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ABSTRACT

Liang Shan: AUTOMATIC LOCALIZED ANALYSIS OF
LONGITUDINAL CARTILAGE CHANGES
(Under the direction of Marc Niethammer)

Osteoarthritis (OA) is the most common form of arthritis; it is characterized by

the loss of cartilage. Automatic quantitative methods are needed to screen large image

databases to assess changes in cartilage morphology. This dissertation presents an auto-

matic analysis method to quantitatively analyze longitudinal cartilage changes from knee

magnetic resonance (MR) images.

A novel robust automatic cartilage segmentation method is proposed to overcome the

limitations of existing cartilage segmentation methods. The dissertation presents a new

and general convex three-label segmentation approach to ensure the separation of touch-

ing objects, i.e., femoral and tibial cartilage. Anisotropic spatial regularization is intro-

duced to avoid over-regularization by isotropic regularization on thin objects. Temporal

regularization is further incorporated to encourage temporally-consistent segmentations

across time points for longitudinal data.

The state-of-the-art analysis of cartilage changes relies on the subdivision of cartilage,

which is coarse and purely geometric whereas cartilage loss is a local thinning process and

exhibits spatial non-uniformity. A novel statistical analysis method is proposed to study

localized longitudinal cartilage thickness changes by establishing spatial correspondences

across time and between subjects. The method is general and can be applied to other

nonuniform morphological changes in other diseases.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Osteoarthritis (OA) is the most common form of arthritis and is a major cause of

long-term disability in the US (Woolf and Pfleger, 2003). It is estimated that more than

16% of all adults 45 years or older suffer from symptomatic OA of the knee (CDC, 2008).

The OA symptoms include swelling, pain, discomfort and problems in mobility and are

caused by the progressive loss of joint cartilage (CDC, 2008). Figure 1.1 shows the

anatomy of the human knee and illustrates the cartilage loss. While current treatment

options help control pain, they are not able to reverse disease progression (Felson et al.,

2000b). Further drug research is essential to help OA patients.

Cartilage loss (Felson et al., 2000a) is believed to be the dominating factor in OA.

Studying cartilage morphological changes will help understand OA progression and drug

effects. The only method currently accepted by regulators and clinicians for evaluating

OA progression in hip or knee is through radiographs, which cannot measure cartilage

directly but relies on joint-space width as a surrogate measure for cartilage thickness.

Cartilage loss is usually thought of as nonuniform cartilage thinning and hence is diffi-

cult to quantify using x-ray projection images due to loss of three-dimensional spatial

context. Magnetic resonance imaging (MRI) is a three-dimensional image technique able

to directly measure cartilage volume and thickness and is thus more sensitive than radio-

graphs in the detection of cartilage loss. Significant advances in MRI have resulted in the

ability to quantify cartilage morphology (Eckstein et al., 2006). Studies have shown that

MRI allows reproducible quantification of cartilage morphology (Eckstein et al., 1997,

1998; Raynauld, 2003; Raynauld et al., 2004; Jones et al., 2004; Cicuttini et al., 2005;



(a) (b) (c)

Figure 1.1: Example slice from T1 weighted MR images of human knee and illustration
of cartilage loss. (a) A sagittal slice from a 3-dimensional T1 weighted MR image of a
healthy knee. Bones are annotated in blue, femoral cartilage in purple and tibial cartilage
in orange. (b) A coronal slice from the same MR image. (c) A coronal slice of an OA
knee with cartilage loss indicated by the red arrow.

Eckstein et al., 2006). Therefore, MRI is increasingly accepted as a primary method

to evaluate progression of OA (Raynauld, 2003; Raynauld et al., 2004; Cicuttini et al.,

2005).

Large image databases have been acquired for OA research. For instance, the database

of the Osteoarthritis Initiative (Peterfy et al., 2008) contains MR image data for 4,796

subjects. The Pfizer Longitudinal Study (PLS) (Eckstein et al., 2008), a case-control

study, consists of 97 normal control and 61 OA subjects. It would be of great value

to fully analyze the MR images of these datasets in understanding the progression of

OA. This would require robust fully-automatic computer-assisted image analysis methods

because even if only a small amount of human intervention is needed for a single image, it

would be extremely labor-intensive to analyze (tens of) thousands of images. Therefore

a fully-automatic cartilage segmentation and longitudinal analysis from MR images is

crucial to study OA.

In this thesis, I present an end-to-end automatic method to study cartilage

changes, including cartilage segmentation, thickness computation, establishing spatial

2



correspondence and statistical analysis of longitudinal changes, among which the seg-

mentation and the statistical analysis are the most challenging components. Cartilage

registration is not a trivial task either because of the small size of the cartilage.

1.2 Cartilage segmentation

Automatic cartilage segmentation is a challenging problem in the field of medical

image analysis for the following reasons.

1. Cartilage is a small and thin structure. There are many other tissues, e.g., muscles,

in the MR image, which are irrelevant for the assessment of cartilage. This makes

a fully-automatic segmentation challenging.

2. A segmentation method needs to be robust enough to be applied to large image

datasets exhibiting variations in image appearance.

3. Femoral and tibial cartilage appear to be touching in an MR image, so conventional

binary segmentation would merge them into a single object. Therefore, a new

segmentation method is needed to produce separate segmentations for touching

objects.

4. Isotropic spatial regularization as a means to deal with noisy image data is not an

ideal choice for cartilage segmentation because it tends to shrink the segmentation

boundary by cutting thin objects short.

5. Since subtle changes of cartilage might be indicative of early OA, it is desirable to

study the longitudinal cartilage changes from a temporally-consistent segmentation

which can mitigate image noise effects.
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1.2.1 Existing methods

Automatic cartilage segmentation in the knee has been researched for decades. Many

segmentation approaches have been proposed with varying levels of automation, e.g.,

region growing methods (Adams and Bischof, 1994), watershed methods (Beucher and

Meyer, 1993), live wire (Mortensen and Barrett, 1995), active contours (Kass et al., 1988;

Caselles et al., 1997a), model-based segmentation methods (Cootes et al., 1995, 2001),

graph-based methods (Felzenszwalb and Huttenlocher, 2004; Boykov and Kolmogorov,

2004), pattern recognition methods (Duda et al., 2001), and atlas-based methods (Aljabar

et al., 2009). However, all the methods suffer from certain shortcomings, which are

discussed below. A novel automatic segmentation method is proposed in this thesis to

address the issues of the existing methods.

Region growing methods

The region growing algorithm (Adams and Bischof, 1994) iteratively examines neigh-

boring pixels of “seed points” and determines whether the pixel neighbors should be

added to the region. The method requires manual interaction to obtain the seed points

and suffers from its sensitivity to image noise and parameter settings. Peterfy et al.

(1994), Piplani et al. (1996), Eckstein et al. (1996, 1998) and Tamez-Pena et al. (1999)

applied region growing methods to obtain semi-automatic cartilage segmentations.

Watershed methods

The watershed transform (Beucher and Meyer, 1993) is a segmentation method orig-

inating from the field of mathematical morphology. The image is considered as a topo-

graphic relief, where the height at each pixel is directly related to its gray level. If rain

falls on the terrain, the watersheds correspond to the limits of the adjacent catchment
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basins of the drops of water. Generally, the watershed transform is computed on the gra-

dient magnitude image, so the boundaries are located at high gradient pixels. The main

drawbacks of the watershed transform (Grau et al., 2004) are over segmentation, sensi-

tivity to noise, poor detection of areas with low contrast boundaries and thin structures.

Ghosh et al. (2000) and Grau et al. (2004) used watershed method for semi-automatic

cartilage segmentation.

Live wire

The live wire (also known as intelligent scissors) (Mortensen and Barrett, 1995) is an

interactive segmentation method which allows the user to choose a contour by roughly

tracing the object boundary. The local minimum cost path from the current cursor

position to the last seed point is computed. Additional user interaction is needed if the

computed path deviates from the desired one. The major limitation of this method is

that heavy user interaction is necessary when many alternative minimal paths may exist.

This method was applied by Steines et al. (2000) and Gougoutas et al. (2004) to compute

semi-automatic cartilage segmentation in a slice-by-slice manner.

Active contours

An active contour model, also known as a snake, is an energy-minimizing spline guided

by external constraint forces and influenced by image forces that pull it toward features

such as lines and edges (Kass et al., 1988). The active contour method had a tremen-

dous impact in the segmentation community. The original formulation is not geometric,

meaning there is not obvious relation between the parametrization of the contour and

the geometry of the objects to be captured (Angenent et al., 2006). Many extensions

to and variations of the snakes have been proposed to address this issue. Caselles et al.

(1997a) proposed a geometric model named geodesic active contours which minimizes a
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weighted length of a closed curve. The curve that minimizes the weighted length will

prefer to be on the image edges. Despite the popularity of these methods, most active

contour methods suffer from a major drawback, high sensitivity to initialization, which is

related to the non-convexity of the energy functional. The segmentation algorithm tends

to get stuck in undesired local minima. Lynch et al. (2000), Kauffmann et al. (2003) and

Brem et al. (2009) reported semi-automatic cartilage segmentation methods with active

contour models.

The initial implementations of active contours used parameterizations which lead to

non-convex optimization problems. More modern approaches (Appleton and Talbot,

2006) are more closely related to graph-cuts and are based on convex energy functions

(see below).

Graph-based methods

Graph-based image segmentation techniques (Felzenszwalb and Huttenlocher, 2004)

represent an image using a graph where each node corresponds to a pixel in the image

and the edges connect certain pairs of neighboring pixels. A weight is associated with

each edge based on some property of the pixels that it connects, such as image intensities.

Then a segmentation corresponds to a cut of the graph. A global optimal solution may

be obtained for graph cuts. Boykov and Kolmogorov (2004) presented an efficient way

to compute the max-flow for computer vision related graph. The graph-based methods,

partitioning the image with a graph cut, solve essentially the same optimization problem

as active contours, which uses a curve to separate objects. However, the solution method

is fundamentally different because one searches a labeling of graph nodes rather than the

location of a contour as in the traditional ways of implementing active contours.

Shim et al. (2009) and Bae et al. (2009) utilized graph cuts to achieve semi-automatic

cartilage segmentation guided by the placement of seed points by the user. Yin et al.
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(2010b) proposed a method for simultaneous segmentation of multiple interacting objects,

named LOGISMOS (layered optimal graph image segmentation of multiple objects and

surfaces). The method incorporates multiple spatial inter-relationships in a single n-

dimensional graph. Yin et al. (2010b) also presented an automatic method to segment

cartilage using LOGISMOS.

Graph-based methods generally suffer from grid bias, also known as metrication er-

rors. Large neighborhood systems are required to remove the bias, but they result in a

large number of edges and thus increase the memory consumption.

Model-based methods

In model-based segmentation, a statistical model is trained from a population of

manual segmentations. The segmentation of a target image is computed iteratively.

The model is fit to the target image and then refined based on the model and image

features. Active shape models (ASM) (Cootes et al., 1995) and active appearance models

(ASM) (Cootes et al., 2001) are the most frequently employed methods. Solloway et al.

(1997) used ASM to segment femoral cartilage in a semi-automatic way. Vincent et al.

(2010) applied AAM to compute automatic cartilage segmentation. Glocker et al. (2007)

and Seim et al. (2010) proposed different statistical shape models for bone/cartilage

segmentation.

Despite the wide application, these model-based methods are prone to local min-

ima in the fitting process. In addition, these models are usually restricted to a given

shape/appearance space and hence may not be able to capture pathologies well.

Pattern recognition methods

In pattern recognition, the k nearest neighbor (kNN) algorithm is a method for clas-

sifying objects based on closest training examples in the feature space. Folkesson et al.
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(2007) proposed an automatic hierarchical voxel classification scheme using kNN. Dam

and Loog (2008) accelerated the process through sparse classification. A support vec-

tor machine (SVM) (Cortes and Vapnik, 1995) constructs a hyperplane, which has the

largest distance to the nearest training data point of any class, in a high-dimensional

feature space for classification. Koo et al. (2009) proposed to use SVM to segment car-

tilage automatically from multi-contrast MR images. The spatial interactions between

neighboring pixels are neglected in these methods. Nevertheless, it is straightforward to

use these classifiers in combination with other methods. For example, one can use them

to get likelihoods for foreground and background, which can then be used as unary terms

in graph-cuts, and so on.

Atlas-based methods

An atlas (Aljabar et al., 2009), in the context of atlas-based segmentation, is defined

as the pairing of an original structural image and the corresponding segmentation. Atlas-

based segmentation methods can be categorized into three groups (Išgum et al., 2009),

namely single-atlas-based, average-shape atlas-based and multi-atlas-based methods. A

statistical atlas was constructed by Glocker et al. (2007) for the patella cartilage from

a set of pre-registered training images. The segmentation is solved through a single

registration and thus is not robust to occasional registration failures.

In multi-atlas-based segmentation, multiple labeled images are registered to the query

image independently. The propagated atlas labels are then fused into a single segmenta-

tion of the query image. This results in a method which is more robust to registration

failures than single-atlas-based and average-shape-atlas-based segmentation methods,

both of which need only one registration. The downside of multi-atlas-based segmen-

tation is the high computation cost since it needs multiple registrations. Rohlfing et al.

(2004) demonstrated that the multi-atlas-based segmentation is more accurate than the
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other two types of atlas-based segmentation methods. In spite of the expensive com-

putation, multi-atlas-based segmentation has been quite popular and successful in brain

imaging (Aljabar et al., 2009). Tamez-Peña et al. (2012) reported a multi-atlas-based

cartilage segmentation approach.

1.2.2 Proposed method

I propose a novel automatic cartilage segmentation method which has the

following advantages. First of all, the method is fully automatic and requires no user in-

teraction (besides quality control). Secondly, the method is robust as it benefits from the

multi-atlas-based strategies. Thirdly, both spatial and local appearance information are

utilized in the segmentation. Local tissue classification is probabilistic (unlike Folkesson

et al. (2007), Dam and Loog (2008) and Koo et al. (2009)), and it is combined with a spa-

tial prior to generate the final segmentation within a segmentation model. Furthermore,

the segmentation model is convex and thus allows for the computation of global optimal

solutions, which cannot be guaranteed by active contour models (traditional implemen-

tations), ASM or AAM. The continuous formulation of the segmentation model makes

the method free of grid bias that graph-based methods suffer from. The segmentation

model also allows for the incorporation of spatial and temporal regularization.

It is difficult to segment the cartilage directly from the MR image due to its small size.

Bones are relatively easy to segment. Their segmentations can help locate the cartilage

given the spatial relationship between the bone and the cartilage. Given the advantages

and success of multi-atlas-based methods, I propose a multi-atlas-based bone and

cartilage segmentation method. I first compute the multi-atlas spatial priors for the

bone. The bone priors are then combined with local likelihoods within a Bayesian model

to generate the bone segmentation. The multi-atlas registration of the cartilage is then

based on the corresponding bone segmentation. The cartilage segmentation is a joint
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Figure 1.2: Cartilage segmentation pipeline. (a) Multi-atlas registration to compute the
spatial prior for the bone. (b) Compute bone segmentation from the spatial prior and
the local likelihood. (c) Extract the joint region. (d) Multi-atlas registration (based on
bone segmentations) to compute the spatial prior for the cartilage. (e) Compute cartilage
segmentation from the spatial prior and the local likelihood.

decision of the multi-atlas spatial priors and local likelihoods from a probabilistic tissue

classification. Figure 1.2 shows the pipeline of multi-atlas cartilage segmentation.

The segmentation model for computing cartilage segmentation at step (e) in Fig. 1.2

is critical because the femoral and tibial cartilage appear to be touching in the MR image

and it is desirable to separate them. Since binary segmentation methods tend to merge

touching objects into a single one, I propose a general three-label segmentation

approach which guarantees the separation of touching objects. The three-label seg-

mentation is formulated as a convex optimization problem and therefore allows for the

computation of global optimal solutions. The method is general, and it can be applied

to other segmentation problems with two touching objects.

The commonly used isotropic spatial regularization is not an ideal choice for cartilage

segmentation because it has a tendency to over-regularize at the tips of thin objects.
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Therefore, I propose an anisotropic spatial regularization for cartilage segmen-

tation and demonstrate it improves the segmentation accuracy in comparison to the

isotropic one.

Temporally-consistent segmentation is desirable to study longitudinal change because

subtle changes might be indicative of the disease. A longitudinal three-label seg-

mentation is proposed to encourage temporal consistency across segmentations for

longitudinal data. The longitudinal segmentation method is also general, and it can be

applied to other segmentation problems with longitudinal data of two touching objects.

1.3 Cartilage thickness analysis

Statistical analysis of cartilage thickness changes is also a challenging problem for the

following reasons.

1. Observational studies have shown that cartilage loss in OA may not be uniform

throughout the cartilage but may affect certain regions (e.g., the center) more fre-

quently and more strongly than others (Biswal et al., 2002). Therefore, a localized

analysis method is necessary to understand localized cartilage thinning. The local-

ized analysis requires establishing spatial correspondence across time and subjects

which is challenging, due to the small spatial amount of cartilage.

2. The other challenge is caused by the fact that cartilage thinning may happen to

different locations for different subjects. Cartilage thinning at a particular location

could happen to only a few subjects. Treating all OA subjects equally and using

all of them for statistical analysis would be problematic.
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1.3.1 Existing methods

Wirth and Eckstein (2008) studied average cartilage thickness change in defined

anatomic subregions of the femorotibial joint. The tibial cartilage was divided into a

central area of the total subchondral bone area and into anterior, posterior, internal,

and external subregions surrounding it. In the weight-bearing femoral cartilage, central,

internal, and external subregions were determined. However, this approach may be prob-

lematic because changes within a specific subregion could happen only to a few subjects

whereas other subjects have strong progressions in different subregions.

Buck et al. (2009) proposed to use ordered values of subregional change in each

subregion to focus on the thickness change alone regardless of in which subregion the

change occurs in each subject. The ordered value approach was demonstrated to provide

improved discrimination between healthy subjects and OA participants longitudinally.

But the ordered value approach still relies on subdivisions of the cartilage and the average

thickness within each subregion.

The subdivisions of the cartilage are purely geometric and necessarily coarse. Local

changes (that happen to a smaller region than the size of a subregion) are weakened by

averaging over a particular subregion and are impossible to recover. To fully understand

the spatial pattern of OA progression, the analysis of localized cartilage thickness changes

is necessary.

Williams et al. (2010) built spatial correspondence of cartilage thickness maps and

studied local cartilage thickness. The method however treated all OA subjects equally

without considering the spatial heterogeneity.

1.3.2 Proposed method

A particular reason for the lack of studies on localized cartilage changes is the chal-

lenging cartilage alignment problem because of its small volume. In my thesis, I develop
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a method to establish spatial correspondence of cartilage thickness maps be-

tween subjects and across time points. The cartilage thickness is computed from the

obtained cartilage segmentation using a Laplace-equation approach (Yezzi and Prince,

2003) and then transformed to a common (the atlas) space based on the bone segmenta-

tion. The cartilage thickness maps are then comparable across time points and between

subjects.

Statistical analysis on localized cartilage changes is also challenging due to the fact

that cartilage thinning may happen at different locations for different subjects. The

heterogeneity of the longitudinal changes is not uncommon in the progression of other

diseases. I propose a novel method to analyze the localized cartilage changes,

which can also be applied to study nonuniform local morphological changes

in other disease. I first identify the thinning locations for each subject and then group

subjects into different clusters based on their thinning locations. The group difference

between normal control and OA subjects will be studied at each thinning location.

1.4 Thesis and contribution

Thesis: Automatic, robust and accurate cartilage segmentations can be obtained through

multi-atlas-based registration and local tissue classification within a three-label segmenta-

tion framework allowing for spatial and temporal regularization. Spatially transforming

cartilage thickness maps into an atlas space enables statistical analysis on localized car-

tilage changes. Clustering of OA subjects improves statistical analysis due to the spatial

heterogeneity of cartilage loss.

The scientific contributions are as follows:

1. I present a novel and general three-label segmentation method that ensures the sep-

aration of touching objects and allows for spatial and temporal regularization. The

three-label segmentation is formulated as a convex optimization problem, which
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allows for the computation of global optimal solutions. The method can be applied

to other segmentation problems with two touching objects.

2. I validate the automatic three-label cartilage segmentation on a sizable dataset con-

sisting of more than 700 images. Specially, I study the impacts of different types

of atlases (namely average-shape-atlas and multi-atlas) and different types of reg-

ularization (i.e., isotropic spatial regularization, anisotropic spatial regularization

and temporal regularization) on cartilage segmentation accuracy.

3. I propose a novel method to analyze nonuniform localized cartilage changes, which

can be applied to study nonuniform local morphological changes in other diseases.

4. I perform statistical analysis on a sizable longitudinal dataset containing about 150

subjects with 5 time points. The statistical analysis result of localized cartilage

changes is presented and compared to that reported in literature using regional

analysis.

The engineering contributions are the following:

1. I develop a new fully automatic three-label cartilage segmentation pipeline based

on multi-atlas registration and local tissue classification.

2. I develop a method to establish spatial correspondences of knee cartilage across

time points and between subjects, which allows for statistical analysis on localized

cartilage thickness changes.

1.5 Overview of chapters

The remainder of this dissertation is organized as follows:

Chapter 2 presents a novel three-label segmentation approach which overcomes the

limitation of the binary segmentation on touching objects.
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Chapter 3 applies the proposed three-label segmentation to obtain automatic cartilage

segmentation through multi-atlas-based registration and local tissue classification.

Chapter 4 presents the validation of the proposed cartilage segmentation method and

compares the proposed method to existing methods.

Chapter 5 discusses the computation of cartilage thickness, transforming the cartilage

thickness maps into an atlas space, proposes a new clustering-based statistical method,

and presents the results of applying the new method on localized cartilage thickness

changes.

Chapter 6 contains a discussion of the contributions and an outline of future work.
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CHAPTER 2: THREE-LABEL SEGMENTATION

2.1 Introduction

Image segmentation is a fundamental problem in the field of computer vision and

medical image analysis. It is an essential component towards, for example, automated

vision systems and medical applications. The aim is to find a partition of an image into

a finite number of semantically important regions. Two classes of methods have gained

tremendous popularity in the past decades. One class is active contour methods, including

snakes (Kass et al., 1988) and geodesic active contours and surfaces (Caselles et al.,

1997a,b). The other class takes a different approach by transforming the segmentation

problem to a graph problem, e.g., graph cuts (Ford and Fulkerson, 1962).

Active contour methods evolve a curve or surface toward a structure of interest in

an image. A major issue to these curve/surface evolution approaches methods is the

sensitivity to the initialization. The quality of the segmentation result depends heavily

on the choice of the initial contour, which means a bad initial condition can give an

unsatisfactory result. The dependency on the initialization is due to the non-convexity

of the objective energy functional. The global minimum of the energy corresponds to

a contour of length zero, which has no practical sense for the image segmentation task.

Therefore, a global optimal solution is not a desired result of these methods. It is dif-

ficult to pick the desired local minima from numerous local minima due to image noise

and irrelevant objects. A number of heuristics have been proposed to avoid unwanted

local minima, e.g., pressure forces designed to overcome shallow minima (Cohen, 1991),

multi-resolution approaches to focus on objects that persist at high scales, and meth-

ods modifying the gradient descent to favor more significant contours (Xu and Prince,



1998). In spite of the advent of these heuristics, active contours typically require manual

intervention which limits their application.

Graph-based image segmentation techniques (Felzenszwalb and Huttenlocher, 2004)

represent an image using a graph where each node corresponds to a pixel in the image

and the edges connect certain pairs of neighboring pixels. A weight is associated with

each edge based on some property of the pixels that it connects, such as image intensities.

Then a segmentation corresponds to a cut of the graph. A global optimal solution may

be obtained for graph cuts. Boykov and Kolmogorov (2004) presented an efficient way

to compute the max-flow. However, graph cuts suffer from discretization artifacts, which

typically result in a preference for contours and surfaces to travel along the grid directions.

Large neighborhood systems are required to remove the bias but results in a large number

of edges and thus increase the memory consumption. Also, parallel implementations are

not straightforward (Delong and Boykov, 2008).

2.2 Related work

Chan-Vese segmentation (Chan and Vese, 2001) aims at finding an optimal image

partition into a uniform foreground and background region. It is classically formulated

as a curve/surface-based optimization problem of the form

E(c1, c2, C) = Length(C) + λ1

∫
inside(C)

(c1 − I(x))2 dx + λ2

∫
outside(C)

(c2 − I(x))2 dx

(2.1)

where I(·) denotes image intensities, x is a pixel/voxel location, c1 and c2 are the intensity

estimates for the interior and the exterior of the curve C (their means). This is a non-

convex optimization problem, which complicates the solution. In particular, the obtained

solution may only be a local optimum of the optimization problem.
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Appleton and Talbot (2006) recast active contours as a convex optimization problem

by formulating the problem with respect to a labeling (indicator) function for foreground

and background rather than with respect to a boundary curve/surface. Their approach

can efficiently compute globally minimal curves and surfaces for image segmentation,

stereo reconstruction, and other labeling problems. The method is isotropic (graph cuts

are grid-biased) and optimal (active contours are suboptimal). The algorithm produces

a globally maximal continuous flow at convergence. The energy functional Appleton and

Talbot (2006) minimized is

E(u) =

∫
Ω

g(x) dx with seed points, u ∈ [0, 1] (2.2)

where Ω is the spatial domain of the image, x is a pixel/voxel location in Ω. Here, u is

a essentially binary labeling function for foreground (u = 1) and background (u = 0).

And g is an edge-indicator function, small at edges and large in uniform regions. The

globally optimal solution u can be computed efficiently. The globally minimal surface

can be obtained trivially from the optimal u.

Bresson et al. (Bresson et al., 2007) proposed the following convex functional for seg-

mentation based on the Chan-Vese energy (Chan and Vese, 2001) to optimally partition

the image into piecewise constant regions:

E(u) =

∫
Ω

g‖∇u‖ dx + λ

∫
Ω

r︷ ︸︸ ︷(
(c1 − I(x))2 − (c2 − I(x))2

)
u dx, u ∈ [0, 1]. (2.3)

where I(·) denotes image intensities, c1 and c2 are the mean intensity estimates for the

interior and the exterior of the segmentation respectively, Ω is the image domain, u is

an essentially binary labeling function, indicating foreground (1) and background (0),

and g is an edge-indicator function, small at edges and large in uniform regions. This

model unifies the Chan-Vese model and the active contour model. The formulation (2.3)
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is convex when the c1 and c2 are fixed. Chan-Vese method is not convex because c1 and

c2 are optimized jointly with the segmentation.

In Shan et al. (2010), I proposed a novel binary segmentation extending the work by

Bresson et al. The region-based term r in (2.3) can be reformulated in a probabilistic

way. One can replace r by log Pi

Po
with Pi and P0 probabilities of a pixel belonging to

foreground and background respectively (where equal Gaussian probability distributions

result in the Chan-Vese energy).

To encourage segmentation stop at the desired boundary, a feature field F is added to

favor boundaries with inward normal directions aligned with F itself. Thus, the overall

optimization problem is to minimize the following convex energy functional

E(u) =

∫
Ω

g‖∇u‖+ ru+ F · ∇u dΩ, r = log
Po

Pi

. (2.4)

The vector field F can be rewritten using the divergence theorem and integrated into

the regional term r. The resulting segmentations are independent of initializations of

function u due to the convexity of energy functional (2.4).

All the methods discussed above result in binary segmentations, in which each pixel

is labeled either foreground or background. Multi-label segmentation assigns distinct

labels to different foreground objects and therefore allows for distinction among objects

of interest. In the next section, I will discuss the advantage of multi-label segmentation

through a synthetic example and present a three-label segmentation framework.

2.3 Three-label segmentation

In this section, I will discuss the limitations of binary segmentations and propose a

novel convex three-label segmentation framework, which ensures the separation of the

two foreground objects, e.g., femoral and tibial cartilage.
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(a) (b)

Figure 2.1: Synthetic example comparing binary and three-label segmentations. (a) Bi-
nary segmentation result. Femur and tibia are segmented as one object and the boundary
in the joint region is not captured well due to regularization effects. (b) Proposed three-
label segmentation. The boundaries between bones and background are preserved.

2.3.1 Limitation of binary segmentations

Only one object is segmented from binary segmentation, which uses two labels, i.e.,

foreground and background. In many cases, there is more than one object which needs

to be segmented. If the objects of interest are spatially separate, a binary segmentation

may still be sufficient (one can decide after the fact which one is which). But if objects

touch, binary segmentation is not enough. Also because of spatial regularization, the

joint boundary of touching objects will be smoothed out. Multi-label segmentation can

keep objects separated and is therefore particularly suited to segment touching objects.

Figure 2.1 demonstrates the limitations of a binary versus a three-label segmentation

method for a synthetic bone case. In the binary segmentation (Fig. 4.3(a)), the two

bones are regarded as one object and the joint boundary (where the two bones touch) is

smoothed out due to spatial regularization. The three-label segmentation (Fig. 4.3(b))

distinguishes the two bones with different labels. The joint boundary is preserved because

of the distinct labels.
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2.3.2 A general three-label segmentation method

The three-label case is a specialization of the multi-label segmentation method by

Zach et al. (2009). Using three labels allows for a symmetric formulation with respect to

the background segmentation class.

A multi-label segmentation is a mapping from an image domain Ω to a label space

represented by a set of non-negative integers, i.e. L = {0, ..., L− 1}. The labeling

function Λ : Ω → L,x 7→ Λ (x) maps a pixel x in the image domain Ω to label Λ (x) in

label space. The goal is to find a labeling function that minimizes an energy functional

of the form:

E(Λ) =

∫
Ω

c(x,Λ(x)) + V (∇Λ,∇2Λ, ...) dx, (2.5)

where c(x,Λ(x)) is the cost of assigning label Λ(x) to pixel x and V (·) is a regularizing

term. This optimization problem is generally difficult to solve as the data costs are typ-

ically highly non-convex. By embedding the labeling assignment into higher dimensions

and appropriately restating the energy (2.5), a convex formulation can be obtained.

The different labelings can be encoded through a level function u defined in higher

dimensions

u(x, l) =

 1 if Λ(x) < l,

0 otherwise,
(2.6)

which maps the Cartesian product of the image domain Ω and the labeling space L

to {0, 1}. By definition, we have u(x, 0) = 0 and u(x, L) = 1. Of note, u does not

directly encode labels, but instead defines them through its discontinuity set. Figure 2.2

illustrates the relation between u and Λ for the three-label case.

With the level function u, the label cost term can be rewritten as

∫
Ω

c(x,Λ(x)) =

∫
D
c(x, l) |∇lu(x, l)| dxdl, D = Ω× L, (2.7)
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using the same technique as Pock et al. (2008) proposed. The regularization energy in

2.5) can be written in terms of the gradient of the level function as

∫
D
ψx,l(∇u)dxdl, D = Ω× L, (2.8)

where ψx,l defines the regularization term and is convex and 1-positively homogeneous.

By combining the two terms, one can rewrite (2.5) purely in terms of u,

E(u) =

∫
D
ψx,l(∇u) + c(x, l) |∇lu(x, l)| dxdl, D = Ω× L. (2.9)

As u can only take two integer values, i.e., 0 and 1, the functional (2.9) is not convex.

The non-convex constraint is usually relaxed to a convex one on u ∈ [0, 1]. The relaxation

transforms the original hard optimization problem into a related problem that is convex

and therefore easier to solve. Zach et al. (2009) has proven that the resulting solution

u to the relaxed problem is essentially binary and thresholding of an essentially binary

optimal solution of energy (2.9) yields to an equally globally optimal solution to the

original discrete problem.

Model (2.5) is in general asymmetric with respect to the labels, since the design of the

level function (2.6) implies a specific label ordering. However, for the three-label case,

the background label can be symmetrically positioned between the two object labels (i.e.,

femoral cartilage and tibial cartilage), hence resulting in a method that treats the two

objects symmetrically.
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(a) u for Λ = 0 (b) u for Λ = 1 (c) u for Λ = 2

(d) |∇lu| for Λ = 0 (e) |∇lu| for Λ = 1 (f) |∇lu| for Λ = 2

Figure 2.2: Values of u and |∇lu| for different label assignments in a three-label segmen-
tation (abscissa l). Assuming a discretization with forward differences. |∇lu| determines
the label assignment.

2.3.3 Three-label segmentation with isotropic regularization

The three-label segmentation energy functional is formulated as (the explicit depen-

dence of x and l is omitted)

E(u) =

∫
D
g ‖∇xu‖+ c |∇lu| dxdl, D = Ω× L

subject to u ∈ [0, 1], u(x, 0) = 0, u(x, 3) = 1.

(2.10)

This is relaxed optimization problem with a convex constraint u ∈ [0, 1] as opposed to

the original problem with the non-convex constraint u ∈ {0, 1}.

Minimizing energy (2.10) with respect to u, results in an essentially binary and mono-

tonically increasing level function u indicating the multi-label image segmentation. Here,

∇xu is the spatial gradient of u, ∇xu = (∂u/∂x, ∂u/∂y, ∂u/∂y)T and ∇lu is the gradient

in label direction: ∇lu = ∂u/∂l; g controls the isotropic regularization, and c defines

the labeling cost. Parameter g is set to be a non-negative constant. The formulation

is convex, so a global optimum can be computed. One can apply an iterative gradient

descent/ascent scheme for the optimization. See section 2.3.5 for details. The three-label
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(a) (b) (c)

Figure 2.3: Synthetic example comparing isotropic and anisotropic regularization. (a)
original image to be segmented; (b) and (c) three-label segmentation results with
isotropic and anisotropic regularization respectively. Anisotropic regularization avoids
over-regularization at the tips of the synthetic shape.

segmentation can then be computed from the discontinuity set of u.

2.3.4 Three-label segmentation with anisotropic regularization

The isotropic regularization in model (2.10) treats all directions equally, which is not

an ideal choice for long and thin objects like the cartilage. To customize the segmentation

model (2.10) for cartilage segmentation, I replace the isotropic regularization term, g, by

an anisotropic one

E(u) =

∫
D
‖G∇xu‖+ c|∇lu| dxdl, D = Ω× L,

u ∈ [0, 1], u(x, 0) = 0, u(x, 3) = 1,

(2.11)

where G is a positive-definite matrix determining the amount of regularization. This

avoids over-regularization at the boundaries of the cartilage layers and therefore allows

for a more faithful segmentation. Figure 2.3 illustrates the problem with isotropic regu-

larization which tends to shrink the segmentation boundary by cutting thin objects short

and the benefit from anisotropic regularization. I choose G as

G = g
[
I + (α− 1)nnT

]
, α ∈ [0, 1], (2.12)
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Figure 2.4: Difference between isotropic and anisotropic regularization. The black curve
is an edge in an image. The regularization is illustrated at a pixel (the dot). The
blue circle indicates the isotropic case where regularization is enforced equally in every
direction. The red ellipse shows the anisotropic situation where less regularization is
applied in the normal direction and more in the tangent direction.

where I is the identity matrix and n is a unit vector indicating the direction of less

regularization (the normal direction to the cartilage surface). See Fig. 2.4 for an illus-

tration of isotropic versus anisotropic regularization. Since the normal direction to the

cartilage surface is not known a-priori, I approximate it by the normal direction to the

bone-cartilage interface which can be determined from the segmentations of femur and

tibia. The energy functional (2.11) is also convex and therefore a global optimum can

also be computed. Again, an iterative gradient descent/ascent scheme is applied for the

optimization. See section 2.3.5 for details.

2.3.5 Numerical solution

This section discusses an iterative scheme to optimize (2.11). Solving (2.10) is a

special case with G = gI (I is the identity matrix). I introduce two dual variables p (a

vector field) and q (a scalar field) and rewrite (2.11) as

E(u,p, q) =

∫
D
〈p,G∇xu〉+ q∇lu dxdl,

subject to ‖p‖ ≤ 1, |q| ≤ c,

(2.13)
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in which 〈·, ·〉 represents inner products. Minimizing (2.11) with respect to u is equivalent

to minimizing (2.13) with respect to u and maximizing it with respect to p and q.

Taking the variation yields

δE(u,p, q; δu, δp, δq) (2.14)

=
∂

∂ε

∫
Ω

〈p + εδp,G∇xu+ εG∇xδu〉+ (q + εδq)(∇lu+ ε∇lδu) dxdl (2.15)

=

∫
Ω

〈p,G∇xδu〉+ 〈δp,G∇xu〉+ q∇lδu+ δq∇lu dxdl (2.16)

=

∫
Ω

(− div(Gp)−∇lq)δu+ 〈δp,G∇xu〉+ δq∇lu dxdl (2.17)

The gradient descent/ascent update scheme of (2.13) is

pt = −G∇xu, ‖p‖ ≤ 1 (2.18)

qt = −∇lu, |q| ≤ c (2.19)

ut = − divx(Gp)−∇lq (2.20)

The iterative scheme will lead to a global optimum upon convergence (Appleton and

Talbot, 2006) because of the convexity of (2.11). Let S and T denote the source and

sink sets: S = Ω× {0}, T = Ω× {3}. The region without sources or sinks is denoted as
◦
D = D \ (S ∪ T ) = Ω × {1, 2}. Zach et al. (2009) proposed to terminate the iterations

when the gap between primal energy and dual energy is sufficiently small. The dual

energy is computed as

E∗(u) =

∫
S

div(Gp) +∇lq dxdl

+

∫
◦
D

min(0, div(Gp) +∇lq) dxdl

(2.21)

Zach et al. (2009) proved that the solution u is essentially binary and monotonically
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increasing after convergence and thresholding of the essentially binary solution u yields

an equally globally optimal solution to the original discrete problem.

2.4 Multi-label segmentation

The three-label segmentation (2.10 and 2.11) is a special case of multi-label segmenta-

tion. The background label is placed between the two foreground labels so that the same

amount (if desired, can also be intentionally different) of spatial regularization is applied

to each object with respect to the background. Such symmetric labeling is impossible

when the number of labels is greater than three. This section therefore presents a multi-

label segmentation method which requires no such symmetric setting and is capable of

handling any number of objects.

2.4.1 Limitation of three-label segmentation

Figure 2.5 shows the regularization issues when applying (2.10) to segment four ob-

jects from the background. A symmetric labeling is not possible with more than two

objects for model (2.10). Objects with labels closer to the background label get less

regularized. In Fig. 2.5, the background is labeled zero so the object with largest label

gets the most regularization. As the parameter g in energy (2.10) increases, the objects

disappear in the descending order of their labels.

2.4.2 Multi-label segmentation

The issue comes from the spatial regularization term g ‖∇xu‖ in the energy (2.10)

because the penalty depends on label ordering. Figure 2.9 (a) provides an illustration of

the dependence. Each pixel is associated with a vector u with six elements (first one is

always zero, and last one is always one according to definition). Changing the label from

the background (u = [0, 1, 1, 1, 1, 1]) to object 1 whose u = [0, 0, 1, 1, 1, 1] gets penalty
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Original image g = 0.2 g = 0.4

g = 0.6 g = 0.8 g = 1.0

g = 1.2 g = 1.4 g = 1.6

g = 1.8 g = 2.0 g = 2.2

Figure 2.5: Synthetic example demonstrating the regularization bias of isotropic three-
label segmentation applied to multiple objects. Four objects are to be segmented from
the background. The labels are assigned as follows. Background: 0, top object: 1, right
object: 2, left object: 3, bottom object: 4.
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Original image g = 0.2 g = 0.4

g = 0.6 g = 0.8 g = 1.0

g = 1.2 g = 1.4 g = 1.6

g = 1.8 g = 2.0 g = 2.2

Figure 2.6: Synthetic example demonstrating no regularization bias of isotropic multi-
label segmentation. Four objects are to be segmented from the background. The labels
are assigned as follows. Background: 0, top object: 1, right object: 2, left object: 3,
bottom object: 4.
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Original image g = 0.2 g = 0.4

g = 0.6 g = 0.8 g = 1.0

g = 1.2 g = 1.4 g = 1.6

g = 1.8 g = 2.0 g = 2.2

Figure 2.7: Synthetic example demonstrating the regularization bias of anisotropic three-
label segmentation applied to multiple objects. Four objects are to be segmented from
the background. The anisotropy parameter α is set to be 0.2. The labels are assigned as
follows. Background: 0, top object: 1, right object: 2, left object: 3, bottom object: 4.
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Original image g = 0.2 g = 0.4

g = 0.6 g = 0.8 g = 1.0

g = 1.2 g = 1.4 g = 1.6

g = 1.8 g = 2.0 g = 2.2

Figure 2.8: Synthetic example demonstrating no regularization bias of anisotropic multi-
label segmentation. Four objects are to be segmented from the background. The
anisotropy parameter α is set to be 0.2. The labels are assigned as follows. Background:
0, top object: 1, right object: 2, left object: 3, bottom object: 4.
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1. The penalty between background and object 4 (whose u = [0, 0, 0, 0, 0, 1]) will result

in penalty 4 as four elements are different. Therefore the spatial regularization depends

on the label ordering, meaning a different permutation of labels will result in a different

segmentation result. Labels that are farther away from the background will be more

smoothed out.

To alleviate the label ordering issue, I propose a novel multi-label segmentation energy

functional

E(u) =

∫
D
g ‖∇x∇lu‖+ c |∇lu| dxdl, D = Ω× L

subject to u ∈ [0, 1], u(x, 0) = 0, u(x, L) = 1.

(2.22)

Comparing to (2.10), the regularization term is defined by the spatial gradients of∇lu,

rather than u. The reason for such a change can be explained by Fig. 2.1(b) where ∇lu

contains a single “1” element for each object. Any two objects differ by 2 when comparing

∇lu. Figure 2.6 demonstrates the advantage of the proposed multi-label segmentation

which has no regularization bias therefore is capable of handling any number of objects.

The resulting segmentation is independent of label ordering.

The multi-label segmentation problem with anisotropic regularization is formulated

as

E(u) =

∫
D
‖G∇x∇lu‖+ c |∇lu| dxdl, D = Ω× L

subject to u ∈ [0, 1], u(x, 0) = 0, u(x, L) = 1.

(2.23)

Again, the different comparing to (2.11) is the regularization is computed through

the spatial gradient of ∇lu, rather than u. The matrix G is defined in the same way as

in (2.11).
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(a) u (b) ∇lu

Figure 2.9: Function u and ∇lu for each object. The labels are assigned as follows.
Background: 0, top object: 1, right object: 2, left object: 3, bottom object: 4.

Figure 2.5 shows the problematic regularization of (2.11) when applied to more than

three objects. Energy (2.23) overcomes the issue and is therefore capable of dealing with

any number of objects. The segmentation results are robust to label ordering.

The three-label energy (2.11) gives “essentially binary” solutions. It can also be

proved that the thresholding of a “essentially binary” solution yields an equally glob-

ally optimal solution (Zach et al., 2009). However, this property does not hold for the

multi-label energy (2.23). there is no guarantee the final solution is “essentially binary”

property. Energy (2.22) corresponds to the linear programming relaxation of Markov

random fields with a Potts discontinuity prior. Discrete Potts models are known to be

NP-hard. Therefore the optimization of (2.22) yields a globally optimal solution to the

relaxed problem, rather than the original discrete problem. However, the solutions are

usually quite binary in practice and can be regarded as close approximations to the true

optimal solutions.
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2.4.3 Numerical solution

This section discusses an iterative scheme to optimize (2.23). Solving (2.22) is a

special case with G = gI (I is the identity matrix). I introduce two dual variables p

(vector field) and q (scalar field) and rewrite (2.11) as

E(u,p, q) =

∫
D
〈p,G∇x∇lu〉+ q∇lu dxdl,

subject to ‖p‖ ≤ 1, |q| ≤ c,

(2.24)

in which 〈·, ·〉 represents inner products. Minimizing (2.23) with respect to u is equivalent

to minimizing (2.24) with respect to u and maximizing it with respect to p and q.

Taking the variation, we have

δE(u,p, q; δu, δp, δq) (2.25)

=
∂

∂ε

∫
Ω

〈p + εδp,G∇x∇lu+ εG∇x∇lδu〉+ (q + εδq)(∇lu+ ε∇lδu) dxdl (2.26)

=

∫
Ω

〈p,G∇x∇lδu〉+ 〈δp,G∇x∇lu〉+ q∇lδu+ δq∇lu dxdl (2.27)

=

∫
Ω

(∇l (div (Gp))−∇lq) δu+ 〈δp,G∇x∇lu〉+ δq∇lu dxdl (2.28)

The gradient descent/ascent update scheme of (2.24) is

pt = −G∇x∇lu, ‖p‖ ≤ 1 (2.29)

qt = −∇lu, |q| ≤ c (2.30)

ut = ∇l (div (Gp))−∇lq (2.31)

The iterative scheme will lead to a global optimum upon convergence (Appleton and

Talbot, 2006) because of the convexity of (2.23). Let S and T denote the source and

sink sets: S = Ω× {0}, T = Ω× {L}. The region without sources or sinks is denoted as

34



◦
D = D\(S∪T ) = Ω×{1, 2, · · · , L− 1}. Iterations are terminated when the gap between

the primal energy (2.11) and the dual energy is sufficiently small. The dual energy is

computed as

E∗(u) =

∫
S

∇lq −∇l (div (Gp)) dxdl

+

∫
◦
D

min(0,∇lq −∇l (div (Gp))) dxdl

(2.32)

The multi-label segmentation can be easily recovered from the discontinuity set of u.

Unlike the three-label segmentation, there is no guarantee that solution u is essentially

binary after convergence. Thresholding of u does not necessarily yield a globally optimal

solution to the original discrete problem.

2.5 Conclusion

The main contribution of this chapter is the novel three-label and multi-label seg-

mentation framework.

The proposed three-label segmentation framework is general and guarantees separa-

tion of the touching objects, e.g., touching bones in Fig. 4.3. By placing the background

label in the middle, one can obtain a symmetric labeling with respect to the background.

The anisotropic regularization has general applicability for the segmentation of thin ob-

jects, e.g., knee cartilage. An important advantage of the segmentation framework is its

convexity, which guarantees that a globally optimal solution to the relaxed problem can

be computed, which then yields a globally optimal solution to the original problem after

thresholding due to its essentially binary property.

The multi-label segmentation framework is proposed to overcome the regularization

bias of the three-label segmentation when applied to more than three labels (two objects,

one label is for the background). Again, the relaxed formulation is convex, and one can
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compute the globally optimal solution. Unfortunately, the “essentially binary” property

is not guaranteed in this case. Therefore, the thresholded solution may not be a globally

optimal solution to the discrete formulation, which is a Potts model and known to be NP-

hard. However, the solution can be a close approximation to the true optimal solution

as it converges to solutions which are close to binary in practice.

In the next chapter, I will apply the proposed three-label segmentation to segment

human knee cartilage, i.e., femoral and tibial cartilage. The background label is placed

between the labels for femoral and tibial cartilage for symmetry.
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CHAPTER 3: AUTOMATIC MULTI-ATLAS-BASED THREE-LABEL
CARTILAGE SEGMENTATION

3.1 Introduction

Osteoarthritis (OA) is the most common form of joint disease and a major cause of

long-term disability in the United States of America (Woolf and Pfleger, 2003). Cartilage

loss is believed to be the dominating factor in OA. As magnetic resonance imaging (MRI)

is able to evaluate cartilage volume and thickness and allows reproducible quantification

of cartilage morphology (Eckstein et al., 1998, 2006) it is increasingly accepted as a

primary method to evaluate progression of OA. An accurate cartilage segmentation from

magnetic resonance (MR) knee images is crucial to study OA and would be of particular

use for future clinical trials to test so far non-existing disease-progression modifying drugs.

Already today, large image databases exist for OA studies which are well suited to design

and test automatic cartilage segmentation algorithms capable of processing thousands

of images. For example, the Pfizer Longitudinal Study (PLS) dataset (Eckstein et al.,

2008) contains 158 subjects, each with five time points. The Osteoarthritis Initiative

(OAI) dataset includes 4,796 subjects with multiple time points. Due to the large size

of image databases, a fully automatic segmentation and analysis method is essential. In

this chapter, I therefore propose a new cartilage segmentation method from knee MR

images, which requires no user interaction (besides quality control). The method is a

step towards automatic analysis of large OA image databases.

Recently, several automatic methods have been proposed for cartilage segmentation.

Folkesson et al. (2007) proposed a voxel-based hierarchical classification scheme for car-

tilage segmentation. Fripp et al. (2010) used active shape models for bone segmentation



in order to extract the bone-cartilage interface followed by tissue classification. A graph-

based simultaneous segmentation of bone and cartilage was developed by Yin et al.

(2010b). Vincent et al. (2010) applied multi-start and hierarchical active appearance

modeling to segment cartilage. Texture analysis (Dodin et al., 2010) has also been em-

ployed in cartilage segmentation. Seim et al. (2010) utilized prior knowledge on the

variation of cartilage thickness. Voxel-based classification approaches have been investi-

gated for segmenting multi-contrast MR data by Koo et al. (2009) and Zhang and Lu

(2011).

To allow for localized analysis and the suppression of unlikely voxels in a segmentation,

introducing a spatial prior is desirable. This can be achieved through an atlas-based

analysis method. In particular, multi-atlas segmentation strategies (Rohlfing et al., 2004)

have shown to be robust and reliable image segmentation methods. While such methods

have been successfully used in brain imaging, they have so far rarely been used for

cartilage segmentation. The work by Glocker et al. (2007), which used a statistical

shape atlas from a set of pre-aligned knee images, and the work by Tamez-Peña et al.

(2012) using a multi-atlas-based method, are two exceptions. The proposed segmentation

method is most closely related to Tamez-Peña et al. (2012) as both methods make use

of multi-atlas segmentation strategies. However, I significantly extend the prior work

by Tamez-Peña et al. (2012). In particular:

1) I propose a convex three-label segmentation method which allows for anisotropic

spatial regularization (described in detail in chapter 2). This is a generally ap-

plicable segmentation method. Applied to the segmentation of femoral and tibial

cartilage, it guarantees their spatial separation while ensuring spatially smooth

solutions accounting for the cartilage thinness through anisotropic regularization.

The method incorporates spatial priors via atlas information (see item 2) and local

segmentation label likelihoods through appearance classification comparing both k
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nearest neighbors (kNN) classification and classification by a support vector ma-

chine (SVM).

2) I compare different atlas-based segmentation methods: using a single average-shape

atlas as well as multiple atlases with various label fusion strategies as segmentation

priors.

3) In chapter 4, I perform an extensive validation on over 700 images with varying

levels of OA disease progression using data from both the Pfizer Longitudinal Study

(PLS) and from SKI10 (Heimann et al., 2010) to compare to existing methods.

These contributions are significant as

1) Due to its convexity our segmentation method allows the efficient computation of

globally optimal solutions for three segmentation labels, i.e. femoral/tibial carti-

lage and background. Furthermore, I demonstrate that anisotropic regularization

within this segmentation model is less sensitive to parameter settings than isotropic

regularization and yields more accurate cartilage segmentations.

2) I show that using non-local patch-based label fusion from multiple atlases to obtain

segmentation priors improves segmentation results significantly over using a single

atlas or a local label fusion strategy.

3) The validation dataset (with more than 700 images) is at least one order of magni-

tude larger than most prior cartilage segmentation validation studies, hence demon-

strating the ability of the proposed segmentation method to automatically achieve

accurate cartilage segmentations for large imaging studies. The required robustness

of the segmentation method is achieved using a multi-atlas segmentation strategy.

The obtained accuracy can be attributed to the combination of local classification,

multi-atlas label fusion, three-label segmentation and anisotropic regularization.
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Figure 3.1: Cartilage segmentation pipeline.

Figure 3.1 illustrates the proposed cartilage segmentation method. The method starts

with multi-atlas-based bone segmentation to guide the cartilage atlas registration. The

cartilage spatial prior is then obtained from either multi-atlas or average-shape-atlas

registration. A probabilistic classification is performed to compute local likelihoods. The

three-label segmentation makes the final decision from the spatial priors and the local

likelihoods jointly, allowing for anisotropic spatial regularization.

The remainder of this chapter is organized as follows: Section 3.2 clarifies the atlas ter-

minology and briefly discuss atlas-based segmentation methods. Section 3.3 describes the

multi-atlas-based bone segmentation method. The probabilistic cartilage classification is

explained in section 3.4. Sections 3.5 and 3.6 discuss the average-shape-atlas-based and

multi-atlas-based cartilage segmentation, respectively. This chapter closes with conclu-

sions and future work. Chapter 4 shows the experimental results on the PLS dataset and

compares the proposed method to other methods by making use of the SKI10 dataset.
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3.2 Atlas-based segmentation

An atlas (Aljabar et al., 2009), in the context of atlas-based segmentation, is de-

fined as the pairing of an original structural image and the corresponding segmenta-

tion. Atlas-based segmentation methods can be categorized into three groups (Išgum

et al., 2009), namely single-atlas-based, average-shape atlas-based, and multi-atlas-based

methods. The work by Glocker et al. (2007) falls into the second group. The work by

Tamez-Peña et al. (2012) belongs to the multi-atlas category.

In the single-atlas-based method, a single labeled image is chosen as the atlas and reg-

istered to the query image. The atlas label is propagated following the same transform to

generate the segmentation for the query image. The drawbacks of the single-atlas-based

segmentation include the possibility that the atlas used is anatomically unrepresenta-

tive of the query image and occasional registration failures because the method critically

depends on the success of only one registration. To alleviate the problem of being non-

representative, average-shape-atlas-based methods have been proposed, where a reference

image is selected to build the atlas from a set of labeled images. However, here success

still depends on the success of a single registration. Furthermore, the choice of reference

image is important for segmentation accuracy and frequently addressed by building an

average atlas-image through registration – which in itself is not a trivial task. Alterna-

tively, in multi-atlas-based segmentation, multiple labeled images are registered to the

query image independently, hereby avoiding reliance on one registration while allowing

to represent anatomical variations. The downside of multi-atlas-based segmentation is

high computation cost as multiple registrations are required. In spite of the expensive

computation, multi-atlas-based segmentation has been popular and successful in brain

imaging. In particular, Rohlfing et al. (2004) demonstrated that multi-atlas-based seg-

mentation is more accurate than the other two atlas-based segmentation methods. I will

therefore follow a multi-atlas strategy in what follows.
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3.3 Multi-atlas-based bone segmentation

The labeling cost c in (2.10) for each label l in {FB,BG,TB} (“FB”, “BG” and “TB”

denote the femoral bone, the background and the tibial bone respectively) are defined

by log-likelihoods for each label given image I at a voxel location x:

c(x, l) = −log(P (l|I(x))) = −log
(
p(I(x)|l) · P (l)

p(I(x))

)
. (3.1)

The background label “BG” is placed in the label order between the femur label “FB”

and the tibia label “TB” in order to achieve a symmetric formulation.

The likelihood terms p(I(x)|FB) and p(I(x)|TB) are computed from image intensities.

Since bones appear dark in T1 weighted MR images, I assume a simple model (3.2) to

estimate bone likelihoods,

p(I(x)|FB) = p(I(x)|TB) = exp(−βI(x)), (3.2)

where β is set to 0.02 in our implementation assuming I(x) ∈ [0, 100].

To compute the prior terms p(FB) and p(TB) in (3.1), I employ a multi-atlas reg-

istration approach followed by label fusion. Suppose there are N atlases Ai and their

bone segmentations are SFB
i and STB

i (i = 1, 2, ..., N). Registration from an atlas Ai to a

query image I is an affine registration T affine
i followed by a B-Spline registration T bspline

i .

Averaging all N propagated atlas labels yields a spatial prior of femur and tibia for the

query image:

p(FB) =
1

N

N∑
i=1

(
T bspline
i ◦ T affine

i ◦ SFB
i

)
,

p(TB) =
1

N

N∑
i=1

(
T bspline
i ◦ T affine

i ◦ STB
i

)
.

(3.3)
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Now that I have computed the spatial priors and the local likelihoods, I integrate

them into (3.1) and solve (2.10) to obtain the three-label bone segmentation. The bone

segmentation will help locate the cartilage in atlas-based cartilage segmentation.

3.4 Probabilistic classification

I use the three-label segmentation with anisotropic regularization for cartilage seg-

mentation to account for thin cartilage layers. The labeling cost c for each label l in

{FC,BG,TC} (“FC”, “BG” and “TC” denote the femoral cartilage, the background and

the tibial cartilage respectively) are defined by log-likelihoods for each label:

c(x, l) = −log(P (l|f(x))) = −log
(
p(f(x)|l) · p(l)

p(f(x))

)
, (3.4)

where f(x) denotes a feature vector at a voxel location x. Again the background label

“BG” is placed between the femoral cartilage label “FC” and the tibial cartilage label

“TC” in order to achieve a symmetric formulation.

I compute the spatial prior p(l) in two different ways: using an average-shape-atlas

registration and a multi-atlas registration (see sections 3.5 and 3.6). I compare the per-

formance of both approaches in chapter 4. The local likelihood term p(f(x)|l) is obtained

from a probabilistic classification based on local image appearance. I investigate classifi-

cation based on a probabilistic k nearest neighbors (kNN) (Duda et al., 2001) as well as

by a support vector machine (SVM) (Cortes and Vapnik, 1995). For classification I use

a reduced set of features compared to Folkesson et al. (2007): intensities at three scales,

first-order derivatives in three directions at three scales, and second-order derivatives in

the axial direction at three scales. The three different scales are obtained by convolving

with Gaussian kernels of σ = 0.3 mm, 0.6 mm and 1.0 mm. All features are normalized

to be centered at 0 and have unit standard deviation.
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An important difference from Folkesson et al. (2007) and Koo et al. (2009) is the prob-

abilistic nature of the classification, which allows an easy incorporation of the classifica-

tion result into the Bayesian framework. Further, the final segmentations are generated

by a segmentation method with anisotropic regularization, whereas no regularization was

used in Folkesson et al. (2007) nor Koo et al. (2009). I demonstrate in chapter 4 that

spatial regularization helps improve the segmentation accuracy and anisotropic regular-

ization yields better accuracy than isotropic regularization.

3.4.1 Classification using kNN

I estimate the data likelihoods for femoral and tibial cartilage, p(f(x)|l), of (3.4) by

probabilistic kNN classification (Duda et al., 2001). I use a one-versus-other classifica-

tion strategy and the expert segmentations of femoral and tibial cartilage to build the

kNN classifier. Specifically, let “FC” denote the femoral cartilage class, “TC” the tibial

cartilage, and “BG” the background class. The training samples of class FC are the

voxels labeled as femoral cartilage. Similarly, the training samples of class TC are the

voxels labeled as tibial cartilage. The training samples of class BG are the voxels sur-

rounding the femoral and tibial cartilage within a specified distance. The outputs of the

probabilistic kNN classifier given a query voxel x with its feature vector f(x) are

p(f(x)|FC) =
nFC(f(x))

k
,

p(f(x)|BG) =
nBG(f(x))

k
,

p(f(x)|TC) =
nTC(f(x))

k
.

(3.5)

Here nFC, nTC, nBG denote the number of votes for the femoral cartilage, tibial cartilage,

and background class respectively; k is the number of nearest neighbors of concern. Since

kNN is sensitive to the number of training samples, I scale the outputs according to the
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training class sizes to balance the three classes.

3.4.2 Classification using an SVM

An alternative approach to compute the local likelihoods is to use a support vec-

tor machine (SVM) (Cortes and Vapnik, 1995), which constructs a hyperplane maxi-

mally separating classes given a labeled training set. Koo et al. (2009) used two-class

SVM to segment cartilage automatically from multi-contrast MR images. I apply LIB-

SVM (Chang and Lin, 2011) to perform probabilistic three-class SVM classification with

the features described above. The results are local likelihoods for the background, the

femoral and the tibial cartilage, i.e., p(f(x)|BG), p(f(x)|FC) and p(f(x)|TC). I compare

the SVM and the kNN probabilistic classification methods in chapter 4.

3.5 Average-shape-atlas-based cartilage segmentation

This section discusses how to build a probabilistic bone and cartilage atlas by av-

eraging registered expert segmentations and computing the cartilage spatial priors by

registration of the atlas. The atlas within this section captures the spatial relationships

between the bone and the cartilage.

Suppose there are N images with expert segmentations. One can pick the segmenta-

tion of one image as the reference to bring all the segmentations to the same position.

Specifically, I register the femur segmentation SFB
i (i = 1, 2, ..., N) and the tibial segmen-

tation STB
i (i = 1, 2, ..., N) to the reference femur and tibia segmentations with affine

transforms TFB
i and TTB

i respectively. The femoral and tibial cartilage segmentations

SFC
i and SFC

i are propagated accordingly. The average bone and cartilage atlas Aavg
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(including AFB
avg, A

TB
avg, A

FC
avg and ATC

avg) is computed by

AFB
avg =

1

N

N∑
i=1

(
TFB
i ◦ SFB

i

)
,

ATB
avg =

1

N

N∑
i=1

(
TTB
i ◦ STB

i

)
,

AFC
avg =

1

N

N∑
i=1

(
TFB
i ◦ SFC

i

)
,

ATC
avg =

1

N

N∑
i=1

(
TTB
i ◦ STC

i

)
.

(3.6)

Given a query image I, I have computed the bone segmentation SFB and STB from

section 3.3. The atlas femur AFB and tibia AFB are registered to the segmentation of

femur SFB and tibia STB with affine transforms TFB and TTB. The spatial prior for each

cartilage is then computed by propagating each cartilage atlas with the corresponding

transform,

p(FC) = TFB ◦ AFC
avg,

p(TC) = TTB ◦ ATC
avg,

p(BG) = 1− p(FC)− p(TC).

(3.7)

These spatial priors and the local likelihoods from section 3.4 are integrated into (3.4)

and the cartilage segmentation is obtained by optimizing the three-label segmentation

energy with anisotropic regularization (2.11).

3.6 Multi-atlas-based cartilage segmentation

This section presents an alternative approach to computing the spatial prior for carti-

lage. I make use of multi-atlas registration, rather than average-shape-atlas registration
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described in section 3.5. Each atlas is an individual expert bone and cartilage segmen-

tation in this section. Three popular label fusion methods are discussed in this section,

i.e., majority voting, locally-weighted and non-local patch-based fusion.

Suppose there are N atlases Ai including their femur segmentations SFB
i , tibia seg-

mentations STB
i , femoral cartilage segmentations SFC

i and tibial cartilage segmentations

STC
i (i = 1, 2, ..., N). For a query image I, we have the bone segmentation SFB and STB

from section 3.3.

The atlas bone segmentations SFB
i and STB

i are registered to the bone segmentations

SFB and STB of the query image separately by affine transforms TFB
i and TTB

i .

One can simply take the average of the registered cartilage atlas segmentations to

compute the spatial priors, which is majority voting Rohlfing et al. (2004) label fusion:

p(FC) =
1

N

N∑
i=1

(
TFB
i ◦ SFC

i

)
,

p(TC) =
1

N

N∑
i=1

(
TTB
i ◦ STC

i

)
.

(3.8)

One can also apply a locally-weighted label fusion strategy (Išgum et al., 2009), which

was shown to yield a better segmentation accuracy than a majority voting strategy. In

this case, I choose to favor the atlases which locally agree better with the cartilage

likelihoods p(f(x)|FC) and p(f(x)|TC) from the probabilistic classification in section 3.4.

The spatially varying weighting functions λFC
i for the femoral cartilage and λTC

i for the

tibial cartilage are calculated as

λFC
i (x) =

1

α |TFB
i ◦ SFC

i − p(f(x)|FC)|+ ε
,

λTC
i (x) =

1

α |TTB
i ◦ STC

i − p(f(x)|TC)|+ ε
,

(3.9)

followed by a small amount of diffusion smoothing. I choose α = 0.2 and ε = 0.001 in
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my implementation. The spatial prior for each cartilage is then the weighted average of

the propagated atlas cartilage segmentations

p(FC) =
N∑
i=1

λFC
i∑N

i=1 λ
FC
i

(
TFB
i ◦ SFC

i

)
,

p(TC) =
N∑
i=1

λTC
i∑N

i=1 λ
TC
i

(
TTB
i ◦ STC

i

)
.

(3.10)

Recently, non-local patch-based label fusion techniques have been proposed by Coupé

et al. (2011) and Rousseau et al. (2011). Instead of deciding the label from the same voxel

location in each propagated atlas, these methods obtain a label using the surrounding

patches in a predefined neighborhood across the training atlases. Weights are assigned

to these patches according to the distances between the target patch and the selected

patches. This allows local robustness to registration error.

Let pFC(x) and pTC(x), respectively, denote the spatial prior of femoral cartilage (i.e.,

p(FC)) and tibial cartilage, (i.e. p(TC)) at voxel x. I calculate the probabilities by

weighted averages of the propagated labels in a pre-specified search neighborhood N (x)

across N warped atlases. The weights are determined by local patch similarities. For

simplicity, let S̃FC
i = TFB

i ◦ SFC
i and ĨFC

i = TFB
i ◦ Ii. Here, i is the atlas index, running

from 1 to N , SFC
i refers to the femoral cartilage segmentation of the i-th atlas, and Ii is

the i-th atlas appearance. For the femoral cartilage, the probability is computed as

pFC(x) =

N∑
i=1

∑
y∈N (x)

wFC(x,y)S̃FC
i (y)

N∑
i=1

∑
y∈N (x)

wFC(x,y)

, (3.11)

wFC(x,y) = exp


∑

x′∈P(x) y′∈P(y)

(
I(x′)− ĨFC

i (y′)
)2

hFC(x)

 , (3.12)
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where x′ is a voxel in the patch P(x) centered at x (similarly y′ a voxel in the patch

P(y) centered at y) and hFC(x) is defined by

hFC(x) = min
1≤i≤N
y∈N (x)

∑
x′∈P(x)
y′∈P(y)

(
I(x′)− ĨFC

i (y′)
)2

+ ε. (3.13)

Substitute “FB” with “TB” and “FC” with “TC” in superscripts of the equations

above for the calculation of pTC(x).

The three label fusion strategies, namely majority voting, locally-weighted and non-

local patch-based fusion, are compared in chapter 4. The non-local patch-based method

is shown to result in the best average segmentation accuracy.

These spatial priors and the local likelihoods from section 3.4 are integrated into (3.4)

and the cartilage segmentation is obtained by optimizing the three-label segmentation

energy with anisotropic regularization (2.11).

3.7 Overall segmentation pipeline

The automatic cartilage segmentation requires expert segmentations of femur, tibia,

femoral and tibial cartilage on a set of training images. Given a query knee image, I first

correct the MRI bias field (Sled et al., 1998), scale image intensities to a common range,

and then perform edge-preserving smoothing using curvature flow (Sethian, 1999).

In the multi-atlas-based bone segmentation, the atlases are registered to the query

images with an affine transform followed by a B-spline transform based on mutual infor-

mation. I compute the average of the propagated atlas bone segmentations as the bone

spatial priors. The bone likelihoods are then calculated from the image intensities using

(3.2). The priors and the likelihoods are combined in (3.1) and then integrated in the

three-label segmentation (2.10), the global optimal solution of which produces the bone

segmentation.
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Once I have the bone segmentation, I perform the probabilistic classification (kNN

or SVM) of knee cartilage in the joint region. The spatial priors for the cartilage can

be obtained through registration of an average bone and cartilage atlas, which requires

only one registration, or through a multi-atlas registration of cartilage, which needs a

number of registrations. If a multi-atlas-based method is chosen, propagated atlas labels

are fused (using majority voting, locally-weighted or non-local patch-based label fusion)

to obtain the spatial priors. The normal direction n in (2.12) is computed by taking

the gradient of the diffusion smoothed three-label bone segmentation result within the

joint area. Finally, the local likelihoods and the spatial priors are integrated into the

three-label segmentation to generate the cartilage segmentation.

3.8 Conclusion

The major contribution of this chapter is the fully-automatic cartilage segmentation

method that incorporates local classification (from image appearance) and shape infor-

mation (from atlas registration) into the three-label segmentation framework discussed

in chapter 2.

I used a multi-atlas-based bone segmentation to guide the registration of a cartilage

atlas. I obtained cartilage segmentation using an average shape atlas or multiple atlases

with various label fusion techniques to obtain spatial cartilage priors within the three-

label segmentation framework, which incorporates anisotropic regularization to improve

segmentation performance (shown in chapter 4) for the thin femoral and tibial cartilage

layers.

The overall pipeline is fully-automatic (besides quality control), which enables the

method to be applied to large image databases. The robustness due to multi-atlas-based

strategies also makes the proposed method appropriate for large datasets.

The next chapter presents the validation result on two different large datasets, i.e.,
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the PLS dataset (Eckstein et al., 2008) and SKI10 dataset (Heimann et al., 2010), on

which I compare the proposed method to existing ones quantitatively.

The major drawback of the proposed method is a typical disadvantage of multi-

atlas-based methods, namely their high computational cost. To alleviate this problem,

atlas selection heuristics have been proposed. These heuristics select only a subset of

promising training subjects for atlas registration and label fusion (Aljabar et al., 2009).

Such a selection strategy can be integrated into the segmentation pipeline and is expected

to further improve segmentation performance. I will explore atlas selection for cartilage

segmentation in future work.
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CHAPTER 4: VALIDATION OF CARTILAGE SEGMENTATION

4.1 Introduction

This chapter presents the validations results of the proposed cartilage segmentation

method in chapter 3 on two datasets, PLS (Eckstein et al., 2008) and SKI10 (Heimann

et al., 2010).

The main validation is performed on the PLS dataset. I compare different atlas choices

for cartilage segmentation, namely average-shape-atlas and multi-atlas with various label

fusion strategies (majority voting, locally-weighted voting and patch-based label fusion).

I also compare the two probabilistic tissue classification, i.e., kNN and SVM. The impact

of isotropic and anisotropic regularization is also studied.

To compare to other existing methods quantitatively, I test the proposed method on

a publicly available dataset, SKI10.

4.2 Data description

The main dataset is the PLS dataset, containing 706 T1-weighted (3D oblique coronal

spoiled gradient recalled) images for 155 subjects, imaged at baseline, 3, 6, 12, and 24

months at a resolution of 1.00×0.31×0.31 mm3. Some subjects have missing scans. The

Kellgren-Lawrence grades (KLG) (Kellgren and Lawrence, 1957) were determined for all

subjects from the baseline scans, classifying 82 as normal control subjects (KLG0), 40 as

KLG2 and 33 as KLG3.

Expert cartilage segmentations are available for all images. The femoral cartilage

segmentation is drawn only on the weight-bearing part while the tibial cartilage segmen-

tation covers the entire region. Therefore, one should expect partial femoral cartilage



Table 4.1: Statistics (mean and standard deviation (STD)) of DSC of bone segmentation
on 18 test images with and without spatial regularization.

g = 0 g = 0.5 g = 1.0

Femur
Mean 0.969 0.970 0.969
STD 0.011 0.011 0.011

Tibia
Mean 0.966 0.967 0.966
STD 0.013 0.012 0.012

segmentations and full tibial cartilage segmentations. Expert bone segmentations are

available for the baselines of 18 subjects.

4.3 Bone validation

I validate the multi-atlas-based bone segmentation method in a leave-one-out manner.

Each test image is segmented using the other 17 images as atlases. The segmentation

accuracy is evaluated with respect to the expert segmentations using the Dice similarity

coefficient (DSC) (Dice, 1945) defined as

DSC =
2 |S ∩R|
|S|+ |R| , (4.1)

where S and R represent two segmentations. Table 4.1 and Fig. 4.1 show the validation

results of the bone segmentation with and without regularization (corresponding to g > 0

and g = 0 in model (2.10) respectively). No significant improvement is observed by

introducing spatial regularization to the bone segmentation, because the multi-atlas-

based spatial prior nicely locates the bones.

As can be seen from Fig. 4.2, the multi-atlas-based prior captures the bone very well

and our segmentation result is very close to the expert segmentation especially in the

joint region. I use the bone segmentation with spatial regularization g = 0.5 to compute

the cartilage segmentations for the remaining experiments in this section.
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(a) Femur (b) Tibia

Figure 4.1: Box plots of DSC for femur and tibia with different amount of regularization
on 18 test images. The center red line is the median and the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually.

(a) Original image (b) Multi-atlas-based spatial prior

(c) Segmentation result (d) Expert segmentation

Figure 4.2: Bone segmentation of one example slice in coronal view.
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(a) Binary segmentation (b) Three-label segmentation (c) Expert segmentation

Figure 4.3: Example comparing binary and three-label segmentation methods. (a) is the
binary segmentation result. (b) is the three-label segmentation result in which femoral
and tibial cartilage have distinct labels. (c) is the expert segmentation. In (a), as the red
circle indicates, the lateral (right) femoral cartilage and tibial cartilage are segmented as
one object and the joint boundary is not well captured. The three-label segmentation
(b) keeps the femoral and tibial cartilage separate and is therefore superior to binary
segmentation.

4.4 Cartilage validation

Figure 4.3 illustrates the beneficial behavior of the three-label segmentation method

compared to a binary segmentation which treats femoral and tibial cartilage as one object.

While the three-label method is able to keep femoral and tibial cartilage separated due

to the joint estimation of the segmentation, the binary segmentation approach cannot

guarantee this separation.

I build an average shape atlas of bone and cartilage from the expert bone and carti-

lage segmentations of the 18 images. Figure 4.4 shows an example slice of the average

probabilistic bone and cartilage atlas and the 3-dimensional rendering. The cartilage is

well located on top of the bone.

In the average-shape-atlas-based cartilage segmentation, I use the atlas built from 18

images (each from a different subject) to segment cartilage of the remaining 137 subjects.

Within the 18 subjects, I test in a leave-one-out manner where each subject is segmented

using the atlas built from the other 17 subjects. The same strategy is applied in the multi-

atlas-based cartilage segmentation: I use all 18 images as atlases to segment cartilage

of the other 137 subjects, The 18 subjects are tested in a leave-one-out fashion. Each

subject is segmented using the other 17 images as atlases. The training images for kNN

55



(a) (b)

Figure 4.4: Average atlas built from 18 images. (a) is a slice of the probabilistic atlas of
femoral and tibial bone and cartilage (red) overlaid on the bone in coronal view. Satu-
rated red denotes high probability. (b) is a 3-dimensional rendering of the thresholded
atlas of femur (green), tibia (purple), femoral (red) and tibial cartilage (yellow).

and SVM are chosen in the same way.

In the non-local patch-based label fusion, I upsample the images to approximately

isotropic resolution and search for similar 5×5×5 patches within a 9×9×9 neighborhood.

Figures 4.6 and 4.7 compare the two local classification methods, i.e., kNN versus

SVM, for the femoral and the tibial cartilage, under different atlas choices with varying

amount of isotropic spatial regularizations. Note that the femoral cartilage is only seg-

mented in the weight-bearing region and hence the DSC for the femoral cartilage is more

sensitive to mis-segmentations than the tibial cartilage. For the femoral cartilage, kNN

and SVM generate similar mean DSC. The SVM improves the mean DSC by a consid-

erable amount over the kNN for the tibial cartilage. A possible reason for the similar

performance for the femoral cartilage might be that the main disagreement between the

automatic and the expert segmentation is along the anterior-posterior direction delineat-

ing the weight-bearing region, which may overwhelm any improvement obtained by SVM

over kNN. SVM performs better than kNN for tibial cartilage which is segmented in its

entirety.
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(a) Original image (b) Multi-atlas-based spatial prior

(c) Segmentation result (d) Expert segmentation

Figure 4.5: Cartilage segmentation of one example slice in coronal view. Only joint region
is shown.
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(a) Average-atlas (b) Multi-atlas with
majority voting
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(c) Multi-atlas with (d) Multi-atlas with
locally-weighted fusion non-local patch-based fusion

Figure 4.6: Comparison of kNN and SVM based on the mean DSC (ordinate) with varying
amount of isotropic regularization (abscissa g) under different atlas choices for the femoral
cartilage. The black downarrows (⇓) indicate statistically significant differences between
the two methods at corresponding spatial regularization settings via paired t-tests at a
significance level of 0.05.
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(a) Average-atlas (b) Multi-atlas with
majority voting
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(c) Multi-atlas with (d) Multi-atlas with
locally-weighted fusion non-local patch-based fusion

Figure 4.7: Comparison of kNN and SVM based on the mean DSC (ordinate) with
varying amount of isotropic regularization (abscissa g) under different atlas choices for
the tibial cartilage. The black downarrows (⇓) indicate statistically significant superiority
of SVM to kNN at corresponding spatial regularization settings via paired t-tests at a
significance level of 0.05.
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(a) Femoral cartilage kNN (b) Femoral cartilage SVM
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(a) Tibial cartilage kNN (b) Tibial cartilage SVM

Figure 4.8: Comparisons of mean DSC (ordinate) from different atlas choices for different
amount of isotropic regularization (abscissa g). AA average-shape-atlas. MV multi-
atlas with majority voting. LW multi-atlas with locally-weighted fusion. PB multi-atlas
with non-local patch-based fusion. The black downarrows (⇓) indicate statistically signif-
icant superiority of PB to the other three methods at corresponding spatial regularization
settings via paired t-tests at a significance level of 0.05.

Figure 4.8 compares the different atlas choices, including the average-shape atlas,

multiple atlases with majority voting, locally-weighted and non-local patch-based label

fusion, under the different parameter settings of isotropic regularization. The former

three yield very similar mean DSC. Non-local patch-based label fusion outperforms the

other three considerably. Figure 4.9 compare the four atlas choices under the different pa-

rameter settings of anisotropic regularization. Again, non-local patch-based label fusion

outperforms the other three considerably.

Figure 4.10 shows the advantage of anisotropic regularization. The isotropic regular-

ization has a tendency to cut long and thin objects short as shown in Fig. 4.10 (a) at
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Figure 4.9: Comparisons of mean DSC (ordinate) from different atlas choices for different
amount of anisotropic regularization (abscissa g). The parameter α controlling the
anisotropy is set to be 0.2. AA average-shape-atlas. MV multi-atlas with majority voting.
LW multi-atlas with locally-weighted fusion. PB multi-atlas with non-local patch-based
fusion. The black downarrows (⇓) indicate statistically significant superiority of PB to
the other three methods at corresponding spatial regularization settings via paired t-tests
at a significance level of 0.05.
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(a) Isotropic (b) Anisotropic (c) Expert segmentation

Figure 4.10: Improvement by anisotropic regularization. (a) uses isotropic regularization
and misses circled region. (b) uses anisotropic regularization and captures the missing
region in (a). (c) is the expert segmentation.
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Figure 4.11: Change of mean DSC for femoral and tibial cartilage with isotropic and
anisotropic regularization over the amount of regularization g (abscissa). The parameter
α is set to be 0.2 for all anisotropic tests. All tests use SVM and non-local patch-
based label fusion. The black downarrows (⇓) indicate statistically significant differences
between the two methods at corresponding spatial regularization settings via paired t-
tests at a significance level of 0.05.

the medial femoral cartilage. Anisotropic regularization, on the other hand, avoids this

problem (see Fig. 4.10 (b)) resulting in a better segmentation of the medial femoral carti-

lage. Besides avoiding unrealistic segmentation results, anisotropic regularization is also

less sensitive to parameter settings than isotropic regularization. This is illustrated in

Fig. 4.11 (a) and (b). Note that the anisotropic regularizer is parametrized in such a way

that its regularization is reduced in the normal direction, but equal to the isotropic regu-

larization in the plane orthogonal to the normal and the results are therefore comparable

(see Fig. 2.4). The faster drop-off in the isotropic case indicates a stronger dependency

on the parameter settings for isotropic regularization.

To further illustrate segmentation behavior, I show the box plots of the DSC for
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Figure 4.12: Boxplots of DSC for different KLG. We choose the best strategy combina-
tion, SVM and non-local patch-based label fusion with an anisotropic regularization with
g = 1.4 and α = 0.2.

different progression levels, i.e., KLG for femoral and tibial cartilage in Fig. 4.12. As

expected, a slight deterioration is observed in segmentation accuracy for larger KLG as

it is more challenging to segment pathological knee cartilage.

Figure 4.13 shows scatter plots of segmentation volumes of the proposed method

versus the expert segmentation. The correlation between the volume measured from

the expert segmentation and the automatic algorithm achieves a Pearson’s correlation

coefficient of 0.77 for all subjects (KLG0: 0.85, KLG2: 0.68, KLG3: 0.74) for the femoral

cartilage. For the tibial cartilage, the Pearson’s correlation coefficient is 0.87 for all

subjects (KLG0: 0.89, KLG2: 0.80, KLG3: 0.89).

The local cartilage thickness is computed from the cartilage segmentation using a

Laplace-equation approach (Yezzi and Prince, 2003). I compute the correlation coeffi-

cient of local thickness maps from the expert and the proposed segmentations for each

image. Figure 4.14 shows box plots of Pearson’s correlation coefficients for different KLG.

Thicknesses of the automatic and the expert segmentations are strongly correlated. Note

that correlations for femoral cartilage with respect to volume and thickness are generally

lower than for the tibial cartilage due to the fact that only the weight-bearing region of

the femoral cartilage is being segmented.
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Table 4.2: Statistics summary (mean, median and standard deviation) of DSC under
the best strategy combination: SVM and non-local patch-based label fusion with an
anisotropic regularization with g = 1.4 and α = 0.2 from the PLS dataset. FC: femoral
cartilage, TC: tibial cartilage.

DSC Sensitivity Specificity
Mean Median STD Mean Median STD Mean Median STD

FC 76.0% 76.8% 4.8% 85.3% 86.7% 7.2% 99.8% 99.8% 0.05%
TC 84.1% 84.7% 3.7% 89.4% 89.9% 4.1% 99.8% 99.8% 0.07%
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Figure 4.13: Scatter plots of segmentation volumes (number of pixels). The best strategy
combination is used, SVM and non-local patch-based label fusion with an anisotropic
regularization with g = 1.4 and α = 0.2.
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Figure 4.14: Boxplots of Pearson’s correlation coefficients of local cartilage thickness for
different KLG. The best strategy combination is used, SVM and non-local patch-based
label fusion with an anisotropic regularization with g = 1.4 and α = 0.2.
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4.5 Comparison to other methods

I quantitatively compare methods based on the SKI10 dataset and qualitatively dis-

cuss methods which have so far not been tested on SKI10.

4.5.1 Comparisons based on the SKI10 dataset

To compare to other algorithms I use the data from the cartilage segmentation chal-

lenge SKI10 (Heimann et al., 2010). I randomly pick 15 images from the provided 60

training images as atlases to limit computational cost (in principle all 60 images could

be used as atlases). SKI10 uses a combined score based on volume difference and volume

overlap error for cartilage and bone to score different methods. At time of writing, SKI10

included results for 16 different methods. I restrict myself to comparisons between the

top 8 methods. The proposed method ranks 5/16 overall. However, as I will discuss

below the proposed method performs as well as the top method on volume overlap error

for cartilage segmentation (or equivalently Dice similarity coefficient) which as I argue is

the most important of the performance measures. For simplicity I denote the methods

as Rank 1 to Rank 8 to simplify readability. Tables 4.3 and 4.4 contains references and

names of the methods as available.

Note that the SKI10 dataset is very challenging as its data was collected from pre-

surgery cases, which exhibit severe cartilage damage. It should therefore be regarded as

complementing the OAI and the PLS data for validation which cover a much broader

range of cartilage degeneration and damage. In particular, the performance of an algo-

rithm on the PLS or OAI data may be more informative for future clinical drug trials

aimed at showing small changes in cartilage in relation to therapy.

Figure 4.15 shows different measures for femoral and tibial cartilage from the top 8

methods. The volumetric difference and volumetric overlap error (VOE) are defined as
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follows, given a segmentation S and a reference segmentation R.

VOE = 100

(
1− |S ∩R||S ∪R|

)
, (4.2)

VD = 100
|S| − |R|
|R| . (4.3)

The challenge defined a scoring system based on inter-observer variations of VD and

VOE. On a range from 0 to 100 (meaning a perfect segmentation), a second rater’s

outcome corresponds to 75, a result with error twice as high gets 50 and so on. The Dice

coefficient can be computed from the VOE as follows

DSC =
200− 2× VOE

200− VOE
. (4.4)

The proposed method achieves excellent performance on VOE and DSC. The VD is best

at zero: the proposed method performs well on the femoral cartilage but not as well

on the tibial cartilage compared to other methods. Note that a low VD, which only

compares the segmentation volumes, may not indicate a good segmentation since a good

score may be achieved for a similar volume at incorrect locations. As VOE and DSC

measure local differences I regard them as more informative than VD for the assessment

of cartilage segmentation differences.

Table 4.3 compares the proposed method to other methods based on the different

SKI10 validation measures. Specifically, I test if scores of competing methods are signif-

icantly better than for our method.

The proposed method achieves statistically significantly better accuracy than most

of the other methods regarding VOE and DSC before and after multiple comparison

correction. Table 4.4 shows that the proposed method has the second best DSC val-

ues for femoral and tibial cartilage, which are only marginally lower than for the first
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Figure 4.15: Box plots of segmentation measures for femoral and tibial cartilage from top
8 ranking methods on SKI10 challenge. The center red line is the median and the edges
of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually.
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Table 4.3: Results of statistical tests (paired t tests for score, VOE and DSC, Wilcoxon
signed-rank tests for VD) between different methods. The proposed method is compared
to the other top ranking methods in terms of different measures. Symbol “+” denotes
statistically significant superiority of our method; “−” denotes inferiority; “NS” denotes a
statistically insignificant difference (p > 0.05). Each table entry consists of two symbols,
before and after the correction for multiple comparisons. Rank 7 was also submitted
by the author but using a slightly different combination, i.e., probabilistic kNN and
locally-weighted label fusion.

Rank Team
Femoral cartilage

Score VD VOE DSC
1 Imorphics (Vincent et al., 2010) NS/NS +/+ NS/NS NS/NS
2 ZIB (Seim et al., 2010) NS/NS +/NS +/NS +/NS
3 UPMC IBML NS/NS +/+ +/NS +/NS
4 SNU SPL NS/NS NS/NS +/+ +/+
6 UIiibiKnee (Yin et al., 2010a) NS/NS −/− +/+ +/+
7 shan unc NS/NS +/+ +/+ +/+
8 BioMedIA (Wang et al., 2013) NS/NS +/+ +/+ +/+

Rank Team
Tibial cartilage

Score VD VOE DSC
1 Imorphics (Vincent et al., 2010) NS/NS −/− NS/NS NS/NS
2 ZIB (Seim et al., 2010) NS/NS −/− NS/NS NS/NS
3 UPMC IBML NS/NS −/− +/+ +/+
4 SNU SPL NS/NS NS/NS +/+ +/+
6 UIiibiKnee (Yin et al., 2010a) NS/NS −/− +/+ +/+
7 shan unc NS/NS −/− +/+ +/+
8 BioMedIA (Wang et al., 2013) NS/NS −/− +/+ +/+
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Table 4.4: Statistics summary (mean, median and standard deviation) of DSC from the
top ranking methods. Rank 7 was also submitted by the author but using a different
combination, i.e., probabilistic kNN and locally-weighted label fusion.

Rank Team
Femoral cartilage

Mean Median STD
1 Imorphics (Vincent et al., 2010) 0.861 0.869 0.065
2 ZIB (Seim et al., 2010) 0.845 0.856 0.058
3 UPMC IBML 0.836 0.838 0.028
4 SNU SPL 0.821 0.838 0.059
5 shan unc (proposed) 0.856 0.862 0.057
6 UIiibiKnee (Yin et al., 2010a) 0.824 0.842 0.067
7 shan unc 0.828 0.836 0.060
8 BioMedIA (Wang et al., 2013) 0.840 0.854 0.062

Rank Team
Tibial cartilage

Mean Median STD
1 Imorphics (Vincent et al., 2010) 0.865 0.888 0.054
2 ZIB (Seim et al., 2010) 0.850 0.858 0.049
3 UPMC IBML 0.805 0.807 0.057
4 SNU SPL 0.824 0.841 0.058
5 shan unc (proposed) 0.859 0.861 0.047
6 UIiibiKnee (Yin et al., 2010a) 0.825 0.834 0.056
7 shan unc 0.820 0.826 0.051
8 BioMedIA (Wang et al., 2013) 0.836 0.841 0.048
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ranked method. In particular, one does not observe statistically significant performance

differences in VOE and DSC for femoral and tibial cartilage with respect to the top two

ranked methods after correction for multiple comparisons. Before multiple comparison

correction also no statistically significant differences were found expect for an improved

performance of the proposed method for femoral cartilage segmentation with respect

to the second ranked method by Seim et al. (2010). This suggests that the proposed

method can be regarded as one of the top-performing methods for femoral and cartilage

segmentation on the SKI10 dataset.

Interestingly, the top-performing method is based on an active appearance model (Vin-

cent et al., 2010). However, this puts the method at an advantage for producing seg-

mentations which are within the trained shape and appearance spaces. Variation outside

these spaces cannot be properly captured. The proposed method can be regarded as

softly constraining the space of plausible segmentations through the use of multiple at-

lases and non-local patch-based label fusion. However, given that atlas information is

only included as a prior into the overall segmentation method, the proposed method

remains flexible enough to also capture cartilage variations not strictly contained in the

atlas set.

Note that the SKI10 (Heimann et al., 2010) images were acquired for knee surgery

planning and therefore most images exhibit serious cartilage loss. As the cartilage seg-

mentations for SKI10 were performed semi-automatically, they mostly capture cartilage

well, but occasionally tend towards over-segmentation at pathological regions; e.g., seg-

menting across regions of total cartilage loss or segmenting osteophytes. Figure 4.16

shows an example illustrating total cartilage loss and the challenge to define a reliable

gold standard segmentation.
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(a) Original image (b) Automatic segmentation (c) Expert segmentation

Figure 4.16: An example slice from SKI10 training dataset. (a) is the original image. (b)
and (c) are automatic and expert segmentations, respectively. Femur: dark blue, tibia:
light grey, femoral cartilage: pink, tibial cartilage: light blue. Yellow contour: validation
region for the femoral cartilage. Green contour: validation for the tibial cartilage. Red
contour: validation region for both cartilage. A cartilage lesion is present in the femoral
cartilage shown in the weight-bearing region (touching region) in the original image. The
proposed segmentation successfully delineates it, but the expert segmentation fails to do
so.
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4.5.2 Qualitative comparison to other methods

The methods that have not been tested on SKI10 (Heimann et al., 2010) dataset

are not directly comparable to our method because of different datasets. Note that the

proposed method compares favorably to other methods, however, none of the competing

methods were validated on datasets as large as the dataset I test on (with more than

700 images for the PLS data alone). For example, Folkesson et al. (2007) tested on 139

images, (Fripp et al., 2010) 20 images, Tamez-Peña et al. (2012) used 12 images and Yin

et al. (2010b) 60 images. Hence, my validation dataset is an order of magnitude larger

than for most other existing studies.

4.6 Conclusion

The method proposed in chapter 3 is robust, because multi-atlas-based methods can

overcome occasional registration failures. This is a critical aspect when applying the

approach to larger datasets, such as the OAI dataset.

The contribution of this chapter is the extensive validation of the proposed cartilage

segmentation method on the PLS and the SKI10 dataset. The PLS dataset contains 706

images from 155 subjects. It is the largest dataset (an order of magnitude larger than

most exciting studies) that has ever been validated on in literature.

It can be concluded that best segmentation strategy (from the choices mentioned

in this chapter) is 1) multi-atlas-based segmentation with patch-based label fusion for

spatial prior, 2) SVM for local likelihood and 3) three-label segmentation with anisotropic

regularization.

I also demonstrated that the proposed segmentation strategy performs as well as the

top-ranking methods on the SKI10 dataset.
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CHAPTER 5: LONGITUDINAL THREE-LABEL CARTILAGE
SEGMENTATION

5.1 Introduction

Since subtle changes of cartilage might be indicative of early OA, it is desirable to

study longitudinal cartilage changes using a temporally-consistent segmentation which

can mitigate image noise effects. However, the methods presented in chapter 3 treat

each image volume separately without exploring the temporal consistency within the

same subject. For brain segmentation, Xue et al. (2006) proposed a longitudinal segmen-

tation method by adding a temporal consistency constraint term to a fuzzy clustering

segmentation.

In this chapter, I propose a novel general longitudinal three-label segmentation ap-

proach and apply it to the cartilage segmentation problem. The longitudinal three-label

segmentation is an extension of segmentation methods (2.10 and 2.11) presented in chap-

ter 2 and is also formulated as a convex optimization problem. A temporal consistency

term is added to the existing three-label segmentation (2.10 and 2.11). I make use of

temporally-independent bone and cartilage segmentations to transform the longitudinal

image data from native image space to a common longitudinal image space for each

subject.

The contributions of this chapter include a novel general longitudinal three-label seg-

mentation method, the application of the proposed method to achieve a fully automatic

longitudinal cartilage segmentation and the evaluation of longitudinal segmentation on

a sizable longitudinal dataset consisting of more than 700 images against temporally-

independent segmentation.



5.2 Longitudinal three-label segmentation

Rather than treating each image separately, one can make use of the temporal consis-

tency of longitudinal image data from the same subject to improve the segmentation. I

propose a novel longitudinal three-label segmentation method to mitigate possible noise

effect and encourage segmentation consistency across time points. The method is general

and capable of solving other segmentation problems with two objects.

Assuming the longitudinal image data for a given subject has been registered into a

common space, I formulate the longitudinal three-label segmentation energy as

E(u) =

∫
D
‖G∇xu‖+ c |∇lu|+ h |∇tu| dxdldt, D = Ω× L×T

subject to u ∈ [0, 1], u(x, 0, t) = 0, u(x, 3, t) = 1,

(5.1)

where T is the time domain; ∇tu is the gradient in time dimension, ∇tu = ∂u/∂t; h > 0

controls the temporal regularization. Matrix G determines the spatial regularization as

defined in (2.12). This is a convex formulation and yields a global optimal solution. As

the cartilage is a thin structure this energy (defined over a 5-dimensional space) can

still be efficiently optimized. Figure 5.1 demonstrates the benefit of the longitudinal

segmentation which is more resistant to image noise than the temporally-independent

segmentation.

5.2.1 Numerical solution

This section discusses an iterative scheme to optimize (5.1). I introduce three dual

variables p (vector field), q (scalar field) and s (scalar field) and rewrite (5.1) as

E(u,p, q, s) =

∫
D
〈p,G∇xu〉+ q∇lu+ s∇tu dxdldt,

subject to ‖p‖ ≤ 1, |q| ≤ c, |s| ≤ h,

(5.2)
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(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 0 (e) t = 1 (f) t = 2

Figure 5.1: Synthetic example demonstrating the benefit of longitudinal segmentation.
(a), (b) and (c) are longitudinal images and (b) has image noise. (d), (e) and (f) are
the corresponding segmentation from the longitudinal segmentation model (5.1). The
segmentation result is resistant to image noise (red object) and still captures the atrophy
of the blue object.

in which 〈·, ·〉 represents inner products. Minimizing (5.1) with respect to u is equivalent

to minimizing (5.2) with respect to u and maximizing it with respect to p, q and s.

Taking the variation yields

δE(u,p, q; δu, δp, δq, δs) (5.3)

=
∂

∂ε

∫
Ω

〈p + εδp,G∇xu+ εG∇xδu〉+ (q + εδq)(∇lu+ ε∇lδu)

+ (s+ εδs)(∇tu+ ε∇tδu) dxdldt (5.4)

=

∫
Ω

〈p,G∇xδu〉+ 〈δp,G∇xu〉+ q∇lδu+ δq∇lu+ s∇tδu+ δs∇tu dxdldt (5.5)

=

∫
Ω

(− div(Gp)−∇lq −∇ts)δu+ 〈δp,G∇xu〉+ δq∇lu+ δs∇tu dxdldt (5.6)
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The gradient descent/ascent update scheme of (5.2) is

pt = −G∇xu, ‖p‖ ≤ 1 (5.7)

qt = −∇lu, |q| ≤ c (5.8)

st = −∇tu, |s| ≤ h (5.9)

ut = − divx(Gp)−∇lq −∇ts (5.10)

The iterative scheme will lead to a global optimum upon convergence (Appleton and

Talbot, 2006) because of the convexity of (5.1). Let S and T denote the source and sink

sets: S = Ω×{0}×T, T = Ω×{3}×T. The region without sources or sinks is denoted

as
◦
D = D \ (S ∪ T ) = Ω× {1, 2} ×T. The dual energy is

E∗(u) =

∫
S

div(Gp) +∇lq +∇ts dxdldt

+

∫
◦
D

min(0, div(Gp) +∇lq +∇ts) dxdldt.

(5.11)

The iterations are terminated when the duality gap between the primal energy (5.1)

and the dual energy (5.11) is sufficiently small. After convergence, the solution u is

essentially binary and monotonically increasing. The three-label segmentation can be

easily recovered from the discontinuity set of u. It has been shown that thresholding of

the essentially binary solution u of (5.1) yields to a equally globally optimal solution to

the original discrete problem(Zach et al., 2009).

5.3 Registration of longitudinal images

The longitudinal segmentation model (5.1) requires registered longitudinal data. How-

ever the images at different time points are not aligned. Therefore one needs to register
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the longitudinal images of a given subject into a common space (longitudinal space) be-

fore performing longitudinal segmentation. Here I use the temporally-independent bone

and cartilage segmentation discussed in chapter 3.

Specifically I use independent rigid transformations based on the femur and tibia

segmentations to initialize rigid transformations between the temporally-independent

femoral and tibial cartilage segmentations (for improved registration robustness). The

labeling cost for (5.1) can then be computed as

c(x, l, t) = −log(pt(l|f(x))) = −log
(
pt(f(x)|l) · pt(l)

pt(f(x))

)
, (5.12)

where the subscript t represents the likelihoods at the t-th time point which are propa-

gated from the native image space:

pt(f(x)|FC) = RFC
t ◦RFB

t ◦ p(f(x)|FC),

pt(f(x)|TC) = RTC
t ◦RTB

t ◦ p(f(x)|TC),

pt(FC) = RFC
t ◦RFB

t ◦ p(FC),

pt(TC) = RTC
t ◦RTB

t ◦ p(TC).

(5.13)

Here, Rt denotes a rigid transform for the t-th time point. Superscripts specify the

registration (“FC”: femoral cartilage, “TC”: tibial cartilage, “FB”: femoral bone, “TB”:

tibial bone). Local classification likelihoods p(f(x)|FC) and p(f(x)|TC) are computed

from the trained SVM classifier as in chapter 3. Spatial priors p(FC) and p(FC) are

obtained from patch-based label fusion as discussed in chapter 3.

The choice of the common space is important. To avoid overlap of femoral and tibial

cartilage after registration, I choose the first time-point (baseline image) as the common

space because it is expected to have the thickest cartilage. The longitudinal segmentation

of each cartilage can then be obtained by optimizing (5.1) with labeling cost defined by
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(5.12).

5.4 Experimental results

This section compares the proposed longitudinal segmentation against the temporally-

independent segmentation presented in chapter 3 on the PLS dataset, which is described

in section 4.2. The SKI10 dataset is not a longitudinal dataset and can therefore not be

used for validation.

Expert cartilage segmentations are available for all images in the native image space.

The femoral cartilage segmentation is drawn only on the weight-bearing part while the

tibial cartilage segmentation covers the entire region.

As in chapter 3, I use images from the baseline images from 18 subjects as training

atlases (for multi-atlas registration and local classification) to segment the remaining 137

subjects. Within these 18 subjects, each subject is tested using the other 17 images for

training.

Figure 5.2 compares the mean Dice similarity coefficient (DSC) of the longitudinal

segmentation of each cartilage with increasing amount of temporal regularization. The

DSC is computed in both the longitudinal image space and the native image space.

The mean DSC increases with an appropriate amount of temporal regularization, which

demonstrates the advantage of the longitudinal segmentation model. The difference of

the mean DSC in the two spaces is due to the rigid transformations and resamplings.

The resampling of probabilities (p(f(x)|FC), p(f(x)|TC), p(FC), and p(FC)) dimin-

ishes sharp features and thus has a smoothing effect. Less spatial regularization is needed

for the longitudinal segmentation to generate satisfactory results than the temporally-

independent segmentation. It was concluded in chapter 4 that g = 1.4 and α = 0.2

yields best segmentation accuracy. For the longitudinal segmentation, using g = 0.2 and

α = 0.2 results in the best segmentation accuracy.
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Figure 5.2: Change of mean DSC for femoral and tibial cartilage over the amount of
temporal regularization h (abscissa). The spatial regularization control g is set to be 0.2
and the anisotropy parameter α is set to be 0.2. The computation of DSC in the longitu-
dinal image space is done by transforming the expert segmentations to the longitudinal
image space. The DSC is also computed in the native image space by transforming the
longitudinal segmentations back into the native image space. Improvement of the mean
DSC by including temporal regularization is observed in both spaces. The red downar-
rows (⇓) indicate statistically significant differences between the current and the previous
temporal regularization settings via paired t-tests at a significance level of 0.05.
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Table 5.1 compares the validation statistics in the native image space from the lon-

gitudinal segmentation and temporally-independent segmentation under their own best

parameter settings. Since there is only one expert segmentation which is drawn timepoint-

by-timepoint (and therefore not expected to be longitudinally consistent) one cannot

directly assess improvements in segmentation accuracy of the longitudinal method with

respect to the individual segmentations. Table 5.1 indicates that the temporal smooth-

ing inherent in the longitudinal model does not greatly affect the result with respect to

temporally-independent manual segmentations. However, more temporary consistency is

more biologically plausible, which is achieved by the longitudinal segmentation.

To evaluate the improvement of temporal consistency, I use the weighted sum of

number of label changes over time as the temporal consistency measure (TCM) defined

by

TCM =
n−1∑
i=1

∑
x∈Ω

|Si+1(x)− Si(x)|
ti+1 − ti

, (5.14)

where n is number of time points (n > 1), x is a voxel in the image domain Ω, Si is the

segmentation and ti is the time at i-th time point. The weighting is based on the as-

sumption that label changes are more likely to occur over a longer time period. For those

patients who have only one scan available (n = 1), the measure is set to be 0. I com-

pare the TCM of temporally-independent, longitudinal and expert segmentations of the

femoral cartilage for all the subjects in Fig. 5.3. The longitudinal segmentation achieves

the best temporal consistency. Note that the expert segmentations are drawn indepen-

dently in each native image space which explains the high TCM. The same comparison

result is also observed for the tibial cartilage.

5.5 Conclusion

In this chapter, a novel longitudinal three-label segmentation approach is proposed

to encourage the temporal consistency of the segmentation of longitudinal data. The
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Table 5.1: Compare longitudinal and temporally-independent segmentation in terms of
mean, median and standard deviation of DSC, sensitivity and specificity computed in
the native image space.FC: Femoral cartilage. TC: Tibial cartilage. Lon: Longitudi-
nal segmentation with g = 0.2, α = 0.2 and h = 3.0. Ind: Temporally-independent
segmentation with g = 1.4 and α = 0.2.

DSC Sensitivity Specificity
Mean Median STD Mean Median STD Mean Median STD

FC
Lon 76.1% 76.7% 4.6% 84.9% 86.1% 6.7% 99.8% 99.8% 0.05%
Ind 76.0% 76.8% 4.8% 85.3% 86.7% 7.2% 99.8% 99.8% 0.05%

TC
Lon 83.7% 84.5% 3.7% 89.1% 89.4% 3.9% 99.8% 99.8% 0.07%
Ind 84.1% 84.7% 3.7% 89.4% 89.9% 4.1% 99.8% 99.8% 0.07%
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Figure 5.3: Box plots of temporary consistency measure (TCM) of each cartilage from
expert, temporally-independent (g = 1.4, α = 0.2) and longitudinal (g = 0.2, α = 0.2,
h = 3.0) segmentations.
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approach is general and can be applied to other longitudinal segmentation problems with

two objects. I also propose a pipeline to register longitudinal knee images from native

image space to the common (longitudinal) space to establish correspondence across time

for each individual subject. Experimental results on cartilage segmentation demonstrate

the improvement in temporal consistency using the proposed longitudinal segmentation

against the temporally-independent segmentation.

In the next chapter, I will discuss statistical analysis of cartilage thickness given the

segmentations obtained from chapter 3 and 5.
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CHAPTER 6: LOCALIZED ANALYSIS OF LONGITUDINAL
CARTILAGE THICKNESS

6.1 Introduction

Statistical analysis of cartilage thickness changes faces two major challenges. The

first one is the lack of spatial correspondence across subjects and/or time. As cartilage

loss in OA may not be uniform throughout the cartilage (Biswal et al., 2002), advanced

statistical analysis methods are necessary to understand localized cartilage thinning.

However, the localized analysis requires establishing spatial correspondence across time

and subjects, which is challenging due to the small volume of cartilage in relation to the

rest of the knee. The second challenge is the spatial heterogeneity of cartilage progression

across subjects. This is caused by the fact that cartilage thinning may happen at different

locations in different subjects. Cartilage thinning at a particular location may only be

consistent for a subset of the full subject population. Thus, treating all OA subjects

equally and using all of them for standard statistical methods would be problematic.

Existing longitudinal OA studies often rely on subdivisions of the (manually seg-

mented) cartilage into corresponding regions (Wirth and Eckstein, 2008; Buck et al.,

2009) to avoid global cartilage measures without requiring registration. However, such

subdivisions are purely geometric and necessarily coarse. Local changes (that happen to

a smaller region than the size of a subregion) are weakened by averaging over a particu-

lar subregion and are difficult to capture. To fully understand the spatial pattern of OA

progression, the analysis of localized cartilage thickness changes is necessary.

To avoid the shortcomings of existing cartilage analysis methods, I propose (i) an

automatic analysis method establishing a common (atlas) spatial coordinate system for



cartilage analysis of the knee and (ii) a clustering-based statistical method to approach

the spatial heterogeneity across OA subjects. The proposed method is applied to the

PLS dataset.

6.2 Cross-sectional vs. longitudinal analysis1

Before presenting the proposed method for longitudinal cartilage analysis, let me first

discuss why longitudinal analysis is necessary in the first place for longitudinal datasets.

Cross-sectional studies collect observations at one time point or over a short time

period in a given population. In a longitudinal study, a single measurement is collected

repeatedly over time on each subject in the study. Because of the repeated observation

at the individual level, longitudinal studies have more power than cross-sectional studies.

Suppose a cross-sectional study involves people of different ages. One can only tell the

difference among differently aged subjects. With a longitudinal study, one will be able to

address the effects of aging on a single individual’s response. Suppose there are samples

of two groups, say men and women, in a cross-sectional study. One can describe the

difference in level between the two groups at the current time. With a longitudinal

study, analysts will additionally be able to describe the separate trends over time of each

group and a single individual’s trend.

The defining feature of longitudinal data is that multiple observations within subject

can be ordered across time. The temporal ordering of the measurement is important

because measurements closer in time within a subject are likely to be more similar than

observations further apart in time. A positive correlation between longitudinal measure-

ments is often expected. Ignoring the correlation can lead to biased inference of the

standard errors of the coefficients.

1Most of the analysis in this section are from http://ehs.sph.berkeley.edu/hubbard/longdata/

webfiles/Chapter_3_Feb_2006.pdf
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6.2.1 Cross-sectional analysis of longitudinal data

Applying cross-sectional data analysis methods, e.g., linear regression, results in incor-

rect estimation of variability. Suppose there are n subjects and subject i has mi observa-

tions. The random variable Yi,j denotes the response observed from subject i (1 ≤ i ≤ n)

at time tj (1 ≤ j ≤ mi). Let

Yi =


Yi,1

...

Yi,mi

 ,Y =


Y1

...

Yn

 ,Xi =


1 ti,1
...

...

1 ti,mi

 , and X =


X1

...

Xn

 . (6.1)

The ordinary linear regression finds the line that “best” fits the data by minimizing

the total amount of deviation

E(β) = ‖Y −Xβ‖2, (6.2)

with β = (β0, β1)T and β0, β1 are, respectively, the intercept and the slope of the fitted

line. Note that the residual sums of squares treats each observation equally, making

no distinction between longitudinal observations on the same individual from those on

different individuals. A closed-form solution (often referred as ordinary least square

estimator) of β can be calculated by minimizing (6.2)

β̂ = (XTX)−1XTY. (6.3)

Let us take a look at the expectation of the random vector β to see how it is affected
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by the correlation of the Yi,j’s.

E(β̂) = E
(
(XTX)−1XTY

)
= (XTX)−1XTE (Y)

= (XTX)−1XTXβ

= β.

(6.4)

One can see from the derivation above that the expectation of parameter β does not

depend on the covariance of the Yi,j’s. However, model (6.2) makes no distinction be-

tween changes in variable X that occur over longitudinal observations within the same

individual and changes of X across different individuals. To take advantage of the lon-

gitudinal structure of the data, one must properly parameterize the regression model to

separate out the longitudinal effects from those due to selection bias.

Let us also take a look at the variability of the least square estimator β̂.

var(β̂) = var
(
(XTX)−1XTY

)
= (XTX)−1XT var(Y)X(XTX)−1.

(6.5)

The covariance matrix of β̂ depends on the covariance matrix of Y. As (6.2) assumes all

observations are independent, var(Y) is a diagonal matrix. Taking var(Y) = σ2I results

in

var(β̂) = (XTX)−1XTσ2IX(XTX)−1

= σ2(XTX)−1.

(6.6)

If the assumption of independence is invalid (which is the case for longitudinal data),

the derivation above introduces bias into the estimation of the variability of β̂, translating

into incorrect inference.
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6.2.2 Linear mixed effects model for longitudinal data

The general form of linear mixed effects model can be expressed as

Yi = Xiβ + Zibi + ei for the ith subject, i = 1, . . . , n. (6.7)

Matrices Xi and Zi are design matrices for fixed effects and random effects, respectively.

Suppose Xi and Zi are the same.

Xi = Zi =


1 ti,1
...

...

1 ti,mi

 . (6.8)

Parameter β = (β0, β1)T characterizes the fixed effects, i.e., the systematic part of the

response. Parameter bi = (b0i, b1i)
T describes the random effects due to among-subject

variation. bi ∼ Nk(0,D) and D is a covariance matrix characterizing variation due to

among-subject sources, assumed the same for all subjects. The dimension of D depends

on the number of among-subject random effects in the model. Within-subject devia-

tions are characterized by vector ei ∼ Nmi
(0,Ri). Here, Ri is a mi × mi matrix that

characterizes variance and correlation due to within-subject sources.

With these assumptions, we have

E(Yi) = Xiβ

var(Yi) = ZiDZT
i + Ri = Σi

Yi ∼ Nni
(Xiβ,Σi)

(6.9)
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The maximum-likelihood estimator for β can be written as

β̂ =

(
n∑

i=1

XT
i Σ̂−1

i Xi

)−1 n∑
i=1

XT
i Σ̂−1

i Yi (6.10)

Note that this is not a closed-form solution since Σ̂−1
i is also unknown. This estimator is

often called the generalized least squares estimator of β. When the sample size n grows

infinitely large, we have

E(β̂) = E

( n∑
i=1

XT
i Σ̂−1

i Xi

)−1 n∑
i=1

XT
i Σ̂−1

i Yi

 ≈ β, (6.11)

and

var(β̂) ≈
(

n∑
i=1

XT
i Σ−1

i Xi

)−1

(6.12)

=
(
XTΣ−1X

)−1
, (6.13)

with

Σ =



Σ1 0 . . . 0

0 Σ2 . . . 0

...
...

...
...

0 0 . . . Σn


.

The generalized least square estimator is not numerically equivalent to the ordinary

least square estimator described in section 6.2.1. Therefore the cross-sectional analysis

produces wrong estimation of the covariance, which can be avoided by the linear mixed

effects model.
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6.3 Spatial correspondence of cartilage thickness

Existing methods partition the cartilage into several subregions, which is coarse and

arbitrary, to establish spatial correspondence across subjects and time. This section

presents an automatic method to establish a common (atlas) spatial coordinate system

for cartilage analysis of the knee.

Given an cartilage segmentation, local thickness is computed using a Laplace equa-

tion approach (Yezzi and Prince, 2003). Thickness measurements are performed in native

image space for expert manual segmentations and for the temporally-independent seg-

mentations. For the longitudinal segmentations, thickness is computed in the longitudinal

space, i.e., the space of the baseline image of a given subject.

The thicknesses are then mapped to a common atlas space. I use an affine followed

by a B- Spline transform based on the bone segmentations for each cartilage thickness

volume. I then project each thickness volume down to an axial slice by taking the median

thickness value along the axial direction (where thicknesses are approximately constant).

The thickness maps are then comparable across time-points and subjects.

Figure 6.1 illustrates the pipeline which takes the original 3D MR image and converts

to the 2D thickness map for each cartilage. Examples of thickness maps are shown in

Fig. 6.2.

6.4 Longitudinal analysis of localized cartilage thickness changes

The questions of interest in this chapter include i) if there is a significant difference

of baseline thickness between OA and normal control (NC) subjects, and ii) if there is a

significant difference of longitudinal thickness change between OA and NC subjects.

To answer these two questions, simply applying statistical models to all the subjects

would be problematic because that would treat all OA subjects equally and cartilage

thinning is a spatially heterogeneous process. Because of the fact that cartilage thinning
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(a) Femoral cartilage (b) Tibial cartilage

Figure 6.2: Examples of 2D cartilage thickness maps. M: medial; L: lateral; A: anterior;
P: posterior.

may happen to different locations for different subjects, some subjects exhibit similar

thinning patterns than other subjects. It is therefore sensible to cluster the OA subjects

into a set of groups. The subjects within the same group have similar thinning patterns.

In this section, I propose a clustering-based statistical method to approach the spatial

heterogeneity of cartilage loss.

Suppose there are n subjects and subject i has mi time points at {t1, . . . , tmi
}. Let

yi,j(x) denote the thickness of subject i (1 ≤ i ≤ n) at time point tj (1 ≤ j ≤ mi) and

pixel location x. Let us further define

Yi(x) =


yi,1(x)

...

yi,mi
(x)

 , and Xi =


1 ti,1
...

...

1 ti,mi

 . (6.14)

The delta function δi for subject i is defined as

δi =

 1 if subject i is NC, i.e., KLG= 0,

0 if subject i has OA, i.e., KLG> 0.
(6.15)

The following linear mixed model is applied at each pixel location x. Parameters

β0 and β1 are the intercept and the slope, respectively, of fixed effects for NC subjects,

and β2i and β3i are the intercept and the slope of random effects for an NC subject i.
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Parameters β4 and β5, respectively, model the difference of slope and intercept of fixed

effects between NC and OA subjects, and β6i and β7i describe the slope and the intercept

of random effects for OA subject i.

Yi(x) = Xi

β0(x)

β1(x)

+ (1− δi) Xi

β2i(x)

β3i(x)


+ δiXi

β4(x)

β5(x)

+ δiXi

β6i(x)

β7i(x)

+ ei(x). (6.16)

The simplified version of model (6.16) is

Yi = Xiβ
f,nc + (1− δi)Xiβ

r,nc
i + δiXiβ

f,oa + δiXiβ
r,oa
i + ei, (6.17)

where βf,nc = (β0, β1)T , βr,nc = (β2i, β3i)
T ∼ N (0,Dnc), βf,oa = (β4, β5)T , and βr,oa =

(β6i, β7i)
T ∼ N (0,Doa). Matrices Dnc and Doa are 2 × 2 covariance matrices char-

acterizing variation due to among-subject sources for NC and OA group respectively.

Within-subject deviations are characterized by vector ei ∼ Nmi
(0,Ri). Here, Ri is a

mi×mi matrix that characterizes variance and correlation due to within-subject sources.

The parameters in (6.16) or (6.17) are estimated by maximum likelihood estimation.

The parameter of interest is βf,oa, containing β4, the difference of baseline thickness

between OA and NC subjects, and β5, the difference of thickness change rate between

OA and NC subjects. As of so far, βf,oa is estimated using all OA subjects and the in-

consistency of thinning locations across subjects would undermine the difference between

NC and OA subjects. I therefore propose to cluster OA subjects to explore the subgroup

information within them so that the subjects within a group have relative consistency in

cartilage thinning.
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Once the parameters are estimated, I perform clustering on the OA subjects based

on their random effects, i.e, βr,oa
i . As model (6.17) is solved at every pixel location (of

interest), each OA subject is then associated with two random effects maps, i.e., β6i

and β7i. The two maps are vectorized and concatenated to compose a long vector, on

which the following clustering is based. To account for different scales of the two maps,

a normalization step is performed prior to the clustering, by dividing the estimated

standard error in a pixel-wise way. I then apply the k-means algorithm (MacQueen,

1967) to cluster OA subjects into a number of groups. In the experiments, I choose 4

groups for each cartilage. Femoral and tibial cartilage are treated separately.

Each OA cluster is then studied separately versus NC subjects. Assume the OA

clusters are indexed by c (1 ≤ c ≤ k). Let c = 0 represent NC subjects. The delta

function δi(c) for cluster c is defined by

δi(c) =

 1 if subject i belongs to cluster c,

0 otherwise.
(6.18)

The model for clustering-based analysis is

Yi(x) = Xi

β0(x)

β1(x)

+ δi(0)Xi

β2i(x)

β3i(x)


+

k∑
c=1

δi(c)Xi

β4,c(x)

β5,c(x)

+
k∑

c=1

δi(c)Xi

β6i,c(x)

β7i,c(x)

+ ei(x). (6.19)

The difference of (6.19) from (6.16) is the OA subjects are divided into k clusters and each

cluster is studied separately against NC subjects. Parameters β4,c and β5,c characterize

the difference of fixed effects (intercept and slope, respectively) of cluster c comparing

to NC group. Parameters β6i,c and β7i,c characterize the difference of random effects
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(intercept and slope, respectively) of cluster c comparing to NC group.

The simplified version of model (6.19) is

Yi = Xiβ
f,nc + δi(0)Xiβ

r,nc
i +

k∑
c=1

δi(c)Xiβ
f,oa
c +

k∑
c=1

δi(c)Xiβ
r,oa
i,c + ei, (6.20)

where βf,oa
c = (β4,c, β5,c)

T , and βr,oa
c = (β6i,c, β7i,c)

T ∼ N (0,Doa). Matrices Dnc and Doa

are 2 × 2 covariance matrices characterizing variation due to among-subject sources for

NC and OA group resectively. Again, the parameters in (6.19) or (6.20) are estimated

by maximum likelihood estimation.

Since the OA subjects in the same cluster exhibit similar cartilage thinning patterns,

it is expected to observe more significant difference after clustering (β4,c and β5,c) than

before clustering (β4 and β5).

6.5 Experimental results

This section discusses the results of applying the proposed clustering-based thickness

analysis. Again, I use the PLS dataset, which is described in section 4.2. The 2D

thickness maps are from 3 different sources, expert segmentations, automatic temporally-

independent (chapter 3) and longitudinal (chapter 5) segmentations. The analysis is

performed only in masked regions. The masks (one for each cartilage) contain pixels at

which ≥ 680 out of 706 images have non-zero thickness values.

As femoral and tibial cartilage are studied independently, I will discuss each cartilage

separately and start with the femoral cartilage.
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6.5.1 Results of femoral cartilage

Let us consider the estimates of β0, β1, β4 and β5, and their p-values. Note for all p-

values presented in this section, the false discover rate (FDR) adjustment method (Yeku-

tieli and Benjamini, 1999) is employed to adjust p-values for multiple comparisons.

First of all, let us look at the parameter estimation before clustering. Figure 6.3 shows

parameter estimation of (6.16) before clustering for femoral cartilage using thickness

maps obtained from expert segmentations. Figures 6.4 and 6.5 show the results from

temporally-independent and longitudinal segmentations, respectively. The estimates of

β0 from different segmentation methods are similar and the significance levels are also

similar. No significant longitudinal change rate for the NC subjects, β1, is observed in

Figures 6.3 or 6.4. But significant thinning of NC subjects is observed from Fig. 6.5

which uses longitudinal segmentations. All of the three figures (6.3, 6.4 and 6.5) show

significant difference of baseline thickness between NC and OA subjects. No significant

difference of change rates between NC and OA subjects, β5, is observed in any one of the

three figures.

Now let us consider the parameter estimation after clustering. Figure 6.6 shows

estimates of parameter β4,c of (6.19) after clustering for femoral cartilage using thickness

maps obtained from expert segmentations. Figures 6.7 and 6.8 show the results from

temporally-independent and longitudinal segmentations, respectively. From these three

figures (6.6, 6.7 and 6.8), the first two clusters (β4,1 and β4,2) show significant difference

(thinning and thickening) of baseline thickness of OA subjects comparing to NC subjects.

One of the reasons for the thickening may be due to the swelling that OA patients suffer

from.

The other two clusters (β4,3 and β4,4) exhibit distinct patterns. Cluster 3 shows

cartilage loss on the medial side of the femoral cartilage and cluster 4 on the lateral side.

This observation is consistent across different segmentation methods. The significance
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levels are much higher than those before clustering. This suggests that cartilage loss

may happen at different locations across OA subjects and the clustering helps to divide

patients with similar thinning patterns into the same group.

The longitudinal change rates are not significant in any of the clusters for expert

or temporally-independent segmentation. Only one cluster using longitudinal segmenta-

tion demonstrates significant difference of changing rate compared to NC subjects (see

Fig. 6.9(a) and (b)).

6.5.2 Results of tibial cartilage

Figures 6.10, 6.11 and 6.12 present parameter estimation results before clustering.

The estimates of β0 and the p-values are in agreement across segmentations. Statistically

significant thinning of NC subjects (β1) is detected from expert and longitudinal segmen-

tations, but not the temporally-independent segmentation. Comparing to NC subjects,

OA subjects have statistically significant smaller baseline thickness (β4), which is ob-

served from all three segmentations. No significant difference of changing rate between

NC and OA groups is seen from any of the three segmentations.

After clustering, the estimated difference of baseline thickness (β4,c) for each OA clus-

ter against NC are shown in Fig. 6.13, 6.14 and 6.15 from expert, temporally-independent

and longitudinal segmentations, respectively. The results are comparable across segmen-

tation. Cluster 1 show significant thickening on the medial side and cluster 2 is signifi-

cantly thicker on the lateral side. Cluster 3 shows significant thinning on the lateral side

and cluster 4 has significant thinning on both sides. Clustering is beneficial for detecting

thinning (thickening) regions as more regions are identified with significance which were

not discovered before clustering. The higher significance levels suggest the diversity of

thickness changes as well as the hidden subgroup structure among OA subjects.
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Figure 6.3: Thickness analysis result (before clustering) of femoral cartilage comparing
OA against NC subjects. Thickness maps are from expert segmentations. Left column:
estimates of parameters. Right column: FDR adjusted p-values for testing null hypothesis
that the corresponding parameter is zero. −log100.05 ≈ 1.3.
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Figure 6.4: Thickness analysis result (before clustering) of femoral cartilage comparing
OA against NC subjects. Thickness maps are from automatic temporally-independent
segmentations. Left column: estimates of parameters. Right column: FDR adjusted p-
values for testing null hypothesis that the corresponding parameter is zero. −log100.05 ≈
1.3.
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Figure 6.5: Thickness analysis result (before clustering) of femoral cartilage comparing
OA against NC subjects. Thickness maps are from automatic longitudinal segmentations.
Left column: estimates of parameters. Right column: FDR adjusted p-values for testing
null hypothesis that the corresponding parameter is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β4,1 (b) p-values of β4,1
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(c) Estimates of β4,2 (d) p-values of β4,2
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(e) Estimates of β4,3 (f) p-values of β4,3
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(g) Estimates of β4,4 (h) p-values of β4,4

Figure 6.6: Thickness analysis result (after clustering), β4,c, of femoral cartilage com-
paring OA against NC subjects. Thickness maps are from expert segmentations. Left
column: estimates of parameter β4,c. Right column: FDR adjusted p-values for testing
null hypothesis that β4,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β4,1 (b) p-values of β4,1
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(c) Estimates of β4,2 (d) p-values of β4,2
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(e) Estimates of β4,3 (f) p-values of β4,3
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(g) Estimates of β4,4 (h) p-values of β4,4

Figure 6.7: Thickness analysis result (after clustering), β4,c, of femoral cartilage compar-
ing OA against NC subjects. Thickness maps are from automatic temporally-independent
segmentations. Left column: estimates of parameter β4,c. Right column: FDR adjusted
p-values for testing null hypothesis that β4,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β4,1 (b) p-values of β4,1
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(c) Estimates of β4,2 (d) p-values of β4,2
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(e) Estimates of β4,3 (f) p-values of β4,3

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

T
h

ic
kn

es
s

(m
m

)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

−
lo

g 1
0(

p
)

(g) Estimates of β4,4 (h) p-values of β4,4

Figure 6.8: Thickness analysis result (after clustering), β4,c, of femoral cartilage compar-
ing OA against NC subjects. Thickness maps are from automatic longitudinal segmenta-
tions. Left column: estimates of parameter β4,c. Right column: FDR adjusted p-values
for testing null hypothesis that β4,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β5,1 (b) p-values of β5,1

Figure 6.9: Thickness analysis result (after clustering), β5,c, of femoral cartilage compar-
ing OA against NC subjects. Thickness maps are from automatic longitudinal segmenta-
tions. Left column: estimates of parameter β5,c. Right column: FDR adjusted p-values
for testing null hypothesis that β5,c is zero. −log100.05 ≈ 1.3.

Only a few small regions exhibit significant change rate in cluster 3 of expert segmen-

tations and cluster 2 of longitudinal segmentations. See Fig. 6.16 and 6.17 for illustration.

6.5.3 Comparison to regional analysis

The results show significant thickening at each cartilage for certain clusters. The

thickening is consistent with cartilage swelling or hypertrophy observed as a sign of early

OA (Watson et al., 1996; Calvo et al., 2001, 2004; Eckstein et al., 2011). Buck et al. (2010)

suggested that OA may not be a one-way-road of cartilage loss and that particularly in

early OA, cartilage changes may occur in both directions simultaneously, i.e., cartilage

thinning and cartilage thickening.

Regional analysis was able to detect significant change rate in the central region

and some peripheral regions as well (Wirth et al., 2009; Buck et al., 2009; Eckstein

et al., 2011). However, the majority of locations show insignificant change rate with the

proposed method. One possible explanation is the difference in datasets. Wirth et al.

(2009); Eckstein et al. (2011) used a subset from the OAI data. I used the PLS dataset

instead.

Another possible reason is the difference in number of time points used. Existing

regional analysis results were obtained from only two time points. For example, Buck
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(a) Estimates of β0 (b) p-values of β0

−0.15
−0.12
−0.09
−0.06
−0.03
0.00
0.03
0.06
0.09
0.12
0.15

C
h

an
ge

ra
te

(m
m
/y

ea
r)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

−
lo

g 1
0(

p
)

(c) Estimates of β1 (d) p-values of β1
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(e) Estimates of β4 (f) p-values of β4
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(g) Estimates of β5 (h) p-values of β5

Figure 6.10: Thickness analysis result (before clustering) of tibial cartilage comparing
OA against NC subjects. Thickness maps are from expert segmentations. Left column:
estimates of parameters. Right column: FDR adjusted p-values for testing null hypothesis
that the corresponding parameter is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β0 (b) p-values of β0
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(c) Estimates of β1 (d) p-values of β1
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(e) Estimates of β4 (f) p-values of β4
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(g) Estimates of β5 (h) p-values of β5

Figure 6.11: Thickness analysis result (before clustering) of tibial cartilage comparing
OA against NC subjects. Thickness maps are from automatic temporally-independent
segmentations. Left column: estimates of parameters. Right column: FDR adjusted p-
values for testing null hypothesis that the corresponding parameter is zero. −log100.05 ≈
1.3.
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(a) Estimates of β0 (b) p-values of β0
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(c) Estimates of β1 (d) p-values of β1
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(e) Estimates of β4 (f) p-values of β4
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(g) Estimates of β5 (h) p-values of β5

Figure 6.12: Thickness analysis result (before clustering) of tibial cartilage
comparing OA against NC subjects. Thickness maps are from automatic
longitudinal segmentations. Left column: estimates of parameters. Right column:
FDR adjusted p-values for testing null hypothesis that the corresponding parameter is
zero. −log100.05 ≈ 1.3.

105



−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

T
h

ic
kn

es
s

(m
m

)

0
2
4
6
8
10
12
14
16
18

−
lo

g 1
0(

p
)

(a) Estimates of β4,1 (b) p-values of β4,1
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(c) Estimates of β4,2 (d) p-values of β4,2
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(e) Estimates of β4,3 (f) p-values of β4,3
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(g) Estimates of β4,4 (h) p-values of β4,4

Figure 6.13: Thickness analysis result (after clustering), β4,c, of tibial cartilage com-
paring OA against NC subjects. Thickness maps are from expert segmentations. Left
column: estimates of parameter β4,c. Right column: FDR adjusted p-values for testing
null hypothesis that β4,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β4,1 (b) p-values of β4,1
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(c) Estimates of β4,2 (d) p-values of β4,2
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(e) Estimates of β4,3 (f) p-values of β4,3
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(g) Estimates of β4,4 (h) p-values of β4,4

Figure 6.14: Thickness analysis result (after clustering), β4,c, of tibial cartilage comparing
OA against NC subjects. Thickness maps are from automatic temporally-independent
segmentations. Left column: estimates of parameter β4,c. Right column: FDR adjusted
p-values for testing null hypothesis that β4,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β4,1 (b) p-values of β4,1
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(c) Estimates of β4,2 (d) p-values of β4,2
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(e) Estimates of β4,3 (f) p-values of β4,3
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(g) Estimates of β4,4 (h) p-values of β4,4

Figure 6.15: Thickness analysis result (after clustering), β4,c, of tibial cartilage comparing
OA against NC subjects. Thickness maps are from automatic longitudinal segmentations.
Left column: estimates of parameter β4,c. Right column: FDR adjusted p-values for
testing null hypothesis that β4,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β5,3 (b) p-values of β5,3

Figure 6.16: Thickness analysis result (after clustering), β5,c, of tibial cartilage com-
paring OA against NC subjects. Thickness maps are from expert segmentations. Left
column: estimates of parameter β5,c. Right column: FDR adjusted p-values for testing
null hypothesis that β5,c is zero. −log100.05 ≈ 1.3.
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(a) Estimates of β5,2 (b) p-values of β5,2

Figure 6.17: Thickness analysis result (after clustering), β5,c, of tibial cartilage comparing
OA against NC subjects. Thickness maps are from automatic longitudinal segmentations.
Left column: estimates of parameter β5,c. Right column: FDR adjusted p-values for
testing null hypothesis that β5,c is zero. −log100.05 ≈ 1.3.
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et al. (2009) used baseline and 2-year followup, and Wirth et al. (2009) used baseline

and 1-year followup. I used 5 time points at baseline, 3, 6, 12 and 24 months. The

linear model may not be the best model to describe how thickness change over time. It is

possible that cartilage thinning progresses slowly at first and rapidly later, in which case,

including 3-month and 6-month data would cause underestimation of the change rate.

Using baseline and 2-year followup only might result in a more statistically significant

change rate.

It is also reasonable that the insignificant change rates are due to the limited baseline

thickness for degeneration. The significant change rates are only found at locations with

large baseline thickness. See Fig. 6.9, 6.16 and 6.17.

Even though fewer regions are found with significant change rate, the proposed

method is able to uncover change rates at large magnitudes. The change rates reported

in Buck et al. (2009) and Wirth et al. (2009) are far smaller than image resolution. For

example, Buck et al. (2009) estimated the difference of change rate between KLG0 and

KLG3 to be 0.061 mm/year with p-value 0.001 from baseline and 2-year followup. This

change rate means the difference is 0.12 mm in 2 years which is far smaller compared to

image resolution (0.3×0.3×1.0 mm). The proposed approach detects significant change

rate at ≥ 0.15 mm/year, which translates to 1 pixel thinner over 2 years. This is a more

reasonable rate for popular MRI resolutions in knee imaging. The increased magnitudes

of change rates suggest that cartilage loss is a local process and regional average analysis

is too coarse for subtle changes.

6.6 Conclusion

This chapter presents a method to automatically analyze localized cartilage thickness

changes given cartilage segmentations. The method first establishes spatial correspon-

dence across subjects and time via registration. The following analysis is pixel-wise
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therefore avoids subdivision of the cartilage region. Additionally, due to the heteroge-

neous nature of cartilage thinning, the method clusters OA subjects into several groups

according to their thinning patterns. Each cluster is then studied separately against NC

subjects. The analysis results show that clustering improves the significance levels of the

difference between healthy and diseased group and also helps to detect more thinning

locations that would not be detected without.
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CHAPTER 7: DISCUSSION

7.1 Summary of contributions

In this section the thesis statement and contributions presented in chapter 1 are

revisited. Following each claim is a discussion that relates to the claim and summarizes

how that claim is addressed in this dissertation.

The contributions are as follows:

1. I present a novel and general three-label segmentation method that ensures the

separation of touching objects and allows for spatial and temporal regularization. The

three-label segmentation is formulated as a convex optimization problem, which allows

for the computation of global optimal solutions. The method can be applied to other

segmentation problems with two touching objects.

I proposed a three-label segmentation framework in section 2.3. The method is gen-

eral and guarantees separation of the touching objects. By placing the background label

in the middle, one can obtain a symmetric labeling with respect to the background. The

anisotropic regularization has general applicability for the segmentation of thin objects,

e.g., knee cartilage. An important advantage of the segmentation framework is its con-

vexity, which guarantees that a globally optimal solution to the relaxed can be computed,

which then yields a globally optimal solution to the original problem after thresholding

due to its essentially binary property.

Later in section 2.4, I proposed a multi-label segmentation framework to overcome

the regularization bias of the three-label segmentation when applied to more than three

labels (two objects, one label is for the background). Again, the relaxed formulation is



convex and one can compute the globally optimal solution. Unfortunately, the “essen-

tially binary” property is not guaranteed in this case. Therefore the thresholded solution

may not be a globally optimal solution to the discrete formulation, which is a Potts

model and known to be NP-hard. However, the solution can be a close approximation

to the real optimal solution as the indicator function is quite binary after convergence in

practice.

A novel longitudinal three-label segmentation approach was proposed in section 5.2

to encourage the temporal consistency of the segmentation of longitudinal data. The

approach is also general and can be applied to other longitudinal segmentation problems

with two objects.

2. I develop a new fully automatic three-label cartilage segmentation pipeline based on

multi-atlas registration and local tissue classification.

The fully automatic cartilage segmentation pipeline was proposed in chapter 3. I used

a multi-atlas-based bone segmentation (described in section 3.3) to guide the registration

of a cartilage atlas. I obtained cartilage segmentation using an average shape atlas

(section 3.5) or multiple atlases with various label fusion techniques (section 3.6) to obtain

spatial cartilage priors within the three-label segmentation framework which incorporates

anisotropic regularization to improve segmentation performance (shown in chapter 4) for

the thin femoral and tibial cartilage layers.

For longitudinal knee image datasets, e.g., the PLS dataset, I proposed in section 5.3

a pipeline to register longitudinal images from native image space to the common (lon-

gitudinal) space to establish correspondence across time for each individual subject, so

that the longitudinal segmentation can be applied to encourage temporary consistency.

The overall pipeline is fully-automatic (besides quality control), which enables the

method to be applied to large image databases. The robustness due to multi-atlas-based

strategies also make the proposed method appropriate for large datasets.
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3. I validate the automatic three-label cartilage segmentation on a sizable dataset

consisting of more than 700 images. Specially, I study the impacts of different types

of atlases (namely average-shape-atlas and multi-atlas) and different types of regulariza-

tion (i.e., isotropic spatial regularization, anisotropic spatial regularization and temporal

regularization) on cartilage segmentation accuracy.

Extensive validation of the proposed approach was presented in sections 4.3 and 4.4.

It can be concluded that best segmentation strategy is 1) multi-atlas-based segmentation

with patch-based label fusion for spatial prior, 2) SVM for local likelihood and 3) three-

label segmentation with anisotropic regularization. I also demonstrated that the proposed

segmentation strategy performs as well as the top-ranking methods on the SKI10 dataset

in section 4.5.

I demonstrated the improvement in temporal consistency using the longitudinal seg-

mentation over the temporally-independent segmentation in section 5.4.

4. I develop a method to establish spatial correspondences of knee cartilage across time

points and between subjects, which allows for statistical analysis on localized cartilage

thickness changes.

I proposed in section 6.3 an automatic analysis method establishing a common (atlas)

spatial coordinate system for cartilage analysis of the knee. The spatial correspondence

enables localized analysis of thickness changes.

5. I propose a novel method to analyze nonuniform localized cartilage changes, which

can be applied to study nonuniform local morphological changes in other diseases.

Due to the fact that cartilage thinning may happen to different locations for different

subjects, some subjects exhibit similar thinning patterns than other subjects. I proposed

a new clustering-based statistical method to analyze cartilage thickness changes in sec-

tion 6.4. The OA subjects were clustered into a few groups and those within the same

group have similar thinning patterns. Each cluster is then studied separately comparing
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to NC subjects.

6. I perform statistical analysis on the PLS dataset. The statistical analysis result of

localized cartilage changes is presented and compared to that reported in literature using

regional analysis.

The analysis results shown in section 6.5 demonstrate that clustering improves the

significance levels of the difference between healthy and diseased group and also helps

to detect more thinning locations that would not be detected without. The proposed

method also resulted in detection of change rates at larger magnitudes than conventional

subregion-based analysis.

Having fulfilled the contributions above, I present again the thesis statement.

Thesis: Automatic, robust and accurate cartilage segmentations can be obtained

through multi-atlas-based registration and local tissue classification within a three-label

segmentation allowing for spatial and temporal regularization. Spatially transforming

cartilage thickness maps into an atlas space enables statistical analysis on localized car-

tilage changes. Clustering of OA subjects improves statistical analysis due to the spatial

heterogeneity of cartilage loss.

7.2 Future work

There are a number of questions and directions for future research related to this dis-

sertation. In this section a collection of these topics is briefly reviewed.

Application to the OAI dataset

The objective of this dissertation is to develop an automatic and robust method to

process large image datasets. While the PLS is a sizable dataset, the OAI dataset is far

larger, containing longitudinal images from 4,796 subjects. There are 88 knees who have

been manually segmented at baseline and 12-month visits by iMorphics that are publicly
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available. The proposed method could first be validated on the delineated images. As

expert segmentations are not available for most of the images in OAI dataset, it would be

of tremendous value to apply a fully automatic and well validated method (on the PLS

and partially OAI datasets) to obtain cartilage segmentations and perform statistical

analysis on longitudinal cartilage thickness changes. Without an automatic method,

analysis of the shear amount of data would be difficult.

Atlas selection

The major drawback of the proposed cartilage segmentation method is a typical

disadvantage of multi-atlas-based methods, namely their high computational cost. To

alleviate this problem, atlas selection heuristics have been proposed. These heuristics

select only a subset of promising training subjects for atlas registration and label fusion

(Aljabar et al., 2009). Such a selection strategy can be integrated into the segmentation

pipeline and is expected to further improve segmentation performance. I will explore

atlas selection for cartilage segmentation in future work.

Local likelihoods for the bones

Currently, the bone likelihoods are estimated from a simple model (3.2) based on

the fact that bones appear dark in T1 weighted MR images, which might not be the

case in other imaging modalities, e.g., T2 weighted where the cortical bone appears

dark and bone marrow appears bright. A more general method for the estimation of

bone likelihoods would be similar to that for cartilage likelihoods, namely, probabilistic

classification. Local features could be computed and then used to train a classier to

distinguish bone and non-bone voxels in a probabilistic manner. This extension would

make the entire segmentation pipeline applicable to other image modalities.
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Cartilage overlap avoidance in longitudinal space

The baseline image space is chosen as the common space to register longitudinal

images of an individual because cartilage was thought to be thickest at the baseline visit.

However, the following statistical analysis suggests that cartilage thickening could happen

due to swelling and hypertrophy, which was also observed in previous literature (Watson

et al., 1996; Calvo et al., 2001, 2004; Buck et al., 2010). So the baseline image is no

longer an ideal choice for the common longitudinal space as thicker cartilage of followup

visits could possibly overlap in this space and it would result in under-segmentation of

the followup visits. One potential and straightforward fix would be pulling femur and

tibia apart in the baseline space to make room for the later possible thicker cartilage.

Neighborhood dependence for statistical analysis

The statistical analysis of cartilage thickness was performed in a pixel-by-pixel man-

ner. Neighboring pixels are treated as independent of each other. However, it is rea-

sonable to assume dependency among neighboring pixels. A pixel surrounded by pixels

most of which exhibit cartilage loss is more likely to have reduced thickness than a pixel

whose neighboring pixels demonstrate no changes over time. Markov random fields could

be used to incorporate neighborhood dependence.

Correlation between femoral and tibial cartilage

OA subjects are clustered into subgroups based on estimated random effects of femoral

cartilage thickness, and into a different set of subgroups based on estimated random

effects of femoral cartilage thickness. The correlation (if there is any) between femoral

and tibial cartilage is broken by different sets of clusters. In future work, I will experiment

with clustering using both cartilages jointly so that possible correlations between them

could be revealed.
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Including more patient information

OA is a complex disease whose etiology is partially unclear. There is growing evidence

for the role of systemic factors (such as genetics, dietary intake, estrogen use, and bone

density) and of local biomechanical factors (such as muscle weakness, obesity, and joint

laxity) (Felson et al., 2000a). To understand the disease, statistical analysis could be

conducted including aforementioned risk factors into statistical models.
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