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Abstract
ZEYNEP ALMULA ÇAMDERELI: Operational Inefficiencies in Supply Chains:

Performance, Coordination and the Role of Information Systems.
(Under the direction of Jayashankar M. Swaminathan.)

Misplaced inventory is a major operational inefficiency in supply chains and it happens

when items are not in their designated places and hard to find in a store. In this thesis, we

focus on misplaced inventory and inventory shrinkage, which is a special case of inventory

misplacement. Information technology is facilitating significant reductions in these opera-

tional inefficiencies. However, such technologies are generally very expensive to implement.

This dissertation intends to fill the gap of knowledge about the effects of operational ineffi-

ciencies in supply chains of various forms and the role of information systems in mitigating

such inefficiencies that often get reflected in poor performance. We do this through three

separate essays using analytical research methods.

In the first essay, “Coordination of a Supply Chain under Misplaced Inventory”, we

consider a supply chain where a proportion of the items ordered become unavailable for sale

due to misplacement at the retailer. We investigate the effects of increasing the proportion

of inventory availability at the retailer on the profits of the retailer and the manufacturer

in vertically integrated and decentralized supply chains where we study uncoordinated and

coordinated supply chains.

In the second essay, “Misplaced Inventory and RFID: Information and Coordination”, we

consider Radio Frequency Identification (RFID) technology to mitigate the negative effects of

inventory misplacement. We consider both fixed and variable costs for RFID implementation
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and assume that the fixed cost is shared between the two using an arbitrary proportion while

the variable cost could be charged to either the retailer or the manufacturer. We characterize

the incentives of the parties in the supply chain to invest in RFID in vertically integrated,

uncoordinated and coordinated supply chains.

In the third essay, “Inventory Management under Shrinkage and Customer-Driven Search”,

we consider a supply chain with a single supplier and two retailers under customer search

experiencing shrinkage at the retailers, who face nonidentical random demands. Through a

single-period model, we explore the effects of shrinkage and competition on the equilibrium

stocking decisions and characterize conditions for the parties to benefit from a unilateral

reduction in shrinkage.

iv
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Chapter 1

Introduction and Motivation

Operational inefficiencies are prevalent in many industries. An empirical study by Raman,

DeHoratius and Ton (2001) show that inventory inaccuracy and inventory misplacement are

two major operational inefficiencies in the retail stores. Inventory inaccuracy is defined as

a mismatch between the physical inventory in the store and the system record. Transaction

error is one reason for inventory inaccuracy to occur. This may happen, for example when

a case of diet coke is scanned as regular coke. In such a case, the system will indicate that

the store has one more case of regular coke than the store has but, in reality, the store has

one more case of diet coke than the system indicates. Hence, the inventory inaccuracies

due to transaction errors lead to errors in both positive and negative directions and the

amount of physical inventory can be more than the system record. In this thesis, we focus

on misplaced inventory cases where the amount of physical inventory available to customers

is always less than the system record. Inventory misplacement happens when items are

not in their designated places and hard to find in a store; therefore, they are not available

for customers. However, one can retrieve them back once the store performs an inventory



clean-up. Information technology is enabling reduction in such operational inefficiencies in a

significant manner. However, they often are very expensive to implement. This dissertation

intends to fill the gap of knowledge about the effects of operational inefficiencies, in particular

misplaced inventory, in supply chains of various forms and the role of information systems

in mitigating such inefficiencies that often get reflected in poor performance.

The empirical work by DeHoratius and Ton (2001) reveals that inventory misplace-

ment is an important operational inefficiency and the rate of misplacement could be as

high as 16% in some cases. Items can be misplaced in storage areas as well as in stores.

Inventory misplacement is one of the major causes of stockouts. It was reported that

“about 35 percent of store out-of-stocks are caused by physical inventory misplacement”

(http://www.privatelabelbuyer.com/). Not only in retailers, this problem is prominent in

other settings as well. For example, the U.S. Navy lost more than $3 billion worth of invento-

ries between 1996 and 1998 (McCutcheon, 1999). Inventory misplacement can be expensive

even for organizations operating under a small rate of misplacement. For example, Delta

Airlines has a high baggage-handling efficiency rate of 99%. However, the 1% of misplaced

bags costed Delta about $100 million a year.

The first chapter of this dissertation titled “Coordination of a Supply Chain under Mis-

placed Inventory” focuses on a single period analysis and is applicable for settings such as

inventory in toy stores during weeks prior to Christmas where the items might be misplaced

during the season and are retrieved at the end of it. We study two forms of supply chains

under misplaced inventory: a vertically integrated supply chain and a decentralized supply

chain. Even the vertically integrated case itself is interesting at an operational level. For
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example, we prove that (counter to intuition) it is not always optimal to order more than

before if the firm misplaces more products, i.e. experiences a decrease in her inventory

availability level. We show that in the optimum, the firm orders less as more products are

misplaced if the products are not attractive to stock. Even if the products are attractive to

stock, we prove that the firm still orders less as more products are misplaced if the inventory

availability level before further misplacement was already low. This is due to the effective

cost of acquiring one more unit becoming too high for the firm, so she prefers to produce

less as inventory availability level decreases. Next, we study bilaterally decentralized supply

chains under misplaced inventory in two main forms: uncoordinated supply chains where

we allow for gaming between the parties and coordinated supply chains. Building on the

contracts developed earlier by researchers (Pasternack, 1985; Cachon and Lariviere, 2005),

we provide the conditions under which the supply chain under misplaced inventory will be

coordinated via buy-back and revenue sharing mechanisms. Contrary to the popular belief

in press, we show that a leading manufacturer may indeed benefit from an improvement in

availability more than the retailer does under some conditions.

One of the ways to handle operational inefficiencies is through Radio Frequency Identi-

fication Devices (RFID) that could provide visibility to track items. Although the history

of the RFID technology traces back to World War II, supply chains developed a special

interest in RFID when Walmart required her top 100 suppliers to adopt RFID at the pal-

let level in 2003. RFID is being adopted by a large number of players such as Walmart,

Marks & Spencer, Tesco and Metro Group at both retail and warehouse levels although

this technology could be expensive to implement. For example, a typical consumer pack-
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aged goods manufacturer is estimated to spend from $13 million to $23 million on RFID

adoption, including various fixed and variable costs, for shipping 50 million cases per year

(Asif and Mandviwalla, 2005). RFID has been publicized as a very promising technology for

retail stores. According to sources as Gartner, Accenture and Forrester Research, RFID has

increased sales by 3-7% due to stock availability and reduced losses due to theft by 40-50%

(http://www.usingrfid.com). However, the costs of adoption and implementation have be-

come a source of supply chain conflict and debate. Who pays for the tagging expenses and

who benefits from the technology have become a major issue in the supply chains.

The second chapter of this dissertation titled “Misplaced Inventory and RFID: Informa-

tion and Coordination ” studies incentives of players in supply chain to invest in RFID to

remove inefficiencies of misplaced inventory. We consider both fixed and variable costs of

adoption of RFID in a vertically integrated and a bilaterally decentralized supply chain, for

which we study uncoordinated and coordinated environments. We analyze scenarios where

the fixed cost of adoption are shared and study both cases where only the retailer or only the

manufacturer pays for the variable costs of adoption, i.e. tagging expenses. We show that

it does not matter who pays for the tagging expenses since the manufacturer transfers the

tag price to the wholesale price if she bears the tagging expenses. However, we prove that

relative fixed cost payments of parties lead to interesting conclusions in the characterization

of who benefits from this investment. Our results support the current reactions of the supply

chains to the RFID and show that unless the fixed cost of RFID is sufficiently low and the

tag prices are cheap enough, no party would benefit from an investment in this technology.

However, we also find results counter the common opinion that the main beneficiaries of
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RFID will be the retailers. We characterize conditions under which the manufacturer, being

a leader in our model, may actually benefit more than the retailer from an investment in

RFID.

Shrinkage is a special form of inventory misplacement. When items are lost due to mis-

placement, they are found once an inventory clean-up is performed. However, when items are

lost due to shrinkage, they can not be retrieved back and thus, the physical number of items

is always less than the system record. Today, worldwide theft is estimated to cost retailers

$50 billion a year (http://www.rfidupdate.com). The risk of stock-outs due to shrinkage

escalates during peek demand periods. If there is competition, the retailers can be signifi-

cantly hurt by the out-of-stocks during these periods. The third essay of this dissertation

titled “Inventory Management under Shrinkage and Customer-Driven Search” considers a

supply chain with one supplier and two retailers subject to inventory shrinkage through a

single-period model. In this essay, we study shrinkage caused primarily by shoplifting or

employee theft. Here, we explore the effects of shrinkage and competition on the equilibrium

stocking decisions. We also characterize conditions for the parties to benefit from a unilat-

eral reduction in shrinkage. Further, we study the effects of market search on the stocking

decisions.
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Chapter 2

Coordination of a Supply Chain under

Misplaced Inventory

2.1. Introduction and Related Literature

Misplaced inventory is a major operational inefficiency in many supply chains. Raman,

DeHoratius and Ton (2001) empirically show that 16% of the items were lost in a store due

to misplacement of items. Besides commercial firms, losing goods became a huge problem

even for the Navy. McCutcheon (1999) reveals that the Navy lost more than $3 billion

worth of goods between 1996 and 1998, which is evaluated as “roughly the equivalent of

misplacing three destroyers”. Misplaced inventory is also present in warehouse operations.

G.T Interactive, the creator of computer games like Doom II and Driver, suffered from low

productivity due to inventory misplacement in the warehouse. Fundamentally what happens

in these settings is that the product is misplaced in the supply chain and is unavailable during

the sales period but can be retrieved back when a cleanup is performed. Stores may apply



different methods to tackle the problem of misplaced inventory. For example, in some apparel

departments of retailers there are signs informing customers not try to return the product to

their original location if the customer decides not to buy the product after trying it. Some

libraries cope with the misplacement problem by putting signs which tell the customers not

to reshelf the books after use while others have designated spaces for returning books taken

off the shelf.

In this chapter, we consider an environment where a firm sells a single product. A pro-

portion of the items that are ordered become unavailable for sale due to misplacement at the

retailer. In a single period setting, we assume that these misplaced items can be recovered

at the end of the period. We find the optimal inventory policy for a centralized firm when

the demand is uncertain and compare the optimal ordering quantity under misplacements

with the optimal ordering quantity under 100% availability. In addition, we analyze the

behavior of the optimal ordering quantity with respect to changes in the level of availability

at the retail store. We also study the decentralized case where a retailer and a manufacturer

act as different parties. We give conditions for coordinating the channel under buyback

and revenue sharing contracts. We characterize situations under which the supply chain is

coordinated with the above mechanisms and identify the most profitable contracts for the

manufacturer and the retailer. Our research goals include understanding how a vertically

integrated supply chain as well as a decentralized supply chain are affected by inventory

misplacement; how coordination mechanisms could be used under misplaced inventory set-

ting and how the retailer and the manufacturer are affected by improvements in misplaced

inventory. This chapter builds upon three streams of literature: misplaced inventory and
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inventory inaccuracy, random yield and supply chain contracting.

DeHoratius and Raman (2004) empirically study the drivers of inventory inaccuracy and

find that inventory record inaccuracy is positively related with the annual selling quantity

of that item, inversely associated with the cost of that item, positively associated with the

inventory density and product variety. Inventory management models under stochastic de-

mand have been studied by researchers over a number of years (see Swaminathan and Tayur

(2003) for a recent review). A model for inventory inaccuracy was first studied by Iglehart

and Morey (1972) who developed an adjusted inventory policy to minimize the expected to-

tal cost per unit time subject to the probability of errors due to inventory inaccuracy being

below a preset level. More recently, Kök and Shang (2004) develop an effective inspection

and replenishment policy for the retailer and show that an inspection adjusted base stock

policy (IABS) is optimal for a single period problem. Due to inability to characterize the

convexity of the objective function, they construct lower bounds for the finite horizon prob-

lem and show that the IABS achieves these lower bounds. In another recent paper, Kang

and Gershwin (2004) explore inventory inaccuracy caused by shrinkages using a simulation

study. Their results show that even a small rate of undetected shrinkage may lead to serious

disruptions in the inventory management system. DeHoratius, Mersereau and Schrage (2005)

model inventory inaccuracy through an invisible demand process and study the problem in

a periodic review inventory policy system with unobserved lost sales.

RFID technology could act as a solution to inventory inaccuracy. Lee and Özer (2005)

study the benefits of RFID technology for inventory inaccuracy. Gaukler, Seifert and Haus-

man (2004) study coordination issues in RFID implementation to remove inventory inaccu-
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racy. As opposed to the above papers on inventory inaccuracy, in this chapter, we study a

particular form of inventory inaccuracy problem that stems from misplacement of inventory

at the retail store. Empirical evidence of misplaced inventory can be found in Ton and

Raman (2004). They use a four-year longitudinal study to explore the effects of product

variety and inventory level per product on misplaced products. They find that product vari-

ety and inventory levels are significant drivers of misplacement. Most recently, Rekik, Sahin

and Dallery (2005) independently researched misplaced inventory assuming normal demand

under three conditions: (1) where the retailer is not aware of the misplacement problem, (2)

the retailer knows the misplacement problem and optimizes accordingly and (3) the retailer

uses an auto-id system to remove misplacement completely. They computationally study the

benefit of such information systems. Our work is distinguished from their model in that we

consider a situation where the retailer is aware of misplacement and optimizes the inventory

under general demand conditions. In addition to identifying the optimal inventory policy for

a centralized retailer, we also study supply chain coordination and gaming issues associated

with misplaced inventory and benefits of improving inventory availability at the retailer.

The random yield literature is the second stream related to our work. In this, researchers

assume that a proportion of items get lost forever. Henig and Gerchak (1990) provide

an analysis of general periodic review model for random yield for both finite and infinite

horizons. Bassok and Akella (1991) consider a manufacturing facility that faces stochastic

demand and arrival process for the raw materials. The readers are referred to Yano and

Lee (1995) for an extensive review of random yield literature. As opposed to random yield,

under misplaced inventory, misplaced items during the period can be found when there is a

9



cleanup.

The third stream of related literature is that of supply chain contracting (see Cachon

(2003) for a recent review). Revenue sharing contracts are relevant to our research. Dana

and Spier (2001) coordinate a supply chain with a monopolist manufacturer and competitive

downstream firms with a revenue sharing contract. Cachon and Lariviere (2005) clarify the

link between buyback and revenue sharing contracts and show that one can always find a

unique buyback contract that generates the same profits for each firm as any revenue sharing

contract. We study the revenue sharing contract for the misplaced inventory problem. We

can easily extend our findings here for a revenue sharing contract to buyback contracts

(Çamdereli 2007).

The remainder of the chapter is organized as follows. We study the effects of inventory

misplacement in a vertically integrated supply chain and a decentralized supply chain in

Section 2.2 when demand is characterized by a general distribution. In the context of the

decentralized supply chains, we analyze supply chains under a wholesale price contract and

those under a revenue sharing contract. In Section 2.3, we gain insights on the results that

we show in Section 2.2 through closed form solutions for uniformly distributed demand. In

addition to revenue sharing, we further analyze supply chain coordination via a buyback

contract mechanism in this section. We extend our analysis to inventory misplacement as a

random variable and inventory availability as a function of the order size in Section 2.4.

10



2.2. Basic Model

In this chapter, we consider models that optimize inventory under misplacements for a single

product in a single period setting. We study a vertically integrated supply chain in Section

3.2 and a bilaterally decentralized supply chain in Section 3.3. In the context of decentralized

supply chains, we analyze those which are under a wholesale price contract and those under

a revenue sharing contract. Demand is assumed to occur according to a general distribution

with a finite mean in the aforementioned settings.

2.2.1 Centralized firm

In the centralized setting, we assume that the manufacturer owns the retailer. For conve-

nience, we will refer to the centralized manufacturer/retailer as the centralized firm. The

centralized firm orders at c per unit and sells to customers at p per unit. In practice, items

may get misplaced due to reasons such as customers putting them in the wrong location

during shopping, employees labeling products incorrectly and shipments to incorrect retail

locations from the warehouse. This process may be happen gradually during the sales season.

Although it would be interesting research in its own right to model the gradual misplace-

ment of inventory during the season, our aim in this work is not to study the misplacement

dynamics in detail but to address the managerial implications at the retailer and the supply

chain of such misplacement. As a result, in our model we will settle for an approximate

modeling of misplaced inventory. We will assume that as soon as the order is complete, a

fraction l of the inventory gets misplaced and is temporarily lost. Thus, only a (= 1 − l)
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proportion of total ordered items are available to the end customers. After the selling sea-

son, the firm cleans up the store and retrieves the entire misplaced inventory. One could

think of this setting as an upper bound on the expected penalty incurred under misplaced

inventory since misplacement occurs before demand. In additional to sufficiently simplifying

the analysis, this may be a reasonable approximation of misplacement in some real settings

as well. An example of such a setting would be inventory in toy stores during the often

chaotic Christmas season where one can find a lot of misplaced inventory on the floor but

everything gets into an orderly state after a cleanup at the end of the selling season. The

assumptions related to a fixed quantity independent proportion a for availability is relaxed

for the random availability case as well as quantity dependent availability case in Section

4. Let QC be the total items ordered by the centralized firm. It is to be noted that there

will be at least lQC leftover inventory at the end of the season. The remaining inventory

at the end of the period is salvaged at s per unit. A penalty of gC per unit is assessed for

unsatisfied demand to account for the cost of lost goodwill. We assume that Assumption 1

holds for analysis throughout the chapter to make the firm participate and sell the product.

Assumption 1: s < c < p

When the centralized firm does not lose any inventory, i.e. when the availability pro-

portion is 1, the problem is a newsvendor formulation. The centralized firm’s profit under

perfect availability ( a = 1 ) and partial availability ( 0 < a < 1 ) are stated in (2.1) and

(2.2), respectively. We will use QN and QC to denote newsvendor ordering quantity and

ordering quantity under partial availability respectively. The expected profits of the firm

under perfect availability and partial availability are given by

12



EPCN(QN) = −cQN + p{µ +

∫ ∞

QN

(QN − ξ)f(ξ)dξ} − gC

∫ ∞

QN

(ξ −QN)f(ξ)dξ

+s

∫ QN

0

(QN − ξ)f(ξ)dξ (2.1)

EPC(QC) = −cQC + p{µ +

∫ ∞

aQC

(aQC − ξ)f(ξ)dξ} − gC

∫ ∞

aQC

(ξ − aQC)f(ξ)dξ

+s{
∫ ∞

aQC

lQCf(ξ)dξ +

∫ aQC

0

(QC − ξ)f(ξ)dξ} (2.2)

All of the proofs are given in Appendix A.

Theorem 1

1. EPC(QC) is a concave function of QC .

2. Let ã = (c−s)
(p+gC−s)

and 0 < a < 1 . The optimal ordering amount is

Q∗
C =





(
1
a

)
F−1

(
1− ã

a

)
> 0 iff a > ã.

0 otherwise

(2.3)

Theorem 1 characterizes the optimum order, which is positive if and only if availability level

is greater than a threshold value. Next, we compare the optimum order under inventory

misplacement with the classical Newsvendor quantity (Q∗
N = F−1 (1− ã)).
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Corollary 1 Let us assume that EPC ′
N is the classical Newsvendor function where one

makes a transformation of c′ = c/a− (1− a)s/a. Then, Q∗
C = Q∗′

N/a where

Q∗′
N = argmax

QN

EPC ′
N

The above indicates that this problem can be made equivalent to a classical Newsvendor

problem with an appropriate adjustment to cost of ordering followed by a deflation of the

resulting solution by a fraction a. Since only a proportion of products are available for sale,

the cost is deflated by a and then adjusted because there is a guaranteed salvage on 1 − a

proportion at the end of the season.

Corollary 2 For 0 < a < 1 ,





Q∗
C < Q∗

N if (1− ã
a
) < F (aF−1(1− ã))

Q∗
C > Q∗

N if (1− ã
a
) > F (aF−1(1− ã))





It is clear that the values of Q∗
C and Q∗

N are equal when inventory availability is 100%

(a = 1). The ordering of Q∗
C and Q∗

N depends on the demand distribution. We will identify

the condition for a uniform demand in Section 2.3.1.

Next we explore how improvements in the inventory availability level affect the opti-

mal ordering quantity and the optimum profit of the centralized firm. Availability can be

improved in several ways such as RFID implementation (as studied in Çamdereli and Swami-

nathan, 2006). In this chapter we only look at benefits neglecting the investments needed to

improve availability. However, any linear or convex costs for information availability can be

incorporated easily in our analysis.
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Lemma 1 For a general distribution of demand, the following results hold.

1.
∂Q∗C
∂a

> 0 if and only if g[aQ∗
C ] < 1 where g[x] = xf(x)

1−F (x)
.

2. ∂EPC(Q∗
C)/∂a > 0.

3. Let us call ν(Q∗
C) = a

Q∗C

∂Q∗C
∂a

. Optimal centralized profit is

(a) an increasing concave function of availability if ν(Q∗
C) < 1 and

(b) an increasing convex function of availability if ν(Q∗
C) > 1 .

g[x] = xf(x)/(1 − F (x)) is often called the generalized failure rate (see Lariviere and

Porteus, 2001 for an application of the generalized failure rate in inventory). The generalized

failure rate is the elasticity of 1−F (x). In other words, it approximately shows the percentage

decrease in the probability of a stockout from increasing the stocking quantity by 1%. Hence,

g[aQ∗
C ] = aQ∗

Cf(aQ∗
C)/(1 − F (aQ∗

C)) is the generalized failure rate evaluated at aQ∗
C and

shows the percentage decrease in the stockout probability from increasing the number of

available items by 1%. When g[aQ∗
C ] < 1, the probability of a stockout can still be improved

for a percentage increase in the number of available items. In such a case, one would

increase the optimal order quantity even if the inventory availability improves. However, if

g[aQ∗
C ] > 1, the probability of a stockout increases by more than 1% as a result of increasing

the available items by 1%. In this case, increasing the optimum order quantity leads to a high

value of cost of overage and it is optimum to decrease the order quantity when availability

improves.
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Further, Lemma 1 shows that the firm always benefits from an improvement in inventory

availability. We term ν(Q∗
C) as the availability elasticity of optimum order quantity. Thus, it

shows the percentage change in the optimum order for a percentage change in the availability.

The behavior of the optimum profit with respect to changes in availability depends on the

availability sensitivity of the optimum order. For example, if the optimum order increases in

availability and it is sensitive to changes in availability (ν(Q∗
C) > 1), profit function will be an

increasing concave function of inventory availability. In this case, if the order is insensitive to

changes in availability (ν(Q∗
C) < 1), then the profit function is a convex increasing function.

If the order decreases as availability increases, profits always increase concavely.

2.2.2 Decentralized Supply Chain

For the decentralized case, we assume that the retailer and the manufacturer are two inde-

pendent parties. The manufacturer acts as a Stackelberg leader and reveals the wholesale

price to the retailer. The retailer decides the amount to order based on the wholesale price.

As soon as the order arrives, 0 < l < 1 proportion of inventory gets misplaced in the retail

store, therefore making a = 1− l proportion of the order available to end customers. Retail

price of the product, p per unit, is assumed to be exogenous. The leftover inventory is sal-

vaged at s per unit. Similar to the model by Pasternack (1985), penalty per unit for unmet

demand incurred by the centralized manufacturer is shared between the independent manu-

facturer and the independent retailer. The retailer incurs gR per unit and the manufacturer

incurs gM = gC − gR per unit of unsatisfied demand.
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We will explore two different scenarios under decentralized case. First, we analyze a set-

ting where the supply chain is under a wholesale price contract, i.e. there is no coordination

between the manufacturer and the retailer. In the latter setting, we coordinate the supply

chain via a revenue sharing contract. The coordination of the supply chain means that there

will be no losses in the total supply chain profits as compared to the centralized firm’s profit.

Assumption 1 ( s < c < p ) is necessary but not sufficient for the retailer and manufacturer

to participate in the selling season. Thus, we modify Assumption 1 as in Assumption 2

for supply a chain under a wholesale price contract. However, the wholesale price being

greater than the marginal cost is very restrictive for revenue sharing contracts (Cachon and

Lariviere, 2005). Therefore, we will require only Assumption 1 for supply chains under a

revenue sharing contract due to the nature of the mechanism. The wholesale price will be

denoted by w and w will become subscripted to note different supply chain scenarios.

Assumption 2: s < c < w < p

2.2.2.1 No coordination

In this setting, there is no mechanism to coordinate the supply chain. The retailer’s and the

manufacturer’s profit functions under no coordination are shown by (2.4) and (2.5) in that

order. We use wD to indicate the wholesale price announced by the manufacturer and QD

for the quantity ordered by the retailer under a wholesale price contract.

EPRD(QD) = −wDQD + p

{
µ−

∫ ∞

aQD

(ξ − aQD)f(ξ)dξ

}
− gR

∫ ∞

aQD

(ξ − aQD)f(ξ)dξ +
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s

{∫ aQD

0

(aQD − ξ)f(ξ)dξ + lQD

}
(2.4)

EPMD(wD) = QD(wD − c)− gM

∫ ∞

aQD

(ξ − aQD)f(ξ)dξ (2.5)

Since the manufacturer is the leader, she maximizes her profit subject to maximization

of the retailer’s profit function. Therefore, the optimal ordering quantity, Q∗
D , is actually a

function of wD and is equal to arg max
QD

EPRD(QD) . In the optimum, the manufacturer’s

profit function is composed of marginal revenue of producing and selling Q∗
D items and the

manufacturer’s share of the penalty cost of unsatisfied demand.

Theorem 2 If demand distribution has an increasing generalized failure rate, the optimum

order solves the following where ã is given by Theorem 1. The optimum wholesale price is

given by (2.7).

F (aQD) + aQDf(aQD)
p + gR − s

p + gC − s
= 1− ã/a (2.6)

w∗
D = a(p + gR − s)[1− F (aQ∗

D)] + s (2.7)

Theorem 2 applies to many common demand distributions such as normal, exponential

and uniform as these distributions have an increasing generalized failure rate.

Lemma 2 In an uncoordinated environment, the following findings hold.
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1. ∂
∂a

EPRD(Q∗
D(a); a) > 0 if and only if

∂w∗D
∂a

< (p + gR − s)(1− F (aQ∗
D)).

2. ∂
∂a

EPMD(w∗
D(a); a) > 0.

We find that the retailer benefits from an increase in availability as long as the wholesale

price does not increase by more than (p + gR − s)(1 − F (aQ∗
D)), which is equivalent to

(w∗
D− s)/a after substituting (2.7) for w∗

D. Being a leader, the manufacturer always benefits

from an improvement in availability as well. In Section 2.3.2.1, we compare the amount

of benefits that they can extract from an improvement in the inventory availability when

demand is uniformly distributed. Note that Q∗
D < Q∗

C ; therefore, there will be double

marginalization losses in the supply chain. Next, we analyze coordination of a supply chain

under inventory misplacement with a revenue sharing contract.

2.2.2.2 Coordination with Revenue Sharing

In this section, we analyze a case where revenue sharing is used as means to coordinate the

channel. In this setting, the events take place in the same sequence as in the uncoordinated

decentralized case. The retailer agrees to take 0 < γ < 1 proportion of all of her positive

earnings, i.e. sales and salvage earnings, and gives the manufacturer (1- γ ) proportion of

them. We require only Assumption 1 to hold and we do not make any restrictions on the

wholesale price.

The retailer’s and the manufacturer’s profit functions are as formulated in (2.8) and (2.9)

in that order. We assume that neither the manufacturer nor the retailer can change γ .
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EPRRS(QRS) = −wRSQRS − gR

∫ ∞

aQRS

(ξ − aQRS)f(ξ) + (2.8)

γ

[
p

(
µ−

∫

aQ∞RS

(ξ − aQRS)f(ξ)dξ

)
+ s

(∫ aQRS

0
(aQRS − ξ)f(ξ)dξ + lQRS

)]

EPMRS(wRS)=QRS(wRS − c)− gM

∫ ∞

aQRS

(ξ − aQRS)f(ξ)dξ (2.9)

(1− γ)
[
p

(
µ−

∫ ∞

aQRS

(ξ − aQRS)f(ξ)dξ

)
+ s

(∫ aQRS

0
(aQRS − ξ)f(ξ)dξ + lQRS

)]

Lemma 3 The supply chain is coordinated for wRS set to the following.

w∗
RS =

(c− s)[γ(p− s) + gR]

p + gC − s
+ γs (2.10)

As seen in (2.10), the supply chain is coordinated for a wholesale price which is inde-

pendent of the inventory misplacement. This happens due to the reason that the retailer

misplaces the inventory and pays the manufacturer for the entire Q∗
RS = Q∗

C . Mathemati-

cally speaking, since we are coordinating the supply chain under inventory misplacement and

equating Q∗
RS with the optimum order of the centralized firm under inventory misplacement,

availability expressions cancel out. We further observe that the optimum wholesale price

does not depend on the demand distribution either.

Next, we explore the effects of improving inventory availability on the retailer’s and the
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manufacturer’s profits.

Theorem 3

1. The retailer always benefits from an improvement in inventory availability.

2. The manufacturer benefits from an improvement in inventory availability if and only

if the following holds.

g[aQ∗
C ] < Ȳ1 =

c(p + gC − s)

(cgR + sgM) + (p− s)[(1− γ)s + γc]
(2.11)

(a) If Ȳ2 < g[aQ∗
C ] < Ȳ1, then the retailer always benefits more than the manufacturer.

(b) If g[aQ∗
C ] < Ȳ2, then the manufacturer always benefits more than the retailer

where g[aQ∗
C ] is the generalized failure rate evaluated at aQ∗

C, Q∗
C is given by

Theorem 1 and

Ȳ2 =
c(p + gC − s)

2(c− s)[γ(p− s) + gR] + s(gC + p− s)
< Ȳ1 (2.12)

Theorem 3 shows that an improvement in inventory availability always benefits the re-

tailer. Although the manufacturer is the leader, her extracting benefits from the supply

chain is contingent upon the condition specified in Theorem 3.2. The common intuition

among the practitioners is that the downstream players will be the main beneficiaries from

reductions in inventory misplacement. However, here we show that if the generalized failure

rate of the demand distribution evaluated at the amount of the optimum available inventory

is smaller than a threshold value, the manufacturer benefits more from an improvement in
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Figure 2.1: Benefits accruing to the retailer versus the manufacturer for an improvement in
availability

inventory availability than the retailer does. Figure 2.1 illustrates the regions specified in

Theorem 3.2.

2.3. Special Case: Uniform Demand

In order to gain insights through closed form expressions, we assume that demand is dis-

tributed uniformly in [0, β] throughout this section.

2.3.1 Centralized firm

The profit function of a classical Newsvendor under 100% availability given by Expression

(2.1) and that of a centralized firm under inventory misplacement given by expression (2.2)

are simplified as follows for uniform demand.

EPCN(QN) = QN(gC + p− c)−Q2
N

(
gC + p− s

2β

)
− gCµ
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EPC(QC) = QC(a(gC + p− s)− (c− s))−Q2
Ca2

(
gC + p− s

2β

)
− gCµ

Theorem 4

1. Let ã = c−s
p+gC−s

and 0 < a < 1 . The optimal ordering quantities are

(a) Q∗
N = (1− ã)β > 0

(b)

Q∗
C =





(1/a)(1− ã/a)β̃ > 0 if and only if a > ã

0 otherwise

(2.13)

Theorem 4 specifies the optimal ordering quantities for the centralized firm under perfect

and partial availability. If availability is less than a threshold value, the firm basically leaves

the market. Next, we benchmark the optimal ordering quantity under partial availability

with the newsvendor optimal ordering quantity.

Corollary 3

1. Q∗
N = Q∗

C if a = 1

2. For ã < a < 1,





Q∗
N ≤ Q∗

C if and only if a ≥ ã
1−ã

Q∗
N > Q∗

C otherwise

Generally one would expect that the ordering quantity for the centralized firm under

partial availability should be greater than the newsvendor ordering quantity because some
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items are becoming unavailable to customers during the selling season. However, Corollary

3 leads to an interesting conclusion that the centralized firm under partial availability does

not always order more than the newsvendor optimal ordering quantity.

The two optimal ordering quantities become equal to each other at two levels of availabil-

ity, for a = 1 and for a = ã/(1− ã) if ã < .5 where ã is the cost of overage divided by the cost

of underage plus overage in the newsvendor setting under perfect availability. Thus, ã gives

us an intuition about attractiveness for stocking the item. If the items are unattractive, i.e.

ã > .5 , ã/(1 − ã) will become greater than one and the optimal ordering quantity under

partial availability will always be less than the newsvendor optimal ordering quantity for any

value of availability. Therefore, the optimal ordering quantity under partial availability can

never reach the newsvendor ordering quantity until 100% availability for unattractive items.

We would intuitively think that if the items are more attractive to stock, it is always

better to produce more than the newsvendor optimal ordering quantity if the centralized

manufacturer is operating under low inventory availability. However, Corollary 3 shows that

even if the items are more attractive to stock, i.e. ã < .5 , if the existing availability level

is less than a threshold value ( a < ã/(1 − ã) ), the effective cost of acquiring an item will

be too high. In such a case, it will always be optimal to order less under partial availability

than the newsvendor optimal ordering quantity.

Next we explore how improvements in the inventory availability level affect the optimal

ordering quantity and the optimum profit of the centralized firm.

Lemma 4 For the centralized firm:
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1.
dQ∗C
da

is





< 0 if and only if a > 2ã

≥ 0 otherwise

2.
d2Q∗C
da2 is





> 0 if and only if a > 3ã

≤ otherwise

3. For Q∗
C > 0, EPC(Q∗

C) is

(a) an increasing concave function of availability if a > 1.5ã and

(b) an increasing convex function of availability if a < 1.5ã.

One may expect the optimal ordering quantity to decrease with an increase in inventory

availability level. As shown by Lemma 4.1, the optimal ordering quantity is not monoton-

ically increasing or decreasing in the availability level for all cases. In Section 2.2.1, we

characterized the behavior of the optimum order quantity as inventory availability changes

for a general distribution of demand. When demand is distributed uniformly, 2ã is the value

of availability for which g[aQ∗
C ] = 1. If a > 2ã, g[aQ∗

C ] > 1 and vice versa for a < 2ã .

Hence, the optimum order quantity does increase as availability increases if a < 2ã.

Lemma 4.1 and Lemma 4.2 completely characterize the behavior of the optimum order

in 3 different cases: ã < (1/3) , (1/3) ≤ ã < (1/2) and ã ≥ (1/2) . Figure 2.2 shows how

the optimal ordering quantity changes with respect to availability for all three cases. The

profitability of items decreases from case 1 to case 3. For the first two cases, we see that the

optimal ordering quantity under partial availability increases in availability till a threshold

value, and then it decreases. In case 1, the optimal ordering quantity is a decreasing convex
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Figure 2.2: The optimal ordering quantity versus availability proportion

function of inventory availability after 3ã . However, in the second case, we do not observe

any convex behavior because 3ã lies beyond 1. The first two cases show that even when

the critical fractile ( 1 − ã ) is high, it is optimal to order less if there is a decrease in

current availability level given that the current availability level is sufficiently low (less than

2ã ). This happens because of the fact that the existing availability level is too low such

that the effective cost of producing one more item becomes too high although the items

may be attractive to stock in general. For the same cases, if the existing availability level is

sufficiently high (greater than 2ã ), then the centralized firm follows our expectations and

orders less as availability level improves. As shown in case 3, i.e. when the items are not

that attractive, the optimal ordering quantity decreases as availability proportion decreases.

The products in case 3 are so unprofitable that the effective cost of acquiring one more item

becomes too high if the firm experiences a decrease in availability.

Lemma 4.3 analyzes the effects of changes in inventory availability level on the optimum

centralized profit. The profit function increases in availability level for positive optimal

ordering quantity. The profit function increases convexly in availability until a reaches a
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threshold value. After that, it increases concavely. However, this behavior can only be

observed if ã < (2/3) holds. The profit function portrays an increasing convex behavior

if ã > (2/3) holds. Figure 2.3 shows the optimal centralized profits versus availability

under these two cases. In the first case, the marginal benefit of the centralized firm from

an increase in availability level when the current availability level is low is higher than its

marginal benefit for an increase in availability level when the current availability level is

high. The expected sales will increase or decrease according to the availability proportion.

When the availability level is sufficiently high, the firm is already able to satisfy high values

of demand. Therefore, an increase in availability level will not affect the profits significantly.

On the contrary, when the availability level is sufficiently low, the firm will not be able to

accommodate high demand values. Therefore, even a small increase in the availability level

will affect the profits by a larger amount when availability is low as compared to the case of

high availability proportion.

Although the first case gives us an intuitive explanation for the behavior of the profit

function, the second case illuminates an interesting result. When ã > (2/3) holds, the

marginal benefit of the firm from an improvement in availability level gets larger as the

availability level increases because the optimal profit function is convex for all values of

availability. In this case, the condition ã > (2/3) can be written as 1.5(c− s) > (p + gC − s)

. We already know that (p − s) is larger than (c − s) due to Assumption 1. Therefore,

a positive stock-out cost will only increase the right hand side of the inequality. Ceteris

paribus, only a relatively large c can validate the inequality. In other words, the closer the

marginal cost is to the sales price, the more likely that this case will hold. This also means
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Figure 2.3: Optimal centralized profit versus availability

that the centralized firm applies a low markup to each unit. Since the unit markup is low,

the firm makes positive profit as long as he can sell large amounts of inventory during selling

season. From that standpoint, the higher the availability level, the more will the centralized

firm benefit from an improvement in availability.

We previously showed that inflated value of the optimum classical newsvendor quantity

by a, which will be denoted by Q∗
i , does not give the optimum value under inventory misplace-

ment. In the following passages, we compare the optimal profits under Q∗
N , Q∗

i = (Q∗
N/a)

and Q∗
C for uniformly distributed demand. Before we present the analytical findings, we

illustrate the comparison with two numerical examples.

Let us assume that β = 10000 , p = 9 , gC = 2 , s = 1 and c = 4 for the first example. As

Figure 2.4 shows Q∗
C generates the highest profits. Since ã < .5 , the optimal profits under

Q∗
C and Q∗

N are equal to each other at two values of availability: a = 1 and a = ã/(1− ã) (see

Figure 2.2). The profit under Q∗
C is composed of only expected stock out cost till Q∗

C becomes

positive. Q∗
i performs the worst among the three for low values of a since the amount ordered
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Figure 2.4: Profits versus availability under Q∗
C , Q∗

N and Q∗
i ( β = 10000 , p = 9 , gC = 2 ,

s = 1 , c = 4 )

is much higher than the optimum. As availability increases, the performance of Q∗
i improves

and after some value of availability, it performs better than Q∗
N . The performance of Q∗

N

relative to Q∗
C keeps getting worse after the two quantities become equal to each other at

ã/(1− ã) until availability reaches a threshold value. It starts to improve again as availability

increases beyond that threshold value till it goes to 1.

In the next example, we pick a firm with a higher cost of production and change the

marginal cost to c = 6 while keeping the rest of the parameters the same. Figure 2.4 shows

the profits and differences of profits for β = 10000 , p = 9 , gC = 2 , s = 1 and c = 6 . In

this case, ã = .5 , as a result the profit generated by Q∗
N catches the profit generated by Q∗

C

only at 100% availability level. Although the performance of Q∗
i relative to Q∗

N improves as

availability increases, it never becomes equivalent.

Based on these two examples it is clear that the differences between the optimal and

simple heuristics such as newsvendor or inflated newsvendor can be substantial. Further,
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Figure 2.5: Profits versus availability under Q∗
C , Q∗

N and Q∗
i ( β = 10000 , p = 9 , gC = 2 ,

s = 1 , c = 6 )

their performance is dependent on the attractiveness to stock the product as well as on the

availability level. Next, we analytically characterize the behavior of the profit function under

the three ordering quantities and their dependence on availability.

Corollary 4 The following findings hold for a < 1

1. (i) EPC(Q∗
N) < EPC(Q∗

C) , (ii) EPC(Q∗
i ) < EPC(Q∗

C)

2. EPC(Q∗
i )− EPC(Q∗

N) > 0 if and only if a > 2 ã
1−ã

3. (a) EPC(Q∗
N) and EPC(Q∗

i ) are concave functions of a.

(b) ∂ (EPC(Q∗
i )− EPC(Q∗

N)) /∂a > 0 if and only if a2

1+a
< ã

1−ã

(c) ∂ (EPC(Q∗
i )− EPC(Q∗

C)) /∂a > 0
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(d) ∂ (EPC(Q∗
N)− EPC(Q∗

C)) /∂a =





> 0 if a < ã
1−ã

and c < gC+p+s
2

> 0 if a >
√

ã
1−ã

and c < gC+p+s
2

> 0 if c ≥ gC+p+s
2

≤ 0 otherwise





The optimal ordering quantity under misplaced inventory is always smaller than the newsven-

dor ordering quantity for low values of availability (see Corollary 3). Thus, inflating the

newsvendor quantity will only worsen the profits if the firm is misplacing most of the prod-

ucts. It is always optimal to order more than the newsvendor optimal ordering quantity

if the marginal cost is low and the level of availability is sufficient. Corollary 4.2 confirms

Corollary 3 and shows that using the inflated newsvendor optimal ordering quantity instead

of the newsvendor optimal ordering quantity will be better for the firm for relatively small

values of marginal cost and high values of availability.

The inflated newsvendor optimal ordering quantity will always perform worse than the

newsvendor optimal ordering quantity for high values of marginal cost. Since production of

one unit is very costly to the firm, the more the firm produces, the worse off she becomes.

However, as availability increases, the performance of the inflated newsvendor optimal or-

dering quantity gets better because the inflated newsvendor quantity decreases. Though, it

can never perform as well as the newsvendor optimal ordering quantity.

Although the newsvendor quantity always performs worse than the optimal ordering

quantity under misplacement, the performance gap gets narrower for high values of marginal

cost as availability improves. If c ≥ (gC +p+s)/2 , i.e. ã ≥ .5 , the optimal ordering quantity
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under misplacement is always less than the newsvendor optimal ordering quantity but it gets

closer to the newsvendor ordering quantity as availability increases (see Figure 2.2). For low

values of marginal cost ( ã < .5 ), Q∗
C gets closer and closer to Q∗

N till availability becomes

ã/(1− ã) , after which it deviates from the newsvendor quantity more and more and reaches

its maximum at a = 2ã (see Figure 2.2). Thus, in a low-cost firm, any increase in availability

will improve the performance of the newsvendor ordering quantity provided that availability

is less than ã/(1− ã) . When c < (gC +p+s)/2, i.e. ã < .5 ,
√

ã/(1− ã) always lies between

2ã and 1. Although Q∗
C starts to decrease after 2ã and gets closer to Q∗

N , the performance

of Q∗
N improves only after availability increases beyond

√
ã/(1− ã) .

Corollary 5

1. (a) ∂ (EPC(Q∗
i )− EPC(Q∗

C)) /∂c < 0

(b) ∂ (EPC(Q∗
i )− EPC(Q∗

C)) /∂gC > 0

(c) ∂ (EPC(Q∗
i )− EPC(Q∗

C)) /∂s > 0

(d) ∂ (EPC(Q∗
i )− EPC(Q∗

C)) /∂p > 0

(e) ∂ (EPC(Q∗
i )− EPC(Q∗

N)) /∂s > 0

2. (a) ∂ (EPC(Q∗
N)− EPC(Q∗

C)) /∂c > 0 if and only if a > ã/(1− ã)

(b) ∂ (Q∗
C −Q∗

N) /∂c < 0

3. (a) ∂ (EPC(Q∗
N)− EPC(Q∗

C)) /∂s > 0 if and only if a < ã/(1− ã) ,

(b) ∂ (Q∗
C −Q∗

N) /∂s > 0
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We also analyze the behavior of the profit function under the three different ordering

quantities with respect changes in parameters. Q∗
i is always greater than Q∗

C . Thus, any

increase in the marginal cost of production makes Q∗
i perform even worse. Since the firm will

have more products than she would in the optimum, an increase in the sales price, salvage

value or stockout cost will improve the performance of Q∗
i relative to Q∗

C . Although Q∗
N

can never perform as well as Q∗
C , its performance improves for high values of availability

as marginal cost increases if the products are attractive to stock. For profitable products,

Q∗
C is greater than Q∗

N for a > ã/(1− ã) (see Corollary 3). An increase in c causes the gap

between Q∗
C and Q∗

N to shrink and the performance of the newsvendor ordering quantity

to improve. On the contrary, the difference between Q∗
C and Q∗

N increases as salvage value

increases. When Q∗
C is greater than Q∗

N , an increase in salvage value causes Q∗
C and Q∗

N to

lie further apart. This hurts the performance of the newsvendor ordering quantity relative

to the optimum quantity under misplacement. Thus, the performance of Q∗
N improves if

a < ã/(1− ã) , for which Q∗
C is always less than Q∗

N .

2.3.2 Decentralized Supply Chain

2.3.2.1 No Coordination

In this setting, there is no mechanism to coordinate the supply chain. The retailer’s and the

manufacturer’s profit functions under a wholesale price contract shown by (2.4) and (2.5)
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are simplified as follows for uniform demand distributed in [0, β].

EPRD(QD) = QD (a(g + p− s)− (wD − s))−Q2
Da2

(
g + p− s

2β

)
− gµ

EPMD(wD) = QD (wD − c)− gM
(β − aQD)2

2β

Theorem 5

1. EPRD(QD) is strictly concave in QD.

2. Q∗
D is decreasing in wD.

3. EPMD(wD) is strictly concave in wD.

4. The optimal ordering quantity is as follows.

Q∗
D =





κ
(

1
a

) (
1− ã

a

)
β > 0 if and only if a > ã

0 otherwise

where κ =
(g + p− s) + g1

2 (g + p− s) + g1

< 1.

(2.14)

Since the profit functions are concave in their arguments, there exists a unique ordering

quantity for the retailer and a unique wholesale price for the manufacturer to maximize their

profits. Theorem 5.2 reveals an intuitive result that the optimal ordering amount decreases

as the manufacturer charges more. In the uncoordinated supply chains, one of the biggest

concerns is the reduction in the optimal ordering amount. Theorem 5.4 shows that the

optimal ordering quantity can be written as κQ∗
C where Q∗

C is given by (2.13). Since κ <
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1, the decentralized optimum ordering amount is less than the centralized optimal ordering

amount, i.e. Q∗
C > Q∗

D . Because κ is a constant, findings of Lemma 4.1 and Lemma 4.2

also hold for the decentralized optimum ordering quantity.

Lemma 5 In an uncoordinated supply chain, the following findings hold under misplaced

inventory given that Q∗
D > 0

1. dEPRD(Q∗
D(a); a)/da > 0 and dEPMD(w∗

D(a); a)/da > 0

2. dEPMD(w∗
D(a); a)/da > dEPRD(Q∗

D(a); a)/da

3. dw∗
D(a)/da > 0

Both the retailer and the manufacturer benefit from an increase in availability proportion.

However, marginal benefit is higher on the manufacturer’s profit than on the retailer’s profit

for the same amount of increase in the availability. Because the manufacturer knows that

the independent retailer’s profit function is increasing in the availability, she exploits the

advantage of being the leader and charges more for the wholesale price. Due to the increase

in wholesale price, the retailer can not benefit as much as the manufacturer. Clearly the

position of the manufacturer as the Stackelberg leader helps in her being able to extract

the maximum from the system. One could presume that if the cost of implementing RFID

(which would reduce misplaced inventory at the retailer) is borne mainly by the manufacturer

then our result will be weaker although we believe directionally it might still hold because

the manufacturer is the leader (these and other issues related to availability investment are

studied in detail in the next chapter).
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Corollary 6

1.

EPC∗ − (EPR∗
D + EPM∗

D) =
(g + p− s)2 (a(gC + p− s)− (c− s))2 β

2a2(gC + p− s) (2(p + g − s) + g1)
2 > 0 (2.15)

2. d (EPC∗ − (EPR∗
D + EPM∗

D)) /da > 0 for Q∗
C , Q∗

D > 0.

The centralized manufacturer always makes more money than the total supply chain

profits in the decentralized setting under no coordination and (2.15) gives us the effect of

double marginalization under misplaced inventory. The centralized manufacturer’s profit,

the manufacturer’s and the retailer’s profits in an uncoordinated supply chain all increase

with improvements in availability. However, due to the increase in the wholesale price for

an improvement in the availability level (see Lemma 5), the uncoordinated supply chain can

never benefit from an improvement in availability as much as a vertically integrated supply

chain. The higher the availability level is, the more severely will the supply chain be affected

by double marginalization. Therefore, one can conjecture that the implementation of systems

to improve inventory availability at the retailer is more likely to happen in centralized supply

chains as compared to decentralized supply chains.

2.3.2.2 Coordination with Revenue Sharing

The retailer’s and the manufacturer’s profit functions under inventory misplacement are

simplified as follows for demand uniformly distributed in [0, β].
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EPRRS(QRS) = QRS[sγ + a(g + (p− s)γ)− wRS]−

Q2
RS

a2(gR + (p− s)γ)

2β
− gRµ (2.16)

EPMRS(wRS) = QRS[wRS − c + (1− a)(1− γ)s + a(gM + (1− γ)p)]−

Q2
RS

a2(gM + p− s− (p− s)γ)

2β
− gMµ (2.17)

Theorem 6 1. EPRRS(QRS) is concave in QRS and the optimal QRS is

Q∗
RS =

β

a2

(
γs + a (gR + (p− s)γ)− wRS

gR + (p− s)γ

)
(2.18)

2. Under a revenue sharing contract, the supply chain is coordinated for

w∗
RS =

(gR(c− s) + cγ(p− s) + sgCγ)

p + gC − s
< c. (2.19)

In order to achieve the channel coordination, the manufacturer should choose the whole-

sale price such that (2.13) and (2.18) are equal to each other. Thus, the wholesale price

given in (2.19) coordinates the channel. As observed in (2.19), under a revenue sharing

mechanism, the manufacturer charges the retailer a lower wholesale price than her marginal

cost of production.

Lemma 6 In a supply chain coordinated by a revenue sharing contract where the optimal

ordering quantity Q∗
RS = Q∗

C is greater than zero, the following results hold.
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1. ∂ (EPRRS(Q∗
RS(a); a)) /∂a > 0 and ∂ (EPMRS(w∗

RS(a); a)) /∂a > 0 .

2.
∂EPMRS(w∗RS(a);a)

∂a
>

∂EPRRS(Q∗RS(a);a)

∂a
if and only if γ < (1/2)

(
1 + (gM−gR)

(p−s)

)
.

Both the retailer and the manufacturer always benefit from an increase in the inventory

availability proportion in the retail store. As long as the proportion of the earnings that the

manufacturer takes is significantly high, the manufacturer benefits more from an increase in

the inventory availability level in the retail store. In case where the stock-out penalties are

equal to each other, i.e. g = gM , the manufacturer has to take more than 50% of the earnings

of the retailer in order to benefit from an improvement in availability more than the retailer

does. Another observation is that if gM > p − s + gR , then (1/2) (1 + (gM − gR)/(p− s))

becomes greater than 1 and the condition γ < (1/2) (1 + (gM − gR)/(p− s)) always holds.

Thus, if the manufacturer’s stock-out cost per unit is significantly higher than the retailer’s

stock-out cost per unit, the manufacturer benefits more from an increase in availability than

the retailer.

2.3.3 Coordination with Buyback

One possible mechanism to coordinate the supply chain under misplaced inventory is a buy-

back contract (Pasternack, 1985). As in the uncoordinated case, the retailer misplaces l

proportion of goods right after replenishment before demand is realized. According to the

contract, at the end of the selling season, the retailer can return at most a fraction R of

the purchased goods to the manufacturer at a credit, b per unit. We analyze two situations

where according to the contract, the maximum fraction of inventory that the retailer can
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return is greater than the amount that is misplaced in the store ( R > l ) and the fraction

is less than or equal to the amount that is misplaced in the store ( R ≤ l ). In addition to

Assumption 2, we assume that the retailer can not make profits over leftover inventory.

Assumption 3: s < b ≤ w < p

2.3.3.1 Buyback Proportion R > l

This section focuses on a scenario where the maximum amount of inventory that the retailer

can return to the manufacturer according to the contract is greater than the amount of

misplaced inventory. Let us call QBB1 the quantity that the retailer orders from the manu-

facturer under a buyback contract where (R > l) . If demand is less than (1−R)QBB1 , the

retailer returns the manufacturer the maximum amount that she can return according to the

contract and salvages the remainder at s per unit. If demand is greater than (1−R)QBB1 ,

then all of the remaining inventory is returned to the manufacturer after the selling season.

If demand is even greater than the available inventory, then only misplaced inventory re-

mains at the end of the selling season and all of them are returned to the manufacturer. The

decentralized manufacturer salvages the entire inventory that is returned from the retailer at

the end of the season. The retailer’s profit function and the manufacturer’s profit function

are written as in (2.20) and (2.21), respectively. wBB1 indicates the wholesale price under a

buyback contract where (R > l) .
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EPRBB1(QBB1) = −wBB1QBB1 + p

{
µ−

∫ ∞

aQBB1

(ξ − aQBB1)f(ξ)dξ

}
+ (2.20)

s

∫ (1−R)QBB1

0

[(1−R)QBB1 − ξ]f(ξ)dξ − gR

∫ ∞

aQBB1

(ξ − aQBB1)f(ξ)dξ +

b{RQBB1 +

∫ ∞

(1−R)QBB1

((1−R)QBB1 − ξ) f(ξ)dξ −
∫ ∞

aQBB1

(aQBB1 − ξ) f(ξ)dξ}

EPMBB1(wBB1) = QBB1(wBB1 − c)− gR1

∫ ∞

aQBB1

(ξ − aQBB1)f(ξ)dξ − (2.21)

(b− s){RQBB1 +

∫ ∞

(1−R)QBB1

[(1−R)QBB1 − ξ]f(ξ)dξ −
∫ ∞

aQBB1

(aQBB1 − ξ) f(ξ)dξ}

Expressions (2.20) and (2.21) are simplified as follows for uniform demand distributed in

[0, β].

EPRBB1(QBB1) = QBB1 (a(gR + p− b)− (wBB1 − b))−Q2
BB1

(
(b−s)(1−R)2+(gR+p−b)a2

2β

)
− gRµ

EPMBB1(wBB1) = QBB1 (wBB1 − c− (1− a)(b− s))−Q2
BB1

(b−s)(a2−(1−R)2)
2β − gM

(β−aQBB1)2

2β

Lemma 7 EPRBB1(QBB1) is strictly concave in QBB1 and the optimal ordering quantity is

as follows.

Q∗
BB1 =

β (a(gR + p− b)− (wBB1 − b))

a2(gR + p− b) + (b− s)(1−R)2
(2.22)
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The idea behind coordination in a two sided monopoly is to make the retailer order the

quantity that the centralized manufacturer would. Thus, the total supply chain profits in

the decentralized two sided monopoly will be equal to the profits made if the manufacturer

owned the retailer. Since the manufacturer is the leader, she adjusts the wholesale price

so the quantity given by (2.13) optimizes the independent retailer’s profit. Thereby, the

wholesale price that will coordinate the channel must be chosen such that (2.13) and (2.22)

become equivalent.

Theorem 7

1. Allowing for unlimited returns for full credit is never optimal.

2. Allowing for unlimited returns for partial credit is system optimal for values chosen

according to (2.23).

w∗
BB1 =

b(gC + p− c) + (c− s)(p + gR)

(p + gC − s)
(2.23)

When the manufacturer allows the retailer to return the remainder of the inventory

after the selling season and fully refunds the retailer with the wholesale price for every

item that the retailer returns, the channel will never be coordinated because the retailer

will always have an incentive to order more than the centralized optimal ordering quantity.

However, when the manufacturer allows returns up to 100% of the ordering quantity for

partial credit, the contract serves to coordinate the channel. This is similar to an earlier

result by Pasternack (1985) for a perfect inventory system that a strategy with unlimited
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returns with full credit is system suboptimal whereas that with unlimited returns with partial

credit is system optimal.

Corollary 7 For a coordinated supply chain with a buyback contract that allows for unlimited

returns, having misplaced inventory at the retailer does not have any impact on the wholesale

price decision of the manufacturer.

Since (2.23) is equivalent to the relationship given by Pasternack (1985) for the policy

with unlimited returns with partial credit, we can say that the retailer losing inventory does

not have any effect on the wholesale price decision of the manufacturer if the contract allows

unlimited returns for partial credit. In this setting, the manufacturer gets back the lost items

regardless. For low values of demand, since the return proportion is already greater than

the lost inventory proportion, the manufacturer takes back all the lost items and some or all

of the leftover items depending on the return proportion.

Theorem 8

1. Taking l < R < 1 fraction of the purchased items back for full credit is system optimal

for values chosen according to (2.24).

w∗
BB1 = b =

(c− s)(gR + p) + s(p + gC − s)(1−R)2
(

1
a

) (
1− ã

a

)

(c− s) + (p + gC − s)(1−R)2
(

1
a

) (
1− ã

a

) (2.24)

2. Given ã(p + gR − b) > (b − s)(1 − R)2
(

1
a

) (
1− ã

a

)
, taking l < R < 1 fraction of the

purchased items back for partial credit is system optimal for values chosen according

42



to (2.25)

w∗
BB1 =

c(gR + p− b)− s(gR + p) + b(p + gC)

(gC + p− s)
− (b−s)(1−R)2

(
1

a

)(
1− ã

a

)
(2.25)

Although taking all back at full credit never coordinates the channel, taking a partial

fraction of the purchased items back for a full refund of the wholesale price leads to coordi-

nation if equation (2.24) is satisfied. Taking a partial fraction of items back for partial credit

is also system optimal if the wholesale price is chosen according to (2.25).

2.3.3.2 Buyback Proportion R ≤ l

When the amount of returnable items is less than or equal to the amount of misplaced

inventory at the retailer, the retailer returns the maximum allowed number of items to the

manufacturer no matter what. Thus, the retailer’s profit function can be formulated as in

(2.26). QBB2 represents the quantity that the retailer orders from the manufacturer and

wBB2 represents the wholesale price under a buyback contract where (R ≤ l) . Since the

retailer returns RQBB2 all the time, the manufacturer always salvages RQBB2 . Thus, his

problem can be formulated as in (2.27).

EPRBB2(QBB2)=−wBB2QBB2 + p

{
µ +

∫ ∞

aQBB2

(aQBB2 − ξ)f(ξ)dξ

}
+ bRQBB2+ (2.26)
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s

{∫ aQBB2

0

((1−R)QBB2 − ξ) f(ξ)dξ +

∫ ∞

aQBB2

(l −R)QBB2f(ξ)dξ

}
−

gR

∫ ∞

aQBB2

(ξ − aQBB2)f(ξ)dξ

EPMBB2(wBB2) = QBB2(wBB2− c)− (b− s)RQBB2−gR1

∫ ∞

aQBB2

(ξ−aQBB2)f(ξ)dξ (2.27)

Expressions (2.26) and (2.27) are simplified as follows for uniform demand distributed in

[0, β] .

EPRBB2(QBB2) = QBB2 (a(gR + p− s) + R(b− s)− (wBB2 − s))−Q2
BB2

(gR + p− s)a2

2β
− gRµ

EPMBB2(wBB2) = QBB2 (wBB2 − c−R(b− s))− gM
(β − aQBB2)

2

2β

Lemma 8 EPRBB2(QBB2) is concave in QBB2 and the optimal QBB2 is

Q∗
BB2 =

β

a

(
1− (wBB2 − s)−R(b− s)

a(p + gR − s)

)
. (2.28)

The independent retailer will order (2.28) at the optimum. The coordination will be

achieved if the manufacturer sets the wholesale price such that (2.28) and (2.13) will be

equivalent.

Theorem 9
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1. Allowing for no returns is never system optimal.

2. Taking 0 < R ≤ l fraction of the purchased items back for full credit is system optimal

for values chosen according to (2.29).

w∗
BB2 = b = s +

(gR + p− s)(c− s)

(p + gC − s)(1−R)
(2.29)

3. Given c− gM (c−s)
p+gC−s

> b(1− R) + Rs , taking 0 < R ≤ l fraction of the purchased items

back for partial credit is system optimal for values chosen according to (2.30).

w∗
BB2 = c− (gC − gR)(c− s)

p + gC − s
+ (b− s)R (2.30)

Allowing for no returns is the same as the uncoordinated decentralized case and never

coordinates the channel. However, taking partial fraction of items back coordinates the

channel. The amount of inventory purchased back by the manufacturer from the retailer at

the end of the season stays the same regardless of the availability level so even for the most

general case, the wholesale price in (2.30) is observed to be independent of availability level

in the retail store.

Corollary 8 Given that the retailer orders a positive amount,

1. the wholesale price given in (2.30) is less than the wholesale price given in (2.25).

2. the manufacturer always makes negative profits in an environment coordinated buy a

buyback contract where (R ≤ l) for any value of availability level.
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Given buyback is less than what the retailer loses, in order to get the retailer to order

the centralized ordering quantity, the manufacturer has to give a much lower wholesale price

for the same buyback and hence ends up making less profits. Therefore, it is undesirable for

a manufacturer to try to use a buyback contract particularly with retailers who have high

percentage losses of inventory.

2.3.3.3 Effects of Availability

So far, we have analyzed the impact of availability at the optimum on the manufacturer’s

profits when the manufacturer owns the retailer and on both the retailer’s and the man-

ufacturer’s profits when they act uncoordinated. Now, we analyze the effect of a rise in

availability in a coordinated environment where the coordination is achieved by a buyback

contract. We consider both environments when R > l and R ≤ l . Note that since sup-

ply chain is coordinated, the optimal ordering amounts are equal to the centralized optimal

ordering amount ( Q∗
BB1 = Q∗

BB2 = Q∗
C ).

Lemma 9 In a supply chain coordinated by a buyback contract where l < R < 1 and the

optimal ordering quantity Q∗
BB1 = Q∗

C is greater than zero, the following hold.

1. ∂ (EPRBB1(Q
∗
BB1(a); a)) /∂a > 0

2. ∂ (EPMBB1(w
∗
BB1(a); a)) /∂a > 0

3. (i)

∂
∂a

EPMBB1(w
∗
BB1(a); a) ≥ ∂

∂a
EPRBB1(Q

∗
BB1(a); a) if and only if ∆ ≥ 0

∂
∂a

EPMBB1(w
∗
BB1(a); a) < ∂

∂a
EPRBB1(Q

∗
BB1(a); a) otherwise
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where ∆ = ã(b + gM − s)−
(
ã(p + gR − b) + 2(b− s)(2ã− a)

(
1−R

a

)2
)
. (ii) ∂∆/∂gM > 0

(iii) ∂∆/∂b > 0 .

When the buyback proportion is greater than the proportion of misplaced inventory

(R > l), we find that both the retailer’s and the manufacturer’s profits unconditionally

increase in the inventory availability proportion of the retail store. Since (R > l), the

manufacturer buys back all of the lost items anyway. If demand is at the very low end (even

less than (1 − R)QBB1), then an improvement in the availability level will not affect the

manufacturer because the retailer will return the maximum number of items that she can

according to the contract. On the other hand, for reasonably high demand values, it will

always be better for the manufacturer if the retailer puts an item on shelf for customers

instead of losing it. In such a case, fewer items will be returned to the manufacturer. Since

the retailer is not allowed to make profits on the returned items, it is always a better situation

for the retailer to make one item available to sales than returning it back to the manufacturer.

In order to understand expression ∆ better, we take the partial derivative of ∆ with

respect to gM and b separately. ∆ is increasing in gM meaning that for high values of

manufacturer’s share of the stock-out cost, the manufacturer is high likely to benefit more

than the retailer for a slight increase in availability. We also find that as b increases, ∆

increases. Thus, in this case, the manufacturer always prefers the retailer to make as many

items available to the customers as possible because she does not want to pay large amounts

of buyback credit. Therefore, for high values of buyback credit, the manufacturer is highly

likely to benefit more than the retailer for an increase in availability at the retail store.
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Lemma 10 In a supply chain coordinated by a buyback contract where 0 < R ≤ l and the

optimal ordering quantity Q∗
BB2 = Q∗

C is greater than zero, the following results hold.

1. ∂ (EPRBB2(Q
∗
BB2(a); a)) /∂a > 0

2. ∂ (EPMBB2(w
∗
BB2(a); a)) /∂a > 0

3.

∂
∂a

EPMBB2(w
∗
BB2(a); a) ≥ ∂

∂a
EPRBB2(Q

∗
BB2(a); a) if and only if s− gR ≥ p− gM

∂
∂a

EPMBB2(w
∗
BB2(a); a) < ∂

∂a
EPRBB2(Q

∗
BB2(a); a) otherwise

Here the availability is allowed to increase as long as 0 < R ≤ l is preserved. As

indicated above, we discover that both the retailer’s and the manufacturer’s profits are non-

decreasing functions of availability at the optimum. Therefore, both parties benefit from

an upgrade of availability on the retailer’s side in the presence of channel coordination.

The manufacturer gains from an increase in the availability at least as much as the retailer

benefits if s− gR ≥ p− gM holds. Since the salvage value is strictly less than the retail price

of the product, for the manufacturer to benefit more than the retailer from an enhancement

in availability, the manufacturer’s share of the penalty cost must be significantly more than

the retailer’s share.

2.3.4 Comparison of Contracts

Now, we compare the profits of each party under coordinated supply chains which are coor-

dinated by different mechanisms.
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Lemma 11 Given that the supply chain is coordinated and hence Q∗
C = Q∗

BB1 = Q∗
BB2 =

Q∗
RS > 0 , the decentralized manufacturer

1. always prefers a buyback contract where R > l to a buyback contract where R ≤ l .

2. always prefers a revenue sharing contract to a buyback contract where R ≤ l .

3. always prefers a buyback contract where R > l to a revenue sharing contract if

γ > (1−R)2(b−s)+a2(p−b)
a2(p−s)

where (1−R)2(b−s)+a2(p−b)
a2(p−s)

is always less than 1.

4. always prefers a revenue sharing contract to a buyback contract where R > l if

γ < (1−R)2(b−s)+a2(p−b)
a2(p−s)

where (1−R)2(b−s)+a2(p−b)
a2(p−s)

is always less than 1.

5. is always indifferent between a buyback contract where R > l and a revenue sharing

contract if γ = (1−R)2(b−s)+a2(p−b)
a2(p−s)

where (1−R)2(b−s)+a2(p−b)
a2(p−s)

is always less than 1.

As given by Corollary 8, the manufacturer always makes negative profits in a supply

chain coordinated by a buyback contract where (R ≤ l) . Therefore, between a buyback

contract where (R > l) and another buyback contract where (R ≤ l) , he will always choose

the first one. Similarly, when a buyback contract where (R ≤ l) is compared to a revenue

sharing contract, the manufacturer always chooses the revenue sharing. Cachon and Lariviere

(2005) show that there exists a unique buyback contract which generates the same profits as

a revenue sharing contract. They do not consider the problem of misplaced inventory and

they assume unlimited buyback. We show that for our case with a buyback proportion being

greater than the lost inventory proportion and under the problem of misplacement, one can

always find a buyback contract which is equivalent to the revenue sharing contract in terms

49



of the profits that it generates. However, one can never find an equivalent buyback contract

to the revenue sharing if buyback proportion is less than the proportion of lost inventory.

In addition, as long as the proportion of the earnings that the retailer takes is less than a

threshold value, the manufacturer always chooses revenue sharing over a buyback contract

where (R > l) .

It is to be noted that the decentralized retailer’s profits are just in the opposite direction

of the decentralized manufacturer’s (see Lemma 12 in Appendix A).

2.4. Extensions

In the previous sections, we have assumed that inventory misplacement is a constant fraction.

We have further assumed that inventory misplacement does not depend on the size of the

order. Here, we relax these assumptions one at a time for a general demand distribution.

2.4.1 Inventory Misplacement as a Random Variable

In the previous sections, we have assumed that a constant fraction of items get misplaced in

the stores. Although modeling this problem gives us the advantage of analytical tractability,

it sacrifices to incorporate the variability of the rate of inventory misplacement. In this sec-

tion, we assume that availability is a random variable. The sequence of events for the supply

chain of interest is exactly as assumed before with the exception of having a random number

of items getting misplaced. We assume that a is the actual rate of inventory availability, A
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is the random variable and (.)+ = max{0, .}. Throughout this section, all random variables

are assumed to be nonnegative with finite expected values. We will use E[A] to denote the

expected value of inventory availability and µ to denote the expected value of demand. We

will use H(.) and h(.) to refer to the probability distribution function of inventory availability

and corresponding probability density function, respectively.

2.4.1.1 Centralized firm

The profit function of the centralized firm is as given in (2.31).

πC = p min{x, aQC} − cQC − gC(x− aQC)+ + s(aQC − x)+ + (2.31)

s(1− a)QC

= (p− s)x−QC(c− as)− (p + gC − s)(x− aQC)+ + s(1− a)QC (2.32)

EPC(QC) = (p− s)µ−QC(c− E[A]s) + s(1− E[A])QC − (2.33)

(p + gC − s)

∫ ∞

0

∫ x/QC

0

(x− aQC)dH(a)dF (x)dx

Theorem 10

1. EPC(QC) is concave in QC and the optimum order Q∗
C solves (2.34).

∫ ∞

0

∫ x/Q∗C

0

adH(a)dF (x)dx =
c− s

p + gC − s
(2.34)
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2. Q∗
C is always larger than the corresponding optimum order under a pure proportional

random yield model.

Theorem 10 provides the optimum order for the centralized firm under a random rate of

inventory availability. Due to the salvage value that one would get at the end of the period,

the optimal stock under inventory misplacement is always higher than than the optimal stock

under random yield.

Let Y ≤st X denote Y being stochastically smaller than X. A random variable Y is

stochastically smaller than a random variable X provided P (Y > u) > P (X > u) for every

real u (see Müller and Stoyan (2002) for an extensive background on stochastic ordering).

Lemma 13 Suppose two random variables A and Â where A ≤st Â. If Q̂C
∗

> Q∗
C, a

stochastically larger inventory availability leads to greater profits.

In general, a stochastically larger yield does not increase optimal profits under random

yield. Lemma 13 indicates that such a stochastic ordering increases the profits given an

ordering of the optimum values. This finding is in line with the findings of Gupta and

Cooper (2005) for a pure random yield.

2.4.1.2 Decentralized Supply Chain-No Coordination

In this section, we assume that the manufacturer is the Stackelberg leader and the sequence

of events is the same as given in Section 3.3 except that we assume a random inventory
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availability here for the retailer. The retailer’s and the manufacturer’s profits can be written

as in (2.35) and (2.36), respectively. Hence, the expected profit function of the retailer

EPRD(QD) is equal to (2.33) with the transformation of c to w. The expected profit

function of the manufacturer EPMD(w) is given by (2.37).

πR
D = p min{x, aQD} − wQD − gR(x− aQD)+ + s(aQD − x)+ + (2.35)

s(1− a)QD

πM
D = (wD − c)QD − gM(x− aQD)+ (2.36)

EPMD(w) = (wD − c)QD − gM

∫ ∞

0

∫ x/QD

0

(x− aQD)dH(a)dF (x)dx (2.37)

Theorem 11

1. EPRD(QD) is concave in QD and the optimum order Q∗
D solves the following relation.

w∗
D = s + (p + gR − s)

∫ ∞

0

∫ x/QD

0

adH(a)dF (x)dx (2.38)

2. EPMD(w∗
D(QD)) is concave in QD if and only if the following expression is negative.

(p + gR − s− gM)

∫ ∞

0

x2

Q3
D

h(x/QD)dF (x) + (p + gR − s)

∫ ∞

0

x3

Q4
D

h′(x/QD)dF (x)(2.39)

3. If EPMD(wD(QD)) is concave, the optimum QD is given by the following.

(p + gR − s + gM)

∫ ∞

0

∫ x/QD

0

adH(a)dF (x)dx− c + s− (2.40)

(p + gR − s)

∫ ∞

0

x2

Q2
D

h(x/QD)dF (x)dx = 0
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There exists a unique optimum order and a wholesale price if and only if (2.39) is negative.

Then, the optimum order is found by solving (2.40).

Corollary 9 If the inventory availability is uniformly distributed and gM > p+ gR− s, then

EPMD(w∗
D(QD)) is concave in QD .

Corollary 9 shows that if the manufacturer’s goodwill cost is sufficiently high and the

inventory availability is characterized by a uniform distribution, the manufacturer’s profit

function is concave leading to a unique optimum wholesale price and a unique order quantity.

For the subsequent results, we assume that the manufacturer’s profit function is always

concave.

Lemma 14

1. Suppose two random variables A and Â where A ≤st Â. If Q̂D
∗

> Q∗
D, a stochastically

larger inventory availability leads to greater profits for the retailer.

2. Assume that inventory availability distribution A changes to Â. The manufacturer

benefits from this if and only if the following is positive.

(c− s)(Q∗
D − Q̂D

∗
) + (p + gR + gM − s)Q̂D

∗
∫ ∞

0

∫ x/Q̂D
∗

0

adĤ(a)dF (x)dx−(2.41)

(p + gR + gM − s)Q∗
D

∫ ∞

0

∫ x/Q∗D

0

adH(a)dF (x)dx +

gM [

∫ ∞

0

x[H(x/Q∗
D)− Ĥ(x/Q̂∗

D)dF (x)]
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We find that a stochastically larger yield has positive effects on the retailer’s profit if the

corresponding optimum orders are ordered according to Lemma 14. The effects of a change

in the inventory availability on the manufacturer’s profit is a messy expression and we are

unable to derive a general conclusion.

2.4.1.3 Decentralized Supply Chain-Revenue Sharing

Here, we study coordinating the supply chain with a revenue sharing contract as given in

Section 2.2.2.2. The retailer’s and the manufacturer’s profits are given by (2.42) and (2.43).

Corresponding expected profits are given by (2.44) and (2.45).

πR
RS = γp min{x, aQRS} − wRSQRS − gR(x− aQRS)+ + γs(aQRS − x)+ + (2.42)

γs(1− a)QRS

= γ(p− s)x−QRS(wRS − γas)− (γp + gR − γs)(x− aQRS)+ +

γs(1− a)QRS

πM
RS = (wRS − c)QRS − gM(x− aQRS)+ + (1− γ)[p min{x, aQRS}+ (2.43)

s(aQRS − x)+ + s(1− a)QRS]

= (wRS − c)QRS + (1− γ)(p− s)x + (1− γ)ac3QRS −

[(1− γ)(p− s) + gM ](x− aQRS)+ + (1− γ)s(1− a)QRS

EPRRS(QRS) = γ(p− s)µ−QRS(wRS − γE[A]s) + γs(1− E[A])QRS − (2.44)
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(γ(p− s) + gR)

∫ ∞

0

∫ x/QRS

0

(x− aQRS)dH(a)dF (x)dx

EPMRS(wRS) = (wRS − c)QRS − gM

∫ ∞

0

∫ x/QRS

0

(x− aQRS)dH(a)dF (x)dx + (2.45)

(1− γ)[(p− s)µ + QRSs] +

(1− γ)(p− s)

∫ ∞

0

∫ x/QRS

0

(x− aQRS)dH(a)dF (x)dx

Next, we identify the conditions for the supply chain to be coordinated according to a

revenue sharing contract.

Theorem 12 The supply chain can be coordinated by a revenue sharing contract if the whole-

sale price is set to w∗
RS given below.

w∗
RS =

(γ(p− s) + gR)(c− s)

p + gC − s
+ sγ (2.46)

Expression (2.46) is equal to the wholesale price that coordinates the supply chain when

demand distribution is general and the inventory availability is assumed to be a constant

fraction. Further, stochasticity of the inventory availability does not have any effect on the

coordination wholesale price.

Lemma 15

1. Suppose two random variables A and Â where A ≤st Â. If Q̂C
∗

> Q∗
C, a stochastically

larger inventory availability leads to greater profits for the retailer.
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2. Assume that inventory availability distribution A changes to Â. The manufacturer

benefits from this if and only if the following is positive.

(
(γ(p− s) + gR)(c− s)

p + gC − s
+ s− c)(Q̂∗

RS −Q∗
RS)− [(1− γ)(p− s)) + gM ] (2.47)

[

∫ ∞

0

∫ x/Q̂∗RS

0

(x− aQ̂∗
RS)dĤ(a)dF (x)dx−

∫ ∞

0

∫ x/Q∗RS

0

(x− aQ∗
RS)dH(a)dF (x)dx]

Similar to the previous sections, we characterize a condition for which a stochastically

larger inventory availability benefits the retailer. However, we are not able to derive a general

conclusion for the manufacturer’s profits.

2.4.2 Inventory Availability as a Function of Order Size

In this section, we explore settings where inventory availability is an increasing function of

the order size. For example, if the misplacement is due to stocking on the shelves, then one

might expect a greater percentage of products to be shelved correctly when the quantity is

larger. We denote the number of available items during the selling season by A(Q) ≤ Q.

We provide the expressions for the optimum stocking decisions for the centralized firm, for

an uncoordinated decentralized supply chain and a coordinated supply chain by a revenue

sharing contract. In all of the three settings, we assume that the sequence of events as

before. That is, as soon as the order arrives at the firm (retail store), Q − A(Q) of items

get misplaced and A(Q) items become available for customers to purchase. At the end of

the selling season, the misplaced Q − A(Q) number of items are found and salvaged along

with (x − A(Q))+ remaining items after the selling season if any remains where x denotes
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demand. Further, we require Assumption 1 in all settings and require Assumption 2 in the

uncoordinated supply chain.

We first analyze the centralized firm, whose profit function is given by (2.48).

EPC(Q) = −cQ + p(µ +

∫ ∞

A(Q)

[A(Q)− x]dF (x))− gC

∫ ∞

A(Q)

[x− A(Q)]dF (x) + (2.48)

s

{
[Q− A(Q)] +

∫ A(Q)

0

[A(Q)− x]dF (x)

}

Theorem 13 EPC(Q) is concave in Q if A(Q) is an increasing concave function and the

optimum Q solves (2.49).

A′(Q)(1− F (A(Q)) =
c− s

p + gC − s
(2.49)

A concave increasing function of quantity is sufficient to guarantee the concavity of the

profit function. Hence, solving expression (2.49) for Q gives us the optimum order.

Next, we study an uncoordinated decentralized supply chain. The retailer’s and the

manufacturer’s profits are given by (2.50) and (2.51).

EPRD(Q) = −wQ+p[µ +

∫ ∞

A(Q)

[A(Q)− x]dF (x)]− gR

∫ ∞

A(Q)

[x− A(Q)]dF (x) + (2.50)

s

{
[Q− A(Q)] +

∫ A(Q)

0

[A(Q)− x]dF (x)

}

EPMD(w) = (w − c)Q− gM

∫ ∞

A(Q)

[x− A(Q)]dF (x) (2.51)
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Theorem 14

1. EPRD(Q) is concave in Q if the A(Q) is an increasing concave function and the

optimal order Q∗ solves the following expression.

w∗ = A′(Q)F̄ (A(Q))(p + gR − s) + s (2.52)

2. EPMD(w∗(Q)) is concave in Q if and only if the following expression is negative where

F̄ (.) = 1− F (.) and R[Q] is given by (2.54).

R[Q] + gM

{
A′′(Q)F̄ (A(Q))− (A′(Q))2f(A(Q))

}
(2.53)

R[Q] = Q
{
A′′′(Q)F̄ (A(Q))− 3A′(Q)A′′(Q)f(A(Q))− (A′(Q))2f ′(A(Q))

}
+(2.54)

2
{
A′′(Q)F̄ (A(Q))− (A′(Q))2f(A(Q))

}
(p + gR − s)

A general function of availability complicates concavity check in the uncoordinated supply

chain as given by Theorem 14. However, once concavity is assured, the optimum order is

found by using the relation given by (2.52).

Next, we analyze a supply chain coordinated by a revenue sharing contract. The profits

of the retailer and the manufacturer are given by (2.55) and (2.56), respectively.
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EPRRS(Q) = −wQ− gR

∫ ∞

A(Q)

[x− A(Q)]dF (x) + γ(p

{
µ +

∫ ∞

A(Q)

[A(Q)− x]dF (x)

}
+(2.55)

s

{
[Q− A(Q)] +

∫ A(Q)

0

[A(Q)− x]dF (x)

}
)

EPMRS(w) = (w − c)Q− gM

∫ ∞

A(Q)

[x− A(Q)]dF (x) + (2.56)

(1− γ)(p

{
µ +

∫ ∞

A(Q)

[A(Q)− x]dF (x)

}

+s

{
[Q− A(Q)] +

∫ A(Q)

0

[A(Q)− x]dF (x)

}
)

Theorem 15 The supply chain can be coordinated by a revenue sharing contract if the whole-

sale price is set to w∗
RS given below.

w∗
RS =

(γ(p− s) + gR)(c− s)

p + gC − s
+ sγ (2.57)

Inventory misplacement does not have any effect on the coordination wholesale price even

when we assume inventory availability as a function of quantity.

In this chapter, we study vertically integrated and decentralized supply chains under

inventory misplacement. We prove that the behavior of the optimum order quantity with

changes in inventory availability depends on the generalized failure rate of the demand

distribution evaluated at the optimum number of available items. Further, we give conditions

for the supply chains under inventory misplacement to be coordinated by revenue sharing

and buyback contracting mechanisms and show that the manufacturer may indeed extract

more benefits than the retailer does from a reduction in inventory misplacement.
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Chapter 3

Misplaced Inventory and RFID:

Information and Coordination

3.1. Introduction

Inventory misplacement is expensive and is prevalent in many industries. For example, Delta

Airlines operates at a very high baggage-handling efficiency rate (99%). However, the 1%

of misplaced bags costed Delta about $100 million a year (Airline Business Report, 2004).

Similarly, the Vatican Library, which has approximately two million books, manuscripts and

other valuable items, had to close the library for an entire month each year (Wireless News,

2004). An empirical study by Raman, DeHoratius and Ton (2001) show that the inventory

loss proportions can reach significant numbers in retail stores up to 16% in some cases.

When items are misplaced in the store, they become unavailable to the customers until

they are found. One of ways to handle misplaced inventory is through Radio Frequency



Identification Devices (RFID). Through this technology, it is possible to track an item on

which an RFID tag is attached. Implementation of RFID is beginning on a large scale

at the distribution level, i.e. pallets are being tagged. This should reduce misplacement

at the warehouse level. Firms started to perceive the RFID technology as a development

beyond being only an extension to bar coding when Walmart declared the requirement for

her major suppliers to tag each pallet with an RFID tag. It gained momentum with several

firms including Unilever, United Biscuits, Fluoroware Inc., Ford Motor Company and Toyota

launching pilot projects of RFID (Angeles, 2005). Although pallet-level RFID applications

provide some visibility to firms, they may not deliver all the strategic benefits of RFID

particularly in the case of retailers’. As a result, Marks & Spencer, Tesco and Metro Group,

three European retailers have already started testing RFID at the item-level (Sullivan, 2005).

The next level of implementation will be at the store level where RFID should enable item

level tracking and identification.

In addition to various variable costs, RFID adopters also have to consider the upfront

costs for deploying the new technology in the supply chain (Kambil and Brooks, 2002). For

example, a typical consumer packaged goods manufacturer was estimated to spend between

$13 million and $23 million for shipping 50 million cases per year including various fixed

costs and variable costs (Asif and Mandviwalla, 2005).

As these big retailers (along with Walmart) have popularized RFID, a common opinion

has been that the main beneficiaries of RFID will be the downstream players in the supply

chain (Kevan, 2004; Agarwal, 2001). In addition to being able to track the items, the

retailers are expected to benefit from store and warehouse labor reductions and reduced
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inventory. On the other hand, the benefits of RFID to manufacturers have been anticipated

in improved demand planning, stricter quality control, reduced scrap, waste and rework, and

more accurate inventory data (Bearing Point, 2005).

3.1.1 Related Literature

Studies related to RFID in inventory management are relatively new. Lee and Özer (2005)

provide a review of the literature about the emerging technology RFID by examining the

papers under three main categories: misplacement of inventory, shrinkage and transaction

errors. As indicated by Raman, Ton and DeHoratius (2003), inventory inaccuracy and mis-

placed inventory are major operational inefficiencies. Several researchers have developed

models for inventory inaccuracy (see Iglehart and Morey (1972), Kök and Shang (2004),

Atali, Lee and Özer (2005), DeHoratius, Mersereau and Schrage (2005) and Heese(2006)).

Models for inventory misplacement problem have also been studied by researchers (see

Çamdereli and Swaminathan (2005) and Rekik, Sahin and Dallery (2005)). In the following

passages we will relate our work to other research that have explicitly incorporated RFID in

their analysis of inventory inefficiencies.

Gaukler, Seifert and Hausman (2004) study item-level RFID where the retailer uses

in-store sales to estimate his demand distribution. The tagging expenses are assumed to

be shared and no fixed cost of implementation is taken into account. They research the

behavior of the optimal stocking quantity and the profits of the parties for changes in the

responsiveness level of the retailer and the tag price. As opposed to their model where RFID
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improves demand visibility, in our model RFID improves supply visibility. In this chapter,

besides tagging expenses, we take the fixed cost of RFID implementation into consideration

and allow the parties to share the fixed cost of adoption. We study both scenarios where the

tagging expenses are covered by only the manufacturer and only the retailer. Additionally,

we also characterize the incentives for the parties to invest in RFID in vertically integrated,

uncoordinated and coordinated environments.

Rekik, Sahin and Dallery (2005) computationally study the benefits of using Auto-ID

systems for the retailer to completely remove the inventory misplacement by comparing

such systems with those where the retailer is not aware of the misplacement problem and

where the retailer knows the misplacement problem and optimizes accordingly. Our work

is distinguished from their model in that we also consider coordination issues in a supply

chain with a retailer and a manufacturer. We analytically derive the conditions for both the

retailer and the manufacturer to benefit from the RFID technology under both centralized

and decentralized environments.

Heese (2006) studies the effect of inventory inaccuracy on supply chain performance as

well as the impact of double marginalization in a decentralized supply chain on the parties’

incentives to adopt RFID. Assuming fixed cost of investment zero, the author finds that

the manufacturer, who is the Stackelberg leader, is better off with RFID technology if and

only if the retailer is better off. In comparison to the above work, we consider a misplaced

inventory problem and assume sharing of fixed cost of implementation. We find that the

incentives of the retailer and the manufacturer to adopt RFID are not always aligned under

inventory misplacement. We also investigate the changes in the incentives of the parties to
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adopt the technology as the mean and the variance of the demand distribution changes.

Since RFID is a recent development in information technology, literature about adoption

of EDI is also relevant to our research. Decisions concerning EDI adoption have been studied

in different settings. Wang and Seidmann (1995) showed that while one supplier’s EDI

adoption can increase her own profit, it may decrease the profits of the other suppliers and

a supplier’s incentive in EDI adoption decreases in the number of suppliers adopting EDI.

While assuming a direct benefit for the buyer, they show that suppliers installing EDI can

indirectly benefit from it. In this chapter, we research the effects of RFID adoption on the

parties. Instead of assuming a direct benefit to any party, we model the incentives as a

result of solving the problem of inventory misplacement. Readers are referred to Narayanan,

Marucheck and Handfield (2007) for a research review of EDI literature.

Çamdereli and Swaminathan (2005) is a closely related paper to our work. The main focus

of the authors is to characterize the optimal policy for a single product inventory problem

under misplaced inventory. They expand the analysis to the two stage supply chain in a

single period setting in that paper. Using uniform distribution for demand, they show that

behavior of the optimal ordering quantity for an increase in the availability level depends on

the existing availability level and attractiveness of the items to stock in vertically integrated

supply chains; therefore, it does not monotonically increase or decrease in all cases. Under the

decentralized setting, they analyze uncoordinated supply chains as well as those coordinated

by buy-back and revenue sharing mechanisms. In their work, they do not consider the costs

and incentive issues arising as a result of implementation of an information system such as

RFID. In this chapter, we incorporate the cost of removing misplacement using RFID and
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focus on the incentives of the parties in the supply chain to adopt such a technology.

3.1.2 Our Work and Contributions

In this chapter, we study benefits of RFID implementation on a two stage supply chain

experiencing misplaced inventory at the retailer. We consider both fixed and variable costs

for RFID implementation and assume that the fixed cost is shared between the two using

an arbitrary proportion while the variable cost could be charged to either the retailer or the

manufacturer. We study three different settings - (1) a vertically integrated supply chain

where the manufacturer owns the retailer, (2) a decentralized and uncoordinated supply chain

with a wholesale contract and (3) a supply chain that is coordinated with a revenue sharing

contract. In all cases, the manufacturer is assumed to be the leader. We derive conditions

under which it is beneficial to invest in the RFID technology and establish threshold on

variable tagging cost where the manufacturer or the retailer or both or neither benefit from

such investment. We also provide conditions to coordinate the supply chain with a revenue

sharing contract. Finally, we establish the effect of changes in mean and variance of a uniform

demand on the incentives for investing in RFID.

The remainder of the chapter is organized as follows. In Section 3.2 we study the vertically

integrated supply chain. Section 3.3 focuses on the decentralized supply chain. Section 3.3.1

focuses on the uncoordinated supply chain where no mechanism exists for coordination and

Section 3.3.2 studies revenue sharing.
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3.2. Centralized firm

In this section, we study a vertically integrated supply chain where the manufacturer owns

the retailer. For convenience, we will refer to the centralized manufacturer/retailer as the

centralized firm. We consider a single-seasonal product. We assume that misplacement

of inventory occurs immediately on delivery. Hence, as soon as the order is complete, l

(0 < l = 1−a < 1) proportion of the order gets misplaced in the store and only a proportion

of the order is available to the end customers during the selling season. Inventory can be

misplaced due to various reasons. Customers or employees can misplace items on the shop

floor or items can be misplaced in storage areas. In most real life settings, misplacement hap-

pens gradually over time. We assume instantaneous misplacement for analytical tractability.

Therefore, one can think of our model as an approximation to a real life setting where the

costs can be perceived as an upper bound on the negative effects of inventory misplacement.

Demand occurs right after the misplacement. When the firm invests in RFID, we assume

that each item is tagged with an RFID chip so the availability proportion becomes 100%

(a = 1). Since the implementation of RFID in supply chains is relatively new, efficiency rate

of the readers can be below 100% in some instances. This can also be incorporated into our

model easily by assuming that availability goes to â < 1 instead of 1. The firm adopting

RFID incurs a fixed cost of K and a variable cost of t > 0 per unit when she implements

RFID. The centralized firm which does not invest in RFID technology orders QC and the

firm investing in the technology orders QC,t at c per unit. Each available unit is sold for p

during the sales season and any leftover inventory is salvaged at s per unit. If the firm does

not invest in the technology, she always salvages the lost inventory (lQC) at the end of the
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season. There may be more leftover inventory if demand is less than the available inventory

(aQC). If demand is more than the available items (aQC when items are misplaced and

QC,t when RFID is implemented), the firm incurs gC per each unit of excess demand, i.e.

a penalty cost for stock out. To gain analytical insights through closed form solutions, we

assume that demand is uniformly distributed in [0, β]. Our results for the firm can be ex-

tended to several other generic distributions although the expressions are cumbersome. We

make several assumptions on the cost parameters. Assumption 1 holds for both centralized

and decentralized settings.

Assumption 1: s < c < p

Let Q∗
N , Q∗

C and Q∗
C,t denote the optimal quantities. The centralized firm’s expected

profits without any misplaced inventory, under misplaced inventory and after implementing

RFID are formulated as in (3.1), (3.2) and (3.3) respectively where µ is expected value of

demand, E[ ξ ].

EPCN(QN) = −cQN + p(µ +

∫ ∞

QN

(QN − ξ)f(ξ)dξ) + s(

∫ QN

0

(QN − ξ)f(ξ)dξ

−gC

∫ ∞

QN

(ξ −QN)f(ξ)dξ (3.1)
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EPC(QC) = −cQC + p(µ +

∫ ∞

aQC

(aQC − ξ)f(ξ)dξ) + s(lQC +

∫ aQC

0

(aQC − ξ)f(ξ)dξ

−gC

∫ ∞

aQC

(ξ − aQC)f(ξ)dξ (3.2)

EPCt(QC,t) = −(c + t)QC,t + p(µ +

∫ ∞

QC,t

(QC,t − ξ)f(ξ)dξ) + s

∫ QC,t

0

(QC,t − ξ)f(ξ)dξ

−gC

∫ ∞

QC,t

(ξ −QC,t)f(ξ)dξ (3.3)

The expressions (3.1), (3.2) and (3.3) become the following for demand uniformly dis-

tributed in [0, β].

EPCN(QN) = QN(p + gC − c)−Q2
N(p + gC − s)/(2β)− gCµ

EPC(QC) = QC [a(p + gC − s)− (c− s)]−Q2
Ca2(p + gC − s)/(2β)− gCµ

EPCt(QC,t) = QC,t(p + gC − c− t)−Q2
C,t(p + gC − s)/(2β)− gCµ−K

Theorem 16 (Çamdereli and Swaminathan, 2005)

In a supply chain under inventory misplacement, the following findings hold.

1. EPC(QC) is concave in QC.
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2.

Q∗
C =





(β/a)(1− ã/a) > 0 if and only if a > ã where ã = c−s
p+gC−s

< 1

0 otherwise

(3.4)

As shown in Çamdereli and Swaminathan (2005), EPC(QC) is concave in QC and the

optimal order under inventory misplacement is Q∗
C = (β/a)(1− ã/a) if and only if a > ã and

is zero otherwise where ã = (c− s)/(p + gC − s). Since EPCt is a newsvendor formulation

with a constant setup cost where the marginal cost of product is inflated by t, EPCt is

concave in QC,t. Hence, Q∗
C,t = β(p + gC − c− t)/(p + gC − s) and is positive if and only if

t < p + gC − c. Due to the tag price, it is clear that the optimal order under RFID is always

smaller than the optimal order under no inventory misplacement since Q∗
N = β(1− ã).

All of the proofs are given in the Appendix B.

Lemma 16

1. Given Q∗
C,t > 0, there exists a threshold value a < min{1, ã/(1− ã)} such that Q∗

C,t >

Q∗
C if and only if a < a.

2. (a) Given Q∗
C,t, Q

∗
C > 0, there exists a threshold value t[a] = 1

a2 [c− s−a(p+ gC − s)+

a2(p + gC − c)] such that Q∗
C,t > Q∗

C if and only if t < t[a].

(b) t[a] > 0 if and only if a < min{1, ã/(1− ã)} where ã = (c− s)/(p + gC − s).

Lemma 16.1 states that as the inventory availability varies, the value of Q∗
C and Q∗

C,t

become equivalent at only one value of availability a < a < min{1, ã/(1 − ã)}. Figure 3.1
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gives two numerical examples to compare Q∗
C with Q∗

C,t for the two cases where ã = 3/16 <

0.5 and ã = 9/16 > 0.5. As also numerically illustrated by these examples, Q∗
C,t crosses Q∗

C

only at one value of availability (a ≈ .228 in the graph where ã < .5 and a ≈ .870 in the

graph where ã > .5), for which Q∗
C is always less than Q∗

N .

Although one may expect to order less under RFID than under inventory misplacement

due to 100% inventory availability, it may not be the case if the tag price is sufficiently

low. In Lemma 16.2.(a), we provide a threshold value (t[a]) on the tag price, below which

it is always optimal to order more under RFID than under inventory misplacement for

appropriate ranges of inventory availability. The expression ã is the probability of stocking

out in a newsvendor problem where no misplacement occurs. One may also interpret ã as

how unattractive products are to stock. Ceteris paribus, as the unit cost of order increases,

ã increases or as the sales price of the product increases, ã decreases. When ã < 0.5, i.e.

items are relatively attractive to stock, and a < ã/(1− ã), t[a] is positive. Hence, the optimal

order under RFID is indeed larger than the optimal order under inventory misplacement if

the tag price is less than t[a]. For the same case (ã < 0.5), Q∗
C > Q∗

N for a > ã/(1 − ã).

Thus, Q∗
C,t is always smaller than Q∗

C for this range of availability values. Obviously when

items are not attractive to stock (ã ≥ 0.5) and the tag price is expensive (t > t[a]), the

optimum order under RFID is always smaller than under inventory misplacement.

Next, we study the centralized profit under RFID and the incentives of the firm to invest

in RFID.

Theorem 17
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Figure 3.1: Q∗
C,t and Q∗

C with changes in a

1. For a given K, EPCt(Q∗
C,t)− EPC(Q∗

C) > 0 if and only if t < t∗C where

t∗C = (p + gC − c)−
√

δC

and δC = 2a2K(p+gC−s)+(a(p+gC−s)−(c−s))2β
a2β

> 0.

2. For a given t, EPCt(Q∗
C,t)− EPC(Q∗

C) > 0 if and only if K < K∗
C where

K∗
C =

[(1− a)(c− s)− at][a(2(p + gC)− (c + s))− (c− s)− at]β

2a2(p + gC − s)

An investment in this technology always brings in more profits if and only if the tag price

is less than t∗C . Note that t∗C can also be negative, in which case it is never optimal to invest

in the technology. For a given tag price, the centralized firm benefits from an investment

in RFID if and only if the fixed cost of adoption is less than K∗
C . Figure 3.2 illustrates an

example where the centralized firm has an incentive to invest in the RFID technology. We

also provide two numerical examples to gain more insights on the incentives of the vertically

integrated firm to adopt RFID when demand distribution is not uniform. Figure 3.3(a)
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Figure 3.3: Changes in the incentives of the vertically integrated supply chain under inventory
misplacement to adopt RFID when demand distribution is Exponential[λ] and Normal[µ, σ]-
doubly truncated at 2σ (λ = 10−6, µ = 106, σ = 4 × 105, p = 25, c = 5, gC = 4, s = 2, K =
106, a = 0.7)

and Figure 3.3(b) show the incentives of the centralized firm to adopt the technology when

demand is distributed with Exponential[λ] and Normal[µ, σ], respectively. We observe the

same threshold-type of behavior in the incentives of the firm as the tag price increases.

Lemma 17

1. (i) ∂t∗C/∂K < 0 (ii) Given Q∗
C > 0, ∂t∗C/∂a < 0

2. K∗
C > 0 if and only if t < t1 given Q∗

C , Q∗
C,t > 0.

3. If K = 0, given Q∗
C , Q∗

C,t > 0, t∗C = t1 where t1 = (1− a)(c− s)/a > 0
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Lemma 17 explains how the thresholds provided in Theorem 17 change with some pa-

rameters. If the upper bound on the tag price for the centralized firm to benefit from an

investment in RFID (t∗C) is positive, an increase in the fixed cost makes it tighter. Fur-

thermore, if K increases beyond some value, t∗C can no longer be positive. Hence, it is

essential to consider both tag prices and fixed costs of investment while deciding on the

RFID implementation.

Note that t∗C is decreasing in availability. In other words, the higher the availability level

is, the lower the firm is willing to pay for the tag price. The centralized firm’s optimal profit

increases in the availability level. Thus, if an improvement in availability can be achieved

without the new technology, the firm will be less willing to pay high prices for RFID tags

because the firm is already making more profits without any investment; therefore, only

a lower tag price can make the new technology attractive to the firm. This is similar to

the result by Gaukler, Seifert and Hausman (2004), who found that the threshold value of

the tag price for the firm to benefit from the technology also decreases with the value of

responsiveness of the firm when RFID improves demand visibility.

A special case of our model is where there is no fixed cost of RFID adoption. In such

a case, the upper bound on the maximum tag price t∗C = t1 = (1 − a)(c − s)/a is always

positive.

Next, we study how the incentives of the centralized firm change as the mean or the

variance of the uniformly distributed demand increases. We use a more general demand

uniformly distributed in [β, β] where β is allowed to be positive. We will use ′ (prime) to
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denote the optimal values when β ≥ 0. We find the effects of changes in mean by shifting

the range of demand distribution while keeping the width of the range constant. To capture

the effects of changes in variance, we change the width of the range while keeping the mean

constant. In the below results, we only consider the case where t < t1, which is equivalent

to saying that the firm may invest in RFID.

Theorem 18 The following findings hold for uniformly distributed demand in [β, β] if t < t1.

1. The incentive of a centralized firm under inventory misplacement to adopt RFID de-

creases as inventory availability increases.

2. Given the variance of demand is fixed, as the expected value of demand increases:

(a) Q
′∗
C and Q

′∗
C,t increase.

(b) The incentive of a centralized firm under inventory misplacement to adopt RFID

increases

where t1 is given by Lemma 17.

One would expect to stock more when demand is expected to be larger and our results

follow this intuition. Further, the firm has more incentives to adopt the new technology as

the mean of demand increases. Hence, the greatest benefits from RFID accrue to firms under

low inventory availability and in expectation of higher demand.

Theorem 19 The following findings hold for uniformly distributed demand in [β, β] if t < t1

given the expected value of demand is fixed, as the variance of demand increases.
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Figure 3.4: Changes in Q
′∗
C , Q

′∗
C,t and the incentive of a centralized firm under inventory

misplacement to adopt RFID when a < 2ã and t2 > 0 as variance of demand increases.

1. (a) Q
′∗
C decreases if a < 2ã. If a > 2ã, it increases.

(b) Q
′∗
C,t decreases if t > t3. If t < t3, it increases.

(c) If t2 < t < t1 holds, the incentive of a centralized firm under inventory misplace-

ment to adopt RFID decreases. Otherwise, it increases.

2. t2 < t1 if and only if a < 2ã.

where t2 = p + gC − c − (c−s)
a

, t3 = (t1 + t2)/2 and t1 and ã are given by Lemma 17 and

Theorem 16, respectively.

One may also anticipate the firm to order more as demand becomes more variable. How-

ever, as shown in Theorem 19.1, the optimal order under misplaced inventory does decrease

in demand variability if a < 2ã because the effective cost of acquiring an item becomes too

costly as variance increases. For example, when the products are relatively unattractive to

stock (ã ≥ 0.5), the cost of overage is higher than the cost of underage. Hence, as demand

becomes more variable, one would decrease the amount of order.

As indicated by Theorem 19.1.(c), the incentive of a firm to adopt RFID does decrease

as the variance of demand increases except under one condition, which can be valid only if

a < 2ã holds; thus, t2 < t1. Figure 3.4 graphically illustrates the results of Theorem 19 for
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Figure 3.5: Changes in the incentives of the vertically integrated supply chain under inventory
misplacement to adopt RFID as variance of uniformly distributed demand increases (variance
increases as δ increases)

0 < t2 < t1. When t2 is negative, the incentive of the firm to adopt RFID always decreases

with increasing variance. A tag price greater than t3 increases the overage cost such that the

firm under RFID decreases the order size with increasing variance. In the same region, the

incentive of the firm under inventory misplacement to adopt RFID decreases as well. When

t2 < t < t3, although the optimal order of the firm under RFID increases, the tag price is

too high for the firm under inventory misplacement to benefit more from the technology as

variance increases. Hence, if the firm is already operating under low inventory availability

level (a < 2ã) and the tag price is sufficiently high (t > t2), RFID becomes a more beneficial

technology as demand lies in a smaller interval of values, i.e. with a smaller variance. We

can observe this behavior in Figure 3.5 where δ shows the symmetric distance from the mean

to the left and to the right for which demand can take positive values.
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3.3. Decentralized Supply Chain

We consider a supply chain consisting of one retailer and one manufacturer. We assume

that the manufacturer acts as a Stackelberg leader and announces the wholesale price to the

retailer. The retailer orders taking the wholesale price into consideration. If the supply chain

adopts RFID technology, there will be no loss of inventory. Otherwise, the retailer misplaces

0 < l = 1− a < 1 proportion of the items as soon as the order arrives. Therefore, as in the

centralized firm setting, only a proportion of the order will be available to the customers

during the selling season. In both cases, products are sold for p and the leftover inventory

(remaining items after the selling season and also lost items under inventory misplacement)

is salvaged at s per unit by the retailer. If demand is larger than the available items in the

retail store (a proportion of the order if the supply chain is not implementing RFID and the

order itself if RFID is being implemented), both parties incur a stock-out cost. The stock-

out cost incurred is shared between the manufacturer and the retailer in the decentralized

settings. The retailer incurs gR and the manufacturer incurs gM for each unit of excess

demand where gR +gM = gC . If the supply chain adopts RFID technology, each item will be

tagged with one RFID chip. Each RFID chip costs t per unit. For all cases, we study both

scenarios where either the retailer or the manufacturer pays for the tagging expenses. We

also assume that there is a fixed cost of K of the RFID adoption and it is shared between

the manufacturer and the retailer. Thus, the retailer pays θK and the manufacturer pays

(1− θ)K where 0 ≤ θ ≤ 1. We first study an uncoordinated supply chain. Then, we analyze

a supply chain that is coordinated by a revenue sharing contract. Since Assumption 1 is

necessary but not sufficient for the uncoordinated decentralized supply chain, we also make
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Assumption 2 for Section 3.3.1.

Assumption 2: s < c < w < p

Note that w (wholesale price) will be represented by wD in Section 3.3.1 under misplaced

inventory. In the existence of RFID, we will denote the wholesale prices by wD,tR if the retailer

pays for the tagging expenses and wD,tM if the manufacturer pays for them. Therefore,

Assumption 2 will be transformed to s < c < wD, wD,tR, wD,tM < p in Section 3.3.1.

3.3.1 No coordination

In this section, we study a supply chain where no mechanism exists for coordination and

the manufacturer acts as a Stackelberg leader. The manufacturer announces the wholesale

price, wD under misplaced inventory and wD,ti under RFID where i stands for the party

paying for the tagging expenses (i = M if the manufacturer and i = R if the retailer pays

for the tagging expenses), the retailer orders QD under inventory misplacement and QD,ti

under RFID.

We will denote the retailer’s and manufacturer’s profits under misplaced inventory in an

uncoordinated supply chain by EPRD and EPMD, respectively. EPRD and EPMD are as

given below.

EPRD(QD) = −wDQD + p(µ +

∫ ∞

aQD

(aQD − ξ)f(ξ)dξ +

79



s(lQD +

∫ aQD,tR

0

(aQD,tR − ξ)f(ξ)dξ)− gR

∫ ∞

aQD

(ξ − aQD)f(ξ)dξ (3.5)

EPMD(wD) = (wD − c)QD − gM

∫ ∞

aQD

(ξ − aQD)f(ξ)dξ (3.6)

Expressions (3.5) and (3.6) are as follow for demand distributed in [0, β].

EPRD(QD) = QD(a(p + gR − s)− (wD − s))−Q2
Da2(p + gR − s)/(2β)− gRµ

EPMD(wD) = QD(wD − c)− gM(β − aQD)2/2β

Theorem 20 (Çamdereli and Swaminathan, 2005)

In a supply chain under inventory misplacement (without RFID), the following findings hold.

1. EPRD(QD) is concave in QD and EPMD(wD) is concave in wD .

2. w∗
D = (1/4)[2(c + s)− 2a(p + gR − s)− agM + gM [agM − 2(c− s)]/[2(p + gR − s) + gM ]

3. Q∗
D = κ(1/a)(1− ã/a)β = κQ∗

C where κ = [(p+ gR− s)+ gM ]/[2(p+ gR− s)+ gM ] < 1.

Theorem 20 specifies the wholesale price that optimizes the manufacturer’s profit and

the order that optimizes the retailer’s profit without RFID. The optimal order in an unco-

ordinated supply chain is the optimal centralized order multiplied by a constant κ, which is
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less than 1. Therefore, the order in an uncoordinated supply chain is always less than the

optimal centralized order and there will be double marginalization losses in effect. In a recent

paper, Heese (2006) considers inventory inaccuracies where the number of physical items in

the store can be more than the system record and finds that the optimal decentralized order

under inventory inaccuracy is at most 50% of the optimal order of a vertically integrated

supply chain under inventory inaccuracy. The expression κ in Theorem 20 is greater than 0.5

if gM > 0. Hence, the optimal decentralized order under inventory misplacement is at least

50% of the order quantity of a vertically integrated supply chain. Next, we study the optimal

wholesale price and the ordering quantity under the implementation of RFID technology.

The retailer’s and the manufacturer’s profits in an uncoordinated supply chain inclusive

of the fixed cost of adoption but exclusive of the tagging expenses under RFID are given

by ΓD(QD,ti, wD,ti) and ΛD(QD,ti, wD,ti) where iε{R,M}, respectively. We use EPRD,ti and

EPMD,ti to represent the retailer’s profit and the manufacturer’s profit where iε{M,R}.

ΓD(x, y) = −yx− θK + p(µ +

∫ ∞

x

(x− ξ)f(ξ)dξ) + s

∫ x

0

(x− ξ)f(ξ)dξ

−gR

∫ ∞

x

(ξ − x)f(ξ)dξ

ΛD(x, y) = (y − c)x− (1− θ)K − gM

∫ ∞

x

(ξ − x)f(ξ)dξ

EPRD,tR(QD,tR) = ΓD(QD,tR, wD,tR)− tQD,tR (3.7)

EPMD,tR(wD,tR) = ΛD(QD,tR, wD,tR) (3.8)

EPRD,tM(QD,tM) = ΓD(QD,tM , wD,tM) (3.9)
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EPMD,tM(wD,tM) = ΛD(QD,tM , wD,tM)− tQD,tM (3.10)

The retailer’s problem is to find Q∗
D,ti = arg maxQD,ti

EPRD,ti and the manufacturer’s

problem is w∗
D,ti = arg maxwD,ti

EPMD,ti. Expressions (3.7), (3.8), (3.9) and (3.10) are as

follow for demand distributed in [0, β].

EPRD,tR(QD,tR) = −Q2
D,tR(p + gR − s)/(2β) + QD,tR(p + gR − t− wD,tR)− gRµ− θK

EPMD,tR(wD,tR) = −(QD,tR − β)2gM/(2β) + QD,tR(wD,tR − c)− (1− θ)K

EPRD,tM(QD,tM) = −Q2
D,tM(p + gR − s)/(2β) + QD,tM(p + gR − wD,tM)− gRµ− θK

EPMD,tM(wD,tR) = −(QD,tM − β)2gM/(2β) + QD,tM(wD,tM − c− t)− (1− θ)K

Theorem 21

1. EPRD,tR(QD,tR) and EPRD,tM(QD,tM) are strictly concave in QD,tR and QD,tM , re-

spectively.

2. EPMD,tR(wD,tR) and EPMD,tM(wD,tM) are strictly concave in wD,tR and wD,tM , re-

spectively.

3. The optimal wholesale prices in an uncoordinated supply chain in the existence of RFID

are as follow.

w∗D,tR = [(gR + p− s)(gR + p + c) + sgM − t(p + gC − s)]/(2(g + p− s) + gM ) (3.11)
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< w∗D if and only if t > (1− a)(p + gR − s)2/(p + gC − s)

w∗D,tM = [(gR + p− s)(gR + p + c) + sgM + t(p + gR − s])/(2(g + p− s) + gM ) (3.12)

= w∗D,tR + t > w∗D

4. The optimal ordering quantities in an uncoordinated supply chain in the existence of

RFID are as follow.

Q∗
D,tR = Q∗

D,tM

=





(p + gC − t− c)β/(2(p + gR − s) + gM) > 0 if and only if

t < p + gC − c

0 otherwise

(3.13)

Theorem 21 gives the optimal wholesale prices and the ordering quantities in the existence

of RFID. Gaukler, Seifert and Hausman (2004) show that when RFID improves demand

visibility, the optimum wholesale price under RFID is at least as much as the one with

no RFID. However, when RFID improves supply visibility, as shown by Theorem 21, the

wholesale price under RFID is indeed smaller than the one with no RFID if the retailer

covers for the tagging expenses and the tag price is sufficiently high.

When the manufacturer pays for the tagging expenses, she can adjust the wholesale

price by t as compared to the wholesale price in the scenario where the retailer pays for the
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tagging expenses. As a result, the optimal ordering quantity does not change whether the

manufacturer or the retailer is charged for the tagging expenses. Since w∗
D,tM = w∗

D,tR+t and

Q∗
D,tR = Q∗

D,tM , the optimal profits of both the retailer and the manufacturer stay the same

regardless of the party paying for the tagging expenses. Thereby, the following corollary

follows from Theorem 21.

Corollary 10

1. EPRD,tR(Q∗
D,tR) = EPRD,tM(Q∗

D,tM)

2. EPMD,tR(w∗
D,tR) = EPMD,tM(w∗

D,tM)

Following Corollary 10, the rest of the results related with profits of the retailer or the

manufacturer holds regardless of the party paying for the tagging expenses.

Lemma 18 The following findings hold in an uncoordinated supply chain and in the exis-

tence of RFID for Q∗
D,ti > 0 where i ε{R, M}.

1. (a) For 0 < θ ≤ 1 and a given t, EPRD,ti(Q
∗
D,ti) > 0 if and only if K < ρ∗1 where

ρ∗1 = (2θ)−1[(p + gR − s)(
Q∗2

D,ti

β
)− gRβ]

and ρ∗1 ≥ 0 if and only if t ≤ (p+ gC − c)− [2(p+ gR− s)+ gM ]
√

gR/(p + gR − s).

(b) For θ = 0, EPRD,ti(Q
∗
D,ti) > 0 if and only if t < (p + gC − c)− [2(p + gR − s) +

gM ]
√

gR/(p + gR − s).
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2. (a) For 0 ≤ θ < 1 and a given t, EPMD,ti(w
∗
D,ti) > 0 if and only if K < ρ∗2 where

ρ∗2 = (1− θ)−1[
(p + gC − s)Q∗2

D,tR

β
− gM(β/2 + Q∗2

D,tR/(2β))]

and ρ∗2 ≥ 0 if and only if t ≤ (p + gC − c)−
√

gM [2(p + gR − s) + gM ].

(b) For θ = 1, EPMD,ti(w
∗
D,ti) > 0 if and only if t < (p+gC−c)−

√
gM [2(p + gR − s) + gM ].

3. When θ = 0.5 and gR = gM , EPRD,ti(Q
∗
D,ti) < EPMD,ti(w

∗
D,ti).

As seen in Lemma 18, although the profit functions are optimized at a positive value,

the sign of the value they take depends on the fixed cost as well as the tag price. Lemma

18 shows that when tag expenses are low, the parties in the supply chain will incur negative

profits if the fixed cost of investment is greater than a threshold value (ρ∗1 for the retailer

and ρ∗2 for the manufacturer). Thus, considering only the tagging expenses will not suffice in

characterizing the benefits of investment in RFID technology. If the parties share the fixed

cost of investment and the stock-out cost as half and half, being leader, the manufacturer

always extracts higher profits than the retailer.

Lemma 19 In an uncoordinated supply chain, the following findings hold given Q∗
D,ti, Q

∗
D >

0 where i ε {R,M}.

1. EPRD,ti(Q
∗
D,ti)− EPRD(Q∗

D) > 0 if and only if t < t∗D,R,

2. EPMD,ti(w
∗
D,ti)− EPMD(w∗

D) > 0 if and only if t < t∗D,M where

t∗D,R = (p + gC − c)− δD,R1

√
δD,R2,
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t∗D,M = (p + gC − c)−
√

δD,M ,

δD,R1 = [4(p + gC − s) + g2
M/(p + gR − s)] > 0,

δD,R2 =
[(a(p + gC − s)− (c− s))(p + gR − s)]2 + 2a2K[2(p+gR−s)+gM ]2θ(p+gR−s)

β

a2[2(p + gR − s) + gM ]4
> 0,

δD,M =
(a(p + gC − s)− (c− s))2 + 2a2K[2(p+gR−s)+gM ](1−θ)

β

a2
> 0.

The retailer and the manufacturer benefit from an investment in RFID as long as the tag

price is less than t∗D,R and t∗D,M , respectively. When a threshold is negative, there is never

an incentive for the corresponding party to adopt this technology.

Lemma 20 In an uncoordinated supply chain, the following findings hold given Q∗
D,ti, Q

∗
D >

0 where i ε {R,M}.

1. For 0 < θ < 1,

(a) EPRD,ti(Q
∗
D,ti)− EPRD(Q∗

D) > 0 if and only if K < K∗
D,R

(b) EPMD,ti(w
∗
D,ti)− EPMD(w∗

D) > 0 if and only if K < K∗
D,M

(c) K∗
D,R, K∗

D,M > 0 if and only if t < t1

2. For θ = 0, EPRD,ti(Q
∗
D,ti)− EPRD(Q∗

D) > 0 if and only if t < t1

3. For θ = 1, EPMD,ti(w
∗
D,ti)− EPMD(w∗

D) > 0 if and only if t < t1

where t1 is as given in Lemma 17,

K∗
D,R =

(p + gR − s)[(1− a)(c− s)− at][a(2(p + gC)− (c + s))− (c− s)− at]β

2a2[2(p + gR − s) + gM ]2θ
,

K∗
D,M =

[−(1− a)(c− s) + at][a(2(p + gC)− (c + s))− (c− s)− at]β

2a2[2(p + gR − s) + gM ]2(1− θ)
.
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As shown by Lemma 20, given a tag price, there exits a threshold value for the fixed cost

beyond which, it is never beneficial to adopt RFID for a party. If the tag price is greater

than t1, both parties will always be worse off under RFID for any positive fixed cost. This

threshold is the same threshold value for the centralized manufacturer to benefit from this

technology in the absence of any fixed cost of investment.

When the manufacturer covers for the entire fixed cost of investment, i.e. θ = 0, the

retailer will be worse off under RFID if the tag price is greater than the same value as

above, t1. The case where the retailer does not pay for any fixed cost is the same for him

as K = 0. If the tag price is more than t1, the investment is never beneficial for him even if

K = 0, since K∗
D,R is negative for t > t1. The same argument explains the threshold for the

manufacturer to benefit from this investment when the retailer covers for the entire fixed

cost of investment. Hence, in the absence of any fixed cost of investment, the threshold value

of the tag price for either the manufacturer or the retailer to benefit from this investment

would be the same. Thereby, it is the same threshold (t1) for the whole supply chain to

benefit from the RFID investment when K = 0.

Having characterized the incentives of the parties independent from each other, we next

analyze the benefits of RFID for one party relative to the other’s.

Theorem 22 In an uncoordinated supply chain, the following findings hold if Q∗
D > 0.
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Figure 3.6: Investment in RFID in an Uncoordinated Supply Chain for positive threshold
values

1. t∗D,R, t∗D,M < t1.

2.

t∗D,Ris





< t∗D,M if θ > θ∗D

> t∗D,M if θ < θ∗D

= t∗D,M otherwise

3. Given K∗
D,R, K∗

D,M > 0:

K∗
D,Ris





< K∗
D,M if θ > θ∗D

> K∗
D,M if θ < θ∗D

= K∗
D,M otherwise

where t∗D,R and t∗D,M are given by Lemma 19, K∗
D,R and K∗

D,M are given by Lemma 20, t1 is

given by Lemma 17 and θ∗D = (p + gR − s)/[3(p + gR − s) + gM ] ≤ 1/3.

Benefits of parties from making an investment in RFID technology in comparison to each

other depend on the relative fixed cost of investment as well as the tag prices. One would
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expect the thresholds to be different due to the fixed cost of investment. As illustrated

by Theorem 22, the relation between t∗D,R and t∗D,M depends on the value of θ. When the

retailer covers for exactly θ∗DK, these thresholds are equal to each other. Therefore, in such

a case, there exist only two regions regarding the RFID-adoption: where both parties benefit

from the adoption for t < t∗D,R = t∗D,M and where no party benefits. Figure 3.6 shows these

regions.

When θ 6= θ∗D, the incentives of the parties to adopt RFID are not always perfectly

aligned. If the tag price is smaller than min{t∗D,R, t∗D,M}, both parties benefit from the

investment. If the tag price is greater than max{t∗D,R, t∗D,M}, no party benefits from the

investment. An interesting situation arises when the tag price is in between these two values

because only one party benefits in that case. If the retailer covers for more than θ∗D ≤ 1/3,

then t∗D,R is less than t∗D,M ; thereby, only the manufacturer benefits for tag prices falling in

the middle region (t∗D,R < t < t∗D,M). However, if the retailer covers for less than θ∗D, t∗D,R

is greater than t∗D,M and thereby only the retailer benefits for the tag prices falling in the

middle region (t∗D,M < t < t∗D,R).

We know from Lemma 20 that t > t1 is a sufficient condition for none of the parties to

adopt RFID. Further, Theorem 22 shows that both threshold values, t∗D,R and t∗D,M , are less

than t1. Hence, one can conclude that although a given tag price can induce both parties

to adopt RFID in the absence of fixed cost, in reality, it may make only one party benefit

from this investment depending on the relative payments of fixed cost. When fixed cost

of investment is considered, the parties’ RFID-adoption decisions are not perfectly aligned

unless the retailer pays exactly θ∗D of the fixed cost of investment.
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Figure 3.7: Changes in the incentives of the parties in an uncoordinated supply chain under
inventory misplacement to adopt RFID when demand distribution is Normal[µ, σ]-doubly
truncated at 2σ (µ = 106, σ = 4× 105, p = 25, c = 5, gR = 1, gM = 3, s = 2, K = 6× 105, a =
0.7)

An interesting observation from Theorem 22 is that even if the parties share the fixed

cost as half and half, if the tag price falls into [t∗D,R, t∗D,M), contrary to popular belief in press

about retailers being the main beneficiaries of the RFID investment, only the manufacturer

benefits from this investment. Further, as the manufacturer’s goodwill cost (gM) increases,

θ∗D decreases. Thus, as the manufacturer gets more concerned about the stockouts, the

retailer has to cover for even lower proportions of the fixed cost to be the only beneficiary of

this investment for certain values of tag prices. As given by the relation between K∗
D,R and

K∗
D,M , a similar setting of regions exist for ranges of fixed cost as well.

Theorem 22 specifies regions of incentives when demand is uniformly distributed in [0, β].

Figure 3.7 and Figure 3.8 show two numerical examples where the incentives of the parties in

an uncoordinated supply chain under inventory misplacement to adopt RFID are illustrated

for Normal[µ, σ] and Exponential[λ] demand (refer to Appendix B for the proofs regarding

concavity). Both of these examples lend support to Corollary 10; thus, incentive of a party

to adopt RFID is the same regardless of who pays for the tagging expenses. Further, they
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Figure 3.8: Changes in the incentives of the parties in an uncoordinated supply chain under
inventory misplacement to adopt RFID when demand distribution is Exponential[λ] (λ =
10−6, p = 25, c = 5, gR = 1, gM = 3, s = 2, K = 106, a = 0.7)

support the results of Theorem 22. As shown in Figure 3.7(c) and Figure 3.8(c), the man-

ufacturer still benefits from the investment for a while after the retailer’s incentive becomes

zero.

Lemma 21 In an uncoordinated supply chain, the following findings hold given

Q∗
D,ti, Q

∗
D > 0 where i ε {R,M}.

1. (a) i. ∂t∗D,R/∂K < 0 ii. ∂t∗D,R/∂a < 0 iii. ∂t∗D,R/∂θ < 0

(b) i. ∂t∗D,M/∂K < 0 ii. ∂t∗D,M/∂a < 0 iii. ∂t∗D,M/∂θ > 0

2. (a) i. ∂K∗
D,R/∂t < 0 ii. ∂K∗

D,R/∂a < 0 iii. When K∗
D,R > 0, ∂K∗

D,R/∂θ < 0.

(b) i. ∂K∗
D,M/∂t < 0 ii. ∂K∗

D,M/∂a < 0 iii. When K∗
D,M > 0, ∂K∗

D,M/∂θ > 0.

Next, we study how the threshold values given in the previous lemmas behave with

changes in the fixed cost, the retailer’s (or the manufacturer’s) share of the fixed cost, and

availability proportion under misplaced inventory. As the fixed cost of investment or the
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proportion of the fixed cost that a party is charged increases, the new technology becomes

so costly that the maximum amount of tag price the firm can afford decreases. Additionally,

neither party in a supply chain that is already operating under high availability level can

afford high tag prices to benefit from RFID. An improvement in the availability level will

increase both parties’ profits. Since the firms can make more profits with a costless improve-

ment in availability, they will not be willing to pay for RFID as much as they could before

the improvement. Similar effects on the threshold values of the fixed cost of investment take

place as a result of changes in the tag price, availability level and the sharing of fixed cost.

Theorem 23 The following findings hold for uniformly distributed demand in [β, β] if t < t1.

1. Regardless of the party paying for the tagging expenses, the incentives of the retailer and

the manufacturer under inventory misplacement to adopt RFID decreases as inventory

availability increases.

2. The following results hold for each party as the expected value of demand changes given

the variance is fixed or vice versa regardless of the party paying for the tagging expenses.

(a) The results given in Theorem 18 and Theorem 19 for Q
′∗
C and Q

′∗
C,t are exactly

valid for Q
′∗
D and Q

′∗
D,ti, respectively where iε{R, M}.

(b) The results given in Theorem 18 and Theorem 19 regarding the incentives of a

centralized firm under inventory misplacement to adopt RFID are exactly valid

for both the retailer and the manufacturer under inventory misplacement to adopt

RFID.
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Figure 3.9: Changes in the incentives of the parties in an uncoordinated supply chain under
inventory misplacement to adopt RFID as variance of uniformly distributed demand increases
when t > t2 (variance increases as δ increases)

In the above results, we only consider cases where t < t1 since each firm may invest

in RFID for such tag prices. Theorem 23 shows how the changes in the expected value

or the variance of demand affect stocking decisions and the incentives of the firms in an

uncoordinated supply chain to adopt RFID. Both Q
′∗
D and Q

′∗
D,tR = Q

′∗
D,tR can be expressed

as Q
′∗
D = κQ

′∗
C and Q

′∗
D,ti = κQ

′∗
C,t where κ < 1 is given by Theorem 20. Hence, the results

that are given by Theorem 18 and Theorem 19 related with corresponding order quantities of

a centralized firm apply to those in the uncoordinated supply chain. Furthermore, we show

that the incentive of each party to adopt RFID changes in the same manner. Thus, both

firms’ incentives to adopt the technology decreases with variance of demand if the existing

inventory availability level of the retailer is low and the value of tag price is high. Figure 3.9

shows a numerical example where the incentives of the firms decrease as variance of demand

increases.
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3.3.2 Revenue Sharing

Sometimes supply chains are coordinated through a revenue sharing mechanism (see Cachon

and Lariviere, 2005). In this section, we study the implications of RFID implementation

in such situations. The sequence of events is the same as in Section 3.3.1 except for that

according to the revenue sharing contract, the retailer takes γ of the positive earnings (sales

and salvage value earnings) and the manufacturer takes 1−γ of them where 0 < γ < 1. As in

the previous decentralized setting, if the supply chain is subject to inventory misplacement,

0 < l = 1 − a < 1 proportion of the order released to the manufacturer is misplaced in the

retail store. We will use QRS and wRS to denote the ordering quantity and the wholesale

price under misplaced inventory, respectively. The retailer’s and the manufacturer’s profits

under inventory misplacement are given by (3.14) and (3.15) in that order.

EPRRS(QRS) = −wRSQRS + γ[p(µ +

∫ ∞

aQRS

(aQRS − ξ)f(ξ)dξ) + s(lQRS +

∫ aQRS

0

(aQRS − ξ)f(ξ)dξ)− gR

∫ ∞

aQRS

(ξ − aQRS)f(ξ)dξ (3.14)

EPMRS(wRS) = (wRS − c)QRS + (1− γ)[p(µ +

∫ ∞

aQRS

(aQRS − ξ)f(ξ)dξ) + s(lQRS +

∫ aQRS

0

(aQRS − ξ)f(ξ)dξ)− gM

∫ ∞

aQRS

(ξ − aQRS)f(ξ)dξ (3.15)
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Expressions (3.14) and (3.15) are as follow for demand uniformly distributed in [0, β].

EPRRS(QRS) = −Q2
RSa2(gR + (p− s)γ)/(2β) +

QRS(sγ + a(gR + (p− s)γ)− wRS)− gRµ

EPMRS(wRS) = −Q2
RSa2(gM + (p− s)(1− γ))/(2β) +

QRS(wRS − c + (1− a)(1− γ)s + a(gM + (1− γ)p))

Theorem 24 (Çamdereli and Swaminathan, 2005)

1. EPR(QRS) is concave in QRS.

2. A supply chain under inventory misplacement is coordinated by a revenue sharing con-

tract for the wholesale price chosen according to w∗
RS = [gR(c−s)+cγ(p−s)+sgCγ]/[p+

gC − s] < c.

To coordinate a supply chain, the manufacturer sets the wholesale price such that the

retailer orders the centralized optimum order. Theorem 24 specifies the wholesale price that

will lead to coordination under revenue sharing. We assume that γ is set such that the

retailer’s profit is at least as much as that before the coordination. In a supply chain subject

to inventory misplacement, the coordination wholesale price is less than the marginal cost

of production (see Çamdereli and Swaminathan (2005) for details).
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The retailer’s and the manufacturer’s profits under a revenue sharing contract in the

existence of RFID are given by EPRRS,ti and EPMRS,ti where i ε{R, M}. The expressions

ΓRS(QRS,ti, wRS,ti) and ΛRS(QRS,ti, wRS,ti), where QRS,ti is the order and wRS,ti is the whole-

sale price, show the retailer’s and the manufacturer’s profits exclusive of the tagging expenses

under a revenue sharing contract, respectively.

ΓRS(x, y) = −yx− θK + γ[p(µ +

∫ ∞

x

(x− ξ)f(ξ)dξ) + s

∫ x

0

(x− ξ)f(ξ)dξ]

−gR

∫ ∞

x

(ξ − x)f(ξ)dξ

ΛRS(x, y) = (y − c)x− (1− θ)K + (1− γ)[p(µ +

∫ ∞

x

(x− ξ)f(ξ)dξ) + s

∫ x

0

(x− ξ)f(ξ)dξ]

−gM

∫ ∞

x

(ξ − x)f(ξ)dξ

EPRRS,tR(QRS,tR) = ΓRS(QRS,tR, wRS,tR)− tQRS,tR (3.16)

EPMRS,tR(wRS,tR) = ΛRS(QRS,tR, wRS,tR) (3.17)

EPRRS,tM(QRS,tM) = ΓRS(QRS,tM , wRS,tM) (3.18)

EPMRS,tM(wRS,tM) = ΛRS(QRS,tM , wRS,tM)− tQRS,tM (3.19)

Expressions (3.16), (3.17), (3.18) and (3.19) are as follow for demand uniformly dis-

tributed in [0, β].
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EPRRS,tR(QRS,tR) = −Q2
RS,tR[γ(p− s) + gR]/(2β) +

QRS,tR(γp + gR − wRS,tR − t)− gRµ− θK

EPMRS,tR(wRS,tR) = −Q2
RS,tR[(1− γ)(p− s) + gM ]/(2β) +

QRS,tR[(1− γ)p + gM + wRS,tR − c]− gMµ− (1− θ)K

EPRRS,tM(QRS,tM) = −Q2
RS,tM [γ(p− s) + gR]/(2β) +

QRS,tM(γp + gR − wRS,tM)− gRµ− θK

EPMRS,tM(wRS,tM) = −Q2
RS,tM [(1− γ)(p− s) + gM ]/(2β) +

QRS,tM [(1− γ)p + gM + wRS,tM − c− t]− gMµ− (1− θ)K

Next, we specify the wholesale prices that will coordinate the channel under RFID tech-

nology.

Theorem 25 The supply chain is coordinated by a revenue sharing contract in the existence

of RFID where the retailer takes 0 < γ < 1 of the earnings as follow.

1. When the retailer pays for the tagging expenses, the coordination is achieved by

w∗
RS,tR =

c(γ(p− s) + gR)− t[(1− γ)(p− s) + gM ]− s(gR − γgC)

p + gC − s
< w∗

RS (3.20)
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2. When the manufacturer pays for the tagging expenses, the coordination is achieved by

w∗
RS,tM =

gR(c− s + t) + γ[c(p− s) + s(gC − t) + pt]

p + gC − s
> w∗

RS

= w∗
RS,tR + t (3.21)

3. Given Q∗
RS,ti > 0 where i ε{R, M}, the following findings hold.

(a) w∗
RS,tR is always less than c.

(b) w∗
RS,tM > c if and only if t > c(gM+(1−γ)(p−s))+s(gR−γgC)

gR+γ(p−s)
> 0.

Unlike the case of inventory misplacement, the coordination wholesale price is always

higher than the marginal cost of production if the tag price is expensive (t > c(gM+(1−γ)(p−s))+s(gR−γgC)
gR+γ(p−s)

)

and the manufacturer pays for the expenses.

Corollary 11

1. EPRRS,tR(Q∗
RS,tR) = EPRRS,tM(Q∗

RS,tM)

2. EPMRS,tR(w∗
RS,tR) = EPMRS,tM(w∗

RS,tM)

The manufacturer makes the retailer pay for the tag price through the wholesale price

when she is charged for the tagging expenses. Thus, the profit of each party under RFID is

the same as well as the benefits accrued to the same party from investing in RFID whoever

covers for the tagging expenses.
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Similar to Lemma 19 and Lemma 20, we can show the following results for a supply chain

under a revenue sharing contract (refer to Lemma 22 and Lemma 23 in Appendix B for the

mathematical representation of the following results and their proofs):

1. RFID benefits the retailer (manufacturer) in a supply chain coordinated by a revenue

sharing contract under misplaced inventory as long as the tag price is less than t∗RS,R

(t∗RS,M) for a given fixed cost and as long as the fixed cost is less than K∗
RS,R (K∗

RS,M)

for given a tag price.

2. If the tag price is greater t1, the technology is never beneficial to any of the parties for

any fixed cost of investment.

3. When one party covers for the entire fixed cost, the other party has an incentive to

invest in the technology if and only the tag price is lower than t1. Thus, one can

conclude that when the fixed cost of investment is ignored, each party in the supply

chain; therefore, the supply chain under a revenue sharing contract has an incentive

to adopt the technology if and only if the tag price is less than t1. With respect to

incentives to adopt the RFID technology, the supply chain under a revenue sharing

contract behaves as a centralized firm under no fixed cost due to the coordination.

4. When the tag price is sufficiently small (lower than t1), the retailer’s incentive to invest

in the technology increases in γ. The manufacturer’s incentive changes in the opposite

direction by the same magnitude because the summation of the incentives of parties

in the coordinated supply chain is always equal to that of a centralized firm.

99



*

,RRS
t

*

,MRS
t

Both parties 

benefit from 

an investment 

in RFID

Only 

the manufacturer

benefits from 

an investment 

in RFID

No party 

benefits from 

an investment 

in RFID

t0

*

RS
θθ >

*

,RRS
t

*

,MRS
t

Both parties 

benefit from 

an investment 

in RFID

Only 

the retailer

benefits from 

an investment 

in RFID

No party 

benefits from 

an investment 

in RFID

t0

*

RS
θθ <

*

,

*

, MRSRRS
tt =

Both parties 

benefit from 

an investment 

in RFID

No party 

benefits from 

an investment 

in RFID

t0

*

RS
θθ =

Figure 3.10: Investment in RFID in a supply chain coordinated by a revenue sharing contract
for positive threshold values

Next, we demonstrate how incentive of each party to adopt RFID under a revenue sharing

contract changes in comparison to the other’s.

Theorem 26 In a supply chain coordinated by a revenue sharing contract, the following

findings hold provided that Q∗
RS > 0.

1. t∗RS,R, t∗RS,M < t1.

2.

t∗RS,Ris





< t∗RS,M if θ > θ∗D

> t∗RS,M if θ < θ∗D

= t∗RS,M otherwise

3. Given K∗
RS,R, K∗

RS,M > 0:

K∗
RS,Ris





< K∗
RS,M if θ > θ∗D

> K∗
RS,M if θ < θ∗D

= K∗
RS,M otherwise
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Figure 3.11: Changes in the incentives of the parties in a coordinated supply chain by
a revenue sharing contract under inventory misplacement to adopt RFID when demand
distribution is Normal[µ, σ]-doubly truncated at 2σ (µ = 106, σ = 4 × 105, γ = 0.30, p =
25, c = 5, gR = 1, gM = 3, s = 2, K = 106, a = 0.7)

where t∗RS,R and t∗RS,M are given by Lemma B, K∗
D,R and K∗

D,M are given by Lemma B, t1 is

given by Lemma 17 and θ∗RS = [gR + γ(p− s)]/(p + gC − s) < 1.

As mentioned above, when t > t1, the parties do not adopt RFID technology. We show

that tRS,R and tRS,M are less than t1. Thus, although one can make this supply chain adopt

RFID for t < t1 when K = 0, the same tag price may not make both of them adopt

the technology when K > 0. Figure 3.10 demonstrates the incentives of parties under a

revenue sharing contract. Theorem 26 is explained similar to Theorem 22. When θ > θ∗RS,

min{t∗RS,R, t∗RS,M} is t∗RS,R. Thus, the manufacturer is the only party benefiting from this

technology for tag prices falling into [t∗RS,R, t∗RS,M). Only the retailer benefits from RFID if

he covers for less than θ∗RS of the fixed cost for tag prices falling in [t∗RS,M , t∗RS,R).

Figure 3.11 and Figure 3.12 show incentives of the parties in a coordinated supply chain

by a revenue sharing contract under inventory misplacement to adopt RFID when demand

distribution is Normal[µ, σ] and Exponential [λ], respectively (refer to Appendix B for the
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Figure 3.12: Changes in the incentives of the parties in a coordinated supply chain by
a revenue sharing contract under inventory misplacement to adopt RFID when demand
distribution is Exponential[λ] (λ = 10−6, γ = 0.40, p = 25, c = 5, gR = 1, gM = 3, s = 2, K =
106, a = 0.7)

proofs regarding concavity). These graphs lend support to our findings regarding the incen-

tives of the parties in such a supply chain where demand distribution is uniform. We observe

that these examples also follow Corollary 11, hence the incentive of a party to adopt the

technology is the same regardless of the party paying for the tagging expenses.

Lemma 22 In a supply chain coordinated by a revenue sharing contract, the following find-

ings hold given Q∗
RS,ti = Q∗

C,t > 0 where i ε{R,M}.

1. (a) i. ∂t∗RS,R/∂K < 0 ii. ∂t∗RS,R/∂a < 0 iii. ∂t∗RS,R/∂θ < 0 iv. ∂t∗RS,R/∂γ > 0.

(b) i. ∂t∗RS,M/∂K < 0 ii. ∂t∗RS,M/∂a < 0 iii. ∂t∗RS,M/∂θ > 0 iv. ∂t∗RS,M/∂γ < 0.

2. (a) i. ∂K∗
RS,R/∂t < 0 ii. ∂K∗

RS,R/∂a < 0 iii. When K∗
RS,R > 0, ∂K∗

RS,R/∂θ < 0

iv. When K∗
RS,R > 0, ∂K∗

RS,R/∂γ > 0.

(b) i. ∂K∗
RS,M/∂t < 0 ii. ∂K∗

RS,M/∂a < 0 iii. When K∗
RS,M > 0, ∂K∗

RS,M/∂θ > 0

iv. When K∗
RS,M > 0, ∂K∗

RS,M/∂γ < 0.
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Maximum tag prices and fixed costs that each party can afford to benefit from the

technology portray similar behavior to their counterparts in an uncoordinated supply chain

with changes in tag price, availability level, fixed cost and sharing of fixed cost. Additionally,

the retailer taking more of the supply chain earnings puts tighter bounds on the threshold

values related with the manufacturer and vice versa.

The optimum order quantity in a coordinated supply chain is equal to that of a centralized

firm. Hence, it is obvious that optimal stocking decisions in a coordinated supply chain react

to changing mean or variance of demand in the exact same way as in the centralized firm’s.

We further prove that the incentives of each firm in a coordinated supply chain is affected by

the same way as the centralized firm is by such a change (Refer to Theorem 27 in Appendix

B).

In this chapter, we study incentives of parties in vertically integrated, uncoordinated and

coordinated supply chains under inventory misplacement to adopt RFID. Our results lend

support to the current reactions of the supply chains in that if the fixed costs or the variable

costs of this investment are not sufficiently low, it is not beneficial to adopt this technology

for neither party. Depending on the sharing of the fixed costs of investment, we show that

the manufacturer may indeed be the only party benefiting from this technology.
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Chapter 4

Inventory Management under

Shrinkage and Customer-Driven

Search

4.1. Introduction

“When we think of how we can compete against larger retailers, being a small

and regional player, we realized we should be able to manage our inventory a lot

better, securing it and making sure people are paying for it.”

Chris Dorsey, CIO of Chase-Pitkin (Demery, 2005)

Chase-Pitkin Home & Garden Centers of New York is just one of the retailers who face

the “shrinkage” problem, which is the reduction of physical inventory caused primarily by

shoplifting or employee theft. They claim that they have historically lost 2% of their sales



(amounting to $4 million) due to shrinkage and they are not alone (Demery, 2005). According

to an Ernst & Young survey, in the United States, the average loss in the retail industry due

to shrinkage ranged from 0.8% to 4.7% of sales in 2002 (Loss Prevention Survey, 2003).

In this chapter, we explicitly focus on shrinkage as a special case of inventory inaccuracy.

Our aim is to identify the impact of shrinkage on retailers’ order placement policies in a

competitive environment. As suggested by the quote, shrinkage is a more serious problem

under competition since a customer who cannot find the product at one store is likely to

search for it at the competitor. Retail-industry surveys also suggest that shrinkage is a big

problem for “hot” products, especially during peak demand seasons. A great example is a fad

toy during the before-Christmas shopping season. The retailers would like to sell as much as

possible and do not want to lose customers to their competitors during this period because

demand goes down dramatically at the end of the season. At the same time, shrinkage

is highest during during peak demand; therefore the risk of stock-out due to shrinkage is

highest right when it will hurt the retailers most. In this work, we study a supply chain

with a single reliable manufacturer and two retailers subject to shrinkage. We study a single

product model where the product has a short life cycle. We assume that demand each retailer

faces is stochastic and independent from each other. A fraction of customers can not find

the product at one retailer searches for it at the other retail store. We explore the following

research questions: When faced with both shrinkage and competition, how much inventory

should the retailers stock? If the retailers have the ability to reduce shrinkage, how will their

order quantities and expected profits change? How will this impact a competitor? What is

the effect of such improvements on the manufacturer?
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The remainder of the chapter is organized as follows. Section 4.2 gives an overview of

related literature and Section 4.3 gives our analytical model.

4.2. Literature Review

There has been recent empirical and analytical work on inventory inaccuracy, which has

been reported as one major operational inefficiency in an empirical paper by Raman, Ton

and DeHoratius (2003). Inventory inaccuracy is defined as a mismatch between the physical

inventory in a store and what the inventory record shows. Shrinkage is one reason of inventory

inaccuracy among others such as transaction errors. Readers are referred to Lee and Özer

(2005) for a review of analytical work related with inventory inaccuracies. Most of the

analytical work in this area account for inaccuracies due to transaction errors and model

inventory inaccuracy through a random error with zero mean, partially observable markov

chains or an invisible demand process (see Kök and Shang, 2005; Bensoussan, Cakanyildirim

and Sethi, 2005a; Bensoussan, Cakanyildirim and Sethi, 2005b; DeHoratius, Merserau and

Schrage, 2005). Inventory shrinkage, however, can be interpreted as a type of inventory

inaccuracy where the physical inventory is always less than the inventory record.

Another stream of research closely related with shrinkage is inventory misplacement.

Under inventory misplacement, although inventory records are accurate, a fraction of the

inventory is not available for sale because they are not at their proper locations. Misplaced

items can be retrieved back whenever a cycle count is performed. Çamdereli and Swami-

nathan (2005) and Rekik, Sahin and Dallery (2005) study such systems. Contrary to systems
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subject to inventory misplacement, items lost due to shrinkage can never be retrieved.

Even though shrinkage is clearly a big problem for the retail industry, to our knowledge,

it has not received much attention in the operations management literature. Different from

all of the papers above, we study an environment where the items are lost primarily by

shoplifting or employee theft. Kang and Gershwin (2004) computationally study the effects

of inventory discrepancies due to shrinkages on the lost sales. Their simulation results show

that replenishment process and out-of-stocks are highly sensitive to inventory discrepancies.

Our setting is different in that we analytically study a game theoretic environment with two

retailers under customer search subject to shrinkage.

Several papers address mitigating the negative effects of inventory inaccuracies through

new technologies such as Radio Frequency Identification (RFID). Gaukler, Seifert and Haus-

man (2004), Çamdereli and Swaminathan (2006) and Heese (2006) consider two-player sup-

ply chains subject to different types of inventory inaccuracies in the context of RFID adop-

tion. In this chapter, we explicitly research shrinkage in a two-retailer setting where cus-

tomers are allowed to search for the product they could not find in the other retail store.

We also consider the cost of reducing shrinkage and model it as a two-stage game, where in

the first stage, the retailers set their availability levels and in the second stage, the retailers

set their order quantities through a non-cooperative game.

Papers which study competitive inventory models under demand substitution are closely

related with our work (the readers are referred to Mahajan and van Ryzin (1999) for a more

comprehensive review). Parlar (1988) studies a two-firm competitive newsvendor model and
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shows that a unique Nash Equilibrium exists in inventory levels when demands independent

and random. Lippman and McCardle (1997) study a number of allocation mechanisms to

split the industry demand among competitive firms. Netessine and Rudi (2003) study a

consumer-driven demand substitution problem in an arbitrary number of products where

demand vector is assumed to follow a known continuous multivariate distribution. In a

similar setting to the one presented in this work, Anupindi and Bassok (1999) consider a

two-retailer supply chain free of any inaccuracy and concentrate on the interests of the man-

ufacturer and the retailers with regard to centralization of stocks. Different from the papers

in this area, in addition to demand substitution, we assume that a fraction of the inventory in

each retailer becomes unavailable for sale in each retailer. We study the effects of inventory

shrinkage on stocking decisions. Further, we research the incentives of the manufacturer and

the retailers to reduce shrinkage. Contrary to the common belief regarding the suppliers not

benefiting from improvements in inventory availability, we identify conditions for which the

manufacturer may actually benefit from such an improvement.

Another relevant stream of research is random yield literature (refer to Yano and Lee

(1995) for an extensive review). Many of the papers which study a single-product and a

single-firm setting subject to stochastic demand assume random yield (e.g. Anupindi and

Akella, 1993; Ciarallo, Akella and Morton, 1994; Gupta, Kooper, 2005; Gerchak, Wang

and Yano, 1994; Gurnani, Akella, Lehoczky, 2000; Henig and Gerchak, 1990; Hojati, 2006;

Inderfurth, 2004; Rekik, Sahin and Dallery, 2006). In this chapter, we assume that a constant

fraction of the items are lost. However, we analyze a multi-retailer setting where a portion

of excess demand is substitutable. Some work on random yield considering multi-product
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settings assume known demand (Gerchak, Tripathy and Wang, 1996). We assume stochastic

demand here. Some other random yield papers which study multi-product settings also

include stochastic demand in their models (Hsu, Bassok, 1999; Karaesmen, Van Ryzin,

2004; Kazaz, 2004). However, in our model, demand substitution occurs in both ways and

we analyze a supply chain under shrinkage in a game theoretic environment. The analysis

of such a system subject to stochastic demand is analytically complex even for deterministic

stock losses. Allowing shrinkage to be random would impose analytical tractability issues on

the model. One may think of shrinkage rates as expected values. We provide a numerical

study to gain insights on the case where stock loss is allowed to be random.

4.3. The Model

4.3.1 Model Overview

We consider a supply chain with a single manufacturer and two retailers. The retailers sell

a single product with a short life cycle and they purchase the product from the same man-

ufacturer. Due to the short life cycle of the product, we model this problem as a single

period problem. We let i = 1, 2 denote the retailers. Each retailer faces continuously dis-

tributed stochastic demand (di) with cumulative distribution function Fi(·) and probability

distribution function fi(·). The demand at each of the retailers is independent; however a

percentage of customers who cannot find the product at their first retailer of choice will

search for the product at the other retailer. We use α to denote the percentage of customers
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who are willing to search for the product in case of a stock-out and the search percentage

is the same for both retailers. The willingness-to-search depends more on the product type

than the retailer selling it, so we believe this assumption is a reasonable representation of

reality. Retailers first fulfill demand from their own customers and then, if any inventory is

available, they fulfill the demand from the other retailer’s customers. The retail price is p

per item, the wholesale price is w per item and the manufacturer’s cost is c per item. The

retailers incur a cost g per item if they fail to fulfill demand. However this shortage cost

is incurred only if a retailer fails to fulfill demand from his own customers, i.e. failure to

fulfill a searching customer’s demand does not result in shortage cost. Left-over inventory is

disposed of at a salvage price of s per item.

We model shrinkage as follows: if retailer i orders qi units from the manufacturer, only a

percentage of those qi units will be available for sale and we call this percentage “availability

percentage” denoted by ai for retailer i = 1, 2. Hence we assume that shrinkage takes place

all at once, at the time the order is received. This assumption is consistent with our focus

on products that are sold over a short period.

Both retailers are profit maximizers and they set their order quantities to maximize their

expected profits. Without loss of generality, the expected profit of retailer 1 (denoted by π1)

is given by (4.1). Expression H1[q1, q2; α] = min[a1q1, d1] + (min[a1q1 − d1, α(d2 − a2q2)])
+

denotes the number of items sold by retailer 1.

π1 = E[pH1[q1, q2; α] + s(a1q1 −H1[q1, q2; α])+ − g(d1 − a1q1)
+ − wq1] (4.1)
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where x+ = max(0, x).

Due to customer-driven search, the order decisions of the retailers are dependent and

the order quantities will be determined as a result of a non-cooperative game (on the order

quantities) between the retailers. In the next section, we show the existence and the unique-

ness of the Nash equilibrium. Before we start discussing our results, it is important to note

that the manufacturer’s profit (πs) is deterministic once the order quantities of the retailers

are set; hence πs is simply as in (4.2).

πs = w [q1 + q2] (4.2)

where without loss of generality we have normalized the per unit cost of the manufacturer

to zero.

4.3.2 Nash Equilibrium

We first establish the existence and the uniqueness of the Nash equilibrium. Theorem 1

states our result.

Theorem 28 A pure-strategy Nash equilibrium for the order-quantity-game between the two

retailers exists when a1, a2 > w
p+g

and is unique. The equilibrium is found by solving the set

of equations given by the following best-response function for i = 1 and i = 2.

gaiFi(aiqi) + (p− s)

∫ aiqi

0

aiFj(
aiqi − xi

α
+ ajqj)fi(xi)dxi = (p + g)ai − w (4.3)
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Theorem 28 shows that the order-quantity-game has a unique Nash Equilibrium. The

equilibrium quantities are obtained by solving expression (4.3) for each retailer.

Lemma 25 Let (q∗1, q
∗
2) be the solution to the set of equations given by expression (4.3) for

i = 1 and i = 2 and let (q∗1,N , q∗2,N) be the equilibrium quantities of a game when a1, a2 = 1.

1. Using (
q∗1,N

a1
,

q∗2,N

a2
) instead of (q∗1, q

∗
2) generates suboptimal results.

2. Let (
q
′∗
1,N

a1
,

q
′∗
2,N

a2
) be the equilibrium of the game when one makes the transformation w′

i =

wi

ai
in each retailer’s profit function facing customer search under no shrinkage (when

ai = 1 for iε{1, 2}). Then, (
q
′∗
1,N

a1
,

q
′∗
2,N

a2
) = (q∗1, q

∗
2).

An intuitive approach is to solve the problem for a1, a2 = 1 to obtain the newsven-

dor quantities q∗i,N (see Parlar, 1988) and to inflate them by the corresponding availability

rate (q∗i,INF = q∗i,N/ai). However, this will generate a non-equilibrium result. If one ad-

justs the wholesale price of the newsvendor facing market search under no-shrinkage by the

rate of inventory availability at the corresponding retailer, inflated newsvendor quantities

(q
′∗
1,INF , q

′∗
2,INF ) indeed constitute the Nash Equilibrium. Ceteris paribus, as the shrinkage

problem escalates at one of the retailers, the equivalent newsvendor under no-shrinkage,

should offer a higher wholesale price so that we can still use new inflated newsvendor equi-

librium quantities as solutions to set of equations given by (4.3).

Next, we compare the equilibrium stocking decisions for four different cases, which are

defined in Table 4.1. Case 1 is the most generalized case where there is customer search and

shrinkage at both retailers. Case 2 is where there is customer search but no shrinkage at
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Table 4.1: Definition of cases

Case number Definition
Case 1 α > 0 and ai, aj < 1
Case 2 α > 0 and ai, aj = 1
Case 3 α = 0 and ai, aj < 1
Case 4 α = 0 and ai, aj = 1

any of the retail stores. Case 3 occurs when each retailer acts as an independent party and

is under shrinkage. Finally, Case 4 is where there is neither shrinkage nor customer search;

therefore, each retailer acts as a classical newsvendor.

Theorem 29 Let us call q∗i,k where i ε {1, 2} the equilibrium order of retailer i under Case

k, definition of which is given in Table 4.1.

1. q∗i,1 <
q∗i,2
ai

holds for at least one i.

2.
q∗1,2

a1
> q∗1,3 and

q∗2,2

a2
> q∗2,3.

3. q∗1,3 <
q∗1,4

a1
and q∗2,3 <

q∗2,4

a2
.

4. q∗1,1 > q∗1,3 and q∗2,1 > q∗2,3.

5. q∗1,2 > q∗1,4 and q∗2,2 > q∗2,4.

Theorem 29 compares equilibrium quantities of the four cases. In Lemma 25, we showed

that the equilibrium of the case where retailers are subject to shrinkage will never be equal

to the equilibrium under no shrinkage. With this theorem, we further prove that in the

existence of customer search, at least one of the equilibrium quantities under shrinkage is

always less than the corresponding inflated equilibrium order under no shrinkage. The second
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and third results of Theorem 29 show that simply inflating the equilibrium quantities of the

cases where there is no shrinkage never gives the equilibrium for the cases where there is

shrinkage. In fact, inflated equilibrium orders of the Case 2 and Case 4 are always higher than

the corresponding equilibrium orders of Case 3. We explore the effects of having customer

search in a system where there exists no search. The last two results of the theorem states

that whether there is shrinkage or not, equilibrium quantity of each retailer is always higher

than the corresponding equilibrium order of the case where there is no customer search.

Having compared the equilibrium quantities of the four different cases with respect to

existence of shrinkage and/or customer search, we next explore the effects of changes in

customer search in the equilibrium stocking decisions and the manufacturer’s profit in the

equilibrium.

Lemma 26 The total equilibrium order increases as α increases if and only if

a2(N1[2] + N2[2] + N3[2]−N1[1]α) + a1(N1[1] + N2[1] + N3[1]−N1[2]α) > 0

where

N1[j] = aiaj(p− s)2(

∫ ajqj+aiqi/α

ajqj

(xj − ajqj)fi(ψi)fj(xj)dxj)(

∫ aiqi+ajqj/α

aiqi

fi(xi)fj(ψj)dxi) > 0,

N2[j] = aiaj(p− s)2Fi(aiqi)fj(ajqj)(

∫ ajqj+aiqi/α

ajqj

(xj − ajqj)fi(ψi)fj(xj)dxj) > 0,

N3[j] = gN2[j]/[(p− s)Fi(aiqi)] > 0,

N1[i] = aiaj(p− s)2(

∫ aiqi+ajqj/α

aiqi

(xi − aiqi)fj(ψj)fi(xi)dxi)(

∫ ajqj+aiqi/α

ajqj

fj(xj)fi(ψi)dxj) > 0,
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i, j ε {1, 2}, ψi = aiqi − α(xj − ajqj) and ψj = ajqj − α(xi − aiqi).

Lemma 26 gives the necessary and sufficient condition for the total order in the equi-

librium to increase as customer search increases. As the condition is complicated, next we

derive sufficient conditions to characterize the behavior of the total order as α changes.

Lemma 27

1. If α < 1/2, q∗1 + q∗2 increases in α.

2. Without loss of generality, let us assume that a2 ≥ a1. If α < a1

a2
, q∗1 + q∗2 increases in

α.

Not being able to derive a general conclusion about the effects of changes in alpha on

the summation of the optimum orders, we show that as the customer search increases up to

50%, the total quantity ordered from the manufacturer always goes up. Therefore, if less

than 50% of the customers search for the product in the other retail store, the manufacturer

always benefits from an increase in α. Further, we show that when α < a1

a2
, the total order

always increases as well. This result is also in line with the findings of Anupindi and Bassok

(1999). The authors prove that in a two-retailer supply chain under customer search and

no operational inefficiency, the total order always increases as more disappointed customers

of a retail store search for the product in the other retailer. Lemma 27 also indicates that

when a1 = a2 = 1, the total order always increases as α increases.

Next, we analyze the effects of customer search on each equilibrium order.
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Figure 4.1: Effects of α on the equilibrium order quantities when each retailers’ demand
distribution is Exponential[λ] (λ = 10−3, p = 300, w = 100, g = 20, s = 40, a1 = 0.6, a2 =
0.99)

Lemma 28

1.
∂q∗i
∂α

< 0 if and only if α > α∗i where

α∗i =
N1[j] + N2[j] + N3[j]

N1[i]
, (4.4)

N1[j], N2[j], N3[j] and N1[i] are given by Lemma 26, i and j ε{1, 2} and i 6= j.

2. As α increases, q∗1 and q∗2 do not decrease simultaneously.

Lemma 28 shows the effects of changes in the search parameter on the equilibrium stock-

ing decisions. If more of the customers who could not find the item they are looking for in

one retailer search for it in the other retail store, one could expect the retailers to increase

their orders in the equilibrium. However, Lemma 28.1 implies that if the search parameter

is greater than a threshold value, an equilibrium quantity may indeed decrease as search

increases. Note that this threshold also depends on the value of the search parameter itself.
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As customer search intensifies, keeping the quantities constant, spill over demand in-

creases in both directions. If one of the equilibrium quantities decreases, spill over demand

towards the other retailer increases even further. Hence, the two can never decrease at the

same time. This result also leads to the fact that if demands are identically distributed and

a1 = a2, each equilibrium quantity increases as search increases.

Because expression (4.4) depends on the values of q∗1 and q∗2, one has to solve for the

equilibrium orders first to calculate the value of α∗i . Here, we gain insights about this

result through numerical examples. Anupindi and Bassok (1999) show that when demand

distributions are identical, each equilibrium quantity always increases as search intensifies.

Although not being able to prove it analytically for nonidentical demand distributions, they

state that in all of the numerical experiments they have conducted, they do not encounter a

case where an equilibrium quantity decreases as the search parameter decreases. However,

as we numerically illustrate below, in the existence of shrinkage, this may not be the case

even for identical demands.

Figure 4.1 shows an example where one of the order quantities decreases as α increases

when demands are identically distributed according to Exponential distribution. While the

first retailer loses 40% of his order (0.6×q∗1 is available for sales) due to shrinkage, the second

retailer loses only 1% (0.99 × q∗2 is available for sales). Figure 4.1(a) shows plots of q∗1 and

q∗2 as α increases. When search parameter is sufficiently low, both quantities increase as α

increases. However, when the search parameter is higher than a threshold value, q∗1 decreases

while q∗2 continues to increase. In this example, retailer 1 has a significantly lower inventory

availability rate relative to the other retailer. Hence, knowing that the second retailer has
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Figure 4.2: Effects of α on the equilibrium order quantities when each retailers’ demand
distribution is Exponential[λ] (λ = 10−3, p = 300, w = 100, g = 20, s = 40)

a very high inventory availability level, the first retailer anticipates to have less spill over

demand from the second retailer as search intensifies. Hence, he orders less for such values

of α.

Next, we give a numerical example, which shows the effects of α on the stocking decisions

when inventory availability values are close to each other. Using the same parameter values,

Figure 4.2 plots the effects of α for the two cases: where inventory availability levels of both

retailers are low (a1 = 0.60 and a2 = 0.70) and where inventory availability levels of both

retailers are high (a1 = 0.85 and a2 = 0.99). We observe that the equilibrium orders show

the same type of behavior in both of these examples.

In order to judge who will benefit from a unilateral improvement of availability at one of

the retailers, we next analyze how the equilibrium profit levels at the retailers change as the

availability improves at one of the retailers. First we consider the case, where availability

improvement is costless. Our motivation is to understand which player(s) have the incentive

to invest in availability improvement.
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Figure 4.3: Changes in the equilibrium order quantities as a1 increases when retailer 1 and
retailer 2 face demand distributed exponentially with parameter λ1 and λ2, respectively.
(λ1 = 2× 10−1, λ1 = 4× 10−1, α = 0.20, p = 9, g = 0.5, s = 0.5 and a2 = 0.9)

Theorem 30 The following results hold where i and j ε{1, 2} and i 6= j.

1. As the availability level of retailer j increases, the equilibrium quantity of retailer i

decreases.

2. If w > qi|∂2πi

∂q2
i
| holds, the equilibrium quantity of retailer i increases in the availability

level of retailer i.

We show that as the availability level at a retailer improves, the equilibrium order quantity

of the other retailer decreases. As availability improves at a retailer, the spill-over demand at

the other retailer drops and he responds to this by ordering less under the new equilibrium.

In this case, we would also expect the retailer whose availability improves to order less.

However, due to results for supermodular games, his order quantity may increase when his

profit is decreasing in his order quantity and his availability level. A sufficient condition for

this to happen is w > qi|∂2πi

∂q2
i
|. Further, ∂2πi

∂qi∂ai
> 0 is more likely to hold when the difference

between the retailer’s selling price and the wholesale price is small, or in other words this
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condition is more likely to hold when the retailer’s margin on the product is low. In general,

the retailer will respond to low availability by a large order quantity and when availability

improves, he will lower his order quantity. However, if the product has a low margin, it does

not pay to order it in large quantities to make up for the shrinkage problem. In this case,

the retailer increases the order quantity only when availability improves and the product

becomes more profitable. Figure 4.3 illustrates a numerical example where we observe this

behavior.

Theorem 31

1. The equilibrium profit of a retailer increases as her inventory availability level increases.

2. The equilibrium profit of a retailer decreases as the other retailer’s inventory availability

level increases.

As long as the availability improvement is costless, we would expect a retailer to benefit

from an improvement in her own inventory availability level. As she makes this improve-

ment, the other retailer’s equilibrium profit decreases. It is easy to see this result when the

equilibrium order quantity of the retailer making the improvement, say retailer i, increases

in ai. In the region where q∗i decreases, we find that the equilibrium profit of retailer j

increases if and only if
∂q∗i
ai

ai

qi
< −1 (see Appendix C); that is, a percentage increase in ai

causes a larger decrease in q∗i . However, we can show that this can never happen and hence

retailer j’s profit always decreases.
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Table 4.2: Payoffs of the sequential game
Retailer 1 Retailer 2

u∗1[0, 00] = u∗1[0, 01] = u∗1[00] u∗2[0, 00] = u∗2[0, 01] = u∗2[00]
u∗1[0, 10] = u∗1[0, 11] = u∗1[01] u∗2[0, 10] = u∗2[0, 11] = u∗2[01]− C[a2]

u∗1[1, 00] = u∗1[1, 10] = u∗1[10]− C[a1] u∗2[1, 00] = u∗2[1, 10] = u∗2[10]
u∗1[1, 01] = u∗1[1, 11] = u∗1[11]− C[a1] u∗2[1, 01] = u∗2[1, 11] = u∗2[11]− C[a2]

Next, we analyze a game where each retailer can completely solve the problem of shrinkage

and increase his inventory availability level to 100% at a cost of investment, C[ai] where

iε{1, 2}. Hence C[ai] is the cost of raising ai to one. We do not assume any form for C[ai].

Without loss of generality, we assume that retailer 1 moves the first in the sequential game,

which is described below.

Definition 1

Definition of the sequential game: Retailer 1 moves the first, the strategy sets of retailer 1

and retailer 2 are S1 = {0, 1} and S2 = {00, 01, 10, 11}, respectively, and the payoffs to the

retailers are shown by u∗i [si, sj] where iε{1, 2} as given by Table 4.2.




0 ≡ keeping the inventory availability level at the existing level (less than 100%)

1 ≡ raising the inventory availability level to 100%



00 ≡ playing 0 whether retailer 1 chooses 0 or 1

01 ≡ playing 0 if retailer 1 chooses 0 and playing 1 otherwise

10 ≡ playing 1 if retailer 1 chooses 0 and playing 0 otherwise

11 ≡ playing 1 whether retailer 1 chooses 0 or 1

Theorem 32 In a sequential game which is described by Definition 1, the following results
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hold.

1. C[a2] < u∗2[11]− u∗2[10] and C[a1] < u∗1[11]− u∗1[00] are sufficient for either {1, [01]} or

{1, [11]} to be the Nash Equilibrium.

2. If C[a2] > u∗2[11]− u∗2[10], at least one retailer decides to keep the existing availability

level.

3. If C[a2] < u∗2[01]− u∗2[00], at least one retailer always invests to remove the shrinkage.

Theorem 32.1 gives sufficient conditions for both of the parties to invest to completely

remove the problem of shrinkage. Since retailer 2 makes the second move, his decision is a

function of the 1st retailer’s. Hence, his sufficient condition to make an investment compares

the cost of such an investment with the difference between the highest and the lowest profits

that he can make when the 1st retailer chooses to invest. On the other hand, having the

advantage of being a leader in the game, the first retailer compares his cost of investment

with the difference between his profits if he decides to invest and the best profits that he

could get if he does not.

As stated by Theorem 32.2, if the cost of such an investment to the second retailer is

higher than what he could gain over the worst case provided that the first retailer makes an

investment, then both retailers making an investment can never be a Nash equilibrium. On

the contrary, if C[a2] < u∗2[01] − u2[00] holds, then the second retailer always invests when

the first one chooses not to. As a result, at least one retailer always invests to reduce remove

the problem of shrinkage.
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Figure 4.4: Equilibrium quantities and profits when each retailers’ demand distribution is
Uniform[0,1] (p = 10, w = 5, α = 0.6, g = 3, s = 1)

Theorem 32 analyzes a game where each retailer has a dichotomous strategy set: whether

a retailer completely removes shrinkage by making an investment to increase the inventory

availability level to 100% or does nothing. However, improvements can be experienced in

increments as well. We next analyze a simultaneous game where strategy set of each player

is a continuous.

Theorem 33 Let us assume that the retailers are allowed to increase their inventory avail-

abilities free of charge. In a game where the retailers simultaneously decide on inventory

availability level and then the order quantity, a unique equilibrium occurs where a1 = a2 = 1.

Theorem 33 states that if one retailer chooses to improve inventory availability, the other

always responds to it if inventory improvement can be accomplished at a negligible cost.

Further, the retailers do not settle for inventory availability less than 100%.

Actions of the retailers are clear when reducing shrinkage is free of charge. Inventory

availability can be improved through creating awareness of the problem (Raman, DeHoratius
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and Ton, 2003), closed monitoring, securing inventory, RFID, and so on. The equilibrium

becomes interesting when costs of investment are included. We gain insights about this

problem through numerical examples.

Figure 4.4(a) plots optimum orders with respect to inventory availabilities at the retail

stores when demands are i.i.d. distributed with uniform distribution in [0,1] (p = 10, w =

5, α = 0.6, g = 3, s = 1). Figure 4.4(b) shows the profits of these retailers in the equilibrium

for different inventory availability values. This plot also confirms Theorem 33 in that if

improving availability were free, the two would end up at a1 = a2 = 1.

Next, we use a convex cost C[ai] = (K × a2
i ) to improve an availability of ai by one unit.

We assume that both parties already have an inventory availability of 40%. Figure 4.5 shows

the net profits after incurring the costs of improvement. One unit corresponds to 0.44 in

this example. Therefore, C[0.96] corresponds to improving inventory availability to 100%.

We assume that both retailers start at an inventory availability level of 0.72. As we see in

Figure 4.5(a), when the cost of improving inventory availability is low (K = 0.1), retailers

choose to improve inventory availabilities up to 100%. However, when the cost of improving

inventory availability is high, retailers choose to keep their existing inventory availabilities

by Figure 4.5(b).

In this chapter, we study a two-retailer supply chain under consumer search and inventory

shrinkage. We identify the unique equilibrium for the quantity-game of the retailers. We

further show that simply inflating the newsvendor equilibrium quantities under customer

search and no shrinkage does not yield optimum results unless one makes an adjustment in
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Figure 4.5: Effects of improving availability at C[ai] = Ka2
i where iε{1, 2} when each retail-

ers’ demand distribution is Uniform[0,1] (p = 10, w = 5, α = 0.6, g = 3, s = 1)

the wholesale price. We study the effects of consumer search in the stocking decisions of the

retailers and find that each retailer can decrease his order quantity as search intensifies in the

existence of shrinkage. This is an interesting result given that Anupindi and Bassok (1999)

does not encounter such a situation in a similar setting to the one studied in this chapter

but where no operational inefficiency is taken into account. We also show that a reduction

in shrinkage at one retail store leads to a decrease in the other retailer’s equilibrium profit.
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Chapter 5

Conclusions

This dissertation studies the effects of operational inefficiencies, specifically inventory mis-

placement and shrinkage, on various forms of supply chains and the role of information

technology to mitigate the negative effects of such operational inefficiencies through three

separate essays. The first essay titled “Coordination of a Supply Chain under Misplaced

Inventory”, studies inventory management under misplaced inventory in centralized and de-

centralized supply chains. We first model inventory misplacement as a constant fraction.

Then, we relax this assumption by extending our study to modeling inventory misplacement

as a random variable and a function of order quantity.

When the supply chain is vertically integrated and subject to stochastic demand dis-

tributed according to a general continuous distribution with a finite mean, we find that

the changes in the optimum order under inventory misplacement with respect to changes

in inventory availability depends on the increasing generalized failure rate of the demand

distribution evaluated at the optimum available number of items. One may chose to de-

crease the order size when less items are misplaced in the store, i.e. more items become



available to customers. However, we show that when the value of the generalized failure rate

evaluated at the optimum available number of items is less than one, the optimum order

does increase eventhough more items become available. When the value of the generalized

failure rate is more than one, then a reduction in inventory misplacement leads to a decrease

in the optimum order. We are able to observe this interesting behavior of the optimum

order when demand distribution is uniform in [0, β]. We prove that as inventory availability

increases, the optimum order first increases until inventory availability equals to a threshold

value, where the the aforementioned value of the generalized failure rate becomes one, then

decreases thereafter. When demand is distributed according to a general distribution, we

further prove that reduction in inventory misplacement unconditionally benefits the central-

ized firm, the manufacturer in an uncoordinated supply chain and both of the parties in a

supply chain coordinated by a revenue sharing contract. Moreover, we prove that the man-

ufacturer indeed extracts more benefits than the retailer does from a reduction in inventory

misplacement in the retailer’s store if the value of the generalized failure rate evaluated at

the optimum number of available inventories is less than a threshold value.

We derive closed form solutions for the special case of uniform demand, and addition-

ally extend the analysis by Pasternack (1985) of a buyback contracting mechanism to a two

sided supply chain with misplaced inventory (refer to Table D1 in Appendix D). Surpris-

ingly, we find that leading manufacturers may benefit more as compared to retailers from

an improvement in retail inventory availability. This is in contrast to popular belief that

retailers are more likely to benefit from misplacement reduction at their stores. Finally, we

make a pair wise comparison of contracts for both the retailer and the manufacturer. We
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show that one can find a revenue sharing contract which generates the same profits as a

buyback contract where the return proportion is greater than the proportion of inventory

misplacement. However, one can never find a revenue sharing contract which can generate

the same profits as a buyback contract where return proportion is less than the proportion

of inventory misplacement. A summary of comparison of contracts is given in Table D2 and

Table D3 in Appendix D for the decentralized manufacturer and the decentralized retailer,

respectively.

The second essay of this dissertation titled “Misplaced Inventory and RFID: Information

and Coordination”, studies incentives of players in supply chains to invest in RFID to remove

inefficiencies of misplaced inventory. We consider both fixed and variable costs of adoption of

RFID in vertically integrated and bilaterally decentralized supply chains, for which we study

uncoordinated and coordinated environments by revenue sharing contracts. We analyze

scenarios where the fixed cost of adoption is shared and study both cases where only the

retailer or only the manufacturer pays for the variable costs of adoption, i.e. tagging expenses.

We find that in both decentralized settings, when the manufacturer pays for the tagging

expenses, she inflates the wholesale price by the tag price as compared to the wholesale

price in the scenario where the retailer pays for the tagging expenses. Hence, incentive of

a party to adopt RFID is the same regardless of the one paying for the tagging expenses.

Further, we show that the manufacturer charges a higher wholesale price under RFID than

she would under no RFID if she covers for the tagging expenses. However, we also prove

that the wholesale price under RFID is unconditionally smaller than the one under inven-

tory misplacement in coordinated supply chains and can indeed be smaller than that in
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uncoordinated environments for high tag prices if the retailer pays for the tagging expenses.

One common result in all of our settings support the current reactions of the supply

chains to the RFID technology and show that unless the fixed cost of RFID is sufficiently

low and the tag prices are cheap enough, no party would benefit from an investment in this

technology. However, our findings regarding the incentives of the parties in the decentralized

settings counter the common opinion that the main beneficiaries of RFID will be the retailers.

We show that for a given fixed cost of investment (or a tag price of an RFID chip), the

characterization of incentives depend on relative investments of fixed cost and the tag price

(or the fixed cost of investment). If the retailer covers for θ∗jK (j = D in an uncoordinated

supply chain, j = RS in a coordinated supply chain by a revenue sharing contract), the

incentives of the parties are perfectly aligned such that both parties will benefit from the

investment if and only if the tag price is smaller than a threshold value. Otherwise, no party

will benefit from such an investment. If the retailer pays for an amount other than θ∗jK,

the incentives of the parties are characterized by two threshold values of tag prices (or fixed

cost of investment) for a given fixed cost of investment (or a given tag price). Given that

these threshold values are positive, no party benefits from this investment if the tag price is

higher than the maximum of the two and both parties benefit if the tag price is smaller than

the minimum of the two. An interesting situation arises when the tag price is in between

these two values and only one party benefits from the investment. If the retailer pays for

more than θ∗jK, the manufacturer is indeed the only party benefiting from this investment for

such tag prices. Although our analytical results are proven for uniform demand distributions,

our numerical examples with truncated Normal and Exponential demand distributions lend
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support to our analytical findings regarding the threshold behavior of the incentives of the

parties.

We show that greatest incentives to adopt the technology occur for lower values of avail-

ability. We study the effects of changes in the mean and the variance of demand independent

from each other on the incentives of the centralized firm and parties in uncoordinated and

coordinated decentralized supply chains. Our findings regarding the effects of changes in the

mean of the distribution for fixed variance comply with intuition. The more the expected

value of demand is, the more beneficial the RFID technology becomes for each firm. How-

ever, we find an interesting result regarding the effects of a change in the variance of the

distribution. We show that the firms’ incentives in the aforementioned supply chains can

indeed decrease with increasing variance of demand if the existing availability level is less

than a threshold value and the tag price is sufficiently high. Furthermore, those threshold

values happen to be identical for each firm and all types of supply chains studied in this

paper.

The third essay of this dissertation titled “Inventory Management under Shrinkage and

Customer-Driven Search” studies a two-retailer supply chain under customer search where

the retailers are subject to inventory shrinkage. A customer who cannot find the product

at one of the retailers may search for the product at the other retailer; hence, retailer

competition is modeled through a customer-driven search. A unique equilibrium exists in

this game and the retailers participate in the game if and only if their inventory availability

levels are sufficiently high. Otherwise, the effective cost of stocking positive inventory is

higher than not participating. One approach to this problem could be to simply inflate the
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newsvendor stocking quantities under customer search without any shrinkage by the amount

of inventory availability. However, we show that this will never yield the equilibrium under

shrinkage unless one makes a wholesale price transformation.

Our findings indicate that, without thorough analysis, it is not easy to predict how the

equilibrium stocking decisions of the retailers and the profit of the manufacturer will change if

more customers perform market search. The manufacturer benefits from increasing customer

search if the total quantity ordered is also increasing. Not being able to derive a general

conclusion, we show that if the customer search increases up to 50%, the manufacturer

always benefits from an increase in search. We also show that if the percentage of the

customers searching for the product is less than the ratio of the inventory availabilities of

the retailers, then the total quantity always increases as well. As search intensifies, one may

expect each retailer to increase his order size as well. In a similar setting to ours but in

the absence of any operational inefficiencies, Anupindi and Bassok (1999) show that when

demand distributions are identical, each equilibrium quantity always increases as search

intensifies. Further, they state that in all of the numerical experiments they have conducted,

they do not encounter a case where an equilibrium quantity decreases as the market search

intensifies. However, we identify analytical conditions for each retailer to actually decrease

his order size as search increases. Since the condition is messy and not insightful, we illustrate

with a numerical example that such a reaction can indeed become optimum even for i.i.d.

demand distributions.

We find that as one retailer reduces shrinkage, the other retailer decreases his order size

in the equilibrium. This occurs as a result of decreasing spill over demand with increasing
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inventory availability. We further observe that if a retailer improves his inventory availability

level, he is likely to increase his order size if the product has low margin. Recent articles on

technologies such as Radio Frequency Identification (RFID), which have the potential to re-

duce shrinkage, suggest that availability improvement may leave the manufacturer worse off.

Our analysis shows that the manufacturer may actually benefit from such an improvement.

Our analysis shows that a reduction in shrinkage at one retail store always causes re-

duction in the profits of the other retail store. Our findings further indicate that, without

thorough analysis, it is not easy to predict how the equilibrium profits of the manufacturer

will change if the shrinkage rate at one of the retailers goes down. Further, we study games

where each retailer is allowed to respond to the retailer reducing shrinkage in his store. First,

we study a sequential game where each retailer can keep the existing inventory availability

levels or completely remove shrinkage at a cost of investment. We identify conditions for

both retailers to make such an investment and for at least one retailer to invest or not to

invest. Then, we study a simultaneous game where each retailer is free to set his inven-

tory availability level to any number at an ignorable cost. We show that the retailers do

not settle for an inventory availability level less than 100%. We also provide a numerical

example where each retailer can improve his inventory availability level at a cost, which is

a convex function of his existing inventory availability. Our findings lend support to the

current reactions of the supply chains in that both firms invest to reduce shrinkage unless

the cost of improvement is sufficiently high. Otherwise, they do not take any action.

Although we model only misplaced inventory in the first two essays of this dissertation,

shrinkages due to theft can easily be incorporated. A generalized version of cleanup process
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where x% of the products are retrieved and 100-x % are stolen or lost forever can take care

of both misplaced inventory as well as shrinkages. The methodology to follow will be similar

to the one studied here.

We studied contracts where the sharing of the fixed costs of RFID investment is exoge-

neous. It would be interesting to study contracts which endogenizes the sharing of the fixed

costs of RFID investment.

We further assume that the ordered quantity is misplaced immediately whereas in reality

they may be misplaced over time. Modeling gradual misplacement will need a different model

of customer demand, particularly the type where customers coming into the store misplace

an item with a given probability. Analysis of such a model is likely to be different.

Our last essay shows that the manufacturer may benefit from an increase in inventory

availability. Hence, an extension of this work could identify whether or not cooperating with

the retailers to improve their inventory availability level is beneficial for the manufacturer.

One could employ the techniques of cooperative game theory to study this problem.

We also assume that each retailer is aware of the other retailer’s inventory availabil-

ity level. One possible extension could employ information asymmetry. One can benefit

from economics models where one party receives a signal about the other party’s inventory

availability.
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Appendix

A. Appendix for Chapter 2

Theorem 1:

1. Manufacturer’s profit function at (2.2) can be organized as follows where µ is E[ξ].

EPC(QC) = −cQC +pµ+p
∫∞

aQC
(aQC−ξ)f(ξ)dξ+slQC +s

∫ aQC

0
(aQC−ξ)f(ξ)dξ−

gC

∫∞
aQC

(ξ − aQC)f(ξ)dξ

The second derivative of EPC(QC) with respect to QC is ∂2EPC
∂(QC)2

= −a2f(aQC)(p +

gC − s) ≤ 0 by Assumptions 1 and 2.

2. The first order condition gives ∂EPC
∂(QC)

= (p+gC−s)a−aF (aQC)(p+gC−s)+(s−c) = 0

or F (aQ∗
C) = 1− (c−s)

a(p+gC−s)
. Thus, the second term in F (aQ∗

C) must be < 1 and > 0

for Q∗
C > 0. It is > 0 by Assumption 1. If we let ã = (c−s)

(p+gC−s)
, we know that ã < 1

by Assumption 1. Hence, ã < a must hold for Q∗
C to have a positive value.

Corollary 1: Let us call c′−s
p+gC−s

by ã′, which is equal to ã/a. The result follows.

Corollary 2:

For 0 < a < 1 , Q∗
C > Q∗

N ⇒ 1
a
F−1(1 − ã

a
) > F−1(1 − ã). Since ã can never

become 0, the arguments of the survival functions in the inequality will never become 1.

Therefore, taking the F of both sides of the inequality will not affect the strict inequality.

F
(
F−1(1− ã

a
)
)

> F (aF−1(1− ã)) ⇒ (1− ã
a
) > F (aF−1(1− ã)). The same approach is

taken for Q∗
C < Q∗

N .

F (Q∗
N) = 1− ã and F (aQ∗

C) = 1− ã/a. If we substitute c by c′ = c/a− (1− a)s/a in ã, we
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obtain ã/a. Hence, the result follows.

Lemma 1:

1.
∂Q∗C
∂a

= 1
a
( ã

a2f(aQ∗) −Q∗
C). Thus, if ã

a
> (aQ∗

C)f(aQ∗
C), then

∂Q∗C
∂a

> 0 (or equivalently

g[aQ∗
C ] < 1 after substituting (1 − F (aQ∗

C)) for ã/a) and if ã
a

< (aQ∗
C)f(aQ∗

C),

otherwise.

2. We use Envelope Theorem for unconstrained optimization (Simon and Blume, The-

orem 19.4, 1994) for the second part and d
da

EPC(Q∗
C(a); a) can be expressed as

d
da

EPC(Q∗
C(a); a) = Q∗

C(p + gC − s) ã
a

> 0 for Q∗
C > 0.

3. We take the derivative of the previous result and obtain
d2EPC(Q∗C(a);a)

da2 = (p + gC −

s)
dQ∗
da

ãa−Q∗C ã

a2 where the first multiplier is positive by Assumption 1. Hence, the

results (a) and (b) follow.

Theorem 2: ∂2EPRD(QD)/∂Q2
D = −(p + gR − s)f(aQD) < 0. We obtain w∗

D = a(p + gR −

s)(1 − F (a(QD))) + s from the FOC ∂EPRD(QD)/∂QD = s − wD + a(p + gR − s) −

F (aQD)a(p + gR − s) = 0. Let us call R(QD) = w∗
D + w∗

DQD.

∂EPMD(QD)/∂QD = R(QD) + gMaF̄ (aQD) (A1)

∂2EPMD(QD)/∂Q2
D = R′(QD)− gMa2f(aQD) (A2)

where

R(QD) = a(p + gR − s)F̄ (aQD)[1− aQDf(aQD)

F̄ (aQD)
+ s] (A3)

Let us call q = aQD. Hence we can write R(q) = a(p + gR − s)F̄ (q)[1 − g[q]] + s
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and ∂R(q)/∂QD = −a2(p + gR − s)(f(q)(1 − g[q]) + F̄ (q)g′[q]). The rest of the proof

for concavity follows from the proof of Lemma 2 of Lariviere and Porteus (2001). The

optimum quantity solves EPMD(QD)/∂QD = 0.

Lemma 2:

1. We derive
∂(EPRD(Q∗D(a);a))

∂a
= −∂w∗D

∂a
Q∗

D + (p + gR − s)Q∗
D(1− F (aQ∗

D)) by Envelope

Theorem for the retailer.

2. ∂EPMD(Q∗
D(a); a)/∂a = Q∗

DF̄ (aQ∗
D)(p + gR − s)(1 − g[aQ∗

D]p+gR−s
p+gC−s

] > 0 where

g[aQ∗
D] is the generalized failure rate evaluated at aQ∗

D where g[aQ∗
D] < 1 (see

Theorem 2). Hence, the result follows.

Lemma 3: ∂EPRRS(QRS)/∂QRS = −wRS + γs+ a[γ(p− s)+ gR]−F (aQRS)a[γ(p− s)+ gR]

and ∂2EPRRS(QRS)/∂Q2
RS = −a2f(aQRS)[γ(p − s) + gR] < 0. When the channel is

coordinated,
w∗RS−γs

a[γ(p−s)+gR]
= c−s

a[(p−s+gC ]
.

Theorem 3

1. ∂EPRRS(Q∗
RS(a); a)/∂a = ã

a
QRS∗[γ(p− s) + gR] > 0 from Envelope Theorem.

2. ∂EPMRS(w∗
RS(a); a)/∂a = (∂Q∗

RS/∂a)[w∗
RS+(1−γ)s]+[(1−γ)(p−s)+gM ]F̄ (aQ∗

RS)(Q∗
RS+

a∂Q∗
RS/∂a). Substituting ∂Q∗

RS/∂a and F (aQ∗
RS) = 1−ã/a, we obtain the following

for ∂EPMRS(w∗
RS(a); a)/∂a.

c(c− s)− a2Q∗
RS(cgR + (p + gM − s)s + (c− s)(p− s)γ)f(aQ∗

RS)

a3(p + gC − s)f(aQ∗
RS)

(A4)

The expression above is greater than zero if and only the numerator is positive.

Hence, the result follows after simplification.
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3. (∂EPMRS(w∗
RS(a); a)/∂a− ∂EPRRS(w∗

RS(a); a)/∂a = 1
a
(
−Y Q∗RS

p+gC−s
+ cã

a2f(aQ∗RS)
) where

Y = 2(c − s)[γ(p − s) + gR] + s(p + gC − s). (
−Y Q∗RS

p+gC−s
+ cã

a2f(aQ∗RS)
) is equivalent to

g[aQ∗
RS] < Ȳ2 after some algebra.

Note that the numerators of Ȳ1 and Ȳ2 are the same. One can show that the

denominator of Ȳ1 is always smaller than Y , i.e. the denominator of Ȳ2. Hence,

Ȳ2 < Ȳ1.

Theorem 4 :

1. dEPCN

d(QN )
= (gC+p−c)−QN

β
(gC+p−s) and dEPC

d(QC)
= a(gC+p−s)−(c−s)−QC

β
a2(gC+p−s)

. The second order conditions lead to d2EPCN

d(QN )2
= − (p+gC−s)

β
and d2EPCC

d(QC)2
= −a2 (p+gC−s)

β
,

which are negative by Assumption 1.

2. Solving the first order conditions ( dEPCN

d(QN )
= 0 and dEPC

d(QC)
= 0 ) for QN and QC

gives Q∗
N = (1− ã) β > 0 and Q∗

C =





1
a

(
1− ã

a

)
β > 0 if and only if a > ã

0 otherwise

where

ã = (c−s)
(p+gC−s)

. ã < 1 holds by Assumption 1.

Corollary 3: Directly follows from Theorem 1.2.

Lemma 4:

1. Taking the derivative of Q∗
C with respect to a , we find

dQ∗C
da

= (2ã−a)β
a3 . Thus,

dQ∗C
da

> 0

if and only if a < 2ã and
dQ∗C
da

≤ 0 otherwise.

2. Taking the second derivative of Q∗
C with respect to a , we obtain

d2Q∗C
da2 = 2(a−3ã)β

a4 .

Thus,
d2Q∗C
da2 > 0 if and only if a > 3ã and

d2Q∗C
da2 ≤ 0 otherwise.

3. dEPC∗
da

= (c − s) β
a2 (1 − ã

a
) = (c−s)

a
Q∗

C ≥ 0 by Assumption 1. Taking the second

derivative leads to d2EPC∗
da2 = (c−s)(3ã−2a)β

a4 where (c − s) > 0 by Assumption 1. Thus,
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d2EPC∗
da2 is positive if and only if 3ã > 2a and less than or equal to zero otherwise.

Corollary 4:

1. Directly follows from Theorem 1.1.

2. EPC(Qi∗)−EPC(Q∗
N) = (1−a)2(gC+p−c)(a(gC+p−c)−2(c−s))β

2a(p+gC−s)
> 0 if and only if (a(gC +

p − c) − 2(c − s)) > 0 , i.e. a > 2(c−s)
p+gC−c

= 2ã
1−ã

since the remainder is positive by

Assumption 1.

3. (a)
d2EPC(Q∗N )

da2 = − (gC+p−c)2β
(gC+p−s)

< 0 and
d2EPC(Q∗i )

da
= −2(c−s)(gC+p−c)β

a3(gC+p−s)
< 0 by Assump-

tion 1.

(b)
∂(EPC(Q∗i )−EPC(Q∗N ))

∂a
=

(1−a)(gC+p−c)((c−s)(1+a)−a2(gC+p−c))β

a2(p+gC−s)
> 0 if and only if ((c−

s)(1 + a)− a2(gC + p− c)) > 0, i.e. a2

1+a
< ã

1−ã
, since the remainder is positive

by Assumption 1.

(c)
∂(EPC(Q∗i )−EPC(Q∗C))

∂a
= (1−a)(c−s)2β

a3(p+gC−s)
> 0 by Assumption 1.

(d)
∂(EPC(Q∗N )−EPC(Q∗C))

∂a
=

(1−a)(a(gC+p−c)−(c−s))(a2(gC+p−c)−(c−s))β

a3(p+gC−s)
> 0, which is greater

than zero if the following conditions are satisfied: either ( a > ã
1−ã

and a >

√
ã

1−ã
)or ( a < ã

1−ã
and a <

√
ã

1−ã
). For c < p+gC+s

2
, i.e. ã

1−ã
< 1, the first

condition reduces to a >
√

ã
1−ã

and the second condition reduces to a < ã
1−ã

.

For c ≥ p+gC+s
2

, i.e. ã
1−ã

≥ 1, the 1st condition is never satisfied but the latter

always holds.

Corollary 5:

1. (a)
∂(EPC(Q∗i )−EPC(Q∗C))

∂c
= − (1−a)2(c−s)β

a2(p+gC−s)
< 0 by Assumption 1.

(b)
∂(EPC(Qi∗)−EPC(Q∗C))

∂gC
= (1−a)2(c−s)2β

2a2(p+gC−s)2
> 0 by Assumption 1.
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(c)
∂(EPC(Qi∗)−EPC(Q∗C))

∂s
= (1−a)2(c−s)(gC+p−c+gC+p−s)β

2a2(p+gC−s)2
> 0 by Assumption 1.

(d)
∂(EPC(Qi∗)−EPC(Q∗C))

∂p
= (1−a)2(c−s)2β

2a2(p+gC−s)2
> 0 by Assumption 1.

(e)
∂(EPC(Q∗i )−EPC(QN∗))

∂s
= (1−a)2(2+a)(gC+p−c)2β

2a(p+gC−s)2
> 0 by Assumption 1.

2. (a)
∂(EPC(Q∗N )−EPC(Q∗C))

∂c
= (1−a)2(1+a)(a(gC+p−c)−(c−s))β

a2(p+gC−s)
is positive as long as a >

(c−s)
p+gC−c

= ã
1−ã

since the remainder is positive by Assumption 1.

(b)
∂(Q∗C−Q∗N)

∂c
= − (1−a2)β

a2(p+gC−s)
< 0 by Assumption 1.

3. (a)
∂(EPC(Q∗N )−EPC(Q∗C))

∂s
= (1−a)2((1+a)(p+gC−c)+(p+gC−s))((c−s)−a(gC+p−c))β

2a2(p+gC−s)2
is positive

as long as a < (c−s)
p+gC−c

= ã
1−ã

since the remainder is positive by Assumption 1.

(b)
∂(Q∗C−Q∗N)

∂s
= (1−a2)(p+gC−c)β

a2(p+gC−s)2
> 0 by Assumption 1.

Theorem 5:

1. dEPRD

d(QD)
= a(p + gR − s)− (wD − s)− a2 (p+gR−s)

β
QD and d2EPRD

d(QD)2
= −a2 (p+gR−s)

β
< 0 by

Assumption 1.

2. The optimal ordering quantity solves dEPRD

d(QD)
= 0 and is equal to Q∗

D = β
a
(1− wD−s

a(p+gR−s)
)

. Thus, Q∗
D is decreasing in wD .

3. By substituting Q∗
D in EPMD(wD) and taking the first derivative, we get dEPMD

d(wD)
=

(
(a(gR+p)2+c(gR+p−s)+s(p+gC−2a(gR+p))−s2(1−a))

a2(gR+p−s)2
− (2p+2gR+gM−2s)

a2(p+gR−s)2
wD

)
β. The second order

condition gives d2EPMD

d(wD)2
= − (2p+2gR+gM−2s)β

a2(p+gR−s)2
< 0 by Assumption 1.

4. Solving dEPMD

d(wD)
= 0 for the optimal wholesale price leads to w∗

D = 1
4
(2(c + s) −

2a(p + gR − s) − ag1 + gM (ag1−2(c−s))
2(p+gR−s)+gM

) after some algebra. Substituting the optimum

wholesale price back into Q∗
D gives Q∗

D =





κ
(

1
a

) (
1− ã

a

)
β > 0 if and only if a > ã

0 otherwise

where κ = (gR+p−s)+g1

2(gR+p−s)+gM
< 1 and positive by Assumption 1.
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Lemma 5:

1.
dEPRD(Q∗D(a);a)

da
= (c−s)(gR+p−s)(a(gC+p−s)−(c−s))

a3(2(gR+p−s)+gM )
> 0 and

dEPMD(w∗D(a);a)

da
= (c−s)(a(gC+p−s)−(c−s))

a3(2(gR+p−s)+gM )
>

0 by Assumption 1 and Q∗
D > 0. Since Q∗

D > 0, a > ã and therefore (a(gC + p− s)− (c− s)) >

0.

2.
dEPMD(w∗D(a);a)

da
− dEPRD(Q∗D(a);a)

da
= (c−s)(gC+p−s)(a(gC+p−s)−(c−s))

a3(2(gR+p−s)+gM )
> 0 by Assumption 1

and Q∗
D > 0 .

3. Taking the derivative of w∗
D with respect to a gives

dw∗D
da

= (gR+p−s)2

2(gR+p−s)+gM
> 0 by

Assumption 1.

Corollary 6

1. Substituting the optimal values back into profit functions and subtracting gives

EPC∗−(EPR∗
D+EPM∗

D) = (gR+p−s)2(a(gC+p−s)−(c−s))2β

2a2(gC+p−s)(2(p+gR−s)+gM )2
, which is positive by Assumption

1.

2.
d(EPC∗−(EPR∗D+EPM∗

D))
da

= (c−s)(gR+p−s)2(a(gC+p−s)−(c−s))β
a3(gC+p−s)(2(gR+p−s)+gM )

> 0 for Q∗
C , Q∗

D > 0 by As-

sumption 1.

Theorem 6:

1. dEPRRS

d(QRS)
= sγ + a(gR + (p − s)γ) − wRS − QRS

a2(gR+(p−s)γ)
β

; hence, d2EPRRS

d(QRS)2
=

−a2(gR+(p−s)γ)
β

< 0 by Assumption 1.

2. Q∗
RS solves dEPRRS

d(QRS)
= 0 and is Q∗

RS = β
a2

(
γs+a(gR+(p−s)γ)−wRS

gR+(p−s)γ

)
. Equating 21 to

3 gives w∗
RS = (gR(c−s)+cγ(p−s)+sgCγ)

p+gC−s
. Computation of w∗

RS − c leads to w∗
RS − c =

s(−gR+gCγ)+c(gR+γ(p−s)−gC−p+s)
p+gC−s

, which can be simplified to s(−gR+gCγ)−c((p−s)(1−γ)+gM )
p+gC−s

. The

denominator is always positive by Assumption 1. Therefore, s(−gR + gCγ) − c((p −

s)(1 − γ) + gM) < 0 will be sufficient for w∗
RS − c < 0. The second term in paren-
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theses is always positive by Assumption 1 and γ < 1. Now, there are two possibil-

ities: one possibility is (−gR + gCγ) < 0 and the other one is (−gR + gCγ) > 0.

The first one automatically leads to w∗
RS < c. In order to prove w∗

RS < c, showing

(p−s)(1−γ)+gM > (−gR +gCγ) will suffice since s < c by Assumption 1. After further

simplification, (p− s)(1−γ)+ gM > (−gR + gCγ) becomes (p+ gC − s)(1−γ) > 0, which

is always true by Assumption 1 and γ < 1.

Lemma 6:

1. ∂
∂a

EPRRS(Q∗
RS(a); a) = (c−s)(gR+(p−s)γ)(a(gC+p−s)−(c−s))β

a3(p+gC−s)2
> 0 and ∂

∂a
EPMRS(w∗

RS(a); a) =

(c−s)(gM+(p−s)(1−γ))(a(gC+p−s)−(c−s))β

a3(p+gC−s)2
> 0 by Assumption 1, Q∗

RS = Q∗
C > 0 and γ < 1.

2. ∂
∂a

EPMRS(w∗
RS(a); a)− ∂

∂a
EPRRS(Q∗

RS(a); a) = (c−s)(a(gC+p−s)−(c−s))β(gM−gR+p−s−2(p−s)γ)

a3(p+gC−s)2

is positive if and only if (gM − gR + p− s− 2(p− s)γ) is positive since the remainder of

the expression is positive by Assumption 1 and Q∗
RS = Q∗

C > 0. The condition is further

simplified to γ < (1/2)
(
1 + (gM−gR)

(p−s)

)
.

Lemma 7: dEPRBB1

dQBB1
= a(gR+p−b)−(wBB1−b)−QBB1

a2(p+gR−b)+(b−s)(1−R)2

β
and d2EPRBB1

dQ2
BB1

=

−a2(p+gR−b)−(b−s)(1−R)2

β
< 0 by Assumption 3. Q∗

BB1 solves dEPRBB1

d(QBB1)
= 0 and is Q∗

BB1 =

β(a(gR+p−b)−(wBB1−b))
a2(gR+p−b)+(b−s)(1−R)2

.

Theorem 7:

1. If R = 1 and b = wBB1 , the wholesale price that coordinates the channel and hence

makes Q∗
BB1 = Q∗

C is wBB1 = gR+p . However, wBB1 is always less than p by Assumption

2.

2. Since wBB1 is equal to the expression derived by Pasternack (1985) for the wholesale

price for unlimited returns, the proof directly follows from Pasternack (1985).
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Corollary 7: Directly follows from Theorem 7.

Theorem 8:

1. When b = wBB1, solving wBB1 for b and simplifying gives

(c−s)(gR+p)+s(p+gC−s)(1−R)
(Q∗BB1(1−R))

β

(c−s)+(p+gC−s)(1−R)
(Q∗

BB1
(1−R))

β

. Therefore, b − s = (c−s)(gR+p−s)

(c−s)+(p+gC−s)(1−R)
(QBB1(1−R))

β

> 0

by Assumption 1 and R < 1 . This indicates that b > s.

2. Solving Q∗
BB1 = Q∗

C gives w∗
BB1 = c(gR+p−b)−s(gR+p)+b(p+gC)

(gC+p−s)
−(b−s)(1−R)2

(
1
a

) (
1− ã

a

)

.

If wBB1 > b , then wBB1 − b = (p+gR−b)(c−s)
p+gC−s

− (b − s)(1 − R)
(Q∗BB1(1−R))

β
> 0 holds. If

(p+gR−b)(c−s)
p+gC−s

− (b−s)(1−R)
(Q∗BB1(1−R))

β
> 0 holds, then wBB1 > b. Further simplification

on the condition leads to ã(p + gR − b) > (b − s)(1 − R)2
(

1
a

) (
1− ã

a

)
. One can always

find a solution such that this inequality is verified.

Given that wBB1 > b , now we show that one can always find a b satisfying (2.25) such

that s < b. Solving wBB1 for b and simplifying gives

b = s − c(gR+p−s)−(gC+p)wBB1+s(wBB1+gC−gR)

(gC+p−c)−(1−R)(gC+p−s)
(QBB1(1−R))

β

. If the ratio is negative, then we can find a

b > s. We take the denominator first and show that it is positive. Thus, this leads to

(gC + p − c) > (1 − R)(gC + p − s)
(Q∗BB1(1−R))

β
. In this case, we know that R > l which

also means that a > 1−R. Thus the right hand side of the inequality is always less than

a(gC + p− s)
(aQ∗BB1)

β
which is equal to a(gC + p− s)(1− c−s

a(gC+p−s)
) when the channel is

coordinated. Thus, if the left hand side of the inequality is even greater than that value,

then we know that the denominator will always be positive. After some algebra, we obtain

that (gC +p− c) > a(gC +p− s)
(
1− c−s

a(gC+p−s)

)
⇒ (gC +p− c) > a(gC +p− s)− (c− s),

which is always true. Therefore, the numerator must be negative to ensure b > s. So,

c(gR +p−s)− (gC +p)wBB1 +s(wBB1 +gC−gR) < 0. Substitution of gC = gR +gM gives
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−(wBB1− c)(gR + p− s)− (wBB1− s)gM < 0 and the inequality always holds. Therefore,

b > s. Hence, a b satisfying (2.25) can be found to coordinate the channel such that

s < b < wBB1 if wBB1 is chosen such that c < wBB1 < p.

Lemma 8: dEPRBB2

d(QBB2)
= a(gR + p − s) + R(b − s) − (wBB2 − s) − QBB2a

2 (gR+p−s)
β

and

d2EPRBB2

dQ2
BB2

= −a2(p+gR−s)
β

< 0 by Assumption 1. Q∗
BB2 solves dEPRBB2

d(QBB2)
= 0 and is

Q∗
BB2 = β

a

(
1− (wBB2−s)−R(b−s)

a(p+gR−s)

)

Theorem 9:

Equating (2.13) to (2.28), we get a general relationship for the channel to be coordinated.

(w∗BB2−s)−R(b−s)

a(p+gR−s)
= (c−s)

a(p+gC−s)
leads to w∗

BB2 = c− (gC−gR)(c−s)
p+gC−s

+ (b− s)R .

1. w∗
BB2 = c− (gC−gR)(c−s)

p+gC−s
= c− gM (c−s)

p+gC−s
< c which contradicts with Assumption 1.

2. w∗
BB2 = b = s + (gR+p−s)(c−s)

(p+gC−s)(1−R)
is greater than s since the second term is positive by

Assumption 1 and w∗
BB2 leads to coordination with right selection of parameters.

3. If w∗
BB2 > b , w∗

BB2 − b > 0 and in turn c − gM (c−s)
p+gC−s

> b(1 − R) + Rs . Given that

w∗
BB2 > b holds, solving Q∗

BB2 = Q∗
C for b gives b = s+

(wBB2∗−c)+
(c−s)gM
(p+gC−s)

R
, which is greater

than s due to Assumption 1 and Assumption 2. Right hand side of the inequality above

is less than b and greater than s. Left hand side of the inequality is greater than s due to

Assumption 1. One can always find numbers such that the left hand side is greater than

the right hand side. Thus, a b satisfying (2.30) can be found to coordinate the channel

such that s < b < wBB2 if wBB2 is chosen such that c < wBB2 < p .
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Corollary 8:

1. Let us call wBB the coordination wholesale price for buyback contract.

w∗
BB =





w∗
BB1 = c(gR+p−b)−s(gR+p)+b(p+gC)

(gC+p−s)
− (b− s)(1−R)2

(
1
a

) (
1− ã

a

)
if l < R ≤ 1

w∗
BB2 = c− (gC−gR)(c−s)

p+gC−s
+ (b− s)R if 0 < R ≤ l





Computation of left and right limits at l leads to lim
R→l−

wBB = lim
R→l+

wBB = c− gM (c−s)
p+gC−s

+

l(b − s) after simplification and shows that w∗
BB is a continuous function of R. Taking

the derivatives of w∗
BB1 and w∗

BB2 with respect R leads to

2(b−s)(a(p+gC−s)−(c−s))(1−R)
a2(p+gC−s)

and (b − s), both of which are positive by Assumption 1, As-

sumption 3 and Q∗
BB1 = Q∗

BB2 = Q∗
C > 0. Since w∗

BB is increasing in R, w∗
BB2 < w∗

BB1.

2. Plugging QBB2 and wBB2 back into EPMBB2 and further simplification give ã(ã−2a)
2a2 gMβ <

0 .

Lemma 9:

1. ∂
∂a

EPR∗
BB1(Q

∗
BB1(a); a) can be simplified as Q∗

BB1

(
(p + gR − b) ã

a
+ (b−s)(1−R)2

β

dQ∗BB1

da

)
.

Further algebra shows that if the retailer benefits from availability,
dQ∗BB1

da
> − ã

a
(p+gR−b)β

(b−s)(1−R)2

must hold. Simplification of the inequality gives (a−2ã)(b−s)(1−R)2 < ã(p+gR−b)a2.

After further simplification, we obtain
(

a
(1−R)

)2

− (a−2ã))(b−s)
ã(p+gR−b)

> 0. We see from Theorem

8.2. that w∗
BB1 ≥ b holds as long as

(
a

(1−R)

)2

≥ (a−ã)(b−s)
ã(p+gR−b)

. In order for the retailer

not to benefit from improvements in availability,
(

a
(1−R)

)2

< (a−2ã)(b−s)
ã(p+gR−b)

must be true.

However, (a−ã)(b−s)
ã(p+gR−b)

≤
(

a
(1−R)

)2

< (a−2ã)(b−s)
ã(p+gR−b)

is never possible.

2. ∂
∂a

EPM∗
BB1(Q

∗
BB1(a); a) can be simplified as Q∗

BB1

(
(b− s + gM) ã

a
+ (b−s)(1−R)2

β

dQ∗BB1

da

)
.

Further algebra shows that if the manufacturer benefits from availability,
dQ∗BB1

da
< ã

a
(b−s+gM )β
(b−s)(1−R)2
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must hold. Simplification of the inequality leads to a2ã(b−s+gM) > (1−R)2(b−s)(−a+

2ã). In this inequality, a2 > (1−R)2, (b−s+gM) ≥ (b−s) and ã > −a+2ã (or equivalently

a > ã due to Q∗
BB1 = Q∗

C > 0). Thus, the inequality holds all the time.

3. (i) If the manufacturer gains at least as much as the retailer, then d
da

EPMBB1(w
∗
BB1(a); a)−

d
da

EPRBB1(Q
∗
BB1(a); a) ≥ 0 must hold. Simplifying the subtraction gives

β(a−ã)
a3

[
ã(b + gM − s)−

(
ã(p + gR − b) + 2(b− s)(2ã− a)

(
1−R

a

)2
)]

. The first term is

positive, thus, the marginal benefit for the manufacturer is more than the retailer if the

term in square brackets is positive.

(ii) ∂∆
∂gM

= −2(c−s)(−a2(gR+p)+b(a2−2(1−R)2)+2s(1−R)2)
a2(gC+p−s)2

is positive as long as (−a2(gR + p) +

b(a2 − 2(1−R)2) + 2s(1−R)2) < 0 holds. The inequality can be organized as −a2(gR +

p− b) < 2(b− s)(1−R)2, which is always true by Assumption 3.

(iii) ∂∆
∂b

= 2ã + 2
(

1−R
a

)2
(a − 2ã) = 2 ãa2+(1−R)2(a−2ã)

a2 , which is positive as long as ãa2 +

(1−R)2 (a− 2ã) > 0. The condition can be organized as ãa2 > (1−R)2 (2ã− a). Since

R > l = (1−a), a2 > (1−R)2. In addition, ã > (2ã−a) holds if and only if ã < a, which

is the condition for the retailer to order a positive amount under a coordinated supply

chain.

Lemma 10:

1. ∂
∂a

EPRBB2(Q
∗
BB2(a); a) = (c−s)(p+gR−s)(a(gC+p−s)−(c−s))β

a3(p+gC−s)2
> 0 by Assumption 1 and

Q∗
BB2 = Q∗

C > 0 .

2. ∂
∂a

EPMBB2(w
∗
BB2(a); a) = (c−s)gM (p+gR−s)(a(gC+p−s)−(c−s))β

a3(p+gC−s)2
> 0 by Assumption 1 and

Q∗
BB2 = Q∗

C > 0 .

3. If the manufacturer gains at least as much as the retailer, then ∂
∂a

EPMBB2(w
∗
BB2(a); a)−
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∂
∂a

EPRBB2(Q
∗
BB2(a); a) ≥ 0 must hold. ∂

∂a
EPMBB2(w

∗
BB2(a); a)− ∂

∂a
EPRBB2(QBB2 ∗

(a); a) = −β(c−s)(s−gR+gM−p)(c−s−a(p+gC−s))
a3(p+gC−s)2

. From Assumption 1 and Q∗
BB2 = Q∗

C > 0 ,

−β(c−s)(c−s−a(p+gC−s))
a3(p+gC−s)2

> 0. Thus, if (s− gR + gM − p) ≥ 0 , the manufacturer benefits at

least as much as the retailer. Otherwise, the retailer benefits more.

Lemma 11:

Let us assume that R1 is ∈ (l, 1] and R2 is ∈ (0, l] . Thus, in a supply chain coordinated

by a buyback contract where (R > l) , the coordination profits for the manufacturer will

be EPM∗
BB1 and the return proportion R will be replaced by R1 . Similarly, in a supply

chain coordinated by a buyback contract where (R ≤ l) , the coordination profits for the

manufacturer will be EPM∗
BB2 and the return proportion R will be replaced by R2 . The

manufacturer’s profits in a supply chain coordinated by a revenue sharing contract will

be represented by EPM∗
RS.

1. EPM∗
BB2 − EPM∗

BB1 = − (b−s)(a(gC+p−s)−(c−s))2(a2−(1−R1)2)β

2a4(p+gC−s)2
< 0 since all the terms

are positive by Assumption 1, Assumption 3, Q∗
C > 0 and R1 ∈ (l, 1].

2. EPM∗
RS −EPM∗

BB2 = (p−s)(a(gC+p−s)−(c−s))2(1−γ)β

2a2(p+gC−s)2
> 0 since all the terms are positive

by Assumption 1, Q∗
C > 0 and γ < 1.

3. EPM∗
BB1−EPM∗

RS =
(a(gC+p−s)−(c−s))2(s+sR1(R1−2)+b(a2−(1−R1)2)+a2(γ(p−s)−p))β

2a4(p+gC−s)2
is posi-

tive as long as (s + sR1(R1 − 2) + b (a2 − (1−R1)
2) + a2 (γ(p− s)− p)) > 0 , which can

be simplified as (a2γ(p− s)− (1−R1)
2(b− s)− a2(p− b)) > 0. After further algebra,

the condition leads to γ > (1−R1)2(b−s)+a2(p−b)
a2(p−s)

,which is less than 1 since R1 ∈ (l, 1] .

4. In order for the manufacturer to prefer a revenue sharing contract to a buyback

contract where R1 > l , EPM∗
BB1 − EPM∗

RS < 0 must hold. This condition is satisfied
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if (s + sR1(R1 − 2) + b (a2 − (1−R1)
2) + a2 (γ(p− s)− p)) is negative. Thus, following

the proof for Lemma 11.3., γ < (1−R1)2(b−s)+a2(p−b)
a2(p−s)

must hold.

5. In order for the manufacturer to be indifferent between a revenue sharing contract

and a buyback contract where R1 > l , EPM∗
BB1 − EPM∗

RS = 0 must hold. Following

the proof for Lemma 11.3., we obtain γ = (1−R1)2(b−s)+a2(p−b)
a2(p−s)

.

Lemma 12: Given that the supply chain is coordinated and hence Q∗
C = Q∗

BB1 = Q∗
BB2 =

Q∗
RS > 0 , the decentralized retailer

1. always prefers a buyback contract where R ≤ l to a buyback contract where R > l .

2. always prefers a buyback contract where R ≤ l to a revenue sharing contract.

3. always prefers a buyback contract where R > l to a revenue sharing contract if

γ < (1−R)2(b−s)+a2(p−b)
a2(p−s)

where (1−R)2(b−s)+a2(p−b)
a2(p−s)

is always less than 1.

4. always prefers a revenue sharing contract to a buyback contract where R > l if

γ > (1−R)2(b−s)+a2(p−b)
a2(p−s)

where (1−R)2(b−s)+a2(p−b)
a2(p−s)

is always less than 1.

5. is always indifferent between a buyback contract where R > l and a revenue sharing

contract if γ = (1−R)2(b−s)+a2(p−b)
a2(p−s)

where (1−R)2(b−s)+a2(p−b)
a2(p−s)

is always less than 1.

Proof of Lemma 12:

We will follow the same line of proof as in the proof of Lemma 11.

1. EPR∗
BB2 − EPR∗

BB1 =
(b−s)(a(gC+p−s)−(c−s))2(a2−(1−R1)2)β

2a4(p+gC−s)2
> 0 since all the terms are

positive by Assumption 1, Assumption 3, Q∗
C > 0 and R1 ∈ (l, 1] .

2. EPR∗
RS−EPR∗

BB2 = − (p−s)(a(gC+p−s)−(c−s))2(1−γ)β

2a2(p+gC−s)2
< 0 since all the terms are positive

by Assumption 1, Q∗
C > 0 and γ < 1.

3. EPR∗
BB1 − EPR∗

RS = − (a(gC+p−s)−(c−s))2(s+sR1(R1−2)+b(a2−(1−R1)2)+a2(γ(p−s)−p))β

2a4(p+gC−s)2
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= −(EPM∗
BB1 −EPM∗

RS) Thereby, the retailer prefers a buyback contract where R > l

to a revenue sharing contract if γ < (1−R1)2(b−s)+a2(p−b)
a2(p−s)

, which is less than 1 since R1

∈ (l, 1] .

4. Following the proof of Lemma 12.3., in order for the retailer to prefer a revenue sharing

contract to a buyback contract where R1 > l, γ > (1−R1)2(b−s)+a2(p−b)
a2(p−s)

must hold.

5. In order for the retailer to be indifferent between a revenue sharing contract and a

buyback contract where R1 > l , EPR∗
BB1−EPR∗

RS = 0 must hold. Following the proof

for Lemma 9.3., we obtain γ = (1−R1)2(b−s)+a2(p−b)
a2(p−s)

.

Theorem 10:

1. ∂EPC(QC)/∂QC = −c + s + (p + gC − s)
∫∞
0

∫ x/Q∗C
0

adH(a)dF (x)dx and

∂2EPC(QC)/∂Q2
C = −(p + gC − s)

∫∞
0

(x2/Q3
C)h(x/QC)dF (x) < 0. Therefore the

result follows from the first order condition.

2. The optimum order under random yield, Q∗, solves
∫∞
0

∫ x/Q∗

0
adH(a)dF (x)dx =

c−sE[A]
p+gC−s

. Here, c−sE[A]
p+gC−s

> c−s
p+gC−s

for E[A] < 1. Thus, Q∗ < Q∗
C .

Lemma 13: Let us assume that Â has a distribution of Ĥ(.).

EPC(Q̂∗
C)−EPC(Q∗

C) = (p+gC−s)
∫∞
0

x[H(x/Q∗
C)− Ĥ(x/Q̂∗

C)]dF (x)dx. If Q̂∗
C > Q∗

C ,

H(x/Q∗
C)− Ĥ(x/Q̂∗

C) > 0 for A ≤st Â since H(x/Q∗
C) ≥ Ĥ(x/Q̂∗

C).

Theorem 11:

1. ∂2EPRD(QD)/∂Q2
D = −(p + gR − s)

∫∞
0

(x2/Q3
D)h(x/QD)dF (x) < 0. Hence, the

optimum order solves the FOC, which is ∂EPRD(QD)/∂QD = −wD + s+(p+ gR−

s)
∫∞
0

∫ x/Q∗D
0

adH(a)dF (x)dx = 0. Therefore, EPRD(QD) is concave in QD and the
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optimum order Q∗
D solves the following relation.

wD = s + (p + gR − s)

∫ ∞

0

∫ x/QD

0

adH(a)dF (x)dx (A5)

2. ∂EPMD(QD)/∂QD = (wD − c) + (∂wD/∂QD)QD + gM

∫∞
0

∫ x/Qd

0
adH(a)dF (x) and

∂2EPMD(QD)/∂Q2
D = (∂2wD/∂Q2

D)QD+2(∂wD/∂QD)−gM

∫∞
0

(x2/Q3
D)h(x/QD)dF (x).

We substitute (A5) for wD in ∂2EPMD(QD)/∂Q2
D where

∂wD/∂QD = −(p + gR − s)

∫ ∞

0

(x2/Q3
D)h(x/QD)dF (x) < 0 (A6)

∂2wD/∂Q2
D = (p + gR − s)[3

∫ ∞

0

(x2/Q4
D)h(x/QD)dF (x) + (A7)

∫ ∞

0

(x3/Q5
D)h′(x/QD)dF (x)]

After plugging the expressions above in ∂2EPMD(QD)/∂Q2
D and further simplifying

we receive (p+gR−s−gM)
∫∞
0

x2

Q3
D
h(x/QD)dF (x)+(p+gR−s)

∫∞
0

x3

Q4
D
h′(x/QD)dF (x).

3. If the manufacturer’s function is concave, the optimum order solves the FOC of

the manufacturer ∂EPMD(QD)/∂QD = 0 where wD is given by (A5). Further

simplification yields the result.

Corollary 9: If A is uniformly distributed, then h′(.) = 0. Hence, EPMD is concave if and

only if (p + gR − s− gM)
∫∞
0

x2

Q3
D
h(x/QD)dF (x) < 0.

Lemma 14: We follow the same line of proof for this result as we did for Lemma 13.

1. EPRD(Q̂∗
D)−EPRD(Q∗

D) = (p+gR−s)
∫∞
0

x[H(x/Q∗
D)− Ĥ(x/Q̂∗

D)]dF (x)dx after

substituting (A5) for w and simplification.
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2. EPMD(Q̂∗
D)− EPMD(Q∗

D) = (c− s)(Q∗
D − Q̂D

∗
) +

(p + gR + gM − s)Q̂D
∗ ∫∞

0

∫ x/Q̂D
∗

0
adĤ(a)dF (x)dx−

(p+gR+gM−s)Q∗
D

∫∞
0

∫ x/Q∗D
0

adH(a)dF (x)dx+gM [
∫∞

0
x[H(x/Q∗

D)−Ĥ(x/Q̂∗
D)dF (x)]

after substituting (A5) for wD and simplification.

Theorem 12: ∂EPRRS(QRS)/∂QRS = [γ(p − s) + gR]
∫∞

0

∫ x/QRS

0
adH(a)dF (x) − wRS + γs

and ∂2EPRRS(QRS)/∂Q2
RS = −[γ(p− s) + gR]

∫∞
0

(x2/Q3
RS)h(x/QRS)dF (x) < 0. Hence,

the FOC of the retailer yields: [γ(p − s) + gR]
∫∞

0

∫ x/QRS

0
adH(a)dF (x) = wRS − γs. If

Q∗
RS = Q∗

C , the channel will be coordinated. Therefore, solving (A8) for wRS gives us the

result.

∫ ∞

0

∫ x/Q∗C

0

adH(a)dF (x)dx =

∫ ∞

0

∫ x/QRS∗

0

adH(a)dF (x)dx

c− s

p + gC − s
=

wRS − γs

γ(p− s) + gR

(A8)

Lemma 15: We follow the same line of proof for this result as we did for Lemma 13.

1. EPRRS(Q̂∗
RS)−EPRD(Q∗

RS) = [γ(p− s)+ gR]
∫∞

0
x[H(x/Q∗

C)− Ĥ(x/Q̂∗
C)]dF (x)dx

after substituting (2.46) for wRS and simplification.

2. EPMRS(Q̂∗
RS) − EPMRS(Q∗

RS) is equal to (2.47) after substituting (2.46) for wRS

and further simplification.

Theorem 13: ∂EPC/∂Q = −c + s + A′(Q)[1 − F (A(Q))](p + gC − s) and ∂2EPC/∂Q2 =

{A′′(Q)[1− F (A(Q))]− (A′(Q))2f(A(Q))} (p + gC − s) and is negative if A′′(Q) < 0 and

A′(Q) > 0. The result follows from the FOC.
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Theorem 14

1. ∂EPRD/∂Q = −w + s + A′(Q)[1 − F (A(Q))](p + gR − s) and ∂2EPRD/∂Q2 =

{A′′(Q)[1− F (A(Q))]− (A′(Q))2f(A(Q))} (p+gR−s) and is negative if A′′(Q) < 0

and A′(Q) > 0. The result follows from the FOC.

2. ∂EPMD/∂Q = −(w∗′ Q + w∗)− c + A′(Q)[1− F (A(Q))]gM and ∂2EPMD/∂Q2 =

−(w∗′′ Q + w∗′) + gM{A′′(Q)[1− F (A(Q))]− (A′(Q))2f(A(Q))} where

w∗′ =
{
A′′(Q)F̄ (A(Q))− (A′(Q))2f(A(Q))

}
(p + gR − s) < 0 (A9)

w∗′′ =
{
A′′′(Q)F̄ (A(Q))− 3A′(Q)A′′(Q)f(A(Q))− (A′(Q))2f ′(A(Q))

}
(A10)

(p + gR − s)

Theorem 15: ∂EPRRS/∂Q = −w+γs+A′(Q)F̄ (A(Q))[γ(p−s)+gR] and ∂2EPRRS/∂Q2 =

(A′′(Q)F̄ (A(Q))−(A′(Q))2f(A(Q)))[γ(p−s)+gR] which is negative for increasing concave

A(Q). Hence, the coordination wholesale price is found by solving the following for w.

c− s

p + gC − s
=

w − γs

γ(p− s) + gR

(A11)

B. Appendix for Chapter 3

Lemma 16:

1. Çamdereli and Swaminathan (2005) show that when ã < 0.5, Q∗
C = Q∗

N for a = 1

and a = ã/(1 − ã), Q∗
C < Q∗

N for a < ã/(1 − ã) and Q∗
C > Q∗

N otherwise. Further,
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when ã ≥ 0.5, Q∗
C = Q∗

N for a = 1 and Q∗
C < Q∗

N for all a < 1. Given this and

Q∗
N > Q∗

C,t, the result follows.

2. (a) Q∗
C,t = Q∗

C for t[a] = 1
a2 [c− s− a(p + gC − s) + a2(p + gC − c)], which is smaller

than (p + gC − c) iff a < ã. The difference Q∗
C,t−Q∗

C is linearly decreasing in t.

Hence, accompanied by Theorem 16, the lemma follows.

(b) Let us write t[a] = t̆[a]/a2. The function t̆[a] is strictly convex in a (∂2t̆[a]/∂a2 =

2(p + gC − c) > 0). Solving t̆[a] = 0 for a yields a = 1 and a = ã/(1− ã). The

result follows given that a < 1. Additionally, t[a] < p + gC − c iff Q∗
C > 0.

Theorem 17:

1. ∂2[EPCt(Q∗
C,t) − EPC(Q∗

C)]/∂t2 = β/(p + gC − c) > 0. Solving EPCt(Q∗
C,t) −

EPC(Q∗
C)] = 0 for t yields t = (p+ gC − c)−√δC and t = (p+ gC − c)+

√
δC where

δC = 2a2K(p+gC−s)+(a(p+gC−s)−(c−s))2β
a2β

> 0. The first root of t is viable by Q∗
C,t > 0.

2. EPCt(Q∗
C,t)−EPC(Q∗

C)] is linearly decreasing in K. Solving EPCt(Q∗
C,t)−EPC(Q∗

C)] =

0 for K yields: K = [(1−a)(c−s)−at][a(2(p+gC)−(c+s))−(c−s)−at]β
2a2(p+gC−s)

.

Lemma 17:

1. (i) Let us call ℘ = a2β[2a2K(p+gC−s)+(a(p+gC−s)−(c−s))2β] > 0. ∂t∗C/∂K =

−a2(p+gC− s)/
√

℘ < 0. (ii) ∂t∗C/∂a = −(c−s)(a(p+gC− s)− (c− s))/(a
√

℘) < 0

iff a > ã.

2. Let us write K∗
C given by Theorem 17 as K∗

C = βυ1υ2/[2a
2(p + gC − s)] where

υ1 = [(1−a)(c−s)−at] and υ2 = [a(2(p+gC)−(c+s))−(c−s)−at]. Hence,K∗
C > 0

iff υ1υ2 > 0, which is strictly convex in t since ∂2[υ1υ2]/∂t2 = 2a2 > 0. Further,

solving ∂[υ1υ2]/∂t = 0 for t yields t = p + gC − c. The roots of υ1υ2 are found
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by solving υ1 = 0 and υ2 = 0 for t. Solving the first equality yields t = t1 where

t1 = (1− a)(c− s)/a > 0, which is less than p + gC − c iff a < ã ⇔ Q∗
C > 0.

3. ∂2[EPCt(Q∗
C,t) − EPC(Q∗

C)]/∂t2 = β/(p + gC − s) > 0. Solving ∂[EPCt(Q∗
C,t) −

EPC(Q∗
C)]/∂t = 0 yields t = p + gC − c. When K = 0, [EPCt(Q∗

C,t)− EPC(Q∗
C)]

is equal to zero for two values of t, one of which is t1, which is less than p + gC − c

iff a < ã ⇔ Q∗
C > 0.

Theorem 18: One can show that the profit functions under inventory misplacement and

under RFID are concave in Q
′∗
C and Q

′∗
C,t, respectively. Hence, solving the first order

conditions give us the following: Q
′∗
C = (1/a)[(1 − ã/a)(β̄ − β) + β] > 0 iff a > ã and

Q
′∗
C,t = (1 − c+t−s

p+gC−s
)(β̄ − β) + β > 0 if and only if t < p + gC − c. Now, we show

that t > t1 is a sufficient condition for the firm to not to benefit from RFID. Solving

EPCt(Q
′∗
C,t)− EPC(Q

′∗
C ) = 0 for K, we receive the following:

K
′∗
C =

[(1−a)(c−s)−at][aβt−a(−2(p+gC)+t)β̄−(1+a)c(β̄−β)−s((1+a)β−(1−a)β̄))

2a2(p+gC−s)
. The numerator of this

expression is convex in t and the smaller root t = t1 is viable when Q
′∗
C , Q

′∗
C,t > 0 where

t1 is given by Lemma 17.

1. ∂[EPCt(Q
′∗
C,t)−EPC(Q

′∗
C )]/∂a = −(c−s)[(c−s)β+[a(p+gC−s)−(c−s)]β̄]/[a3(p+

gC − s)] < 0 for Q
′∗
C > 0

2. We set the lower bound of the distribution to δ and the upper bound of the dis-

tribution to β̄ + δ. Hence, any change in δ will capture the effects of changes in

the mean of the distribution. The mean of the distribution is 0.5(β̄ + 2δ) while the

variance of the distribution is fixed at β̄2/12.

(a)
∂Q

′∗
C

∂δ
= 1/a and

∂Q
′∗
C,t

∂δ
= 1.
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(b)
∂[EPCt(Q

′∗
C,t)−EPC(Q

′∗
C )]

∂δ
= (1−a)(c−s)−at

a
> 0 iff t < t1.

Theorem 19: Refer to the proof of Theorem 18 for Q
′∗
C and Q

′∗
C,t and t > t1 being a sufficient

condition for the firm to not to benefit from the technology.

1. We set the lower bound of the distribution to δ and the upper bound of the distri-

bution to β̄ − δ. Hence, any change in δ will capture the effects of changes in the

variance of the distribution in the opposite direction. The variance of the distribu-

tion is (β̄ − 2δ)2/12 while the mean of the distribution is fixed at β̄/2.

(a)
∂Q

′∗
C

∂δ
= (−a + 2ã)/a2 > 0 iff a < 2ã.

(b)
∂Q

′∗
C,t

∂δ
= (2(t + c) − (p + gC + s))/(p + gC − s) > 0 iff t > t3 where t3 =

(p + gC + s)/2− c.

(c)
∂[EPCt(Q

′∗
C,t)−EPC(Q

′∗
C )]

∂δ
= − [(1−a)(c−s)−at]ϕ

a2(p+gC−s)
> 0 where ϕ = −(1 + a)c + s + a(p +

gC−s) < 0 and iff t > t2 where t2 = (p+gC−c)−(c−s)/a. Hence, if t2 < t < t1

holds, it decreases with the variance.

2. t2 < t1 is equivalent to a < 2ã after simplification.

Theorem 21:

1. ∂2EPRD,ti(QD,ti)/∂Q2
D,ti = −(p + gR − s)/β < 0 where i ε{R,M}.

2. Solving ∂EPRD,ti(QD,ti)/∂QD,ti = 0 yields Q∗
D,ti = β(p+gR−X)/(p+gC−s) where

X = wD,tR + t when i = R and X = wD,tM when i = M . after substitution of these

values back to the corresponding profit functions of the manufacturer, we receive

the following: ∂2EPMD,ti(wD,ti)/∂w2
D,ti = −[2(p + gR − s) + gM ]/(p + gR − s)2 < 0

where i ε{R, M}.
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3. First Order Conditions of the manufacturer’s profit functions yield w∗
D,tR = [(gR +

p− s)(gR + p + c) + sgM − t(p + gC − s)]/(2(g + p− s) + gM) and w∗
D,tM = [(gR +

p − s)(gR + p + c) + sgM + t(p + gR − s])/(2(g + p − s) + gM). The expression

w∗
D,tR − w∗

D = −[(p + gC − s)t − (1 − a)(p + gR − s)2]/(2(g + p − s) + gM) > 0 iff

t > (1− a)(p + gR − s)2/(p + gC − s). Further, w∗
D,tM − w∗

D,tR = t.

4. Q∗
D,tR = Q∗

D,tM since w∗
D,tM − w∗

D,tR = t and Q∗
D,ti = β(p + gR − X)/(p + gC − s)

where X = wD,tR + t when i = R and X = wD,tM when i = M . Substituting the

w∗
D,ti back into QD,ti gives us the result.

Corollary 10: Follows from Theorem 21.

Lemma 18: Following Corollary 10, the following proofs are valid for i = R and i = M .

1. (a) EPRD,ti(Q
∗
D,ti) is linearly decreasing in K. Solving EPRD,ti(Q

∗
D,ti) = 0 for K

and simplifying yields: K = ρ∗1 where ρ∗1 = (2θ)−1[(p + gR − s)(
Q∗2D,ti

β
) − gRβ].

Substituting (3.13) into ρ∗1, we obtain ρ∗1 = −(2θ)−1β(gR− (p+gR− s)(p+gC−

c− t)2/[2(p + gR − s) + gM ]2). Hence, ρ∗1 ≥ 0 if and only if t ≤ (p + gC − c)−

[2(p + gR − s) + gM ]
√

gR/(p + gR − s).

(b) ∂2EPRD,ti(Q
∗
D,ti)/∂t2 = β(p + gR − s)/[2(p + gR − s) + gM ] > 0. Solving

∂EPRD,ti(Q
∗
D,ti)/∂t = 0 yields t = p+ gC − c. The roots of EPRD,ti(Q

∗
D,ti) = 0

when θ = 0 are t = (p + gC − c)±
√

gM [2(p + gR − s) + gM ]. The positive root

is not viable since Q∗
D,ti < 0 for t < p + gC − c.

2. (a) EPMD,ti(w
∗
D,ti) is linearly decreasing in K. Solving EPMD,ti(wD, ti∗) = 0

for K and simplifying yields: K = ρ∗2 where ρ∗2 = (1 − θ)−1[
(p+gC−s)Q∗2D,tR

β
−

gM(β/2 + Q∗2
D,tR/(2β))]. Substituting (3.13) into ρ∗2, we obtain ρ∗2 = −βgM/2 +
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β(p + gC − c − t)2/[2[2(p + gR − s) + gM ]]. Hence, ρ∗2 ≥ 0 if and only if t ≤

(p + gC − c)−
√

gM [2(p + gR − s) + gM ].

(b) ∂2EPMD,ti(w
∗
D,ti)/∂t2 = β/[2(p+gR−s)+gM ] > 0. Solving ∂EPMD,ti(w

∗
D,ti)/∂t =

0 yields t = p + gC − c. The roots of EPMD,ti(w
∗
D,ti) = 0 when θ = 1 are

t = (p + gC − c) ±
√

gM [2(p + gR − s) + gM ]. The positive root is not viable

since Q∗
D,ti < 0 for t < p + gC − c.

3. When θ = 0.5 and gR = gM , EPMD,ti(w
∗
D,ti)−EPRD,ti(Q

∗
D,ti) = (2gR +p−s)(2gR +

p− c− t)2/[2(2p + 3gR − 2s)2] > 0.

Lemma 19: Following Corollary 10, the following proofs are valid for i = R and i = M .

1. EPRD,ti(Q
∗
D,ti)−EPRD(Q∗

D) is convex in t (see the proof of Lemma 18.1.(b). Solv-

ing EPRD,ti(Q
∗
D,ti)−EPRD(Q∗

D) = 0, we find t = (p+gC− c)±δD,R1

√
δD,R2 where

δD,R1 = [4(p + gC − s) + g2
M/(p + gR − s)] > 0 and δD,R2 = [(a(p + gC − s) − (c −

s))(p + gR − s)]2 + 2a2K[2(p+gR−s)+gM ]2θ(p+gR−s)
β

]/[a2[2(p + gR − s) + gM ]4] > 0. The

positive root is not viable due to Q∗
D,ti < 0 for t > p + gC − c. Hence, the result

follows from convexity.

2. EPMD,ti(w
∗
D,ti) − EPMD(w∗

D) is convex in t (see the proof of Lemma 18.2.(b).

Solving EPMD,ti(w
∗
D,ti)−EPMD(w∗

D) = 0, we find t = (p+ gC − c)±√
δD,M where

δD,M = [(a(p + gC − s) − (c − s))2 + 2a2K[2(p+gR−s)+gM ](1−θ)
β

]/a2 > 0. The positive

root is not viable due to Q∗
D,ti < 0 for t > p + gC − c. Hence, the result follows from

convexity.

Lemma 20: Following Corollary 10, the following proofs are valid for i = R and i = M .

1. (a) EPRD,ti(Q
∗
D,ti) − EPRD(Q∗

D) is linearly decreasing in K. Hence, K∗
D,R solves
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EPRD,ti(Q
∗
D,ti)− EPRD(Q∗

D) = 0.

(b) EPMD,ti(w
∗
D,ti)−EPMD(w∗

D) is linearly decreasing in K. Hence, K∗
D,M solves

EPMD,ti(w
∗
D,ti)− EPMD(w∗

D) = 0.

(c) K∗
D,R > 0 if and only if υ1υ2 > 0 (See Lemma 17.2). Hence, the result follows

from the proof of Lemma 17.2. The proof for K∗
D,M > 0 is the same since

K∗
D,M > 0 if and only if υ1υ2 > 0.

2. EPRD,ti(Q
∗
D,ti) − EPRD(Q∗

D) is convex in t (see the proof of Lemma 18.1.(b)).

When θ = 0, solving the roots of this equality for t yields two values of t, one of

which is t1 and is less than p + gC − c iff a < ã ⇔ Q∗
D > 0 (See Theorem 20).

3. The proof is exactly the same as the one in Lemma 20.2.

Theorem 22:

1. t1 > t∗D,R is equivalent to
√

ΩR > β[a(p+gC−s)−(c−s)](p+gR−s)
a[2(p+gR−s)+gM ]2

where ΩR = δD,R2/β.

Since δD,R2 > 0 and the right hand side of the inequality is also positive if Q∗
D > 0,

we can write this inequality as ΩR − (β[a(p+gC−s)−(c−s)](p+gR−s)
a[2(p+gR−s)+gM ]2

)2 > 0, and this is

equivalent to 2Kβ(p+gR−s)θ
(2(p+gR−s)+gM )2

> 0 after simplification and it is always true. Similarly,

t1 > t∗D,M is equivalent to
√

β2δD,M/(2(p + gR − s))2 > β[a(p+gC−s)−(c−s)]
a[2(p+gR−s)+gM ]

. Since

δD,M > 0 and the right hand side of the inequality is also positive if Q∗
D > 0, we

can proceed with simplifying this expression as above. We receive 2Kβ(1−θ)
2(p+gR−s)+gM

> 0

after simplification and it is always true (Refer to Lemma 19 for δD,R2, δD,M , t∗D,R

and t∗D,M .

2. Following Corollary 10, the following proofs are valid for i = R and i = M . t∗D,M >

t∗D,R is as follows after simplification 2K[2(p + gR − s) + gM ]υ3/[(p + gR − s)β] < 0
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where υ3 = [p + gR − (3gR + gM + 3p)θ + s(−1 + 3θ)]. Hence, t∗D,M − t∗D,R > 0 iff

υ3 < 0, which is equivalent to θ > θ∗D = (p + gR − s)/[3(p + gR − s) + gM ] ≤ 1/3.

3. Similarly, K∗
D,R−K∗

D,M can be written as βυ1υ2υ3/[2a
2(2(p+gR−s)+gM)2(1−θ)θ]

after simplification (See the proof for Theorem 22.2 for υ3 and Lemma 17.2 for

υ1υ2). K∗
D,R, K∗

D,M > 0 iff υ1υ2 > 0 (See the proof for Lemma 17.2). Hence, the

result follows.

Lemma 21: Given Q∗
D,ti, Q

∗
D > 0 and following Corollary 10, the following proofs are valid

for i = R and i = M .

1. (a) i. ∂t∗D,R/∂K = −θ/[β
√

δD,R2] < 0 where δD,R2 > 0 is given by Lemma 19. ii.

∂t∗D,R/∂a = −(c − s)(p + gR − s)[a(p + gC − s) − (c − s)]/[a3[2(p + gR − s) +

gM ]2
√

δD,R2] < 0 iii. ∂t∗D,R/∂θ = −K/[β
√

δD,R2] < 0.

(b) i. ∂t∗D,M/∂K = −(1− θ)(2(p + gR − s) + gM)/[β
√

δD,M ] < 0 where δD,M > 0 is

given by Lemma 19. ii. ∂t∗D,R/∂a = −(c−s)[a(p+gC−s)−(c−s)]/[a3
√

δD,M ] < 0

iii. ∂t∗D,R/∂θ = −K(2(p + gR − s) + gM)/[β
√

δD,M ] < 0.

2. (a) i. ∂K∗
D,R/∂t = −(p + gR − s)(p + gC − c − t)β/[θ(2(p + gR − s) + gM)2] < 0.

ii.∂K∗
D,R/∂a = −(c−s)(a(p+gC−s)−(c−s))(p+gR−s)β/[a3θ(2(p+gR−s)+

gM)2] < 0 iii. ∂K∗
D,R/∂θ = −(p + gR − s)υ1υ2/[2a

2θ2(2(p + gR − s) + gM)] < 0

when K∗
D,R > 0 since υ1υ2 > 0 (see the proof of Lemma 17.2)

(b) i. ∂K∗
D,M/∂t = −(p+gC−c−t)β/[(1−θ)(2(p+gR−s)+gM)] < 0. ii.∂K∗

D,M/∂a =

−(c − s)(a(p + gC − s) − (c − s))β/[a3(1 − θ)(2(p + gR − s) + gM)] < 0 iii.

∂K∗
D,M/∂θ = υ1υ2/[2a

2(1− θ)2(2(p + gR − s) + gM)] > 0 when K∗
D,M > 0 since

υ1υ2 > 0 (see the proof of Lemma 17.2)
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Theorem 23: One can show that the profit functions are concave in their choice variables.

Hence, solving for the first order conditions for the wholesale prices first and plugging the

resulting expressions into the retailer’s profit function give us the optimum orders. We

find Q
′∗
D = κQ

′∗
C and Q

′∗
D,tR = Q

′∗
D,tM = κQ

′∗
C,t where κ < 1 is given by Theorem 20 and

Q
′∗
C and Q

′∗
C,t are given by the proof of Theorem 18. We also find that EPRD,ti(Q

′∗
D,ti) is

the same for i = R and i = M and EPMD,ti(w
′∗
D,ti) is the same for i = R and i = M .

solving EPRD,ti(Q
′∗
D,ti)−EPRD(Q

′∗
D) = 0 and EPMD,ti(w

′∗
D,ti)−EPMD(w

′∗
D) = 0 for K

yield K
′∗
D,R = (p+gR−s)(p+gC−s)

(2(p+gR−s)+gM )2θ
K

′∗
C and K

′∗
D,M = (p+gC−s)

(2(p+gR−s)+gM )(1−θ)
K

′∗
C where K

′∗
C is given

by Theorem 18. Hence, this proves that t < t1 is a sufficient condition for the parties not

to benefit from the technology (See Theorem 18 for the proof).

1. ∂[EPRD,ti(Q
′∗
D,ti)−EPRD(Q

′∗
D)]/∂a = −(c−s)(p+gR−s)[(c−s)β+[a(p+gC−s)−

(c− s)]β̄]/[a3(2(p + gR− s) + gM)2] < 0 and ∂[EPMD,ti(w
′∗
D,ti)−EPMD(w

′∗
D)]/∂a =

−(c−s)[(c−s)β +[a(p+gC−s)− (c−s)]β̄]/[a3(2(p+gR−s)+gM)] < 0 for Q
′∗
D > 0.

2. (a) The result follows the fact that Q
′∗
D = κQ

′∗
C and Q

′∗
D,tR = Q

′∗
D,tM = κQ

′∗
C,t.

(b) We use the same method as we used in Theorem 18 and Theorem 19 to capture

the effects of mean independent from the effects of variance and vice versa.

Effects of mean:
∂[EPRD,ti(Q

′∗
D,ti)−EPRD(Q

′∗
D )]

∂δ
= (p+gR−s)(p+gC−s)[(1−a)(c−s)−at]

a(2(p+gR−s)+gM )2
> 0

and
∂[EPMD,ti(w

′∗
D,ti)−EPMD(w

′∗
D )]

∂δ
= (p+gC−s)[(1−a)(c−s)−at]

a(2(p+gR−s)+gM )
> 0 for t < t1.

Effects of variance:
∂[EPRD,ti(Q

′∗
D,ti)−EPRD(Q

′∗
D )]

∂δ
= − (p+gR−s)ϕ[(1−a)(c−s)−at]

a2(2(p+gR−s)+gM )2
and

∂[EPMD,ti(w
′∗
D,ti)−EPMD(w

′∗
D )]

∂δ
= − ϕ[(1−a)(c−s)−at]

a2(2(p+gR−s)+gM )
where ϕ is given by Theorem

19. Hence, the results of the centralized firm are valid for the retailer and the

manufacturer.
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Theorem 25: EPRRS,ti(QRS,ti) where iε{R, M} is a modified version of EPRD,ti(QD,ti) where

the revenues are multiplied by a constant γ. Hence, EPRRS,ti(QRS,ti) is concave in

QRS,ti and Q∗
RS,ti solves ∂EPRRS,ti(QRS,ti)/∂QRS,ti = 0. Hence, we obtain Q∗

RS,ti =

(pγ + gR − Z)/(γ(p− s) + gR) where Z = wRS,tR + t when i = R and Z = wRS,tM when

i = M .

1. The coordinating wholesale price w∗
RS,tR is found by solving Q∗

RS,tR = Q∗
C,t. Hence,

w∗
RS,tR = c(γ(p−s)+gR)−t[(1−γ)(p−s)+gM ]−s(gR−γgC)

p+gC−s
, which is greater than w∗

RS since w∗
RS,tR−

w∗
RS = −t[(1− γ)(p− s) + gM ]/(p + gC − s) < 0.

2. The coordinating wholesale price w∗
RS,tM is found by solving Q∗

RS,tM = Q∗
C,t. Hence,

w∗
RS,tM = gR(c−s+t)+γ[c(p−s)+s(gC−t)+pt]

p+gC−s
= w∗

RS,tR + t, which is greater than w∗
RS since

w∗
RS,tM − w∗

RS = t(γ(p− s) + gR)/(p + gC − s) > 0.

3. (a) w∗
RS,tR > c is equivalent to t < [s(γgC − gR)− c(gM + (1− γ)(p− s)]/[gM + (1−

γ)(p− s)]. However, this can never be true because [s(γgC − gR)− c(gM + (1−

γ)(p− s)] < 0 for γ < 1. Hence, w∗
RS,tR < c.

(b) w∗
RS,tM > c is equivalent to t > [c(gM+(1−γ)(p−s))+s(gR−gCγ)]/[gR+γ(p−s)].

For this values to be positive, the numerator must be positive. Hence, [c(gM +

(1−γ)(p−s))+s(gR−gCγ)] > 0 ⇔ γ < 1 < (c(p+gM−s)+sgR)/(sgC+c(p−s)),

which is always true. The expression [s(γgC−gR)−c(gM +(1−γ)(p−s)]/[gM +

(1 − γ)(p − s)] is less than p + gC − c iff c < gR + γp. Hence, this threshold

value is a feasible one in a coordinated supply chain where the order quantity

is positive.

Corollary 11: The corollary follows from w∗
RS,tM = w∗

RS,tR + t and Q∗
RS,tR = Q∗

RS,tM .
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Theorem 26:

1. t1 > t∗RS,M is equivalent to
√

δRS,M > a(p + gC − s) − (c − s). Since δD,M > 0

and the right hand side of the inequality is also positive if Q∗
RS > 0, we can write

this inequality as δRS,M − (a(p + gC − s) − (c − s))2 > 0, and this is equivalent to

2a2K(p+gC−s)2(1−θ)
β(gM+(1−γ(p−s))

> 0 after simplification and it is always true. We show t1 > t∗RS,R

in the exact same way and t1 > t∗RS,R is equivalent to 2a2K(p+gC−s)2θ
β(gR+γ(p−s))

> 0 after

simplification and it is always true.

2. t∗RS,R < t∗RS,M is equivalent to 2K(p+gC−s)2(gR +γ(p−s)− (p+gC−s)θ)/[β(gM +

(1−γ)(p−s))(gR +γ(p−s))] < 0, which is true iff (gR +γ(p−s)−(p+gC−s)θ) < 0.

This inequality is the same as θ > θ∗RS = [gR + γ(p− s)]/(p + gC − s) < 1.

3. Similarly, K∗
RS,R < K∗

RS,M is equivalent to βυ1υ2(gR+γ(p−s)−(p+gC−s)θ)/[2a2(2(p+

gR − s) + gM)2(1 − θ)θ] < 0 after simplification (See the proof for Lemma 17.2 for

υ1υ2). K∗
RS,R, K∗

RS,M > 0 iff υ1υ2 > 0 (See the proof for Lemma 17.2). Hence, the

result follows.

Lemma 22: Refer to Lemma B for δRS,R and δRS,M .

1. (a) i. ∂t∗RS,R/∂K = −(p+gC−s)2θ/[β(gR+γ(p−s))
√

δRS,R/a2] < 0 ii. ∂t∗RS,R/∂a =

−2(c − s)(a(p + gC − s) − (c − s))/(2a3
√

δRS,R/a2) < 0 iii. ∂t∗RS,R/∂θ =

−K(p + gC − s)2/[β(gR + γ(p − s))
√

δRS,R/a2] < 0 iv. ∂t∗RS,R/∂γ = K(p −

s)(p + gC − s)2θ/[β(gR + γ(p− s))2
√

δRS,R/a2] > 0.

(b) i. ∂t∗RS,M/∂K = −(p + gC − s)2(1− θ)/[β(gM + (1− γ)(p− s))
√

δRS,M/a2] < 0

ii. ∂t∗RS,M/∂a = −2(c − s)(a(p + gC − s) − (c − s))/(2a3
√

δRS,M/a2) < 0

iii. ∂t∗RS,M/∂θ = K(p + gC − s)2/[β(gM + (1 − γ)(p − s))
√

δRS,M/a2] > 0 iv.
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∂t∗RS,M/∂γ = −K(p−s)(p+gC−s)2(1−θ)/[β(gM +(1−γ)(p−s))2
√

δRS,R/a2] <

0.

2. (a) i. ∂K∗
RS,R/∂t = −β(p + gC − c − t)(gR + γ(p − s))/[(p + gC − s)2θ] < 0 ii.

∂K∗
RS,R/∂a = −β(c−s)(a(p+gC−s)−(c−s))(gR+γ(p−s))/[a3(p+gC−s)2θ] < 0

iii. ∂K∗
RS,R/∂θ = −βυ1υ2((p−s)γ+gR)/[2a2(p+gC−s)2θ2] < 0 iff υ1υ2 > 0 (see

the proof for Lemma 17.2 for υ1υ2). Hence, the partial derivative is negative iff

KRS,R > 0 (see Lemma B.1.(c)). iv. ∂K∗
RS,R/∂γ = βυ1υ2(p− s)/[2a2(p + gC −

s)2θ] > 0 iff KRS,R > 0 is proven exactly as in the proof of Lemma 22.2.(a).iii.

(b) i. ∂K∗
RS,M/∂t = −β(p+gC−c− t)(gM +(1−γ)(p−s))/[(p+gC−s)2(1−θ)] < 0

ii. ∂K∗
RS,M/∂a = −β(c− s)(a(p+ gC − s)− (c− s))(gM +(1−γ)(p− s))/[a3(p+

gC − s)2(1 − θ)] < 0 iii. ∂K∗
RS,M/∂θ = βυ1υ2((p − s)(1 − γ) + gM)/[2a2(p +

gC − s)2(1 − θ)2] > 0 iff υ1υ2 > 0 (see the proof for Lemma 17.2). Hence,

the partial derivative is positive iff KRS,M > 0 (see Lemma B.1.(c)). iv.

∂K∗
RS,M/∂γ = −βυ1υ2(p − s)/[2a2(p + gC − s)2(1 − θ)] < 0 iff KRS,M > 0 is

proven exactly as in the proof of Lemma 22.2.(b).iii.

Proofs of concavity for Demand distributed according to Normal[µ, σ]-doubly truncated at

ΘL < µ on the left handside and at ΘR > µ on the right handside where ΘL, ΘR > 0:

1. Centralized firm: When ΘL < aQC < ΘR, ∂2EPC(QC)/∂Q2
C = −a2(p + gC −

s)f [aQC ] < 0 where f [ξ] is the probability density function of the truncated normal

distribution and EPC(QC) is given by (3.2). Hence, the function is concave in

ΘL < aQC < ΘR. When ΘL > aQC or ΘR < aQC , expression (3.2) is a linear
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function of QC .

∂EPC(QC)

∂QC

=





−c + s + a(p + gC − s) ; aQC < ΘL

−c + s ; aQC > ΘR

(−c + s) + a(p + gC − s)− a(p + gC − s)F [aQC ] ; otherwise

Therefore, when a < ã where ã = (c − s)/(p + gC − s), it is optimal to order

aQ∗
C = F−1[1− ã/a] > 0. Otherwise Q∗

C = 0. One can show that a unique optimum

solution exists under RFID in a similar way.

2. Uncoordinated supply chain: When ΘL < aQD < ΘR, ∂2EPRD(QD)/∂Q2
D =

−a2(p+gR−s)f [aQD] < 0 where EPRD(QD) is given by (3.5). Hence, the function

is concave in ΘL < aQD < ΘR. When ΘL > aQD or ΘR < aQD, expression (3.5) is

a linear function of QD.

∂EPRD(QD)

∂QD

=





−wD + s + a(p + gR − s) ; aQD < ΘL

−wD + s ; aQD > ΘR

(−wD + s) + a(p + gR − s)− a(p + gR − s)F [aQD] ; otherwise

Therefore, when wD < a(p + gR − s) + s, it is optimal to order aQ∗
D = F−1[1 −

wD−s
a(p+gR−s)

] > 0. Otherwise Q∗
D = 0. Hence, the manufacturer has to offer a whole-

sale price less than a(p + gR − s) + s to get the retailer order a positive quantity.

The expression (3.6) is a concave function of wD for ΘL < aQD < ΘR as follows:

∂2EPMD(wD)/∂w2
D = e

(µ−aQD)2

2σ2
√

π/2σ{Erf [ (ΘL−µ)

(
√

2σ)
] + Erf [ (µ−ΘR)

(
√

2σ)
]}/(a2(p + gR −

s)) < 0 where Erf [ξ] = (2/
√

π)
∫ z

0
(e−t2)f(ξ)dξ. Hence, one can find a unique w∗

D.
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One can prove that a unique optimum solution exists under RFID in a similar way.

3. Revenue Sharing: Similar to the previous proof, one can show that it is optimal for

the retailer to order aQ∗
RS = F−1[1− wRS−γs

a(γ(p−s)+gR)
] > 0 iff wRS < a(γ(p−s)+gR)+sγ

and zero otherwise. When the manufacturer sets wRS to w∗
RS = (c− s)(γ(p− s) +

gR)/(p + gC − s) + γs, Q∗
C = Q∗

RS. One can show that w∗
RS < a(γ(p− s) + gR) + sγ

iff Q∗
C > 0. Hence, the channel is coordinated. One can also prove that a unique

optimum solution exists under RFID in a similar way.

Lemma 22: In a coordinated supply chain by a revenue sharing contract, the following

findings hold given Q∗
RS,ti, Q

∗
RS > 0 where i ε {R, M}.

1. EPRRS,ti(Q
∗
RS,ti) − EPRRS(Q∗

RS) > 0 if and only if t < t∗RS,R = (p + gC − c) −

(1/a)
√

δRS,R

2. EPMRS,ti(w
∗
RS,ti) − EPMRS(w∗

RS) > 0 if and only if t < t∗RS,M = (p + gC − c) −

(1/a)
√

δRS,M where

δRS,R = (a(p + gC − s)− (c− s))2 +
2a2K(p + gC − s)2θ

β(gR + γ(p− s))
> 0,

δRS,M = (a(p + gC − s)− (c− s))2 +
2a2K(p + gC − s)2(1− θ)

β(gM + (1− γ)(p− s))
> 0.

Proof of Lemma 22: Following Corollary 11, the following proofs are valid for i = R and

i = M .

1. ∂2EPRRS,ti(Q
∗
RS,ti)/∂t2 = β(gR + γ(p− s))/(p + gC − s)2 > 0.
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Solving ∂EPRRS,ti(Q
∗
RS,ti)/∂t = 0 yields t = p + gC − c. Solving EPRRS,ti(Q

∗
RS,ti) −

EPRRS(Q∗
RS) = 0 yields t = (p + gC − c) ± (1/a)

√
δRS,R. Only the negative root is

viable since Q∗
C,t ≤ 0 otherwise.

2. ∂2EPMRS,ti(w
∗
RS,ti)/∂t2 = β(gM + (1− γ)(p− s))/(p + gC − s)2 > 0.

Solving EPMRS,ti(w
∗
RS,ti)−EPMRS(w∗

RS) = 0 yields t = (p + gC − c)± (1/a)
√

δRS,M .

Only the negative root is viable since Q∗
C,t ≤ 0 otherwise.

Lemma 23: In a coordinated supply chain by a revenue sharing contract, the following

findings hold given Q∗
RS,ti, Q

∗
RS > 0 where i ε {R, M}.

1. For 0 < θ ≤ 1,

(a) EPRRS,ti(Q
∗
RS,ti)− EPRRS(Q∗

RS) > 0 if and only if K < K∗
RS,R

(b) EPMRS,ti(w
∗
RS,ti)− EPMRS(w∗

RS) > 0 if and only if K < K∗
RS,M

(c) K∗
RS,R, K∗

RS,M > 0 if and only if t < t1

2. For θ = 0, EPRRS,ti(Q
∗
RS,ti)− EPRRS(Q∗

RS) > 0 if and only if t < t1

3. For θ = 1, EPMRS,ti(w
∗
RS,ti)− EPMRS(w∗

RS) > 0 if and only if t < t1

where t1 is as given in Lemma 17,

K∗
RS,R =

(γ(p− s) + gR)[(1− a)(c− s)− at][a(2(p + gC)− (c + s))− (c− s)− at]β

2a2(p + gC − s)2θ
,

K∗
RS,M =

[((1− γ)(p− s) + gM)[(1− a)(c− s)− at][a(2(p + gC)− (c + s))− (c− s)− at]β

2a2[2a2(p + gC − s)2(1− θ)
.
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4. ∂(EPRRS,ti(Q
∗
RS,ti)−EPRRS,ti(Q

∗
RS))/∂γ = −∂(EPMRS,ti(w

∗
RS,ti)−EPMRS,ti(w

∗
RS))/∂γ >

0 if and only if t < t1 where t1 is as given by Lemma 17.

Proof of Lemma 23: Following Corollary 11, the following proofs are valid for i = R and

i = M .

1. For 0 < θ ≤ 1,

(a) EPRRS,ti(Q
∗
RS,ti)− EPRRS(Q∗

RS) is linearly decreasing in K. Hence K = K∗
RS,R

is the value of K for which EPRRS,ti(Q
∗
RS,ti)− EPRRS(Q∗

RS) = 0.

(b) The line of proof is the same as the proof of Lemma B.1.(a).

(c) K∗
RS,R is positive iff υ1υ2 > 0 (see the proof of Lemma 17.2). Hence the proof of

this result is the same as in the proof of Lemma 17.2. K∗
RS,M > 0 is also proven

in the same way.

2. EPRRS,ti(Q
∗
RS,ti)− EPRRS(Q∗

RS) is convex in t (see the proof of Lemma 11.1) and is

minimized for t = p+gC− c. When θ = 0, solving the roots of this equality for t yields

two values of t, one of which is t1 and is less than p + gC − c iff a < ã ⇔ Q∗
C > 0 (See

Theorem 20).

3. The result follows the same line of proof as in the one in Lemma B.2.

4. ∂(EPRRS,ti(Q
∗
RS,ti)−EPRRS,ti(Q

∗
RS))/∂γ = −∂(EPMRS,ti(w

∗
RS,ti)−EPMRS,ti(w

∗
RS))/∂γ =

(p− s)υ1υ2β/[2a2(p + gC − s)] > 0 where υ1, υ2 are given by the proof of Lemma 17.2.

Hence, ∂(EPRRS,ti(Q
∗
RS,ti) − EPRRS,ti(Q

∗
RS))/∂γ is positive iff υ1υ2 > 0 and this is

valid when t < t1 where t1 is as given by Lemma 17 (see the proof of Lemma 17.2).
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Theorem 27: The following findings hold for uniformly distributed demand in [β, β] if t < t1.

1. Regardless of the party paying for the tagging expenses, the incentives of the retailer

and the manufacturer under inventory misplacement to adopt RFID decreases as in-

ventory availability increases.

2. The results given in Theorem 18 and Theorem 19 regarding the incentives of a central-

ized firm under inventory misplacement to adopt RFID are exactly valid for both the

retailer and the manufacturer under inventory misplacement in a coordinated supply

chain by revenue sharing to adopt RFID.

Proof of Theorem 27: Profit functions of the retailer under RFID and inventory misplacement

are concave in the order quantity. The wholesale prices are set such that Q
′∗
RS = Q∗

C and

Q
′∗
RS,ti = Q∗

C,t for i = R and i = M . We find that EPRRS,ti(Q
′∗
RS,ti) is the same for i = R

and i = M and EPMRS,ti(w
′∗
RS,ti) is the same for i = R and i = M . Further, solving

EPRRS,ti(Q
′∗
RS,ti)−EPRRS(Q

′∗
RS) = 0 and EPMRS,ti(w

′∗
RS,ti)−EPMRS(w

′∗
RS) = 0 for K yield

K
′∗
RS,R = (gR+(p−s)γ)

(p+gC−s)θ
K

′∗
C and K

′∗
RS,M = (gM+(p−s)(1−γ))

(p+gC−s)(1−θ)
K

′∗
C where K

′∗
C is given by Theorem 18.

Hence, this proves that t < t1 is a sufficient condition for the parties not to benefit from the

technology (See Theorem 18 for the proof).

1. ∂[EPRRS,ti(Q
′∗
RS,ti)−EPRRS(Q

′∗
RS)]/∂a = −(c−s)(gR +(p−s)γ)[(c−s)β+[a(p+gC−

s) − (c − s)]β̄]/[a3(p + gC − s)2] < 0 and ∂[EPMRS,ti(w
′∗
RS,ti) − EPMRS(w

′∗
RS)]/∂a =

−(c− s)(gM +(p− s)(1−γ))[(c− s)β +[a(p+ gC − s)− (c− s)]β̄]/[a3(p+ gC − s)2] < 0

for Q
′∗
C > 0.
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2. Refer to Theorem 18 to see how the effects of mean are captured independent from the

effects of variance and Theorem 19 for the reverse.

Effects of mean:
∂[EPRRS,ti(Q

′∗
RS,ti)−EPRRS(Q

′∗
RS)]

∂δ
= (gR+(p−s)γ)(1−a)(c−s)−at

a(p+gC−s)
> 0 and

∂[EPMRS,ti(w
′∗
RS,ti)−EPMRS(w

′∗
RS)]

∂δ
= (gM+(p−s)(1−γ))[(1−a)(c−s)−at]

a(p+gC−s)
> 0 for t < t1.

Effects of variance:
∂[EPRRS,ti(Q

′∗
RS,ti)−EPRRS(Q

′∗
RS)]

∂δ
= − (gR+(p−s)γ)ϕ[(1−a)(c−s)−at]

a2(p+gC−s)2
and

∂[EPMRS,ti(w
′∗
RS,ti)−EPMRS(w

′∗
RS)]

∂δ
= − (gM+(p−s)(1−γ))ϕ[(1−a)(c−s)−at]

a2(p+gC−s)2
where ϕ is given by The-

orem 19. Hence, the results of the centralized firm are valid for the retailer and the

manufacturer.

C. Appendix for Chapter 4

Theorem 28:

πi = p{
∫ aiqi

0

∫ ajqj

0

xifi(xi)fj(xj)dxjdxi + (C1)

∫ aiqi

0

∫ aiqi−xi
α

+ajqj

ajqj

(xi + α(xj − ajqj))fi(xi)fj(xj)dxjdxi

∫ aiqi

0

∫ ∞

aiqi−xi
α

+ajqj

(aiqi)fi(xi)fj(xj)dxjdxi +

∫ ∞

aiqi

∫ ajqj

0

(aiqi)fi(xi)fj(xj)dxjdxi +

∫ ∞

aiqi

∫ ∞

ajqj

(aiqi)fi(xi)fj(xj)dxjdxi}+ s{
∫ aiqi

0

∫ ajqj

0

(aiqi − xi)fi(xi)fj(xj)dxjdxi +

∫ aiqi

0

∫ aiqi−xi
α

+ajqj

ajqj

(aiqi − xi − α(xj − ajqj))fi(xi)fj(xj)dxjdxi} −

g

∫ aiqi

o

(xi − aiqi)fi(xi)dxi − wqi
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The expected profit of retailer i is expressed above where i and j ε{1, 2} and i 6= j.

∂πi/∂qi = (p + g)ai − gaiFi(aiqi)− w − (C2)

(p− s)

∫ aiqi

0

aiFj(
aiqi − xi

α
+ ajqj)fi(xi)dxi = 0

∂2πi/∂q2
i = −ga2

i fi(aiqi)− a2
i (p− s) (C3)

[Fj(ajqj)fi(aiqi) +

∫ aiqi

0

(1/α)fj(
aiqi − xi

α
+ ajqj)fi(xi)dxi] < 0

As seen in (C3), πi is concave in qi for a given qj. The lower bound qi in (C4) is obtained

when qj → ∞ in (C2) and the upper bound on q̄i in (C5) is obtained when qj is 0 in

(C2). Hence, there exists a pure-strategy Nash Equilibrium by continuity and concavity

of payoff functions and the strategy sets of players being nonempty, convex and compact.

gaiFi(aiqi) + (p− s)

∫ aiqi

0

aifi(xi)dxi = ai(p + g)− w (C4)

gaiFi(aiq̄i) + (p− s)

∫ aiq̄i

0

aiFj(
aiq̄i − xi

α
) = ai(p + g)− w (C5)

The best-response function of each retailer is derived from ∂πi/∂qi = 0. Hence, ai >

w/(p + g) should hold to have q∗i (qj) > 0. We prove that ∂πi/∂qi = 0 is a strictly

decreasing curve in the (q1, q2) plane. Let dq21/dq1 and dq22/dq1 be the derivative of

∂π1/∂q1 = 0 and ∂π2/∂q2 = 0 at (q1, q2), respectively. Using the implicit function

theorem, we show that ∂q21/∂q1 = − a1

αa2
− a2

1L+a2
1K

a1a2M
< 0 and ∂q22/∂q1 = − a1a2R

a2
2Z+a2

2R/α+a2
2T

<
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0 where

K = (p− s)F2(a2q2)f1(a1q1) > 0,

L = gf1(a1q1) > 0,

M = (p− s)

∫ a1q1

0

f2(
a1q1 − x1

α
+ a2q2)f1(x1)dx1 > 0,

R = (p− s)

∫ a2q2

0

f1(
a2q2 − x2

α
+ a1q1)f2(x2)dx2 > 0,

T = (p− s)F1(a1q1)f2(a2q2) > 0,

Z = gf2(a2q2) > 0.

After some algebra, one can show that dq21/dq1 < dq22/q1. Hence, the derivative of the

first retailer’s best-response function is always strictly smaller than the derivative of the

second retailer’s. Therefore, this proves the uniqueness of the Nash Equilibrium.

Lemma 25:

1. When a1, a2 = 1, expression (C6) gives the best-response functions of the retailers

facing customer search for iε{1, 2}.

gFi(qi) + (p− s)

∫ qi

0

Fj(
qi − xi

α
+ qj)fi(xi)dxi = p + g − w (C6)

gFi(Qi) + (p− s)

∫ Qi

0

Fj(
Qi − xi

α
+ Qj)fi(xi)dxi = (p + g)− w

ai

(C7)

Expression (4.3) can be organized as in (C7) after algebraic manipulation and letting

Qi = aiqi. Since the right hand sides of equations above are inequivalent for ai < 1,

(Q∗
1, Q

∗
2) that solves the set of equations given by (C7) for iε{1, 2} can not be equal
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to (q∗1,N , q∗2,N) that solves the set of equations given by (C6).

2. If w in (C6) is changed with w/ai, expressions (C6) and (C7) become equivalent.

Hence, (q∗1, q
∗
2) = (Q∗

1, Q
∗
2) holds where Qi = aiqi.

Theorem 29: The following are the set of equations which give the optimum orders in each

case.

Case 1:

gF1(a1q1) + (p− s)

∫ a1q1

0

F2(
a1q1 − x1

α
+ a2q2)f1(x1)dx1 = p + g − w

a1

(C8a)

gF2(a2q2) + (p− s)

∫ a2q2

0

F1(
a2q2 − x2

α
+ a1q1)f2(x2)dx2 = p + g − w

a2

(C8b)

Case 2:

gF1(q1) + (p− s)

∫ q1

0

F2(
q1 − x1

α
+ q2)f1(x1)dx1 = p + g − w (C9a)

gF2(q2) + (p− s)

∫ q2

0

F1(
q2 − x2

α
+ q1)f2(x2)dx2 = p + g − w (C9b)

Case 3:

gF1(a1q1) + (p− s)F1(a1q1) = p + g − w

a1

(C10a)

gF2(a2q2) + (p− s)F2(a2q2) = p + g − w

a2

(C10b)
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Case 4:

gF1(q1) + (p− s)F1(q1) = p + g − w (C11a)

gF2(q2) + (p− s)F2(q2) = p + g − w (C11b)

In the following passages, we give the proofs in the same order as given in the Theorem.

1. Case 1 vs. Case 2: We make Q1 = a1q1 and Q2 = a2q2 transformation in (C8).

Righthand side of each equality in (C8) is always less than the value of the righthand

side of the corresponding equality in (C9). Hence, the same applies to the lefthand

sides of the equalities. For a given Q2 = q̄ in (C8a) and q2 = q̄ in (C9a), a1q
∗
1,1 < q∗1,2.

Similarly, the same applies to a2q
∗
2,1 < q∗2,2. Therefore, the result follows.

2. Case 2 vs. Case 3: p + g − w > p + g − w/ai for ai < 1 and

∫ q1

0

F2(
q1 − x1

α
+ q2)f1(x1)dx1 < F1(q1) for all q2

∫ q2

0

F1(
q2 − x2

α
+ q1)f2(x2)dx2 < F2(q2) for all q1.

Hence, the result follows.

3. Case 3 vs. Case 4: Let us make Q1 = a1q1 and Q2 = a2q2 transformation in (C10)

so the lefthand sides of (C10) and (C11) will become similar. The result directly

follows from the fact that p + g − w > p + g − w/ai for ai < 1.

4. Case 1 vs. Case 3: Because each expression in (C8) and (C10) is equal to p + g −

w/ai, the lefthand sides of (C8a) and (C10a) (and (C8b) and (C10b)) are the same.
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However,

∫ a1q1

0

F2(
a1q1 − x1

α
+ a2q2)f1(x1)dx1 < F1(a1q1) for all q2

∫ a2q2

0

F1(
a2q2 − x2

α
+ a1q1)f2(x2)dx2 < F2(a2q2) for all q1.

Hence, the result follows.

5. Case 2 vs. Case 4: Because each expression in (C9) and (C11) is equal to p+g−w, the

lefthand sides of (C9a) and (C11a) (also (C9b) and (C11b)) are the same. However,

∫ q1

0

F2(
q1 − x1

α
+ q2)f1(x1)dx1 < F1(q1) for all q2

∫ q2

0

F1(
q2 − x2

α
+ q1)f2(x2)dx2 < F2(q2) for all q1.

Lemma 26:

H =

∣∣∣∣∣∣∣∣

∂2π1

∂q2
1

∂2π1

∂q1∂q2

∂2π2

∂q2∂q1

∂2π2

∂q2
2

∣∣∣∣∣∣∣∣

Partial derivatives necessary to derive the result are as follow where i and j ε{1, 2} and

i 6= j.

∂2πi

∂q2
i

= −ga2
i fi(aiqi)− (p− s)a2

i fi(aiqi)Fj(ajqj)− (C12)

(p− s)a2
i

∫ aiqi/α+ajqj

ajqj

fi(aiqi − α(xj − ajqj))dFj(xj)

∂2πi

∂qi∂qj

= −(p− s)aiajα

∫ aiqi/α+ajqj

ajqj

fi(aiqi − α(xj − ajqj))dFj(xj) (C13)

∂2πi

∂qi∂α
= (p− s)ai

∫ aiqi/α+ajqj

ajqj

fi(aiqi − α(xj − ajqj))(xj − ajqj)dFj(xj) (C14)
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∂2πi

∂qi∂qj

= −(p− s)aiaj

∫ aiqi

0

fj(
aiqi − xi

α
+ ajqj)fi(xi)dxi < 0 (C15)

∂(q∗1 + q∗2)
∂α

=
− ∂2π1

∂q1∂α
∂2π2

∂q2
2

+ ∂2π1

∂q1∂q2

∂2π2

∂q2∂α
− ∂2π2

∂q2∂α
∂2π1

∂q2
1

+ ∂2π2

∂q2∂q1

∂2π1

∂q1∂α

|H| (C16)

∂(q∗1 + q∗2)/∂α is given by (C16). We first show that |H| = ∂2π1

∂q2
1

∂2π2

∂q2
2
− ∂2π1

∂q1∂q2

∂2π2

∂q2∂q1
, which

is equivalent to (C17) after some algebra, is positive. K, L, M,R, T and Z are as given

by the proof of Theorem 28.

|H| = a2
1a

2
2[

(T + Z)(M + α(K + L))

α
+

(1− α)M + α(K + L)

α2
] > 0 (C17)

Hence the sign of
∂(q∗1+q∗2)

∂α
depends on the sign of its numerator, which is equivalent to

a2(N1[2]+N2[2]+N3[2]−N1[1]α)+a1(N1[1]+N2[1]+N3[1]−N1[2]α) after simplification.

Lemma 27: Without loss of generality, let us write a2 = a1 + δ where δ ≥ 0.

1. The numerator of ∂(q∗1 + q∗2)/∂α (see the proof of Lemma 26) is equivalent to (C18),

which can be written as a1U1 +δU2 +a1N1[1][1−α(1+δ)] where U1, U2 > 0. Hence,

α < 1
1+δ

= 1
1+a2−a1

is a sufficient condition for the numerator to be positive. We

find a lower bound on 1
1+a2−a1

using 1
1+a2−a1

> 1
1+1−w/(p+g)

= p+g
2(p+g)−w

> 1/2.

a1[(1− α)(N1[1] + N1[2]) + N2[1] + N2[2] + N3[2]] (C18)

+δ[N1[2] + N2[2] + N3[2]− αN1[1]]
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2. a1

a2
≤ 1

1+δ
= 1

1+a2−a1
is equivalent to a2 ≥ a1 which always holds for δ ≥ 0.

Lemma 28: Refer to Lemma 26 for the partial derivatives which are not given in this proof.

1.

∂q∗i
∂α

= −
∂2πi

∂qi∂α

∂2πj

∂q2
j
− ∂2πi

∂qi∂qj

∂2πj

∂qj∂α

|H| (C19)

∂2πi

∂qi∂α
=

(p− s)ai

α2
(−

∫ aiqi

0

xifj(
aiqi − xi

α
+ ajqj)fi(xi)dxi + (C20)

aiqi(

∫ aiqi

0

fj(
aiqi − xi

α
+ ajqj)fi(xi)dxi)

∂q∗i
∂α

is equal to (C19) by the Implicit Function Theorem where |H| > 0 is given

by (C17). Hence, the sign of
∂q∗i
∂α

is determined by the sign of the numerator,

which is equivalent to aj(N1[j] +N2[j] +N3[j]−αN1[i]) after simplification where

N1[j], N2[j], N3[j] and N1[i] are given by Lemma 26. The numerator is negative if

and only if α > α∗i where α∗i = N1[j]+N2[j]+N3[j]
N1[i]

.

2. In the first result of this lemma we found that
∂q∗1
∂α

< 0 if and only if α > α∗1 and

∂q∗2
∂α

< 0 if and only if α > α∗2. Here, we show that α∗1 and α∗2 can not be less than

1 simultaneously. α∗1 < 1 and α∗2 < 1 if and only if the conditions given by (C21)

are satisfied. Therefore, N1[2]−N2[1]−N3[1] > N1[2] + N2[2] + N3[2] must hold.

This is equivalent to saying −N2[1] − N3[1] > N2[2] + N3[2] and it is never true

because N2[1], N3[1], N2[2], N3[2] > 0.




N1[2] + N2[2] + N3[2] < N1[1]

N1[1] < N1[2]−N2[1]−N3[1]

(C21)
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Theorem 30: See Theorem 25 and Lemma 26 for the partial derivatives which are required

but not given in this proof.

1.

∂q∗i
∂aj

= −
∂2πi

∂qi∂aj

∂2πj

∂q2
j
− ∂2πi

∂qi∂qj

∂2πj

∂qj∂aj

|H| (C22)

∂q∗i /∂aj where i, j ε{1, 2} is given in (C22) where |H| > 0 (see Lemma 26).

∂2πi

∂qi∂aj

= −(p− s)aiqi

∫ aiqi

0

fj(
aiqi − xi

α
+ ajqj)fi(xi)dxi < 0 (C23)

∂2πj

∂qj∂aj

= {−gajqjfj(ajqj)− (p− s)aj[

∫ ajqj

0

qj

α
fi(

ajqj − xj

α
+ (C24)

aiqi)fj(xj)dxj + qjfj(ajqj)Fi(aiqi)]}+ {−gFj(ajqj) + (p + g)−

(p− s)

∫ ajqj

0

Fi(
ajqj − xj

α
+ aiqi)fj(xj)dxj}

The numerator of ∂q∗i /∂aj is given by (C25) and is positive (refer to Theorem 25

for M). Hence, ∂q∗i /∂aj is always a negative value.

a1a2M [p (1−
∫ ajqj

0

Fi(
ajqj − xj

α
+ aiqi)fj(xj)dxj) + g(1− Fj(ajqj)) (C25)

+s

∫ ajqj

0

Fi(
ajqj − xj

α
+ aiqi)fj(xj)dxj] > 0

2.

∂q∗i
∂ai

= −
∂2πi

∂qi∂ai

∂2πj

∂q2
j
− ∂2πi

∂qi∂qj

∂2πj

∂qj∂ai

|H| (C26)
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In (C26), |H| > 0, ∂2πi

∂qi∂qj

∂2πj

∂qj∂ai
> 0 and

∂2πj

∂q2
j

< 0 (see the proof of Theorem 28 and

Theorem 30.1). Hence, if ∂2πi

∂qi∂ai
> 0,

∂q∗i
∂ai

> 0.

∂2πi

∂qi∂ai
is given by (C27) and can be organized as in (C28). Hence, the result follows.

∂2πi

∂qi∂ai

= {−gaiqifi(aiqi)− (p− s)ai[

∫ aiqi

0

qi

α
fj(

aiqi − xi

α
+ (C27)

ajqj)fi(xi)dxi + qifi(aiqi)Fj(ajqj)]}+ {−gFi(aiqi) + (p + g)−

(p− s)

∫ aiqi

0

Fj(
aiqi − xi

α
+ ajqj)fi(xi)dxi}

∂2πi

∂qi∂ai

=
∂2πi

∂q2
i

qi

ai

+ w/ai (C28)

Theorem 31: The following results hold for i, j ε {1, 2} and i 6= j.

1. We use envelope theorem to show the result. Therefore, dπ∗i (q
∗
i )/dai = ∂π∗i (q

∗
i )/∂ai

and is given by (C29) where
∂q∗j
∂ai

< 0 by Theorem 30.1.

∂π∗i (q
∗
i )/∂ai = (p + g)

∫ ∞

aiq∗i

q∗i fi(xi)dxi + (C29)

p

∫ aiq
∗
i

0

∫ ∞

aiq∗
i
−xi

α
+ajq∗j

q∗i fi(xi)fj(xj)dxjdxi +

s

∫ aiq
∗
i

0

∫ aiq∗i −xi
α

+ajq∗j

0

q∗i fi(xi)fj(xj)dxjdxi +

(p− s)α

∫ aiq
∗
i

0

∫ aiq∗i −xi
α

+ajq∗j

ajq∗j

(−aj

∂q∗j
∂ai

)fi(xi)fj(xj)dxjdxi > 0

2. We use envelope theorem to derive dπ∗j (q
∗
j )/dai = ∂π∗j (q

∗
j )/∂ai as given by (C30).

Hence, dπ∗j (q
∗
j )/dai > 0 if and only if (q∗i + ai

∂q∗i
∂ai

) < 0. However, this condition can

never be satisfied since q∗i + ai
∂q∗i
∂ai

= ∆1/∆2 > 0 as shown in (C31) and (C32) where
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A =
ajq∗j−xi

α
+ aiq

∗
i , B =

aiq
∗
i−xj

α
+ ajq

∗
j .

∂π∗j (q
∗
j )/∂ai = −α(p− s)

∫ ajq∗j

0

∫ ajq∗j−xj

α
+aiq

∗
i

aiq∗i

(q∗i + ai
∂q∗i
∂ai

)fj(xj)fi(xi)dxidxj(C30)

∆1 = α[α(g + (p− s)Fi(aiq
∗
i ) + (p− s)

∫ ajq∗j

0

fi(A)fj(xj)dxj] (C31)

(p + g − gFi(aiq
∗
i )− (p− s)

∫ aiq
∗
i

0

fi(xi)fj(B)dxi) > 0

∆2 = a2
i [αfi(aiq

∗
i )(g + (p− s)Fj(ajq

∗
j ))(α(g + (p− s)Fi(aiq

∗
i ))fj(ajq

∗
j ) + (C32)

(p− s)

∫ ajq∗j

0

fi(A)fj(xj)dxj) + (p− s)

∫ aiq
∗
i

0

fj(B)fi(xi)dxi]

(α(g + (p− s)Fi(aiq
∗
i ))fj(ajq

∗
j ) + (1− α2)(p− s)

∫ ajq∗j

0

fi(A)fj(xj)dxj) > 0

Theorem 32: Refer to Definition 1 for the description of the game.

1. We prove by using backwards induction. We want the second retailer to play 01 or

11. Condition given by (C35) make him play 01 and those given by (C34) make him

play 11.




u∗2[00] > u∗2[01]− C[a2]

u∗2[11]− C[a2] > u∗2[10]

(C33)




u∗2[00] < u∗2[01]− C[a2]

u∗2[11]− C[a2] > u∗2[01]

(C34)
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If retailer 2 plays 01, u∗1[00] < u∗1[11] − C[a1] and if retailer 2 plays 11, u∗1[01] <

u∗1[11] − C[a1] are sufficient for the first retailer to play 1. Thus, the following

conditions are sufficient to have the first player invest to remove shrinkage and the

second player invest as well.

u∗2[11]− C[a2] > u∗2[10] (C35a)

C[a1] < u∗1[11]− u∗1[00] (C35b)

C[a1] < u∗1[11]− u∗1[01] (C35c)

u∗1[01] < u∗1[00] by Theorem 31. Hence, inequality (C35b) implies expression (C35c).

2. If C[a2] > u∗2[11] − u∗2[10], the second retailer always deviates from making an

investment if the first retailer plays 1. Thus, the result follows.

3. C[a2] < u∗2[01] − u∗2[00] is a sufficient condition for the second retailer to play 1 if

the 1st retailer plays 0. Hence, the result follows.

Theorem 33: We derive this result by assuming that the retailers simultaneously chose the

availabilities and then for that given availability, play a quantity-game and chose the

equilibrium orders. Therefore, the strategy space of each player is Si = {0 ≤ si ≤ 1}

where si denotes the value to which inventory availability is set and iε{1, 2}. However,

decreasing the current inventory level is a strictly dominated strategy for each retailer

since equilibrium profit of a retailer increases in her inventory availability level for a

given inventory availability of the other retailer by Theorem 31. Hence, no player i plays

si < ai. Let us call π∗i [si, sj] the equilibrium profit of retailer i as a result of playing

179



the quantity game after retailer i chooses to set the inventory availability level to si and

retailer j chooses to set his inventory availability level to sj. We can write the following

by Theorem 31.

π∗1[1, sj] > π∗1[si, sj] for all ai ≤ si ≤ 1

π∗2[si, 1] > π∗1[si, sj] for all aj ≤ sj ≤ 1

Hence, iterated elimination of strictly dominated strategies eliminates all but setting

inventory availability to 100%. Therefore, setting inventory availability levels to 100% is

the unique Nash equilibrium.

D. Tables

180



T
ab

le
D

1:
C

o
or

d
in

at
io

n
re

su
lt

s
b
as

ed
on

d
iff

er
en

t
ca

se
s

R
>

l
R
≤

l
R

=
1

b
=

w
B

B
N

ev
er

co
or

d
in

at
ed

N
ot

fe
as

ib
le

b
6=

w
B

B
C

o
or

d
in

at
ed

fo
r

w
B

B
1

=
b(

g
C

+
p
−c

)+
(c
−s

)(
p
+

g
R

)
(p

+
g

C
−s

)
N

ot
fe

as
ib

le

R
=

0
N

ot
fe

as
ib

le
N

ev
er

co
or

d
in

at
ed

0
<

R
<

1
b

=
w

B
B

C
o
or

d
in

at
ed

fo
r

w
B

B
1

=
b

=
(c
−s

)(
g

R
+

p
)+

s(
p
+

g
C
−s

)
(1
−

R
)2

Q
B

B
1
∗

β

(c
−s

)+
(p

+
g

C
−s

)
(1
−

R
)2

Q
B

B
1
∗

β

C
o
or

d
in

at
ed

fo
r

w
B

B
2

=
b

=
s

+
(g

R
+

p
−s

)(
c−

s)
(p

+
g

C
−s

)(
1
−R

)

b
6=

w
B

B
C

o
or

d
in

at
ed

fo
r

w
B

B
1

=
c(

g
R

+
p
−b

)−
s(

g
R

+
p
)+

b(
p
+

g
C

)
(g

C
+

p
−s

)
−

(b
−

s)
(1
−R

)2
Q

B
B

1
∗

β

C
o
or

d
in

at
ed

fo
r

w
B

B
2

=
c
−

(g
C
−g

R
)(

c−
s)

p
+

g
C
−s

+
(b
−

s)
R

T
ab

le
D

2:
C

om
p
ar

is
on

of
co

n
tr

ac
ts

fo
r

th
e

d
ec

en
tr

al
iz

ed
m

an
u
fa

ct
u
re

r
D

ec
en

tr
al

iz
ed

M
an

u
fa

ct
u
re

r
B

u
y
b
ac

k
-(

R
>

l)
B

u
y
b
ac

k
-(

R
≤

l)
R

ev
en

u
e

S
h
ar

in
g

B
u
y
b
ac

k
-(

R
>

l)
)

–
B

u
y
b
ac

k
-(

R
>

l)
B

u
y
b
ac

k
-

(R
>

l)
if

γ
>

ψ
R

ev
en

u
e

S
h
ar

in
g

if
γ

<
ψ

In
d
iff

er
en

t
if

γ
=

ψ
B

u
y
b
ac

k
-(

R
≤

l)
B

u
y
b
ac

k
-(

R
>

l)
–

R
ev

en
u
e

S
h
ar

in
g

w
h
er

e
ψ

=
(1
−R

)2
(b
−s

)+
a
2
(p
−b

)
a
2
(p
−s

)
an

d
l
=

1
−

a

1
:
M

an
u
fa

ct
u
re

r

2
:
R

et
ai

le
r

181



T
ab

le
D

3:
C

om
p
ar

is
on

of
co

n
tr

ac
ts

fo
r

th
e

d
ec

en
tr

al
iz

ed
re

ta
il
er

D
ec

en
tr

al
iz

ed
R

et
ai

le
r

B
u
y
b
ac

k
-(

R
>

l)
B

u
y
b
ac

k
-(

R
≤

l)
R

ev
en

u
e

S
h
ar

in
g

B
u
y
b
ac

k
-(

R
>

l)
)

–
B

u
y
b
ac

k
-(

R
≤

l)
B

u
y
b
ac

k
-

(R
>

l)
if

γ
<

ψ
R

ev
en

u
e

S
h
ar

in
g

if
γ

>
ψ

In
d
iff

er
en

t
if

γ
=

ψ
B

u
y
b
ac

k
-(

R
≤

l)
B

u
y
b
ac

k
-(

R
≤

l)
–

R
ev

en
u
e

S
h
ar

in
g

w
h
er

e
ψ

=
(1
−R

)2
(b
−s

)+
a
2
(p
−b

)
a
2
(p
−s

)
an

d
l
=

1
−

a

182



Bibliography

Angeles, R. (2005). RFID technologies: Supply chain applications and implementation issues.
Information Systems Management, Winter:51–65.

Anupindi, R. and Akella, R. (1993). Diversification under supply uncertainty. Management
Science, 39(8):944–963.

Anupindi, R. and Bassok, Y. (1999). Centralization of stocks: Retailers vs. manufacturer.
Management Science, 45(2):178–191.

Asif, Z. and Mandviwalla, M. (2005). Integrating the supply chain with RFID: A techni-
cal and business analysis. Communications of the Association for Information Systems,
15:393–426.
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Lee, H. L. and Özer, O. (2005). Unclocking the value of RFID. forthcoming Production and
Operations Management.

Lippman, S. A. and McCardle, K. F. (1997). The competitive newsboy. Operations Research,
45(1):54–65.

Bearing Point (2005). Beyond compliance: The future promise of RFID. White Paper.

Wireless News (2004). Vatican library leverages TI’s RFID technology.

McCutcheon, C. (1999). Pentagon’s ongoing record of billions in lost inventory leads hill to
demand change. CQ Weekly, 57(18):1041.

Muller, A. and Stoyan, D. (2002). Comparison methods for stochastic models and risks. John
Wiley & Sons Ltd., England.

Narayanan, S., Marucheck, A., and Handfield, R. B. (2007). Electronic data interchange:
Meta-analysis, research review and future directions. Working paper, Kenan-Flagler Busi-
ness School, University of North Carolina at Chapel Hill, NC,USA.

Netessine, S. and Rudi, N. (2003). Centralized and competative inventory models with
demand substitution. Operations Research, 51(2):329–335.

Parlar, M. (1988). Game theoretic analysis of the substitutable product inventory problem
with random demands. Naval Research Logistics, 35(3):397–409.

Pasternack, B. A. (1985). Optimal pricing and return policies for perishable commodities.
Naval Research Logistics, 4(2):166–176.

Raman, A., DeHoratius, N., and Ton, Z. (2001). The missing link in retail operations.
California Management Review, 43(3):136–153.

185
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