
PROTEIN FUNCTION PREDICTION USING 
FAMILY-SPECIFIC STRUCTURAL MOTIFS 

 
 
 
 
 

Tanarat Kietsakorn 
 

 

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial 
fulfillment of the requirements for the degree of Master of Science in the School of 
Pharmacy (Division of Chemical Biology and Medicinal Chemistry). 

 

 

Chapel Hill 
2011 

 

 

 

 

 

Approved by:  

Alexander Tropsha, Ph.D. 

Michael Jarstfer, Ph.D. 

Scott Singleton, Ph.D. 

Denis Fourches, Ph.D. 



ii 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2011  
Tanarat Kietsakorn 

ALL RIGHTS RESERVED



iii 
 

ABSTRACT 

TANARAT KIETSAKORN: Protein Function Prediction using                                        
Family-specific Structural Motifs 

(Under the direction of Alexander Tropsha, Ph.D.) 
 

Protein function prediction using structural motifs is expected to be more reliable and 

informative than using global sequences/structures or sequence motifs.  

In the first part of this thesis, we report a novel application of two structural motif-

based methods, FFSM and CASIM, for predicting family-specific structural motifs and 

conserved key residues in Metallo-dependent phosphatase (Metallophos) structures. We also 

introduced the novel function prediction approach based on 3D-1D Cumulative Support 

Profiles, which represents degree of conservation of amino acid residues specific to 

Metallophos family.   

In the second part of this thesis, we present novel structural motif-based approaches 

for function annotation of protein tyrosine kinase (PTK) sequences. This is the first report of 

non-traditional function inference, from structure to sequence to function.  

Compared to other state-of-the art methods, our approaches were able to reveal more 

comprehensive information such as the 3D structure of the potential active site including key 

residues. 
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CHAPTER I 
 

INTRODUCTION 
   
 
1.1 Introduction to protein function prediction 

 
The knowledge of protein function is necessary to understand the machinery of life 

and translate this knowledge into drug discovery. There has been an exponential increase in 

the number of available protein sequences and structures resulting from genome sequencing 

and structural genomics projects, respectively; however, the function of many proteins still 

remain unknown. Consequently, there is a growing challenge of developing computational 

tools to predict functions of these proteins of unknown functions and focus the costly and 

time-consuming experimental work towards hypothesis validation rather than random (or 

serendipitous) exploration.  

 

1.1.1 Automated Function Prediction requires the ‘gold standard’ of functional label. 
 
The first step for any Automated Function Prediction (AFP) tools is to clarify the 

definition of protein function. Proteins are essential biological macromolecules that perform 

their functions in every process within cells ranging from sub-cellular to the whole-organism 

level. Thus, the definition of protein function is not very well-defined and may be explained 

in various aspects. For example, function of protein kinases can be described by many 

cellular functions in which they are involved or by a smaller scope of molecular function as 

transferases1. To allow protein functions to be understood and predicted in silico, it is
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important to provide the machine with a standardized functional term. 

Databases of protein function classification have been created using specific terms for 

different aspects of protein function. The two most widely-used schemes for protein 

sequences are Gene Ontology (GO)2 and Enzyme Classification scheme (EC)3. GO 

categorizes protein function by controlled protein annotation vocabularies in terms of 

molecular function, biological process and cellular component. Molecular function is referred 

to the task performed by an individual protein whereas biological process composes of a 

variety of molecular functions, and cellular component indirectly addresses protein function 

in the context of sub-cellular structures, location and macromolecular complexes. EC scheme 

is a 4-level hierarchical functional classification for enzymes, based on the type of chemical 

reactions they catalyze. Each protein is associated with an EC number, which consists of 4 

digits, 1 for each level. The first digit represents 6 main chemical reactions that the enzymes 

catalyze (oxidoreductases, transferases, hydrolases, lyases, isomerases or ligases). The 

second and third numbers describe the subclass and sub-subclass of the overall reaction, 

whereas the last number usually reflects the substrate specificity of the reaction. While GO is 

applicable for a variety of proteins, EC is limited to enzymes only. However, most 

approaches for enzyme function prediction rely on EC annotation4-8. That is because EC 

annotation provides higher enzyme-annotation coverage, and has been used as a gold 

standard in most enzyme databases. Moreover, EC annotation can be related to GO 

annotation using the web service referred as “ec2go” provided by GO website2.  

Function classification of protein structures is less studied compared to those of 

protein sequences. For instance, there is an approach, PDBsum9, which annotates functions 

of protein structures (PDB chains) according to GO term and EC number of their 
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corresponding UniProt sequences. In another effort, Bandyopadhyay10 reported the 

application of Fast Frequent Subgraph Mining (FFSM) for function inference of protein 

structures using family and superfamily definitions of Structural Classification of Proteins 

(SCOP) database11 to define protein function. SCOP classifies proteins based on their three-

dimensional structural similarity through the levels of class, fold, superfamily, family, 

domain and species. Actually, the relationship between SCOP classification and protein 

function is not obvious. SCOP classification is based on global structural (fold) similarity of 

a single domain, not functional similarity. A single SCOP family may be related to more than 

one function. For instance, the SCOP family of AAT-like (AAT: Aspartate aminotransferase) 

corresponds to two remote functions; lygase and transferase. In some other cases, a given 

function occurs in different SCOP folds (Beta-lactamase). I believe that proteins can perform 

multiple tasks and some of them are performed by their substructure (e.g. motifs), which 

explains why one function can be detected in proteins with different SCOP folds. However, 

SCOP does not allow this interconnection. Since SCOP is a hierarchical classification, 

proteins with different fold types will always be classified into different superfamily and 

family. Therefore, SCOP fold, superfamily and family are not ideal levels for investigating 

the relationships between structures and functions. Although domains are the basic unit of 

protein structure, function and evolution, using SCOP-domain level for function annotation is 

appropriate for single domain proteins only. In this thesis, I report novel approaches for 

predicting function of two protein groups; Metallo-dependent phosphatases (Metallophos) in 

Chapter 2 and protein tyrosine kinases (PTKs) in Chapter 3. EC annotation has been used in 

a case of PTKs. However, SCOP annotation has been applied to describe function of 

Metallophos members due to the following reasons: (1) their EC annotations are not well 
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studied, (2) Methallophos family contains only one-domain proteins, and (3) their SCOP 

definition is well adopted by most bioinformatic studies. 

 

1.1.2 Insufficiency of global sequence or structural similarities for protein function 
inference 
 
Most of AFP tools assume that proteins with similar sequences or structures usually 

share common function. Consequently, the function of a protein of unknown function is 

typically inferred from its homologous proteins of known function. This classical approach 

for inferring protein function typically relies on sequence similarity analysis, also known as 

homology-based annotation transfer12. The most popular methods in this category are 

sequence similarity search tools such as BLAST13, or profile-based similarity search tools 

based on profile hidden Markov models (profile HMMs)14. Thornton suggested that function 

inference by sequence similarity is most reliable when the pair-wise sequence identity is 

above 40%15-17. Skolnick reported a threshold of 40% and 60% sequence identity as cutoffs 

for accurate function transfer between proteins that respectively share first three digits and all 

four digits in EC classification scheme4. Therefore, the major limitation of homology-based 

annotation transfer appears when the sequence similarity falls below a certain similarity 

cutoff. However, there are known exceptions to those recommended global similarity rules. 

For instance, melamine deaminase and atrazine chlorohydrolase share 98% sequence 

identity, but catalyze different reactions18. The authors suggested that the nine amino acids 

that differ between those two proteins are indeed responsible for their functional difference.  

It is well known that a three-dimensional (3D) protein structure is well conserved 

compared to its sequence19. Consequently, structure conservation, if detected, may 

sometimes provide critical clues for function inference even when sequence-based 
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approaches fail or become unreliable. For instance, MJ0882, a hypothetical protein from 

Mehanococcus jannaschii has no detectable sequence similarity to any protein sequence in 

the Protein Databank (PDB). However, global structure comparison based on fold similarity 

by DALI20 suggested that the protein was probably a methyltransferase because its crystal 

structure had a similar fold to many methyltransferases in the PDB, and this activity was 

subsequently confirmed by biochemical experiments21. However, it should be pointed out 

that proteins with similar folds may also have different functions15. For instance, proteins 

with the TIM barrel fold may carry out more than 60 different enzymatic functions. On the 

other hand, fold similarity does not always imply similar function; for instance, different o-

glycosyl glucosidases belong to seven fold types19. Obviously, neither sequence nor global 

structure similarity is globally applicable for reliable function inference. A probable cause for 

those exceptions are as the following: proteins with highly similar sequences or structures 

may not share the same function because of divergent evolution where residues responsible 

for function have changed while most of their sequences or structures remained unchanged. 

In contrast, two proteins with low overall sequence or structural similarity may have the 

same function because their active sites could have remained conserved throughout the 

evolution unlike their remaining regions. This assumption leads to the emerging concept of 

function inference through motifs (local similarity), the main focus of this thesis. 

 

1.1.3 The importance of motifs (local similarity) for function inference 
 
Although global sequence or structure comparison approaches continue to be popular 

for function inference, some experimental evidence suggests that protein function can be 

correlated with the presence of local patterns of amino acid residues, or motifs shared by 
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proteins with similar function either at the sequence or structure levels. Motifs could be 

defined as highly conserved sets of residues that form similar patterns and often represent 

functionally important regions such as active or binding sites, or regions defining the overall 

protein fold. Therefore, local similarity analysis to identify either sequence or structural 

motifs could be useful for predicting protein function and/or identifying functionally 

significant sites. 

Typically, sequence motifs are derived from multiple sequence alignments of proteins 

with similar function. Of the approaches implementing these motifs, PROSITE patterns22 is 

the most widely used for inferring function. Other methods such as PRINTS23 and Scan2S24 

were aimed to improve the predictive performances of PROSITE patterns. PRINTS uses the 

occurrence of multiple motifs (forming fingerprints) to reach better sensitivity whereas 

Scan2S includes secondary structure constrains to achieve better precision. However, all of 

these methods are capable of detecting only sequence-ordered motifs. 

The review of AFP approaches by Chen25 suggested that sequence-based approaches 

were able to provide high confidence only when pair-wise sequence identity between two 

proteins was in the safe zone (higher than 40%). However, when pair-wise sequence 

similarity fell into the twilight (20-30%) and midnight zones (below 20%), the AFP methods 

based on global structure similarity and local structure similarity were more applicable, 

respectively. Function inference by local structural motifs is likely to be more reliable than 

using global structural similarity because 3D arrangements of functionally important residues 

(e.g., in the active sites) are significantly more conserved than the entire fold26. Structural 

motifs are thus represented as local 3D templates containing conserved amino acid residues. 

The identification of motifs that are conserved among a given family of proteins requires the 
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systematic analysis of their 3D structures. For example, the Genetic Algorithm Search for 

Patterns in Structures (GASPS)27 deduces motifs from multiple sequence alignments of 

homologous proteins. These motifs are then converted into 3D patterns by SPASM28, which 

represents each residue in the motif by two points: the Cα carbon atom and the side-chain 

geometrical centroid. MSDmotif29 uses enriched motifs integrating 3D structurally conserved 

patterns and super-secondary structural and sequence motifs; these motifs are classified into 

13 types, based on specific patterns of hydrogen bonding, ϕ/ψ and χ angles. Evolutionary 

Trace Annotation (ETA)30 identifies evolutionary important residues from phylogenetic trees 

of homologous protein sequences, and then maps those residues onto the structure to generate 

3D templates. However, most of the structural motif based approaches described above rely 

on multiple sequence alignments. Thus, these methods inherit the limitations of sequence-

motif based approaches. The sequence-independent AFP methods have been aimed to obtain 

information missing at the sequence level. Only few methods are in this category: (1) the 3D 

template searches31, 32 (enzyme active site template, ligand binding site template, DNA-

binding site template and reverse template searches), and (2) FFSM 33, 34. 

 

1.2 Overview of Chapter 2  

Structural motifs are considered much more conserved and informative than their 

corresponding sequence motifs. However, only few structural motif-based approaches have 

been addressed the problem of Automated Function Prediction (AFP) using the information 

of 3D protein structures alone. The limitation is due to the difficulty of local similarity 

comparison. In this chapter, we report an application of two sequence-independent methods, 

FFSM and a novel CASIM (Conserved Adjacent Simplex Miner)35for predicting family-
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specific-structural motifs  and conserved key residues. These two methods were implemented 

based on computational geometry technique known as Delaunay Tessellation (DT)36, 37. 

FFSM was developed earlier in collaboration with colleagues in the UNC Computer Science 

Department.  Currently, the method was applied for predicting protein family-specific 

structural motifs only10, 33, 34, 38, 39. CASIM has been developed and implemented in the 

PROTMAN (PROTein MANager) program in our research group, and its application is first 

reported herein. We present a successful case study of Metallophos family. We are able to 

identify the Metallophos family specific residue packing patterns (Metallophos-specific 

motifs) using FFSM and CASIM. The identified Metallophos-specific motifs were found at 

the metal-binding active sites in the training-set members and the test proteins of known 

functions. We discuss the complementarities between the two approaches for the 

identification of family specific packing motifs and their use for the automated predicting 

function and conserved key residues (likely functionally important residues) for proteins of 

unconfirmed functions. 

 

1.3 Overview of Chapter 3  

The number of protein sequences that have no function annotation are greatly exceeds 

the number of their structures. Thus, function prediction of protein sequences is critical. 

Currently, only sequence-based approaches have been used for function prediction of 

proteins at sequence levels while publicly available structural motif-based methods including 

FFSM are applicable for protein function prediction at structure levels only due to the 

difficulty of extracting meaningful information from protein structures. In this chapter, we 

develop approaches being able to apply family-specific structural motifs originally extracted 
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from protein structures to predict function and functionally important residues of protein 

sequences. We applied FFSM to identify structural motifs (frequent subgraphs) conserved in 

a given protein family. However, structural motifs represent three-dimensional structures; 

thus they cannot be directly mapped onto the linear string of protein sequences. We 

converted those identified structural motifs into sequence patterns, which can be easily 

matched on protein sequences by uncomplicated text mining algorithm. Our approaches were 

successfully applied for function inference of PTK family. 

 

1.4 Introduction to Delaunay and Almost-Delaunay tessellations 
 

Delaunay tessellation (DT) is a fundamental computational geometry structure related 

to the Voronoi tessellation. In Voronoi diagram40, the space is partitioned into cells, each of 

which consists of one node and the points that are nearest to that node than to any other 

nodes. DT connects nodes in Voronoi diagram. DT and Voronoi diagram in two dimensions 

are illustrated in Figure 1.1A. In three-dimensional space, DT generates an aggregate of 

space-filling, non-overlapping irregular tetrahedra or simplices, preserving an empty sphere 

property. Each Delaunay simplex defines objectively and uniquely four nearest neighbors as 

vertices of a tetrahedron. Logically, the entire Delaunay structure could be described as a 

network of contacts between nodes thus forming a connected graph.  

Our research group has pioneered the use of DT in protein structure analysis36, 37. The 

aggregate of Delaunay simplices representing a protein could be also regarded as a network 

of contacts between residues that can be described by a connected graph where residue-

vertices can be labeled by their conventional names and the edges can be labeled by the 

physical distance between points representing residues (see Figure 1.1B).  A protein 



 
 

structural family can then be described by a family of labeled graphs where each graph 

represents a protein member of the family

imprecise. The errors may occur due to measurement imprecision or atomic motions. Since 

DT represents a node as a certain point, it is not robust to perturbation. Small change in point 

coordinates may change the set of ne

structure analysis, Bandyopadhyay and Snoeyi

Almost Delaunay (AD)41. Instead of presenting each amino acid as a p

allows the movement of a point with parameter 

property. The protein graphs constructed by AD are termed AD edge graphs (

1.1C), which contains both DT edges and the new AD edges. It is re

approach helps recover greater number of more specific motifs that DT with a relatively 

minor loss in computationally efficiency.

Figure 1.1: (A): Voronoi tessellation and Delaunay tessellation 
polihedra is shown by thin lines and the corresponding DT is shown by thick lines
crambin (PDB ID: 1crn) in 3D space

(A) 
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structural family can then be described by a family of labeled graphs where each graph 

represents a protein member of the family. However, protein structure coordinates are

imprecise. The errors may occur due to measurement imprecision or atomic motions. Since 

DT represents a node as a certain point, it is not robust to perturbation. Small change in point 

coordinates may change the set of nearest neighbors. To improve DT algorithm 

Bandyopadhyay and Snoeyink introduced a DT-based approach

. Instead of presenting each amino acid as a precise point, AD 

allows the movement of a point with parameter ε while still preserving the empty sphere 

property. The protein graphs constructed by AD are termed AD edge graphs (

), which contains both DT edges and the new AD edges. It is reported that the AD 

approach helps recover greater number of more specific motifs that DT with a relatively 

minor loss in computationally efficiency. 

 

Voronoi tessellation and Delaunay tessellation (DT) in 2D space
polihedra is shown by thin lines and the corresponding DT is shown by thick lines
crambin (PDB ID: 1crn) in 3D space42. The backbone of the protein is shown by thick lines whereas 

(B) 

(C) 

structural family can then be described by a family of labeled graphs where each graph 

. However, protein structure coordinates are 

imprecise. The errors may occur due to measurement imprecision or atomic motions. Since 

DT represents a node as a certain point, it is not robust to perturbation. Small change in point 

DT algorithm for protein 

based approach called 

recise point, AD 

while still preserving the empty sphere 

property. The protein graphs constructed by AD are termed AD edge graphs (see Figure 

ported that the AD 

approach helps recover greater number of more specific motifs that DT with a relatively 

 

in 2D space42. The Voronoi 
polihedra is shown by thin lines and the corresponding DT is shown by thick lines.  (B): DT of 

is shown by thick lines whereas 
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the DT is shown by thin lines. (C): Illustration of AD edges; vertex can move within bounding sphere 
with radius ε41. 

 

1.5 Introduction to FFSM 

Based on the assumption that amino acid residues responsible for protein function are 

encoded in family structural motifs, Huan et al at UNC developed the FFSM method 

focusing on finding structural motifs in protein families33, 34. FFSM identifies recurrent 

frequent subgraphs from family members modeled as AD graphs. Accordingly, those family-

specific subgraphs or fingerprints correspond to structural motifs in protein structures. It is 

shown that this method was capable of capturing local packing motifs characteristic of 

protein structural and functional families10, 33, 34, 38, 39. The concept of FFSM can be briefly 

described as follow. FFSM represents each protein structure in the family of interest as an 

AD graph consisting of nodes and edges. Every node in the graph characterizes distinct 

amino acid residues in that protein and has the residue type as its label. Edges are 

distinguished and labeled according to AD algorithm and their lengths.  

FFSM restricts the subgraph (the sub-structural pattern of a protein graph; see Figure 

1.2) to a fully rigid interconnected subgraph referred as a clique. A clique is a graph where 

each node has degree n-1 where n is the number of nodes and degree is the number of edges 

incident with it. According to FFSM implementation, the sub-structural patterns identified by 

FFSM are not limited to only quadruplets. To eliminate the redundant subgraphs, FFSM 

selects only the maximal frequent subgraph (a graph that is not part of any larger frequent 

subgraph).  

A subgraph of the entire AD graph is considered frequent if its ‘minimum support’ 

value (i.e., a fraction of family members that contain this subgraph) is higher than a user-

defined threshold (e.g., 90%). However, those frequent subgraphs become family-specific 
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subgraphs or fingerprints if and only if they are rarely found in the other proteins of a diverse 

‘background’ database (other proteins outside a target family).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: An Almost Delaunay (AD) graph of a protein structure; a subgraph DSGP (showed in 
red) is a sub-structural pattern of that protein graph43.  

 

1.6 Introduction to CASIM 

The novel CASIM approach, implemented in the PROTMAN (PROTein MANager) 

program package by Fourches35, has been developed to improve the performance of DT/AD 

based approaches for effective identification of family structural motifs.  

In this CASIM method, each protein structure in the family of interest is modeled as a 

DT or AD graph (vertices are Cα atoms or side chain centroid of amino acid residues). 

Unlike FFSM that defines a motif as a fully interconnected subgraph, CASIM describes 

motifs as ensembles of neighboring Delaunay tetrahedral (see Figure 1.3). Thus, we 

expected to recover motifs missed by FFSM or vice versa. In CASIM, a motif can involve 

one or several neighboring tetrahedra sharing a common face, a common edge, a common 

vertex or having a spatial proximity according to a user-defined geometrical distance cutoff 

between the centroid of Delaunay simplices (e.g., 10Å) (see Figure 1.4). The neighborhood 
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of all these Delaunay quadruplets is determined using a second Delaunay tessellation of the 

tetrahedron centroid. Each tetrahedron has a unique nomenclature based on the alphabetical 

order of its residue-vertices. Similarly, motifs involving several tetrahedra possess a unique 

and single nomenclature based on their composition and the alphabetical order as well.  For 

instance, a motif shown in Figure 1.4 involves four neighboring Delaunay tetrahedra 

encompassing eight residues: DGGL, GGLL, GHIL and CHIL; thus, its unique name is 

CHIL-DGGL-GGLL-GHIL. Moreover, the motifs retrieved by CASIM provide additional 

information. Each CASIM motif is characterized by a series of constitutive and geometrical 

descriptors to enhance its specificity: the motif’s exposed surface areas (ESA); its overall 

volume; number of involved residues; contact types between residues (peptide bond or 

geometrical proximity edge); the chirality of its constitutive tetrahedra; the overall SNAPP 

score44; chain characteristics (single chain or interfacial motif); presence/absence of organic 

ligands inside or in the proximity of the motif. In addition, all combinations of sub-motifs 

[CHIL-DGGL, DGGL-GGLL, CHIL-DGGL-GGLL, etc. for the example shown in Figure 

1.3] involving one, two or three tetrahedra are also investigated to define families of motifs.  

In order to define family-specific motifs, CASIM adopts the concept of FFSM 

approach described under Section 1.5. The motifs are specific to the family if they are found 

in significant numbers of protein members of the family and are rarely found in other 

proteins. 



 
 

 
Figure 1.3: CASIM structural packing 
motif CHIL-DGGL-GGLL-GHIL involving four neighboring simplicial 

14

CASIM structural packing motifs retrieved from the DT of a protein: example of the 
GHIL involving four neighboring simplicial tetrahedral.

 

of a protein: example of the 
tetrahedral. 



 
 

15

 

 

Figure 1.4: The 2nd order tessellation allows CASIM to retrieve complex neighborhood relationships 
for the 1st order Delaunay tetrahedra. Different types of tetrahedra are retrieved. They can share: (A) a 
common face; (B) a common edge; (C) a common node); (D) nothing.  
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CHAPTER 2 
 

PROTEIN FUNCTION PREDICTION AT THE STRUCTURAL LEVEL BASED ON 
PROTEIN FAMILY-SPECIFIC STRUCTURAL MOTIFS AND  

CONSERVED KEY RESIDUES 
 
   
2.1 Introduction  

Although, several Automated Function Prediction (AFP) approaches have been 

reported during the recent decades, there are still several challenging problems remaining. 

First, it is accepted that a three-dimensional (3D) protein structure is better conserved than 

its sequence19. In addition, function inference by structural motifs is likely to be more 

reliable than using global structural similarity because 3D arrangements of functionally 

important residues (e.g., in the active sites) are significantly more conserved than the entire 

fold26. However, only few structural motif-based methods based on structural data alone have 

been developed31-34. The limitation comes from several problems such as the computational 

difficulty of local structural alignment and comparison or scanning on the large scale of 

protein structure database. Second, besides the assessment of the overall function of a given 

protein and/or its active site, predicting functionally important residues is also a critical part 

of AFP. The knowledge of these key residues can improve the understanding of protein 

function and thus to facilitate drug discovery. Several researchers have addressed this 

problem. For example, Youn et al.45 and Cilia and Passerini46 applied Support Vector 

Machine (SVM) to distinguish active site and non-active site residues labeled by several 

sequence- and structure-based features such as conservation profiles, physical and chemical 
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properties, amino acid composition and atomic density. From our standpoint, it is also 

challenging to address this problem based on structural data alone. Third, predicting function 

of proteins of unknown functions especially those with low sequence identity (less than 20%) 

to proteins of known functions are still the ultimate aim for all AFP researches. 

The goal of this study is to investigate those three challenging problems. We focus on 

a structure-based function inference using both structural motifs and functionally important 

residues. We also applied this strategy for predicting function of proteins of unknown 

functions having low sequence identity (less than 20%) to proteins of known functions.  We 

report an application of two sequence-independent structure-based methods, FFSM and a 

novel CASIM for predicting both family-specific structural motifs and conserved key 

residues. Currently, function inference by FFSM reported earlier was based on the 

occurrence of family-specific structural motifs only10, 33, 34, 38, 39. We extended the application 

of FFSM for predicting conserved key residues as well. In order to improve the efficiency 

and specificity of DT graph mining approach, we have incorporated FFSM with a novel 

CASIM approach (report herein for the first time). CASIM defines a novel type of structural 

packing motifs as an ensemble of neighboring Delaunay tetrahedra (where vertices are side 

chain centroids of amino acid residues). In addition, CASIM has been implemented to 

provide more comprehensive information for the identified family motifs.  

We tested our approaches on the superfamily of Metallo-dependent phosphatases 

obtained from a manually curated database of the Structural Classification of Proteins 

(SCOP)47. This superfamily also known as metallo-phosphoesterase is related to the Pfam 

family of Metallophos (PF00149, description: Calcineurin-like phosphoesterase). They are a 

group of enzymes that catalyze the removal of a phosphate group from their substrates.  The 
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Metallophos family members include both mono- and diphosphoesterases possessing two 

catalytically essential metal cations (e.g., magnesium, manganese, iron, zinc) in their active 

sites48. These enzymes play a critical role in a number of cellular processes49-52 especially in 

the propagation of intracellular signals making them viable drug targets for such diseases as 

diabetes, cancer, cardiovascular disorders and others as discussed in a recent important 

review53. 

We found that almost 40% of protein structures in Metallophos superfamily (SCOP 

1.7.1 release) were proteins with unconfirmed Metallophos function. In this study, we 

classified Metallophos structures into 2 categories; (1) a group of proteins having known 

Metallophos functions, and (2) a group of proteins of unconfirmed Metallophos functions. 

We have applied both FFSM and CASIM to the group of proteins having known Metallophos 

functions to identify Metallophos-specific structural motifs. We found that both methods 

were capable of identifying similar motifs but CASIM was more computationally efficient. 

We also showed that the predicting motifs were rarely found in proteins outside the family; 

this observation guaranteed the specificity of the identified Metallophos motifs. We 

combined the second group of proteins of unconfirmed Metallophos functions in SCOP 1.7.1 

with new Metallophos members added in the newer version of SCOP 1.7.3 and 1.7.5. We 

selected only proteins having sequence identity less than 20%, compared to our training set, 

into the external set. By combining the data, the external set had both proteins of known 

Metallophos functions and unconfirmed Metallophos functions. We then determined whether 

proteins in the external set can be annotated as Metallophos proteins based on the occurrence 

of the identified Metallophos-specific motifs. We also predicted conserved key residues in 

those proteins. We validated our predicted results on a group of known Metallophos proteins 
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having support data from the primary literatures. We compared our predicting performance 

with several publicly available methods such as a sequence-based search (Pfam)14, 3D 

template searches31, 32, 54 (i.e. enzyme active site template and reverse template searches) and 

the Catalytic Residue Prediction (CRP)45. Furthermore, we predicted function and conserved 

key residues of proteins of unconfirmed Metallophos function having sequence identities less 

than 20% (midnight zone) compared to the training set. The studies reported herein showed 

that our predicted results are in agreement with the published results and are comparable to 

those from the benchmark methods. This observation illustrates the power of our 

methodologies for addressing the challenging issues of predicting function and key residues 

of proteins of unconfirmed function based on structure information alone.  

 

2.2 Methods 

2.2.1 Training set of Metallo-dependent Phosphatases 

We have compiled a dataset of 84 PDB chains from 9 different families in the 

Metallo-dependent Phosphatases (Metallophos) superfamily (SCOP ID 65300 from SCOP 

release 1.7.1). Only 4 families of known Metallophos functions (families of Purple acid 

phosphatase-like, 5'-nucleotidase (syn. UDP-sugar hydrolase) N-terminal domain, Protein 

serine/threonine phosphatase and DNA double-strand break repair nuclease) containing 53 

entries were used to generate a training set. However, the identification of frequent subgraphs 

requires the deletion of nearly identical structures to avoid any statistical bias. Thus, the 

public server PISCES55 was used for additional training set curation. PISCES provides user 

with an efficient service for culling sets of protein sequences using different thresholds such 

as the maximum pair-wise sequence identity (measured using the PSI-BLAST algorithm in 
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three iterations) or the crystal structure resolution. In this study, we used a 90% sequence 

identity cutoff, resolution less than 3 Å and R-value better than 0.3. After the curation, the 

training set consisted of ten PDB chains (see Table 2.1): 1s95A (PDB code: 1s95; chain A), 

1g5bA, 1s70A, 1kbpA, 1ii7A, 1auiA, 1xzwA, 1uteA and 1qhwA sharing no more than 85% 

pair-wise sequence identities (see Figure 2.1). 

 

Table 2.1: Metallophos training-set containing 10 protein chains 

 

PDB ID Chain Protein name 

1s95 A Serine/threonine-protein phosphatase 5 

1g5b A Serine/threonine-protein phosphatase  

1s70 A Serine/threonine-protein phosphatase PP1-beta catalytic subunit 

1kbp A Iron(III)-zinc(II) purple acid phosphatase  

1ii7 A DNA double-strand break repair protein mre11 

1aui A Serine/threonine-protein phosphatase 2B  

1hp1 A 5'-nucleotidase 

1xzw A Sweet potato purple acid phosphatase  

1ute A Pig purple acid phosphatase  

1qhw A Purple acid phosphatase from rat bone 
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Figure 2.1: Distribution of pair-wise sequence identities in the Metallophos training-set: (1) 
sequence length: average = b= 311 amino acid residues, minimum = 219 amino acid residues, 
maximum = 378 amino acid residues; (2) sequence identity: average = 18.6%, minimum = 7%; 
maximum = 85%, only 5 pair-wise alignments have sequence identities > 30%. 
 

2.2.2 Selection of the test set from the external dataset containing Metallophos members 
 

We found that the majority of proteins in each of the other five Metallophos families 

in SCOP 1.7.1 (families of YfcE-like, TT1561-like, Hypothetical protein aq_1666, DR1281-

like and Phosphoesterase-related) were proteins of unconfirmed Metallphos function. We 

included all members in those five families into the external dataset. We combined this 

dataset with new 74 Metallophos entries added in the new release of SCOP 1.7.3 and 

SCOP1.7.5. Then, the representative proteins were retrieved using the same PISCES criteria 

applied to generate the training set (see Section 2.2.1). In order to illustrate the performance 

of our approach on remote homology detection, we selected only proteins having sequence 

identity less than 20% when compared to the training-set members. We retrieved 12 proteins 

into the test set. Three of them have known Metallophos  functions according to the literature 

information (PDB chains: 3d03A (PDB code: 3d03; chain A)56, 1s3lA57 and 1t70A58). One 

had a function suggested from structures (2nxfA)59 whereas the rest were proteins of 
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unconfirmed Metallophos function (3ck2A, 1su1A60, 1xm7A, 1t71A, 2cv9A, 2yvtA, 1nnwA 

and 1uf3A).  

 

2.2.3 Background dataset 

In our subgraph mining-based approaches, frequent subgraphs retrieved from the 

training set of proteins of interest become common subgraphs if and only if they are rarely 

found in the proteins of a “background” database. In this study, the same PISCES criteria 

used to curate the training set (see Section 2.2.1) were applied to the PDB (May 2007 

release) to build a background dataset. This dataset included 6,605 non-redundant protein 

chains excluding the 84 Metallophos proteins in SCOP 1.7.1 (see Section 2.2.1). 

 

2.2.4 Identification of Metallophos-specific structural motifs using FFSM 
 

The FFSM approach33, 34 (see Section 1.3-1.5) was applied to mine Metallophos-

specific structural motifs (non-redundant frequent common subgraphs) from a training set of 

10 Metallophos proteins. Each protein structure in the training set was modeled as AD 

(Almost Delaunay) graph consisting of nodes and edges. In this study, motifs were restricted 

to fully interconnected subgraphs in which all nodes connect to each other. Other parameters 

were set for mining motifs from the graph representations of protein structures in the training 

set as follows: 

• Nodes represent alpha carbons (Cα) of amino-acid residues. There are 20 

possible types of nodes based on the 20 natural types of amino acid residues.  

• Edges which connects two adjacent nodes was determined according to the AD 

technique with ε=0.1. The edges were classified into 10 types; 5 types of AD 
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edges (edge length for type1 to type5 are 0-4, 4-6, 6-8.5, 8.5-10 and 10.5-12.5 

Å, respectively) and 5 types of distance constraints between non-contacting 

residues (edge length for type6 to type10 are 0-4, 4-6, 6-8.5, 8.5-10 and 10.5-

12.5 Å, respectively).  

• Minimum size of the motif was set to 4 amino acid residues  

• Minimum support (f) of that subgraph is the minimum fraction of family 

members in the training set that must contain that subgraph 

• Maximum background occurrence (b) is the maximum fraction of proteins in 

the background dataset that contain a subgraph of interest. The value of b was 

set to 0.1% by default. 

A subgraph is considered frequent if its ‘minimum support’ (f) value is higher than a 

user-defined threshold (e.g., f=0.9; the motif presents in at least 90% of the family members). 

However, those frequent subgraphs become frequent common subgraphs (motifs) if and only 

if  they are rarely (below certain frequency threshold) found in proteins of a ‘background’ 

dataset (b= 0.1%:  found in no more than seven proteins out of 6,605 non-redundant protein 

chains in the background dataset).  

However, the main concerns that need to be underlined are as follows: (1) FFSM used 

in this study recognized only a structural packing motif of fully interconnected subgraph, and 

(2) the method reported only maximal subgraphs (graphs that are not part of any larger 

frequent subgraphs). Although, this motif definition facilitates the computational task and 

assures the motif specificity, it increases the possibility of missing motifs that are not fully 

interconnected subgraphs or/and are only substructures of a large maximal subgraph.  

 
 



 
 

24

2.2.5 Identification of Metallophos-specific structural motifs using CASIM 
 

CASIM (see paragraph 1.6) was applied to mine Metallophos-specific structural 

motifs (frequent common Delaunay tetrahedral) from a training set of 10 Metallophos 

proteins. Each protein structure was modeled as DT (Delaunay tessallation) graph consisting 

of nodes and edges. Nodes represent side chain centroids of amino acid residues. There are 

20 possible types of nodes based on the 20 natural types of amino acid residues. Unlike 

FFSM that defines a motif as a fully interconnected subgraph, CASIM describes motifs as 

ensembles of neighboring Delaunay tetrahedral. Thus, we expected to recover motifs missed 

by FFSM or vice versa.  

To reach the goal of efficient and fast function annotation, CASIM was applied to 

identify Metallophos-specific motifs as follows (see Figure 2.2): 1) each family member in 

the training set is tessellated to obtain a list of its constitutive CASIM structural motifs, 2) 

The lists of motifs for all family members are processed to build pattern matrices where each 

row corresponds to a protein, and each column corresponds to the type of the motif. These 

matrices contain the occurrences of each motif’s type in every protein of the training set, 

using a specific sparse matrix implementation (only non-zero values are stored for 

efficiency). All motifs included in a given pattern matrix involve the same number of 

constituent Delaunay tetrahedra.  

The identification of motifs is fast and optimized. The parameters of minimum 

support (f) and maximum background occurrence (b) described under Section 2.4 were also 

adopted to retrieve motifs. Only motifs occurring with at least a given user-defined support 

(f) value (e.g., f=0.9; the motif presents in at least 90% of the family members) are retrieved. 

As discussed above, although certain motifs may be well conserved in a family, it does not 



 
 

imply that they are specific to this family. Each family

with high support (i.e., in significant number of protein members of a family) but low 

background (i.e., in a very small number of all other proteins). Therefore, the algorithm 

applies a ‘background’ frequency filter to obtain the list of conserv

are retained if and only if they are rarely found in the ‘background’ dataset

background occurrence (b) was

database). The background checker implemented 

standard Dual-Core PC) requires less than a second to retrieve all necessary information 

concerning the motifs in the background set; this high computational efficiency is achieved 

because all possible motifs present in 

stored in a database.  

Figure 2.2: The overall workflow to identify family
approach. 
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imply that they are specific to this family. Each family-specific motif is required

with high support (i.e., in significant number of protein members of a family) but low 

background (i.e., in a very small number of all other proteins). Therefore, the algorithm 

applies a ‘background’ frequency filter to obtain the list of conserved motifs. Frequent motifs 

are retained if and only if they are rarely found in the ‘background’ dataset

background occurrence (b) was set to 0.1% by default (less than 7 proteins with our current 

database). The background checker implemented in the CASIM software (running on a 

Core PC) requires less than a second to retrieve all necessary information 

concerning the motifs in the background set; this high computational efficiency is achieved 

because all possible motifs present in the background proteins have been pre
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in the CASIM software (running on a 
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concerning the motifs in the background set; this high computational efficiency is achieved 

the background proteins have been pre-calculated and 

 

specific structural motifs using the CASIM 
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2.2.6 Cumulative Support Profiles for protein function inference 

Since each amino acid residue in a protein is surrounded by other residues, there is an 

interesting question of characterizing the environment of each residue and investigating the 

structural similarity between the neighborhoods of each residue (especially the functionally 

significant ones) for a given target protein vs. a set of proteins (such as a family of proteins 

with the same function).  

One simple yet powerful approach to comparing residue environments between 

protein structures is the use of so called 3D-1D profiles. Originally proposed by Eisenberg61, 

this approach translates various parameters of a residue’s environment in 3D to a sequence-

specific profile where each residue in the sequence is given some sort of score reflecting its 

3D environment. 3D-1D profiles have been used in fold recognition61 or protein model 

quality assessment62. In our previous studies, we employed similar concept to compare 

proteins using profiles based on four-body statistical potentials generated with the help of 

Delaunay tessellation63.  

Here, we suggest a novel approach, called ‘Cumulative Support Profiles (CSP 

profile)’ . In order to generate the CSP profile for every Metallophos protein, all CASIM 

motifs involving from one to four neighboring Delaunay tetrahedra were calculated for the 

entire training set. Then, the support value (defined here as the number of family members 

possessing the given motif, i.e., ranging from 1 to 10 in this case) of each quadruplet 

occurring in a given protein was calculated. In addition, support values of all possible motifs 

involving two, three and four neighboring tetrahedra were calculated. The cumulative 

support of a given quadruplet is equal to the sum of the support values of all motifs involving 

this specific quadruplet (note that for CSP profile, support values are expressed not as 
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frequencies but as numbers of occurrences). For example, if the quadruplet DGGH has a 

support value equal to 6 (i.e., it occurs in 6 out of 10 proteins in the training set) and the 

motif DGGH-GGHN has a support of 2, the partial cumulative support of DGGH is 6+2 = 8. 

This procedure is repeated for all motifs involving the quadruplet DGGH to calculate a total 

value of the cumulative support for this quadruplet.  

This score can be calculated for any Delaunay quadruplet in any protein of the 

training set. If a quadruplet occurs frequently in a family, and so are its neighbors, its 

cumulative support is expected to be high. Thus, the cumulative support provides a 

quantitative assessment of the conservation of each Delaunay quadruplet of residues within a 

protein family. Similar consideration could then be applied to each amino acid residue to 

calculate its individual cumulative support: the latter is equal to the sum of the cumulative 

supports of all quadruplets involving this particular residue. Finally, the cumulative support 

values for each residue can be plotted against the residue number in the sequence to obtain 

the protein cumulative support profile (see Figure 2.7) where the peaks correspond to 

residues with the highest conserved 3D environment in the protein family.  

 

2.3 Results 

2.3.1 Metallophos-specific structural motifs identified by FFSM and CASIM  

Both FFSM and CASIM approaches were independently utilized for identifying 

structural motifs conserved in the training set of Metallophos members but found in no more 

than 0.1% (b=0.1) in the background dataset of 6605 protein chains. 

Small sets of motifs have been identified by FFSM and CASIM using multiple 

minimum support (f) values (see Table 2.2): (1) FFSM retrieved 31 to 12 motifs when f 
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value was increased from 0.8 to 1.0, respectively; (2) CASIM retrieved 13 motifs at f = 1.0.  

Both FFSM and CASIM detected the same set of eight residues in the training-set members.  

 

Table 2.2: Number of Metallophos-specific structural motifs retrieved from the family training set 
(column 2) at given support (f) values 

 
Methods Metallophos structural motifs 
FFSM  
f=0.8 31 motifs (8 residues) 
f=0.9 27 motifs (8 residues) 
f=1.0 12 motifs (8 residues) 

CASIM  
f=1.0 13 motifs (8 residues) 

 
 

The occurrence distribution of those motifs in the training set members and the 

background database (see Figure 2.3) revealed their good specificity to discriminate the 

Metallophos family. For instance, by using FFSM (Figure 2.3, top) at f = 0.8, there is a 

maximum of two motifs (among the 31 selected ones) which are present in some proteins of 

the background database (49 proteins possessed one motif and seven proteins possessed two 

motifs at most) whereas Metallophos training set members possess at least 18 motifs out of 

31 (six Metallophos proteins contained all 31 motifs). Thus, there is a significant difference 

between the minimum number (18) of structural motifs found in any training set protein and 

the maximum number (2) of motifs found in any protein of the background dataset. The 

results obtained from CASIM are in the same direction (Figure 2.3, bottom).  This 

observation clearly indicates the great specificity of FFSM and CASIM motifs for the 

Metallophos family. It should also be mentioned that the execution times required by both 

programs were formally similar (less than five minutes). However, FFSM runs on a cluster 
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client scripts under Linux. On the contrary, CASIM is executed locally (all 

calculations presented in this study were performed on a Dual-Core PC).  

Distribution of Metallophos-specific structural motifs retrieved by FFSM 
in the training set (blue) and the background dataset (red). 

The examples of two Metallophos-specific motifs detected by CASIM are given in 

, specifically their annotations: DDHH-DGGH-DGHN- DHHN

) and DDGH-DDHH-DGGH-DGHN  connectivity type 

; cf. Figure 2.4). Briefly, these two CASIM motifs A and B included seven 

residues involved in four neighboring Delaunay tetrahedra: for instance, motif A involves the 

tetrahedra DDHH, DGGH, DGHN and DHHN. Metallophos protein residues which are 

included in these two motifs are shown in Table 2.3. A rapid analysis suggests that motifs A 
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GHN and DHHN. Metallophos protein residues which are 

. A rapid analysis suggests that motifs A 

28 29 30 31

12 13



 
 

and B involve exactly the same residues but importantly, their types are different (1122 for 

motif A, 1222 for motif B): the tetrahedral connectivity between these residues is different 

because of the types of graph edges (i.e., an edge represents either a peptidic bond or 

geometrical proximity in 3D space) between the vertex

2.4). The nomenclature 1122 reflects that two Delaunay tetrahedra out of four included in 

motif A are of type 1 and the other two are of type 2.  Here the tetrahedron DDHH type 1 

(type 1 means that all four vertex

motif A not present in the motif B, whereas the tetrahedron DDHH type 2 (type 2 means that 

two out of four vertex-residues are consecutive in the protein sequence) is present in motif B.

 

 
Figure 2.4: Metallophos-specific motifs (DDHH
DGHN) retrieved by CASIM plotted on 
a training-set member): both motifs involve the same residues but different constitutive Delaunay 
neighbor tetrahedra, improving their specificity to recognize Metallophos activity
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and B involve exactly the same residues but importantly, their types are different (1122 for 

motif B): the tetrahedral connectivity between these residues is different 

because of the types of graph edges (i.e., an edge represents either a peptidic bond or 

geometrical proximity in 3D space) between the vertex-residues of the tetrahedra (see 

). The nomenclature 1122 reflects that two Delaunay tetrahedra out of four included in 

motif A are of type 1 and the other two are of type 2.  Here the tetrahedron DDHH type 1 

(type 1 means that all four vertex-residues are not consecutive in the protein sequence) in the 

motif A not present in the motif B, whereas the tetrahedron DDHH type 2 (type 2 means that 

residues are consecutive in the protein sequence) is present in motif B.

specific motifs (DDHH-DGGH-DGHN-DHHN and DDGH
DGHN) retrieved by CASIM plotted on serine/threonine-protein phosphatase 2B (PDB chain: 1au1A, 

: both motifs involve the same residues but different constitutive Delaunay 
ng their specificity to recognize Metallophos activity. 

and B involve exactly the same residues but importantly, their types are different (1122 for 

motif B): the tetrahedral connectivity between these residues is different 

because of the types of graph edges (i.e., an edge represents either a peptidic bond or 

residues of the tetrahedra (see Figure 

). The nomenclature 1122 reflects that two Delaunay tetrahedra out of four included in 

motif A are of type 1 and the other two are of type 2.  Here the tetrahedron DDHH type 1 

in sequence) in the 

motif A not present in the motif B, whereas the tetrahedron DDHH type 2 (type 2 means that 

residues are consecutive in the protein sequence) is present in motif B. 

 

DHHN and DDGH-DDHH-DGGH-
PDB chain: 1au1A, 

: both motifs involve the same residues but different constitutive Delaunay 
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Table 2.3: Metallophos-specific structural motifs retrieved by CASIM in the ten training-set 
members and also in hypothetical protein YfcE (PDB chain: 1su1A). ESA = Exposed Surface Area 
(Å2), ESA1; Volume in Å3.  

 
MOTIF DDHH-DGGH-DGHN-DHHN  

Protein Volume ESA TYPE 1122 

1auiA 37.3 131.4 ASP77 GLY104 ASP105 GLY136 ASN137 HIS186 HIS268 
1g5bA 41.4 139.4 ASP20 GLY48 ASP49 GLY74 ASN75 HIS139 HIS186 

1hp1A 45.0 148.5 ASP16 GLY58 ASP59 GLY90 ASN91 HIS192 HIS227 

1ii7A 45.1 149.8 ASP8 GLY48 ASP49 GLY83 ASN84 HIS173 HIS206 

1kbpA 60.5 192.2 ASP15 GLY43 ASP44 GLY80 ASN81 HIS166 HIS203 

1qhwA 38.0 131.0 ASP10 GLY47 ASP48 GLY86 ASN87 HIS182 HIS217 

1s70A 54.3 177.3 ASP64 GLY91 ASP92 GLY123 ASN124 HIS173 HIS248 

1s95A 37.4 129.8 ASP67 GLY95 ASP96 GLY127 ASN128 HIS177 HIS252 

1uteA 65.7 201.5 ASP12 GLY49 ASP50 GLY88 ASN89 HIS184 HIS219 

1xzwA 58.4 188.1 ASP16 GLY44 ASP45 GLY81 ASN82 HIS167 HIS204 

1su1A 33.8 122.0 ASP9 GLY36 ASP37 GLY72 ASN73 HIS105 HIS127 

MOTIF DDGH-DDHH-DGGH-DGHN 
Protein Volume ESA TYPE 1222 

1auiA 37.3 131.4 ASP77 GLY104 ASP105 GLY136 ASN137 HIS186 HIS268 
1g5bA 41.4 139.4 ASP20 GLY48 ASP49 GLY74 ASN75 HIS139 HIS186 
1hp1A 60.9 181.0 ASP16 GLY58 ASP59 GLY90 ASN91 HIS192 HIS227 
1ii7A 45.1 149.8 ASP8 GLY48 ASP49 GLY83 ASN84 HIS173 HIS206 
1kbpA 38.2 131.4 ASP15 GLY43 ASP44 GLY80 ASN81 HIS166 HIS203 

1qhwA 55.1 170.5 ASP10 GLY47 ASP48 GLY86 ASN87 HIS182 HIS217 
1s70A 56.4 184.3 ASP64 GLY91 ASP92 GLY123 ASN124 HIS173 HIS248 
1s95A 52.8 167.3 ASP67 GLY95 ASP96 GLY127 ASN128 HIS177 HIS252 
1uteA 65.7 201.5 ASP12 GLY49 ASP50 GLY88 ASN89 HIS184 HIS219 
1xzwA 50.9 161.9 ASP16 GLY44 ASP45 GLY81 ASN82 HIS167 HIS204 

1su1A 58.2 176.9 ASP9 GLY36 ASP37 GLY72 ASN73 HIS105 HIS127 
 
 
 

Furthermore, volumes as well as exposed surface areas (ESA) indicate a great 

homogeneity of the motifs found in the ten training-set members (see Table 2.3). For 

example, volumes of DDHH-DGGH-DGHN-DHHN varied from 37.3 to 65.7 Å3 whereas 

their ESA values were ranging from 129.8 to 201.5 Å2. A deeper analysis shows that these 

variations are due to several conformational shifts of residue side chains like HIS221 in the 

1ute protein, HIS323 in 1kbp, etc. Meanwhile, Multiple Structural Alignments of CASIM 



 
 

motifs (performed by the TMAlign program

training-set members revealed a very good local alignment of the seven residues involved in 

the motifs. In Figure 2.5, the motif DDHH

PyMol program under the control of PROTMAN via python scripts. For each residue within 

the motif, its representative vertices (corresponding to side chain centroïds) were fairly well 

superimposed. The RMSD values for each residue were in the range 0.41

overall RMSD value was equal to 0.59

 
 
Figure 2.5: Visualization of the Metallophos
retrieved by CASIM for all training set members.
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s (performed by the TMAlign program64 executed via PROTMAN interface) for the 

set members revealed a very good local alignment of the seven residues involved in 

, the motif DDHH-DGGH-DGHN-DHHN is visualized

PyMol program under the control of PROTMAN via python scripts. For each residue within 

the motif, its representative vertices (corresponding to side chain centroïds) were fairly well 

ed. The RMSD values for each residue were in the range 0.41-0.73

overall RMSD value was equal to 0.59Å for the whole DDHH-DGGH-DGHN

 

Visualization of the Metallophos-specific motif (DDHH-DGGH-DGHN
by CASIM for all training set members. 

executed via PROTMAN interface) for the 

set members revealed a very good local alignment of the seven residues involved in 

is visualized in the 

PyMol program under the control of PROTMAN via python scripts. For each residue within 

the motif, its representative vertices (corresponding to side chain centroïds) were fairly well 

0.73Å whereas the 

DGHN-DHHN motif.  

 

DGHN-DHHN) 
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2.3.2 Validation on test proteins of known function  

The three test protein structures (PDB chains: 3d03A, 1z2wA and 1t70A) had known 

Metallophos functions according to the published results from experimental analyses (see 

Supplementary data). In addition, the catalytic site residues were also suggested for the test 

proteins by the authors, mostly from structure analysis and few from mutation analysis. 

These test proteins have only 9-19% sequence identity to the training set. 

In this study, function inferences by CASIM and FFSM were relied on the appearance 

of Metallophos-specific motifs and the conserved key residues involved with those motifs 

(see Table 2.4 and Table 2.5). As reported in Section 3.1, the family motifs and conserved 

key residues detected by CASIM (f=1.0) and FFSM (f=0.8) were 13 motifs with 8 residues 

and 31 motifs with 8 residues, respectively. CASIM was capable of detecting all family 

motifs in 3d03A whereas FFSM detected the majority of the motifs (25 from 31 motifs and 7 

from 8 residues) in this protein. Compared to FFSM, CASIM captured the larger fraction of 

family motifs in 1z2wA. However, CASIM could not identify any family motifs in 1t70A, 

which was in turn identified by FFSM. Thus, by combining CASIM and FFSM (see Table 

2.4, column 6, CASIM-FFSM), we could retrieve the family motifs in all test proteins. This 

observation suggested the benefit of combining two methods to recover more motifs from 

graph space. 

CASIM-FFSM was able to detect the family motifs of 8 key residues corresponding 

to those found in the training set (see paragraph 3.1) in 3d03A and 1z2wA. The method only 

retrieved 1 motif in 1t70A. However, this single motif was highly specific to the family since 

it was not present in any proteins in the background dataset. 
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We evaluated the prediction performance of CASIM-FFSM with the published results 

and those from publicly available methods (see Table 2.4 and Table 2.5); Pfam, reverse 

template and enzyme active site template searches, and Catalytic Residue Prediction (CRP).  

The common highlights between reverse template search and CASIM-FFSM are that they 

aim to predict protein function based on structure data alone and do not require any prior 

knowledge of functionally important residues. The reverse template was generated by 

breaking the query protein itself into many three-residue templates of neighboring residues. 

Then, these small templates were scanned against a representative set of structures in PDB. 

The enzyme active site template search and CRP assigned active site residues based on the 

data obtained from the Catalytic Site Atlas (CSA). Enzyme active site templates were 

manually derived templates of three to six residues. Each template consisted of one, two or 

three residues known to be catalytic, and one or more additional conserved residues relative 

to the catalytic residues. CRP was mainly developed for predicting catalytic residues instead 

of predicting protein function. The method predicted key residues from sequence and 

structure feathers using SVM.  

 

Table 2.4: Function prediction on test proteins of known function using AFP methods. For reverse 
template and enzyme active site template searches, we reported only the first hit of known function 
having the highest scoring template and are not found in our external set; resi = number of amino 
acid residues. 

 
PDB 
chain 

Protein name 
 

% Seq 
iden 

to the 
training 

set 

CASIM 
(f=1) 

FFSM 
(f=0.8) 

 

CASIM-
FFSM 

 

Pfam Reverse 
template  

 

Enzyme 
active site 
template  

3d03A 
 

Glycerophos 
phodiesterase 

10-16 13 
motifs 
(8 resi) 

25 
motifs 
(7 resi) 

38 
motifs    
(8 resi) 

Metallophos 
(2.3e-13) 

1qhw 
(Metallophos) 

4kbp 
(Metallophos) 

1z2wA Vsp29 11-19 5 motifs 
(8 resi) 

1 motif 
(4 resi) 

6 motifs  
(8 resi) 

Metallophos 
(0.00047) 

3dsd 
(Metallophos) 

4kbp 
(Metallophos) 

1t70A 
 

DR1281 9-17 0 1 motif 
(4 resi) 

1 motif  
(4 resi) 

Metallophos 
(4.4e-6) 

3jyf 
(Metallophos) 

2dnj 
(Metallophos) 
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We found that CASIM-FFSM was able to detect the majority of published key 

residues in 3d03A and 1z2wA, and two published key residues in 1t70A.  It is important to 

underline that other residues detected by us that were not found in the literatures were all 

neighbors of the published key residues, and were found at the metal-binding sites. 

Pfam can also infer Metallophos function to all test proteins with high confidence (E-

value less than 0.001). This function inference by Pfam was based on the presence of the 

HMM profile of Metallophos family (PF00149) obtained from the publicly available Pfam 

database. 

 The reverse template and enzyme active site template searches were applied for both 

function inference and catalytic residue prediction. In our study, we reported only a hit 

(matched structure) having the highest score template and were not members of our external 

dataset. We found that reverse template search and enzyme active site template search were 

able to provide hits for every test proteins. All hits given by both methods were Metallophos 

proteins. In addition, most predicted catalytic residues retrieved by both methods were 

similar to those reported in the literatures and those identified by FFSM-CASIM.  

CRP was used for catalytic residue prediction with SVM-score threshold 2.5, a value 

reported by the authors to achieve almost 50% precision45. We found that the majority of the 

predicted residues were similar to those in the published and CASIM-FFSM results. 
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Table 2.5: Conserved key residues in test proteins of known PTK function: comparison of the key 
residues reported in the primary literatures and those from automated prediction methods. The 
predicted residues matching to the published residues are labeled in red. 

 
PDB 
ID 

Published results Predicted residues 

CASIM-FFSM Reverse template 
search 

Enzyme active site 
template search 

CRP 

3d03A 
 

Asp8, His10, 
Asp50, Asn80, 

His156, His 195, 
His197 

Asp8, Gly49, 
Asp50, Gly79, 
Asn80, His81, 

His156, His 195 

Asp8, His156, 
Cys193. 

Asp8, Asp50, 
Asn80, His81, 
His156, His195   

Asp8, His10, His50, 
Asn80, His81, 

His156, His195, 
His197  

1z2wA Asp8, Asn39, 
Asp62, His86, 

His117 

Asp8, Gly38, 
Asn39, Gly61, 
Asp62, His86, 
His115, His117 

Asp8, His86, 
Gly114 

Asp8, His10, 
Asn39, Asp62, 
His86, His115  

Asp8, His10, His86, 
His115, His117 

1t70A 
 

Asp8, Glu37, 
Asn38, Asn65, 

His148, His173, 
His175 

Gly64, Asn65, 
His66, His173 

Asp8, Asn35, 
His148 

Glu37, His148, 
Asp193, His175   

 

Asp8, Glu37, 
Asn65, His66, 

His173 

 
 

2.3.3 Predicting Metallophos function and conserved key residues in proteins of 
unconfirmed function 

 
We predicted the Metallophos function and conserved key residues in 9 test protein 

structures; one putative (2nxfA), one uncharacterized (3ck2A) and seven hypothetical 

proteins (1su1A, 1xm7A, 1t71A, 2cv9A, 2yvtA, 1nnwA and 1uf3A). All of them fell into the 

midnight zone (less than 20% sequence identity) when compared to the training set. CASIM-

FFSM was able to detect Metallophos motifs in the five following proteins (see Table 2.6). 

 

Putative dimetal phosphatase LOC393393 (PDB code 2nxf) from Danio rerio 

Protein LOC393393 shares 12-17% sequence identity to our training set. We inferred 

that this protein has a Metallophos function because it contains Metallophos motifs of 8 key 

residues. Our inference was corroborated by the following: (1) the authors of the structure 

suggested Metallophos function for this protein based on its similar topology to other 

Metallophos proteins59, (2) six key residues detected by us were similar to those suggested by 

the authors (Asp13, Asp60, Asn96, His97, His228 and His265), (3) the two residues (Gly59 
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and Gly95) identified by us that were not mentioned in the literature were also found at the 

active site, and (4) Pfam found the Metallophos profile in this protein with high confidence 

(E-value 6.4e-06). 

 

Conserved uncharacterized protein (predicted phosphoesterase COG0622) from 
Streptococcus pneumoniae TIGR4 (PDB code 3ck2) 
 
The crystal structure of this conserved uncharacterized protein was released to the 

PDB by the Midwest Center for Structural Genomics (MCSG) in 2008. This protein shares 

11-17% sequence identity to our training set. Pfam detected the Metallophos profile in this 

protein with low confidence (E-value 0.21). However, we were convinced that the protein 

has Metallophos function from the CASIM-FFSM results. We identified the majority of the 

family motifs containing 7 conserved key residues in this protein. In addition, the key 

residues (Asp11, Gly37, Asp38, Gly56, Asn57, His81 and His110) detected by us were 

present at the Mn2+-binding sites. Three of them (Asp11, Asp38 and His110) were similar to 

those predicted by CRP, which identified 5 residues (Asp11 (SVM score of 3.72), His13 

(3.41), Asp38 (3.59), His110 (3.82), His112 (2.90)).  

 

Hypothetical protein aq_1665 (PDB code 1xm7) from Aquifex aeolicus 

The crystal structure of hypothetical protein aq_1665 was deposited to the PDB by 

the MCSG in 2004 as a structural genomic target of unknown function. This protein shares 

low sequence identity (9-17%) to the training set. We inferred that this protein has 

Metallophos function based on the occurrence of 17 Metallophos motifs. Our function 

prediction was in agreement with that from Pfam, which found Metallophos profile in this 

protein with high confidence (E-value 6.2e-13). We also identified 8 conserved key residues 
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(Asp7, Gly49, Asp50, Gly77, Asn78, His79, His111 and His145) in this protein. Some of 

them were reported by other methods; (1) CRP identified 4 residues (His145, Asp50, His111 

and Asp7)45, and (2) the method predicting transition metal-biding in apo proteins by Babor’s 

group identified 4 residues (Asp7, His9, Asp50 and His111)65. 

 

Hypothetical protein MPN349 (PDB code 1t71) from Mycoplasma pneumoniae 

The crystal structure of hypothetical protein MPN349 was released by the Berkeley 

Structural Genomics Center (BSGC) to the PDB in 2004. This protein shares low sequence 

identity (7-18%) to the training set. Pfam was unable to provide any hit for this protein. 

However, we inferred Metallophos function to this protein due to the presence of 2 specific 

Metallophos motifs, which were not found in the background dataset. We also found that this 

protein share high similarity (38% sequence identity and DALI z-score 37.1) to protein 

DR1281 (PDB code 1t70), one of known Metallophos proteins in our test set. Our method 

predicted 5 conserved key residues (Gly70, Asn71, His72, His158 and His183). Three of 

them (Asn71, His72 and His183) were overlapped with those predicted by CRP, which 

identified 4 residues (Asp12 (SVM score of 3.16), Asn71 (2.68), His72 (2.96) and His 183 

(2.55)). 

 

Hypothetical protein YfcE (PDB code 1su1) from E. coli 

The crystal structure of hypothetical protein YfcE was deposited to the Protein Data 

Bank (PDB) by the Midwest Center for Structural Genomics (MCSG) as a structural 

genomic target of unknown function in 2004. The protein shares 13-19% sequence identity to 

the training set. The presences of 18 Metallophos motifs involved with 7 conserved residues 



 
 

highly suggested that the protein has Metallophos function.

DGHN-DHHN’ motif detected by CASIM 

presence of metal counter-ions and a phosphate group inside the motifs or in their close 

proximity. The prediction was supported by the following data: (1) structural and 

biochemical analysis by the authors revealed that the protein had the Mn

phosphatase activity60, (2) the authors suggested two metal binding sites: 

HIS11, HIS129 and ASP37 whereas the other one consist

HIS127. We identified 7 conserved key residues; five (Asp9, Asp37, Asn73, His105 and 

His127) were similar to those suggested by the authors whereas two were neighbors (Gly36, 

Gly72) to the reported residues. In this case, we di

data because Pfam incorporated protein 

profile. 

 
 
Figure 2.6: Visualization of the Metallophos
retrieved by CASIM for protein
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highly suggested that the protein has Metallophos function. An example of ‘

detected by CASIM is visualized in Figure 2.6. One can see the 

ions and a phosphate group inside the motifs or in their close 

The prediction was supported by the following data: (1) structural and 

y the authors revealed that the protein had the Mn

, (2) the authors suggested two metal binding sites: one include

HIS11, HIS129 and ASP37 whereas the other one consisted of ASP37, ASP73, HIS105 and 

7 conserved key residues; five (Asp9, Asp37, Asn73, His105 and 

His127) were similar to those suggested by the authors whereas two were neighbors (Gly36, 

Gly72) to the reported residues. In this case, we did not employ Pfam results as a support 

data because Pfam incorporated protein YfcE into a seed used to generate the Metallophos 

Visualization of the Metallophos-specific motif (DDHH-DGGH-DGHN
protein YfcE (1su1A (1su1 chain A)). 

An example of ‘DDHH-DGGH-

. One can see the 

ions and a phosphate group inside the motifs or in their close 

The prediction was supported by the following data: (1) structural and 

y the authors revealed that the protein had the Mn2+ dependent 

one included ASP9, 

of ASP37, ASP73, HIS105 and 

7 conserved key residues; five (Asp9, Asp37, Asn73, His105 and 

His127) were similar to those suggested by the authors whereas two were neighbors (Gly36, 

d not employ Pfam results as a support 

fcE into a seed used to generate the Metallophos 

 

DGHN-DHHN) 
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Table 2.6: Function prediction on test proteins of unconfirmed Metallophos functions using CASIM-
FFSM. Metallophos-specific structural motifs detected in the training set by CASIM-FFSM (FFSM at 
f=0.8 and CASIM at f=1.0) consisted of 44 motifs involved with 8 conserved key residues (see Table 
2.2).  

 
PDB 
chain 

Protein name 
 

% Seq iden 
to the training 

set 

#Metallophos motifs 
detected by CASIM-

FFSM 

# Key residues 
detected by 

CASIM-FFSM 
 

2nxfA 
 

Putative dimetal phosphatase 
LOC393393 

12-17 34 motifs 8 residues 

3ck2A Conserved uncharacterized protein 
(predicted phosphoesterase COG0622) 

11-17 17 motifs 7 residues 

1xm7A Hypothetical protein aq_1665 9-17 17 motifs 8 residues 

1t71A Hypothetical protein MPN349 7-18 2 motifs 5 residues 

1su1A 
 

Hypothetical protein YfcE  13-19 18 motifs 7 residues 

 
 

2.3.4 Cumulative Support Profiles: test case to YfcE 

Cumulative Support Profiles (CSP profiles) were obtained for each Metallophos 

protein of the training set. For illustration, the profile of 1auiA (Serine/threonine-protein 

phosphatase 2B) is shown in Figure 2.6. One can see significant peaks for 7 to 10 residues 

implying that both these residues and their environments are highly conserved within the 

family. The vast majority of these residues are situated in the metal-binding site area.  

We have further investigated the CSP profile of the YfcE protein as a case study (see 

Figure 2.7). Eleven significant peaks could be identified in this profile: among them, seven 

corresponded to the seven residues (ASP9, GLY36, ASP37, GLY72, ASN73, HIS105 and 

HIS127) that have been retrieved by CASIM in the two family-specific motifs DDHH-

DGGH-DGHN-DHHN and DDGH-DDHH-DGGH-DGHN and also correspond to the metal-

binding site of YfcE. These residues detected by the CSP profile are in perfect agreement 

with those identified in both FFSM and CASIM motifs. The remaining peaks may imply 
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residues that are critical for maintaining the overall 3D structure of the protein and thus 

relatively well conserved within the family. 

To validate the method using the CSP profile, ten proteins were chosen randomly 

from the background set. Then, the CSP profile was generated for 1su1A (hypothetical 

protein YfcE) based on the Metallphos motifs detected in those 10 proteins. The results 

showed that no peaks were retrieved, as expected (see Figure 2.8). 

 
 
Figure 2.7: The CSP profiles of the serine/threonine-protein phosphatase 2B (a training-set member 
1auiA, top) and hypothetical protein YfcE (PDB chain: 1su1A, bottom). X-axis = protein sequence, 
Y-axis = cumulative support scores. 
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Figure 2.8: The CSP profile generated from background dataset is not present in the test protein YfcE 
(PDB chain: 1su1A). Ten proteins have been randomly choosen from the background set. The 
cumulative support profile has been generated for 1su1 using this dataset. As shown above, no 
remarkable peaks are retrieved. 
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2.4 Discussion 

It is well accepted that proteins accomplish their functions using only a relatively 

small part of their structures that are highly conserved compared to any other regions. Motifs 

could be defined as highly conserved amino acid residues forming similar patterns that often 

represent functionally important regions. Many studies indicated that structural motifs are 

applicable for protein function annotation especially for detecting of remote homologues. 

However, few methods can predict structural motifs or conserved key residues based on 

structural properties alone. The limitations come from the difficulty of local structural 

alignments and comparison, and data mining on a large scale of protein structure database.  

In turn, many structural-motif based approaches rely on both sequence- and structure-based 

features. Theoretically, sequence information is more informative because the number of 

available protein sequences greatly exceeds the number of available structures. However, the 

development of the sequence-independent methods needs to be investigated in order to 

effectively exploit the 3D structure data missing at the sequence level. For example, the 

sequence-dependent methods, which depend on multiple sequence alignments of the family 

members, are capable of detecting a sequence motif only if (1) the motif can be aligned, and 

(2) if amino acid residues in that motif are conserved in terms of following the same order in 

the primary sequence. Actually, a protein is not a linear string containing one letter amino 

acid abbreviations as represented by multiple sequence alignments but it is a linear chain of 

amino acids folding into a unique three-dimensional structure. This implies that, first, family 

motifs should preserve both amino acid compositions and 3D packing patterns. Second, the 

amino acid compositions in the family motifs neither are necessary to be aligned in multiple 

sequence alignments nor follow sequence order. In this point of view, identification of 
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structural motifs from structure information alone is more challenging. That is because the 

identified structural motifs can represent both conserved residue compositions and their 

packing patterns but are not restricted to have similar sequence conservation. 

Bandyopadhyay et al previously reported the application of FFSM, the sequence-

independent AFP method, for function inference of proteins at structural levels. The family 

function was inferred to the test protein if significant numbers of family-specific motifs 

present in that protein10. In this study we extend the application of FFSM for predicting both 

structural motifs and conserved key residues in Metallophos proteins. However, the main 

concerns of FFSM are that the method defines a motif as a maximal subgraph (a graph that is 

not part of any larger frequent subgraph) in which every node connects to each other. This 

motif definition increases the possibility of missing motifs that are not fully interconnected 

subgraphs or/and are only substructures of a highly rigid motif (e.g., a large maximal 

subgraph). The novel CASIM has been developed to provide additional information retrieved 

from FFSM, and is expected to detect motifs missed by FFSM or vice versa. The application 

of CASIM for predicting protein function and conserved key residues is being reported for 

the first time herein. The idea behind the novel CASIM method is that; (1) the method 

defined the motif as an ensemble of neighboring Delaunay tetrahedral. This motif definition 

is different from the rigid structure of fully interconnected subgraph adopted by FFSM, (2) 

the substructure of a larger motif is also taken into account if that substructure is specific to 

the family, and (3) the method guarantees the motif conservation by providing a series of 

constitutive and geometrical descriptors such as amino acid composition, volume and ESA; 

in addition, the final set of family motifs can then be analyzed, visualized instantaneously in 
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the PROTMAN software (see Figures 2.5 and 2.6) via the PyMol66 program so that the motif 

matching and location can be revealed on protein structures.  

Both FFSM and the novel CASIM were able to capture structural motifs in the 

Metallophos proteins members by means of graph mining. Therefore, the methods can 

bypass the process of multiple structure alignments or aligning of local structures. We have 

showed that Metallophos motifs retrieved by both FFSM and CASIM are very specific to this 

family represented by a training set of ten protein members. We were also able to check the 

specificity of the identified motifs by scanning the motifs on the large set of 6,605 non-

redundant protein structures outside the Metallophos family. These motifs, discovered in 

complimentary fashion by both approaches, included a set of eight conserved key residues. It 

is important to underline that Metallophos-specific structural motifs could not be simply 

detected or visualized on the family structures by multiple structure alignments of the 

training set. However, based on the known eight conserved key residues detected by us, we 

could easily reveal the family motifs on the training-set structures. Interestingly, these 

conserved key residues occurring in all training-set members can be reasonably well 

superimposed, and are located around the metal-binding sites (see Figure 2.9). The fact that 

these eight residues represent only about 2-3% of the entire amino acid residues in each 

training set member implies the efficiency of FFSM and CASIM that were able to detect low 

similarity in the training set. 

 

 

 

 

 

 

 



 
 

46

 

 
 
 
 
Figure 2.9: Metallophos-specific motifs retrieved by 
CASIM-FFSM correspond to structurally conserved 
protein regions at the metal binding sites: Multiple 
Structural Alignments of Metallophos training set (grey 
ribbons);  Alignments of 8 amino acid residues 
involved in the Metallophos motifs (colored ribbons); 
Metal ions (magenta spheres). 
 
 
 

 
 

We validated the specificity of the identified Metallophos motifs on the three known 

Metallophos proteins having literature support. It is important to emphasize that these test 

proteins have low sequence identities (< 20% sequence identity) to our training set. As 

discussed in Chapter 1, function inference by pair-wise sequence comparisons are unreliable 

at this sequence identity threshold. We showed that using only number of significant motifs 

for function inference might not always be suitable. For example, based on number of 

significant motifs, Metallophos function can be inferred to the test protein if that protein has 

at least 18 FFSM-motifs or 13 CASIM-motifs (see Figure 2.3). By using this cut-off value, 

only the test protein Glycerophosphodiesterase (PDB code: 3d03) can be annotated as 

Mettallophos members (see Table 2.4). However, we also inferred Metallophos function to 

protein Vsp29 (PDB code 1z2w) and protein DR1281 (PDB code 1t70) although the numbers 

of motifs in these proteins fall below the cut-off value. In case of Vsp29, we detected 8 

amino acid residues corresponding to the entire 8 conserved key residues found in the 

training set. In addition, the majority of key residues present in Vsp29 were matched to those 

reported in the primary literature67, 68. In case of 1t70A, CASIM-FFSM retrieved only 1 
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motif. However, this single motif was highly specific to the family because it was not present 

in any protein in the background dataset. The limitation of using only significant numbers of 

motifs for function inference might be related to some technical limitations. For example, as 

discussed in the previous paragraph, FFSM selected only maximal subgraphs, which 

sometimes are excessively specific (e.g., a large and rigid subgraph) because the training-set 

members have high structure similarity compared to the test proteins.   The family member 

will be treated as a false negative even if it consists of a majority part of the highly specific 

maximal subgraph. To overcome this problem, CASIM considered the partial pattern of the 

maximal subgraph as the motif if that partial pattern is specific to the family at the given 

minimum support and maximum background occurrence values. However, the results 

detected by CASIM (see Figure 2.4) showed that the definition of graph edges can 

sometimes generate two different motifs involving with the same amino acid residues. The 

present of any of them in the test protein might be sufficient for function annotation. By 

combining the two methods (CASIM-FFSM), we were able to identify Metallophos motifs in 

all test proteins. Our prediction was in agreement with the published results.  

We compared our results with those from the sequence-based (Pfam), dual sequence 

and structure-based (enzyme active site template and CRP) and sequence-independent 

structure-based (reverse template) techniques. The prediction performance of CASIM-FFSM 

was comparable to those of well-known automated prediction methods. However, it is 

important to underline the following comparisons. First, our training set consisted of only 10 

representative proteins whereas the Pfam hmm profile of Metallophos family was generated 

from the seed of 330 protein sequences. We found that the hmm profile built from our 

training set of 10 proteins was not present in any test protein. In addition, Pfam is well 
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known for predicting protein function whereas our method is suitable for predicting both 

protein function and conserved key residues. On the other hand, CRP affords good 

performance on predicting catalytic site residue. However, the method does not offer an 

option of function inference. Second, our prediction did not require any prior knowledge of 

functionally important residues. In contrast, the enzyme active site template search and CRP 

generated the models based on the knowledge of catalytic site residues in the Catalytic Site 

Atlas (CSA). Third, although reverse template search is more sensitive than CASIM-FFSM, 

the method has some limitations. The concept of reverse template is to break the query 

protein structure into a set of 3-residue templates. Then, each template is scanned against the 

representative set of protein structures. Therefore, High sensitivity of reverse template search 

probably comes from the small size, flexibility and diversity of reverse templates. However, 

according to their small size, a 3-residue template might not be desirable for characterizing 

motifs or functionally important resides. Moreover the method can possibly select 

meaningless residues to build a template. An example was found in case of protein Rv0805. 

The Metallophos function of this protein was confirmed by structural and biochemical 

analysis69. The authors of the Rv0805 structure (PDB chain: 2hy1A) reported that the protein 

was a dimeric, Fe3+ -Mn2+ binuclear phosphodiesterase based on structural and biochemical 

analysis. Mutational analysis revealed the active site metals co-ordinateded by conserved 

aspartate, histidine and asparagine residues. They proposed the structure of the catalytic core 

in which Asp21, His23, Asp63 and His209 co-ordinate Fe3+ whereas Asn97, His169, Asp63 

and His207 co-ordinate Mn2+. The structure of Rv0805 (PDB code: 2hy1) was deposited in 

SCOP 1.7.5. This protein has 13-20% sequence identities to our training set. Therefore, 

2hy1was excluded from our test set of known Metallophos function since we focused only on 
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Metallophos proteins having less than 20% sequence identities to the training set. As reported 

in Section 3.1, the family motifs and conserved key residues detected by CASIM and FFSM 

were 13 motifs with 8 residues and 31 motifs with 8 residues, respectively. CASIM and 

FFSM were able to detect the entire family motifs of 8 key residues in 2hy1A. Among those 

8 conserved key residues identified by CASIM-FFSM, five of them (Asp21, Asp63, Asn97, 

His169, His207) were similar to those suggested by the authors of the structure whereas the 

other three (Gly62, Gly96, His98) were neighbors to those five amino acid residues. 

However, the active site residues (Thr138, His186, and Leu201) predicted by reverse 

template search for 2hy1 did not match to any residues in the published results.  

We then predicted Metallophos function and its conserved key residues in nine 

proteins of unconfirmed functions manually curated into the Metallophos superfamily in 

SCOP database. These test proteins have remote homology to our training set (sequence 

identities less than 20%). Thus, their function cannot be simply inferred to the training set 

using sequence comparison. CASIM-FFSM was capable of detecting the Metallophos motifs 

and key residues in the structures of 2nxfA, 3ck2A, 1su1A, 1xm7A and 1t71A, but did not 

detect any motifs in the structures of 2cv9A, 2yvtA, 1nnwA and 1uf3A. Pfam detected 

Metallophos profile (E-value 0.0015) in 2yvt.  However, Pfam identified the hmm profiles of 

other families in 2cv9 (PGA_cap family, E-value 0.081) and 1nnw (Libosomal_L36e family, 

E-value 0.25), and did not detect any Pfam profile in 1uf3. Enzyme active site template 

search failed to afford any hits to the four test proteins missed by us. On the other hand, the 

first hits of known function for the three test proteins, 2cv9, 2yvt and 1nnw, provided by 

reverse template search are Metallophos proteins. High sensitivity of reverse template search 

probably comes from the small size, flexibility and diversity of reverse templates. In contrast, 
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it is important to underline that high sensitivity of the method can sometimes provide false 

positive results as discussed in the previous paragraph.  

 Herein, we have presented another novel approach using CSP profiles for predicting 

the likely conserved key residues. In addition, we found that the Metallophos proteins share 

specific CSP profiles that are not present in other proteins. Thus, we propose that CSP profile 

could help detecting and visualizing most conserved residues in protein families and serve as 

a fast and efficient additional tool for function annotation.  

Investigation of structural motif conservation at a sequence level has disclosed some 

interesting observations. Metallophos-specific structural motifs detected by CASIM-FFSM 

(FFSM at f=0.8 and CASIM at f=1.0) consisted of 44 motifs involved with 8 conserved key 

residues (see Table 2.2). We have transformed each structural motif into PROSITE-like 

signatures. Following this strategy we retrieved 44 signatures (31 and 13 signatures related to 

FFSM and CASIM motifs, respectively). In order to generate the signatures, we mapped 

residues involved in a given structural motif onto the primary sequences of the training set 

members and then calculated the distance between those two adjacent residues in each 

training set member. In a sequence signature, amino acid residues encoded in the structural 

motif are represented by the standard one-letter codes. Numbers inside figure brackets 

represent the first and last sequence position of a range of amino acids separating two 

sequential residues within the motif. For example, the CASIM structural motif DDHH-

DGGH-DGHN-DHHN was transformed into the following sequence signature: 

‘D.{27,42}GD.{25,38}GN.{49,101}H.{33,82}H’. This signature consists of D, any 27 to 42 

amino acids, G followed by D, then any 25 to 38 arbitrary amino acids, G, N, any 49 to 101 

amino acids, H, any 33 to 82 amino acids, and then H.  
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In case of protein YfcE (PDB code 1su1), we expected that we would detect many 

sequence signatures (see Section 2.3.3) in 1su1A sequence as what we found in 1su1A 

structure (18 motifs containing 7 conserved key residues). Surprisingly, only the signature 

‘D.{27,42}D.{31,38}N.{48,135}H’, transformed from a motif DHND, was present in 1su1A 

sequence. We then mapped residues involved with the motif DHND onto 1su1A sequence. 

We found that the signature ‘D.{27}D.{35}N.{53}H’ in 1su1A sequence is a subset of a 

corresponding signature ‘D.{27,42}D.{31,38}N.{48,135}H’ in the training set. We further 

investigation on the set of 17 motifs found in 1su1A structure but their corresponding 

signatures were not present in 1su1A sequence. A deeper analysis of these results showed 

that we could not detect some of those corresponding signatures in 1su1A sequence because 

of only one non-equivalent residue range. For example, the signature D.{34}GN.{53}H in 

1su1A sequence is not matched with the corresponding signature 

‘D.{24,37}GN.{110,135}H’ in a training set because the length between asparagine and 

histidine in 1su1A sequence is much shorter. It follows that there is low similarity at the 

sequence level for highly similar structural motifs. To get deeper insights we used multiple 

structure alignments to map the 7 selected residues corresponding to Metallophos-specific 

structural motifs onto both the training-set members and the 1su1A structure. Then, we 

compared the physical distances between pairs of residues with their distances at the 

sequence level. Examples of distances between certain asparagines and their adjacent 

histidines are given in Figure 2.10. We found that the distances between these two residues 

in the structures of the training set members and in the 1su1A structure are almost constant: 

8.0 - 8.4 Å. However, the distances at the sequence level represented by ranges of residues 

varied from 110 to 135 residues for the training set members whereas only 53 amino acids 
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were present between these two residues in the 1su1A sequence. The case studie of YfcE 

demonstrate how function annotation cannot be obviously achieved at the sequence level 

only and that local family-specific structural motifs are better suited for efficient function 

prediction. 

 
 
Figure 2.10: Measurement of the distances between two residues (histidine (HIS) and the adjacent 
asparagine (ASN); blue: HIS and ASN in the training set members, red: HIS and ASN in 1su1 
structure) involved in Metallophos-specific structural motifs retrieved by CASIM-FFSM. 

HIS ASN 



 
 

53

2.5 Conclusions 

In this study, we have addressed several challenging problems in the area of 

automated function prediction as follows: (1) implementation of CASIM-FFSM and CSP-

profile search, DT- based methods for predicting protein function based on structure 

information alone, (2) identification of local similarities (motifs) without aligning of local 

structures, and (3) prediction of function and the likely functionally important residues in 

proteins of unconfirmed function having remote homology to the training set. Using the 

Metallophos family as a test case, we have demonstrated that CASIM-FFSM is capable of 

detecting Metallophos-specific motifs in a small set of ten Metallophos structures. These 

family motifs are packed with inclusive information such as the geometry of the motifs, and 

amino acid types as well as the connection of those amino acid residues. We have established 

that the Metallophos family specific motifs include residues forming the metal-binding active 

sites in the training-set members. These family motifs are found in all five test proteins 

having known Metallophos function according to the literature information. In most cases, 

the authors of the structures also hypothesized about functionally important residues based on 

manually structure analysis. The identified key residues detected by CASIM-FFSM that are 

similar to those from the published results support the experimental hypothesis. The 

predicting performance of CASIM-FFSM is comparable to the current state-of-the art 

methods; Pfam, active site template and reverse template searches and CRP. However, the 

following aspects need to be taken into accounts: (1) our method provides some information 

that are not captured by Pfam such as 3D structural motifs and their conserved key residues, 

(2) unlike active site template search and CRP, CASIM-FFSM does not require any prior 

knowledge of active site residues, and (3) CASIM-FFSM gives more information about the 
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structural motifs compared to those provided by the reverse template search. Furthermore, we 

infer Metallophos function and predict conserved key residues that are hypothesized as likely 

functionally important residues in five proteins of unconfirmed functions having sequence 

identity less than 20% to the training-set members. We also have verified that structural 

motifs are better suited for automatic function annotation compared to the corresponding 

sequence patterns derived from structural motifs. Finally, we have developed a novel 

approach for generating 3D-1D Cumulative Support Profiles that afford fast and automated 

identification and visualization of amino acid residues that are conserved within protein 

families.  

 

2.6 Supplementary data 

The published data for test proteins of known Metallophos functions  

 
Glycerophosphodiesterase structure (GpdQ, PDB code 3d03)56 from Enterobacter 
aerogene 
 

The authors of the structure applied structural, spectroscopic and kinetic techniques to 

disclose the plausible catalytic mechanism of the protein. They suggested that the amino acid 

residues involved in the catalytic site were Asp8, His10, Asp50, Asn80, His156, His 195 and 

His197. In addition, mutation study at Asn80 showed the contribution of this amino acid 

residue to reactivity. 

 

Recombinant mouse mVps29 (PDB code 1z2w)67, 68  

Elucidation of the crystal structure of recombinant mouse mVps29 revealed that the 

protein had similar fold to Metallophos proteins. In addition, mutational analysis of human 
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Vsp2967 showed that the enzymatic activity was reduced by alanine substitutions at Asp8, 

Asn39, Asp62, His86 and His117. 

 

DR1281 structure (PDB code 1t70)58 from Deinococcus radiodurans 

The Metallophos function of the DR1281 structure was confirmed by the structural 

and enzymatic studies. The authors also proposed conserved residues involved in metal 

binding and catalytic activity based on structure analysis. Those residues were Asp8, Glu37, 

Asn38, Asn65, His148, His173 and His175. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

CHAPTER 3 
 

A NOVEL APPROACH FOR PROTEIN FUNCTION PREDICTION AT THE SEQUENCE 
LEVEL BASED ON FAMILY-SPECIFIC STRUCTURAL MOTIFS 

 
   
3.1 Introduction  

At present, most Automated Function Prediction (AFP) approaches have been 

developed for assessing protein function at the sequence level because of the following major 

reasons. First, the number of protein sequences without known function greatly exceeds the 

number of their structures70, and thus is critical. Second, it is well known that protein 

structures are more conserved and informative than their corresponding sequences19. 

However, it is not completely clear whether using structural information alone is better than 

relying on sequence information for inferring protein function reliably. The main concern is 

due to the limitation of available structural data. Third,  as we discussed in Chapter 1, 

extracting meaningful information from protein structures are limited by some computational 

technical difficulties (e.g., multiple structure alignments, aligning of local structures, and 

scanning of motifs on the large scale of protein structure database). Therefore, studying the 

relationships between protein sequences, structures and function is traditionally based on the 

sequence-to-structure-to-function paradigm. 

In Chapter 1, we reported that FFSM and the novel CASIM, two structure-based AFP 

approaches used in our study, were able to detect Metallophos-specific structural motifs and 

the key residues being responsible for biological function of the family, which were 
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successfully applied for function prediction of Metallophos. CASIM-FFSM overcomes major 

computational problems (see Chapter 1) by means of graph mining. However, currently, 

FFSM, CASIM and other publicly available structural motif-based methods are applicable 

for protein function prediction at structural level only. 

In this chapter, we present a novel concept of nontraditional protein function 

prediction, from structure to sequence to function. We tested our approach on the family of 

protein-tyrosine kinases (PTKs), a well-studied and well-defined group of proteins. PTKs are 

enzymes that catalyze phosphorylation reactions by removing the γ-phosphate group from 

ATP and covalently attaching it to a hydroxyl group of tyrosine site in the substrate. They are 

key enzymes in many signal transduction pathway71. We formulated the new approach of 

protein function prediction at sequence level based on family-specific structural motifs. We 

applied FFSM to identify structural motifs (frequent subgraphs) conserved in PTKs (CASIM 

was not used in this study; the process of transforming structural motifs into sequence 

signatures is still under development.). As structural motifs representing three-dimensional 

objects could not be directly mapped onto the linear string of protein sequences, we 

converted those identified structural motifs into PROSITE-like signatures. We then 

determined the predicting power of the method by scanning those sequence signatures on the 

large scale of protein sequences. We benchmarked our method with several well-known, 

sequence-based function prediction methods (PROSITE, PRINTs and profile HMMs 

searches).  
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3.2 Methods 

3.2.1 Training set of PTK structures 

In the Structural Classification of Proteins (SCOP) database, PTK structures are 

classified as members of Protein kinases, catalytic subunit family (SCOP ID 88854), which 

includes both structures of PTKs and serine/threonine kinases.  

In the area of bioinformatics, EC annotation is widely used to describe function of 

PTKs (EC 2.7.10: protein-tyrosine kinases). Therefore, we applied EC annotation as 

functional label to relate PTK structure, sequence and function. Functional label of PTK 

members were retrieved from the database of ‘PDBsum’9, which annotates functions of 

protein structures (PDB chains) according to GO term and EC number of their corresponding 

UniProt sequences. The main concern of PDBsum that needs to be taken in to account is that 

function annotation is assigned to a whole sequence rather than the structure. Therefore, PDB 

structure elucidated from a larger multi-domain protein sequence will often have an EC 

annotation although the catalytic domain has been deleted from the structure. For example, 

enzyme megakaryocyte-associated tyrosine-protein kinase belongs to EC 2.7.10.2, a family 

of non-specific protein-tyrosine kinase. Its sequence (Swiss-Prot ID: P42679) in one chain 

consists of 3 domains; Src homology 3 domain (SH3), Src homology 2 domain (SH2) and 

tyrosine kinase catalytic domain. Only tyrosine kinase catalytic domain is responsible for 

tyrosine kinase function. However, its structure (PDB ID: 1jwo chain A), which lacks of 

tyrosine kinase catalytic subunit is still assigned as a member of EC 2.7.10.2 (see Figure 

3.1).  

 

 



 
 

59

 
 
 
 
Figure 3.1: A: A protein sequence P42679 consists of 3 domains (SH3, SH2 and tyrosine kinase (Tyr 
pkinase) domains). B: A protein structure 1jwo chain A, a related structure of P42679, consists of 
only SH2 domain. Only Tyr pkinase domain is responsible for tyrosine kinase activity. However, 
1jwo has incorrect annotation as a member of tyrosine kinase family (EC 2.7.10.2) by PDBsum. 
 
 

In order to establish the dataset of homologous PTK structures sharing similar 

function annotated by EC number (2.7.10), we defined the function of PTK structures based 

on EC annotation in PDBsum. Then, those PDB chains were filtered against SCOP. Only 

PDB chains present in the family of Protein kinases, catalytic subunit family (SCOP ID 

88854) were incorporated in the ‘PTK-structural dataset’. This process was aimed to avoid 

wrong annotation by PDBsum in the case of truncated structures. The PTK-structural dataset 

consisted of 61 unique protein chains with EC 2.7.10 (Protein-tyrosine kinases or Tyrosine 

kinases). The PISCES criteria used to generate Metallophos-training set in Chapter 2 (see 

section 2.2.2) was applied to select ‘PTK-training set’. This representative set of non-

redundant entries (PTK-training set) contains 24 protein chains; 1agwA (PDB ID: 1agw, 

chain A), 1bygA, 1fpuA, 1rjbA, 1fvrA, 1i44A, 1jpaA, 1k2pA, 1k3aA, 1lufA, 1m17A, 

1mp8A, 1mqbA, 1oecA, 1pkgA, 1qpeA, 1r0pA, 1sm2A, 1u4dA, 1u59A, 1vr2A, 1xbbA, 

2hckA and 2src.  Six mutant PDBs in this PTK-training set were curated by replacing the 

names of modified residues or mutated residues with their native-residue names (see Table 

3.1). We assumed that the replacement does not change the geometry patterns of the 

structures. The pair-wise sequence identities between all members in the training set were 18-

85.8% (see Figure 3.2).  
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Table 3.1: PTK training-set containing 24 proteins 
 
 

PDB ID 
& Chain   

Protein 
name 

Mutation 
 

PDB ID    
& Chain  

Protein name 
 

Mutation 
 

2src_ Src   1agwA  FGFR-1 L457V, C488A, C584S   

2hckA HCK   1oecA  FGFR-2   

1qpeA  LCK   1vr2A  VEGFR-2   

1k2pA BTK 1pkgA  Kit Y568PTR, Y570PTR 

1bygA  CSK   1rjbA  FLT3   

1fpuA  ABL1   1i44A  Insurin receptor C981S, Y984F, D1161A 

1lufA MuSK  1k3aA IGF-I receptor 
Y1131PTR, Y1135PTR, 
Y1136PTR 

1mp8A FADK 1 1r0pA  HGF receptor 
Y1194F, Y1234F, Y1235D, 
V1272L 

1m17A  ErbB-1   1sm2A ITK/TSK  

1jpaA EPH-3 
Y604F, 
Y610F 1u59A ZAP-70  

1mqbA ECK 1u4dA  ACK-1   

1fvrA TIE-2 1xbbA  SYN   
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Figure 3.2: Distribution of pair-wise sequence identities in the PTK training-set: (1) sequence 
length: average = 283 amino acid residues, minimum = 245 amino acid residues, maximum = 449 
amino acid residues; (2) sequence identity: average = 32.4%, minimum = 18%; maximum = 85.8%.  

 

3.2.2 Background dataset 

The same PISCES criteria used to curate the training set (see section 3.2.1) were 

applied to protein structures in the PDB (May 2007 release) to build a background dataset. 

This dataset included 6,605 non-redundant protein chains excluding the 61 PTK structures in 

PTK-structural dataset. 

 

3.2.3 Identification of structural motifs from PTK-training set using FFSM 

 
The same criteria (see Section 2.2.4) used to identify Metallophos motifs by FFSM 

were applied to mine non-redundant structural motifs in PTK-training set with a given 

minimum support (f) values varied from 0.5 to 1.0 and maximum background occurrence (b) 

value 0.1%.  
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3.2.4 Transformation of structural motifs into sequence signatures 

Each structural motif identified in the previous step was converted into a PROSITE-

like sequence signature. For example (see Figure 3.3), consider a motif containing 5 

residues; S, P, D, W and C, these residues were mapped onto the primary sequences of 

protein chains in the family-training set. Then, the distance between those two adjacent 

residues in the motifs were calculated. In a sequence signature, those five amino acid 

residues were represented by the standard one-letter code. The numbers inside curry brackets 

represented the number of arbitrary 

amino acids between two adjacent 

residues. If there were two numbers 

inside the curry brackets, the former 

represented the minimum number of 

residues whereas the latter 

represented the maximum number of 

residues. If a motif corresponded to 

more than one sequential order 

pattern, this motif would be 

converted into more than one 

sequence signature as well. 

 
Figure 3.3: Transformation of a structural motif into corresponding sequence signatures.  
A:  A motif size 5 containing SER, ASP, TRP, CYS and PRO.  
B: Deriving sequence signatures by mapping residues in the motif (red) onto primary sequences of 
the training set (showed examples of some members in the training set). The numbers inside the curry 
bracket represented the number of arbitrary amino acids between two adjacent residues in the motif. 
 
 
 

 

 
2SRCA SDVWSFGI QCWRKEP 
1QPEA   SDVWSFGI LCWKERP 
1FPUA    SDVWAFGV ACWQWNP 
1LUFA    SDVWAYGV LCWSKLP 
1MP8A   SDVWMFGV KCWAYDP 
1FVRA   SDVWSYGV QCWREKP 
1AGWA  SDVWSFGV DCWHAVP 
1VR2A   SDVWSFGV DCWHGEP 
1I44A     SDMWSFGV MCWQFNP 
1K3AA    SDVWSFGV MCWQYNP 
1SM2A    SDVWSFGV HCWKERP 
1K2PA      PPEVL--MYSKFSSKSDIWA       SCWHEKA  
 
Sequence signatures: 
1) SD.{1}  W. C.{51,52}C.{4} P 
2) P.{12} SD.{1} W.{51}  C 

S 
C 

W P 

D A.  
 

B. 
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3.2.5 Test set of protein sequences 

A test set of protein sequences (TEST_SET_SEQ) was used to evaluate sequence 

signature conservation and prediction abilities of our tools on a family of PTKs. This set was 

obtained from the sequence database of SwissProt release 54.3 (October 2, 2007; 285335 

unique protein sequences). After excluding protein sequences related to the PTK-training set, 

the TEST_SET_SEQ consisted of 285311 protein sequences that were classified into two 

groups:  

(1)  The group of ‘true family members’ (448 PTK sequences)  

(2)  A group of proteins outside PTK family assigned as 

‘BACKGROUND_SEQUENCE_DATASET’ (284,863 protein sequences) 

 
3.2.6 Determination of specific-pattern conservation using precision and recall  

The conservation of each sequence signature in PTK sequences was measured on 

TEST_SET_SEQ dataset using precision and recall values calculated by the following 

formulas:  

%precision  =   TP/(TP+FP)*100     

%recall  =   TP/(TP+FN)*100 

Here (see Section 3.2.5): 

TP was the number of protein sequences in ‘true family members’ correctly predicted 

as family members.  

FP was the number of false positives or proteins sequences in ‘BACKGROUND_ 

SEQUENCE_ DATASET’ incorrectly predicted as family members.  

FN was the number of false negatives or protein sequences in ‘true family members’ 

that were missed.  
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3.2.7 Using family-specific sequence fingerprints for function prediction of protein 
sequences 
 
A ‘ fingerprint’ is referred as an ensemble of motifs related to conserved regions in a 

protein family. Each motif is unique; however some features of each motif can be overlapped 

with other motifs in the fingerprints. Function annotation using fingerprints is based on 

multiple-motif matching, which is more flexible and powerful than a single-motif approach10, 

72. Only sequence signatures specific to PTK sequences (% precision at least 90% in the 

TEST_SET_SEQ and presented less than 0.03% in the 

BACKGROUND_SEQUENCE_DATASET) referred as ‘sequence motifs’  were incorporated 

in the ‘PTK-specific sequence fingerprints’. Precision-Recall (PR) curve was applied for 

selecting the minimum number of sequence motifs that the family members needed to have. 

Using PR curve afforded more accuracy than its related structure, a Receiver Operator 

Characteristic (ROC) curve, in an unbalanced dataset73 especially when the number of 

negative samples extremely exceeded the number of positive samples such as our 

TEST_SET_SEQ. 

 

3.2.8 Benchmark methods 

Three benchmark methods were used in this study.  

(1) A sequence motif search of a PROSITE signature  

PROSITE signature or pattern is a unique sequence motif attempting to characterize a 

short and well-conserved region, such as catalytic site and binding region. PROSITE 

pattern is a single regular expression generated from multiple sequence alignments. Each 

position can allow one or more amino acids, which are presented by the standard one-letter 

abbreviations. The acceptable and unacceptable amino acids for a given position are listed 
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inside the square brackets and the curly brackets, respectively. The letter “x” represented any 

arbitrary amino acids.  

Two PROSITE patterns were used in this study: (1) ‘PROSITE_pattern1’ was a 

PROSITE pattern of tyrosine protein kinase specific active-site (PS00109) obtained from 

PROSITE database74 (release 20.37 of 23-Sep-2008; and (2) ‘PROSITE_pattern2’ was 

constructed from 24 PDB sequences of PTK-training set using PRATT 2.1 program75, 76 The 

predicting power of the method was determined by motif searching on TEST_SET_SEQ 

using ‘ps_scan.pl’ program77 with default settings. Protein sequences having such a 

PROSITE pattern were assigned as ‘hits’. 

 

PROSITE_pattern1: [LIVMFYC] – {A} - [HY] - x - D - [LIVMFY] - [RSTAC] - {D} – 

{PF} - N - [LIVMFYC]) 

 

PROSITE_pattern2:S-D-x-W-x-[FY]-G-[IV]-x-[LMV]-x-E-x(4)-[AG]-x(2)-P-[F WY] 

 

(2) A sequence motif search of PRINTS fingerprints 

PRINTS is a public database of protein motif fingerprints. The fingerprints are 

defined as a set of sequence motifs derived from conserved regions in multiple sequence 

alignments. The PRINTS fingerprints of PTKs (the tyrosine kinase catalytic domain 

signature; PR00109) were retrieved from PRINTS database23. This signature consists of five 

non-overlapped sequence motifs with 14, 19, 11, 23 and 23 amino acid residues. We 

searched for the PRINTS fingerprints of PTKs using a searching tool “FingerPRINTSCan” 

obtained from the fingerPRINTScan package72. Hits (protein sequences in TEST_SET_SEQ 
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containing the PTK fingerprints) were determined according to E-value, which is the 

expected number of occurrences of sequences scoring greater than or equal to the query's 

score. The lower the E value is, the more significant the score. E-value calculation depends 

on the size of the database characterized by the number of amino acid residues in the 

database and the length of the fingerprint. The database used in this study was the 

TEST_SET_SEQ containing 285311 protein sequences (see Section 3.2.5) and 1.04751085 

X 108 amino acid residues.  

 

(3) A protein sequence profile search of profile HMMs 
 
Hidden Markov Models (HMMs) derive a profile or position-specific scoring from 

the multiple sequence alignment of protein sequence using gap and insertion scores. The 

profile displays position-specific information about the degree of conservation at various 

positions in the multiple alignments.  Three profile HMMs of PTKs were used in this study. 

Two of them were Pfam profiles of PTKs (symbol: Pkinase_Tyr; Pfam ID: PF07714) 

obtained from Pfam database: one was a global alignment model (Pkinase_Tyr_ls.hmm) and 

another was a local alignment model (Pkinase_Tyr_fs.hmm). These two models were 

generated from 152 known PTKs. The third profile HMMs of PTKs was generated from the 

multiple sequence alignment of 24 PTK sequences in our PTK-training set using HMMER 

program78.  

 
3.2.9 Benchmarking analysis 

The prediction performance of our method was compared to those of benchmarking 

methods (see Section 3.2.8) on the TEST_SET_SEQ using %precision and %recall.  

 



 
 

67

3.3 Results 

3.3.1 PTK-specific structural motifs and their related sequence signatures 
 
Small set of PTK-specific structural motifs have been identified by FFSM (see Table 

3.2 column 2) at a given minimum support (f) values varied from 0.5 to 1.0 (e.g., f=0.5; the 

pattern presents in at least 50% of the training-set members). These specific motifs were 

found in no more than 0.1% of 6,605 protein structures in the background dataset. The motif 

sizes were between 4 to 9 amino acid residues.  

Each structural motif was then transformed into the sequence signature. At f value 0.5 

to 0.9, there were more sequence signatures than their structural motifs (see Table 3.2). That 

was because some structural motifs corresponded to more than one sequential order pattern. 

 

Table 3.2: Number of PTK-specific structural motifs retrieved from PTK structures in the training set 
(column 2) and number of their corresponding sequence signatures (column 3) at given minimum 
support (f) values. 

 
Minimum 
support (f) 

# Structural motifs # Sequence signatures 

f=0.5 2956 2996 
f=0.6 1728 1750 
f=0.7 800 812 
f=0.8 391 397 
f=0.9 61 62 
f=1.0 17 17 

 
 
3.3.2 Conservation of the sequence signatures in PTKs  

Determining family conservation of sequence signatures on TEST_SET_SEQ showed 

that many sequence signatures, derived from structural motifs retrieved by FFSM, were 

specific to PTK sequences with high precision. However, some sequence signatures, even 

derived from structural motifs occurring in most of the members of PTK-training set, 
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provided low precision. For example, among 17 sequence signatures translated from 17 

structural motifs at f = 1.0, four of them obtained %precision less than 50% (see Figure 3.4). 

On the other hand, two signatures with the highest prediction accuracy, which were 

HRD.{37,45}W.{14}SD (99.18% precision and 81.47 %recall) and HRD.{37,45}W.{14} 

SD.{1}W (99.18 %precision and 80.58 %recall) were derived from structural motifs with f 

values only 0.6 and 0.5, respectively.  

 

 

Figure 3.4: Prediction accuracy of sequence signatures derived from structural motifs at f=1.0.  The 
prediction accuracy of each sequence signature was present by %precision (blue) and %recall (pink). 
 
3.3.3 Prediction accuracy of FFSM-based models using PTK-specific sequence fingerprints 

for function inference of PTK sequences 
 
The results from Section 3.3.2 implied that not all sequence signatures were suitable 

for inferring PTK function. Therefore, only the signatures specific to PTK sequences (% 

precision at least 90% in the TEST_SET_SEQ and present less than 0.03% in the 

BACKGROUND_SEQUENCE_DATASET) referred as ‘sequence motifs’ were used in this 

study. 

PTK-specific sequence fingerprint was defined as an ensemble of sequence motifs. 

We generated five sets of fingerprints; A, B, C, D, E and F according to the original set of 

Example: Prediction accuracy of 17 sequence signatures 
with f =1.0
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structural motifs with f= 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, respectively. For example (see Table 

3.2 and Figure 3.5), Fingerprint A consists of 1236 sequence motifs filtered from 2996 

sequence signatures derived from 2956 structural motifs at f=0.5.  

 

Minimum support  
(f) 

0.5  
(12/24)  

0.6  
(14/24)  

0.7  
(17/24)  

0.8  
(19/24)  

0.9  
(22/24) 

1.0  
(24/24)  

# Structural motifs 2956 1728 800 391 61 17 

# Sequence signatures  2996  1750  812  397  62  17  

 Select sequence signatures with precision ≥ 90%  

# Sequence motifs  1236  658  280  121 16  2 

PTK-specific fingerprints  A B C D E F 

 

 

Models  

A1 B1 C1 D1 E1 F1 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
 

F2 A1235 B657 C279 D120 E15 

A1236 B658 C280 D121 F16 

 
Figure 3.5: Design of PTK-specific fingerprints and FFSM-based models. 
 

The FFSM-based models discriminated the family members from other proteins using 

at least a certain number of sequence motifs in the fingerprints. For example, model A112 

required hits to have at least 112 unique sequence motifs in Fingerprint A, which contained 

1236 unique sequence motifs. We accessed precision and recall values of each model on 

TEST_SET_SEQ, and applied Precision-Recall (PR) curve (see Figure 3.6 and 3.7) for 

model selection. Models providing high precision and recall values were present on the upper 

right-hand corner of the plots. FFSM-based approach successfully led to several models 

affording high accuracy with precision more than 90% and recall almost 90%.  
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Figure 3.6: Model selection using PR curves. PR curves present %recall (x-axis) and %precision 
(y-axis) of all FFSM-based models for PTKs. The numbers of sequence motifs required in hits were 
reduced from left to right. For instance, the precision and recall values of model F2 was on the left 
hand of those of model F1.  
 
 

 
Figure 3.7:  PR curves of models preserving recall almost 90% and precision more than 90%. 
Precision and recall values of some models having high precision and recall were given as examples. 
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3.3.4 Function inference of new PTK entries 

The prediction abilities of FFSM-based models were tested by applying the model 

A112, one of the best models, to five new PTK sequences added to ExPASY-ENZYME 

database (enzyme.dat released on April 8, 2008). The model successfully retrieved all new 

PTK entries. The number of sequence motifs in the new PTK entries, PID O19064 (JAK2 

from pig), PID Q5RB23 (JAK2 from Pongo), PID Q75R65 (JAK2 from chicken), PID 

Q17R13 (ACK-1 from bovine) and PID Q5U2X5 (ACK-1 from rat) were 500, 441, 500, 441 

and 500, respectively. 

 

3.3.5 Comparing prediction accuracy of FFSM-based and benchmark methods  

Motif HRD.{37,45}W.{14}SD.{1}W, model A77 and A112 were used as the 

representatives of FFSM-based approach. In order to evaluate the prediction performance of 

FFSM-based models, we performed a benchmarking study with PROSITE, PRINTS and 

profile HMMs searches (see Section 3.2.8) because these approaches are very used 

worldwide and all based on a similar strategy, which are the use of retrieved family-specific 

patterns for function inference of external protein sequences. Prediction accuracies of the 

four methods were determined in terms of precision and recall on the same sequence 

database of TEST_SET_SEQ. 

We compared the predicting power of FFSM-based methods with those of motif 

searches of two PROSITE signatures (see Figure 3.8); one obtained from PROSITE database 

and another was generated from 24 PTK sequences in our PTK-training set. We found that 

FFSM-based models and a method using PROSITE pattern1 provided highest coverage with 

almost 90% recall. However, using PROSITE pattern1 affords lowest precision compared to 



 
 

other approaches and that was

more restrict form of PROSITE pattern2

motif, increased the precision 

compared the sequence motif search of 

HRD.{37,45}W.{14}SD.{1}W, the latter achieved

precision. These results were

PROSITE pattern2 were derived from the same training set. In a

contained only 7 residues, which was

pattern2 (21 residues).  

 
Figure 3.8:  Precision and recall comparison of 
PROSITE and PRINTS. (1) FFSM
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other approaches and that was about 25-30% lower than FFSM-based approach. Using a 

more restrict form of PROSITE pattern2, which required higher number of residues in the 

the precision but reduced the recall value dramatically. However, when 

the sequence motif search of PROSITE pattern2 with that of 

SD.{1}W, the latter achieved better performances in both recall and 

were taking into account that the motif identified by 

PROSITE pattern2 were derived from the same training set. In addition, our FFSM motif 

contained only 7 residues, which was 3 times less than the number of residues in PROSITE 

Precision and recall comparison of FFSM-based methods and motif searches of 
FFSM-based methods;  Motif A:  HRD.{37,45}W.{14}

requires hits to have at least 77 sequence motifs from fingerprint A); Model A112
searches of PROSITE signatures: PROSITE_pattern1 (Tyrosine protein kinase specific active

obtained from PROSITE database); PROSITE_pattern2 
derived from PTK sequences in PTK-training set). 

Precision (%) Recall (%)

FFSM-based 
(Model 
A112) 

PROSITE_ 
pattern1 

PROSITE
pattern2

FFSM-based 
(Model A77) 

based approach. Using a 

, which required higher number of residues in the 

the recall value dramatically. However, when 

that of the single motif 

in both recall and 

taking into account that the motif identified by us and 

ddition, our FFSM motif 

than the number of residues in PROSITE 

 

based methods and motif searches of 
} SD.{1}W; Model 

Model A112, and (2) motif 
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_pattern2 (PTK signature 
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We used PR curves to compare the predicting power of FFSM-based models 

corresponding to Fingerprint A with those of FingerPRINTSCan of PTK fingerprints 

(PR00109, E-value cut off: 1X10-40 to 0.01) and profile HMMs searches of three profile 

HMMs of PTKs (E-value cut off: 1X10-100 to 1X10-20); one profile HMMs created from our 

PTK-training set, and two profile HMMs (a global and a local alignment models) obtained 

from Pfam database (see Figure 3.9). Results showed that the precision and recall provided 

by FFSM-based models were higher than those of PRINTS methods and comparable to those 

of profile HMMs searches. 

 

 

 
Figure 3.9: PR curves of FFSM-based models and benchmark methods. (1) FFSM-based model 
A1236 to A1, (2) PRINTS using tyrosine kinases catalytic domain signature (PR00109, E-value: E-
value: 1X10-40 (left) to 0.01 (right)), (3) profile HMM of PTK (PR00109, E-value: 1X10-100 (left) to 
1X10-20 (right)): (3A) generated from PTK-training set (Profile_HMM_PTK_TS), (3B) obtained from 
Pfam database; Pfam_pkinase_Tyr-ls.hmm (a global alignment model) and Pfam_pkinase_Tyr-
ls.hmm (a local alignment model). 
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We further assessed the quality of precision measurement by analyzing the set of 

false positives. We used ‘EC 2.7.10’ (a group of PTKs) as a standard of ‘true’ annotation. We 

defined a set of ‘false positives with curated EC annotation’ as a set of false positives having 

known EC numbers (see Table 3.3). Proteins labeled with “uncharacterized”, “probable” or 

“putative” were excluded from this set. We then assigned penalty score for incorrect 

annotation at the first, second and third level of EC number with scale 3, 2 and 1, 

respectively, and consequently calculated the total penalty score for each approach. FFSM-

based methods and profile HMMs searches provided lower total penalty score compared to 

PROSITE pattern1 and PRINTS searches. For the search of PROSITE pattern1, there were 

28, 2 and 62 wrong annotations at the first, second and third level of EC number, 

respectively. FFSM-based methods, PRINTS and profile HMMs only gave wrong 

annotations at a third level of EC number, and all of their false positives fall into two groups 

of EC annotation; 2.7.11.1 (Non-specific serine/threonine protein kinase) and 2.7.11.25 

(Mitogen-activated protein kinase kinase kinase). The results implied that PTKs may be 

related to these two groups of serine/threonine protein kinases than to any other proteins.  
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Table 3.3: Penalty score comparison of FFSM-based methods and benchmark methods. The 
representative models of PRINTS and profile HMMs searches were selected from their best models 
using PR curves. 
 
 

Approaches Methods #FP #FP with curated 
EC annotation 

Total   
penalty score 

FFSM-
based 

HRD.{37,45}W.14SD.{1}W 3 2 2 

A77 25 18 18 

A112 19 12 12 

Sequence-
motif based 

PROSITE pattern1 185 92 150 

PROSITE pattern2 5 0 NA 

PRINTS  
(E-value: 1X10-12) 38 27 27 

profile 
HMMs 

Profile_HMM_PTK_TS  
(E-value: 1X10-30) 28 25 25 

Pfam_Pkinase_Tyr_ls.hmm 
(E-value: 1X10-70) 18 15 15 

Pfam_Pkinase_Tyr_fs_hmm 
(E-value: 1X10-80) 11 1 1 

 

 

3.4 Discussion 

A rise in the number of proteins having unknown functions have motivated the 

development of computational tools for predicting molecular function. Function annotation 

of protein sequences is more popular because (1) the number of protein sequences without 

function annotation is greatly exceeds the numbers of their structures, and (2) there is 

abundance of protein sequence data compared to a much smaller number of protein 

structures. 

The conserved pattern of amino acid residues termed ‘motif’ often represent 

functionally important regions that has been adopted for inferring protein functions by many 

studies12. In general, sequence motifs are derived from multiple sequence alignments of 
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proteins with similar functions. Structural motifs are more difficult to obtain directly from 

structural data because of some computational difficulties such as the problem of local 

structural alignments and comparison, and data mining on a large scale of protein structure 

database. Consequently, the major trend of protein function prediction at structural levels 

using structural motifs has been relied on sequence-to-structure-to-function pattern. Many 

studies reported that sequence conservation could be applied for assigning function to protein 

structures79. However, it needs to be underlined what has long been accepted that protein 

structure is more highly conserved than its sequence especially at the functionally important 

regions. In addition, our results in Chapter 2, which investigated function prediction of 

proteins at structural levels using structural motifs, indicated that function annotation cannot 

be completely achieved at that sequence level only (see Section 2.4).  

We have realized the important of function prediction of proteins at sequence level. 

The study reported in this chapter is the first attempt aimed to investigate the non-traditional 

concept of function annotation, from structure to sequence to function. We reported the novel 

approach for function prediction of proteins at sequence level using family-specific patterns 

derived from structural motifs originally extracted from protein structures. The idea behind 

this work is according to our trust that structural motifs are better candidates compared with 

sequence motifs for function inference because they represent both conserved residue 

compositions and their packing patterns but are not restricted to have similar sequence 

conservation (discussed under Section 2.4).  

We applied FFSM on the small representative set of PTK structures to identify PTK-

specific structural motifs, which were then transformed into the PROSITE-like signatures 

(sequence signatures). We have taken into account that the number of available protein 
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sequences greatly exceeds the number of available structures; sequence signatures derived 

from conserved patterns in three-dimensional protein structures may be either conserved in 

primary sequences or have no sequence conservation. We scanned those sequence signatures 

against the large scale of protein sequences (see Section 3.3.2). We found that sequence 

signatures derived from structural motifs highly conserved at structural level were not always 

conserved at sequence level. The results indicated the benefit of combining sequence and 

structural data in family-motif identification. 

The two main problems of sequence motifs excised from multiple sequence 

alignments are the restriction of residue pattern in which the residue compositions need to be 

proximity in a primary sequence and have conserved sequential order. Our approach 

outperforms those limitations because the sequence signatures were derived directly from 

structural motifs in which the residue compositions only need to be contiguous in 3D space ( 

regardless of residue proximity) and were sequence-order independent. Consequently, the 

structural motif could be related to more than one sequence signature. Therefore, as shown in 

Table 3.2, for f values ranging from 0.5 to 0.9, there were more sequence signatures than 

their structural motifs. In addition, the amino acid residues in the sequence signature were not 

required to be neighbors in a primary sequence. For instance, Figure 3.10 illustrates a 

structural motifs and its corresponding sequence signature HRD.{37,45}W.{14}SD.{1}W, in 

which residue D and W were separated by 37 to 45 residues along a sequence. This signature 

was highly specific to PTK sequences with 99.18% precision and 80.58% recall. 
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We adopted the concept of using multiple sequence motifs (fingerprints) for protein 

function inference from PRINT approach23, which aimed to improve the sensitivity of 

PROSITE22 that infers protein function using only a single sequence motif. The family 

members do not need to comprise of all motifs in the fingerprints. However, the greater the 

number of sequence motifs in the fingerprints the hit has the more likely it is the family 

member. The results from PR curves (see Figure 3.6) showed that there was a risk of missing 

family members if the required number of motifs was high (low recall value), or on the 

contrary, there was a risk of retrieving too many false positives if the required number was 

too low (low precision value). When compared to the best sequence motif HRD.{37,45}W. 

{14}SD.{1}W, one of the best selected model A112 provided better recall but lower 

precision (see Figure 3.8). Using the fingerprint approach was likely to increase the coverage 

of known members but to reduce the precision of the method. It was desirable to guarantee 

high precision while allowing a limited loss in coverage. We suggested two approaches for 

function inference of PTK sequences; one to ensure precision using the single sequence motif 

and another to ensure coverage using the fingerprint approach. 

 

 
B. HRD.{37,45}W.{14}SD.{1}W 
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Figure 3.10: A structural motif and its sequence 
signature. A: A structural motif (left) corresponding 
to amino acid packing pattern visualized by Visual 
Molecular Dynamics (VMD) software on proto-
oncogene tyrosine-protein kinase LCK: (PDB ID: 
1qpe chain A) (right): The residue compositions are 
colored by their chemical types; white (TRP, TRP): 
non-polar; blue (HIS, ARG): basic; red (ASP, ASP): 
acidic; green (SER): polar. B: The related sequence 
signature. 
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We investigated the distribution of Fingerprint A, which was related to one of the best 

models A112, within the structures of PTK-training set using multiple structure alignments 

(see Figure 3.11). The results illustrated that the fingerprints were located at the same region 

of the training-set members and only present at the C-terminal lobe. The fingerprints also 

have conserved conformation with average RMSD 0.81 Å and standard deviation 0.22 Å. 

Visualization of Fingerprint A on the structure of LCK (1qpeA, see Figure 311B) showed 

that the fingerprint was present around known catalytic loop including an aspartic acid 

residue, which was believed to function as the catalytic base80. In addition, the fingerprints 

probably involved with structure stability of the catalytic loop through the effect of their non-

polar residues adjacent to the catalytic loop. 

  

 

Figure 3.11: PTK-specific sequence fingerprints mapped on the structure of PTK-training set. 
A:  Multiple structural alignments of protein chains in PTK-training set (white) performed by 
MultiProt software and visualized of Fingerprint A (color) by kinemages. B: The distribution of 31 
amino acid residues of Fingerprint A on LCK (PDB ID: 1qpe chain A) viewed by VMD; B1: The 
residues in the fingerprint are colored by their chemical types; white: non-polar; blue: basic; red: 
acidic; green: polar. B2: The larger image of Fingerprint A colored by purple, blue and red where 
blue is a catalytic loop and red is a potential catalytic base, aspartic acid (ASP 364). 
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The results from both quantitative and qualitative assessments demonstrated that 

FFSM-based methods significantly outperformed the sequence motif searches of PROSITE 

patterns and PRINTS fingerprints and were comparable to the profile search of pfam HMMs 

for this PTK family. This result can probably be explained by the difference in their natures 

of implementation. First, the PROSITE pattern afforded high recall values because it allowed 

more than one amino acid residues at a given position. However, this also increased the risk 

of adding negative samples. Inferring function using a single pattern only may increase the 

risk of a wrong annotation if the protein function is related to conserved amino acid residues 

separated along a protein sequence. Second, the PRINTS fingerprints of PTK signature 

(PR00109) containing five sequence motifs were expected to provide better recall than 

PROSITE signature, which relied only on a binary decision of the presence or miss of one 

pattern. In contrast, these PRINTS signatures gave lower recall (PROSITE pattern1: %recall 

= 89.73%; PRINTS (E-value = 1X10-12): %recall = 79.02%) maybe due to their requirements 

concerning the conservation order among those five sequence motifs. Third, there was a 

limitation of deriving sequence motifs from sequence alignments, the strategy adopted by 

PROSITE and PRINTS. The residues in PROSITE pattern or each sequence motif in 

PRINTS signature needed to be neighbors in a primary sequence and required sequential 

order. Indeed, the family-spatial motif may consist of residues separated along the sequence 

but contiguous in 3D space and preserve more than one sequential order. Since our method 

derived family motifs from protein 3D structures, the method was independent from those 

limitations (see Figure 3.12). Profile HMMs represents position-specific scoring of amino 

acid residues in multiple sequence alignments instead of sequence motifs in order to reduce 

the restriction found in sequence motifs. Compared to profile HMMs searches, the results 
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from Figure 3.9 and Table 3.3 showed that our methods provided comparable but not 

exactly the same predicting power. Another example was found in case of protein EGFR 

(Swiss-Prot ID P55245). This PTK protein was detected by our model A112 but missed by 

all benchmark methods including profile HMMs searches. The results implied that our 

method may provide additional information missing from sequence alignment-based 

methods. 

 

 

 

 

 
 

  

 
 
 
Figure 3.12: PTK-specific patterns on protein LCK (PDB ID: 1qpe chain A): PTK-fingerprints 
detected by Model A112 (left), PTK pattern (PS00109) detected by PROSITE (middle), and PTK 
fingerprint (PR00109: 5 sequence motifs) detected by PRINTS. 
 
 
3.5 Conclusions 

In this study, we report a proof-of-concept study where FFSM, a structural-motif 

based approach, is applied for assessing the function of protein sequences. Tested on PTKs, 

the approach employed PTK-specific sequence fingerprints to infer function. The fingerprints 

were derived from structural motifs extracted from structural data using FFSM, and then 

refined by sequence data. We described the fingerprint as an ensemble of sequence motifs 

represented by regular expression structures. Therefore, we could easily utilize a simple text-
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mining approach for the virtual screening of the fingerprints on a large scale of protein 

sequences. This technique fulfills the limitation of most structure-based approaches, which 

limit their application to only function inference of protein structures. In addition, the 

simplicity of our approach overcomes the difficulty of most structure-based approaches, 

which rely on complex and CPU-time consuming algorithm resulting in the drawback of 

runtime. In this study, our FFSM-based approach was able to detect PTK-specific 

fingerprints located around known active site including a potential active site residue, 

aspartic acid. The prediction was achieved without prior knowledge of functional site. We 

assessed the performance of FFSM-based approach and other sequence-motif based 

approaches (PROSITE pattern, PRINTS signature and profile HMMs) in function prediction 

of PTKs. The results indicated that our method obtains high prediction accuracy in both 

qualitative and quantitative assessment. Our approach was designed to provide additional 

information that may not be detected by simple sequence alignments. The study suggests the 

benefit of using our method in combination with other existing methods, which probably 

retrieves additional hits, increases the confidence of annotation or avoids incorrect 

annotation.  

 

 

 

 

 

 



 

CHAPTER 4 
 

SUMMARY AND FUTURE DIRECTIONS 
 
   
4.1 SUMMARY 

Proteins are integral to most biological processes and functions. Understanding of 

molecular details of protein function is fundamentally important for many research areas 

including drug discovery. With large amount of sequence data generated by genome 

sequencing projects, approximately less than one percent of it is experimentally verified for 

biochemical activities. In addition, 40% of the nearly 10,000 protein structures solved by 

Structural Genomics (SG) still have unknown function in the PDB70. Computational function 

prediction has become all the more critical in recent years by assisting and complementing 

wet-bench experiments in managing large scale genomic data and for providing further 

opportunity for the discovery of new protein as novel drug targets.  

In general, computational approaches for protein function prediction infer protein 

function by finding proteins with global or local similarity at sequence or structural level. 

The conserved local patterns of amino acid residues referred as ‘motif’  often represent 

functionally important regions. Function inference using ‘Structural motifs’ are our special 

interest because of the following reasons. First,  3D arrangements of functionally important 

residues are significantly more conserved than the entire sequence and structure19, 26. Second, 

structural motifs are capable of elucidating the molecular basis of function through a three-
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dimensional (3D) structure containing only a few key amino acid residues; this information 

provides clues about functionally important regions and amino acid residues that could be 

valuable for the design of specific ligands and site-directed mutagenesis experiments. It is 

important to underscore that this information could not be retrieved directly from global 

similarity or sequence motifs searches. However in spite of great interest, identification of 

structural motifs directly from protein 3D structures alone is plagued by computational 

difficulties such as local structural alignments and comparison. As a result, structural motifs 

derived by most methods rely on sequence information. However, function inference by 

sequence-independent methods is still a major challenge in order to take full advantage of 3D 

structural data, which is missing at the sequence level. Only a couple of methods in this 

category including Fast Frequent Subgraph Mining (FFSM)) and reverse template search 

have been introduced during the recent decades for predicting structural motifs. 

In chapter 2, we reported the new application of two sequence-independent methods, 

FFSM and the novel CASIM, for predicting not only family-specific structural motifs but 

also conserved key residues as well. We used these two conserved features for function 

inference of Metallophos structures. The goal was to improve the coverage and accuracy of 

function annotation compared with using either of those two features alone. Our approaches 

were able to capture structural motifs and key residues at the metal-binding active sites of 

Metallophos proteins in the training set and the test set. The identified motifs and residues 

were then utilized for function inference of proteins of unconfirmed Metallophos function 

having remote homology (less than 20% sequence identity) to the training set. In addition, we 

present a novel method for function inference using Metallophos-specific 3D-1D Cumulative 

Support Profiles (CSP).  
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In chapter 3, we reported the novel structural-motif based approaches for function 

prediction of PTKs at sequence level. This is the first such report of applying structure based 

methods for function annotation of protein sequences, which demonstrated the non-

traditional concept of function inference, from structure to sequence to function. We 

identified PTK structural motifs from a small set of PTK structures. Each motif was then 

translated into a PROSITE-like sequence signature. We determined the predicting power of 

these signatures in the large scale of protein sequences. Signatures specific to PTK sequences 

were defined as ‘sequence motifs’. We found that PTK-specific sequence motifs were 

located at the catalytic loop of PTKs and included an active site aspartic acid residue. We 

compared the predicting performance of two methods using our identified sequence motifs; a 

sequence motif search of single motif (PROSITE-like method) and a sequence motif search 

of multiple motifs (a fingerprints search, PRINT-like method). The first approach provided 

higher precision but lower recall. Both of our methods significantly outperformed PROSITE 

(a single motif search) and PRINTS (fingerprint search), the two sequence-motif based 

methods. We discussed the possible advantages of deriving motifs originally from 3D protein 

structures compared to originally from 1D protein sequences.  

Compared to other benchmark methods excluding PROSITE and PRINTS, in general, 

our unique function prediction approaches in both part of the thesis provided comparable 

predicting power. However, with the advantage of using structural motifs for function 

inference, our approaches could divulge more comprehensive information potentially 

associated with protein function (e.g., the 3D structure of the small active site and how the 

identified key residues fit in that active site). 
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4.2 FUTURE DIRECTIONS 

The results showed in Chapter 1 and Chapter 2 demonstrated successful case studies 

of novel structural motif-based function prediction of Metallophos proteins at structural level 

and PTKs at sequence level, respectively. Further investigation should be performed to 

demonstrate the predictive abilities of the suggested methods by applying these promising 

methods to different protein families. Selecting reliable data is one of the most important 

procedures for guiding method development. We recommend further study of enzymes 

because they are well-studied and well-defined group of proteins. In addition, many enzyme 

resources with well systematic collection containing carefully curated and continually 

updated data in various aspects are publicly available.  

Another challenging aspect will be the identification of family-specific motifs for 

protein families, in which family members have different fold types and/or multiple chains 

and/or multiple domains. The idea behind this interest is that currently most publicly 

available AFP methods either sequence or structure-based are focused on one-domain or one-

chain protein family. For example, (1) DALI, the most widely used structure-based AFP tool, 

relies on global structural (fold) similarities of single chain proteins, (2) Pfam, the most 

reliable sequence-based AFP tool, infers protein function based on sequence similarity at a 

domain level, and (3) our studies described under Chapter 1 and 2 involved only families of 

one-domain monomeric enzymes with similar fold type. However, based on our interest in 

family-specific motifs (local similarity) for function inference, proteins should share similar 

function regardless of their fold similarity. In addition, there are some cases in which all 

members of a particular family always function as multi-domain or multi-chain proteins in 

vivo. This implies that their domain combination or chain combination are probably 
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essential for the family function. This assumption is supported by the study of Bashton81, 

which indicated that the concert of domains in the multi-domain proteins could either 

preserve the function of an individual domain or provide new function; therefore protein 

function of multi-domain proteins should be given to whole structures rather than just either 

domain. In order to test our assumption, it will be challenging to apply the methods used in 

the previous two chapters for investigating the functions of the diverse families, in which 

family members have different fold types and/or multiple chains and/or multiple domains. 

The goal is to predict the family-specific motifs and their potential functionally important 

residues in order to relate their structures and sequences with the family functions. Some 

interested protein families for a given EC classification are reviewed below. The training set 

of protein structures are retrieved from SCOP database, which classifies proteins based on 

their three-dimensional structural similarity through the levels of class, fold, superfamily, 

family, domain and species. We suggest the use of biologically active units of the proteins.  

 

A. Families of one-domain monomeric enzymes: family members occur in more than 
one SCOP class therefore involving more than one fold type. 
 
Two protein families, phospholipase A2 and β-lactamase, will be selected to test if 

similar function occur in proteins in the same family but have different fold types is related to 

specific motifs.  

 

A.1 Phospholipase A2 (PLA2, EC 3.1.1.4) 

PLA2 is an enzyme that catalyzes the hydrolysis of the middle ester bond of substrate 

phospholipids. The released product, arachidonic acid, is known as a precursor of 

eicosanoids, which are potent mediators of inflammation82. PLA2 is involved with a broad 
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range of enzymes. The two major group of PLA2 are sPLA2 (secreted PLA2) and cPLA2 

(cytosolic PLA2). Typically, sPLA2 have molecular weight between 13 and 15 kDa and 

consist of one domain formed by α-helices and containing a Ca2+ binding loop. The larger 

enzyme cPLA2 (molecular weight around 85 kDa) consists of two domains: 1) the catalytic 

domain containing both α-helices and β-strands that are largely interspersed, 2) the Ca2+ lipid 

binding domain formed by β-sheets83 (see Figure 4.1).  

 

 

 

 

 

Figure 4.1: Structures of sPLA2 (left; PDB ID: 1n28 chain A) and cPLA2 (right; PDB ID: 1cjy chain 
A). Two calcium ions are represented with spheres. 
 

The enzyme sPLA2 and cPLA2 have non-detectable sequence homology84 and 

completely different three-dimensional structures: these two types of PLA2 are classified into 

different fold types by SCOP database (see Table 4.1). Nevertheless, we are interested in the 

fact that they possess the same PLA2
 activity. It will be interesting to test if there are common 

motifs specific to both sPLA2 and cPLA2.  
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Table 4.1: SCOP classification of phospholipase A2 (sPLA2 and aPLA2) 

 

SCOP sPLA2 cPLA2 

Class 
All alpha proteins  
(ID: 46456) 

Alpha and beta proteins 
(a/b) (ID: 51349) 

All beta proteins  
(ID: 48724) 

Fold 
Phospholipase A2, PLA2 
(ID: 48618) 

FabD/lysophospholipase-
like (ID: 52150) 

C2 domain-like  
(ID: 49561) 

Superfamily 
Phospholipase A2, PLA2 
(ID: 48619) 

FabD/lysophospholipase-
like (ID: 52151) 

C2 domain (Calcium/ 
lipid-binding domain, 
CaLB) (ID: 49563) 

Family 
Vertebrate 
phospholipase A2  
(ID: 48623) 

Lysophospholipase  
(ID: 53645) 

PLC-like (P variant)  
(ID: 49563) 

 
Domain 

Snake phospholipase A2 
(ID: 48624) 

Cytosolic phospholipase 
A2 catalytic domain  
(ID: 53646) 

Domain from cytosolic 
phospholipase A2  
(ID: 49566)  

Phospholipase A2  
(ID: 48637) 

 

A.2 β-lactamase (EC 3.5.2.6) 

β-lactamases are enzymes that catalyze the hydrolysis of an amide bond in the 

characteristic β-lactam ring of β-lactam antibiotics such as penicillin and cephalosporin 

families. Based on their amino acid sequences, β-lactamases are grouped into four classes (A, 

B, C and D). Classes A, C and D act by a serine-based mechanism whereas class B requires 

zinc cations for their action85.  

In the SCOP database, proteins in class A, C and D have the same fold type, which is 

different from that of proteins in class B (metallo-β-lactamases) (see Table 4.2). However, 

all four classes have β-lactamase activities. It will be interesting to test if there are family-

specific motifs shared by class A, C and D, which are specific to Class B as well.  
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Table 4.2: SCOP classification of β-lactamases (class A, B, C and D) 

 

SCOP β -lactamases (class A, C and D) β-lactamases (class B) 

Class 
Multi-domain proteins (alpha and beta) 
(ID:: 56572) 

Alpha and beta proteins (a+b) (ID: 
53931) 

Fold 
beta-lactamase/transpeptidase-like (ID: 
56600) 

Metallo-hydrolase/oxidoreductase (ID: 
56280) 

Superfamily 
beta-lactamase/transpeptidase-like (ID: 
56601) 

Metallo-hydrolase/oxidoreductase (ID: 
56281) 

Family 
beta-lactamase/D-ala carboxypeptidase 
(ID: 56602) 

Zn metallo-beta-lactamase (ID: 56282) 

Domain beta-Lactamase, class A (ID: 56606) Zn metallo-beta-lactamase (ID: 56283) 

 
AMPC beta-Lactamase, class C (ID: 
56618) 

 

 Class D beta-lactamase (ID: 56622)  
 

B. Families of dimeric enzymes in which each chain consists of two domains  

B.1 Alcohol dehydrogenase (ADH) family (EC 1.1.1.1)  

ADH family has been selected for the case study of proteins containing multiple 

domains and multiple chains. ADH86 catalyzes the reversible oxidation of alcohols to their 

corresponding aldehyde or ketone with the concomitant reduction of NAD+ to NADH. Here, 

we will focus on a group of zinc-containing ADHs, a homodimer that bind to two zinc 

cations per unit (chain), for the two following two reasons:  

1) Each chain consists of two domains: the catalytic domain and the NAD+-binding 

domain (see Table 4.3). The inter-domain interface forms a cleft containing the 

catalytic active site (see Figure 4.2A)87 indicating the role of domain-

combination for protein function.  

2) The biological units of zinc-containing ADHs always exist as dimers; each dimer 

is formed by two NAD-binding domains packed together (see Figure 4.2B). 

Thus, it will be challenging to test if our structural motif based approaches can 

identify family-specific motifs at the domain-domain interface related to the 



 91

active site, and if there are family conserved motifs at the protein-protein 

interface.  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: The structure of the ADH enzyme family (illustrated by horse liver alcohol 
dehydrogenase, PDB ID: 6ADH)87. A: The NAD+-binding domain is shown with helix in cyan and 
sheet in blue. The catalytic domain has helix in magenta and sheet in purple. The substrate is 
dimethylsulphoside (DMSO) shown in green. The active Zn++ ions are in brown and white. NAD+ is 
colored based on CPK color scheme.  B: Alcohol dehydrogenase dimer. 
 
 
 
 
 
 

 

B. 

A. 
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Table 4.3: SCOP classification of alcohol dehydrogenases (ADHs); ADH consists of two domains; 
catalytic domain and NAD+-binding domain. 
 
 

SCOP Catalytic domain NAD+-binding domain 

Class All beta proteins (ID: 48724) 
Alpha and beta proteins (a/b) (ID: 

51349) 

Fold GroES-like (ID: 50128) 
NAD(P)-binding Rossmann-fold 

domains (ID: 51734) 

Superfamily GroES-like (ID: 50129) 
NAD(P)-binding Rossmann-fold 

domains (ID: 51735) 

Family 
Alcohol dehydrogenase-like, N-terminal 

domain 
 (ID: 50136) 

Alcohol dehydrogenase-like, C-
terminal domain 

 (ID: 51736) 
Domain Alcohol dehydrogenase (ID: 50137) Alcohol dehydrogenase (ID: 51737) 

 

In case of ADH proteins, which involve multiple chains, the training-set members 

need to have the same number of chains (all dimers for instance) and the latter will be 

accounted for structural motif identification. The idea is to study if the motifs are required to 

occur in all chains of the protein structure or only in one chain of the dimeric structure. 

Moreover, the study could not be complete without the study of interfacial motifs (see 

Figure 4.3). 

 

 

 

 

 

 

 

 
 
 
Figure 4.3: Alcohol dehydrogenase class IV sigma (PDB ID: 1D1T: chain A and B, with interfacial 
motifs (red). 
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The pioneering approaches reported in this thesis demonstrate the proof of concept of 

how to effectively exploit the 3D structural data for protein function prediction. In order to 

improve and build upon the approaches, we recommend the assessments of these approaches 

on a diversity of protein families. We also underline the limitation of current AFP methods 

that only aim to elucidate protein function at a domain or chain level. We further suggest our 

approaches for investigating family-specific motifs in protein families of scientific interest, in 

which the biological units of family members have different fold types and/or multiple chains 

and/or multiple domains.  The completion of this study will be great interest for researchers 

in the field of protein function prediction in the years ahead.  
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