cases (unclear, wrong, or contradictory names) we consulted Google and often 

found papers in the peer-reviewed literature originating in pharmaceutical companies and 

initially describing the drug in question, e.g.zolpidem 23 . The structures of query compounds 

were then processed by MM+ force field with gradient<0.5 as implemented within 

HyperChem software to provide optimized 3D structure and were manually checked for 

agreement with the systematic names that we considered correct. Then the resulting ml2 

files from HiT QSAR 24  were translated to mol and jpeg formats.  

After the first several compounds were completed, it became clear that the workflow 

described above was not adequate; too much manual effort was required in order to attain 

the level of accuracy we sought. Furthermore, it appeared that DrugBank and ChemIDPlus 

conflicted more frequently with other sources and each other than Wikipedia, Chemspider, 

and the results of Google search. 

The workflow was then modified to take into account these considerations (as shown 

in Figure 2.1). For each compound, initial structures were obtained from the structures and 

systematic names at Wikipedia, ChemSpider, and the FDA approved label archive 25 . The 

Figure 2.1: Chemical structure resolution workflow as implemented at UNC	  
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provided systematic name (usually IUPAC or a recognizable dialect thereof) was converted 

to a structure, if possible, by the name-to-structure conversion feature of ChemDraw version 

11(CambridgeSoft, 2009). These initial and (re)generated structures from each source were 

visually compared. For each source, the provided chemical structure and the chemical 

structure derived from the provided chemical name were visually compared.  If they were 

identical, that structure was retained to be compared with the structure obtained from the 

other sources.  Subsequently, the retained structures from the three sources were compared 

to each other. If there was a discrepancy in the chemical structures provided by different 

sources, a literature search was undertaken to find the earliest disclosure of the compound. 

In decreasing order of preference we sought: the earliest disclosure of the compound in the 

refereed literature, a patent application or patent containing an unambiguous structure (as 

opposed to a Markush structure), or a crystallographic study assigning an absolute 

configuration to each stereochemical center. This "literature" structure was then compared 

to the other candidate structures to determine the most-likely putative structure. 

Once the putative structure was determined, the systematic name was generated by 

the structure-to-name feature of ChemDraw(version 11). This name was immediately back-

converted into a structure, and the initial and round-tripped structures were compared. If 

the structures were not identical, the latter structure was corrected to match the former, and 

another conversion cycle from structure to name to structure was run. A stable structure to 

name mapping was reached on a first or second cycle in all but two cases. For these last two 

drugs, the putative structure was copied into MarvinSketch (ChemAxon, Budapest), and the 

structure-to-name and name-to-structure functions provided there, were used to generate a 

stable structure to name mapping. It is worth noting that in these two cases where 

ChemDraw was unable to converge to a stable structure to name mapping (metformin and 

rivastigmine) Table 2.1, MarvinSketch was able to interpret the systematic name generated 

by ChemDraw correctly, but the systematic name that MarvinSketch generated was not 
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interpretable by ChemDraw. We theorize that this has to do with the relative scarcity of 

guanadyl and carbamate functionality in daily chemical practice and limited support and 

testing for their nomenclature. The resulting structures were saved as mol files and exported 

to PNG format 

This workflow can be characterized as manual search, manual curation and manual 

structure handling. 

  

rivastigmine metformin 

Table 2.3: Compounds for which ChemDraw was unable to generate correct systematic 
names 

 

Royal Society of Chemistry Workflow 

 

Figure 2.2: Chemical structure resolution workflow as implemented by RSC 
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The assembly of the dataset was initiated by consulting Wikipedia for an entry with a 

chemical structure. If a structure was present, it was then assessed to determine whether it 

was reasonable in terms of whether the article title, the structure image and the body text are 

referring to the same compound. Possible stereochemistry issues were assessed by checking 

for how many undefined stereocentres there are. The chemical name from the original file 

was used as the basis of a search across ChemSpider, ChEBI 26  and the CAS Common 

Chemistry pages 27 . The CAS Common Chemistry result was the preferred source and 

consulted intially. If the compound was not found, a CAS Registry Number (RN) was sought 

from the appropriate Wikipedia article. If present, this RN was used to search Common 

Chemistry instead of the initial name. If a structure was found, it was assumed to be a good 

starting point as a basis of searching for contradictions from several other searches. 

The results of a name-based search in ChemSpider were then reviewed. Since this 

database has been actively curated for several years, especially around common compounds 

and drugs, one compound was returned in general. Occasionally multiple results were 

returned. These were curated based on an iterative review of multiple sources until only one 

candidate structure remained. 

The initial candidate structure was also checked against the EBI databases ChEBI 

and ChEMBL. ChEMBL 28  was found to be problematic in terms of the misassociation of 

synonyms where names would be associated with multiple structures as well as confusion 

between names for neutral forms versus salts. The Merck index 29  was also used as a 

reference collection. In those cases where it was difficult to find 2 or more agreeing 

representations alternative ‘authoritative sources’ were consulted. These nominally 

authoritative sources were frequently documents relating to regulatory approvals from the 

FDA or European Medicines Agency (EMA). 
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Peptide and peptidomimetic structures were often described as a sequence of amino 

acids. In these cases the peptide was built using amino acid residues and then used as the 

basis of structure searching and confirmation against the chemical name, Alternately, the 

structure presented on Wikipedia was drawn and in silico digestion was performed by 

hydrolysing the peptide bonds. Individual residues were then identified and compared to 

structures presented on ChemSpider for accuracy. 

This resolution scheme can be described as manual search, manual curation and 

electronic structure handling. 

AstraZeneca Workflow 

AstraZeneca Mölndal has developed an internal web service for chemical structure 

searching and structure/name resolution. Dubbed “Chemistry Connect”, it has integrated 17 

internal and external data sources and consolidated over 70 million compound records into 

45 million distinct structures. It has been more extensively discussed elsewhere in a paper by 

the developers, but the key features will be covered here 30 . 

Structures being added to Chemistry Connect have their structures standardized 

according to internal representation standards during the initial registration process. A 

majority of the compounds are registered as a parent organic structure, although the 

capacity to include formulation details and mixtures exists for specialized needs. During the 

registration process, identifiers are sanitized and regularized and included in a large (over 

100 million term) dictionary linking structures to names and supporting text-based queries. 

While there is currently no mechanism in place to force all terms in the dictionary to return 

the same single chemical structure, there are two mechanisms in place to assist with 

identifying the correct structure when conflicts occur. First, the order in which structures are 

returned from a query is tied to the number of independent sources attaching that structure 
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to annotations matching the search string. This keeps sources with misannotations from 

being the primary resource returned for a structure to name mapping unless there is no 

consensus over what the correct structure actually is. Also, a crowdsourcing function has 

been added to the web service. This allows scientists to modify erroneous records on the 

spot, instead of filing error reports that need to be processed by a centralized group.  While 

this does not prevent bad results from ever being returned, it reduces the opportunity for 

obviously incorrect information to remain in place beyond the first time it is noticed. 

For this process, each individual drug name was submitted as a query to Chemistry 

Connect and the first structure returned (in the form provided by Chemistry Connect) was 

reported as a candidate structure for the gold list. 

This resolution scheme can be described as automated search, manual curation and 

electronic structure handling. 

IMIM Workflow 

Jordi Mestres’ group at IMIM (Hospital del Mar Medical Research Institute, 

Barcelona), in conjunction with ChemoTargets, SL, a small, early-stage technology company 

in Barcelona, has developed a non-supervised, weighted strategy for automatic retrieval of 

chemical structures from free Internet sources given a name or other identifier. Under this 

method, a master dictionary of drug names and other identifiers was created from KEGG 31 , 

DrugBank, CheEMBL, IUPHAR-db 32 , PubChem 7  and Wikipedia. Using this thesaurus, a 

comprehensive search set of identifiers for each drug occurring on the initial search list was 

created. Each comprehensive set of identifiers was then used to search an undisclosed set of 

web sites for chemical structures. This yielded a set of chemical structures associated with 

the original drug name searched, clustered by the identifier used to make the association. A 

structural search of each returned set was used to identify other synonyms for the original 
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drug name not occurring in the original dictionary. In the event that there was overlap above 

an undisclosed threshold between the structures of two different synonym sets that were 

also linked by a number of latent synonyms, the two sets were merged into a single set. 

The final assignment of a single structure to the synonym set associated with a single drug 

name was accomplished with an unsupervised, weighted vote scheme. Within each synonym 

set, each structure present was assigned a consistency score, which was proportional to the 

number of sources including the association between that structure and the drug name being 

searched for, and to the relative confidence the developers had in the accuracy of the 

structures from a particular source. The structure with the overall highest consistency score 

was then sent as a candidate structure for the gold list with no additional visual inspection or 

manual intervention. 

This resolution scheme can be categorized as automated search, automated curation, 

and electronic structure handling. 

Structural Comparisons 

Resolved structures were converted with the reference implementation of the InChI 

Trust software 33 into InChI strings and InChI keys and placed into a central repository. 

These strings were matched for literal equality to determine whether or not a consensus 

structure had not been reached. For compounds where there was a discrepancy, participants 

were asked to provide documentation of their rationale for the structure that was returned 

and any thoughts about the perceived quality of that structure. Discussion continued around 

these points until a consensus structure was agreed upon. The gold list of agreed-upon 

consensus structures was generated in ACD/ChemSketch (version 11 ACD/LABS. Toronto), 

and saved and distributed to participants as a SDF-formatted file. 

Statistical Methods 
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Fisher’s exact test as implemented in Prism (version 6, GraphPad Software, San 

Diego CA) was used to determine the significance of the differences in error counts between 

each group’s search algorithm. 

Results 

The list of initial names as taken from Wikipedia and adjusted before distribution to 

the participating teams, can be found in Appendix 1. 

The final gold list of structures generated by consensus can be found in Appendix 2. 

The number of correct structures in each team’s results, relative to the final gold list, 

are found in Table 2.4. 

 Total 
Correct 

Stereochemical 
Errrors 

Percent 
Correct 

IMIM AZ UNC 

RSC 148 1 98.0 *  * 

UNC 137 5 90.7 *   

AZ 145 2 96.0 *   

IMIM 121 14 80.1    

Table 2.4: Summary of search results by each team compared to the consensus 
gold list (151 total compounds). An asterisk in the last three columns indicates a 
statistically significant difference between the two groups in the number of correct 
structures found (p ≤ 0.05, Fisher’s exact test). 

 

Evaluation of chemical structure repositories 

A summary of the results from comparing several Internet sources for chemical 

structures to the structures in the gold list can be found in Table 2.5 and Figure 2.3.  Each 

source of chemical structures was searched by the names used to construct the gold list.  The 

first row and left side of each bar give the total number of structured returned for all names; 
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a value greater than 151 indicates that one or more name to structure searches returned 

more than one structure. The second row and right side of each bar represent the number of 

times the returned structure or structures from each search contained the same structure as 

was in the gold list.  Ideally both numbers would be 151, the number of compounds in the 

gold list. If the number of correct hits is low, then the chemical structures associated with a 

data source are not particularly accurate.  If the ratio of total hits to correct hits is large, 

there are multiple structures associated with each name in that data source.  The correct 

structure may be present, but a simple search by name will require that the end user will 

need to have a way to disambiguate the correct structure, if present, from the other 

structures returned. A well-curated source will make clear which structures are returned by a 

name search, and provide a mechanism to disambiguate the structures returned if that is 

anticipated as a default use case. 

 Source NCGC NCI PubChem DrugBank 
3.0 

DrugBank 
2.5 

Total Hits 243 142 224 148 150 

Correct Hits 113 115 141 117 118 

Ratio 2.15 1.23 1.59 1.26 1.27 

Table 2.5: Number of hits returned for compounds on consensus gold list for different 
open access structural databases, and number of correct hits returned. 
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Figure 2.3: Graphical comparison of performance of different sources against 
consensus gold list. The dotted line is at 151, the total number of compound names 
searched. Bars that lie closer to that line represent better outcomes than those 
terminating further away. 
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  Name Structure Presented Correct Structure 

Azithromycin 

  

Escitalopram 

  

Esomeprazole 

  

Pravastatin 

  

Table 2.6 Sample incorrect (left), and correct structures for several compounds retrieved as 
part of the initial structure resolution process.  
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 Structure as Presented Correct Structure 

Ropinirole 

 

 

Olmesartan 

  

Table 2.7: Sample incorrect (left) and correct structures found in public structure sources.	  

 

Discussion 

Categorizing errors 

In the course of gathering these results, it became apparent that there are multiple 

categories of errors that arise in generating a curated chemical structure list from non-

systematic identifiers. Foremost among these are problems inherent in the structures 

presented as correct on Internet sites.  This does not mean that correct structures cannot be 

obtained, but it does underscore the need for caution in assuming that structures from any 

single source will be accurate.  

In the structures examined, the most common inaccuracy was absent or incorrect 

stereochemistry (Table 2.6). In the case of escitalopram, one candidate structure reported no 

stereochemistry at all, in spite of the fact that escitalopram is explicitly the S enantiomer of 

citalopram. Likewise, there were cases where not all stereocenters were assigned, such as in 
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the case of azithromycin. The most complex problems were actually ones where there had 

been conflict in the literature over the correct assignment of configuration at stereocenters. 

For pravastatin, one team found early crystallographic papers that assigned a different 

absolute assignment of a chiral carbon on the cyclohexyl ring. It was assumed that the oldest 

crystallographic reports would be correct, and that subsequent divergence would be due to 

copyist errors. That was not the case. 

One final source of problems in stereochemistry was assumptions made about the 

treatment of stereochemistry by software used to input, display, and/or transform the 

structures. A particular example of this is esomeprazole. Omeprazole is a proton-pump 

inhibitor that possesses a sulfynl group connecting two ring systems. The sulfynl sulfur 

forms bonds to three other atoms, but is not trigonal planar. It is tetrahedral because of the 

lone pair of electrons on the sulfur. Ordinarily the two enantiomers of a chiral sulfoxide 

interconvert rapidly at room temperature, but if the groups attached are sufficiently bulky, it 

may be possible to resolve the stereoisomers. In this case, the enantiomers were resolvable, 

and the pure S isomer was approved for sale as esomeprazole. We found that some chemical 

drawing programs either incorrectly assigned a trigonal planar geometry to the sulfynl sulfur 

in esomprazole or assumed that rapid thermal interconversion would always occur at that 

center. In one case, no stereochemical information was allowed to be drawn at the sulfur, 

and in another the stereochemical information was presented on the screen, but was 

stripped out of structures exported from the application in standard chemical formats. 

Beyond stereochemistry there are, of course, other errors that can occur in name to 

structure mapping. These include structural deletions, isotopic substitutions, and 

incomplete product definitions. The first two situations did not occur in the final candidate 

lists used in the assembly of the gold list, presumably due to their relative rarity in the 

trusted sources used to construct the final candidate lists. They did occur in the public 
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databases that were subsequently compared to the gold list. Two examples of these are noted 

in Tablefigure 2.7. 

A unique problem in this specific set of compounds that is potentially much more 

general is illustrated by the difficulties of assigning correct structures for premarin and 

premapro. The APIs in premarin and one of the two active ingredients of premapro are listed 

given simply as conjugated estrogens. Conjugated estrogens are sulfonated hormones 

extracted from the urine of pregnant horses. While the identities of some of the major 

components are known, a comprehensive list of all active small molecules present does not 

exist at the present time. The activity of the mixture is standardized by biological activity, 

rather than quantitative determination of specific compounds. Because the stoichiometry of 

the components is variable between individual batches, as is the degree and placement of 

sulfonation, a definitive statement on the structure of the API would, by definition, not be 

possible. Therefore these drugs were excluded from the study. 

The question of tautomer assignment also can confound name to structure 

resolution. While the InChI contains support for tautomer identification, this is a newer 

feature. InChIs generated with older versions of the software and according to older 

standards may not have these features present. Even if they are enabled, it is not a panacea; 

the tautomer identification code in the InChI suite does not identify every possible tautomer. 

For example, both vardenafil and meloxicam can be drawn as multiple tautomers, and these 

tautomers do not have identical InChIs or InChI keys. When a primary tautomeric form has 

been identified in the literature, it is reasonable to expect that that form should be the one 

consistently used. However in the absence of a definitive determination, chemists will often 

make a prediction of the preferred tautomer based on empirical rules and past experience. 

There is a very real risk that different forms will be selected independently by two chemists, 

or that the experimentally correct tautomer will be normalized into another form by rules 
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attached to a chemical registry system.  It is arguably best that compounds possessing the 

capacity for tautomerization be flagged in any comparison, and each tautomer enumerated 

(by either computational tools or human intervention) and separately checked. 

One final category of problem to be considered is that introduced by the human 

element. The existence of Chemical Abstracts, Beilstein’s Handbuch, and Gmelin’s 

Inorganic Chemistry demonstrate that it is possible for chemical structure information to be 

accurately accrued, indexed, and disseminated without computer intervention, albeit at a 

very limited speed and with a correspondingly high labor cost. This, however, is not to say 

that the problems are trivial. The UNC workflow serves as a useful example of some issues 

involved in manual curation steps. Because of a desire to include information from sources 

that did not include machine-readable chemical structure information in them, such as the 

FDA Drug Label Archive and US and European Patent records, there were situations where 

visual comparison on structures, and manual transcription were inevitable. This led to 

several egregious errors in the proposed structures from the UNC team where it is presumed 

that the correct structure had, in fact, been located. This assumption was based on the very 

similar list of sources consulted by both the UNC team and the other teams, and on the 

inconsistency of structures within the team’s results. For example, formoterol occurs in two 

places on the list, by itself and as a component of Symbicort. In the latter case, the UNC 

team provided a structure that was judged to be the same as the structure on the gold list. In 

the former case, however, an incorrect structure was given that was missing the central 

amino nitrogen. Taxol, on the other hand, only occurred once, but it also was missing a 

nitrogen atom although possessing no other errors. Finally, in ranitidine, an extra methyl 

group was added to a secondary amine to produce a tertiary amine that was not present in 

any of the databases searched for primary structure information. Since there was no primary 

source for this structure to be copied from, we assume that it is also an artifact of human 

inattention during structure transcription. 
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Comparisons between workflows 

The searches described here can be separated into two broad categories. The RSC 

and UNC workflows both were primarily manual and depended on a chemically-

knowledgeable operator to make queries to various resources and compare the results of 

those searches. In contrast, the AZ and IMIM workflows were significantly more automated, 

with a set of names provided to a program that then performed the searches en masse  

 Structure Presented Correct Structure 

Formoterol 

  

Ranitidine 

  

Paclitaxel 

  

Table 2.8: Errors (left) and corresponding correct structures (right) introduced by manual 
intervention in the curation workflow. 
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against either a proprietary database or a subset of sites found on the Internet. This division, 

at first glance, seems to be somewhat arbitrary and of limited utility. The “manual” 

workflows are first and third in overall accuracy of results, and the “automated” ones are 

second and fourth. However, the AZ workflow is like the “manual” workflows in one very 

significant way: the data automatically searched by software at AZ is already curated, both 

by the careful selection of proprietary and open sources of chemical structure and by the 

actions of other users at AstraZeneca, who are allowed and encouraged to correct inaccurate 

structures immediately. While the approach taken at IMIM incorporates source selection to 

some degree, the restriction to using only freely available sites appears to be too constraining 

for a fully automated search based on consensus structures to succeed. This is very possibly 

due to the relatively small number of original sources for chemical structure information 

that may be reused without restriction, and the equally limited number of chemically-literate 

Internet users who participate in large scale chemical curation activities. 

 This does not account for the difference in performance between the RSC and UNC 

workflows, which are both manual/human-centric. We account for the 4-fold increase in the 

number of total errors relative to the gold list by postulating that the increased use of visual 

comparisons and manual structure re-entry is responsible for this discrepancy. While it is 

not conclusive evidence for this hypothesis, the similar performance of the AZ workflow, 

which also minimized human intervention in the actual search, suggests that electronic 

structure handling and comparison help limit the introduction of new errors into an 

assembled data set. 

It is also worth noting that all four teams agreed on the structure of a given 

compound 113 times as seen in Table 2.9. This represents a concordance rate of 75%. 

Conversely, there were two cases where only one team presented the structure that was 

ultimately determined to be most accurate (once by UNC and once by RSC).  
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Number of 
groups in 
error 

0 1 2 3 

Percent 
Occurring 

74.8 16.6 7.3 1.3 

Table 2.9: Relative frequency of numbers of groups reporting an incorrect structure for each 
search term	  

 

Standardizing electronic representations 

 The InChI standard provides for an invariant, canonicalized string representation of 

molecular structure (compatible with ASCII and other standard 7 and 8 bit text-encoding 

systems) that addresses many problems of manual operations on chemical structure data. 

Unlike the SMILES molecular notation, each molecule is represented in a canonical form 

which is part of the original specification of the format. Stereochemistry and aromaticity are 

also represented in a standardized form. These features are intended to ensure that there is 

one, and only one, correct InChI representation for a given molecular species (unlike 

SMILES), allowing structural comparisons to be reduced to a simple string comparison. 

While the extended length of many full InChI representations of complex molecules can be 

problematic at first glance, this is not a major shortcoming as comparison of structures is a 

task most suitably delegated to software. When human comparison of structures is 

unavoidable, a hashed representation (the InChI key, which is uniformly 27 characters long) 

is also available. However, while InChI strings and keys are an improvement in chemical 

data handling, the current standard is not a panacea for all applications. As previously 

stated, the current standard does not necessarily represent all tautomeric forms of a 

structure in a uniform manner. It is also problematic that the InChI is much more opaque to 

manual interpretation and creation than older formats, such as SMILES. While it is true that 

the primary use of any computerized representation of a chemical structure is to allow 
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automated operations upon that structure, ultimately human end-users will need to interact 

with the resulting data when the processing is complete. It is relatively easy, even for non-

specialists, to achieve basic competency in visually decoding a SMILES string to obtain some 

structural information about the molecule encoded. This is not a critical failure, but it may 

tend to impede adoption of the InChI standards in situations where there is extensive use of 

SMILES. In addition, there have been at least 3 “standard” sets of options for the creation of 

InChI strings that are to be hashed into an InChI key. While these options are primarily 

concerned with constructing canonical forms of resonance systems, and InChI keys 

constructed with non-standard options are possible, albeit tagged as non-standard, the need 

to consider these differences when comparing structures saved over an extended period of 

time does complicate matters. Finally, it has been demonstrated that there is at least one 

collision in the InChI key between two different structures. The two structures involved are 

both large and closely related, but the collision occurring at all raises the spectre of it 

occurring repeatedly. To fundamentally restructure the hash algorithm used would only 

make the standard versioning problem described worse. Again, this is not a reason to 

abandon the InChI, but certainly cause for developers and architects plan carefully before 

putting InChI-based applications into production. 

In an era of electronic laboratory notebooks and the near-universal use of computers 

to prepare and edit technical manuscripts for the chemical biology literature, there is very 

little reason that a chemical structure should ever need to be transcribed between printed 

and electronic forms more than once. Even when hand-written laboratory notebooks are still 

utilized, entering structures into a manuscript is an essential part of the disclosure process, 

either for publication or for inclusion in a patent application. Similarly, since electronic 

catalogs of screening compounds are now the rule rather than a novelty, structures attached 

to high-throughput screening results are already available in machine readable formats. In 

the case of truly novel compounds, the chemist who planned and/or performed the actual 
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synthesis is more likely to know the presumptive structure of a new chemical entity than 

anyone else, and also to know the region of chemical space being explored which can help 

eliminate confusion about scaffold structure. This standard has become routine in 

bioinformatics, with most reputable journals requiring deposition of novel sequences in 

public repositories, and the development of the MIAME (Minimum Information About a 

Microarray Experiment) standard 34  that provides a structured format for information about 

gene expression studies. A similar standard, MIABE (Minimum Information About a 

Bioactive Entity) 35 has been proposed by a committee including representation from 

publishers, industry and academia, (notably with the input from the European 

Bioinformatics Institute, the maintainers of the ChEMBL database). While there has been 

institutional inertia resisting this standard, we believe that the adoption of the MIABE 

standard as part of the peer-reviewed literature publication process could improve the 

quality of public structural information by eliminating many occasions of manual re-entry of 

structures from the primary literature. 

 

Conclusions 

Based on the experiences of four different teams utilizing their own preferred 

protocols, we conclude that it is possible to find accurate chemical structure information 

from publically accessible Internet sources, but not without careful consideration of the 

sources used. While these results indicate that there are several relatively accurate sources 

for chemical structure information available, none of them were universally correct, and 

none of them had all 151 structures being sought with no ambiguity or misannotation.  

Multiple independent sources will be necessary for the short t0 medium term to ensure that 

accurate structures are retrieved, especially when dealing with infrequently used compounds 

such as some of the specialized chemical biology probe compounds. 
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It is easy to point a disapproving finger at the compilers of chemical structure 

information and wag it disapprovingly for the errors found in databases.  However, it is 

ultimately the end user who remains responsible for the accuracy of the structures used in 

their manuscript or models.  Two of the three groups participating in this project not relying 

upon a previously curated database for structural information failed to achieve an error rate 

less than 5%.  This implies that the correct structures are out there, but it’s easy to miss 

them.  More than anything else, using electronic representations of all molecules for 

transfers and comparisons is essential for the overall accuracy of a data set.  There are times 

when visual comparisons and manual reentry of data are impossible to avoid, but these need 

to be held to a bare minimum and treated as rigorously as possible.  At the very least, all 

manual comparisons should be double or triple checked, even going to the extent of making 

a scratch hard copy of the molecular structure so that atoms and bonds can be marked off as 

they are entered or checked.  

While automated operations will eliminate errors introduced by human error, they 

only serve to accurately propagate errors when the data source being used is in error.  This 

risk is hard to manage and almost impossible to eliminate.  For compounds that are 

described in multiple, independent publications, cross-comparison of structures will provide 

a quick sanity check. For the vast majority of compounds, there will be only one published 

structure in the primary literature.  Comparing the version extracted from a database to the 

original publication is as close to absolute verification as is possible without standards like 

MIABE becoming universal.  Access to the original publication (or paying for access to 

SciFinder as a potential proxy) limits the general applicability of this approach.  In instances 

where the data is only coming from one of a handful of sources, it may be useful to use a 

hard copy of the original paper and match electronic structures with those in the 

manuscript.  Checking off each compound as its match is found is not foolproof, but it 

provides some confidence.  If SciFinder access is available, it is possible to download the 
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structures of all compounds found in a given publication as SDF files and then to use those 

to match compounds, although this does entail some cost.  As a compromise between effort, 

cost, and rigor, the best tradeoff for large datasets (over 100 compounds) may be to take a 

subset of the structures present and carefully compare them to the original publication. If 

more than one or two errors are found in the comparison, attempting to obtain the 

structures via an alternate method should be attempted. 

The experience of the ChemoTargets/IMIM team (as graphically summarized in 

Figure 2.4) would tend to suggest that we have likewise not reached a point where 

automated queries of Internet resources or uncurated copies of those resources are capable 

of the same accuracy as searches guided by an experienced chemist. While the work of the 

ChemistryCentral project at AstraZeneca offers hope for this sort of lookup ultimately, 

manual or semi-automated curation is still an essential part of the search workflow, whether 

it occurs during the acquisition and initial construction of the database, or later in the 

lifecycle on a post-hoc and crowd-sourced manner. 
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Figure 2.4: Summary comparison of accuracy of different structural curation 
workflows (raw data in table 2.4).	  
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The manual reentry of structures from published documents into computer-readable 

form, and the use of visual comparison to verify the equivalence of two structures appear to 

be more effective in introducing errors into chemical structures than in helping to eliminate 

them. For example, the canonical representation of the structure of Taxol displayed in 

ChemSpider, and generated when the InChI representation is provided to ChemDraw and 

MarvinSketch are presented in figure 2.5. While all three of these have the same molecular 

weight and are topologically equivalent, it is a non-trivial process to visually compare them 

and verify that they are, in-fact, the same compound. Mentally rotating structures and 

determining which stereocenters are similar is a particularly complex process that offers 

ample opportunity for errors to be made.  

 

 

 

While we emphasize the role of best practices by end users who are assembling data 

sets for specific applications, these results are relevant to those who assemble large data sets 

containing chemical structure information for any purpose, even when the structural 

information is not central to the intended use of the data set. In particular, it is insufficient for 

a database to return the correct structure from a name query. Searches should also minimize 

(or better, eliminate) the number of incorrect and/or auxiliary and tangential answers that are 

Figure 2.5: Chemical Structure of Taxol as displayed on ChemSpider (left) and as 
recreated with SMILES string obtained from Chemspider via ChemDraw (center) and 
MarvinSketch (right). 
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returned along with the correct one. While we insist on the importance of end-users carefully 

examining datasets for inconsistencies or errors prior to using them, the level of chemical and 

biological literacy among data scientists varies widely. There is no benefit in burdening the 

larger community with information that must be deconvoluted before use. Depending upon 

the nature of the data set, inactive components, excipients, and adjunctives should be either 

identified as such if relevant to the database’s purpose, or eliminated if they are not germane 

to the data set. Furthermore, maintaining records of the source of structural data would be 

helpful when identifying cases where structures from a single source are collected from two 

different intermediate databases and then compared against each other as putatively 

independent verification of a single structure. Transferring structural information between 

open repositories is often not transparent and presents a challenge to finding truly 

independent confirmatory sources for structural validation. This problem is an area for 

careful future study, however, and not within the scope of this work.  
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Chapter 3: Biological Data Curation 

 

“Hell is other people(‘s data)” 
With apologies to Jean-Paul Sartre 

 

Summary 

It has been demonstrated that the quality of data used as the basis of a QSAR model is a 

primary factor controlling the accuracy and external predictivity of that model. While the 

chemical structures used in a QSAR model can be objectively judged as correct or incorrect, 

biological activities are often measured as numerical values that arise from the interaction of 

multiple factors and that are gross macroscopic reflections of a microscopic statistical 

ensembles. As an example, binding affinities may depend on the expression system used for a 

given receptor, the assay technology used, the reference ligand used for competition (if any), and 

the skill of the scientist performing the assay.  A cited rule of thumb in pharmacology suggests 

that if two different laboratories measure the binding affinity for a given ligand-target pair and 

their results are within one order of magnitude of each other, then the two results are 

considered “identical” or, at least, replicated. Because binding affinities are among the most 

frequently modeled activities in drug discovery, we have mined the he medicinal chemistry 

literature and sought to determine the distribution of binding affinity values and the uncertainty 

associated with them. Thus, we have determined how many different compounds have been 

assayed for a given target, how often any given ligand has been assayed, and how many affinities 
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are reported within a data set from any given organization. These distributions quantify the 

necessary frequency of combining of data from multiple sources to derive a single QSAR model. 

Because binding affinities are one of the most commonly used types of activities in drug 

discovery, and Ki values are the most comparable measure of affinity, the first part of this study 

was to select a subset of data from ChEMBL where the data only included Ki values measured for 

a single small molecule at a well-defined biological target. By using only ChEMBL data that was 

been abstracted from the peer-reviewed literature, we eliminate results derived from HTS data 

sets that generally have lower reproducibility and would tend to skew the results towards a 

particular set of molecular targets. Once this subset was created, entries that exactly duplicated 

another entry in the data set (having the same ligand, target, activity type, activity units and 

activity value) were removed in order to eliminate data that was most likely copied verbatim 

from an earlier source. This data was then summarized to determine how many times any 

particular molecule was found in the literature, how many distinct molecules appeared in each 

peer-reviewed publication, and how many different ligands had been assayed against each 

target. Once these data were assembled, the activity data was cross-joined with itself such that 

all possible pairs of activities for each ligand and target were paired. This table was then 

converted to use standard pKi values for affinities and the absolute difference between each pair 

of compounds was taken.  All differences less than 0.05 log units were considered to be probable 

copies of data in different unit systems and were removed from the data set. All differences 

greater than 12 log units were dropped as being too large to be anything other than errors in 

abstracting and editing. The remaining values were plotted as an empirical cumulative 

distribution function, and this distribution was examined to determine the mean, median, 

quartile, and 80% range values for the distribution.  A non-random subset of pairs showing over 

3 log units difference was examined to identify common sources of large differences.  
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On average, each compound reported in a binding assay in the medicinal chemistry 

literature appears 1.17 times. Less than 10% of all compounds reported have multiple binding 

affinities reported for any target. Similarly, the average paper reporting binding affinities in the 

medicinal chemistry literature will have 18.8 affinities for different ligands reported in it. The 

average target will have a mean of 179.8 ligands assayed for Ki against it, but 50% of all targets 

have fewer than 26 ligands assayed, yielding a highly skewed distribution. This leads to the 

conclusion that independent replicate assays of binding affinities are rare enough in the 

literature that comparing such measurements will not be sufficient to detect errors in binding 

affinity values. Also, with only 20 compounds or less reported in a single paper on average, it is 

important to examine robust methods for combining data from multiple sources when 

developing predictive QSAR models will typically require at least 80-100 compounds. Finally, 

opportunity for further investigation exists when almost half of all targets have only a single (at 

most two) paper reporting their binding affinity data. By examining the empirical cumulative 

distribution function, we estimate that the mean uncertainty associated with a binding affinity 

values is 0.48 pK units, with a median of 0.29 units. This result compares favorably with that 

completed recently by researchers at Novartis who estimated the error to be 0.44 pK units, with 

a median of 0.34 units. This curve also suggests that 87.4% of all reported binding affinities lie 

within 1 pK unit of a hypothetical “true” value. While this finding validates the 1 log unit rule of 

thumb for comparing affinities obtained in different laboratories or by different methods, it also 

implies that attempting to predict binding affinities to less than a log unit of precision when data 

from multiple sources are used will be problematic. A workflow is proposed for further testing 

that attempts to minimize the uncertainty in differences between distinct binding affinities and 

generate training sets for QSAR modeling which show increased accuracy in predictions. 

This work provides useful information not appearing elsewhere about the frequency of 

assaying of ligand-target pairs, the number of binding affinities reported at a single target at 

once, and the size of training sets available for modeling ligand-target pairs in the primary 
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literature. The estimated uncertainty in a binding affinity measurement confirms a value 

recently reported in the literature that used an earlier version of ChEMBL and a more labor-

intensive process and was based on significantly fewer data points. By generating the binding 

affinity pairs in place as part of the data extraction, larger datasets can be analyzed without 

manual intervention. Finally, previous work on data curation specifies a need for removing 

duplicate values for given target-ligand affinities, but it does not specify an algorithmic workflow 

to accomplish this task. This chapter proposes a rational workflow to accomplish the 

deduplication. While its ultimate utility remains to be determined, no other workflow has been 

formally proposed to accomplish this objective. 

Introduction 

When considering the accuracy of the depiction of a molecular structure, there may be 

ambiguity arising from the specific conventions of the representation method used. However, 

most chemists would agree that there is one absolute, Platonic structure for any given molecule 

(or at least an ensemble of a few structures representing the extreme values of interconverting 

forms). That is, there is a correct molecular structure that we can know and accurately 

reproduce to an arbitrary precision. When we turn our attention to the binding affinity between 

small molecules and biological macromolecules, which is a central measure in many facets of 

drug discovery and chemical biology, things become murkier.  

When a typical small molecule binds to a protein target, there is a change of free energy 

of binding (ΔGbinding) of somewhere between 1 and 10 kilocalories/mole, or on a per-event basis, 

about 2 attojoules (10-18 J). With the most sensitive thermocouples available capable of detecting 

temperature differences of one hundred billionth (10-9) of a degree, a 4 microlitre calorimetry 

cell charged with protein and a 100nm ligand to that would have to have approximately 240 

billion binding events occur to register any net heat evolution. This is an extremely large number 

of events, which we cannot hope to be measured discretely. Statistical treatments are essential.  
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When issues arising from differing expression systems, cell lines, or even extraction 

protocols are included on top of this inherent variability for nominal biological replicates, 

there is a surfeit of uncertainty involved in estimating values of free energy of binding on a 

molecular scale. Even when new technologies promise to eventually detect binding events in 

a sample containing a few thousand protein molecules on a microsecond timescale, the 

measurement of binding affinities and rates is inherently a statistical process. This is not to 

say that binding affinity studies are inherently inaccurate. A well-planned protocol with 

properly instrumentation and a consistent protein expression system will allow highly 

reproducible binding affinity data that does not exhibit significant drift over time. These 

data can accurately represent the relative affinities of different ligands at the receptor or the 

relative affinity for a given ligand at a family of protein targets, within a finite level of 

precision. Nevertheless, anyone seeking to define the absolutely correct and final inhibition 

constant for any pairing of ligand and target is on a fool’s errand. 

A commonly cited rule of thumb among pharmacologists is that, when considering 

multiple independent binding assays of a given ligand-target pair, the results should be 

considered identical if the two affinities differ by less than 10% (when both assays were 

performed in the same laboratory) or by less than an order of magnitude (if the experiments 

were performed in separate laboratories) 1. While this may seem to be a very lax metric, it 

actually reflects the difficulty of measuring the relative concentration of a compound in two 

samples at low concentration. In general form, an assay will consist of allowing a given quantity 

of a ligand to equilibrate with a fixed amount of the target, and then separating the target from 

the supernatant liquid and determining how much of the ligand remains unbound, or with a 

radioisotope-tagged ligand, measuring the amount of competable ligand remaining with the 

target.  
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In principle this is easy, but the reduction to practice quickly becomes complex, 

especially in high-affinity systems where the IC50 is under 10 nM. One traditional method for a 

protein-ligand binding assay involves indirectly measuring the amount of a reference ligand of 

known affinity displaced by successive amounts of the test ligand. By measuring the 

radioactivity of the reaction solution (after the protein target is removed), it is possible to 

measure how much of the reference ligand remained bound and, by extension, the ratio of 

binding affinities of the two ligands and ultimately the binding affinity for the ligand of interest1 

While great advances in pharmacology and medicine have been accomplished using these 

techniques, it represents an extended chain of values with multiple sources of error propagating 

through the process (measurements of concentration and radioactivity, assuming all hot ligand 

is either free in supernatant or bound stochiometrically, accuracy of binding affinity of hot test 

ligand). Newer techniques, such as isothermal calorimetry and SPR, measure the binding event 

without a need for radioisotopes and compatible test ligands, but these assays are not inherently 

amenable to high-throughput development and still have uncertainties of their own. No matter 

which technology is used, the fundamental difficulty with measuring binding affinities remains 

the same: measuring the IC50 of a ligand to within half a log unit requires detecting changes in 

ligand concentration of less than 25%; for a quarter log unit, changes of 14% from the actual IC50 

value must be measured1. Ultimately, the measurement of ligand binding affinities is highly 

sensitive to individual laboratory technique, the protocol employed, and the choice of reference 

compound or direct detection method. 

When building a QSAR binding affinity model, a modeler usually is constrained to use 

what data is already available, as “beggars” are rarely in a position to be particular. While it may 

be possible to obtain additional data, either by virtue of a particularly close collaboration or by 

working in a research group with both experimental and computational members, repeating 

already published studies or generating significant amounts of new binding affinity data 

(especially when the ligands of interest are not commercially available) will not be possible for 
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the most part. Obviously, it is desirable to use reliable data and set aside that which is 

considered suspect. However, without affinity values from more than a single source, is it 

possible to identify problematic data by inspection of a single research group’s assay values? At 

the same time, there are cases where more than one affinity has been reported for a given 

ligand-target pair. This may seem to be an improvement over the former state of affairs, but it 

actually just raises new questions: “Which of the duplicated values should be chosen for use in a 

model?” and “How much of a difference in affinity values is allowable before that decision 

actually has an impact on model performance?” 

A classical approach to make data consistent from multiple labs would be to construct a 

calibration curve for results of the same ligand target pairs. However, it is uncertain whether 

there will be enough reliable replicates from different laboratories to actually use this method. 

At a minimum, affinities for two compounds against the same target determined by different 

providers would be enough data to start with, but the correction would be limited to a straight 

line and would probably perform inconsistently over the usual range of affinity values. Ideally, 

five or ten distinct compounds would be assayed at the same target by two providers and 

distributed affinities over the range of possible values (pKi values between five and eight or nine 

under most circumstances). 

These questions are best answered by a large-scale analysis of published affinity values, 

preferably including both HTS libraries and traditional SAR series in addition to one-off reports 

of a single ligand’s affinity for a target of interest. However, it would be impractical to manually 

scan the major medicinal chemistry journals and transcribe information from each paper into a 

machine-readable format. Even an exceedingly small random sample could take months or 

years to generate. Fortunately, a ready source of such data is available in ChEMBL. ChEMBL is a 

useful proxy for the medicinal chemistry as a whole, as its primary data sources are the four 

journals in which SAR datasets from academic and industrial laboratories are most likely to be 
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published. It also contains DrugMatrix high-throughput screening (HTS) results, HTS values for 

the affinity of common ligand target pairs. The latter is significant as large HTS campaigns 

generally attempt to cover a broad swath of chemical space by use of focused or screening 

libraries. The resulting data are inherently sparse with few cases of analog series based on a 

common scaffold with extensive variation in substituent groups. Individual SAR series, on the 

other hand, are denser series of compounds that were chosen to attempt to approach a maximal 

binding affinity for a given region of chemical space against a given target. Because of the 

proximity of these compounds to each other in chemical space, it is more readily possible to 

observe activity cliffs in a SAR series. Activity cliffs are ordinarily considered problematic as they 

represent a discontinuity in the response function that makes accurate modeling in its vicinity 

difficult. 2,3 However, activity cliffs also represent opportunities for drug design as the presence 

of such a cliff may indicate a change in ligand binding mode at the target (suggesting the 

opportunity for a scaffold hop to novel compounds) or that a local maximum binding affinity is 

near (because a small change to the ligand has made it unable to fit within its binding site). 

Since its debut in 2008, ChEMBL4 has become a major resource for researchers, not only 

those interested in particular target or phenomenon, but also for those interested in larger scale 

patterns and trends in known chemical space. In 2012, a group at Novartis Institutes for 

Biomedical Research published a study of their analysis of errors in ChEMBL 125. Their primary 

goal was to estimate the best correlation constant possible for regression QSAR models built 

from Ki data in ChEMBL when using data collected independently by two or more research 

groups. To this end, they collected all the biological replicate experiments for binding affinity 

present in ChEMBL 12, cross-referenced them to PubMed to identify measurements originating 

in the same group and eliminate those duplicates, and applied a series of filters to eliminate 

measurements that they considered likely to have significant error. The remaining activities 

were then grouped with their biological replicates and statistically analyzed. They calculated a 

mean experimental uncertainty for binding affinities in ChEMBL as being 0.44 pKi units with a 
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median of 0.34 pKi units, with a maximal correlation coefficient of 0.81 observed over their 

highly curated data set. 

Even with this extensive analysis, the Novartis paper is not a definitive statement of the 

uncertainty for published small molecule binding affinities. In their determination to offer a 

highly accurate estimate, the authors went to great lengths to eliminate duplicate reports of a 

single experimental value. While this is a reasonable assumption to make, they also excluded 

reported values which were offset by exactly 3 or 6 orders magnitude, reports appearing in 

reviews, results which were not already labeled as Ki measurements, and results where Ki was a 

negative value. While all of these are reasonable filtering steps, this process also has a strong 

tendency to eliminate outliers in the literature, and such values might or might not be identified 

by those assembling data sets for molecular models. Further, it seems likely that their reported 

values underestimate the effective uncertainty of a single binding affinity reported in ChEMBL. 

By eliminating all values that are not already in Ki form, they also excluded a significant number 

of results in ChEMBL that were already reported in pKi (or Log Ki) format, artificially limiting 

the size of the pool of biological replicates. 

The Tiikainen paper of 2012 has been discussed elsewhere in more detail (see Chapter 1). 

It is sufficient to state here that this work was primarily concerned with those errors in compiled 

databases that are introduced by the compilation process, and this particular error rate is 

somewhere between 5 and 8% of all structures and values reported in one of three large 

biochemical activity databases6. This finding is both bad and good news – bad in that it is 

previously known that 5% error is enough to cause models to become non-predictive7, but good 

in that the problem is arguably amenable to a curation process that can reduce the error rate by 

10%, 20%, or more. 

In light of these investigations, the question remains as to whether it is possible to design 

a workflow that can consistently minimize the errors in a bioactivity data set and increase the 
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likelihood of predictive models being generated. This work, therefore, was not conceived to 

attempt to generate a more accurate value of the uncertainty inherent in ChEMBL binding 

affinity data or to more completely map out all the errors in that subset of the biomedical 

research literature. Our primary goal in this work is to understand the particular pitfalls of 

extracting biological activities from the primary literature and to propose a workflow which 

helps reduce the errors inherently present in such data to a more manageable level when used as 

part of a QSAR modeling workflow. As such a workflow is targeted at less-experienced 

cheminformaticians and modelers, we intend to take a more naïve approach to data assembly 

and curation, hoping to capture a more typical cross section of issues that would be faced by the 

intended end-users of such a process. We will also confine ourselves to the using data from 

ChEMBL, as it is open access and cost-free, and more likely to be the first stop to find data by 

part-time modelers than a commercial database. 

Methods 

ChEMBL Logical Organization 

ChEMBL is provided by the European Bioinformatics Institute of the European 

Molecular Biology Laboratory as a set of tables for installation in a Relational Data Base 

Management System (RDBMS). In a RDBMS, different parts of the overall data are stored in 

smaller tables that are cross-referenced by unique identifiers attached to each row of each table. 

Complex reports are created by combining data from different tables into a single file under 

conditions and constraints. 

The primary goal of ChEMBL is to consolidate reports of biomolecular activity into a 

freely-available, machine-searchable repository. While its primary focus is on reports arising in 

the primary research literature, it also mirrors the DrugMatrix Toxigenomics database 

(originally developed by Entelos, currently supplied by NIEHS) and confirmatory screen data 
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from the PubChem project, and hosts several large screening datasets donated by the 

pharmaceutical industry, most related to malaria, tuberculosis, and other diseases of the 

developing world. 

In the case of ChEMBL 14, there are 29 individual tables. These tables contain multiple 

types of information, including the version of the database in use, how far different compounds 

have advanced in clinical trials, hierarchical tables describing different salts prepared of organic 

acids and bases, cross-references for different entities’ in house code names, and the details of 

what organisms were used in a particular assay. This information is cross-linked via a set of core 

data tables present in ChEMBL corresponding to small molecule ligands, targets/sites of action, 

assays, documents, and activity values. In ChEMBL14, there is information relating to 1,213,242 

compounds, 9,003 targets, 644,734 assays, 46,133 documents, and 10,129,259 individual 

bioactivities. Given that there are 10,922,817,736 possible combinations of targets and 

compounds, the data can be considered sparse with only 9.3% of possible combinations 

represented. 

The primary table needed to identify and compare biological replicates and the 

relationships between them are shown graphically in figure 3.1. More specifically, the 

chembl_14.activities, chembl_14.docs, chembl_14.assays, chembl_14.compound_records, and 

chembl_14.target_dictionary tables have human-readable details of the data abstracted from 

the relevant literature. Because of the size of the target_dictionary table, which includes protein 

sequence information, it is not directly cross-referenced by the assays table, but instead a 

junction table, assay2target is used. This table cross-references targets with assays which 

quantify activities at those targets, while limiting the amount of data that must be pulled in from 

either table, especially when information about a small subset of assays or a small number of 

targets must be retrieved. In this case, the assay2target table is particularly important, because 

it also contains two other fields which are used to describe what evidence there is for a given 
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target to be the actual target of a given assay and what kind of relationship exists between the 

known and putative targets. These two fields are named “relationship_type” and “confidence 

score.” They contain only a single character each because they both reference external tables 

which define the meanings of those shorthand codes. The codes are defined in tables 3.1 and 3.2. 

While their meanings overlap, the key distinction is that the confidence score represents how 

certain the assignment of a target for a ligand is, while the relationship type indicates the quality 

of the evidence used to assign that target in ChEMBL. 

 

confidence_ 
score 

Definition Localization 

0 Target unknown or has yet 
to be assigned (default) 

Unassigned 

1 Target assigned is non-molecular Non-molecular 

2 Target assigned is subcellular fraction Subcellular fraction 

3 Target assigned is molecular 
non-protein target 

Molecular (non-protein) 

4 Multiple homologous protein targets 
 may be assigned 

Multiple homologous proteins 

5 Multiple direct protein targets 
may be assigned 

Multiple proteins 

6 Homologous protein complex 
subunits assigned 

Homologous protein complex 

7 Direct protein complex subunits assigned Protein complex 

8 Homologous single protein  
target assigned 

Homologous protein 

9 Direct single protein target assigned Protein 

Table 3.1: ChEMBL 14 Confidence Scores for target assignment quality assessment 
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Relationship Type Meaning of Code 

D Direct protein target assigned 

H Homologous protein target assigned 

M Molecular target other than protein assigned 

N Non-molecular target assigned 

S Subcellular target assigned 

U Target has yet to be curated (default) 

Table 3.2: ChEMBL Relationship Types  
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Figure 3.1: ERD for core tables of ChEMBL 14, with all columns and constraints shown	  
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Initial Data Assembly 

Data for this analysis was taken from a local copy of ChEMBL 14, obtained from the 

European Bioinformatics Institute and installed in a local instance of Oracle 11. Data points were 

generated from an SQL script (Appendix 3) and exported to a tab-separated value formatted file. 

An initial table combining target, ligand, document, assay, and activity identifiers was built with 

constraints imposed in order to limit the presence of less reliable data and restrict the 

comparisons to comparable experiments. In particular the following conditions were imposed: 

• The relationship type was required to be “D”,”H”, or “M” 

• The target confidence score was required to be 3 or more 

• The publication type was required to be “PERIODICAL” 

This table was then self-joined to create a raw list of activity pairs by imposing additional join 

constraints on each resultant line (here consisting of lines a and b from the source table) 

• The target ID for a and b must be equal 

• The ligand ID for a and b must be equal 

• The document ID for a and b must not be equal 

• The activity ID for a must be less than the activity ID for b 

An additional loose constraint that the standard activity type was required to contain the 

substring: “KI” was applied. This was not meant to instantly isolate all binding constant 

identifications, but rather to make a simple first cut to eliminate as many non-binding constant 

measurements as possible. The resulting output of this cross-join was then saved to a tab-

delimited format and manually curated in Excel to remove inappropriate entries and provide an 

estimate of the quantity and types of issues present. 
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Published units and standard assay types were examined for each entry. During an initial 

pass, entries referencing a percentage inhibition, weight-based dosages, or other 

intractable/incompatible units were removed, as were entries with missing values, non-numeric 

results, or floor or ceiling values. Subsequently, all values were converted to pKi measurements 

based on molar concentration units. Entries where one or both paired values were not readily 

converted by automated rule, e.g, pKi values with units attached to them, negative Ki or pKi 

values, and physically unreasonable Ki values, as well as a small sample of the successfully 

converted values were identified and subjected to manual confirmation based on the contents of 

the original literature report. Once those assessments had been completed, either by manual 

recalculation of the proper Ki values or by deletion of inappropriately duplicated values, the 

difference between the two pKi values on each line was calculated. Each entry where the 

absolute difference between the two values was less than 0.05 pKi units was removed from 

consideration, as it was presumed that any difference that small was due to either direct copying 

of an earlier value or reuse of an earlier value with alteration in units or precision. 

This approach was useful for identifying gross problems with comparing individual 

affinity measurements, and it achieved the goal of casting as wide a net as possible over the 

totality of the indexed literature. It became clear, however, that this methodology was 

insufficient for more detailed estimates of error. Because duplicated values were not removed 

before being used to compute activity pair differences, it over-valued the effect of repeatedly 

cited values and inflated the apparent variability between different determinations. 

Refinement of Data Assembly  

A second query was devised in an attempt to eliminate this over-counting of duplicate 

entries. We deemed it essential to retain the automated pair generation process, but duplicate 

values needed to be removed prior to this process. Furthermore, we decided that the simplest 

way to accomplish these goals was to separate the extraction of raw data from ChEMBL from the 
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deletion of the re-cited data and the actual construction of the activity pair differences. A three-

part process was developed and employed to perform this extraction. In the first phase, the 

unique internal identifiers for targets, assays, activities, ligand molecules, and documents for the 

entirety of ChEMBL were joined into a single table along with the standard units and values for 

each entry, and filtered by the same single entry criteria used in the first process (target 

confidence score, target relation type, and publication type). In addition, a stricter filter was 

applied to the standard assay type for each record, removing all records that were not identified 

as Ki, pKi, Log(Ki) or –Log(Ki) values. The results of this query were saved as a scratch table. A 

second query was then used to identify entries with the same target and molecule identifiers, 

and the same standard values, units, and assay types, but different activity identifiers (indicating 

that each value was formally a different entry). For each of these groups, the lowest activity 

identifier was retained into a second scratch table, eliminating entries where an affinity value 

was exactly the same as an earlier entry. While this did not eliminate all duplicates (such as 

those where a conversion between Ki and pKi or a complex change of units had occurred), it did 

minimize the presence of duplicates before the primary cross-join. 

This second temporary table was then joined to itself with the same conditions as the 

self-join in the first instance (same target and ligand, different document identifiers, and first 

record of each joined record having a smaller activity identifier than the second). At this point, 

addition information was added to the joined lines to make it more intelligible to human eyes 

(target and ligand names, species information, activity comments, etc). This final table was 

saved as a tab-delimited text file and exported for manual curation in Excel (version 2010, 

Microsoft Corporation, Redmond WA). 

In Excel, canonical pKi values were calculated for both molecules in each row (or record). 

When a syntactically correct pKi record already existed (positive valued, with either a null or M 

entry for standard units, and some variant of log(Ki) or pKi in the standard type field), that value 



75 
	  

was copied verbatim into the canonical pKi column (or field). Where possible, automated rules 

were used to convert groups of rows that shared common standard types and units to pKi values 

in a consistent manner. In addition, records with incompatible units or requiring more extensive 

effort to convert (such as weight-based measures and percentage values) were removed; records 

which had physically impossible measurements (such as negative concentrations) were either 

corrected or removed after consultation with the primary publication. Records with an 

assay_type of Log(Ki) or –Log(Ki) and an inconsistent value were presumed to be sign errors 

and multiplied by -1. After well-behaved pKi values for all entries were calculated, the absolute 

value of the difference of between each pair of values was calculated (ΔpKi) and added as a new 

column. The resultant spreadsheet was then sorted on the ΔpKi  in increasing order, with all 

values of ΔpKi of 0.05 or less being removed as probable duplicate values. The final results were 

then saved as a tab-delimited file and imported into R8 (version 3.0.2) for further analysis. 

Information about the number of distinct compounds tested against individual targets, 

the number of different publications in which an individual compound appeared, and the 

number of distinct molecules present in each individual publication was extracted either from 

the final paired-affinity difference data or directly from ChEMBL. For values extracted directly 

via SQL, values were obtained for both a subset of the ChEMBL data mirroring the data in the 

paired affinity difference values derived from applying conditions on the search which mirrored 

the constraints applied in the first search of the paired affinity difference generation process 

(target confidence score, target relationship, and “B” as the assay type), and for ChEMBL as a 

whole with no constraints. For the limited subset, the output was structured to return all unique 

pairings of the two indices of interest and then condensed into aggregate forms in R. Owing to 

the overall size of ChEMBL, the data were consolidated into count data in SQL before export to 

R. 
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Results 

Distribution of magnitude of differences in paired binding affinity measurements 

After manual curation, the distribution of the calculated differences can be plotted with a 

kernel density plot, as shown in figure 3.2. While the distribution is roughly exponential in form, 

there are also large-scale irregularities that deviate from this distribution. In particular, there is 

a slight broadening of the distribution around 1 pK unit and a series of more pronounced 

shoulders around 2 pK units. Finally, while the overall distribution appears to have effectively 

returned to zero by 4 pK units, there are three notably visible peaks to the right, at the integral 

values of 3, 6, and 9 pK units. 

 
Figure 3.2: Distribution of absolute activity differences for biological replicate pairs 
identified in ChEMBL 14 
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Distribution of binding affinity data 

As stated previously, ChEMBL 14 contains 1,213,242 distinct compounds (1,384,479 

records in the compound library), 10,129,256 bioactivities, 9,003 targets and 46,133 different 

documents. A naïve calculation would suggest that there ought to be 135 different molecules 

assayed against every target and that each document ought to contain 3 different molecules. 

However, ChEMBL contains many different types of assays from the medicinal chemistry 

literature and that for some drug classes, most notably antibiotics and antineoplastics, cell-

based assays are much more common than biochemical protein binding assays. This raises the 

question of whether the binding affinity data in ChEMBL is distributed throughout the literature 

similarly to the entirety of ChEMBL. It also is a reasonable and arguably more important 

question whether the data in our selected subset of the binding affinity data (binding affinities 

independently replicated in the primary literature) is distributed similarly to the whole of 

binding affinity data. 

We can characterize the coverage of the paired subset of the binding affinity data 

relative to all ChEMBL binding affinity data in terms of three scalar metrics: the number of 

distinct ligands, targets, and documents present in the subset. These are supplemented by 

three distributions: the ratios of ligands to targets, ligands to distinct documents, and 

documents to distinct ligands. These distributions describe different aspects of the data 

which are relevant to the QSAR modeling process. The number of distinct ligands for each 

target describes the maximum number of data points available for creating a model of a 

given target and serves as a proxy measure of whether a QSAR model of a target is feasible. 

The number of ligands per distinct document illustrates the dispersion of data throughout 

the literature. As will be discussed later, having all the affinity data for different compounds 

in distinct publications limits the number of replicate affinity measurements (which allow 

direct comparison of different protocols and/or different research teams). The number of 
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documents for a distinct ligand is essentially the maximum number of replicate values that 

would be available for binding affinities of a given ligand, and therefore the maximum 

number of different assay protocols that might be correlated by this data point. 

 Paired Affinities Binding Subset All ChEMBL14 

# of Targets 594 5,272 9,003 

# of Ligands 2,427 390,866 1,213,242 

# of Documents 3,394 27,053 46,133 

# of Points 13,865 948,065 10,129,256 

Table 3.3: Number of targets, ligands, and documents in different subsets of ChEMBL 14. 

 

Judging solely by the numbers of targets, ligands, and documents present, the 

binding affinity subset of ChEMBL 14 appears to subsume a large portion of the whole 

database, as it contains entries for 32% of all ligands present, and 59% of both the 

documents and targets (table 3.3). However, the binding affinity subset only contains about 

9% of all the points in ChEMBL 14. This would seem to imply that on the whole binding 

affinities are measured less often than other properties in the medicinal chemistry literature. 

This impression is supported by the fact that while only 0.09% of all possible pairings of 

targets and ligands in ChEMBL 14 have some sort of bioactivity associated with them, only 

0.05% of all possible pairings of targets and ligands present in the binding affinity subset 

actually have a Ki value reported. Binding assays cover a meaningful portion of both the 

chemical and biological space contained within ChEMBL, but they do so much more sparsely 

than activities as a whole. 

For the paired binding affinity values, it would appear that there is relatively less 

coverage of all possible binding affinities. Only 11% of the targets with a measured Ki binding 
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affinity had at least one biological replicate reported. Similarly, only 0.6% of all ligands 

present in the binding affinity subset had a biological replicate. In total, 1.4% of the total 

activity values present in the binding affinity subset were part of a biological replicate 

binding affinity pair. 

The distribution of the ratio of ligands to targets is presented in Figure 3.3. Subplot A 

reflects the binding affinity subset of ChEMBL 14, while subplot B was created from the 

paired-affinity difference data. The former curve presents a mean value of 179.8 ligands 

tested per target and a median value of 26 ligands per target. The maximum number of 

ligands tested against any single target was 6,789, with 203 targets having had at least 1,000 

ligands assayed against them (4.3% of targets), 1424 targets having had at least 100 ligands 

assayed ( 27%), and 3515 having had at least 10 ligands assayed (66.7%). For subplot B, 

representing targets with ligands that had been assayed multiple times in the medicinal 

chemistry literature, 8.27 ligands were replicated on average for each target. The median 

number of replicated ligands, however, was 3, suggesting, as above a marked skewness in 

both distributions. This can be verified by visual inspection of the two curves. The overall 

shape of the two distributions is similar, suggesting that the gross distribution of the paired 

affinity difference data is not particularly different from that of the binding affinity subset. 

The number of times affinity values for a given ligand are reported (alternately, the 

ratio of papers per compound) are summarized in Figure 3.4. The binding affinity subset 

data are shown in subplot A. From this distribution, a mean value of 1.17 and a median of 1 

are obtained. While at least one compound has been assayed for binding affinity 248 times, 

21 have been assayed at least 100 times, 91 have been assayed at least 50 times, and 873 

have been assayed 10 times or more, in total this represents less than one-third of 1% of all 

compounds in the binding data subset. In total, over 90% of the compounds present in the 

binding data subset have been assayed exactly once. In subplot B, on the other hand, the 
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paired affinity difference data, by definition, is going to be skewed towards the presence of 

more reports of affinity for each molecule, and this is, in fact, the case, with a mean number 

of reports for each ligand included of 3.29. The median value, however, remains at 2, its 

minimum possible value, and the ligand with the maximal number of independent binding 

affinity reports had 105, yielding a narrower range of possible values. In this and the 

following figure, the jagged appearance of the density curve in both B subplots is an artifact 

of the KDE bandwidth selection algorithm interacting with the low total number of data 

points and the tight distribution of those points. 

The inverse distribution, number of distinct ligands per document, is considered in 

Figure 3.5. With subplot A again representing the binding data subset, a mean of 18.8 

compounds with a corresponding median of 14 is obtained. This is yet another example of a 

long-tailed distribution, where the papers with the most distinct ligands present had 648 in 

total. There were 193 papers with more than 100 ligands described, and 1430 that have more 

than 50 ligands, but these represent only 5.3% of all primary reports from the peer-reviewed 

literature covered by ChEMBL. Considering the paired affinity-difference data in subplot B, 

when a paper contains an independent biological replicate value, there are 2.35 repeated 

compounds on average. The median number of replicated compounds when they occur is 

only 1, however. The paper with the most replicated ligands had 48 ligands included, and 60 

papers had more than 10 replicated compounds, together representing 1.7% of documents 

present). 
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Figure 3.3: Number of ligands tested against individual targets	  
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Figure 3.4: Number of times different compounds are referenced in distinct 
documents	  



83 
	  

 
Figure 3.5: Distribution of number of distinct compounds that are present in 
different documents	  
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Error types extracted from primary examples 

Number Identified Error Type 

14 Non-Ki values used as Ki units 

14 Non-standard Concentrations used 

47 Measurement type to units mismatch 

57 Modelling study with no original data 

9 No units or sources provided 

7 Mixed Ki and pKi values 

14 Missing subtype or species information 

19 Sign errors arising from  -Log(Ki) vs Log(Ki) 

3 Values not found in original paper 

Table 3.4: Counts of errors found in a small subset of problematic entries in ChEMBL 14 

 

A non-random sample of 186 papers from the primary literature were taken from 

documents identified in activity pairs where the difference between the two activity values 

could not be automatically resolved from the information automatically extracted from 

ChEMBL (such as negative Ki values being reported, no units being reported with a Ki value 

or units being reported from a Log Ki value, or multiple values for a single target-receptor 

pair being reported) or when the difference between the two pKi values were more than 12 

log units apart. An analysis of these pairs is summarized in Table 3.4. The predominant 

source of problematic data in this set is a consequence of data being copied from its original 

source into papers where computer models are constructed, and then being reintroduced 

into ChEMBL when those models are abstracted. The second most common discrepancy 

resulted from failure to import the appropriate units from the original source. Less 

commonly, but still representing a third of the errors, were issues with pKi values 
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(extraneous negative values, mislabeling Ki as pKi, utilizing non-standard units for 

determination) and mislabeling or omission of species information for the target. Finally, a 

nonzero number of errors arose from mixing Ki and pKi values, having no notation as to 

units of analysis, or the data not being present at all in the cited paper. Thus, altering the 

process for data acquisition to address only one type of issue, e.g., excluding papers 

consisting only of modeling data or stricter standards in the original literature (requiring all 

values to be expressed in Molar units), will not suffice to fully eradicate the identified 

problems. 

Error estimate between biological replicates 

After the removal of all affinity differences of less than 0.05 pKi units, there are 32,008 data 

points remaining in the affinity difference data set extracted from ChEMBL 14 (Figure 3.2). 

With a mean of 0.97 pKi units and a median of 0.58, it seems improbable that the individual 

points are normally distributed. In fact, these data are not in a Gaussian distribution, and 

they are skewed markedly towards smaller values. Given the large number of points 

available, rather than systematically test different distributions for quality of fit, the use of 

an empirical cumulative distribution function (ECDF) was an efficient mechanism for 

describing the distribution of distances between biological replicates which were selected 

from ChEMBL. A plot of the ECDF appears in figure 3.6. From this plot, it can be seen that 

over 90% of the differences are less than 3 pKi units from each other, and that 87.4% are 

within 2, with 69% separated by 1 pKi unit or less.  
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At this juncture, it is important to note that these calculations have all been based 

upon the differences between two binding affinities and not on the difference between one 

experimental binding affinity and a standard, error-free, exact value for that binding affinity.  

As discussed earlier, this hypothetical value does not exist.  In order to estimate the 

uncertainty for a single measurement, we will assert that for each pair of measurements, 

there exists some value for the binding affinity which, when used as part of the training data 

for a QSAR model in lieu of either of the paired binding affinity values, will minimize the 

overall, total error of the model.  This value need not be unique for any of the binding 

affinity pairs; we only assert that one or more values meeting this condition must exist.  We 

Figure 3.6: Empirical Cumulative Distribution Function of observed 
differences in biological replicate pairs. Orange dashed lines = tenth and 
ninetieth percentiles. Green dashed line =median. Purple dotted line = 
differences of 1 and 2 log Ki units. (not shown: mean = 0.97 log Ki)	  
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can then use this value as a proxy for the “best” binding affinity value possible for any of the 

calculated differences in experimental replicate pairs.     

If we consider two biologically replicate binding affinities, a and b, and the 

hypothetical optimal error-reducing value for that ligand-target pair, δ, we can construct a 

contingency table that summarizes the relative positions of the three points (Table 3.4). 

With no a priori knowledge of the actual values for these values, we can only examine 

whether δ is inside the interval [a,b] or not (subject to the definition that a ≤ b).  

 a ≤ δ a > δ 

b ≤ δ Outside [a,b] Inside [a,b] 

b > δ Inside [a,b] Outside [a,b] 

Table 3.5: Contingency for position of δ relative to a and b in hypothetical affinity pair 

 

In half of the unconstrained, possible cases, δ will fall between a and b. Naturally, 

this depends on where the experimental points fall on the probability distribution of all 

possible outcomes (a potential future project would involve investigating the probability of δ 

falling within [a,b] as a function of the distance between a and b). For the meantime, we will 

treat this assumption of localized and evenly distributed error as an adequate approximation 

of the “true” error. 

Since these data are being used to compute a mean value (the average error of a 

binding affinity in ChEMBL) we will always be including both the errors associated with 

binding affinities a and b in the calculation. If we assume that δ is inside the interval [a,b], 

we can use the mean of a and b to approximate the distance between  a or b, and the  

optimal binding affinity value δ. This works because any error (ε) made in the prediction of 

δ will be canceled out by an equal and offsetting error in the other half of the paired binding 
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affinity measurement. That is: if the absolute error between a and δ is underestimated by ε 

(that is to say that the correct absolute error for binding affinity a is δ-a-ε) then the correct 

absolute error for b would be overestimated by the same amount (b-δ+ε). The average 

distance between these two points is ½ (δ-a-ε + b-δ+ε), or ½ (-a+b), with both δ and ε 

cancelling themselves out. 

Taking these assumptions as valid and sufficient for a first order approximation, we 

estimate the mean absolute error of binding affinity measurements in ChEMBL 14 to be 0.48 

pK units, with a median of 0.29 pK units. This compares favorably with the values presented 

in the Novartis paper, which proposed a mean absolute error as 0.44 pK units, with a 

median of 0.34. Similarly, this suggests that 87.4% of all binding affinities presented in 

ChEMBL 14 are within 1 pK unit of the “true” value. 

Conclusions 

The quality of a QSAR model is implicitly tied to the quality of the data used in the 

construction of that model. While a large majority of the truly independent biological 

replicate binding assays appear to lie within 1 pK unit of each other, there are multiple 

reasons for concern. First, the long tail of large differences in supposedly replicate values, 

going out to 12 pK units and beyond, suggests that there are enough large magnitude errors 

in values to cause grief for unwary modelers. With over 90% of all binding affinity values 

having no independent validation, there is no clear-cut mechanism for identifying these 

problematic values, even though they must be identified. Ironically, the other major problem 

appears to be the recycling of data from useful published data sets into computational 

modeling papers which are then abstracted and reentered into databases such as ChEMBL 

repeatedly. This tendency to repeatedly recite data leads to multiple hazards. Most 

significantly, this repetition tends to make the assay values appear to be completely accurate 

and cast in concrete by repeatedly showing the exact same value. The mere accident that a 
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modeler found a paper’s data useful for a project should not lead anyone to think that it is 

inherently more trustworthy than any other source. This is not to suggest that ills of open 

bioactivity data can be laid at the feet of cheminformatics and molecular modeling. 

Nevertheless, the community has contributed to the problem, particularly in the use of non-

standard units for convenience in some studies, and as major consumers of these data 

sources, it is inherently self-interest to take proactive roles in data quality initiatives. 

Beyond the issues already described, several other noteworthy sources of error have 

already been described. Not all of these are necessarily matters of accuracy in the reporting 

of bioactivity data. Many of them are meta-data issues relating to the information about an 

activity value that allows it to be properly classified and contextualized with other similar 

data. For example, mis-annotation of species, receptor subtype, and/or experimental 

conditions all contribute to inappropriate bioactivity values being included in the training 

data for a specific target. Misclassifying data so that inconsistent values, such as affinity 

ratios or Hill coefficients are comingled with valid affinity data, is another mechanism by 

which bad biological data is inserted into models. 

Those who publish the original papers are not immune from blame, either. While 

standards for disclosure of experimental details have become much more stringent in recent 

years, there are still papers which are vague about important details of their experimental 

procedure, ranging from not discussing the details of expression systems or tissue 

preparations used to extract target molecules to actually providing binding affinity values 

(not log values or pK units) without any units at all. The easily visible spikes in affinity 

differences at exactly 3, 6, and 9 pK units in Figure 3.2 can partially be attributed to the use 

of nonstandard measures by modelers and errors in data extraction, but the prevalence of 

these problems suggests that some portion of them are due to researchers being sloppy in 

their handling and curation of metric units. One final issue that is not necessarily addressed 
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in current best practices is failures to describe or discuss the provenance of data being used 

in model building. While most reports in the primary literature provide an immediate 

reference for third-party data being used, this citation may or may not be the actual initial 

report of that data; this can lead in extreme cases to citation chains four or five papers long 

which hamper efforts to validate the original information. 

Finally, there are parts of the problem that are surds and which would not be 

eliminated by better process or more extensive auditing of new information added to data 

repositories. For example, advances in knowledge that make old data inaccurate or incorrect, 

such as the discovery of new receptor subtypes, or identification of new binding sites for 

known ligands in tissue samples. Similarly, no amount of rechecking data will eliminate the 

structure of modern research which heavily rewards new results over the validation of old 

results, leading to the situation where there is only one reported binding affinity for over 

90% of the distinct small-molecules included in ChEMBL. Lastly, the role of experimental 

error cannot be underestimated. A poorly conceived protocol can lead to inaccurate results 

that are undetectable until someone else attempts to replicate it or reproduce results 

obtained by using it. In view of recent attempts to demonstrate the reproducibility of key 

findings in high impact factor journals, this last issue is obviously a problem, but it is not one 

that can be solved by more careful attention to the handling of post-publication data. 

In spite of all of these problems, there remains cause for cautious optimism in hoping 

for improvements in data quality. In more recent editions of CHEMBL, the compilers have 

already begun two noteworthy changes which address issues that have also been noted 

herein as sources of error. Activity values for target/ligand pairs which exactly match an 

already entered data point (value and units) are now being flagged as potential duplicates. 

Also, activity values of any sort which can be expressed in terms of a concentration are being 

internally converted into negative log units and provided in data tables along with the 
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published and standardized concentrations. This does not eliminate error, obviously, but it 

does suggest that entries that have unphysical values associated with them will be 

reexamined in light of the failure to calculate the –log value automatically. 

Implications for curation of SAR data/Heuristics for curation 

Given this state of affairs, it would not be surprising that oral tradition has sprung up 

around how best to filter and preprocess data for inclusion in QSAR models9–12. Some of this 

“folk wisdom” has been collected and codified in print as best practices; nevertheless, there 

are still differences of opinion between practitioners about what constitutes valid practice. In 

conversations with multiple cheminformatics practitioners, several general themes and 

suggestions emerged: 

• Use no more sources than necessary. 

• Favor SAR series papers over HTS data. 

• When there are multiple binding affinity measurements, the best value might be near 
the mean of all the results, but recited data can skew this one way or the other. 

• Anything less than n pK units difference is not worth spending the time to reconcile 
(where n is some arbitrary, small value that varies by target, application, and 
modeler). 

• If it seems likely that a classifier model will be the final solution, check for paired 
values across the classification threshold, even if the difference is less than one pK 
unit difference. 

• Papers reporting a single, novel compound are not particularly useful. 

• It is necessary but not sufficient to have consistent data (structural representation, 
units and significant figures for activities) in order to build valid models. 

• It is more effective to verify and curate structural data and activity data at the same 
time instead of checking structures and activity data sequentially. This is because 
problems with structural data may be first identified as inconsistency in activity data, 
and vice versa. 

• Similarly, once the data are represented by consistent structures and in consistent 
units, major errors will frequently appear as a discontinuity in the response variable - 
that is, highly similar compounds with activity values differing by more than two 
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orders of magnitude.  These points may or may not represent a true activity cliff, 
however we can expedite the curation process by checking those points first. 

In light of these suggestions and the published best practices, we can propose a workflow for 

structural and biological curation of activity data that can help improve the efficiency and 

efficacy of pre-modeling data inspection. 

Proposed Workflow 

If the variability in protein-ligand affinity measurements between completely 

independent assay providers is such that any difference of less than an order of magnitude, 

is there any possible benefit in attempting to pick a “correct” affinity value to use for any 

given molecule?  If anything within 1 pK unit of the mean is even remotely equi-probable, it 

is possible to argue that the choice shouldn’t matter at all, and that regression models in 

general are probably a waste of time; maybe all that can be accomplished is to categorize 

molecules by which of a discrete set of activity bins they fall into.   While classifier models 

are still the correct solution, or the only possible solution, for many cheminformatics 

models, regression models remain useful and relevant, and a curation process for selecting 

which affinity value out of a set of several reported values to use is still highly relevant.  

However, the final goal of the selection process may change slightly. 

Just as some experimental results are more reliable than others (even if we struggle 

with identifying which ones those are), not all experimental predictions are equally reliable 

or useful. While a simple binary classifier can predict whether a given compound is likely to 

score as mutagenic in an Ames or mouse lymphoma assay that information, however useful, 

is rarely the end of the inquiry. Even when the classifier is used to screen a large virtual 

chemical library, having one or several chemical structures still leads to more questions. 

Most commonly, the questions will take the form of “What can we change to abolish that 

toxicity?” or “How can the binding affinity to our target be improved?”.While it is certainly 

possible to optimize compounds by selecting a compound, making a prediction, modifying 
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the selected compound, making a prediction for the modified compound, and repeating that 

process to exhaustion or boredom, it isn’t always efficient.  If all that is available is a binary 

classifier model, then that may be the best that can be accomplished.  With a regression 

model the same protocol can be followed, but with the advantage that each change in 

structure has a numerical affinity associated with it.  It becomes possible to directly assess 

the impact of each modification vis a vis other compounds, and not just against an arbitrary 

benchmark.  That is, it becomes possible to attempt an optimization of properties, and not 

just increase the number of structures to be considered. 

Such an optimization approach does not even strictly depend on having highly 

accurate numerical properties.  It is certainly possible to attempt an optimization knowing 

only whether a change will improve or worsen the property under optimization, or whether 

no significant difference is predicted.  But, even when predicted values are known for both 

compounds, it is the difference in their values that is most immediately useful.  An accurate 

affinity value that closely matches the experimental assay of choice is certainly preferable, 

but as long as the relative affinities across a set of compounds are well-reproduced, 

attempting to optimize properties is feasible.  Having an estimate of the absolute affinity that 

is accurate to an order of magnitude will obviously help, but it is the relationship between 

the different compounds that is primary. 

Given that we have estimated the uncertainty of a single compound reported in 

ChEMBL to be about 1 pK unit, this would seemingly be a death knell for QSAR regression 

models.  This is not the case, however. While most compounds only have their affinity 

reported once in the public literature, they are not reported in a vacuum. In particular, most 

reported affinities occur within the context of a paper that reports affinities for more than 10 

compounds at once; almost all of these series are performed in a single research group, by 

the same assay protocol. By definition, the systematic error of these compounds should be 
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very close to constant and the error present in the difference of the affinities of any two of 

them will be dominated by the random error in each determination.  Current best practices 

in pharmacology laboratories seek to reduce random error in replicates of affinity 

measurements to 10%. While this goal is not always achieved in practice, 10% random error 

in an affinity is significantly easer to work with than an uncertainty of an order of magnitude 

or more. In light of this analysis, it would seem that a more suitable solution to the 

identification of the proper activity values to be used in QSAR models would be seek to 

minimize the total uncertainty in the pairwise differences for the compounds selected by 

maximizing the number of compounds which were assayed under the same conditions, and 

preferring values performed in laboratories which have more experience with the assay 

protocol in use. This is not to suggest that there is not a place for rejecting obviously 

erroneous activity values, but it seems unlikely that cherry-picking individual data points is 

sufficient to compensate for the large uncertainty associated with binding affinities singly 

reported in the literature. Reproducing the differences in affinity accurately allows QSAR 

models to remain relevant to the lead discovery and optimization process even when data 

from multiple sources is required. 

Step 1: Standardize chemical structures 

As described previously, the chemical structures in the data set need to be 

standardized early in the curation process (see Chapter 2). Because we will be relying upon 

those structures to identify duplicated compounds and values instead of textual annotations, 

it is imperative that these representations are normalized before other comparisons utilizing 

those structures are made. A set of standardization rules, either implemented as smirks 

transformations in OpenBabel13 or as rules for ChemAxon Standardizer14 are both acceptable 

methods for implementing this. 
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Step 2: Compare activities for ligands measured at close homologs of the target 
protein 

In light of the observed problems with species annotation in ChEMBL and the 

problems in distinguishing assays based on cloned cell line expression systems from native 

tissue preparation extracts, it is important to verify that reported activities are all measured 

in truly equivalent systems. Therefore, the activity values for common reference ligands 

should be checked between the target of interest, and those same ligands as measured 

against the homologs of the target in other species. Ordinarily, it is sufficient to note whether 

or not any identical values have been reported for divergent species. Situations where this 

would be an insufficient condition can be envisioned, however. If a nominally curated 

dataset does not give rise to predictive models, returning to the primary sources to verify the 

biological details of the assay conditions is time well spent. 

Compound Target Species Assay 
Type 

Value Units Date 

TLA-042 nAChR α7 Human Ki 2700 nM Jun 1999 

TLA-042 nAChR α7 Mouse Ki 950 nM Oct 1995 

TLA-042 nAChR α7 Rat Ki 1460 nM May 2002 

TLA-042 nAChR α7 Chicken Ki 950 nM Feb 2000 

Table 3.6: Simulated data for affinities of an antagonist binding to nicotinic acetylcholine 
receptor α7 in four different species. The exact replication of the mouse and chicken values is 
a warning sign that the data in the more recent paper may have been improperly compiled or 
inappropriately copied from the earlier paper. 

 

This kind of error is illustrated in Table 3.6. A tool compound which is useful as an 

inhibitor of nicotinic acetylcholine receptor α7 has been assayed for affinity at that receptor 

as expressed in four different species (human, mouse, rat, and chicken). Everything appears 

in order, except that the affinity values for mouse and chicken are exactly the same. Because 

the mouse data was published well before the chicken, it is possible that the authors of the 
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latter paper used the value published in the former (either out of ignorance, or because it 

probably was the only published value when they began the research they were reporting). 

Alternately, the results from the second paper could have been mis-transcribed somewhere 

in the data assembly process and the species or numerical value is incorrect. Finally, it is 

improbable, but possible that the affinities for the two different species are identical. In any 

case, there is no way to resolve this situation solely by reference to the data as presented.  

Similarly, there have been situations where mis-annotations have occurred with 

regard to the specific subtype of receptor being quantified in databases or where mixtures 

are improperly annotated as being of one specific subtype. In order to guard against this 

possibility, when data exist for a single compound against multiple variants and subtypes of 

a receptor in a single species, comparing the value of interest to two or three near homologs 

and at least one more distant homolog of the same species and class is recommended. 

Compound Target Species Assay 
Type 

Value Units Date 

WDC-331 5-HTR1A Rat Ki 420 nM Mar 1991 

WDC-331 5-HTR1B Rat Ki 420 nM Mar 1991 

WDC-331 5-HTR1D Rat Ki 420 nM Mar 1991 

WDC-331 5-HTR2C Rat Ki 11 nM Nov 2000 

Table 3.7: Simulated data for binding affinity for a hypothetical antagonist to various 
subtypes of serotonergic receptors. The combination of identical affinity value across three 
variants of a single subtype, species of origin, and publication date strongly indicate that 
someone seeking to use this affinity data needs to carefully examine the source publication 
directly. 

 

In Table 3.7, this process is illustrated with a hypothetical serotonergic tool 

compound that is being considered for inclusion in a QSAR model of the rat 1D serotonergic 
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receptor. This entry is troubling for multiple reasons. Primarily, the equality of the three 5-

HTR1 values suggests that there was a transcriptional error either in the initial publication or 

the data assembly/curation process. Given the publication date, it is also possible that this 

assay was conducted before the existence of the different serotonergic subtypes were known 

and the affinity was reported only as 5-HTR1 Finally, the species suggests that the sample 

may have been isolated from extractive tissue preparation and not expressed cleanly in a 

recombinant cell line. This would have resulted in all three subtypes (as well as several other 

analogous receptors) being present in the experimental sample with the calculated final 

affinity being for a mixture of those receptors at an unknown and variable ratio. The only 

way to clarify which, if any, of these scenarios is the correct one is to examine the primary 

literature. 

Step 3: Compare values for duplicated ligands at the same target 

Historically, the affinity values for small molecule ligands at their protein targets 

were determined by competing off a radioactive reference ligand of a known binding affinity. 

Because this tends to lead to extended networks of interdependent affinity values, 

consistently using the same values across an entire protocol becomes important for 

minimizing systematic error. When the same reference ligand is used by multiple research 

groups for their binding affinity studies, each group will often end up using their own 

particular value for the reference affinity. Locating instances where the same ligand-target 

pairs occur at multiple locations in the data set, and then comparing those values is a useful 

diagnostic. If two different sources report biological replicates with a difference in affinity of 

less than an order of magnitude, their overall results are likely to be broadly compatible and 

both includable in a single data set without major difficulties. However, if the difference in 

replicates is more than an order of magnitude, there may be methodological differences or 

underlying assumptions in one or both sources which requires the exclusion of one or both 
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sources from the combined data set. If there are two different biological replicate values 

reported from the same laboratory, close inspection of the primary report will be mandatory. 

Either there are subtleties in the reports that were not captured by the compilation process, 

or a new value for at least one compound in the tested compound was determined in the 

middle of the work cited. It is important to be certain that the value which is considered 

most reliable by the researchers reporting the affinities is used. If it is impossible to 

ascertain which is most trustworthy, it may be necessary to exclude part or all of the data 

arising from that source. 

Compound Target Activity Type Value Units Pub. Date 

Cordrazine Procrastin X Ki 950 nM Feb 2004 

WDF-209 Procrastin X Ki 125 nM Feb 2004 

WDF-314 Procrastin X Ki 84 nM Feb 2004 

Dypraxa Procrastin X Ki 2500 nM Oct 2005 

TLA-1138 Procrastin X Ki 600 nM Oct 2005 

TLA-1701 Procrastin X Ki 51 nM Oct 2005 

Cordrazine Procrastin X Ki 725 nM Mar 2006 

WDF-278 Procrastin X Ki 97 nM Mar 2006 

WDF-411 Procrastin X Ki 28 nM Mar 2006 

Table 3.8: Simulated affinity data for multiple assays. Two organizations with different 
reference compounds have published assay results for multiple compounds. The reported 
value of cordrazine changes from one publication to the next. Before either set of WDF data 
are used, the reason for this divergence needs to be examined carefully. 
 

In Table 3.8 some of these issues are illustrated. In it, two organizations (Wonder 

Drug Factory and TLA Pharmaceuticals) have research programs to develop inhibitors of 

procrastin X and hopefully improve graduate student productivity. The assay used at 

Wonder Drug utilizes cordrazine as its reference ligand, while TLA’s assay is based on 
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dypraxa, instead. In February of 2004, WDF has a note published which states their 

determined affinities for cordrazine and two novel ligands of their own devising.  25 months 

later, when the program has been terminated, another paper is published describing some 

more selective ligands. However, the affinity for the reference ligand has significantly 

changed. If this result had come from TLA, it would not have been a major concern. The two 

values are less than an order of magnitude different from each other. However, the 

difference between the two values is more than 10%, it does not only represent an increase in 

the precision of the affinity, and the assays were notionally performed by the same 

organization which did the previous set.  There are plausible explanations for this 

discrepancy, such as changes in assay protocol or technology, transitioning from a CRO 

assay provider to an internal laboratory (or vice versa), or possibly even a change in supplier 

of the cordrazine used.  But, without more clarity on this point, it remains unclear whether 

the two sets of affinities for the novel compounds reported are compatible and should be 

treated as being from a single organization. A simple correction might be used to make them 

compatible, or they may need to be handled completely separately, with only one of the two 

published values for cordrazine included in the model.  

Step 4: Examine fingerprint plots for outliers and activity cliffs 

It is useful to know when compounds in a data set are either extremely different from 

the majority of compounds present, or when there are compounds that are virtually identical 

with highly divergent activities. Because a model has not yet been created, the easiest way to 

assess these properties is to use standard molecular fingerprints and a similarity metric, 

such as the Tanimoto index15, to plot the relative distance between compounds in the data 

set in a fixed-size space. A more specific approach would be to generate either MACCS16 or 

some variant of a connectivity fingerprint for each molecule, take the Tanimoto index over 

all pairs, and then apply multi-dimension scaling to the matrix of the compliments of the 
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similarities. The first two elements of the resulting MDS “eigenvectors” for each data point 

can then be directly plotted on a Cartesian grid and visually inspected. In cases where a 

single point is several times more distance from its nearest neighbor or where two points are 

essentially superimposed with a multiple order of magnitude difference in activity, there 

may be underlying problems with the data. 

In the former case, it may be best to remove the chemically distant point, especially if 

this apparent distance is confirmed by visual inspection of the possible outlier and its 

nearest neighbors’ chemical structures. This is not a formal rule for identifying outliers such 

as the Tukey method. The creation of the MDS plot relies on an algorithm that attempts to 

separate points as much as possible given the similarity/distance constraints placed upon 

them, and no formal numerical criteria are established for the exclusion of a given data 

point. Nevertheless, this method has the advantage of being applicable in cases where there 

is little or no replicate data for a given compound, and it allows for the incorporation of 

chemical intuition and experience into the workflow. It does have limitations, however. In 

particular, this procedure should not be applied iteratively more than twice or thrice, and the 

structures involved should always be visually examined before one or more is removed. By 

definition, there will always be a compound that is least similar to the majority of 

compounds in a data set. If the compound or compounds that dominate the spatial 

distribution of an MDS plot of the computed differences are uncritically and repeatedly 

removed, it is possible to keep peeling away the outermost points in a data set, layer-by-layer 

like an onion, until almost all the data are discarded and nothing remains with which to 

build a model. 

In the latter case of two points being close together on an MDS plot but having 

activities differing by two or more orders of magnitude, a possible discontinuity in the 

response variable has been identified. If the chemical structures involved are not similar, 
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there is the possibility that their coincidence in a two-dimensional plot is by chance, and 

there is a significant distance between the points in higher dimensions that were not 

captured by the choice of descriptors or fingerprint types. If the two structures are not 

identical, but are likely to be of a congeneric series or are otherwise structurally similar 

(based on visual inspection), it may represent a true discontinuity, especially if the 

compounds were both assayed under the same protocol in the same laboratory. These data 

points should be flagged as possibly problematic and considered from elimination from the 

data set if models built with them consistently have problems with low accuracy in that 

portion of chemical space. If the two activities are not from the same protocol or laboratory, 

this may indicate either problems with quality control or accuracy in one laboratory or 

another. This is especially a possibility if the compounds are structurally identical and both 

assayed by the same provider. In cases such as this, close evaluation of the primary literature 

is essential. 

These issues are illustrated in Figure 3.7. In this simulated plot of the two highest 

variance dimensions from a multi-dimensional scaling calculation on a data set being 

assembled for a QSAR study, the structures of 3 compounds designated a, b, and c, are 

considered. C is a known anti-fungal which is very dissimilar to the other compounds under 

consideration (which are CNS agents). Based on its relative position in the MDS plot, c 

should almost certainly be removed.  Even if there are other compounds present with 

pendant carbohydrates or polyene changes, they are still clustered much more closely to a 

and b than to c, which suggests that they differ from c in some significant manner (probably 

molecular weight). A and b have the opposite problem. They are practically superimposed in 

the plot. Examining the structures demonstrates that they differ only by the substitution of 
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one atom at the same position on a phenyl ring. If the affinities differ by more than 2 pK 

units, then there is an activity cliff present which needs to be taken into consideration. If the 

majority of compounds in the vicinity of a and b are similar in affinity to a, then b may need 

to be removed from the training set; if b is more representative of average affinities in the 

region, then a should be considered for elimination. Once either compound is removed from 

the training set, it should not be placed into any external test set as it is already presumed to 

be a hard-to-predict data point. However, as most QSAR protocols have some form of 

Figure 3.7: Sample MDS plot of several compounds present in a data set. Each 
character represents one compound. A and B are highly similar. If their activities 
differ by more than 2 orders of magnitude, they form an activity cliff and one or both 
may need to be removed from the data set. C is an outlier, both by positioning on the 
plot and by visual comparison of chemical structures A, B, and C. It probably should 
be removed 
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variable selection used which may completely transform the similarity relationships between 

compounds, it may be instructive to apply the final model to the removed compound in 

order to establish whether that discontinuity in affinity remains, or it was optimized out 

through the variable selection process. 

Step 5: Spot check primary sources for structural and biological data accuracy 

As has been previously discussed there is a non-negligible level of error introduced 

into compiled data by the act of compiling it6. While it might be desirable to check each 

primary reference for each compound and activity being considered for inclusion, this is 

probably not be viable in large data sets with many sources being consolidated. In addition 

to any primary sources that have been identified as potentially problematic in previous 

steps, 10 to 25% of the primary sources represented in the consolidated data set being 

curated should be manually checked at this time, cross-referencing the structures and 

activities cited in the database to the source tables and figures in the paper and ascertaining 

that the values being cited are obtained with methods consistent with the other sources, and 

that there are no special limitations on the results published which would make them unable 

to be generalized to similar compounds in the same system. 

Step 6: Group and prioritize compounds by assay provider 

As stated previously, the overall goal in this workflow is to maximize the consistency 

of the data used. While it may be tempting to construct a calibration curve to normalize all 

affinities to the same baseline, it is rare for more than one or two compounds to be assayed 

at the same target more than once. This is probably insufficient to construct a calibration 

curve in a majority of cases. While it may be possible in rare cases, the method currently 

being proposed can be utilized in cases where there is even less overlap between the different 

compounds reported in the primary literature, even to the point of there being no compound 
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that is in common to all assays. But in order to achieve this, all data points being considered 

will need to be associated with an assay provider. This will usually be the research group that 

published the original reports of the activity, but caution is needed. An academic research 

group may have sent compounds to a collaborating laboratory for assay or to a nationally 

funded resource center such as the PDSP or a MRLN facility for screening. In this case, all 

compounds screened at the facility should be grouped together, even if they were provided 

by independent groups. Conversely, if an organization is big enough to have multiple sites 

that are geographically diverse or has acquired smaller ones, more than one laboratory may 

have been involved in assaying activities, and multiple protocols might have been used for a 

single target. In cases such as this, it may be desirable to treat the data as originating from 

different sources. In this case, the geographical addresses attached to the authors of the 

primary report in the literature may serve as a clue, as would clear evidence that the 

compounds reported were being evaluated in divergent therapeutic categories. 

If a publication is not a primary report, then it may be best to deprioritize all 

information contained within, or even to drop it from the data set completely. While a review 

may prove a source of novel chemotypes that promise to expand the coverage of the model in 

new directions, the activity measurements will almost certainly be drawn from multiple 

sources with multiple protocols. If the provenance of these values cannot be ascertained and 

placed in the context of other results from the same protocols, they may prove to be an 

impediment to model stability. Similarly, if the activity of a single compound is reported at 

multiple divergent values (more than 10% variance) by a single assay provider and the 

problem cannot be traced to errors in the chemical structure depicted, it may indicate that 

the protocol followed is not reliable or that there are other problems at the provider. Again, 

it may be desirable to either deprioritize the results or even to eliminate them from the data 

set entirely. Similarly, it would be appropriate to deprioritize papers which cover molecular 

modeling or other theoretical and/or retrospective papers at this point. Sometimes novel 
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values will be included in this sort of paper, either in the form of data abstracted from the 

primary literature in sources not covered by the consolidated data source currently being 

used or from new chemical matter being assayed for the first time as a form of prediction 

validation or extending coverage of an interesting region of poorly defined chemical space. 

These values should not be excluded ab initio, but tracing their experimental sources and 

assigning them to the correct assay provider is just as critical as with any other data point. 

Finally, it is possible that one assay provider or methodology yields results which are 

at odds with several other sources or that report uncertainties that are much larger than 

those of other sources. If these errors are sufficiently unsettling, it would be possible to 

deprioritize or exclude those providers or technologies at this point. This should be done on 

an all-or-nothing basis, rather than as a reverse cherry pick of single data points that remain 

untrusted even after completion of earlier steps of this protocol and examination of the 

primary account of the values. If the protocol or provider is considered a reliable method or 

source, individual data points should not be cast aside without evidence of error somewhere 

in the handling of the data. 

Step 7: Select compound value from the highest priority (largest assay provider 
group) present 

Each compound identified will now have an assay provider associated with each 

activity value. These providers will ordinarily be ranked or prioritized in the descending 

order of the number of compounds assayed according to that provider’s protocols and 

instrumentation. Modifications may well have been made for cases where the exact 

provenance of certain values is unknown or unclear, or when the values from one assaying 

group are consistently problematic with respect to other sources. For each unique compound 

present, the activity value that came from the assaying group with the highest priority should 

be retained in the modeling set; all other values for that compound should be set aside and 

ignored for this iteration of the modeling process. 
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Step 8: Filter problematic chemotypes 

Once a de-duplicated candidate modeling set has been assembled, there may be 

compounds included within it which contain chemotypes that are known to be problematic 

in the QSAR modeling process, either because they contain elements which cannot be 

included in a given set of descriptors (heavy metals, ionic substances, isotopic or 

stereochemical isomers, physical mixtures) 17 or are known to be poorly predicted by QSAR 

methods. These vary from method to method and modeler to modeler, but can include such 

moieties as quaternary amides, bio-labile esters and amides, and long aliphatic or polyether 

chains.  

Step 9: Set aside compounds and values from small assay provider groups 

In cross-validation schemes, the modeling set as a whole is split into multiple folds 

where each fold in turn is used as an external set to measure the quality of a model built 

from the other folds. For this to work, the structures in each fold should not be terribly 

dissimilar from each other. Likewise, it is detrimental to the process for a compound to 

appear only in the external fold, without anything resembling it in the training set. For this 

reason, it is desirable, when using an n-fold cross validation scheme, to remove compounds 

which were taken from an assaying group of n-1 or fewer compounds and set them aside as a 

second, supplementary hold-back validation set. Strictly speaking, it may be possible to 

include these results with those from another assay provider using a highly similar protocol, 

but in practice it can be difficult to determine sufficient detail about both protocols to 

confirm their congruence.  

Similarly, because the value of a compound’s inclusion in the modeling set is not just 

in the absolute value of its activity, but also in its relative and absolute activity compared to 

other compounds measured according to the same protocol, there is little value of including 
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compounds that come from an assaying group with no other compounds reported. If the 

majority of compounds are reported in groups of two or three, a regression model may not 

be a viable option; using a traditional modeling/external set split, rather than n-fold cross-

validation may be more practical. 

This workflow will not catch all errors. Nor will it reduce the problem of curation to 

the point where persons with only a rudimentary scientific background can curate 

biochemical data. Rather this workflow is intended to catch relatively common and obvious 

problems, and identify where other issues may exist, so that an experienced researcher can 

spend their time and effort on stranger, edge case problems and not use their attention span 

on simple issues that can be identified automatically. There are certainly opportunities for 

improvement, especially in terms of automation, and improved algorithms for threshold 

checking of similarity in putative SAR series. Similarly, a more robust analysis of putative 

activity cliffs would allow for more rapid identification of problematic data. 
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Figure 3.8: Schematic View of Proposed Biological Deduplication Workflow. The primary 
flow through this system is indicated via the bold arrows from top to bottom. At octagonal 
steps, a decision is made by the curator. If a data point or compound is consistent with 
others or non-redundant, flow continues down and to the left. If an inconsistency occurs, 
flow continues to the right. These data points will require examination of the primary 
literature to resolve their status, and will then either be dropped from consideration or 
returned to the workflow at the curator’s scientific discretion. 
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Chapter 4: The Accuracy of QSAR Models of α2a Adrenergic Receptor and Serotonin 
Reuptake Transporter Binding 

 

 

“To do two things at once is to do neither.” 
Publilius Syrus 

Summary 

Major Depressive Disorder (MDD) is a significant health concern, costing the US 

economy over $200 billion a year.  The serotonin reuptake transporter (SERT) has proven to 

be a useful target with relatively high therapeutic index and a low incidence of life-

threatening adverse events. While there are several different pharmacological interventions 

based on the inhibition of SERT that are well-tolerated by a majority of patients, individual 

responses to these drugs remains highly variable There are no validated predictors or 

biomarkers that will identify which drug will yield an abatement of depressive symptoms 

without intolerable side effects.  Protocols exist that enable non-psychiatrist prescribers to 

initiate first and second choice therapies for MDD with SERT inhibitors and a few related 

inhibitors of multiple monoamine transporters. However, many patients still require 

referrals to specialists, either to explore less commonly prescribed SERT inhibitors or to 

attempt therapy with monoamine oxidase inhibitors or tricyclic agents which both require 

in-depth management.  A second target for MDD therapy has been the noradrenergic 

signaling pathway, primarily via interference with the norephedrine reuptake transporter. In 

theory, targeting the individual receptors in the noradrenergic pathway could achieve the 

goal of mood balance with fewer off-target effects. Based on the biological distribution of the 

alpha 2a adrenergic receptor (α2a) we sought to identify compounds that bind both SERT 
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and α2a as the first step towards identifying SERT antagonist/α2a agonist compounds that 

would ideally show in vivo antidepressant activity. 

The identification of compounds with affinity for both SERT and α2a begins with the 

construction of QSAR models for each target. While there are known compounds that show 

affinity to both targets, a single model for dual affinity is not an attractive solution, owing to 

both the low abundance of compounds possessing the desired activities, and the origin of 

those compounds in two previous commercial development campaigns at these targets.  

Creating separate QSAR models for SERT and α2a provides better coverage of the chemical 

space for affinity at each target, at the risk of requiring more effort to identify ligands with 

dual affinity. For each target, a raw activity list is extracted from ChEMBL 16 and then 

curated according to procedures previously described (see Chapter 3). Multiple independent 

models are created from these training sets, based on zero, one, and two-dimensional 

topological descriptors using five-fold cross validation, either random forest, kernel support 

vector machine, or k-nearest neighbors methodologies, each with genetic algorithm variable 

selection. Models showing acceptable predictivity are retained and combined into a 

consensus model for each target.  Virtual catalogs are structurally curated and pre-screened 

with molecular fingerprints before descriptors are calculated and normalized for compounds 

meeting a similarity threshold.  Descriptors for the selected compounds are then processed 

through each component of each model, with a mean score reported for predicted affinity for 

both targets. 

After curation and preprocessing, training sets for α2a and SERT had 537 and 2501 

compounds respectively.  Multidimensional scaling (MDS) scatterplots for each set showed 

no trivial solutions to separation and no isolated outlier compounds.  For α2a, 240 models 

were created with 20 descriptors each. The average correct classification rate (CCR) was 

0.81, and no predictive models were identified in y-randomization testing. For SERT, 180 
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models were created with 25 descriptors each. The CCR for these models was 0.88, with no 

y-randomized models passing acceptance criteria. Virtual screening of the UNC Center for 

Integrative Biology and Drug Discovery screening library, Enamine diversity screening 

library, and Enamine GPCR targeted screening library (approximately 400,000 compounds) 

were carried out against the models for each target. Eleven compounds were identified as 

having α2a affinity (including one known ligand omitted from the training set), with 429 

hits for SERT affinity identified.  No compounds were present in both the α2a and SERT hit 

lists, and the compounds identified as potential α2a ligands showed limited potential for 

medicinal chemistry optimization or selective binding affinity.  Attempts to construct 

regression models for α2a and SERT were unsuccessful due to low predictivity. 

While no usable chemical matter has been identified in this project to date, several 

other significant outcomes have resulted from this study.  Foremost is the development of 

QSAR models for α2a and SERT.  Publication of these models will ultimately require 

experimental validation in the form of binding affinity assays for selected compounds, but 

that is a matter of patience and new catalogs to screen. A region of low compound density 

has also been identified in the MDS plot of α2a activities, adjacent to a region where several 

known dual affinity binders exist.  This suggests that there may yet be novel chemical 

entities with dual affinity to be discovered.  On the methodological side, the previously 

described workflow has been shown to lead to predictive models. While more rigorous tests 

will be needed to quantify the improvement in generated models, it does work. Finally, the 

entire workflow for the QSAR modeling and virtual screening process has been 

reimplemented in a high-level scripting language using freely reusable software tools.  This 

is a useful step on its own merits, as it simplifies the modification of the workflow and 

adoption of new technologies in the Tropsha group as QSAR and machine learning continue 

to evolve. 



`	   	  

114 
	  

Introduction 

Major depressive disorder (MDD) is a major health problem throughout the 

developed world. It accounts for up to $200 billion per year in direct, indirect, and social 

costs in the United States alone 1 . The treatment of MDD was revolutionized in 1986 by the 

introduction of Prozac 2 , the first clinically successful serotonin reuptake transporter (SERT) 

inhibitor, or SSRI (selective serotonin reuptake inhibitor), but there is still much room for 

improvement in MDD therapeutics. In particular, there is often a 4-6 week lag between the 

initiation of therapy and perceived relief of depressive symptoms by the patient. Also, 

patient response to different SSRI drugs is idiosyncratic; what is effective for one patient 

may have no impact on another’s mood 3 . These variable responses can lead to extended 

trials with different drugs as a prescriber attempts to find the correct drug or combination of 

drugs to provide relief for a patient. 

While interfering with serotonin reuptake in the synapse is a validated approach for 

pharmacological intervention in MDD, the success of non-serotoninergic drugs, e.g., 

bupropion, and multi-target drugs, e.g., nefazodone and mirtazapine, suggests that there are 

other targets in the central nervous system (CNS) capable of modulating the symptoms of 

depression. One particular target that has shown some clinical promise is the alpha-2a 

adrenergic receptor (α2a). In particular, intervention at the α2a receptor has shown 

promise, both to decrease time required 4 after initial dosing for mood elevation to occur and 

also to limit the common sexual side effects of SSRI therapy 5 . Nonetheless, no compound 

specifically targeting α2a and SERT has been approved for clinical use in the United States, 

Canada, or the European Union. We set out to identify compounds with affinity for both 

SERT and α2a by the use of virtual screening, using quantitative structure-activity 

relationship (QSAR) models based on zero-, one-, and two-dimensional molecular 

descriptors. 
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There has been a limited amount of work in the peer-reviewed literature regarding 

QSAR models of α2a and SERT binding affinities. In the case of α2a, only three papers have 

been reported which place these two topics in apposition: one paper was not concerned with 

binding affinity 6 , and a second involved testing a novel method on a data set consisting of 

binding affinity data for a limited congeneric series of compounds at α2a 7 . The final paper 

was an attempt to construct a CoMFA (Comparitive Molecular Field Analysis) model for 

agonist activity at α2a 8 . Unfortunately, this model only presented activities for about 25 

previously documented compounds.  In addition, CoMFA is a less than optimal choice for 

our purposes. A CoMFA model is constructed from an aligned ensemble of three-

dimensional molecular structures; if the alignment is poor, the creation of a predictive 

model becomes less likely and any model generated will have decreased accuracy. While it is 

not difficult to create conformers for a few drug-like molecules of interest and align them to 

a pre-existing CoMFA model to predict their biological activity, this process does not scale. 

Thus, CoMFA models are not generally used for virtual screening. As our goal is to find novel 

chemical matter rather than to expand upon well-defined analog series, CoMFA would not 

be appropriate here, either.   

There are also only a few preexisting SERT models. A targeted literature search 

returns 12 publications discussing both QSAR and SERT. Of these, two are not primarily 

concerned with SERT, mentioning it only in passing 9,10 . Another three were actually 

structure-based models, which are not applicable to our approach 11–13 . CoMFA was the 

primary technology used in four additional studies 14–17 . Of the remaining studies, one was a 

methodology study that was demonstrating the ability of decision trees to be used in virtual 

screening 18 . A second used a small set (47 compounds) of ligands to train an artificial neural 

network that would discriminate compounds with high SERT affinity from those also 

possessing affinity for dopaminergic receptors 19 . A final paper, based on classical QSAR 
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descriptors such as Hammett sigma values and Taft steric parameters, used to examine the 

SAR relations of two rings in the phenoxyphenyl-methanamine compounds consist of 181 

compounds, but the results were reported as IC50 values, rather than as Kis 20 . 

Initial attempts at construction of regression and classifier models for α2a affinity 

were not successful. Trials of multiple descriptor sets on Chembench 21  with k-Nearest 

Neighbors (kNN) and support vector machine(SVM) methodologies failed to reach a 

minimal level of predictivity (correct classification rate greater than 0.6 or R2 above 0.35). 

After this series of failures, the quality of the data was reevaluated. 

Over the past decade, it has been demonstrated that errors in chemical structure and 

in measured biological activity reside in both commercially distributed and publicly available 

chemical databases 22 . Previous work from the Tropsha lab 23 has demonstrated the 

importance of accurate data in the construction of QSAR models, suggesting that an error 

rate of 5% would be sufficient to render any models built non-predictive. This 5% consists of 

not only errors in reporting activity/affinity and gross errors in chemical structures (ranging 

from incorrect stereochemistry to misplaced ring substituents, and omitted substructures), 

but also it includes inconsistency in the depiction of functional groups (such as nitro or 

nitroso groups) or tautomers, or even duplication of structures with difference activity 

values. Several papers discussing best practices in QSAR modeling provide guidance for the 

process of chemical curation 24–27 , but they afford limited guidance into the selection of the 

correct activity value for a compound at a given receptor from several that may be given in 

the literature (deduplication). There is also no recommended method for large-scale 

verification of the accuracy of structures included in a QSAR dataset, only the suggestion of 

visually comparing computer-rendered structures rendered with the source document(s). 

A parallel study into the accuracy of chemical structures from Internet sources relied 

heavily on consensus comparisons from multiple sources to identify inaccurate structures 
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and found that manual copying and comparison of chemical structures tends to create errors 

in chemical structures as much as it eliminates them (see Chapter 2). As over 90% of 

compounds reported in the medicinal chemistry literature are reported only once (see 

Chapter 3), consensus structure checking cannot reasonably be used to detect errors in the 

published structures. With these limitations in mind, it is not feasible to check each 

structure for accuracy against printed depictions of individual structures. We decided to 

emphasize consistency of representation and automated structure handling as keys to 

quality structures and rely on spot checks against printed/PDF reprints to identify problems 

in the absolute structures. 

For any given chemical compound and a set of rules describing preferred depictions, 

there is one correct representation of that compound. In our case, we do not need to reach 

that limit of accuracy, only represent the structure in a form that will produce the same 

descriptor values as the ideal, Platonic structure. For example, when using descriptors that 

do not consider absolute or relative stereochemistry, such as molecular weight or Kier-Hall 

indices 28 , the structures used in the calculation may have incorrect stereochemical 

configurations; this will not affect the accuracy of those descriptors. Likewise, when 

calculating atom-pair path distances, the nature of the bond between two atoms does not 

enter into the computation, only the presence or absence of a bond. In this case, issues of 

resonance structures and aromaticity would not matter for descriptor calculation.  This is 

not to imply that modelers do not need to be concerned with the accuracy of the chemical 

structures used as the basis of their models, however, there exists a (finite) set of 

representations of a given chemical structure which will yield equivalent descriptor values. 

For a given purpose, it may be sufficient and significantly easier to get to a chemical 

structure that is close enough to a perfect representation than it is to attain a perfect 

representation. 
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Beyond structural error, there is also the question of the accuracy of biological 

activity values. Biological data accuracy represents a significantly more complex problem 

than structural accuracy. Commonly used biological response variables, e.g., binding affinity 

or minimum inhibitory concentration, do not have a definitive, correct value that can be 

measured to infinite precision under all conditions. These values represent a macroscopic 

ensemble average arising from a large number of individual microstates; their observed 

values are statistical observations and must be treated as such. In particular, there are 

uncertainties attached to each value whose magnitudes vary depending on experimental 

conditions and methods. Conventionally, this uncertainty can be divided into systemic error 

(the uncertainty in the measurement of the observed value that arises from the inherent 

conditions of the experimental protocol) and random error (attributed to conditions that are 

not or cannot be controlled). While it is relatively estimate the magnitude of the random 

error in a series of measurements (assuming that replicates were run on the measurement 

and some form of error bar or standard deviation measurement was reported), it is harder to 

estimate systemic error because it is unusual for activity measurements to be reported for an 

entire series of compounds from multiple protocols, either from a single research group or 

from multiple teams of researchers. Typically, only one or two reference compounds will 

have their activities measured along with a SAR series of novel compounds. This data is 

enough to verify that values measured are qualitatively correct or even quantitatively 

reasonable to within an order of magnitude, but it is not sufficient information to construct a 

meaningful calibration curve that would allow more precise comparison of assay results. 

If it were possible to consistently use values from only one protocol as executed by a 

single laboratory when constructing QSAR models, the problem of systematic error would be 

greatly reduced. Unfortunately, with current modeling methods, activity values for 50 or 

more distinct compounds are frequently necessary to construct an acceptably predictive 

classifier model; a similarly acceptable regression model will often require 100 compound-
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value pairs. These values both exceed the mean number of unique compounds reported in a 

paper in the medicinal chemical literature (see Chapter 3). Even where there are enough 

distinct compounds described, the nature of drug discovery dictates that most of the data 

will apply to a small number of series of structurally-similar compounds, with relatively little 

coverage of most of drug-like chemical space. For common targets, there are larger library 

HTS datasets such as DrugMatrix 29 and BioWisdom (formerly distributed by BioWisdom, 

Ltd. Cambridge UK) that can provide sufficient activities for different compounds, but the 

available values tend to be in relatively well-developed chemical space which may or not be 

at all similar to the regions available under constraints of intellectual property, target 

selectivity, and formulation suitability. When building QSAR models from literature activity 

values, it is highly improbable that a non-trivial model can be constructed from a single 

source. 

In this study, we have applied a novel workflow for the curation of biological activity 

data to two datasets from the published scientific literature as captured in the ChEMBL 

database. The final curated datasets contained 527 compounds for α2a and 2501 for SERT. 

These datasets were used to create consensus classifier models utilizing support vector 

machine, random forest, and k-nearest neighbor methods with variable selection by 

evolutionary algorithms. The final consensus models both achieved a correct classification 

rate above 0.8 and suggest regions of chemical space that hold promise for new chemical 

entities with dual affinity. 

Methods 

Data set extraction and curation 

All structures and activities were extracted from a local installation of ChEMBL 

(version 16) 30  stored in an Oracle database (version 11g, Oracle Corporation, Redwood 

Shores, CA). Values reported as being Ki-based, derived from recombinant human proteins, 
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and annotated with a sufficiently high ChEMBL confidence score (> 3) were retained. In 

addition, owing to the absence of a collective ChEMBL target ID for mixed samples of α2 

adrenergic receptors, values for α2b and α2c affinities were also extracted; entries that had 

identical values for α2a, α2b, and α2c affinities were discarded as they were typically 

obtained from membrane preparations of anatomical tissue rather than cell lines expressing 

pure receptors of a single subtype. Organometallics, inorganic compounds, and counter-ions 

were removed and variable chemotypes were converted into standard representations 

according to the protocols described in Fourches, et al 23  with Standardizer (ChemAxon, 

Budapest Version 6.1). 

For each affinity measurement extracted from ChEMBL, the source of the 

measurement was obtained. Compounds and their associated affinities were then grouped 

according to common assay providers (if any). Each assay-providing group was then ranked 

in descending order according to the number of unique compounds measured by the group. 

One review paper reported no original values and cited values for compounds measured 

elsewhere which were significantly at odds with those reported values 31 . Data from this 

paper were treated as if the paper had fewer compounds than any other group. Within the 

results arising from each assay provider, compounds with multiple reported affinities were 

compared in order to verify the consistency of the reported values. In the event of a 

discrepancy between two compounds, the more recent (by publication date) affinity value 

was kept, unless the two values differed by more than one order of magnitude. In that case, 

both (or all) affinity values for that molecule in the assay group were removed. Assay groups 

with fewer than five compounds in them were removed from the training set.  

Duplicated compounds with independently determined affinity values were 

identified by ISIDA _Duplicates (available from http://infochim.u-

strasbg.fr/new/spip.php?article68). The affinity present in the largest assay group was 
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retained for use in the training set as long as the difference between it and any other affinity 

values was not greater than one order of magnitude.  

QSAR workflow 

After standardization and curation, the resulting data set was split for five-fold 

external cross-validation. The four splits used for training had their activity values 

normalized to Z-scores independently of each other (parameters for this normalization were 

retained in order to normalize external and screening data sets). All descriptors with 

insufficient independence from other descriptors (defined as having a correlation coefficient 

of over 0.9) or insufficient variability (fewer than three different values or with a single value 

occurring at more than 75% of all occurrences) were removed. After generating a pool of 

candidate models (built using randomly drawn, fixed length subsets of available descriptors 

and the desired statistical methodology) models were optimized by a genetic algorithm, with 

the predictivity of each model measured by repeated five-fold cross validation of the training 

set to determine the mean accuracy or correlation coefficient. At the end of the optimization, 

the model with the best performance metric that surpassed a selection threshold of 0.7 was 

used to predict the values of the external fold. If the external selection threshold (0.6) was 

exceeded, the candidate model was added to the consensus model. After all folds were used 

in turn as the external fold, the process was repeated to generate additional candidate 

models with different data splits and/or utilizing different statistical methodologies. 

Data extraction in R and Caret 

The described workflow was implemented in R 32 (versions 2.15 and 3.02), utilizing 

the utility functions of the caret library 33 (versions 5.17 and 6.0). By basing the workflow on 

Caret, the code necessary to generate and manipulate individual folds and to compute model 

performance can remain constant while multiple modeling methodologies are explored. In 
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addition, minimal code modifications are necessary to switch between regression and 

classification models. Finally, there are no proprietary restrictions on R or Caret, ensuring 

that the source code for derived procedures and the models generated can be shared without 

encumbering licensure restrictions. The one major disadvantage of this approach is that the 

implementers of caret philosophically disagree with stochastic variable selection methods 

and had not incorporated methods for them into their optimization tools. This is not an 

absolute impediment to using Caret, but it does necessitate either interfacing with another 

library for stochastic variable selection or self-implementing a method within R. 

Descriptor generation 

For each molecule in the dataset, two sets of descriptors were generated. Atom-Pair 

descriptors 34  were calculated for pairs of 10 elements commonly found in bioactive organic 

compounds (C, N, O, S, P, F, Cl, Br, I, and B) at distances from 1 to 15 intervening bonds. 

Values were computed using a method described by O’Boyle 35 and implemented in   

Python36 , (version 2.7.3), utilizing networkX 37  (version 1.8.1), pybel 38  (version 1.7), and 

scipy39 (version 0.13.1) and saved as a comma-separated value (CSV) file. In addition, all 

available 0, 1 and 2-dimensional descriptors, excepting ionization potential and amino acid 

counts, were calculated with CDKDescUI 40  (version 1.38) and also saved in a CSV-

formatted file. The resulting two files were visually inspected for missing values, merged in 

Microsoft Excel (version 14.0.7116, Microsoft Corporation, Redmond WA), and re-saved as a 

CSV-formatted file.  

Data set splitting 

Multiple folds for external cross validation were selected automatically at random by 

the appropriate library function in caret. No attempt was made to optimize these splits for 

diversity or other properties. 
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k-Nearest Neighbors (kNN) modeling 

The kNN QSAR method 41  is predicated upon the assumption that compounds which 

are geometrically close to each other in chemical spaces are expected to exhibit similar 

properties or activities. In order to alleviate the problems of sparse data in high dimension 

spaces, some form of variable selection algorithm is used to reduce the dimensionality of the 

data set to a more tractable level. Distances were calculated using Euclidian distances (over 

either all descriptors or a given subset of descripts) and evaluated for optimal predictive 

power by varying the number of nearest neighbors used to predict the classification or 

affinity value for a data point from 1 to 6. In classification problems, the majority class of the 

k nearest neighbors is the class assigned to the data point being predicted; in a regression 

model, the affinity value is equal to the mean affinity value of the k nearest neighbors. kNN 

models were implements in R using the functionality included in the caret package (version 

5.17). 

Random Forest (rf) modeling 

Random Forest classifiers were pioneered by Breiman and Cutler 42  and are a 

generalization of classification or decision trees. A collection of many single decision trees (a 

forest) is generated by randomly drawing samples with replacement from a training set and 

then randomly selecting a subset of available descriptors to use as a classifier at each node of 

each tree. The final prediction for any sample is taken as the consensus value of all of those 

models. Random Forest models were created using default parameters with the 

randomForest package of R (version 4.6-7) as encapsulated in the caret package (version 

5.17) using default parameters. 
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Support Vector Machine (SVM) classifiers 

SVM methods were first described by Vapnik in the mid-1990s. They generate a 

hyperplane that separates a set of points in Euclidian space (or alternately in a higher 

dimension kernel-transformed space) into two classes. The hyperplane is selected by 

minimizing the number of incorrectly-classified points, while simultaneously maximizing 

the distance from the point nearest to the hyperplane from each class to the hyperplane. In 

this work, all SVM calculations were performed using the R package kernlab (version 0.9-19) 

as interfaced to by the caret package (version 5.17). A radial basis function kernel was used 

in all models constructed. 

Model assessment 

Classifier models were optimized in terms of the balanced accuracy or correct 

classification rate (CCR). Given a data set with two classes a and b, the CCR is defined as 

CCR= 0.5 !!!"##

!!!"!#$
+ !!

!"##

!!
!"!#$  

where Ncorr and Ntotal are the number of correctly predicted data points for each class and the 

total number of data points present in each class in the training data, respectively. 

Employing the CCR as an optimization metric for QSAR models allows the use of 

imbalanced data sets for model creati0n without introducing a prediction bias into the final 

model. 

Regression models were optimized in terms of the Pearson correlation coefficients of 

the experimental binding affinity and the predicted binding affinity. Internal predictivity 

was assessed through repeated five-fold cross validation over the training set. These 

coefficients, also termed R2 and q2, were calculated in R (version 2.15 and 3.02) according to 

the methods described in Golbraikh and Tropsha 43 . 
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Genetic Algorithm variable selection 

 

 

 

For this study, a customized genetic algorithm designed to optimize the predictivity 

of a fixed-length subset of all descriptors was developed. A pool of four to twelve fixed-length 

chromosomes containing a subset of available descriptors was built and scored using 

balanced accuracy or R2 calculated by repeated five-fold cross validation.  The initial subset 

of descriptors was chosen at random.  For each optimization cycle, two chromosomes were 

selected at random. After possibly being mutated at a single position (probability of 1/11), 

the chromosomes were cut and crossed over at a random position.  Any duplicate descriptors 

Figure 4.1: Typical plot showing improved performance of GA-selected descriptor 
subset over time. Black line represents CCR of the best performing model, and orange 
line represents mean performance of all models. Green line is CCR of the worst 
performing model. 
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resulting from the crossover procedure were resolved by replacing one of the duplicate bits 

with a new random bit (potentially repeatedly) until all bits the child chromosomes were 

unique. The resulting child chromosomes were then scored by determining the CCR value of 

a model built using only the descriptors associated with the selected bits. The four parent 

and child chromosomes were ranked by the resulting CCR values, and the top two scoring 

chromosomes were returned to the model pool for further optimization. After 100 to 3000 

cycles (dependent on the type of model being built, data quality, and the size of the 

chromosomes and the pool) the chromosome with the best performance in the pool of 

candidates (assuming a score above 0.7) was used to predict the activities of the external 

fold.  Results of a typical optimization run are shown in Figure 4.1.   While the quality of the 

worst model in a pool varies both upwards and downwards as random mutations and 

crossovers occur, the mean CCR and that of the best performing model both show a 

consistent upward trend.  Peak performance is obtained in this case somewhere around 

1000 cycles and no significant improvement is seen after this point. 

Prediction of activity 

To predict the classification of an unknown compound, all descriptors used in the 

construction of the models were generated. For each model in the consensus model, the 

appropriate subset of descriptors were then selected and normalized, before being passed to 

the classifier. This yields a vector of n predictions, one for each sub-model. For a 

negative/non-binder/inactive class, the prediction is coded as zero; for 

positive/binder/active class predictions, it is coded as one. The sum of this vector is then 

calculated and divided by the number of sub-models used. This yields a value between zero 

and one that represents the overall prediction of the consensus model. If the value is less 

than or equal to 0.25, the unknown is classified as negative; if it is greater than or equal to 
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0.75, then it is considered positive. Values between 0.25 and 0.75 were considered 

inconclusively predicted. 

Virtual screening 

Virtual screening of chemical libraries against consensus models began with 

standardization of the library structures in Standardizer using the same configuration as 

used for standardization of the training set. The standardized structures were then pre-

screened against the structures of the training set in lieu of a formal applicability domain. 

MACCS and hashed extended connectivity fingerprints were generated for all compounds in 

Knime 44 (version 2.8.2) using the CDK fingerprints module, and compared using the Indigo 

Fingerprint Comparison module. All screening molecules that had a Tanimoto similarity 45  

of greater than 0.8 (using MACCS fingerprints) or 0.65 (using extended connectivity 

fingerprints) to at least one molecule in the training set were collected and had descriptors 

generated as described above. The resulting descriptors were then subjected to the above 

described prediction process. 

Results 

 

 α2a SERT 

Initial Size 1476 3265 

After biological curation 669 3194 

After rational deduplication 539 2531 

After excluding problematic 
chemotypes 

537 2501 

Table 4.1: Sizes of data sets for α2a and SERT at multiple stages in 
the curation process 
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α2a 

Initial attempts at modeling binding affinity were based on data extracted from the 

2009 public release of Ki data from the Psychoactive Drug Screening Program 45  and 

supplemented with data found in ChEMBL release 2. These compounds were uploaded to 

the Chembench web server and split into a training set with 70% of the compounds as a 

training set, 15% in the internal test set and 15% in the external validation set. Attempts to 

generate predictive classifier and regression models using k-Nearest Neighbors and SVM 

methodologies were made, but no models were built that met standard thresholds for 

internal or external predictivity. 

 Extraction and curation of data  

After the workflow in Chapter 3 was devised, data from ChEMBL 16 were extracted 

and processed as previously described, with data from 38 individual projects incorporated 

into the final data set of 537 compounds (Table 4.1). A threshold of 6.6 pKi was set for 

designating compounds as binding or non-binding. This allowed a ratio of less than 2:1 

between the classes. Of particular interest in this dataset were the DrugMatrix HTS binding 

assay results for the α2a receptor and the binding affinities for a second project 4 that had 

already attempted to optimize compounds for dual binding selectivity against both alpha-2a 

and SERT. While that project was unsuccessful, the compounds are of particular interest 

here as they can be used to define an accessible region of chemical space where affinity to 

both targets can be found. 

A multi-dimensional scaling (MDS) plot of the compounds in the final data set is 

found in Figure 4.2. The distances that form the basis of the plot were extracted using the 

inverse of Tanimoto indices of 2048-bit hashed extended connectivity fingerprints between 

all pairs of compounds calculating using the fingerprint library and the cmdscale function in 

the base R distribution. On this plot, compounds binding to the α2a receptor are marked 
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with circles and compounds that did not bind are marked as crosses; compounds which had 

high binding affinity for both α2a and SERT are denoted with the filled triangles. Green 

points are those that were taken from the DrugMatrix HTS data, and orange points 

originated in the Johnson & Johnson Toledo project. Of particular interest, the HTS data 

points cluster around the upper left quarter of the plot, while the dually-active compounds 

are mostly gathered around a line near y = 0.1. This would imply that there are more 

rigorous requirements for compounds that would bind to both SERT and α2a, and that most 

of the compounds that show up in typical diversity screens are not likely to meet the 

prerequisites for dual activity. Also, the compounds in the dataset tend to cluster into three 

separate groups with a moderate amount of separation between each other. There is some 

overlap between the well-distinguished J&J Toledo compounds and the majority of the HTS 

screening hits. This suggests that there are additional regions of chemical space within this 

gap that might be further explored for new chemical matter. 

Model optimization for α2a 

In order to assess the effect of the number of descriptors on model performance, 

subsets of the ensemble of descriptors were repeatedly (30 times for each model length) 

selected at random and used as the basis of SVM classifier models. The performance of each 

model was assessed by internal five-fold cross validation without any optimization of 

descriptors. The results of this experiment are presented in Figure 4.3. In light of the 

inability of more descriptors to significantly increase the CCR after twenty were selected, the 

model size for the production models was fixed at twenty. 

Production models 

Models were constructed according to the previously described procedure with 20 

descriptor subsets of the data set. Variable selection was through genetic algorithm for 3000 

cycles with fixed model length. All models constructed exceeded the thresholds for internal 



`	   	  

130 
	  

and external predictivity with CCRs above 0.6 and 0.7, respectively. The performance of 

these models is summarized in Table 4.2. 

	   

 

 

	   

 

Figure 4.2: MDS plot showing relative similarity of α2a ligand set projected into a 
plane. An open circle (o) represents a compound that binds to α2a, An x (X) 
represents a non-binding compound. A triangle (▲) represents compounds that bind 
to both α2a and SERT. Green points are from DrugMatrix and related HTS screening 
projects. Orange points are from J&J Toledo work on dual-action compounds. 
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Method kNN SVM radial Random Forest Consensus 

Number of Models 80 80 80 240 

CCR 0.80 0.80 0.82 0.81 

Sensitivity 0.81 0.78 0.79 0.79 

Specificity 0.79 0.83 0.86 0.83 

Precision 0.81 0.78 0.81 0.84 

Table 4.2: Summary of α2a adrenergic models 

 
 

Figure 4.3: Performance of models of α2a binding based on randomly drawn subsets 
of descriptors of various sizes without descriptor optimization. 
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Y randomization 

Thirty models were constructed from 20-descriptor subsets with y-scrambled activity 

values. After descriptor selection, none of these models had an internal cross validation CCR 

equal to or greater than 0.6. 

Regression modeling 

In order to assess the viability of consensus regression models for predicting α2a 

binding affinity, a series of models were constructed using the same, fixed model size GA 

method for variable selection as was described for the classifier modeling. kNN regression 

models were created using 6 through 16 and 20 descriptors and 5-fold internal and external 

cross validation. While some individual models exceeded a threshold for internal predictivity 

of a correlation coefficient of 0.7, none of them also exceeded the external threshold of 0.6 at 

the same time and, when averaging over all models of the same descriptor size, no consensus 

models exceeded either of those thresholds. 
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Figure 4.4: Performance of different length subsets of descriptors in regression kNN 
models of α2a binding affinity. Models approached significance in both cases, but never 
met the designated correlation thresholds (internal data set correlation of 0.7, external 
validation set correlation of 0.6). 
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Semi-curated data set 

In order to assess the effect of the data curation process, kNN regression models 

were built from a data set of 702 reported binding affinities for α2a. This represents a 

superset of the smaller dataset used to construct other α2a models with no deduplication 

applied, and some biological errors (affinities for a mixture of α2 receptors in non-human 

whole tissue homogenate instead of recombinant receptors in cell lines) retained.  

Five models were built using descriptor subsets of length 15, and another five were 

built using a descriptor subset length of 20. Both models were evaluated by 5-fold internal 

and external cross validation. The 15-descriptor models missed the 0.7 threshold for internal 

cross validation with a mean q2 of 0.693, although they easily passed 0.6 threshold for 

external correlation with a mean r2 of over 0.68. One of the 20-descriptor models passed the 

0.7 threshold, although the mean q2 of all 5 was 0.691. The r2 of the internally predictive 

model was unfortunately 0.589, although the mean of all 5 models was 0.629. 

Virtual screening for α2a 

Three different virtual libraries were used to screen for novel chemical matter 

binding to α2a: the UNC CIBDD diversity screening library 47 , the Enamine diversity 

screening library, and the Enamine GPCR targeted screening library 48 . Each was 

standardized in ChemAxon Standardizer and then pre-filtered against the training set for the 

α2a models. Compounds that had either an 0.8 Tanimoto similarity (based on MACCS 

fingerprints) or a 0.65 Tanimoto similarity (based on extended connectivity fingerprints) to 

a least one compound in the training set had a full descriptor set calculated as described 

above. These descriptors were then normalized to match the scaling of the descriptors used 

to generate each model and presented to the saved classifiers. Within the three libraries, no 

predictions exceeding the 0.75 prediction threshold were made from the first two libraries. 

In the Enamine GPCR targeted library, 11 compounds were identified that were predicted as 
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active above a threshold of 0.7 (Figure 4.5). These included nephazoline (E), which is a 

known α2a agonist and which was not included in the training set. 

	  

 

	  

 

 

Figure 4.5: Compounds showing possible α2a binding affinity from Enamine GPCR 
targeted screening library. Note that compound (E) is a known α2a agonist. 
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SERT 

Data extraction and curation 

Ki values for compounds showing affinity for SERT were extracted from ChEMBL 16 

from 59 different assay providers and subjected to the workflow as detailed above. The 

initial 3265 data points extracted reduced to 2501 after processing and curation as described 

in Table 4.1. For binary classification, compounds with a pKi of greater than 6.5 were 

considered binders, and all others were considered non-binders. 

Figure 4.6: MDS plot showing relative similarity of SERT ligand set projected into a 
plane. An open circle (o) represents a compound that binds to SERT, while an x (X) 
represents a non-binding compound. A triangle (▲) represents compounds that bind to 
both α2a and SERT. Green points are from DrugMatrix and related HTS screening 
projects. Orange points are from J&J Toledo work on dual-action compounds. 
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Construction and examination of an MDS plot (Figure 4.6) showed no obvious 

sources of trivial solutions for classification and a broader distribution of points than was 

seen in α2a. Data obtained from HTS campaigns were generally distributed similarly to that 

arising from more focused projects, but there are relatively fewer HTS values at the edges of 

the graph, except on the bottom edge, where a large cluster of HTS results is placed with 

almost no data from other sources. In that cluster, there are only a very few compounds that 

show high binding affinity to SERT.	   

Classifier modeling 

Similarly to the work performed on α2a, a jackknifing process was used to identify an 

optimal number of descriptors necessary to capture the underlying structure of the SERT 

data set. Descriptor sets of varying size were randomly drawn from a pool of 

deorthogonalized descriptors calculated from the data set and used to construct SVM models 

without any further variable selection or optimization. Thirty models were built at each 

descriptor subset size and evaluated by their CCR via five-fold internal cross-validation. The 

resulting models are summarized in Figure 4.7. Based on visual inspection of the upper limit 

of predictivity at different model lengths, it was determined to use 25 descriptor models to 

construct a consensus QSAR model for virtual screening.  

Models were constructed according to the above procedure with optimized 25 

descriptor subsets of the data set. All models constructed exceeded the thresholds for 

internal and external predictivity with CCRs above 0.6 and 0.7, respectively. The final 

performance of these models is summarized in Table 4.3. 

Y randomization 

Thirty models were constructed from 20-descriptor subsets with y-scrambled activity 

values. After descriptor selection, none of these models had an internal cross validation CCR 

equal to or greater than 0.6. 
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Method kNN SVM radial Random 
Forest 

Consensus 

Number of 
Models 

60 60 60 180 

CCR 0.87 0.88 0.89 0.88 

Sensitivity 0.90 0.90 0.90 0.90 

Specificity 0.84 0.86 0.89 0.86 

Precision 0.84 0.85 0.88 0.86 

Table 4.3: Summary of serotonin reuptake transporter (SERT) models 

Figure 4.7: Performance of models of SERT binding based on randomly drawn subsets 
of descriptors of various sizes without descriptor optimization.	  
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Virtual Screening for SERT 

 

 

 

 

The contents of the Enamine GPCR-targeted screening library were pre-screened and 

screened against the SERT consensus model according to the above-described procedures. 

429 compounds were identified as potentially having a binding affinity for SERT. None of 

these compounds were also predicted to have affinity for the α2a receptor. These 

compounds were clustered by maximum common substructures (MCS) occurring by 

Figure 4.8: Commonly occurring fragments from 429 compounds identified as having 
potential SERT binding affinity from Enamine GPCR targeted screening library. Numbers 
underneath the fragments are number of times occurring in hits. No compounds were in both 
the α2a and SERT virtual screening hits. 
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JKlustor (ChemAxon, Budapest, version 6.01). The most frequent MCS fragments are 

reproduced in Figure 4.8 with their respective occurrence counts. 

Overlap between α2a adrenergic hits and SERT hits 

 As previously stated, there were no compounds that were found to be highly probable 

virtual screening hits for both the α2a adrenergic receptor and SERT.  An all-to-all pairwise 

comparison was undertaken on both sets using modified ECFP fingerprints and the 

Tanimoto coefficient.  One compound from the α2a virtual screening hits (Enamine 

Z128309138, compound B in Figure 4.5) was found to have a similarity of 0.76 to a 

compound predicted to have high affinity to SERT (Enamine Z219287196, compound A in 

Figure 4.9 below.  Visual inspection confirms that these two compounds are chemically 

similar.  Unfortunately, the conjugated nitrile group in the Z219287196 is known to be a 

chemical feature associated with aggregation and non-specific assay interference behavior51, 

making it a less-than ideal compound for experimental validation.  A second compound 

from the SERT virtual screening hits (Enamine Z142403862, compound B in Figure 4.9) is 

less similar to Z128309138, with a similarity of only 0.61.  It is however, similar to a 

marketed drug that targets α2a, nephazoline (Figure 4.5, compound E).  This is not virgin 

chemical space.  It does suggest, however, that these scaffolds might be useful to identify 

several compounds that show enhanced selectivity for these two targets. 
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Consensus model performance on training data 

In order to gain insight into the predictivity of the final consensus models, each 

training set was predicted by the final consensus model for the appropriate target. This was 

expressly not done to select any subset of models as being more or less predictive, but simply 

as an error check in order to be confident that the consensus models could produce 

meaningful output, and that the above procedure for virtual screening was not so rigorous as 

to exclude any compound from being identified as a potential screening hit. Based on the 

0.25 and 0.75 thresholds used to identify non-binding and binding compounds, only three 

compounds in each training set were incorrectly classified as being predicted to be in the 

opposite class from their actual activity (structures are provided in Table 4.4). In addition, 

50 compounds out of the α2a training set were not definitively predicted as active or inactive 

(9.3% of the total). For SERT, 186 compounds (8.1 % of the total) were not definitively 

predicted. In light of the inappropriateness of optimizing against a test set, which in effect 

the entire training set is under external cross validation, it would be inappropriate to 

Figure 4.9:  Compounds Z219287196 (A) and Z142403862 (B) from the 
Enamine compound collection are two compounds predicted to have high 
affinity to SERT that are chemically similar to a compound predicted to have 
high affinity to α2a.  These scaffolds are a potential starting point for 
directed virtual screening or synthesis for dual-affinity ligands. 
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attempt to use these values as a metric for further optimization of the consensus models, but 

it does offer some degree of confidence that the consensus models are not selecting 

compounds as active or inactive at random, and that they can identify some subset of 

molecules as likely to possess high binding affinity. 

 

α2a SERT 

 

 

 

 

  

Table 4.4: Training compounds consistently mis-predicted in final consensus 
models for α2a and SERT. In addition, a subset of training compounds from each 
set (50 in α2a and 186 in SERT) was not reliably predicted to be active or inactive 
by the final consensus models. 
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Discussion 

Two datasets have been constructed to describe the chemical space that defines small 

organic compounds capable of binding to α2a or SERT. The relative size of the two datasets 

(the SERT dataset being approximately four times the size of the α2a set) implies that there 

is more detailed information about SERT affinity. This is in line with the relative commercial 

interest in these two targets. While both models demonstrate tendencies for binding or non-

binding compounds to predominate in different regions of MDS plots, a trivial separator 

between these classes cannot be drawn in two dimensions for either data set. This tends to 

suggest that neither data set is trivially separable, and therefore of limited value as the basis 

for a QSAR model. The presence of larger regions in the α2a dataset with few or no data 

points suggests that there are regions of chemical space that have not yet been explored (or 

at least reported on) for α2a adrenergic activity and that may be novel chemical matter 

available for exploitation. 

While the presence of gaps that may be exploitable in the α2a space is good news, the 

descriptors that are most often selected for the constituent members of the consensus 

models do not offer significant guidance in potential structures to consider. Of the eighteen 

descriptors most frequently selected to be included in submodels within each consensus 

model (selected from approximately 145 independent descriptors out of over 2000 total 

available), only four were present in both models (see Figure 4.5). Furthermore, three of the 

four descriptors identified are simple carbon types indices which measure the substitution 

patterns of saturated and unsaturated carbons at primary, secondary, and tertiary carbon 

atoms. While they are useful for virtual screening in combination with other types of 

descriptors, they do not provide much guidance for which fragments are likely to be useful in 

proposing novel structures for a compound binding with high affinity to a given target. 
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Similarly, the fourth descriptor (third order charge autocorrelation) is a measure of how 

charge density repeats over groupings of three atoms at a time and is likewise useful in 

virtual screening, but relatively opaque for rational design purposes. On a more optimistic 

note, two descriptors that were selected which have intrinsic chemical meaning:  N2N and 

N8CL. N2N is a count of how many times a nitrogen atom is bound to another atom that is 

bound to a second nitrogen atom (N-X-N in general form). This motif is present in the 

pyrimidine ring and the guanadyl group noted in all compounds predicted to bind well to the 

α2a receptor. The N8CL fragment is not as specific, encapsulating all compounds where a 

nitrogen atom and a chlorine atom are separated by 8 bonds (or seven atoms). It does not 

readily suggest any particular functional groups, but it does suggest that a chlorine atom is 

likely to be associated with SERT binding affinity, particularly when combined with a 

nitrogen atom located at a distance exceeding a 5 or 6 membered ring. Halogens are not 

uncommon in the structures of serotonergic drugs; this motif is seen in the structures of 

sertraline, nefazodone and trazodone, and zimelidine and paroxetine both show a similar 

N8X motif where X is bromine for zimelidine and fluorine for paroxetine. 

Deduplication strategy and relevance 

The ability to build models from uncurated data with predictivity equal or greater to 

the models built from curated data is not unexpected. Even if a constructed model has an 

increased uncertainty arising from having duplicate data points with different activities 

included, that uncertainty is offset by the probability of having one or more duplicates of 

compounds in the training set also present in the test set.  While this is no advantage if the 

duplicates have opposing activity classifications or activities differing by several orders of 

magnitude, being within 1 log Ki unit of a duplicated structure will be sufficient to bias the 

external predictivity upwards.  In addition, going from 537 to 701 data points in the 

construction of the model offered a 30% increase in degrees of freedom for fitting the final 

prediction. Thus, it is should not be surprising that, given enough additional data, models 
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α2a adrenergic receptor models 
Serotonin reuptake transporter 
models 

Name Occurs Description Name Occurs Description 

C3SP3 145 Number of SP3 
carbons bound to 
two other carbons 

C2SP3 141 Number of SP2 
carbons bound to 
three other carbons 

ATSc2 135 2nd Order Charge 
Autocorrelation 

nAtomP 125 Number of atoms in 
longest pi-conjugated 
chain 

N2N 131 Count of 2-bond 
paths between two 
nitrogen atoms 

C1SP3 124 Number of SP3 
carbons bound to one 
other carbon 

nBase 114 Number of basic 
groups 

AMR 95 Additive molar 
refractivity 

C2SP3 109 Number of SP3 
carbons bound to 
two other carbons 

VCH.5 94 5th order valence chi 
index 

nAromAtom 106 Number of atoms 
in aromatic 
systems 

MDEC.33 90 Molecular distance 
edge between all 
tertiary carbons 

C1SP2 105 Number of SP2 
carbons bound to 
one other carbon 

C1SP2 90 Number of SP2 
carbons bound to one 
other carbon 

C15C 102 Count of 15-bond 
paths between two 
carbon atoms 

ATSc4 88 4th order charge 
autocorrelation 

Khs.ssNH 101 Number of 
fragments 
matching SMARTS 
[ND2H](-*)-* 

C8N 86 Count of 8-bond paths 
between carbon and 
nitrogen atoms 

ATSc3 99 3rd order charge 
autocorrelation 

ATSc3 82 3rd order charge 
autocorrelation 

WTPT.2 96 Randic index N8Cl 80 Count of 8-bond paths 
between nitrogen and 
chlorine atoms 
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can be found which do not lose performance with more noise.  A more thorough variant of 

this computational experiment could be made to test this hypothesis.  If the training data 

were deduplicated randomly (or even by actively attempting to pick the worst reported 

affinity value) and the chemical structures used for descriptor generation were 

destandardized after duplicate detection was complete, the model performance metric would 

not be assured of being the worst possible result, but it would offer a more pessimistic 

Alogp2 94 Additive logP khs.aaaC 78 Number of fragments 
matching SMARTS 
[C,c;D3H0](:*)(:*):* 

VPC.6 87 6th order  valence 
chi index 

C3SP3 78 Number of SP3 
carbons bound to 3 
other carbons 

ATSc5 86 5th order charge 
autocorrelation 

khs.dssC 77 Number of fragments 
matching SMARTS  
[CD3H0](=*)(-*)-* 

MDEN.22 85 Molecular distance 
edge between all 
secondary 
nitrogens 

C7N 76 Count of 7-bond paths 
between carbon and 
nitrogen atoms 

C6O 85 Count of 6-bond 
paths between 
carbon and oxygen 
atoms 

VCH.6 74 6th order valence chi 
index 

N8O 84 Count of 8-bond 
paths between 
nitrogen and 
oxygen atoms 

fragC 72 Fragment Complexity 
Index 

S2SP2 83 Number of SP2 
carbons connected 
to 2 other carbons 

AlogP 71 Additive logP 

Table 4.5: Most commonly occurring descriptors in models (occurring more than twice as 
often as predicted by random draw) 
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estimate of the quality of the model generated.  The difference between this value and the 

models generated according the workflow herein described would offer a better estimate of 

the improvement possible.  

Conclusions 

There is sufficient data in ChEMBL to construct QSAR classifier models for a diverse 

set of drug-like compounds against both alpha-2a and SERT. This data does not translate 

into a similarly easy path to constructing regression models. Attempts to construct 

acceptably predictive QSAR regression models of α2a models failed over a range of 

descriptor counts. The small margin between the acceptance threshold and the achieved 

correlation constants suggests that more aggressive pruning of the data or the addition of 

novel chemotypes might be sufficient to achieve predictivity. 

SERT is known to be promiscuous and this is borne out by the distribution of active 

and inactive compound in its MDS plot. Conversely, α2a is more selective to different 

chemotypes. Strong evidence of this is seen in the relative number of virtual screening hits 

found for the respective targets. Additional α2a assay data would be useful, as long as it does 

not introduce more uncertainty into the model. A probable next step would be to look for 

new α2a data in the literature and incorporate it into the extant data set and model. After 

this, screen ZINC 49  against both models to identify potential leads. There are a large 

number of compounds in there, so an effective pre-screen would be important. (GDB-17 50  

would be interesting to consider with sufficient computing support). Any compound with 

hits on both α2a and SERT, and some subset of compounds falling into the gaps on the MDS 

plots would be worth seeking experimental assay on, not just to verify the accuracy of the 

model, but also to determine whether the regions of dual binding affinity are continued 

through the terra incognita. It would be possible to offer the compounds identified in Figure 

4.6 for screening against the α2a and SERT receptors by a group such as the PDSP at UNC, 



`	   	  

147 
	  

but in view of their relatively low potential for easy functionalization and lack of predicted 

affinity for SERT, this might well be considered a waste of time and other resources.  The 

scaffolds identified in Figure 4.9, on the other hand, do offer hope for a distinct SAR series.  

The compounds identified are widely available as screening compounds, and do not offer 

much novelty, but they are also not a broad class of compounds that have numerous 

functional substitutions already available in the broader literature or available for 

commercial purchase.  One possible approach to explore the utility of these scaffolds would 

be to enumerate a collection of virtual analogs (similar to the methods used to enumerate 

GDB17) and predict the member’s affinity at both targets.  While these are only 

computational models, it is not unreasonable to presume that some members of a small 

virtual library based on these scaffolds would be predicted to show affinity for both targets.  

If a relatively small number of ligands are predicted to have that affinity, then future 

exploration is less likely to be profitable, while if a larger fraction are, then investigating 

custom synthesis may be a more viable option. 
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Chapter 5: Conclusions 

 

 

“It is not incumbent on you to complete the work, but neither are you at liberty to desist from it” 
Pirkei Avot 2:21 

 

Towards rational data curation of biochemical affinity data 

It is clear from both the extant literature and from the experiences contained in this 

work that careful evaluation and curation of available data is required for the construction of 

predictive QSAR models. In Chapter Two, we have shown that no single database contains 

the correct structure for even the most common small molecule drugs on the market today. 

In Chapter Three, we explored the errors found in the representations of biological activity 

within one of the broadest, freely-available repositories. In Chapter Four, we utilized a 

curation workflow in order to develop QSAR models for potential bi-targeted therapeutic 

agents. 

The curation work presented here leaves us with a paradox. We have shown that 

automated methods alone cannot curate, because they will lack the experience and intuition 

of a human chemist to understand from whence a problem arises. But humans alone also 

cannot effectively curate, because they tend to work slowly and to introduce errors from 

manual handling of data. The most likely way forward is semi-automated curation where a 

computer identifies likely problems in data (and a random sampling of all other data) that 

are then dealt with and/or verified by a human curator. 

While the use of consensus methods to detect erroneous data is attractive, no doubt 

in part because of its apparent simplicity, its applicability is inherently limited because over 
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90% of the compounds reported in the medicinal chemistry literature appear exactly once. 

Crosschecking structures between the peer-reviewed and the patent literature may become 

more rational with the recent opening of access to Surechem1, but given that Liceptor2 and 

ChEMBL3 have an overlap of only 3%, this is not likely to significantly increase the number 

of independent reports of novel chemical matter. Additionally, with the current practices of 

pharmaceutical companies and patent practitioners as exemplified by the Lilly Viagra patent 

case in Canada4, identifying the corresponding compounds between a journal report and the 

patent application will only get more difficult. This is not intended to denigrate the utility of 

multiple database entries in identifying transcription errors, but these are only a portion of 

the errors present in the literature. These errors will also remain relatively tractable as long 

as there are multiple independent data aggregators in cheminformatics. Of course, this 

requires data consumers to be aware of the provenance of their data. Knowing that 

Wikipedia sources most of its chemical structure data directly from Chemspider5, or that 

Pubchem and ChEMBL include substantial portions of each other’s data in their own 

database greatly simplifies the process of eliminating erroneous structures from a dataset. 

But as the number of freely-reusable chemical activity databases grows, the risk that 

information is silently transferred from one to the next instead of being independently 

transcribed from the literature only increases. If information is incorrect in the original 

publication, there is little that can be done with it except set it aside and hope for a 

correction in the coming months. When the error arises further along in the data 

compilation and distribution process, it can be identified and corrected as long as 

backtracking to the original publication is possible.  

The optimal solution for the problem of data accuracy in cheminformatics is, as 

suggested earlier, the adoption of the MIABE6 standards by the research publishing 

community. Requiring the direct deposit of structural and activity data in appropriate 

repositories is already a condition of publication in molecular biology, protein 



154 
	  

crystallography, and bioinformatics. With essentially all data and manuscripts in the 

medicinal chemistry literature prepared electronically and most journals preferentially 

publishing in electronic form, inserting steps which only serve to prevent data from being 

efficiently and accurately extracted makes sense only if the authors and editors are 

attempting to limit the reproduction of the data being reported.  

While the scarcity of replication impacts the ability to determine correct chemical 

structures, it even more strongly impacts the availability of pharmacological profiles 

associated with those structures. Accordingly, we have put forward a workflow for the 

curation of biological data to be used in QSAR modeling. Compound deduplication by 

minimizing the cumulative systematic error appears to be the most viable approach. While 

this is not a complicated concept or counter-intuitive in any significant way, it has never 

been formally proposed in the literature, even when best practices for QSAR modeling have 

been discussed. Indeed, it appears to have never even reached the status of oral folklore 

within the community, either as a positive or negative approach. 

We have also developed models for α2a adrenergic receptor and SERT binding 

affinity with high internal and external predictivity. While they have not yet undergone 

experimental validation, they have suggested the availability of new chemical space for 

exploration of �2a binding affinity. In addition, virtual screening of the models against 

commercial catalog has identified compounds known to possess binding affinity at the 

receptors but not included in the training data. 

 

Data density and the inclusion of data from multiple sources in a single 
modeling set 

The broad error band associated with experimental values published in the literature 

presents a special challenge to those who seek to use that data as the basis of molecular 

models. Given that half of the binding targets from the primary literature appearing in 
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ChEMBL have three or fewer ligands associated with them, there are many cases where 

insufficient data exists for any model to be constructed. Even if a large scale HTS diversity 

campaign has been completed for the target, such as DrugMatrix7, the density of data points 

will be relatively low. If all that is necessary is to predict whether unknown compounds will 

bind at micromolar concentrations, this is probably sufficient, but trying to prioritize 

possible leads from virtual screening into nanomolar concentrations may well prove futile. 

There has been a significant amount of discussion regarding whether it is desirable, 

or even possible to combine data from different sources to construct increasingly general 

models for activity at a single target instead of limiting efforts to more local models which 

rely on a single SAR series of compounds as their primary basis. Consensus best practices 

with the QSAR modeling community would suggest that five-fold external cross-validation 

should be utilized in model construction to minimize the risk of overfitting8. This implies 

that data for at least ten molecules are required before starting model building, or two 

molecules for each fold (one active and one inactive in a classifier model, or two points to 

define a line in a regression model). Modeling lore has many rules of thumb for how many 

descriptors can safely be included in a model given the number of molecules in the dataset or 

the size of the smaller class in a classifier model. These range from a ratio of one descriptor 

for every five molecules, to one of one descriptor for every twenty molecules. Similarly, 

received wisdom suggests that no classifier model should have a size imbalance of more than 

3:1 or 4:1 between the two classes (this can be resolved by selectively down-sampling the 

larger set, of course) 9. In the case of regression models, skewed distributions of compounds 

in general are disfavored; a relatively uniform distribution of activities over the entire range 

is preferable. If these rules of thumb are used loosely, a two descriptor model can be made 

on the smallest possible data set (ten molecules evenly distributed). However, this is still a 

significant barrier for using data collected in ChEMBL. In Chapter Three, it was noted that 

the median number of distinct molecules in a single paper in ChEMBL was 14, with an inter-
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quartile distance of 19. This suggests that only about 60% of the papers in ChEMBL could be 

the basis of some sort of QSAR model. But the conditions imposed are the loosest possible. If 

more rigorous conditions are imposed, such as requiring 3 or 4 compounds in each class of a 

fold, more than 33 compounds will be required, excluding 75% of all publications in 

ChEMBL. To reach a point where a five descriptor model is reasonably usable if we require 

ten molecules per descriptor in the smaller class, we will need 100 molecules total (which 

fewer than 200 papers have). While many small datasets may yield well-behaved models, 

larger consensus models require more molecules than can be reliably found in the typical 

report in the medicinal chemistry literature. 

The risks involved in combining multiple datasets may, however, be overestimated. 

While it appears that any given affinity measurement is only accurate to 1 pKi unit, only part 

of that quantity is due to truly random error. By ensuring that each data source incorporated 

in the training set is large enough to have at least one comparable value in each fold and 

limiting the number of different sources used to cover the chemical space being modeled, the 

systemic error is reduced, if not minimized for practical purposes. Being mindful of the 

inherent uncertainty in binding affinity assays also highlights the importance of not 

expecting too much from one’s models. If the uncertainty in a binding affinity is 1 pKi unit, 

there is little rationale in expecting the model to be accurate to significantly less than that. 

Being able to distinguish between compounds that are micromolar, nanomolar, and 

picomolar is a practical goal that can be accomplished with classifier models, but to demand 

the distinction between 1 nanomolar and 10 nanomolar is hardly rational when those values 

cannot be experimentally determined. 

Further work and directions 

As previously discussed, quantifying the improvement of the proposed workflow and 

demonstrating its utility for general use remains to be done. The inability of the trial 
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attempted in Chapter Four to make a noticeable change in R2 when no deduplication was 

attempted was hampered by the increased degrees of freedom afforded by a 30% increase in 

the number of data points. In order to properly test the performance of this workflow, a 

series of computational experiments will be necessary. Each trial would ideally be based on 

an already-built model with experimentally-validated results at a different target. For each 

target, the uncurated data set used for training and testing of the model would either be re-

extracted from the origination database or otherwise reassembled. In one case, the model 

would be rebuilt using the workflow described herein and then used for virtual screening of 

the originally screened library. In a second case, the deduplication process would be either 

random or designed to use the affinity value with the least congruence to other values in the 

dataset (favor one-off compounds and pick values from the smallest series possible).  

Similarly, instead of standardizing chemical structures to a canonical form, 

resonance structures and atom-typing would be randomized. This step is particularly 

important if all the chemical structures came from a database such as ChEMBL that does 

standardize structures as part of their own workflow. Finally, it may be possible to 

interchange the affinity values for a small percentage of highly similar compounds in the 

data set to simulate the effects of errors in transcription of structures. Once this “poor” 

dataset is assembled, it would likewise be used to build QSAR models and screen a virtual 

library for novel chemical matter.  

This approach would provide three numerical benchmarks for each dataset: Q2, R2 

(or internal and external CCR), and the number of hits retrieved from the virtual screening 

library. These could each be compared to the original model that was constructed for a more 

complete idea of how each step of our standard workflow is affected by data quality. 

Similarly, the actual structures of the hits returned can be compared to assess the impact on 

predictions based on models from data sets of differing quality. This design would also allow 
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for multiple tests to be conducted at targets of differing promiscuity and biological nature 

(membrane-bound vs. free, receptor vs. enzyme vs. transporter). 

Another area for future work would be to consider the average distances between 

members of a SAR series compared to drug-like molecules or ChEMBL as a whole. When a 

full chemical activity dataset is projected into a two-dimensional plot as seen in chapter four, 

compounds present as members of individual SAR series will tend to cluster together.  

Conversely, results from a diversity-oriented HTS screen will scatter more widely and not 

partition themselves into a small portion of the available space. This is a semi-graphical 

approach to work done by Denis Fourches, who recently used a clustering of CYP450 

substrates by chemical structure to identify compounds with incorrect structures. 

Compounds which are not substrates and are sorted into a cluster where the compounds are 

predominantly metabolized by the specific isoform (or vice versa) may be true activity cliffs, 

but they also at an increased risk for having errors associated with them, either in their 

chemical structure or in the reported assay results. By examining specific instances where 

members of a series either form an activity cliff with another member of the series, or are 

anomalously distant from all the other members of the series, it will be easier to diagnose 

problems with a data set that need to be addressed by further research by a human chemist.  

For example, activity cliffs do exist in real data sets (often representing a shift in binding 

mode, or when a substituent has become large enough that a binding pocket can no longer 

accommodate it), but two compounds of similar structure and similar binding affinity would 

also appear to be an activity cliff if the units for the affinity of one of the pair to a common 

target were incorrectly recorded (e.g. micromolar instead of nanomolar or vice versa). On 

the other hand, a compound which is nominally within a SAR series, and yet is separated 

from all other members of the series in chemical space may well have an error in its 

structure. This is not absolute, as we see in figure 6 of chapter 4, but it again provides a 

means to prioritize information in the dataset needing verification. 
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To reiterate, fully automated and completely manual curation schemes are both 

inherently flawed. Computers can rapidly and accurately copy and compare chemical 

structures and biological data, but their capacity to identify why a value or structure is 

problematic is limited to patterns that have already been identified and coded. Human 

chemists can apply pattern recognition and imagination to identify which data points are 

incorrect and the reason for the inaccuracy, but they work relatively slowly and are prone to 

errors when manually transcribing information. In the absence of canonical information 

coming directly from the originator of the data, errors will need to be identified by 

combining the accuracy and computational speed of a computer with the intuition and 

creativity of a human mind. 
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APPENDIX 1: NAMES OF DRUGS FOR INTERNET STRUCTURE SEARCH 

 

Atorvastatin 

Clopidogrel 

Amlodipine 

Olanzapine 

Valsartan 

Risperidone 

Venlafaxine 

Pantoprazole 

Montelukast 

Quetiapine 

Lansoprazole 

Losartan 

Alendronate 

Pioglitazone 

Simvastatin 

Rabeprazole 

Imatinib 

Zolpidem 

Donepezil 

Donepezil 

Cetirizine 

Irbesartan 

Irbesartan 

Docetaxel 

Oxaliplatin 

Sertraline 

Oseltamivir 

Celecoxib 

Topiramate 

Bupropion 

Aripiprazole 

Lamotrigine 
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Metoprolol 

Candesartan 

Sildenafil 

Telmisartan 

Leuprolide 

Fenofibrate 

Ondansetron 

Valaciclovir 

Levofloxacin 

Anastrozole 

Tacrolimus 

Mycophenolate mofetil 

Latanoprost 

Carvedilol 

Gemcitabine 

Omeprazole 

Duloxetine 

Sumatriptan 

Fentanyl 

Budesonide 

Zoledronate 

Ramipril 

Bicalutamide 

Raloxifene 

Tamsulosin 

Pregabalin 

Paroxetine 

Lopinavir 

Tolterodine 

Tamsulosin 

Goserelin 

Levofloxacin 

Drospirenone 

Terbinafine 

Piperacillin 
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Tadalafil 

Levetiracetam 

Atazanavir 

Methylphenidate 

Ciclosporin 

Somatostatin 

Irinotecan 

Fexofenadine 

Amphetamine 

Nifedipine 

Moxifloxacin 

Meloxicam 

Clarithromycin 

Sevoflurane 

Efavirenz 

Linezolid 

Capecitabine 

Ziprasidone 

Ciprofloxacin 

Modafinil 

Fluvastatin 

Desloratadine 

Letrozole 

Oxcarbazepine 

Bosentan 

Temozolomide 

Dorzolamide 

Diclofenac 

Tenofovir 

Pramipexole 

Memantine 

Ramipril 

Azithromycin 

Cefdinir 

Finasteride 
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Pemetrexed 

Meropenem 

Atomoxetine 

Fentanyl 

Glimepiride 

Lidocaine 

Eszopiclone 

Paclitaxel 

Tegaserod 

Levalbuterol 

Orlistat 

Enalapril 

Salmeterol 

Doxazosin 

Levothyroxine 

Famotidine 

Caspofungin 

Rivastigmine 

Voriconazole 

Amlodipine 

Niacin 

Gabapentin 

Ropinirole 

Voglibose 

Metformin 

Bisoprolol 

Alfuzosin 

Fluconazole 

Thalidomide 

Ranitidine 

Loratadine 
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APPENDIX 3: SAMPLE SQL SOURCE FOR CHEMBL DATA EXTRACTION 

 

Extract ChEMBL subset for comparison 

CREATE	  TABLE	  PASS1	  AS	  	  
select	  	  
	   distinct	  
	   a.TID	  as	  TID,	  
	   a.ASSAY_ID	  as	  ASSAY_ID,	  
	   b.ACTIVITY_ID	  as	  ACTIVITY_ID,	  
	   b.molregno	  AS	  MOLREGNO,	  
	   c.DOC_ID	  AS	  DOC_ID,	  
	   b.STANDARD_TYPE	  AS	  STANDARD_TYPE,	  
	   b.standard_value	  AS	  STANDARD_VALUE,	  
	   b.standard_UNITS	  AS	  STANDARD_UNITS,	  
	   b.ACTIVITY_COMMENT	  AS	  ACTIVITY_COMMENT	  
	   	  
from	  
	   chembl_14.ASSAY2TARGET	  a,	  
	   chembl_14.ACTIVITIES	  b,	  
	   chembl_14.docs	  c,	  
	   chembl_14.ASSAYS	  d	  
where	  
	   a.CONFIDENCE_SCORE	  >	  2	  
	   AND	  
	   	   (	  a.RELATIONSHIP_TYPE	  =	  'D'	  
	   	   	  	  or	  a.RELATIONSHIP_TYPE	  =	  'H'	  
	   	   	  	  or	  a.RELATIONSHIP_TYPE	  ='M'	  )	  
	   AND	  c.DOC_TYPE='PUBLICATION'	  
	   AND	  d.ASSAY_TYPE='B'	  
	   AND	  a.ASSAY_ID=b.ASSAY_ID	  
	   AND	  a.ASSAY_ID=d.ASSAY_ID	  
	   AND	  b.DOC_ID=c.doc_id	  
	   AND	  	  
	   	   ((UPPER(b.STANDARD_TYPE))='PKI'	  
	   	   	  OR	  (UPPER(b.STANDARD_TYPE))=	  'KI'	  
	   	   	  OR	  (UPPER(b.STANDARD_TYPE))=	  'LOG	  KI'	  
	   	   	  OR	  (UPPER(b.STANDARD_TYPE))=	  '-‐LOG	  KI')	  
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Remove duplicated values 

CREATE	  
	   table	  pass2a	  as	  
	   SELECT	  
	   	   *	  
	   FROM	  
	   	   PASS1	  a,	  
	   	   (	  
	   	   SELECT	  
	   	   unique(miv)	  
	   	   FROM	  
	   	   	   (	  
	   	   	   SELECT	  
	   	   	   tid,	  
	   	   	   molregno,	  
	   	   	   min(activity_id)	  as	  miv	  ,	  
	   	   	   standard_type	  ,	  
	   	   	   standard_value	  ,	  
	   	   	   standard_units	  
	   	   FROM	  
	   	   	   pass1	  
	   	   WHERE	  
	   	   	   standard_value	  IS	  NOT	  null	  
	   	   GROUP	  BY	  
	   	   	   tid,	  
	   	   	   molregno,	  
	   	   	   standard_type,	  
	   	   	   standard_value,	  
	   	   	   standard_units	  
	   	   ORDER	  BY	  
	   	   	   tid,	  
	   	   	   molregno	  
	   	   )	  
	   )	  b	  
WHERE	  
	   a.ACTIVITY_ID=b.miv	  
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Build final pairwise list 

SELECT	  UNIQUE	  
	   a.TID,	  
	   targets.PREF_NAME,	  
	   atjoin.COMPLEX,	  
	   atjoin.MULTI,	  
	   targets.ORGANISM,	  
	   a.molregno,	  
	   molecules.pref_name,	  
	   a.doc_id,	  
	   a.assay_id,	  
	   a_assays.assay_type,	  
	   a_assays.assay_organism,	  
	   a.activity_id,	  
	   a_activities.standard_type,	  
	   a_activities.standard_value,	  
	   a_activities.standard_units,	  
	   a_activities.activity_comment,	  
	   b.doc_id,	  
	   b.assay_id,	  
	   b_assays.assay_type,	  
	   b_assays.assay_organism,	  
	   b.activity_id,	  
	   b_activities.standard_type,	  
	   b_activities.standard_value,	  
	   B_activities.standard_units	  
	   	  
FROM	  
	   PASS2	  a,	  
	   PASS2	  b,	  
	   CHEMBL_14.TARGET_DICTIONARY	  targets,	  
	   CHEMBL_14.ASSAY2TARGET	  atjoin,	  
	   CHEMBL_14.MOLECULE_DICTIONARY	  	  molecules,	  
	   CHEMBL_14.DOCS	  a_docs,	  
	   CHEMBL_14.ASSAYS	  a_assays,	  
	   CHEMBL_14.ACTIVITIES	  a_activities,	  
	   CHEMBL_14.DOCS	  b_docs,	  
	   CHEMBL_14.ASSAYS	  b_assays,	  
	   CHEMBL_14.ACTIVITIES	  b_activities	  
	   	  
WHERE	  
	   a.TID=b.TID	  
	   AND	  a.MOLREGNO=b.MOLREGNO	  
	   AND	  NOT(a.DOC_ID=b.DOC_ID)	  
	   AND	  a.ACTIVITY_ID<b.ACTIVITY_ID	  
	   AND	  a.TID=targets.TID	  
	   AND	  a.TID=atjoin.TID	  
	   AND	  a.ASSAY_ID=atjoin.ASSAY_ID	  
	   AND	  a.MOLREGNO=molecules.MOLREGNO	  
	   AND	  a.ACTIVITY_ID=a_activities.ACTIVITY_ID	  
	   AND	  a.DOC_ID=a_docs.doc_id	  
	   AND	  a.ASSAY_ID=a_assays.ASSAY_ID	  
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	   AND	  a.DOC_ID=a_assays.DOC_ID	  
	   AND	  b.ACTIVITY_ID=b_activities.ACTIVITY_ID	  
	   AND	  b.DOC_ID=b_docs.doc_id	  
	   AND	  b.ASSAY_ID=b_assays.ASSAY_ID	  
	   AND	  b.DOC_ID=b_ASSAYS.DOC_ID	  
	   AND	  a.STANDARD_VALUE	  IS	  NOT	  NULL	  
	   AND	  b.standard_value	  IS	  NOT	  NULL	  
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APPENDIX 4: SOURCE CODE FOR ATOM-PAIR DESCRIPTOR CALCULATION 

#!/usr/bin/env	  python	  
	  
import	  sys	  
import	  pybel	  
import	  networkx	  
import	  scipy	  
import	  csv	  
	  
maxpath=15	  
	  
atomlist=['C','N','O','P','S','F','Cl','Br','I','B']	  
	  
atomlookup={6:'C',	  7:'N',	  8:'O',	  15:'P',	  16:'S',	  9:'F',	  17:'Cl',	  35:'Br',	  53:'I',	  5:'B'}	  
	  
offsets={'C':{'C':0	  ,'N':1	  ,'O':2	  ,'P':3	  ,'S':4	  ,'F':5	  ,	  'Cl':6,	  'Br':7,	  'I':8,	  	  'B':9	  },\	  
	  	  	  	  'N'	  :{'C':1,	  'N':10,	  'O':11,	  'P':12,	  'S':13	  ,'F':14	  ,'Cl':15,'Br':16,'I':17,	  'B':18},\	  
	  	  	  	  'O'	  :{'C':2,	  'N':11,	  'O':19,	  'P':20,	  'S':21	  ,'F':22	  ,'Cl':23,'Br':24,'I':25,	  'B':26},\	  
	  	  	  	  'P'	  :{'C':3,	  'N':12,	  'O':20,	  'P':27,	  'S':28,	  'F':29,	  'Cl':30,'Br':31,'I':32,	  'B':32},\	  
	  	  	  	  'S'	  :{'C':4,	  'N':13,	  'O':21,	  'P':28,	  'S':34,	  'F':35,	  'Cl':36,'Br':37,'I':38,	  'B':39},\	  
	  	  	  	  'F'	  :{'C':5,	  'N':14,	  'O':22,	  'P':29,	  'S':35,	  'F':40,	  'Cl':41,'Br':42,'I':43,	  'B':44},\	  
	  	  	  	  'Cl':{'C':6,	  'N':15,	  'O':23,	  'P':30,	  'S':36,	  'F':41,	  'Cl':45,'Br':46,'I':47,	  'B':48},\	  
	  	  	  	  'Br':{'C':7,	  'N':16,	  'O':24,	  'P':31,	  'S':37,	  'F':42,	  'Cl':46,'Br':49,'I':50,	  'B':51},\	  
	  	  	  	  'I'	  :{'C':8,	  'N':17,	  'O':25,	  'P':32,	  'S':38,	  'F':43,	  'Cl':47,'Br':50,'I':52,	  'B':53},\	  
	  	  	  	  'B'	  :{'C':9,	  'N':18,	  'O':26,	  'P':33,	  'S':39,	  'F':44,	  'Cl':48,'Br':51,'I':53,	  'B':54}}	  
	  
pairskount=int((len(atomlist)*(len(atomlist)+1))/2)	  
	  
def	  mol_to_networkxgraph(mol):	  
	  	  	  	  edges	  =	  []	  
	  	  	  	  bondorders	  =	  []	  
	  	  	  	  for	  bond	  in	  pybel.ob.OBMolBondIter(mol.OBMol):	  
	  	  	  	  	  	  	  	  bondorders.append(bond.GetBO())	  
	  	  	  	  	  	  	  	  edges.append(	  (bond.GetBeginAtomIdx()	  -‐	  1,	  bond.GetEndAtomIdx()	  -‐	  1)	  )	  
	  	  	  	  g	  =	  networkx.Graph()	  
	  	  	  	  g.add_edges_from(edges)	  
	  	  	  	  return	  g	  
	  
def	  check_atoms(mol):	  
	  	  	  	  doespass	  =	  True	  
	  	  	  	  for	  atm	  in	  molecule.atoms:	  
	  	  	  	  	  	  	  	  if	  atm.atomicnum	  not	  in	  atomlookup.keys():	  
	  	  	  	  	  	  	  	  	  	  	  	  doespass=False	  
	  	  	  	  	  	  	  	  	  	  	  	  break	  
	  	  	  	  return(doespass)	  
	  
fileheader=[]	  
fileheader.append('Molecule')	  
for	  l	  in	  range(maxpath):	  
	  	  	  	  for	  i	  in	  range(0,len(atomlist)):	  
	  	  	  	  	  	  	  	  for	  j	  in	  range(i,len(atomlist)):	  
	  	  	  	  	  	  	  	  	  	  	  	  label=atomlist[i]+repr(l+1)+atomlist[j]	  	  	  
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	  	  	  	  	  	  	  	  	  	  	  	  fileheader.append(label)	  
	  
if	  len(sys.argv)<	  3:	  
	  	  	  	  print	  "Usage:	  apdescs.py	  infile.sdf	  outfile.csv"	  
	  	  	  	  exit(64)	  
	  
outfile=open(sys.argv[2],'wb')	  
outhand=csv.writer(outfile,quoting=csv.QUOTE_NONNUMERIC)	  
	  
outhand.writerow(fileheader)	  
	  
molkount=1	  
	  
for	  molecule	  in	  pybel.readfile("sdf",sys.argv[1]):	  
	  	  	  	  molecule.removeh()	  
	  	  	  	  msize=len(molecule.atoms)	  
	  	  	  	  	  
	  	  	  	  goodmol=check_atoms(molecule)	  
	  	  	  	  if	  goodmol==False:	  
	  	  	  	  	  	  	  	  print	  "Molecule",repr(molkount),'has	  an	  invalid	  atom	  type.	  Skipping.'	  
	  	  	  	  	  	  	  	  break	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  if	  molecule.title:	  
	  	  	  	  	  	  	  	  molname=molecule.title.replace(',',';')	  
	  	  	  	  else:	  
	  	  	  	  	  	  	  	  molname="Molecule	  "+repr(molkount)	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  kountarray=scipy.zeros((pairskount*maxpath))	  
	  
	  	  	  	  graph=mol_to_networkxgraph(molecule)	  
	  
	  	  	  	  dists=scipy.zeros((msize,msize))	  
	  
	  	  	  	  for	  i	  in	  range(msize):	  
	  	  	  	  	  	  	  	  for	  j	  in	  range(i+1,msize):	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  dists[i,j]=len(networkx.shortest_path(graph,i,j))-‐1	  
	  	  	  	  	  	  	  	  	  	  	  	  dists[j,i]=dists[i,j]	  
	  	  	  	  	  
	  	  	  	  for	  i	  in	  range(msize):	  
	  	  	  	  	  	  	  	  for	  j	  in	  range(i+1,msize):	  
	  	  	  	  	  	  	  	  	  	  	  	  atoma=atomlookup[molecule.atoms[i].atomicnum]	  
	  	  	  	  	  	  	  	  	  	  	  	  atomb=atomlookup[molecule.atoms[j].atomicnum]	  
	  	  	  	  	  	  	  	  	  	  	  	  shortestdist=int(dists[i,j])	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  shortestdist>maxpath:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  print	  "In	  molecule",molkount,"distance	  between	  atoms",atoma,"and",atomb,"is	  
over",maxpath,"bonds.	  Skipping"	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  continue	  
	  	  	  	  	  	  	  	  	  	  	  	  discoffset=((shortestdist-‐1)*pairskount)+offsets[atoma][atomb]	  
	  	  	  	  	  	  	  	  	  	  	  	  kountarray[discoffset]=kountarray[discoffset]+1	  
	  	  	  	  	  
	  	  	  	  outputlist=[molname]	  
	  	  	  	  for	  element	  in	  kountarray:	  
	  	  	  	  	  	  	  	  outputlist.append(int(element))	  
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	  	  	  	  outhand.writerow(outputlist)	  
	  
	  	  	  	  molkount=molkount+1	  
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APPENDIX 5: SOURCE CODE FOR VARIABLE SELECTION QSAR MODEL 
CONSTRUCTION 

library(caret)	  
	  
###	  
###	  This	  script	  is	  configured	  currently	  to	  generate	  classifier	  models	  using	  rSVM	  
###	  
###	  In	  order	  to	  switch	  to	  another	  classifier	  method:	  
###	  	  	  	  	  substitute	  another	  method	  into	  the	  buildModel	  function	  below	  
###	  	  	  	  	  if	  you	  are	  using	  RF	  models,	  you	  may	  want	  to	  modify	  the	  modelCtrl	  command	  
###	  	  	  	  	  to	  use	  OOB	  instead	  of	  5-‐fold	  cross	  validation	  for	  parameter	  optimization	  
###	  
###	  In	  order	  to	  switch	  to	  a	  regression	  modeling	  scheme,	  more	  changes	  are	  needed:	  
###	  	  	  another	  method	  must	  be	  substituted	  in	  the	  buildModel	  function	  
###	  	  	  the	  modelCtrl	  command	  should	  be	  switched	  to	  use	  R-‐squared	  for	  internal	  opt.	  
###	  	  	  Rsquared	  should	  be	  subsituted	  in	  for	  accuracy	  in	  all	  train	  and	  all	  
###	  	  	  	  	  GetTrainPerf	  function	  calls	  
###	  	  	  Calls	  to	  makeCCR	  should	  be	  replaced	  with	  calls	  to	  makeR2	  
###	  	  	  Any	  changes	  made	  to	  the	  main	  driving	  routine	  that	  reference	  additional	  values	  
###	  	  	  	  	  returned	  by	  the	  makeCCR	  function	  will	  need	  to	  be	  changed	  (R2	  and	  R02	  instead	  
###	  	  	  	  	  of	  CCR,	  sensitivity	  and	  specificity)	  
###	  
	  
options(warn=1)	  
	  
###	  	  uncomment	  the	  next	  line	  if	  reproducible	  runs	  are	  needed	  for	  testing	  
#set.seed(301)	  
	  
###	  	  	  Major	  Control	  Variables	  are	  Set	  Below	  
###	  
###	  	  	  	  	  modelKount	  	  	  	  	  	  how	  many	  distinct	  candidates	  to	  consider	  at	  once	  
###	  	  	  	  	  modelSize	  	  	  	  	  	  	  how	  many	  descriptors	  in	  each	  candidate	  model	  
###	  	  	  	  	  generations	  	  	  	  	  how	  many	  cycles	  of	  GA	  optimization	  to	  run	  
###	  	  	  	  	  respVar	  	  	  	  	  	  	  	  	  which	  column	  of	  data	  has	  the	  activity	  class	  or	  pKi	  
###	  	  	  	  	  firstData	  	  	  	  	  	  	  which	  is	  the	  first	  column	  containing	  descriptor	  values	  
###	  	  	  	  	  extFolds	  	  	  	  	  	  	  	  how	  many	  folds	  to	  use	  in	  external	  cross-‐validation	  
###	  	  	  	  	  intCutoff	  	  	  	  	  	  	  what	  is	  the	  numerical	  threshold	  for	  accepting	  a	  model	  
###	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  after	  internal	  cross	  validation	  
###	  	  	  	  	  extCutoff	  	  	  	  	  	  	  what	  is	  the	  numerical	  threshold	  for	  accepting	  a	  model	  
###	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  after	  external	  cross-‐validation	  
###	  	  	  	  	  returnedModels	  	  how	  many	  models	  are	  returned	  after	  descriptor	  selection	  
###	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  each	  fold	  
###	  	  	  	  	  mutateProb	  	  	  	  	  	  reciprocal	  of	  the	  probability	  that	  a	  single	  candidate	  
###	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  model	  will	  be	  mutated	  in	  any	  given	  cycle	  
###	  
	  
modelKount<-‐8	  
modelSize<-‐15	  
generations<-‐100	  
respVar<-‐2	  
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firstData<-‐5	  
extFolds<-‐5	  
intCutoff<-‐0.7	  
extCutoff<-‐0.6	  
returnedModels<-‐2	  
maxCorr<-‐0.9	  
mutateProb<-‐10	  
	  
###	  Utility	  Functions	  
	  
initModel	  <-‐	  function(gk,range)	  {	  
	  	  return(	  sort(sample(1:range,size=gk)))	  
}	  
	  
buildModel	  <-‐	  function(dataIn)	  {	  
	  	  trialFit<-‐train(trainingResps	  ~	  
.,data=dataIn,method="svmRadial",metric="Accuracy",maximize=TRUE,tunelength=9,trControl=modelCtrl)	  
	  	  return(trialFit)	  
}	  
	  
checkModel	  <-‐	  function(foo)	  {	  
	  	  newchrome<-‐foo	  
	  	  while	  (sum(duplicated(newchrome)==TRUE)!=0)	  {	  
	  	  	  	  newchrome[which(duplicated(newchrome))[1]]<-‐sample(1:modelSize,1)	  
	  	  	  	  newchrome<-‐sort(newchrome)	  
	  	  }	  
	  	  if	  (!(identical(newchrome,foo)))	  {	  
	  	  	  	  retval<-‐newchrome	  
	  	  }	  else	  {	  
	  	  	  	  retval<-‐TRUE	  	  	  
	  	  }	  
	  	  return(retval)	  
}	  
	  
makeCCR	  <-‐function(extActual,extPreds)	  {	  
	  	  contTable<-‐table(extActual,extPreds)	  
	  	  sens<-‐contTable[1,1]/(contTable[1,1]+contTable[1,2])	  
	  	  spec<-‐contTable[2,2]/(contTable[2,1]+contTable[2,2])	  
	  	  CCR<-‐(sens+spec)/2	  
	  	  retVal<-‐c(CCR,sens,spec)	  
	  	  return(retVal)	  
}	  
	  
plotPerf	  <-‐function(trace)	  {	  
	  	  plot(trace[2,],col="black",ylim=c(0,0.95),type="l")	  
	  	  lines(trace[3,],col="orange",type="l")	  
	  	  lines(trace[4,],col="green",type="l")	  	  	  
}	  
	  
modelCtrl<-‐trainControl(method='repeatedCV',number=5,repeats=5)	  
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###	  Read	  Data	  
	  
rawData<-‐read.table("FullAlpha2aDescriptors.csv",header=TRUE,row.names=1,sep=',')	  
	  
###	  Preclear	  Data	  and	  Generate	  Folds	  
###	  	  	  any	  other	  filtering	  or	  subsetting	  should	  occur	  here	  
	  
badResps<-‐which(is.na(rawData[,1]))	  
rawData<-‐rawData[-‐badResps,]	  
dataFolds<-‐createFolds(rawData[,1],k=extFolds)	  
	  
rawDescs<-‐rawData[,firstData:(length(rawData[1,]))]	  
rawResps<-‐rawData[,respVar]	  
rawNames<-‐names(rawDescs)	  
	  
###	  Build	  an	  Optimized	  Subset	  Model	  
	  
buildOptModel	  <-‐	  function(extFold)	  {	  
	  	  	  
	  	  rawExtDescs<-‐rawDescs[dataFolds[[extFold]],]	  
	  	  externalResps<-‐rawResps[dataFolds[[extFold]]]	  
	  	  rawTrainDescs<-‐rawDescs[-‐dataFolds[[extFold]],]	  
	  	  trainingResps<-‐rawResps[-‐dataFolds[[extFold]]]	  
	  	  foldNames<-‐rawNames	  
	  	  	  
	  	  nZV<-‐nearZeroVar(rawTrainDescs,uniqueCut=5)	  
	  	  rawTrainDescs<-‐rawTrainDescs[,-‐nZV]	  
	  	  rawExtDescs<-‐rawExtDescs[,-‐nZV]	  
	  	  foldNames<-‐foldNames[-‐nZV]	  
	  	  	  
	  	  corMat<-‐cor(rawTrainDescs)	  
	  	  highCorr<-‐findCorrelation(corMat,cutoff=maxCorr)	  
	  	  rawTrainDescs<-‐rawTrainDescs[,-‐highCorr]	  
	  	  rawExtDescs<-‐rawExtDescs[,-‐highCorr]	  
	  	  foldNames<-‐foldNames[-‐highCorr]	  
	  	  nDesc<-‐length(foldNames)	  
	  	  	  
	  	  scaleFactors<-‐preProcess(rawTrainDescs,method=c('center','scale'))	  
	  	  trainingDescs<-‐predict(scaleFactors,rawTrainDescs)	  
	  	  externalDescs<-‐predict(scaleFactors,rawExtDescs)	  
	  	  	  
	  	  modelDescs<-‐as.vector(NULL)	  
	  	  modelScores<-‐as.vector(NULL)	  
	  	  modelStore<-‐as.list(NULL)	  
	  	  	  
	  	  for	  (initKount	  in	  seq(modelKount))	  {	  
	  	  	  	  modelStore<-‐append(modelStore,0)	  
	  	  	  	  newModel<-‐initModel(modelSize,nDesc)	  
	  	  	  	  modelDescs<-‐rbind(modelDescs,newModel)	  
	  	  	  	  trainingInput<-‐cbind(trainingResps,trainingDescs[modelDescs[initKount,]])	  
	  	  	  	  initFit<-‐buildModel(trainingInput)	  
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	  	  	  	  modelScores<-‐c(modelScores,getTrainPerf(initFit)$TrainAccuracy)	  
	  	  	  	  modelStore[[initKount]]<-‐initFit	  
	  	  }	  
	  	  	  
	  	  ###	  Check	  for	  duplication	  between	  models	  	  	  
	  	  while	  (	  sum(duplicated(modelDescs)!=0))	  {	  
	  	  	  	  dupedModel<-‐which(duplicated(modelDescs)==TRUE)[1]	  
	  	  	  	  modelDescs[dupedModel,]	  <-‐	  initModel(modelSize,nDesc)	  
	  	  	  	  trainingInput<-‐cbind(trainingResps,trainingDescs[modelDescs[dupedModel,]])	  
	  	  	  	  newFit<-‐buildModel(trainingInput)	  
	  	  	  	  modelScores[dupedModel]<-‐getTrainPerf(newFit)$TrainAccuracy	  
	  	  	  	  modelStore[[dupedModel]]<-‐newFit	  
	  	  }	  
	  	  	  
	  	  localTrace<-‐NULL	  
	  	  for	  (iters	  in	  seq(generations))	  {	  
	  	  	  	  	  
	  	  	  	  ###	  Check	  for	  duplicate	  descriptors	  in	  each	  model	  	  	  	  	  
	  	  	  	  for	  (j	  in	  seq(modelKount))	  {	  
	  	  	  	  	  	  unpack<-‐checkModel(modelDescs[j,])	  
	  	  	  	  	  	  if	  (length(unpack)==modelSize)	  {	  
	  	  	  	  	  	  	  	  modelDescs[j,]<-‐unpack	  
	  	  	  	  	  	  	  	  trainingInput<-‐cbind(trainingResps,trainingDescs[,modelDescs[j,]])	  
	  	  	  	  	  	  	  	  newFit<-‐buildModel(trainingInput)	  
	  	  	  	  	  	  	  	  modelScores[j]<-‐getTrainPerf(newFit)$TrainAccuracy	  
	  	  	  	  	  	  	  	  modelStore[[j]]<-‐newFit	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  }	  
	  	  	  	  }	  
	  	  	  	  	  
	  	  	  	  if	  (iters%%25==0)	  {	  
	  	  	  	  	  	  cat(c('Iteration	  ',iters[1],'\n'))	  
	  	  	  	  }	  
	  	  	  	  	  
	  	  	  	  parents<-‐sort(sample(modelKount,2))	  
	  	  	  	  	  
	  	  	  	  bpnt<-‐sample((1:(modelSize-‐1)),1)	  
	  	  	  	  	  
	  	  	  	  c1<-‐sort(c(modelDescs[parents[1],((1):(bpnt))],modelDescs[parents[2],((bpnt+1):(modelSize))]))	  
	  	  	  	  c2<-‐sort(c(modelDescs[parents[2],((1):(bpnt))],modelDescs[parents[1],((bpnt+1):(modelSize))]))	  
	  	  	  	  	  
	  	  	  	  if	  (sample(1:mutateProb,1)==2)	  {	  
	  	  	  	  	  	  newc1<-‐c1	  
	  	  	  	  	  	  newc1[sample(modelSize,1)]<-‐sample(1:nDesc,1)	  
	  	  	  	  	  	  c1<-‐sort(newc1)	  
	  	  	  	  }	  
	  	  	  	  	  
	  	  	  	  if	  (sample(1:mutateProb,1)==3)	  {	  
	  	  	  	  	  	  newc2<-‐c2	  
	  	  	  	  	  	  newc2[sample(modelSize,1)]<-‐sample(1:nDesc,1)	  
	  	  	  	  	  	  c2<-‐sort(newc2)	  
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	  	  	  	  }	  
	  	  	  	  	  
	  	  	  	  unpack<-‐checkModel(c1)	  
	  	  	  	  if	  (length(unpack)==modelSize)	  {	  
	  	  	  	  	  	  c1<-‐unpack	  
	  	  	  	  }	  
	  	  	  	  trainingInput<-‐cbind(trainingResps,trainingDescs[,c1])	  
	  	  	  	  c1model<-‐buildModel(trainingInput)	  
	  	  	  	  c1score<-‐getTrainPerf(c1model)$TrainAccuracy	  
	  	  	  	  	  
	  	  	  	  unpack<-‐checkModel(c2)	  
	  	  	  	  if	  (length(unpack)==modelSize)	  {	  
	  	  	  	  	  	  c2<-‐unpack	  
	  	  	  	  }	  
	  	  	  	  trainingInput<-‐cbind(trainingResps,trainingDescs[,c2])	  
	  	  	  	  c2model<-‐buildModel(trainingInput)	  
	  	  	  	  c2score<-‐getTrainPerf(c2model)$TrainAccuracy	  
	  	  	  	  	  
	  	  	  	  kids<-‐rbind(c1,c2)	  
	  	  	  	  kidscores<-‐c(c1score,c2score)	  
	  	  	  	  kidmodels<-‐as.list(1:2)	  
	  	  	  	  kidmodels[[1]]<-‐c1model	  
	  	  	  	  kidmodels[[2]]<-‐c2model	  
	  
	  	  	  	  	  
###	  figure	  out	  rank	  order	  for	  models	  	  	  	  	  
	  	  	  	  if	  (c1score	  !=	  c2score)	  {	  
	  	  	  	  	  	  if	  (	  kidscores[1]	  <	  kidscores[2]	  )	  {	  
	  	  	  	  	  	  	  	  cmax<-‐2	  
	  	  	  	  	  	  	  	  cmin<-‐1	  
	  	  	  	  	  	  }	  else	  {	  
	  	  	  	  	  	  	  	  cmax<-‐1	  
	  	  	  	  	  	  	  	  cmin<-‐2	  
	  	  	  	  	  	  }	  
	  	  	  	  }	  else	  {	  
	  	  	  	  	  	  cmin<-‐1	  
	  	  	  	  	  	  cmax<-‐2	  
	  	  	  	  }	  
	  	  	  	  	  
	  	  	  	  if	  (modelScores[parents[1]]	  !=	  modelScores[parents[2]])	  {	  
	  	  	  	  	  	  if	  (modelScores[parents[1]]<modelScores[parents[2]])	  {	  
	  	  	  	  	  	  	  	  pmin<-‐parents[1]	  
	  	  	  	  	  	  	  	  pmax<-‐parents[2]	  
	  	  	  	  	  	  }	  else	  {	  
	  	  	  	  	  	  	  	  pmin<-‐parents[2]	  
	  	  	  	  	  	  	  	  pmax<-‐parents[1]	  }	  
	  	  	  	  }	  else	  {	  
	  	  	  	  	  	  pmin<-‐parents[1]	  
	  	  	  	  	  	  pmax<-‐parents[2]	  
	  	  	  	  }	  
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###	  Replace	  Parents	  with	  Children	  if	  appropriate	  	  	  	  	  
	  	  	  	  if	  (	  kidscores[cmax]	  >=	  modelScores[pmax]	  	  ){	  
	  	  	  	  	  	  if	  (	  kidscores[cmin]	  >=	  modelScores[pmin]	  )	  {	  
	  	  	  	  	  	  	  	  modelDescs[pmax,]<-‐kids[cmax,]	  
	  	  	  	  	  	  	  	  modelDescs[pmin,]<-‐kids[cmin,]	  
	  	  	  	  	  	  	  	  modelScores[pmax]<-‐kidscores[cmax]	  
	  	  	  	  	  	  	  	  modelScores[pmin]<-‐kidscores[cmin]	  
	  	  	  	  	  	  	  	  modelStore[[pmax]]<-‐kidmodels[[cmax]]	  
	  	  	  	  	  	  	  	  modelStore[[pmin]]<-‐kidmodels[[cmin]]	  	  	  
	  	  	  	  	  	  }	  else	  {	  
	  	  	  	  	  	  	  	  modelDescs[pmin,]<-‐kids[cmax,]	  
	  	  	  	  	  	  	  	  modelScores[pmin]<-‐kidscores[cmax]	  
	  	  	  	  	  	  	  	  modelStore[[pmin]]<-‐kidmodels[[cmax]]	  
	  	  	  	  	  	  }	  
	  	  	  	  }	  else	  {	  
	  	  	  	  	  	  if	  (kidscores[cmax]	  >=	  modelScores[pmin])	  {	  
	  	  	  	  	  	  	  	  modelDescs[pmin,]<-‐kids[cmax,]	  
	  	  	  	  	  	  	  	  modelScores[pmin]<-‐kidscores[cmax]	  
	  	  	  	  	  	  	  	  modelStore[[pmin]]<-‐kidmodels[[cmax]]	  
	  	  	  	  	  	  }	  
	  	  	  	  }	  	  
	  	  	  	  	  
###	  Check	  for	  duplication	  in	  candidate	  models	  	  	  	  	  	  
	  	  	  	  while	  (sum(duplicated(modelDescs))==TRUE)	  {	  
	  	  	  	  	  	  dupe<-‐(which(duplicated(modelDescs)==TRUE)[1])	  
	  	  	  	  	  	  modelDescs[dupe,]<-‐	  initModel(modelSize,nDesc)	  
	  	  	  	  	  	  trainingInput<-‐cbind(trainingResps,trainingDescs[,modelDescs[dupe,]])	  
	  	  	  	  	  	  modelStore[[dupe]]<-‐buildModel(trainingInput)	  
	  	  	  	  	  	  modelScores[dupe]<-‐getTrainPerf(modelStore[[dupe]])$TrainAccuracy	  
	  	  	  	  	  	  	  
	  	  	  	  }	  
	  
	  	  	  	  ###	  Keep	  track	  of	  optimization	  performance	  for	  this	  cycle	  	  	  	  
	  	  	  	  localTrace	  <-‐	  cbind(localTrace,c(iters,min(modelScores),mean(modelScores),max(modelScores)))	  
	  	  }	  	  
	  	  	  
#	  	  trainingInput<-‐cbind(trainingResps,trainingDescs)	  
#	  	  trialModel<-‐train(trainingResps	  ~	  .,	  
data=trainingInput,method="svmRadial",metric="Accuracy",maximize=TRUE,tuneLength=5,trControl=modelCtrl)	  
	  	  	  
	  	  ###	  Construct	  a	  return	  value	  containing	  all	  the	  needed	  information	  
	  	  ###	  
	  	  ###	  Elements	  in	  the	  returned	  list	  are:	  
	  	  ###	  
	  	  ###	  	  	  1	  	  	  Training	  descriptors	  used	  for	  this	  fold	  
	  	  ###	  	  	  2	  	  	  Descriptor	  names	  used	  in	  this	  fold	  
	  	  ###	  	  	  3	  	  	  The	  normalization	  function	  for	  this	  fold	  
	  	  ###	  	  	  4	  	  	  Names	  of	  molecules	  in	  the	  external	  set	  
	  	  ###	  	  	  5	  	  	  Optimization	  performance	  for	  this	  fold	  
	  	  ###	  	  	  6	  	  	  List	  of	  actual	  model	  objects	  from	  train	  call	  
	  	  ###	  	  	  7	  	  	  List	  of	  internal	  validation	  values	  
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	  	  ###	  	  	  8	  	  	  List	  of	  external	  validation	  values	  
	  	  ###	  	  	  9	  	  	  List	  of	  external	  validation	  set	  prediction	  vectors	  
	  	  ###	  
	  	  	  
	  	  retval<-‐as.list(sequence(9))	  
	  	  retmods<-‐as.list(seq(returnedModels))	  
	  	  retint<-‐seq(returnedModels)	  
	  	  retext<-‐seq(returnedModels)	  
	  	  retExP<-‐as.list(seq(returnedModels))	  
	  	  modelOrder<-‐order(modelScores,decreasing=TRUE)	  
	  	  retval[[1]]<-‐trainingDescs	  
	  	  retval[[2]]<-‐foldNames	  
	  	  retval[[3]]<-‐scaleFactors	  
	  	  retval[[4]]<-‐row.names(externalDescs)	  
	  	  retval[[5]]<-‐localTrace	  
	  	  for	  (modno	  in	  seq(returnedModels))	  {	  
	  	  	  	  retmods[[modno]]<-‐modelStore[[modelOrder[modno]]]	  
	  	  	  	  retint[[modno]]<-‐getTrainPerf(retmods[[modno]])$TrainAccuracy	  
	  	  	  	  testValues<-‐predict(retmods[[modno]],externalDescs)	  
	  	  	  	  modelEval<-‐makeCCR(externalResps,testValues)	  
	  	  	  	  retext[[modno]]<-‐modelEval[1]	  
	  	  	  	  retExP[[modno]]<-‐seq(length(testValues))	  
	  	  	  	  retExP[[modno]]<-‐testValues	  
	  	  }	  
	  	  retval[[6]]<-‐retmods	  
	  	  retval[[7]]<-‐retint	  
	  	  retval[[8]]<-‐retext	  
	  	  retval[[9]]<-‐retExP	  
	  	  return(retval)	  
}	  
	  
	  
###	  Main	  Driving	  Loop	  
	  
rawOutput<-‐as.list(seq(extFolds))	  
	  
#	  Maybe	  try	  to	  use	  foreach	  to	  parallelize?	  
	  
for	  (efold	  in	  seq(extFolds))	  {	  
	  	  cat(c('Building	  fold	  ',efold,'\n'))	  
	  	  rawOutput[[efold]]<-‐buildOptModel(efold)	  	  	  
	  	  	  
}	  
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