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ABSTRACT 
 
SOWMYA SRIRAM NARAYANAN:  Essays on Operational Productivity and Customer 
Satisfaction in offshore Software Projects (Under the joint supervision of Prof. Jayashankar 
M. Swaminathan and Prof. Sridhar Balasubramanian) 
 

In recent times, both academia and practitioners have increasingly focused on the importance 

of offshore outsourcing. Analysts estimate that the offshore component of IT services is 

expected to rise to $70 billion by 2007. Despite this increase, the popular press has cited 

dissatisfaction among firms that have outsourced software projects to offshore locations. 

Primary reasons cited for the customer dissatisfaction with outsourcing include the increased 

complexity of managing the relationship, reduced productivity and reduced operational 

effectiveness. This issue has not received much academic attention. This dissertation 

attempts to address this gap in the academic literature by studying the problem from two 

different perspectives of a software supply chain.  

 The first perspective is effectiveness – where the focus is on managing the internal 

processes to have a positive impact on customers. This is important, because a satisfied 

customer is key to a successful and profitable organization. Accordingly, in Chapter 2 of this 

dissertation, we study the determinants of project performance and customer satisfaction in 

outsourced offshore software projects. The second perspective is the internal efficiency – 

where focus is on increasing the efficiency of processes and people; thus, leading to increase 

in productivity. Clearly these two perspectives are intertwined. An understanding of factors 

affecting productivity of individuals will enable the managers to set appropriate goals for 
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team members, improve delivery performance, and ultimately increase customer satisfaction. 

Chapters 3 and 4 of this dissertation investigate productivity improvement using software 

maintenance as a context. In Chapter 3, we investigate the role of both individual-level 

factors, such as overall experience, task variety, and newness of task handled, and team-level 

factors such as team size, new team member entry, and team member exit, on individual 

productivity. Next, in Chapter 4, we investigate how productivity can be improved by better 

allocation of individual’s effort to tasks that have the following property: the longer it takes 

to resolve the task, the less is the likelihood that the task will be completed successfully. 
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CHAPTER 1 

1. Introduction 

1.1. Outsourcing overview and research motivation 

An emerging global workforce, greater availability of information technology, and 

increasing global competition are redefining service delivery value chains by enabling the 

disaggregation of services (Quinn 1992). The ability to disaggregate activities in products 

and services has led to increased outsourcing of products and services (Apte and Mason 

1995).  IT services, including software based services, have been a part of this phenomenon. 

The scale of outsourcing in software services can be judged from the fact that the 

International Data Corporation (IDC) estimated the global demand of software-based IT 

services to be USD 382.1 billion, of which, outsourced IT services were USD 118.2 billion 

(IDC 2003).  Much of the outsourced work is ‘offshored’ and goes to developing nations in 

various parts of the world like India and China. The resulting global supply chain of products 

and services presents challenges to managers in coordinating and executing work 

(Swaminathan and Tayur 2003).  

For supply chain partners, these challenges can lead to problems in delivering 

expected output. In the outsourced software services domain, evidence of such problems are 

starting to appear. For example, a recent practitioner survey reported that the overall 

satisfaction index of outsourcers fell to 6.4 on a scale of 10 in 2004, as compared to 7.1 in 

2003. The study also found that only 62% of the respondents were satisfied with their 
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outsourcing partners in 2004 as compared to 79% a year ago in 2003. In particular, offshored 

projects were cited as difficult to manage because of the complexity in managing the 

relationship, and problems of cultural adjustment between teams working in different 

countries (Mcdougall 2004). Another study found an appalling 51% of the clients wanting to 

terminate their outsourcing contracts due to lack of satisfaction with outsourced software 

projects, citing poor quality, reduced operational effectiveness and greater management 

complexity as the primary reasons (McEachern 2005). These studies also indicate that the 

problems lie with both the service provider and clients alike.  

From a customers’ perspective, dissatisfaction could be due to systemic problems 

with managing offshore processes, having wrong or unreasonable expectations, and lack of 

awareness of how to make offshore outsourcing to succeed. For example, Gartner – a leading 

market research agency – found that one of the top 5 reasons for failure of offshore projects 

was the general tendency of firms to rush offshore, and enter into deals too hastily (Huntley 

2005). The key reasons for failure of offshore projects were unrealized cost savings, loss of 

productivity, poor commitment and communications, cultural differences, lack of expertise 

and organizational readiness. Interestingly, the report also indicates that exploiting potential 

productivity advantages from offshoring needs planning and patience (Huntley 2005).  

From a service provider’s perspective, problems may lie in developing effective 

delivery capabilities such as effective project management, communication, and improving 

productivity of employees. These capabilities may have a significant impact on customer 

satisfaction. Further, developing these capabilities can be challenging given the competitive 

environment which is characterized by high employee turnover, shortage of talent, and 

demanding customers.  
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Despite considerable amount of research in the area of outsourcing1, there is less 

understanding about what drives outsourced offshore projects to succeed, and even less so on 

how offshore firms can operate more efficiently. While numerous articles in the popular 

press have been published to educate practicing managers on issues related to offshore 

software outsourcing, the empirical research on the topic is limited but for a few notable 

exceptions (e.g. Gopal et al. 2003; Ethiraj et al. 2005). Second, there has been little work that 

has examined outsourcing from a service operations lens. Such a perspective can (1) help 

incorporate customers’ evaluations of performance into better management of processes (2) 

lead to a better understanding of the processes in the firm and enable efficient management 

of activities. Integrating these perspectives can help managers and researchers better 

understand and manage software operations. Given that labor is one of the critical 

components of the overall software development cost (e.g. more than 75% of the software 

development costs are expended on labor costs (Amoriebata et al. 2001)), improving labor 

productivity is a critical problem and central to the operations in software environments. 

Further, improving labor productivity, in turn, may improve customer satisfaction. This 

dissertation aims to address these issues in software services environments and contribute to 

a better understanding of these dual perspectives – improving customer satisfaction and 

improving internal productivity – of the software supply chain. The context of this 

dissertation is an offshore services firm from India. The choice of an Indian firm to study 

management of offshored IT services is reasonable given that India, is by far, the largest 

destination for offshored  software services (Carmel and Tija 2005). The next section outlines 

an overview of the Indian software services industry.   

 
1 A comprehensive overview of the current literature on IT outsourcing can be found in Dibbern et al. (2004) 
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1.2. Indian software services Industry: Overview 

India has emerged to be one of the important locations in the software offshoring 

industry competing with several other countries such as China, Philippines, Vietnam and 

Russia (MacFarlan 1995). Recently India took the top spot as the choice among US 

businesses that are looking to outsource technology work offshore, in a survey conducted by 

a leading IT outsourcing consulting firm – NEO IT. Much of the initial IT services revenues 

for most large companies in India came from the Y2K times – year 2000 bug – when several 

US firms frantically sought external resources to help in achieving Y2K compliance on time. 

Under such conditions, many of the firms that employed Indian engineers found value in the 

low cost labor that they provided. Further, the quality focus of the Indian firms enabled them 

to expand from regular non-critical activities to executing more critical set of activities from 

offshore. An evidence of this can be seen from the fact that, as of December 2005, over 400 

Indian companies had acquired quality certifications. Out of the 400, 85 companies were 

assessed at SEI-CMM Level 5. This is the highest level of process maturity that a firm can 

achieve. This number is the highest amongst any country in the world.  

Further, in terms of variety of services, the IT services market in India has grown 

from providing custom application development and maintenance services to providing other 

services like packaged software implementation, systems integration, network consulting and 

integration, IT consulting, and IT support and training (NASSCOM 2005). Of all the 

services, the biggest share of IT services came from custom application development and 

maintenance which accounted for 51% of India’s total exports – accounting for the largest 

percentage of India’s exports – in the financial year 2004. These services have a very high 

offshore content of 85% (NASSCOM 2005). In terms of depth, export of global R&D 
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services, and product development services from India is expected to grow rapidly from a 

current USD 2.3 billion to 8-11 billion between 2008 and 2010 (NASSCOM 2005). Not only 

is the complexity of work managed by the Indian companies growing, the depth of the 

relationship in the engagements between the Indian Service providers and their clients has 

also been on the rise. Reflecting this trend in the increasing depth of relationship, the 

National Association of Indian Software and Service Companies (NASSCOM), in its 

strategic review of the Indian IT services industry for 2005 states that “Over time off-shoring 

software has grown from one off, project based engagements involved in low end activities to 

longer term engagements often involving multiple, more complex tasks” (NASSCOM 2005, 

p. 23). Lastly, the client base for the Indian IT-ITES firms includes a majority of the top 2000 

Global corporations (NASSCOM 2005). Thus, India constitutes a very important element of 

global offshore environment. 

 

1.3. Dissertation overview 

 To understand the dynamics of software delivery better, this dissertation divides the 

software supply chain into two perspectives. The first is the external perspective – where 

managers need to be concerned with “How the management of practices within the firm 

impacts their customers?” This question is important, because a satisfied customer is the key 

to a successful and profitable organization. The second perspective is the internally focused – 

where managers need to understand the antecedents to improving operational performance. 

This, in turn, may lead to higher customer satisfaction. An understanding of factors affecting 

team productivity will enable the managers to set appropriate goals for team members, 

improve delivery performance, and ultimately, increase customer satisfaction. This 
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dissertation studies these two facets of a software supply chain in a sequence of three essays. 

The first essay investigates the determinants of customer satisfaction, and the other two 

essays investigate the determinants of productivity in software services. 

 

External Perspective 

This part of the dissertation focuses on the role of internal processes in improving 

customer satisfaction and project performance. In this essay – essay 1 – titled “Managing 

Outsourced Offshore Projects: Antecedents of Project Performance and Customer 

Satisfaction”, we adopt a multidisciplinary perspective to investigate the antecedents of 

customer satisfaction and project performance in offshore projects. This work offers 

managerial and theoretical insights on successful management of offshore projects through 

an empirical analysis of real life data.  

In this work, we synthesize extant literature on service operations, marketing, and 

software engineering disciplines to develop a conceptual model of the antecedents of project 

performance and customer satisfaction in outsourced software projects. Using archival 

survey data on customer satisfaction and project performance ratings of projects executed 

offshore by an Indian software services firm, we examine the influence of communication 

effectiveness (defined as how well the offshore team can communicate), team stability 

(defined as the overall longevity of engineers in the team and smoothness of work transition 

in case of turnover), project management capability (defined as the ability to plan work, 

manage priorities and handle project risks) and project performance (defined as adherence to 

service level agreements) on overall customer satisfaction. Further, this work also offers 

insights on how the impact of the antecedents on project performance and customer 
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satisfaction vary based on the duration or length of time that the project has stayed offshore, 

the type of project (e.g. development and maintenance projects or testing projects), and the 

class of software work (e.g. application development and maintenance or system software 

development and maintenance). This work uses structural equations modeling to test our 

hypotheses. 

We find that first, project management directly impacts customer satisfaction in 

projects that involve development and maintenance as compared to testing. Second, team 

stability is an important determinant of communication, project management, customer 

satisfaction and project performance. The role of team stability varies across the nature of the 

projects, and the context in which the project is considered. For example, we find that when 

projects have stayed offshore longer, team stability directly impacts customer satisfaction. 

However, when projects are relatively new, team stability directly impacts project 

performance, but not customer satisfaction. However, in both cases, the indirect effect is 

significant. Understanding these nuances can help manager’s better plan activities better, 

manage tasks more effectively and improve customer perceptions of offshore operations. One 

of the key messages of this research, apart from offering several insights to manage projects 

better is that a one size fits all approach to managing offshore projects does not work in 

satisfying customers, but managers need to consider the role of antecedents based on project 

type, project class and project duration to get better results.  

 

Internal perspective 

This perspective of the study addresses how managers can improve the productivity 

of individuals using two different strategies using software maintenance as the context.  
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In Chapter 3 of this dissertation titled “Individual Learning and Productivity in a 

Software Maintenance Environment: An Empirical Analysis,” we study the factors that drive 

learning and productivity in a software debugging environment. Using a panel dataset of 

engineers involved in performing debugging operations, we perform an empirical analysis of 

the determinants of learning and productivity to understand drivers of individual learning in 

the context of software debugging. Specifically, we investigate the role of individual level 

factors such as overall experience, task variety, novelty of task handled and team level 

factors such as team size, new hire and employee departures on individual productivity. Our 

analysis suggests that individuals learn from handling a variety of tasks. We also investigate 

the idea that individuals need a balance in exposure to task variety and task specialization. To 

operationalize this idea, we adapt the Herfindahl-Hirschman Index from the anti-trust 

literature in economics and use it as a measure of experience concentration. We investigate 

the role of collocation in teams and its impact on individual productivity in problem solving 

tasks. The findings in this essay will not only make theoretical contributions to the 

organizational learning and operations management literature, but they will also have 

implications for managers handling software projects – who often face situations of assigning 

individuals to multiple tasks. From a software manager’s perspective, this study offers 

considerable insights into managing task allocation within a team and understanding the 

implications of task allocation.  

In chapter 4 of this dissertation titled “Optimal resource allocation in Software 

Maintenance,” we investigate how the use of precious engineering resources can be 

optimized in a software debugging environment. This essay attempts to integrate econometric 

estimation procedures with traditional optimization methods in an attempt to provide 
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managers insights on planning capacity of teams and understanding the tradeoffs between the 

number of tasks waiting and team capacity. We show that managers can reduce wasted effort 

when bugs seemingly take a long period of time by closing or providing workarounds – and 

reinvest the time to resolve bugs that are more likely to get resolved. We motivate such 

actions by empirically demonstrating heterogeneity in the bug population and verifying that 

the probability of resolution reduces with time, and by showing that the loss in cumulative 

probability of resolution is minimal as compared to the gain in the reduction of overall 

waiting times in queue. We also estimate a heuristic measure to determine the capacity of 

teams in this environment. 

Data for this dissertation was obtained from a large Indian software services firm. The 

firm operates in more than 10 countries worldwide, employs more than 10,000 people and 

has upwards of $500 million in annual revenue. Most of the firms’ revenue is derived from 

the export of software services. A field visit to the sites of the firm was conducted in summer 

of 2005 preceding the data collection. Data for Chapter 2 comes from archival customer 

satisfaction survey data consisting of 677 projects. The overall dataset for chapters 3 and 4 

was drawn from debugging tasks performed by engineers in the context of software 

maintenance. More detail on the nature of the data used is described in the individual 

chapters.  
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CHAPTER 2 

2. Managing Offshore Software Projects: Antecedents of Project Performance and 
Customer Satisfaction 

2.1. Introduction 

The last two decades have witnessed rapid advances in communication technologies, 

including the emergence of the Internet. These advances have enabled firms to leverage the 

variations in workforce skill sets, time, and cost structures across countries to create highly 

competitive global value chains (Swaminathan and Tayur 2003). As a result, outsourcing and 

offshoring of business processes has been a rising phenomenon over the last decade 

(Engardio 2006). The outsourcing of software work to offshore locations has been an integral 

part of this phenomenon. The estimated global demand for software based IT services was 

USD 382.1 billion in 2003, of which outsourced IT services comprised USD 118.2 billion 

(NASSCOM 2005). Increasingly, such outsourced activities are executed in offshore 

locations such as China and India. While the volume of such outsourcing has steadily 

increased, recent surveys suggest some dissatisfaction with vendor performance (McDougall 

2004; McEachern 2005). According to McEachen (2005): “Fifty-one percent of respondents 

reported terminating an outsourcing contract. On the satisfaction side, 62 percent of 

respondents said they were satisfied with their outsourcing relationships, down from 79 

percent a year ago.” This statement highlights the need to examine the drivers of project 

performance and customer satisfaction in offshore projects.  
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Against this backdrop, our work offers the following contributions. First, to the best of 

our knowledge, this is the first study that examines the determinants of customer satisfaction 

and project performance in the offshore outsourcing context. Knowledge about the key 

drivers of customer satisfaction is crucial towards facilitating the appropriate allocation of 

resources in the management of offshore software projects. In the early stages of outsourcing, 

offshore service providers have focused primarily on issues related to technical performance, 

with only a secondary focus on project management. However, as the competitiveness of the 

outsourcing environment has steadily increased, these firms are now compelled to become 

more customer-focused. In that context, our work provides timely insights into what 

customers who outsource software projects are looking for, and how software service 

providers can deliver on those requirements. 

Second, while there is substantial work across disciplines on project management in 

general, little is known about how the internal operational variables involved in executing 

software projects work in tandem to drive the customer’s perceptions of project performance, 

and ultimately, customer satisfaction. In that sense, our work serves as a bridge that 

integrates insights from multiple disciplines including service operations, marketing, IT, and 

software engineering. We present and empirically test a model that links key antecedent 

variables under the control of the offshore project manager, such as team stability, 

communication effectiveness, and project management, and predicts their impact on the 

customer’s evaluations of project performance and overall customer satisfaction. We 

distinguish between the direct and the indirect effects of these antecedents and investigate 

how project-related contextual factors moderate these effects.  
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Despite a considerable amount of work on outsourcing in general (See Dibbern et al. 

(2004)), there is little empirical work on the determinants of performance outcomes in 

outsourcing. Lee and Kim (1999) examined the determinants of partnership quality and 

outsourcing success. They investigated strategic dimensions of outsourcing success such as 

participation, joint action between the teams and top management support. Lee et al. (2004) 

investigate the form of outsourcing strategy – the degree of outsourcing, allocation of control 

and performance period – on the measured dimensions of outsourcing success. However, 

these investigations look at performance outcomes in achieving economic, strategic and 

technological benefits from outsourcing (Lee et al. 2004; Lee and Kim 1999; Grover et al. 

1996). These papers do not investigate tactical issues of what determines project success in 

outsourced environments, but investigate relationship level determinants of outsourcing 

success. From a project execution perspective, the current empirical literature in the context 

of project execution in offshore outsourcing investigates issues that include capability 

building in outsourced projects (Ethiraj et al. 2005), determinants of contracting decisions in 

software projects (Gopal and Sivaramakrishnan 2005; Gopal et al. 2003), coordination in 

outsourced software projects (Gopal et al. 2002; Sabherwal 2003),  and investigating the role 

of communications and processes in offshore software development (Gopal et al. 2002).  

To summarize, there are two broad gaps in the literature on software outsourcing. First, 

while there have been numerous conceptual discussions and press articles on software 

outsourcing, the empirical literature on the performance determinants at the tactical level of 

outsourcing – in particular offshore outsourcing, is limited but for a few notable exceptions 

(e.g., Lee and Kim 1999; Lee et al. 2004; Ethiraj et al. 2005, Gopal et al. 2002, Gopal et al. 

2003). Second, there has been little work that has examined offshore outsourcing from an 
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interdisciplinary, service management perspective that incorporates customers’ performance 

evaluations (e.g. Grover et al. 1996). Such a perspective is particularly useful in the 

outsourced software services context. For example, providing software services involves 

customization (Schmenner 1986; Stewart 2003), project management, and workforce 

allocation and management (Cook et al. 1999; Schmenner 1986) – this calls for insights from 

a service operations perspective. In addition, such services involve issues related to the 

design and development, testing, and ongoing maintenance of software products (Boehm 

1989) – this calls for insights from IT and software engineering perspectives. Finally, such 

services also involve frequent and deep customer involvement which introduces goal and 

outcome uncertainty (Chase 1978; Larsson and Bowen 1989), the careful management of 

customer expectations through ongoing communications (Berry et al. 1985) and the 

management of customer satisfaction – this calls for insights from a marketing perspective. 

 In §2, we develop the conceptual model, review relevant literature and outline our 

hypotheses. In §3, we describe the research design and validate the measurement model. In 

§4, we present the results. We discuss managerial implications and ideas for future research 

in §5.  

 

2.2. Conceptual Model and Hypotheses 

Figure 1 describes the conceptual model that underpins our analysis. Our hypotheses 

are summarized as follows: Better project performance leads to higher customer satisfaction 

(H1). Better project management leads to better project performance (H2) and higher 

customer satisfaction (H3). Better communication effectiveness leads to better project 

management (H4). Project management mediates the impact of communication effectiveness 
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on project performance (H5). Better communication leads to higher customer satisfaction 

(H6). Higher team stability has a positive impact on project performance (H7), customer 

satisfaction  (H8), communication effectiveness (H9) and project management (H10). Project 

size has a nonlinear impact on project management (H11) and effective communication 

(H12). We use communication ability and communication intensity as indicators of effective 

communication. We now discuss the individual constructs and motivate the relationships 

outlined in the model. 

 

Figure 1 #  Conceptual Model and Hypothesized relationships 
 

Customer Satisfaction 

Customer satisfaction is the evaluative response of the customer to the services 

rendered by the provider (Wirtz and Bateson 1999). Higher customer satisfaction can lead to 

higher firm profits (Bolton 1998). However, satisfying customers is a challenging task for 

firms that provide custom software engineering services. Such services involve a high 
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customer involvement in the service delivery process, high work complexity, uncertain 

outcomes and long service contact durations. In the specific context of offshore services, the 

physical and cultural distance between the customer and the service provider can complicate 

the relationship between them.  As noted by Stewart (2003), services are less likely to be 

successful when they involve intensive customization, complex tasks, remote performance 

and delivery (few tangibles), and contract workers who can be influenced only to a limited 

extent. Thus, understanding what drives customer satisfaction and managing those drivers is 

particularly important in the context of outsourced software services. 

Satisfaction has been modeled as a function of the gap between expectations and 

performance (Berry et al. 1988). However, in software services, expectations may be unclear 

and customer satisfaction may be based on subjective customer experiences with the 

delivered services (Grover et al. 1996). Direct, customer experience-based measures of 

satisfaction are appropriate in such scenarios (Rust et al. 1999). Such measures have been 

adopted in earlier customer satisfaction studies (Grover et al. 1996; Balasubramanian et al. 

2003; Krishnan and Ramaswamy 1999). 

 

Project Performance  

Consistent with the existing literature in software engineering (Deephouse et al. 1996; 

Nidumolu 1995), project performance measures output timeliness, output quality, and 

effective management of interim goals. Output timeliness and quality are both important 

components of the service-level agreements negotiated between the parties. Better product 

delivery can increase customer satisfaction in the service context (Bolton and Lemon 1999). 

Specifically in technology-intensive contexts, Krishnan and Ramaswamy (1999) found that 



16

the quality of financial statements and services provided in the banking industry were 

positively linked to customer satisfaction. Likewise, Balasubramanian et al. (2003) found that 

the operational competence of an online broker was associated with increased customer 

satisfaction. Building on these arguments: 

H1: Project performance positively influences customer satisfaction. 

 

Project Management 

 Project management in the outsourced service context covers the ability to plan and 

estimate work (Ethiraj et al. 2005), effectively demarcate and manage project priorities 

(Wallace et al. 2004), and manage project risks (Boehm 1989; Pressman 2005). Effective 

project management is crucial in the context of outsourced software development, because of 

the physical and cultural distance between customer and vendor. This distance implies that 

the mutual understanding and operational processes have to be in place to ensure that the 

project objectives are properly demarcated and those objectives are delivered in a timely 

manner. 

First, to scope out the project, the vendor must be able to plan and estimate the total 

inputs that are required for the project. Careful estimation is challenging because high 

customer involvement usually introduces significant uncertainty in tasks and goals (Larsson 

and Bowen 1989).  

Second, once the project is scoped out, demarcating and managing priorities, and 

resource allocation on an ongoing basis becomes important. Since software is an amorphous 

offering, there are many initiatives that managers and engineers can undertake at any point in 

time to make the offering even more function-rich, leading to “feature creep” (Brooks 1995). 
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Further, continuous customer interactions and shifting customer preferences can lead to 

substantial uncertainty in the scope of the project. Correspondingly, managers must be 

capable of scheduling resource allocations at short notice and shifting allocations of 

resources across time to deal with shifting project scope (Slocum and Sims 1980).  

Finally, the intangibility and continuous evolution of software products increase the risks 

associated with successful design and development (see Barki et al. 1993 for a summary). 

Software development involves a high degree of risk for three reasons: First, unlike 

manufacturing, each software project is one-of-a-kind, with no standard (material) prototype 

that can be tweaked. Second, changes in the external user environment imply that software 

designed to fit the user’s needs at some previous point in time will rarely fit perfectly with 

the user’s needs at the time it is released. Third, the gap between the technical knowledge of 

the product designer and the domain knowledge of the user is particularly large in the context 

of software. For example, a programmer may be expert at building a standard billing system, 

but the billing system requirements may vary sharply across a hotel, an airline, and an online 

auction site.  

Given these challenges, the lack of sound project management in software projects 

has often led to projects that “came in years behind schedule, exceeded their budget by 

millions, and failed to meet their users' needs even if completed eventually”(Nidumolu 1995, 

p.192). In contrast, good project management skills involve effective work planning and 

estimation, task prioritization, and risk management can improve perceived project 

performance (Nidumolu 1995). Building on these arguments:   

H2: Project management positively influences project performance. 
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When customers evaluate services, they evaluate not just the final outcome but the 

series of encounters that lead up to that outcome – in fact, the process may play a greater role 

than the final outcome in determining overall customer satisfaction (Brown and Swartz 1989; 

Danaher and Mattsson 1994).  Interaction with customers during the ongoing service delivery 

process is particularly important in the context of outsourced software development because 

the priorities, requirements, and the emerging issues in a project are often unclear to both the 

customer and the service provider. Good project management practices help in resolving goal 

and process uncertainties by getting customers on board early, and keeping them involved in 

the project at various stages (Stewart 2003). The effort that customers may invest in 

interacting with the service provider and guiding the development process can increase 

customer satisfaction on account of self-attribution effects (Konana and Balasubramanian 

2005) and on account of customer reassurance that the service provider is sensitive to and 

accommodating their evolving needs (Youngdahl and Kellogg 1997).  

Further, for most tangible products, the management of the development process is 

invisible from the customer’s perspective. However, in the software services context, the 

customer who continuously interacts with the service provider is able to observe the 

implementation of behavioral and outcome controls that are part of good project management 

(Nidumolu and Subramani 2003). Further, the positive implications of effective work 

planning and estimation, task prioritization, and risk management initiatives employed by the 

service provider are transparent to such a customer. Building on these arguments:   

H3:  Project management positively influences customer satisfaction. 
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Communication Effectiveness 

In the offshore software development context, effective communications are 

particularly important on account of the lack of frequent face-to-face encounters, time zone 

differences, and the cultural divides between the involved parties (Wright 2005). Poor 

communication has often frustrated managers involved with offshore services, as illustrated 

by the following practitioner quote:  

“…communication among the project team members is more difficult, more time-consuming, 

and therefore more costly. Conference calls take longer, information is misunderstood, and 

email volume increases. Even worse, poor communication is one aspect of any outsourcing 

relationship that will doom it to failure” (Clifton 2005). 

The purpose of effective communication is to keep the customer informed about project 

activities. Effective communication in the offshore context involves two distinct facets. First, 

the service provider has to provide frequent, timely, and complete reports of project progress 

to the customer. Second, and more generally, in the absence of face-to-face contact, the 

service provider has to effectively articulate issues, many of which are technically complex 

and prone to multiple interpretations, through oral and written communication. Accordingly, 

to capture communication effectiveness, we use two second order constructs to separately 

capture project reporting performance (“communication intensity”) and the ability of the 

offshore engineers to communicate (“communication ability”). First, communication 

intensity measures the frequency and quality of project status reports sent to the customer. In 

the existing literature, researchers have used proxy measures to capture parallel constructs.2

Second, communication ability measures the ability of the offshore counterparts to articulate 
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issues when interacting through conference calls or emails. Such oral and written 

communication skills have been recognized as pivotal inputs into effective software project 

management (Curtis et al. 1988; Nidumolu 1995), particularly in the context of offshore 

operations (Apte et al. 1997).  

Effective communications can affect multiple variables in our model. At one level, 

effective communications can enhance customer perceptions of good project management 

(Boehm 1981; Gopal et al. 2002). Here, first, effective communications can help in better 

work planning and estimation. Specifically, by communicating frequently and effectively 

with the customer, the software developer can obtain a clear idea about the needs of the 

customer and about the level, kind, and temporal scheduling of resources that would be 

required to meet those needs. Second, frequent and effective communications help the 

developer keep track of the shifting priorities of customers, and help align development 

resources to be responsive to the short-term requirements of the customers. This is 

particularly important in the software development context, where day-to-day fire fighting to 

address unexpected software bugs and implementation problems have to be coordinated with 

longer term development and enhancement work. Third, frequent and effective 

communications can help keep the gap between the current state of the project and the 

customer’s desired project trajectory low. Customers who are constantly informed about 

surprises and advances in the software development process can provide quick feedback and 

useful inputs into further stages of development. Building on these arguments:   

H4:  Communication effectiveness positively influences project management. 

 

2 Other variables that reflect the degree of project-related coordination and communication include the total 
number of onsite customer employees the software development team has to interact with, and the frequency of 
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Better communications anchors superior project management, which, in turn can 

affect project performance (i.e., the quality and timeliness of delivered products, as seen from 

the customer’s perspective).  Nidumolu (1995) finds that the effect of communication on 

project performance is mediated by project risk, which in our model is controlled by superior 

project management.  Likewise, in the financial services industry, Lievens and Moenaert 

(2000) find that uncertainty reduction mediates the impact of communication on project 

success. Building on these arguments: 

H5: Communication effectiveness positively influences project performance, and this 

influence is mediated by project management. 

 

Finally, communication can directly impact customer satisfaction in two ways. First, 

effective communications can influence how the customer evaluates different aspects of the 

software development process and can help in the ongoing management of customer 

expectations. This can increase the customer’s satisfaction with the procedures involved in 

software development. Effective communications can also influence how the customer 

evaluates the final delivered product, so that the positive aspects are highlighted and the 

negative aspects muted. Correspondingly, effective communications can enhance the overall 

quality of delivered services as perceived by the customer (Berry et al. 1985; Garvin 1988; 

Lengnick-Hall 1996)  

Second, effective communications can reduce task uncertainty (Sitkin et al. 1994). 

Software is ultimately a “credence” good whose properties must be discovered through post-

implementation experience with the finished product. However, effective communication 

during development can create confidence in the customer that the vendor is on track with 

 
meetings between the customer and service provider (e.g., Gopal et al. 2002, Deephouse et al. 1996). 
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development and that the customer’s needs are being recognized and accommodated in the 

software design. The resulting feeling of reassurance is extremely important in a context 

where the development activity is taking place in a distant and unfamiliar location over 

which the customer has no day-to-day control. Building on these arguments: 

H6:  Communication effectiveness positively influences customer satisfaction. 

 

Team Stability 

This construct measures perceptions of the length of time software engineers stay in 

the project, and the effectiveness of the offshore team in managing work without disruption 

in case of turnover. Engineer turnover has been a specific area of concern in offshore 

software projects (Gopal et al. 2003). Turnover in a project can happen either on account of 

resignation or reassignment to another project. Resignations are common in a booming 

industry where software service providers routinely poach each other’s talent. Intra-firm 

transfers happen because offshore software service providers often reassign experienced 

engineers to guide startup projects or to manage other, new high-profile projects that the firm 

has taken on. Alternatively, engineers who are bored with a project or seek a change in work 

profile to widen their portfolio of skills may themselves seek to be reassigned. In a survey of 

104 Indian software firms that was conducted even at an early phase of the outsourcing 

phenomenon, 89 firms listed the shortage of skilled labor and 71 firms listed employee 

turnover as one of top three business problems they face (Arora et al. 1999). 

Loss of experienced employees leads to reduction in productivity and decrease in 

project performance (Abdel-Hamed 1989; Oliva and Sterman 2001). Further, the long lead 

times associated with hiring new engineers, training them and bringing them up to speed on 
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the customer’s project compounds the problems related to maintaining productivity and work 

output quality. Building on these arguments: 

H7: Team stability positively influences project performance. 

 

Apart from the pursuit of cost savings, the high demand for and turnover of IT 

personnel within the U.S. has been cited as a key driver of offshore outsourcing initiatives 

(Carmel and Agarwal 2000). Consequently, customer firms that have outsourced software 

development and maintenance have been particularly sensitive to turnover in the ranks of the 

service providers themselves. These firms have often faced the situation where they pay for 

an engineer to learn about their systems and software, only to have that engineer leave the 

service provider in search of more promising opportunities soon after the “breaking in” 

period is completed (Overby 2003).  

In the light of these negative consequences, reducing and managing turnover to 

minimize productivity and information losses is a priority for the service provider. High 

turnover can displease customers particularly when key contact people at the service provider 

leave – in fact, the relationship between the customer and selected employees who work for 

the service provider may at times be stronger than the relationship between the customer and 

service provider at an institutional level (Czepiel 1990; Gwinner et al. 2005).3 While 

customers often prefer to deal with specific employees, customer satisfaction may be 

maintained by ensuring that the project team itself offers a stable set of competencies and 

knowledge to the customer. In that case, the negative implications of the transition of a single 

employee or a few employees are minimized. Initiatives that can help in this context include 

 
3 According to Tax and Brown (1998) American Express estimated that 30% of the customers of a typical 
financial advisor within the company would move with him or her to a competing firm. 
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the rotation of key employees, use of teams that comprise individuals with overlapping skill 

sets to service customers, and use of multiple contact points within the team (Bendapudi and 

Leone 2002). In the offshore software services context, the service providers tend to 

negotiate with customers regarding acceptable replacements for employees who are leaving 

the project teams. The negotiation process leads to building of trust in the service provider 

and confidence that continuity and stability will be maintained in the ongoing project. In 

general, customers are less dissatisfied if they consider the replacement to be acceptable and 

have input into the replacement process (Bendapudi and Leone 2002).  

While the arguments above establish the importance of team stability in the offshore 

software services context, two studies have specifically examined the link between employee 

turnover and customer behavior. In a study of turnover at a fast food chain, 20% of the 

outlets with the lowest employee turnover rates brought in double the sales and 55% higher 

profits than the 20% of stores with the highest turnover rates (Heskett et al. 1994). Likewise, 

in a study of convenience stores, a lowering of the employee turnover rates when levels of 

employee turnover were relatively low yielded significant improvements in customer 

satisfaction (Estelami and Hurley 2003). Building on these arguments: 

H8: Team stability positively influences customer satisfaction. 

In the context of offshore outsourcing, cultural differences between the service 

providers and customers can lead to communication problems (Kobayashi-Hillary 2005; 

Wright 2005). To facilitate effective communication, engineers in offshore software 

development firms are put though a training phase that enables them to understand the 

prevailing technology in use, the social etiquettes followed within both their own 

organization and customers organizations, and the native culture of the customer (Abdel-
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Hamed 1989). The cross-cultural component of such training aims to improve 

communication skills by creating appropriate perceptions about the customer’s culture (Black 

and Mendenhall 1990). However, such skills are seldom developed well during a short 

training course or in a formal learning environment. Learning about and becoming 

comfortable with the customer culture and developing the communication proficiency that 

fits in well with that culture takes time and experience (Torbiron 1982).   

Specifically in the offshore context, new engineers who join the team take time to 

learn intricacies of communicating with customers. Communication skills in this context do 

not just include the ability to understand and operate in a different culture. In parallel, what is 

also called for is the ability to communicate in a mutually understandable technical language 

that reflects knowledge about the software application domain and the way that domain maps 

into the software design (Curtis et al. 1988). Consequently, effective communication is 

disrupted when experienced engineers leave and new engineers join the project team. 

Building on these arguments: 

H9: Team stability positively influences communication effectiveness. 

 

The stability of the project team can affect the quality of project management as well. 

When teams are stable, the software service provider can adhere to planned estimates and 

execute work without disruption, and better manage the changes in requirements and 

priorities – this enables superior project management (Abdel-Hamed 1989). When turnover is 

high, a key reason for the disruption of work planning is that there is limited information 

within the team on the new entrants’ capabilities (Höffler and Sliwka 2002) – this leads to 

non-optimal work allocation and incorrect performance expectations. Second, the 
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demarcation and management of project priorities is affected because team members, 

especially senior team members and managers, need to provide constant attention and 

guidance to the new entrants to help them quickly move up the learning curve (Chapman 

1998). Further, the knowledge resident in the departing team members has to be documented 

and absorbed by others within the team. This is often a time-consuming task, given that a 

large fraction of the useful knowledge in software development is of a tacit nature. Finally, 

turnover decreases the project team’s ability to recognize and manage sources of risk. New 

team members are typically slower than experienced ones in identifying problems at an early 

stage of development, and are less capable of taking remedial action that will resolve the 

problem at that early stage. Consequently, projects with high turnover are more likely to not 

meet their goals, be late, and suffer cost overruns (Abdel-Hamed 1989). Building on these 

arguments: 

H10: Team stability is positively associated with superior project management 

 

Control Variable: Team Size 

The size of the project team can influence some of the constructs discussed above. 

We measure size as the total person months of effort expended on the project. While the 

number of employees associated with the project provides an alternative measure of size 

(e.g., Kraut and Streeter 1995), the metric we employ accounts for additions and attrition to 

the team over time, as well as the total effort input by employees into the project. Our field 

research showed that for very small projects that involve two or three employees, the tasks 

related to communication and project management were typically not well-defined. Instead, 

clients tended to dictate project needs on a task oriented basis. Employees in very small 
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projects tended to focus more on day-to-day tasks and deadlines, making project 

management and communication harder. As the project size increases, the project lends itself 

to the imposition of greater structure and is better defined while still being manageable. This 

can help with improving communications, project tracking, and task estimation. However, as 

projects grow much larger, both communication and project management can become more 

difficult.  For example, an empirical study of large projects revealed that employees found it 

easier to manage tasks when there were a smaller number of people involved (Curtis et al. 

1988). With smaller project teams, a sub-group of team members can direct its work and 

closely track and manage project implementation (Kraut and Streeter 1995).  With an 

increase in team size, the need for coordination and communication both within and outside 

the team can increase sharply, thereby decreasing the quality of project management and 

communications (Brooks 1995). As one programmer noted (Curtis et al. 1988, p. 1279): “In 

the beginning it was easy to keep track of what was going on. It was only after reaching the 

critical mass…that things began falling into cracks and we were losing track.” Building on 

these arguments:  

 H11: Project size has an inverted-U shaped influence on project management. 

 H12: Project size has an inverted-U shaped influence on communication 

effectiveness.   

 

2.3. Research Design 

Research Setting and Data  

Our dataset comes from a large, export-oriented, India-based software services 

company. We began the research with on-site field work conducted over two months at the 
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company’s operating sites in India.  This immersion, which included interviews with 

company managers, helped us obtain an insider’s view of the operation of outsourced 

offshore software projects.  

Our unit of analysis is an offshore project team that provides software development, 

maintenance, and testing services to U.S.-based customers. Our data are sourced from 

projects that were executed from multiple sites of the software services provider. Our sample 

consists of 677 usable surveys filled in by U.S.-based managers employed by the customer 

who coordinated the offshore projects. These surveys evaluated services rendered by the 

offshore team over a 6-month span. The surveys captured perceptual ratings of the constructs 

discussed in §2 using 5-point Likert scales with 1 indicating strong disagreement, and 5 

indicating strong agreement (see Appendix for survey items). As feedback was submitted for 

over 95% of the projects undertaken, non-response bias is not an issue.  

The projects in our dataset can be classified in three ways. First, based on the nature 

of the task, projects could be classified into “Maintenance and Development” (M&D) or 

“Testing” projects. M&D projects involve fixing bugs, enhancing existing software features, 

and adding new features. Testing projects involve verification testing (automated testing 

procedure to ensure that bugs fixed in an existing software release did not disrupt other parts 

of the code) and test automation services (producing software test suites for new modules on 

which automated verification testing can be performed). Second, based on the type of 

software involved, projects could be classified as “System software” or “Application 

software” projects. The former runs close to and interacts with the hardware, while the latter 

runs on top of the system software. The skill sets involved in designing and managing 

systems and application software tend to be distinct. Finally, projects can be classified on the 
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basis of duration. Projects with a functional duration of less than 2 years were classified as 

low age and those with more than 2 years were classified as high age projects. This 

classification was based on the field research and insights from the practitioner literature 

(Kaka and Sinha 2005). The maximum age of the project was close to 8 years since 

inception. The minimum age of the project in the dataset was 2 months. 

 

Scale Validity and Reliability 

Our final item list had 13 items, excluding an overall customer satisfaction measure 

(see Table 1 for items). We first performed an exploratory factor analysis (EFA) using 

varimax rotation on all survey items other than the overall satisfaction measure. The 12 items 

yielded five factors – these are labeled as Communication Ability, Communication Intensity, 

Project Management, Project Performance and Team Stability (see Tables 1 and 2). The five 

items together accounted for 74.2% of the total variance in the data. Subsequent EFA 

conducted separately on the M&D project data (381 surveys) and Testing project data (296 

surveys) revealed consistent underlying factor structures.  

A confirmatory factor analysis (CFA) was then performed on the factors that emerged from 

the EFA, applying a Robust Maximum Likelihood (RML) estimator to correct for 

multivariate non-normality (using LISREL 8.72). All the data, including the combined 

dataset and subsets of the data described fit the model well (see Table 3), and the loadings of 

the indicators on each of the constructs were significant for each dataset. Further, as detailed 

in Table 1, each construct in the combined dataset had a Cronbach’s alpha that was well over 

the 0.70 criterion (Nunnally 1978).  
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Finally, following Venkatraman (1989) and Sethi and King (1994), we tested the 

constructs for discriminant validity by comparing an unconstrained model with each pair of 

constructs grouped together and a model with the covariance between the two constructs 

constrained to unity. A significant difference in Chi-Square between the models indicated 

that the constructs were distinct (see Table 4). Overall, these findings suggest that the 

measurement model performs well. 

 

Construct Items Alpha 
a)  Work planning and estimation 
b)  Managing changes in project 
schedules/priorities Project Management 

c)  Risk identification and management 

0.82 

d) Overall Quality of delivery 
e) Overall Timeliness of delivery Project performance 
f)  Managing interim Goals 

0.78 

g)  Quality of status reports Communication 
Intensity h)  Timeliness of reports 

0.809 

i)  Oral communication ability 
Communication Quality 

j)  Written communication ability 
0.785 

k) Satisfactory duration of stay of engineers 
in team 

Team Stability 
l)  Satisfactory management of transitions 
within  team 

0.805 

Table 1 # Scale and Reliability measures using combined data 
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Project 
Management 

Project 
Performance 

Communication 
Intensity 

Communication 
Ability 

Team 
Stability 

a) 0.7728 0.3372 0.2107 0.1143 0.0886 
b) 0.7172 0.1596 0.3124 0.2996 0.1729 
c) 0.7012 0.2413 0.1419 0.311 0.1637 
d) 0.3484 0.6687 0.072 0.2368 0.1471 
e) 0.5364 0.6532 0.1442 0.0665 0.1523 
f) 0.1443 0.8025 0.24 0.1495 0.1915 
g) 0.2815 0.1208 0.832 0.2063 0.1144 
h) 0.1704 0.2179 0.8339 0.2485 0.0794 
i) 0.2189 0.1338 0.2054 0.8625 0.0746 
j) 0.2744 0.2341 0.3091 0.7338 0.143 
k) 0.1214 0.1414 0.0707 0.039 0.884 
l) 0.1434 0.1647 0.101 0.1403 0.8507 

Table 2 # Factor loadings for Combined Data 

 

Sample 
Size 

CHI - 
Square DF RMSEA NFI IFI RFI GFI 

Combined Data 677 93.74 44 0.049 0.985 0.99 0.978 0.971 

Maintenance and 
Development 381 71.61 44 0.04 0.978 0.988 0.967 0.962 

Testing 296 64.86 44 0.04 0.979 0.989 0.969 0.952 

Systems Software 450 72.109 44 0.0377 0.984 0.991 0.977 0.966 

Application 
Software 227 71.55 44 0.052 0.965 0.981 0.948 0.938 

Table 3 # Results of CFA analysis for the classifications 
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Table 4 # Difference in chi square from a constrained model with covariance 1 and free model 

2.4. Analysis and Results 

Analysis Methodology 

We used a structural equations model to validate our hypotheses. We analyzed the 

covariance matrix of the combined data (N = 677) using LISREL 8.72. While most of the 

variables displayed either insignificant or only moderate kurtosis, an examination of 

multivariate kurtosis indicated a high Mardia’s coefficient of 90.03. We used the Satorra-

Bentler scaled Chi-Square and a Robust Maximum Likelihood (RML) estimator to correct 

for the downward bias in standard error – this is the most reliable correction for non-

normality (Boomsma and Hoogland 2001; West et al. 1995). An alternative correction 

approach is to use an Asymptotic Distribution Free (ADF) estimator. A simulation study 

conducted by Olsson et al. (2000) compared maximum likelihood, Generalized least squares 

 Constrained 
Model 

Unconstrained 
Model 

DF 
Difference 

CHI-
Square 

Difference
P-Value

Project Management with 
Project Performance 194.00 38.89 1 155.11 <.001 
Team Stability 174.39 1.59 1 172.80 <.001 
Communication Intensity 172.30 3.20 1 169.10 <.001 
Communication Ability 174.07 5.21 1 168.86 <.001 
Project Performance with 
Team Stability 205.68 4.65 1 201.03 <.001 
Communication Intensity 207.16 5.75 1 201.41 <.001 
Communication Ability 302.54 6.14 1 296.40 <.001 

Team Stability with 
Communication Intensity 357.52 0.00 1 357.52 <.001 
Communication Ability 368.86 0.05 1 368.81 <.001 
Communication 
Intensity with  

Communication Ability 264.80 1.24 1 263.56 <.001 
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(GLS) and ADF estimators. They concluded that maximum likelihood is most robust to 

specification errors and non-normality. ADF estimators yield unbiased estimates and 

approached ML estimators in performance only with sample sizes of over 1000 observations. 

Therefore, we use the RML estimator. 

Combined Data Results 

Descriptive statistics for the combined data set (N=677) are provided in Table 5. All 

item-to-construct R-squares are greater than 50% (see Table 5). Table 6 details the multiple 

R-Squares of the endogenous constructs – note that 71.52% of the variance in customer 

satisfaction is explained by the model. Estimation results for the combined data and other 

sub-classifications of the data are detailed in Table 7. The estimated model has an RMSEA of 

less than 0.05 across the data classifications, indicating good model fit (MacCallum et al. 

1996). All the comparative fit indices are greater than 0.9 across the classifications, again 

indicating good fit (compared to independence model). Indirect and the total effects between 

constructs, and the significance of the corresponding paths are reported in Tables 8 and 94.

Focusing first on the results for the combined data set, we find that project 

performance had a significant positive impact on customer satisfaction (i.e., H1 is supported). 

Project management had a significant positive impact on project performance and customer 

satisfaction (i.e., H2 and H3 are supported). Project management had a direct (positive) 

impact on customer satisfaction, and also an indirect impact on customer satisfaction through 

project performance. Stated differently, developing project management capabilities appears 

to improve project performance, and hence customer satisfaction. Increased customer 

satisfaction has been associated in past literature with increased customer retention and 
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profits. This supports the notion that project management capability drives firm profits in 

offshore software development (Ethiraj et al. 2005). 

Next, we find that communication effectiveness has a significant, positive impact on 

project management (i.e., H4 is supported), and this effect holds across all data 

classifications. Further, project management fully mediates the impact of communication 

effectiveness on project performance across all data classifications (i.e., H5 is supported). 

Other empirical findings in the literature have also revealed the lack of a direct effect of 

communication on project performance (Deephouse et al. 1996). However, a similar 

mediated effect is found by Nidumolu (1995), who finds that the effect of horizontal 

coordination (oral communication, written communication, scheduled and unscheduled group 

meetings) on project performance is fully mediated by residual risk. Further, we did not find 

a significant direct impact of communication effectiveness on customer satisfaction (i.e., H6 

is not supported) – however, its indirect effect through project management and project 

performance is positive and significant across all the data classifications (see Table 8).  

 
4 Based on the modification indices generated by the estimation, we allow for free inter-item correlation 
between work planning and estimation, and the timeliness of delivery across datasets. 
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(a) (b) (c ) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)
Plan (a) 1.000
Prioritize (b) 0.623 1.000
Manage Risk (c ) 0.579 0.619 1.000
Delivery quality (d) 0.514 0.457 0.513 1.000
Delivery Timeliness (e) 0.658 0.558 0.514 0.569 1.000
Interim goals (f) 0.462 0.460 0.470 0.476 0.591 1.000
Status Rep Quality (g) 0.447 0.527 0.442 0.344 0.370 0.389 1.000
Status rep timeliness (h) 0.428 0.492 0.406 0.374 0.388 0.390 0.686 1.000
Oral ability (i) 0.399 0.508 0.452 0.363 0.347 0.340 0.456 0.454 1.000
Written ability (j) 0.484 0.554 0.516 0.434 0.439 0.419 0.509 0.542 0.652 1.000
Duration of Stay (k) 0.245 0.295 0.282 0.297 0.318 0.309 0.215 0.203 0.184 0.242 1.000
Transition (l) 0.305 0.332 0.326 0.319 0.344 0.356 0.263 0.249 0.245 0.331 0.620 1.000
Overall Satisfaction (m) 0.599 0.625 0.577 0.632 0.641 0.581 0.449 0.492 0.419 0.513 0.388 0.462 1.000
Project Size (log) (n) 0.056 0.094 0.067 0.015 0.045 0.037 0.026 0.107 0.045 0.018 -0.077 -0.006 0.071 1.000
Mean 4.423 4.586 4.323 4.481 4.536 4.292 4.573 4.661 4.419 4.599 4.179 4.226 4.543 3.236
Stdev 0.640 0.587 0.682 0.606 0.622 0.705 0.596 0.514 0.617 0.537 0.827 0.804 0.577 0.844
R-Square 0.577 0.664 0.578 0.523 0.616 0.502 0.687 0.686 0.561 0.757 0.547 0.703

Table 5 # Item statistics and correlation matrix

Communication Effectiveness 0.2215
Communication Intensity 0.6798
Communication Ability 0.7841
Overall Satisfaction 0.7152
Project Performance 0.7578
Project Management 0.7818

Table 6 # R-Square for the endogenous constructs
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Combined M&D Testing Application System 
Low 

Duration 
High 

Duration 
Sample Size 677 381 296 227 450 242 435 

H1 0.667*** 0.579*** 0.764*** 0.547*** 0.714*** 0.631*** 0.771** 

H2 0.741*** 0.839*** 0.644*** 0.649*** 0.783*** 0.668*** 0.797*** 

H3 0.285** 0.626** -0.035 0.307 0.301 0.316 0.193 

H4 1.217*** 1.124*** 1.284*** 1.083*** 1.292*** 1.377*** 1.146*** 

H5 0.903*** 0.944*** 0.827*** 0.704*** 1.013*** 0.921*** 0.915*** 

H6 -0.063 -0.440 0.364** 0.120 -0.220 -0.101 -0.017 

H7 0.131** 0.078* 0.194** 0.234*** 0.082* 0.224** 0.071* 

H8 0.097** 0.097** 0.073 0.082 0.141*** 0.063 0.108** 

H9 0.233*** 0.184*** 0.288*** 0.226***  0.235*** 0.245*** 0.209*** 
H10 0.095** 0.110** 0.080 0.145** 0.064 0.019 0.149*** 

H11 -0.292** -0.099 -0.377** -0.179 -0.303** -0.192 -0.213 

H11a† 0.050** 0.019 0.061** 0.029 0.053** 0.024 0.044** 

H12 0.265** 0.409** 0.179 0.056 0.331** 0.084 0.313** 
H12a†† -0.036** -0.066** -0.020 -0.007 -0.044** -0.005 -0.046** 

From MI 0.055*** 0.053** 0.057** 0.029** 0.066*** 0.092 0.035*** 
Chi-Square 98.440 80.839 107.694 96.307 80.982 101.682 98.399 

DF 74 74 74 74 74 74 74 
RMSEA 0.022  0.015 0.039 0.0365 0.014 0.039 0.027 

NFI 0.991 0.985 0.982 0.974 0.990 0.977 0.986 
RFI 0.988 0.979 0.975 0.963 0.985 0.968 0.980 
CFI 0.997 0.998 0.994 0.993 0.999 0.993 0.996 
GFI 0.977 0.967 0.944 0.938 0.972 0.937 0.967 

NNFI 0.997 0.998 0.992 0.991 0.998 0.991 0.995 

Table 7 # Fit indices and Direct effect estimates for the individual categories of dataset 
 

†non-linear coefficient for H11 to test the nonlinearity hypotheses 
†† nonlinear coefficient for H12 to test the nonlinearity hypotheses 

 
* Significant at <0.1 
**Significant at <0.05 

 ***Significant at <0.001 
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Table 8 # Indirect effects between the latent variables

* Significant at <0.1
**Significant at <0.05
***Significant at <0.001

Indirect effects between the latent variables
Combined M&D Testing Low Age High Age System Application

Communication Effectiveness � Project Performance 0.903*** 0.944*** 0.827*** 0.920*** 0.914*** 1.013*** 0.703***
Communication Effectiveness � Customer Satisfaction 0.950*** 1.252*** 0.587*** 1.016*** 0.926*** 1.113*** 0.718***
Team Stability � Project Management 0.284*** 0.207*** 0.370*** 0.337*** 0.240*** 0.304*** 0.245***
Team Stability � Project Performance 0.281*** 0.267*** 0.290*** 0.239*** 0.310*** 0.289*** 0.254***
Team Stability � Customer Satisfaction 0.369*** 0.318*** 0.460*** 0.380*** 0.366*** 0.325*** 0.415***
Project Management � Customer Satisfaction 0.495*** 0.486*** 0.493*** 0.421*** 0.615** 0.560*** 0.355**
Project Size � Project Performance 0.022 0.303** -0.094 -0.050 0.116 0.097 -0.076
Project Size square � Project Performance 0.004 -0.046* 0.022 0.011 -0.007 -0.003 0.013
Project Size � Project Management 0.322** 0.460** 0.231* 0.116 0.359** 0.428** 0.061
Project Size square � Project Management -0.044** -0.074** -0.026 -0.007 -0.052** -0.057** -0.007

37 
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Table 9 # Total effects between the latent variables

* Significant at <0.1
**Significant at <0.05
***Significant at <0.001

Total effects between the latent variables
Combined M&D Testing Low Age High Age System Application

Communication Effectiveness � Project Performance 0.903*** 0.944*** 0.827*** 0.920*** 0.914*** 1.013*** 0.703***
Communication Effectiveness � Customer Satisfaction 0.886*** 0.811*** 0.951*** 0.915*** 0.909*** 0.893*** 0.838***
Team Stability � Project Management 0.379*** 0.318*** 0.450*** 0.357*** 0.389*** 0.369*** 0.391***
Team Stability � Project Performance 0.413*** 0.345*** 0.485*** 0.463*** 0.382*** 0.371*** 0.488***
Team Stability � Customer Satisfaction 0.466*** 0.415*** 0.533*** 0.444*** 0.474*** 0.466*** 0.498***
Project Management � Customer Satisfaction 0.781*** 1.114*** 0.457*** 0.738*** 0.808*** 0.861*** 0.663***
Project Size � Project Performance 0.022 0.303** -0.094 -0.050 0.116 0.097 -0.076
Project Size square � Project Performance 0.004 -0.046* 0.022 0.011 -0.007 -0.003 0.013
Project Size � Project Management 0.030 0.361** -0.146 -0.075 0.145 0.124 -0.118
Project Size square � Project Management 0.006 -0.055* 0.035 0.017 -0.008 -0.004 0.021
Project Size � Customer Satisfaction 0.006 0.222 -0.001 -0.064 0.112 0.034 -0.071
Project Size square � Customer Satisfaction 0.007 -0.032 0.008 0.013 -0.006 0.006 0.013
Project Size � Communication Effectiveness 0.265** 0.409** 0.179 0.084 0.313** 0.331** 0.056
Project Size square � Communication Effectiveness -0.037** -0.066** -0.020 -0.005 -0.046** -0.044** -0.007

38 
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As hypothesized, the effects of team stability on project performance (H7), customer 

satisfaction (H8), communication effectiveness (H9) and project management (H10) were 

positive and significant.  

Counter to our original hypotheses of an inverted-U shaped effect of project size on 

project management (H11), we find a U shaped effect.5 A possible, ex-post explanation that 

must be considered exploratory in nature is as follows. Our field research revealed that with 

very small project teams in the offshore context, project management responsibility was 

shared across multiple projects by a single offshore project manager.  In such cases, the 

offshore project manager tends to develop deep skills in managing multiple, small projects. 

However, as the project size increases, the ability of this single offshore leader to focus 

sufficient attention and resources on any given project decreases—this leads to a 

deterioration in how tightly the project is managed. However, as the project grows in size, a 

dedicated team manager is allocated to that project team. This may lead to a more systematic 

and disciplined approach to work planning, resource allocation, and risk management, 

thereby enabling a tighter overall management of the project. This reasoning would explain 

the U-shaped effect of project size on project management. The indirect effect of project size 

on project management through communication effectiveness is significant and in the 

expected direction. Finally, we find support for the hypotheses that project size has an 

inverted U shaped effect on perceived communication effectiveness (H12).  

Finally, Table 10 shows a comparison of the coefficient estimates of our work with 

comparative software studies. It also displays the context in which the referred research was 

 
5 We used a log transform of the project size. First, this allows the size variable to be similarly scaled as the 
other indicators. Second, this normalizes the size variable and reduces the level of multivariate non-normality in 
the data. 
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carried out. While one must acknowledge that it is not an apple to apple to comparison, it 

does carry some value as we may infer from the following discussion. First, as seen in Table 

10, one straight forward inference that we can draw is that team stability has not been 

considered in past literature. Next, our results match the results found in other outsourcing 

studies where the investigation is in non-offshore specific contexts. Of specific interest in 

Table 10 is the lack of strong correlation between communication and residual risk as 

reported by Nidumolu (1995) as opposed to a strong correlation as found in our data. As 

Nidumolu’s research context was not offshore, this may point to better project management 

abilities required in the offshore software development context. In similar vein, Nidumolu 

and Subramani (2003) did not find any effect of the standardization of processes on the 

performance of the project while we find a direct impact of project management (a proxy for 

standardization) on project performance, again reinforcing the need for effective project 

management skills in offshore environment. This is also consistent with findings of Ethiraj et 

al. (2005) who find that project management is a significant capability that offshore software 

developers need to manage and develop.  

 Other interesting results show that the quality of deliverables was not significantly 

associated with client satisfaction in Kraut and Streeter (1995) while we find a significant 

association. Further, we found a nonlinear effect of project size on communication and on 

project management as opposed to a linear effect in other related literatures such as Kraut 

and Streeter (1995). Finally, our investigation of the non-linear effect of project size on 

project management has not been investigated in the literature and the results show a 

counterintuitive effect that is consistent with some of the insights that we obtained from the 

managers on the field. 
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Customer
Satisfaction Project Management Project Performance

Customer
Satisfaction N/A This link has not been directly studied

(-) 0.11 (0.850***) (Client satisfaction and Software quality -
Kraut and Streeter 1995) - non offshore context

SOFTWARE

Project
Management

N/A

0.702* (0.658***) (Elapsed time in project to Technical
Processes, Gopal et al. 2002) - offshore context SOFTWARE

(-) .20 (0.741***) (Standardization of Methods to
Development Process performance, Nidumolu and Subramani

2003) - non offshore context SOFTWARE
0.791** ( 0.658***) (Meeting Targets and Planning -

Deephouse et al. 1996) - Non offshore context SOFTWARE
0.228* (0.514***) (Overall Quality and Planning - Deephouse

et al. 1996) - Non offshore context SOFTWARE
(-) 0.54*** (0.741***)† (Residual Risk and Project

performance -- Nidumolu 1995) - Non offshore context
SOFTWARE

Project
Performance N/A

Communication

Team Stability

Team Size

Table 10 # Comparison of estimates from common model with similar work in software or services domain6

6 Standardized and unstandardized coefficients are compared where appropriate

41
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Communication Team Stability Project Size

Customer
Satisfaction

0.610*** (0.886***) (Coordination Success and Client
Satisfaction - Kraut and Streeter 1995) non offshore
context SOFTWARE

Not studied in earlier literature in this
context

(-) 0.05 (0.071) (Project Size and Client
Satisfaction – Kraut and Streeter 1995) non
offshore context SOFTWARE

Project
Management

(-) 0.20 (1.217***) (Horizontal coordination and
Residual project risk - Nidumolu 1995) non offshore
context SOFTWARE
0.35** (1.217***) (Extra-Project Communication and
Customer Uncertainty - Lievens and Moenaert 2000)
FINANCIAL SERVICES DESIGN

Not studied in earlier literature in this
context

0.32** (0.1461**) (Team size to formal
impersonal procedures - Kraut and Streeter
1995) non offshore SOFTWARE

Project
Performance

0.38** (0.903***) (Horizontal coordination and
Project Performance - Nidumolu 1995) non offshore
context SOFTWARE
0.510*** (0.344***) (Reporting Quality and Project
Performance - Thompson et al. 2007) non offshore
context SOFTWARE
-0.050 (0.576***) (Coordination success and software
quality - Kraut and Streeter 1995)

Not studied in earlier literature in this
context

(-) 0.052 (0.045) (Team size to project schedule slippage)
(Ethiraj et al. 2005) Offshore context SOFTWARE

Communication N/A Not studied in earlier literature in this
context

(-0.06) (0.364**) (Team size to coordination success)
(Ethiraj et al. 2005) Offshore context SOFTWARE

Team Stability N/A

Team Size N/A

Table 10a # Comparison of estimates from common model with similar work in software or services domain†

† * Significant at < 0.1, **Significant at < 0.05, ***Significant at < 0.001
†† Bold numbers in the parenthesis in each of the cells corresponds to the estimates obtained in our study

42 
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Results of the Contrast Models 

We now compare the empirical findings across the data classifications. 

 

Maintenance and Development (M&D) Versus Testing Projects 

 While the model fits both M&D and testing project data well (see Table 7), there is a 

significant direct impact of project management on customer satisfaction (H3) in M&D 

projects, but not in testing projects. A possible explanation is based on the difference in task 

uncertainty – the level of unpredictability of the task the engineer is engaged in – across these 

two project types. Task uncertainty is higher in M&D projects because it involves 

understanding and fixing defects, and developing or enhancing software functionality 

(Brooks 1995; Pressman 2005). These tasks are typically not well structured and are subject 

to both evolving customer requirements and frequent customer involvement. Therefore, 

prioritization, work planning, and resource allocation need to be handled particularly well. 

Accordingly, for M&D projects, project management is of separate importance in itself, and 

directly impacts customer satisfaction. 

 On the other hand, task uncertainty is low in testing projects that involve verification 

testing and test automation services. Verification testing activities follow well-defined test 

routines specified by the customer and involve clear reporting requirements. Test automation 

work involves the development and execution of standard test scripts to automate the 

verification testing process. Because these tasks are highly structured and involve predictable 

time and resource requirements, ongoing prioritization, work planning, and resource 

allocation may not be so crucial. Further, the actual involvement of the customer with the 

team during the project is quite limited since most of the testing process occurs with little 
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customer interaction with a report provided at the end of testing. As a result one would 

expect that project management may not directly impact customer satisfaction in testing 

projects—instead, its effect is mediated by project performance.  

Second, we find that communication effectiveness has a significant direct impact on 

customer satisfaction in testing projects, but not in M&D projects. However, for both project 

types, communication effectiveness has a significant (p<.01) indirect impact on customer 

satisfaction (H6). Arguably, the regular reporting of progress and testing results to customers 

is of independent importance in testing projects because of the highly structured and time-

bound nature of the tasks involved.  

 Third, the direct effect of team stability on project management (H10) is significant 

(p<0.01) for M&D projects but not for testing projects. For M&D projects, learning is slow 

because the engineer has to gain familiarity with the code base and the software application 

domain to resolve defects and develop new features compatible with existing code (Banker 

and Slaughter 1997; Littman et al. 1987). In contrast, for testing projects, considerable work 

content is automated and the learning is faster. Further, once new engineers have had a 

limited initiation to the project, they can easily run predesigned testing scripts and interpret 

the results.  
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Application Software vs. System Software Projects 

There is a significant direct effect of team stability on customer satisfaction (H8) in 

system software projects but not in application software projects. Our field research revealed 

that it was more difficult to find and replace engineers who were skilled in systems software, 

compared to application software. The relative scarcity and strong demand for talent in the 

system software domain has also documented by other researchers and practitioners (Bland 

2006; Clair and Linden 2005). Our finding is consistent with this perspective.  

The other major difference between these two classifications is that there is a direct, 

significant effect of team stability on project management (H10) in application software 

projects, but not in system software projects. Our discussions during the field studies and 

post-analysis interviews revealed that teams in system software projects were focused on 

comparatively small enhancements to large, complex pieces of code. In contrast, the teams 

engaged in application projects were involved in developing larger pieces of code. This 

called for greater coordination between engineers working on separate code components and 

across different phases of the development cycle. Further, teams working on application 

software projects assumed a large proportion of the total project responsibility and were 

typically responsible for the management of all development cycle activities. Consequently, 

these projects tended to last longer. Under these conditions, stable teams enabled superior 

long-term management of the projects.  



46

High Age Vs Low Age Projects 

Team stability has a significant direct impact on customer satisfaction (Hypotheses 

H8) in older projects, but not in newer projects. Intuitively, in longer duration projects the 

offshore teams acquire greater knowledge about the product and have a successful history of 

managing the development process. Our field research revealed that in long duration projects 

the offshore engineers drew on this experience history to contribute more substantially to 

product enhancements, often exceeding the expectations of customers. Therefore, customers 

are particularly sensitive to the turnover of experienced hands in long duration projects 

because the loss of tacit knowledge in the development team and the corresponding 

productivity drop may be substantial. In addition, customers tend to build a personal rapport 

with engineers they have known for a while, and are averse to building new relationships 

with incoming employees.  

The sensitivity of customers to turnover in long duration projects may be exacerbated 

by the fact that most turnover does occur in such projects. Turnover in the Indian software 

industry is generally high – on average, only about 25% of hired engineers continue with a 

company for more than 5 years (Sudhakar 2002). An analysis of turnover from about 150 

projects within our dataset revealed that about 75% of the total turnover occurred in high age 

projects and involved engineers with an average experience of 1.5 years.  

We also find that team stability has a significant direct influence on project 

management (H10) in high age projects, but not in low age projects. In newer projects that 

are yet to stabilize, the teams go through a learning curve that enables them to understand the 

code and the interactions between various software components (Fjeldstad and Hamlen 1983; 
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Littman et al. 1987). Such an understanding, which comes with time, can help in planning, 

estimation and risk management activities (Rajlich 1999). Once such experience is built into 

the team over a period of time, team stability then plays an important role in securing that 

knowledge, so that it can be leveraged towards better managing the project.  

2.5. Conclusion  

Our findings have multiple implications for the management of outsourced offshore 

software projects. First, the study suggests that managing the offshore projects entail a life 

cycle effect where different capabilities are more important for different situations. For 

offshore managers, we find that team stability is an important component affecting project 

performance, project management, communication effectiveness and customer satisfaction. 

In general, managers must work hard to maintain the stability of the project teams. However, 

the overall duration of the offshore project moderates some of the influence of team stability. 

For new projects, team stability influences project performance, but does not directly 

influence customer satisfaction. In contrast, for older projects, team stability directly impacts 

customer satisfaction. Intuitively, when projects are new the customer is focused mainly on 

project delivery. However, as the team gains experience and project management capabilities 

over time, customers are loathe to lose valuable team members, and turnover directly affects 

customer satisfaction. While offshore managers must strive to maintain stable teams 

throughout, such stability is of even greater importance in established projects.  

This finding also has implications for a practice that several software services firms’ 

use called ‘shadowing.’ Shadow engineers work with project groups to learn the work, and 

prepare themselves to be inducted into the project. While the practice of shadowing can help 

stabilize the project by allowing a new engineer to begin taking over work from an existing 
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engineer who is anticipated to move out of the project and can help cut training lead times, it 

involves a short-term duplication of resources within the project team. In practice, shadow 

engineers are employed in new projects – often at project inception – as well as in long 

duration projects. Our results suggest that managers may best employ ‘shadow engineers’ not 

in the newer projects, but in projects that have been established (Greater than 2 years). This 

gestation period allows for knowledge structures within the project to be stabilized, and this 

knowledge can then be more readily transferred to the shadow engineers.  

Project management capabilities play an important role. They improve project 

performance and also impact customer satisfaction. Project management capabilities also 

mediate the impact of communication effectiveness on project performance. For managers of 

offshore software firms, this implies that a sole focus on hard technical capabilities related to 

software design and programming is insufficient; adequate attention must be paid to 

developing capabilities that enable effective planning and management of resources across 

time, and also managing communications with customers. The achievement of benchmark 

assessment ratings that are designed to build project management capabilities, including the 

well-known Capability Maturity Model from the Software Engineering Institute (SEI-CMM), 

can help in this context. The role of project management capabilities is more important when 

project-related uncertainty is high. Accordingly, managers must seek to build such 

capabilities particularly for M&D projects. Our results suggest that such capabilities are 

particularly effective in driving customer satisfaction in the uncertain environment associated 

with M&D projects (as opposed to testing projects).  

Communication effectiveness positively affects perceptions of project performance 

and project management. While communication effectiveness does not directly affect 
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customer satisfaction in most cases, its indirect effect through project performance and 

project management is significant. Our results suggest that managers must pay attention to 

multiple components of communication – including communication intensity and quality – 

towards delivering a satisfactory customer experience. Our interviews of managers at 

offshore software service providers suggested that some of these providers managed 

communications with customers better than others. In firms that performed strongly on this 

dimension, the offshore managers usually drew up a formal communication plan for new 

projects and these plans were reviewed periodically to reflect the needs of the prevailing 

project situation. These plans specified the reports that were to be exchanged, the lines of 

communication that were to be maintained, communication formats (email/oral 

communication), issue escalation hierarchies, the preferred initiators of communication for 

various tasks, preferred times for conference calls, and also the communication plan review 

periods.  

We find evidence of non-linear, inverted-U shaped effects of team size on 

communication effectiveness. This suggests that effective communication with customers 

can be an issue in both very small and very large projects – though for different reasons, as 

explained earlier. Correspondingly, managers must play special attention to implementing 

procedures that support the communication process in such projects.  

While we have discussed some of the key managerial implications of our findings 

from the perspective of the offshore managers, much of the discussion applies, with due 

adjustments, to customers in selecting outsourcing partners and managing outsourcing 

projects. For example, our findings suggest for tasks characterized by high uncertainty, the 

customer must try and choose a service provider with strong project management 
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capabilities. Likewise, the customer must set expectations of performance depending on the 

contextual variables associated with the project. For example, since learning takes time, we 

find that team stability is less crucial in the early stages of a project but is more important for 

projects that have been in the works for a while. Instead of being concerned about the lack of 

team stability during the very early stages of a new project, the customer may benefit from 

focusing on other commitments related to delivery specifications, quality, and timeliness.  
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CHAPTER 3 

3. Individual Learning and Productivity in a Software Maintenance Environment: An 
Empirical Analysis 

 

3.1. Introduction  

Consistent with Adam Smith’s championship of the division of labor, firms have long 

viewed task specialization and experience on the job as a stepping stone to enhanced 

employee learning and productivity. To understand how such experience-based learning 

impacts productivity, researchers have studied multiple perspectives of the learning 

phenomenon, including the estimation of learning rates (e.g., Dutton and Thomas 1984) , the 

temporal patterns of learning (e.g., Lapré and Tsikriktsis 2006), and the accumulation and 

transferability of experience (Garg and Milliman 1961). Researchers have examined the 

relationship between experience and productivity across a range of work contexts – these 

include the airline (Asher 1956), apparel (Baloff 1971), semiconductor (Hatch and Mowery 

1998), manufacturing (Lapré and Van Wassenhove 2001), and service industries (Reagans et 

al. 2005). In general, there is strong evidence regarding the positive implications of 

specialization and experience for learning and productivity. 

At the same time, researchers and managers have become sensitive to the fact that 

greater specialization can sometimes hurt, rather than help. For example, firms that are highly 

specialized and inward looking can be overly focused on strengthening and exploiting 

existing competencies. These firms can suffer from “learning myopia” and may overlook the 

future (Levinthal and March 1993). Consequently, they can stumble into “competency traps” 
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where their own competencies ultimately limit their external, long-term vision. Organizations 

can steer clear of such traps and build new competencies by developing greater flexibility 

and absorptive capacity – the ability to store, retrieve, and transfer knowledge (Abernathy 

and Wayne 1974; Cohen and Levinthal 1990).  

While these arguments have been explored mainly at an organizational (or macro) 

level, some interesting, parallel arguments exist at the micro level of individual employees 

and teams (Cohen 1991).7 Specifically, how does the pattern of past experience enhance 

individual learning and productivity? While Adam Smith championed the notion of 

specialization, is there something such as employee overspecialization? How do the 

specialization of experience (i.e., substantial work at a specific task) and the variety of 

experience (i.e., work that is dispersed across a variety of tasks) affect learning and 

productivity? How do specialization and variety of experience interact with each other in 

driving learning and productivity? This work contributes to the literature by examining these 

issues. 

The empirical investigation of these questions at the level of the individual employee 

has been limited (Argote et al. 2003). In the manufacturing context, several authors have 

found that cross training enhances productivity – see Hopp and Oyen (2004) for a review. 

Likewise, the implications of product variety for organizational performance have been 

extensively studied – see Ramdas (2003) for a review. However, relatively little is known 

about the overall impact of task variety on individual learning and productivity (Boudreau et 

al. 2003). The work of Schilling et al. (2003) constitutes a notable, recent exception. 

Schilling et al. designed an experimental setting where study participants were classified 

 
7 See Schilling et al. (2003) for a brief review of the literatures related to organizational, group, and individual 
learning.  
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under three conditions: specialization (playing multiple rounds of the strategic board game 

Go), related variation or variety (mixing up playing Go with playing the similar board game 

Reversi) and unrelated variation (mixing up playing Go with a computer version of the 

unrelated card game Cribbage). Their findings indicate that: (a) cumulative experience 

(number of Go games played) improved points scored on Go; (b) related experience with 

Reversi enhanced scores on Go; (c) related variation has a stronger effect on performance on 

Go than either specialization or unrelated variation; and (d) specialization and unrelated 

variation similarly affected performance on Go. 8

Our work builds on this and other work in the learning literature in the following 

ways. First, as noted by Schilling et al., real-life problems may be open ended and poorly 

defined, compared to an experiment that involves a well-defined strategic problem with 

immediate and accurate performance feedback. We use a panel data set that captures the 

performance of software engineers in a single firm on a range of debugging tasks to explore 

the validity of existing findings in the learning literature, and to deliver some new insights 

regarding learning and productivity.  

Second, we examine how specialization and variety of experience interact with each 

other in driving learning and productivity. This allows us to explore how specialization and 

variety of experience independently and interactively drive learning and productivity, and 

when there is “too much variety.” In this context, we adapt and apply the concept of 

 
8 Learning and productivity are two sides of the same coin. Learning results in increased storage of information 
in memory, and in the application of superior perceptive and cognitive processes that operate on that 
information. At this level, learning is invisible and immeasurable. However, to be meaningful, learning must 
ultimately manifest itself in superior task performance, whether that task involves taking a test or working on a 
machine. Consistent with the literature, we treat such superior task performance at an individual level as an 
evidence of learning (e.g., Huntley 2003; Schilling et al. 2003).  
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Herfindahl-Hirschman Index from the economics literature towards understanding the trade-

off between specialization and exposure to variety.  

Third, there is a need to examine how contextual variables in real-life settings impact 

learning and productivity (Schilling et al. 2003). One of the key variables that impacts 

learning rates in practice is the stability of the project team. Argote (1999, p. 54) notes: 

“Although there has been a long tradition of research on predictors of turnover, only recently 

has research been devoted to determining the consequences of turnover.”  While previous 

studies have typically not found a strong effect of turnover on learning outcomes, this may be 

because the study context may play an important moderating role (Argote et al. 1990; Argote 

1999).  In this study, we investigate how both the entry of new team members and the exit of 

existing team members impact learning and productivity.  

Finally, much of the learning literature, and in particular the literature related to 

experience curve effects, has focused on manufacturing industries. The importance of the 

software services sector has steadily grown as firms and economies have become more 

knowledge-intensive, and as communication networks have grown in capacity and capability 

(Gopal et al. 2002). Apart from the theoretical contributions, our work yields a deeper 

substantial understanding of employee learning and productivity in the services sector.  

Data for the study was sourced from a large export-oriented software services 

provider based in India. The firm employs over 10,000 engineers and provides development 

and maintenance services in application and system software domains. Software-related 

exports comprised more than 90% of the firm’s revenue. The research effort was launched 

with on-site field work conducted over two months at the firm’s operating sites in India. The 

firm and its customers operated in a highly competitive environment, and were faced with 
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substantial challenges related to maintaining and supporting existing and newly introduced 

products. The firm’s operations reflected the standard elements of competitive and dynamic 

business environments, viz., shortening product cycle times, increasing feature introduction 

velocity, and rising product proliferation (Krishnan et al. 1998; Swaminathan and Lee 2003; 

Swaminathan and Tayur 2003). The firm’s customers progressively outsourced greater 

responsibilities to the firm in order to free up their own internal resources for more advanced 

projects – this is consistent with observations in other industry sectors (Nitsch and 

Swaminathan 2006). Whereas the firm was growing rapidly, it was also challenged to work 

efficiently with available resources in a tight market for skilled engineers.  

In this environment, top management valued rapid on-the-job learning by each 

engineer. Managers also believed that useful learning derived mostly from experience on the 

job, and not from in-class training. Further, given the rapid rate of product modification and 

introduction, maintenance teams were required to continuously work on newer tasks and 

technologies. Therefore, exposure to task variety was considered a key component of 

learning. In parallel, managers also recognized than intensive specialization would lead to 

motivational problems. Exposure to a greater variety of tasks on the job has been associated 

with lower fatigue, reduced absenteeism, and correspondingly, with increased productivity 

(Cappelli and Rogovsky 1994). Managers we interviewed noted that some engineers were 

dissatisfied after being on a project for as little as a year. Engineers also shied away from 

substantial specialization in order to build a portfolio of skills that would enhance their worth 

in the external market and stature within the firm (Loch et al. 2000). 

The firm also grappled with employee turnover, a key concern for the software 

industry worldwide (Amoribieta et al. 2001). The managers in the firm realized that effective 
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and quick learning was indispensable towards maintaining a steady inventory of capabilities 

in the face of such churn.  

The field research was accompanied by the collection of archival information, which 

was later compiled into a panel data set. These data captured details regarding the time of 

allocation of specific software defects to specific engineers across time, the time to resolution 

for the defects, defect characteristics, the software modules the defects occurred in, and 

engineer characteristics.    

 Our key findings are as follows. First, cumulative experience enhances learning and 

productivity. Second, there is an additional productivity gain for an individual that accrues 

from performing a greater variety of tasks. However, training individuals on such variety 

leads to a short term loss in productivity. This loss can be viewed an investment towards 

accruing long term productivity gains. Third, there is “too much variety” – we demonstrate 

that there is a tradeoff between exposure to a variety of modules and specializing on the 

modules that one is exposed to. Correspondingly, we find that variety plays an important role 

in increasing productivity only when the experience of the individual is highly specialized or 

concentrated.  Fourth, we find that more experienced individuals can handle new tasks faster 

than those with lesser experience, i.e., experience gained in the software maintenance context 

can be transferred and applied to the performance of new tasks. Fifth, individuals in larger 

teams are more productive than individuals in smaller teams. This suggests that informal 

collaborative environments where collocated individuals possess diverse but related skills 

can enhance learning. Finally, in the context of team turnover, individuals in smaller teams 

bear greater productivity loss due to employee joining compared to individuals in larger 
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teams. We also find that, surprisingly, entry of new employees joining may lead to a greater 

productivity loss than employee exit. 

The remainder of the work is structured as follows. The hypotheses are developed in 

§ 2. The data and measures are presented in § 3. The model and the estimation method is 

presented in § 4. Empirical findings are detailed in § 5 – some robustness checks are also 

described here. The research and managerial implications of our findings are described in § 

6.    

3.2. Hypotheses 

 We first discuss the hypotheses that relate individual experience to productivity, and 

then those that relate team changes (turnover) to productivity.  Our dependent variable is the 

average length of time taken by an engineer to debug software defects allocated to him or her 

at a certain point in time.  

 

Cumulative individual experience   

 There is a wide consensus among researchers and managers that more experience at a 

focused or specialized task yields higher productivity. This linkage, which was first 

prominently highlighted by Adam Smith (1776) was used to popularize the concept of 

division of labor, and today it is accepted almost as a truism. This linkage also underpins the 

concept of the experience curve, which posits that the marginal cost decreases while  

productivity increases with the cumulative level of output (Dutton and Thomas 1984). While 

many studies have established positive linkages between experience, learning, and 

productivity at an organizational level, scholars have noted that there are strong parallels 
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between such learning at the organizational and individual levels (Argote 1993; Larson and 

Christensen 1993; Schilling et al. 2003).  

 Productivity gains due to experience accrue because tasks become more routine over 

time, and individuals gain greater tacit knowledge about the task (Argote 1999). The 

resulting  learning curve at the individual level has been explained in terms of a three-fold 

transfer of learning: learning from past experience that is directly transferred to perform the 

task at hand at the same level as the last task completed, the application of learning from past 

tasks that is applied to make further adjustments in the way the current task is performed 

(thereby gaining some incremental productivity), and the application of the existing learning 

from previous tasks to improve the learning process from the current task (Ellis 1965).  

 In the context of software debugging, engineers gain both tacit and explicit 

knowledge with experience about the structure of the software code, linkages between 

different software modules, and the choice and sequence of debugging procedures to be 

followed in any specific context. They also learn to look for, and quickly identify important 

cues in the debugging process that reveal the nature and potential source of the bug.  This 

knowledge, which is built up over the cumulative amount of time they spend at debugging 

tasks, enables them to shorten debugging times. Building on these arguments: 

 H1: Higher individual experience is associated with shorter debugging times. 

 

Cumulative task variety  

 Individuals exposed to a variety of tasks can tackle problems within a single domain 

more efficiently and effectively. This positive effect of task variety can be manifested 

through multiple routes. First, exposure to task variety enables individuals gain knowledge 
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about the broader schema that is relevant to each of the diverse tasks (Graydon and Griffin 

1996; Paas and Van Merrenboer 1994). With this knowledge of the schema, the individual 

can better delineate knowledge that is relevant to the task at hand from knowledge that is less 

relevant. This prevents situations where the individual spends time and effort in mastering 

new knowledge that is not really useful to the current task.  

 Second, variety in tasks can also lead to implicit learning. While the individual may 

not even be aware of such learning, in the background, correlations between the task 

requirements in different domains are being stored in memory (Reber 1989; Simon 1991; 

Wulf and Schmidt 1997). This ultimately may lead to increased flexibility of the employee 

and contributes to better problem solving skills in any particular domain (Hopp and Oyen 

2004; Hopp et al. 2004). Implicit learning is often reflected in tacit rather than explicit 

knowledge. For example, a youngster who has watched numerous basketball games may 

ultimately play basketball well and by the rules, but can be tongue-tied when asked to 

enumerate the rules of basketball. Whether the effects of exposure to task variety operate 

through the development of a more complete schema of relevant knowledge or of implicit 

knowledge, it has been argued that in either case “learning is transferred between related 

problem domains through the development of a deeper cognitive structure that applies to 

both…” (Schilling et al. 2003, p. 45). Finally, apart from enhanced learning, increased job 

variety has been associated with lower boredom and higher employee motivation, greater 

cooperation, better communication and consequently, higher productivity (Batt and Osterman 

1993; Bishop and Kang 1996; Hopp and Oyen 2004). 

 These arguments are all applicable in the context of software debugging. First, 

because of the highly logical structure of software, working with a variety of software 
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modules exposes the engineer to the various patterns in which blocks of software code are 

written, the ways in which blocks of software code interact within a module, and the ways in 

which software modules (which typically contain multiple blocks of software code) relate to 

one another. When an engineer knows more about this general schema that guides the design 

of the software, the engineer can often make more knowledgeable inferences regarding the 

potential source of the bug with limited examination of a specific module that is being 

debugged. Second, when software engineers work across modules, they develop numerous 

implicit rules regarding the classification of bugs and potential sources of those bugs and 

underlying common remedies. This knowledge is largely implicit and undocumented. In 

practice, many software engineers develop a reputation for being particularly effective in 

detecting and resolving certain kinds of problems, and their expertise is often drawn upon by 

their colleagues. Finally, as revealed in our field study and acknowledged by practitioners, 

software engineers quickly succumb to boredom with repetitive tasks and actively seek out 

variety both to relieve that boredom and to build a wider portfolio of marketable skills (Reed 

2005). Building on these arguments:  

 H2: As the cumulative number of distinct software modules the engineer has worked 

with in the past increases, the average debugging time for allocated defects decreases.  

 

Influence of task newness  

 While diversity in experience can enhance learning in the long run, individuals need 

time and effort to adapt to unfamiliar tasks (Edmondson et al. 2001). In the context of 

software maintenance, debugging an unfamiliar module may be challenging. Engineers spend 

time and effort to understand the code structure and domain of each module, and its linkages 
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to related modules (Banker and Slaughter 1997; Littman et al. 1987; Rajlich 1999). 

Specifically in our study setting, classroom training played a minor role in preparing software 

engineers to tackle bugs in new modules. Instead, the engineers “self-trained” in one or both 

of the following ways. First, they worked through the code documentation and examined the 

code in detail to understand how the module worked and to what other modules it was linked. 

Second, they interacted with colleagues who had prior experience working on such modules. 

Accordingly, exposure to new variety can lead to serious short-term delays (Rus and Lindvall 

2002).  Building on these arguments: 

 H3: When engineers are allocated defects in software modules they are unfamiliar 

with, the debugging time for the allocated defects increases. 

 

The transfer of experience to new tasks  

Increase in experience improves skill levels of an individual, and results in enhanced 

productivity (Argote et al. 2003). Most tasks that individuals perform require learning more 

than one skill. For example, sending Morse code requires language, perceptual, and motor 

skills (Bryan and Harter 1899). While the time required to learn how to perform a task is 

proportional to the number of skills involved (Jovanovic and Griliches 1995), skills learnt 

can be used in other tasks that may be structured differently but call for the application of a 

subset of skills.  

Second, when individuals work on distinct but related tasks, there emerges a kind of 

an “aha!” effect that characterizes insightful problem solving (Schilling et al. 2003). This 

happens because, with experience, individuals better recognize patterns among tasks that 
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they encounter and develop deeper insights regarding those tasks compared to novices 

(Crossan et al. 1999; Fiol and Lyles 1985).  

These arguments are applicable within the software maintenance context. Software 

debugging calls for multiple skills related to perception, cognition, and motor activity. These 

skills may be relevant, for example, to programming new code, understanding prewritten 

code, using equipment to replicate bugs, and using debugging and code commit tools. In this 

scenario, many of the basic skills gained from experience can be transported to new tasks that 

are encountered at work. For example, skills in using tools such as debuggers can be applied 

across software modules. In addition, as engineers gain experience at debugging, they are 

better able to understand the code flow and technology domain of any given software 

module, and the linkage of that module with other parts of the software. This understanding 

can help them cope better with newly allocated modules. Building on these arguments: 

H4: The prior cumulative experience of the engineer moderates the effect of task 

newness on debugging time, in that engineers with greater cumulative experience require 

lesser time to debug unfamiliar modules compared to less experienced ones. 

 

The tradeoff between exposure to variety and specialization 

As argued earlier, exposure to task variety can enhance learning and productivity. 

However, too much variety may impede useful learning. In the manufacturing context, for 

example, a large variability in the options built into a car on the production line decreases 

productivity (Fisher and Ittner 1999).   

In the context of task-related learning, the need for a balance between the exposure to 

task variety and specialization (as in repeated exposure to a certain task) can be motivated as 
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follows.9 First, exposure to variety may help individuals draw linkages between bodies of 

knowledge stored in long term memory, enabling them to better perform any given task. 

However, to be stored in long term memory, information has to first be stored and processed 

through the buffer of short-term memory, which is of limited capacity (Newell and Simon 

1972). As noted by Simon (1990, p.2): “The number of chunks of information that can be 

held in short term memory is approximately seven.”  Further, repeated exposure to short term 

memory may be required for knowledge and skills associated with tasks to be correctly 

encoded into permanent memory.  Thus, when an individual’s exposure to variety is highly 

dispersed, there may not be a sufficient opportunity for the learning to be properly imbibed 

across tasks and then to be properly applied in a specific task.  

Second, exposure to overly high variety may not allow enough time to put what 

knowledge is learned into practice. For example, when using a statistical package, an 

individual can follow and implement some code from a technical manual to estimate a model 

fitted to the data. However, for that knowledge to be efficiently applied, possibly with some 

adjustments, to estimate a differently structured model using a different data set, the 

individual must be able to put that knowledge into practice a few times and be comfortable 

with designing and implementing the code. That is, practice at various tasks is an important 

antecedent of effective learning from variety in a technically sophisticated setting.  

Finally, as March (1991 p. 71) notes: “…maintaining an appropriate balance between 

exploration and exploitation is a primary factor in system survival and prosperity”. While 

March’s argument was made in the organizational context, its spirit also applies to individual 

 
9 An interesting parallel is that of preference learning of consumers. Hoeffler et al. (2006) suggest that 

the intensiveness and extensiveness of preference learning results in discovery of stable preferences. 
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learning. Overexposure to variety can lead to a lot of shallow learning, but insufficient 

application of that learning towards enhancing productivity.  

 These arguments all apply in the context of software debugging. In this technically 

sophisticated knowledge domain, software engineers who work across distinct modules can 

develop numerous implicit rules regarding the potential sources of those bugs and defect 

resolution approaches. For such learning to be ingrained in long-term memory and 

effectively transferred across tasks, however, engineers must have sufficient practice to 

understand the code base of each module. Such learning can be derived from repeated 

assignment to software defects within the same module. Accordingly, engineers would not 

benefit from fleeting exposure to debugging a variety of modules, but may need a certain 

level of immersion within each module for an enduring learning experience that can be 

applied elsewhere.  

 In addition, task variety can enhance motivation at work. Our field study revealed that 

engineers who worked on a variety of tasks tended to be highly motivated to learn from those 

tasks and apply that learning. This is consistent with the notion that software developers are 

inherently variety seeking (Reed 2005). On the other hand, managers we interviewed also 

emphasized that an engineer who worked on too many components generally felt 

overworked. These engineers were also called on more often to help their colleagues because 

their exposure to variety was seen as a signal of higher individual competency. These effects 

may act to lower motivation levels and productivity. Therefore, maintaining a right balance 

between specialization and variety of experience will likely maximize productivity. Building 

on these arguments: 
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H5: A balance between the breadth of experience gained due to exposure to a variety 

of software modules and the depth of experience gained by performing an adequate number 

of tasks within each module results in lowest average debugging times. 

Team learning 

The collocation of individuals in a team can enable greater learning and productivity. 

For example, engineers in a ‘war room’ setting typically display superior timeliness and 

productivity (Teasley et al. 2002). Productivity is higher within collocated teams because 

team members can learn from each other better, and because they can better coordinate their 

individual activities towards the shared overall goal. While team learning generally exerts a 

positive influence on productivity, such learning can arise out of “emotional algorithms” that 

may be of a competitive or a cooperative nature (Loch et al. 2006). On the competitive side, 

individuals may seek status within the group by sharing expertise or they might highlight 

their helping behavior with an objective of attaining some economic rewards. On the 

cooperative side, helping behaviors may result from the need for reciprocation (i.e., the need 

to return favors in kind) or from the need to identify more strongly with the group as a social 

level.   

While positive implications of team-based learning and coordination have been 

established in domains as diverse as garment manufacturing and surgery (see Hamilton et al. 

2003 and Reagans et al. 2005, respectively), these effects are particularly relevant in 

knowledge-intensive domains such as software maintenance. Software debugging is an 

unstructured task that involves substantial informal communication between team members. 

Such communication often happens during informal meetings (Brown and Duguid 1991). 

Further, software debugging tasks are highly situational, i.e., there is no exact pattern of bug 
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resolution that works across all tasks. Such tasks are well-suited to collaborative learning 

(Tyre and von Hippel 1997).  

Our field research revealed that the software engineers frequently interacted with 

each other on an informal level to solve problems. Most of the engineers working on a 

project were collocated. In that setting, we commonly encountered instances where engineers 

walked over to their more experienced colleagues to discuss issues related to the potential 

sources of bugs or to obtain their insights regarding the software code flow. The engineers 

also collaborated by using more formal mechanisms, including pre-scheduled presentation, 

and the use of team mail aliases. Intuitively, one would expect that as the number of 

collocated members in a team increase, the likelihood that the knowledge required to resolve 

a bug is both available within the team and is quickly applied to resolve the bug increases. 

Building on these arguments: 

H6: As the size of the team an engineer works with increases, the average debugging 

time for the bugs allocated to that engineer decreases. 

 

Entry and exit of team members 

Churn in team membership can occur both on due to the exit of existing members and 

the entry of new members. The exit of a member results in the loss of collective 

organizational memory and can reduce productivity (Argote 1999; Johnson and Hasher 

1987). In addition, when employees exit a team, issues related to task reallocation and 

workload realignment must be resolved – these adjustments take time in themselves, and also 

impose new learning needs on the team members.  
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Team member exit can have a particularly strong impact on productivity in the 

software context because a large fraction of the knowledge possessed by software engineers 

is tacit in nature. Such knowledge is difficult to code, and cannot be replaced easily or at 

short notice. At the same time, in large teams, engineers with overlapping sets of knowledge 

can step into the role of the departing member, and multiple team members can pool their 

expertise and energy to address the gaps caused by the departure with limited loss to their 

own productivities. Therefore, the negative effects of team member exit are more likely to be 

experienced in smaller teams. As demonstrated by Narayanan et al. (2006) in the software 

development context, the stability of smaller teams had a direct impact on the quality and 

timeliness of delivery in offshore projects – such stability mattered less in larger teams. 

Building on these arguments: 

H7: As the ratio of the number of engineers exiting a team to the total number of team 

members increases in any time period, the average debugging time for the bugs assigned to 

an engineer in that team increases. 

 

While discussion on team turnover both in practice and the literature focus mainly on 

exit, the entry of new members can also reduce productivity.10 This is consistent with the 

well-known Brook’s Law: “Adding manpower to a late software project makes it later” 

(Brooks 1995, p. 25). New engineers not only need to learn about their tasks, but also about 

the communication patterns, cultural practices, and inter-individual relationships that guide 

 
10 See Carley (1992) for a simulation study of the impact of both team joining and exit. 
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the working of the team. Existing team members may invest significant time and effort to 

facilitate such learning on the part of incoming team members (Mincer 1962).11 

In our study context, engineers joining a team frequently disrupted the work of 

existing members to seek their insights regarding both the organizational setup, and technical 

issues related to bug reproduction, bug fixing, verification of the fix, and finally committing 

the corrected code. While team members would cheerfully extend their cooperation in most 

cases, such effort would likely lower their own productivity. Further, this negative impact on 

productivity is likely to be higher for smaller teams where the burden of training a new 

individual cannot be shared across numerous team members. Building on these arguments: 

 H8: As the ratio of number of engineers joining a team to the total number of team 

members increases in any time period, the average debugging time for the bugs assigned to 

an engineer in that team increases. 

 

Control variables 

 We control for multiple variables that are of lesser theoretical interest but may also 

impact productivity in a software maintenance environment. First, we control for the work-

in-process, or the total number of assigned bugs to an engineer but unresolved at any given 

point in time. A high work-in-process can enhance productivity (because of the pressure to 

get the job done and move along) or detract from productivity (because it may reduce the 

engineer’s focus and concentration). Second, we control for bug severity. This is an urgency 

measure allocated by the supervising manager that reflects the degree to which the bug 

impairs overall software functionality (and hence needs urgent attention). Third, we control 

 
11 Apart from separately studying the impact of joining and exit, we also study the impact of ‘cumulative 
turnover’ (defined as the sum of new joining and employee exits) on productivity. 
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for total days of training the engineer received, including (a) technical training (focused on 

tool usage, programming skills, and domain knowledge), (b) process and quality training, and 

(c) communication and cultural training. Fourth, we control for whether the engineer seeks 

additional information from the person who filed the bug to assist the engineer in defect 

replication and resolution. Anecdotal evidence suggests that during debugging, significant 

time is taken to just replicate the bug in the software. This requirement of additional 

information is well-recognized in models of software debugging (Hale and Haworth 1991). 

Operationally, the bug is effectively in “sleep” mode while information is awaited – hence 

the importance of this control.   

Finally, the following variables, which could be candidates for additional control 

variables, are excluded from our model. First, we considered the “defect-reopening-rate” 

which measures the percentage of defects reported as resolved by an engineer during a time 

period that are re-reported as bugs at a later point in time. That is, an engineer trying to boost 

his or her reported bug-fixing productivity by delivering a number of hurried, but flawed bug 

fixes. However, we found that less than 1.5% of all reported bug fixes were ever re-opened. 

Second, the productivity of engineers could vary as a function of the set of available software 

analysis and debugging tools. However, all engineers we studied worked with the same set of 

tools. Finally, debugging rates in software projects may be related to the overall type of 

software a team is working on. In our dataset, the teams were involved in working on 

different modules of the same large piece of system software, used the same programming 

language, and applied broadly similar skill sets. 
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3.3. Data, measures and model 

 Each engineer we study belonged to a team that was responsible for the corrective 

maintenance of one or more modules of a large system software configuration, where a 

module is defined as a piece of software code that has a distinct, well-defined functionality 

and is a part of larger body of software. Our dataset included details regarding the bug 

history, the engineer who performed the debugging, the date that task was assigned, bug 

severity, whether and when the engineer asked for additional information, the module in 

which the bug originated, and finally, the bug resolution date.  The resolution process of the 

bug is as follows: A bug’s designation is changed from “open” to “assigned” when it is 

assigned to an engineer. If all the information is not available, then the engineer seeks more 

information on debugging. If all information is available, an engineer works on the bug and 

at some date marks the bug as resolved along with resolution comments that indicate whether 

the bug is resolved12, a duplicate13, not reproducible14 (after a few rounds of trials), and 

closed15 (reasons are outlined for this state, which is reached only after significant effort has 

been expended and if all the parties agree that it is reasonable to do so). We also collected 

data from the human resources department on the training provided to the engineer, the date 

of joining the firm, the team the engineer belonged to, and the date the engineer moved out of 

the team.  

All the engineers working on a project were co-located, and interacted both in person 

and via email. The engineers possessed broadly the same set of skills (‘C’, Unix) but the 

 
12 The bug has been resolved and fixed 
 
13 The bug report describes the same problem as in another report 
 
14 Problem cannot be reproduced by the evaluating or the test engineer 
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software modules worked on could vary across projects. An engineer could be involved in 

debugging more than one module during any time period, and could over a period of time be 

assigned to debugging tasks in new modules that he/she had not worked on earlier. The 

manager in charge of the team was responsible for task assignment. Our final dataset 

consisted of 12503 valid bugs handled by 193 individuals from 31 teams.  

Measures 

Dependent variable ( itM ): Our dependent variable is the average time required by engineer 

‘i’ to resolve defects that are assigned in month ‘t’. This measure has been used earlier 

(Huntley 2003), and is consistent with the productivity measure used by the firm (Mean Time 

to Resolve bugs or “MTTR”  in a given month).    

 

Independent variables 

Individual Experience (Log(EXPit)): This is the natural log of the total number of days 

(EXP) since the engineer i joined the company as of the end of a given month ‘t’.

Variety or unique module allocation ( itI ): We assigned a categorical variable ( itI =1) for 

each module that the engineer had not worked on at any point in the past, but that was 

assigned to engineer ‘i’ during time t. 0=itI indicates that no new module was assigned to 

individual ‘i’ at time ‘t’.

Cumulative variety (Vit-1): The total number of unique modules allocated to an individual 

from time 0 through ‘t’, captured by ∑
=

=
t

s
isit IV

0

.

15 A bug report is valid, but a conscious decision has been made not to fix the bug. The rights to this are  
available to the component owner. 



72

Team Size (TEAMSIZE): The total number of engineers in the team ‘z’ of engineer ‘i’ at time 

‘t’.  

New Joining and Exit (NEWJOINING/TEAMSIZE and EXIT/TEAMSIZE): New Joining 

(exit) is represented by the total number of engineers who joined (left) the team ‘z’ of

engineer ‘i’ during time period ‘t’. Over the time period we study, 119 engineers joined 

various teams and 48 engineers departed from their teams. In most cases of exit, a 

replacement was inducted into the team. In operational terms, we use the ratio of engineers 

joining or leaving the team to the total number of engineers in the team at time t (including 

those who left and joined during the period). 

Herfindahl-Hirschman Experience Index (HHEI): We encountered an interesting challenge 

when measuring the variety of experience. Specifically, the number of unique modules an 

engineer worked on is not, in itself, a good measure of variety from a learning perspective. 

For example, consider an engineer with a total experience of 15 bugs who was exposed to 5 

distinct modules and resolved 3 bugs on each module. In contrast, consider an engineer with 

the same total experience who has resolved 11 bugs on one module and one bug on each of 4 

other distinct modules. In line with the theoretical arguments presented earlier, the first 

engineer presumably has a superior exposure to variety from a learning perspective compared 

to the latter. We encountered many such instances of variation in exposure to variety across 

the engineers in our data.  

 To address this issue, we adapt and apply the Herfindahl-Hirschman Index (HHI), 

which has been used to measure market concentration in economic and antitrust analyses. 

This index varies between 1/N and 1, where N is the total number of firms in the market. 

When market share is evenly dispersed across the N firms, HHI=1/N. In contrast, HHI=1 
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when one firm has all of the market and the other firms have infinitesimally small market 

shares – this essentially represents a monopoly.  

We use the following adaptation of the HHI – termed the Herfindahl-Hirschman 

Experience Index (HHEI) henceforth – to measure the dispersion of an engineer’s exposure 

to distinct modules: 

Let iktC : Total bugs handled by engineer ‘i’ on module ‘k’ until time ‘t’

itD : Total number of bugs handled by engineer ‘i’ in time ‘t’ across all modules he or she 

has worked on until time ‘t’

it

ikt
ikt D

CP = : Cumulative proportion of bugs worked on in module ‘k’ by individual ‘i’ until 

time ‘t’.  

Then ∑
∀

=
k

iktit PHHEI 2 is the Herfindhal-Hirschman Experience Index of engineer ‘i’ at time 

‘t’ based on all components ‘k’ that are worked on until time ‘t’.

Note that the HHEI for an engineer will change across time period to accommodate the 

changing allocation of tasks over time. A HHEI of 1 indicates that the engineer has worked 

on just one module, i.e., the experience is highly concentrated. In contrast, when HHEI is at 

its minimum possible value of 1/N, the engineer’s experience is equally dispersed across the 

modules he or she has worked on, with no single module responsible for a large fraction of 

the experience. Continuing with our example at the beginning of this section, the first 

engineer who has worked on 3 bugs in each of 5 modules will have a HHEI of 0.2 

(0.2^2+0.2^2+0.2^2+0.2^2+0.2^2 = 0.2), reflecting the dispersed nature of experience. 

However, the second engineer would have a HHEI of .556 that reflects the greater 

concentration of experience in one module.  
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Control Variables 

Work-in-process (Wit): This is the total number of defects that were left over unresolved in 

period ‘t’ that the individual would have to carry forward into the next period. This is given 

by itititit RAWW −+= −1 where Wi(t-1)  is the Work-in-progress in period ‘t-1’, Ait is the 

number of bugs assigned in period ‘t’ and Rit is the number of bugs resolved in period t. 

Severity (Sit): Severity ratings varied from 1 to 6. A Severity rating of 1 indicated that the bug 

did not impair functionality of the software. In contrast, a severity rating of 6 indicated that 

the bug impacted basic software functionality – hence early resolution was important. 

Training (Tit:): This is the total number of days the individual spent in various training 

programs. 

Fraction Information requirement (INFit): This is the fraction of all assigned defects during 

any time period ‘t’ that required additional information at some stage before the bug was 

ultimately resolved. 

 Summary statistics for the variables are in Table 11, and bivariate correlations are in 

Table 12. 

3.4. Model, Estimation, and Findings 

We test our hypotheses using the following specification, termed Model 1: 
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Variable Minimum Maximum Global
Average

Standard
Deviation

Individual Experience (days in Project) 79 2907 1093.3 754.14

Number of different Modules Handled 1 30 7.98 5.65

Team size to which an Individual Belongs 1 13 7.16 2.86

Total Number of Bugs Handled 2 440 64.7 70.34

HHEI Summary of Individual Averages 0.11 1 0.56 0.26

Summary of Work in Process means for each
Individual 0 8.33 3.08 2.71

Severity of Bugs 1 6 3.07 0.79

Panel Length for an individual 2 65 15.97 11.81

Average Time to resolve bugs in days 1 903 48.43 79.29

Average resignation/month across projects over
the time span of data collection for the project 0 2 1.06 0.574

Average Joining/month across projects over the
time span of data collection 1 2 1.19 0.275

Table 11 # Summary statistics for the panel data

75
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Table 12 # Bivariate correlations between the variables

(a) (b) (c ) (d) (e) (f) (g) (h) (i) (j)

Average time to Resolve (a) 1

Individual experience (lag) (b) -0.064 1

Team Size (c) -0.127 -0.038 1

Variety Experience (Lag) (d) -0.129 0.318 0.03 1

Work in Progress (e) 0.273 0.088 -0.149 0.154 1

Average Severity (f) -0.128 0.096 -0.008 0.145 0.027 1

Fraction Requiring
Information (g) -0.027 0.071 0.085 0.066 -0.038 0.255 1

Ratio of Engineers Joined to
Team size (Lag) (h) 0.047 -0.026 0.027 -0.032 0.003 -0.014 -0.017 1

Ratio of Engineers Resigned
to Team size (Lag) (i) 0.009 0.017 0.002 0.037 0.01 -0.002 0 0.027 1

Allocation of Unique
Components (Lag) (j) 0.061 -0.224 -0.054 0.033 -0.007 -0.042 -0.018 0.02 0.016 1

HHEI (k) 0.132 -0.194 -0.116 -0.592 -0.034 -0.089 -0.067 0.013 -0.005 -0.158

76
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3.5. Estimation 

We estimated our model using a Fixed Effects regression for the following reasons. 

First, the R-square for a model with fixed effects for engineers was significantly higher than 

that for the pooled OLS (the results of the F-test for the significance of the fixed effects 

coefficients are in Table 12; p-value = .0001). Second, a Hausman test of the difference 

between the coefficients of the fixed and random effects models suggested the presence of 

possible endogeneity (Hausman 1978). A fixed effects specification accounts for endogeneity 

by accommodating the correlation between the independent variables and the error term.  

In panel data sets, errors across time periods for an individual may be correlated when the 

panel contains lengthy sequences of data for individuals (Petersen 2005). This leads to a 

downward bias in the estimates of the standard errors, resulting in higher t-values. This bias 

in standard error can be adjusted for by using cluster correlation to yield unbiased estimates 

of standard errors (Wooldridge 2002; Petersen 2005). Therefore, we corrected for possible 

auto-correlation using the clustering option in STATA (Rogers 1993).  

 

3.6. Findings 

Estimation results are in Table 13. First, cumulative experience reduces debugging 

time (supporting Hypotheses H1). Controlling for cumulative experience, we find that 

exposure to variety of experience (or cumulative task variety) is associated with lower 

debugging times (supporting Hypothesis H2). In the context of task newness, we find not 

only that debugging time increases as engineers encounter new modules (supporting 

Hypothesis H3), but also that this impact of newness is reduced when the engineers are more 

experienced (supporting Hypothesis H4). This suggests that experience in debugging existing 
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modules is transferred to debugging unfamiliar modules. Note that exposure to new modules 

is what leads to enhanced variety of experience, which, according to Hypothesis H2, leads to 

a decrease in debugging times. To reconcile Hypotheses H1 and H4, it is important to 

contrast the short-term and long-term effects of exposure to variety. The subtle but important 

distinction we find here is that, while cumulative exposure to variety over time improves 

productivity, exposure to variety involves some short-term productivity loss as engineers 

acclimatize to, and learn about, the new task. (also see Carillo and Gaimon 2000).  

Importantly, we find support for the argument that there is a tradeoff between 

experience gained due to exposure to a variety of software modules and the repeated 

allocation of bugs in a given module (specialization), and that the two need to be balanced to 

maximize learning and productivity.  After including both the cumulative experience and 

cumulative exposure to variety (i.e, the number of distinct modules worked on) in the model 

(see Table 13), we find that the linear coefficient of HHEI is significantly negative whereas 

the non-linear coefficient is significantly positive (supporting the non-linear Hypothesis H5). 

Intuitively, for very low values of HHEI, experience tends to be highly dispersed. In this 

case, focusing the engineers on fewer modules and increasing the specialization on each 

module (which increases HHEI), will lead to lower debugging times and increase 

productivity. In contrast, for high values of HHEI, the experience of the engineer is already 

highly concentrated on a few modules. In this case, adding variety to an individual’s 

experience will reduce HHEI, thereby reducing debugging times and increasing productivity. 

While the role of specialization in learning has been well-established, the role of variety has 

been addressed in fewer and more recent contexts (e.g., Schilling et al. 2003). Our work adds 

to existing insights in the area by highlighting some of the short-term negative effects of 
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exposure to variety and by empirically establishing the need for a balance between exposure 

to variety and specialization.  

Moving to issues of team size and churn, we find that larger team sizes are associated 

with shorter resolution times (supporting Hypothesis H6). In our study setting, there was a 

free flow of information between team members. There were no relative performance 

measurement systems implemented, and the organizational culture was one of cooperation 

and openness. Arguably, the larger inventory of skills and experience available within larger 

teams helped increase productivity. In terms of turnover, we find no evidence to support the 

notion that the debugging time increases as the ratio of engineers leaving a team to the total 

team size strength increases (i.e., Hypothesis H7 was not supported). We find, though, that 

debugging time increases when the ratio of engineers joining a team to the total team size 

strength increases (i.e., Hypothesis H8 is supported). We also estimated a model where we 

added new joining and exit to create a single variable that measured “team turnover”. This 

variable (Exit/ team size), when included in the regression in place of the new hire and exit 

ratio variables, also significantly impacted debugging times.  

These results add to existing perspectives on turnover and learning in the literature. 

First, some studies – for example, the study of the shipbuilding industry by Argote et al. 

(1990) – have found no evidence that turnover significantly impacted learning and 

productivity. However, this impact of turnover may be sensitive to the work context (Argote 

1999). In the context of software debugging, the considerable lead time involved in learning 

can impact productivity in case of turnover. Second, our analysis suggests that turnover may 

best be measured not in absolute terms but as a fraction of team size. This approach allows us 

to implicitly focus on the percentage of knowledge turned over. Finally, we note that our 
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finding that engineer exit does not significantly impact productivity may reflect the fact that 

the team usually has some time to prepare for exit once engineers give notice of their 

intentions to leave the team or the company. For example, other engineers may gradually 

ease into new tasks and roles in preparation for the exit. On the other hand, relatively little 

can be done, and little is usually done in the field, to prepare for the entry of a new team 

member. This is because the kind and level of attention the new entrant requires from 

existing members is largely unknown and can vary strongly across entrants.  

 Finally, for the control variables we find that, first, the severity of the bug is 

negatively associated, and work-in-process (WIP) is positively associated, with debugging 

time. Interestingly, the training provided to engineers did not have a significant impact on 

debugging time. We also estimated three additional models where the total number of days of 

training was replaced by the total number of days related to each of the three sub-types of 

training discussed earlier. None of the sub-types of training significantly impacted debugging 

time. Ex-post discussions with the firm’s managers revealed that the training offered was 

generic in nature and primarily aimed at familiarizing the engineers with the “language” of 

the workplace. Consistent with the observations of Rus and Lindvall (2002), the managers 

believed that most of the training that impacted productivity happened on the job.  
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Variables Coefficient Robust Standard 
Error 

 
P Value 

Log Individual Experience (t-1) -0.102 0.058 0.082 

Total Team size -0.044 0.021 0.039 

Cumulative Variety Experience (t-1) -0.032 0.013 0.017 

Work in Progress 0.097 0.008 0.000 

Average Severity -0.203 0.04 0.000 

Fraction Requiring Information 0.07 0.072 0.334 

Joined/Team size at (t-1) 0.36 0.165 0.030 

Turnover/Team size at (t-1) 0.409 0.293 0.165 

Unique module allocation (t-1) 0.323 0.149 0.032 

Interaction between unique module allocation 
and experience (t-1) -0.046 0.024 0.053 

Herfindahl-Hirschman Experience Index (t-1) -1.427 0.771 0.065 

Herfindahl-Hirschman Experience Index 
Square (t-1) 1.406 0.609 0.022 

Constant 4.682 0.391 0 

Adjusted R-Square 0.2691   

Mean Square Error 1.0162   

N 2794

F test for Engineer Fixed effects 2.287  0.0001 

Table 13 # Estimates calculated for Model 1 
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Robustness checks 

As a first step, we checked for the robustness of our findings by dropping selected 

variables to observe any changes in the coefficients of the remaining variables. Our estimates 

were stable to this manipulation. We first dropped the variables related to unique experience 

and the interaction of unique experience with cumulative experience. This did not vary the 

coefficients of HHEI and HHEI2 significantly, and other coefficients also remained 

unaffected. Similarly, dropping HHEI and HHEI2 did not impact other coefficients 

significantly. However, our analysis revealed that when HHEI2 alone was dropped, the sign 

of the linear coefficient of HHEI flipped from negative to positive but was not significantly 

different from zero (prob = 0.13). Figure 2 captures the underlying intuition. The non-linear 

effect in the figure is correctly picked up in Table 13 by the negative linear coefficient and 

the positive quadratic coefficient. However, when the quadratic coefficient is absent, the 

linear coefficient (slope of the dashed line in Figure 2) weakly picks up the increase in 

debugging time for high levels of HHEI (the right-hand side of Figure 2).  

 

Figure 2 # Illustration of HHEI – Linear and Nonlinear effects 
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Second, to better understand the impact of variety on productivity at different levels 

of HHEI and to further validate the nonlinear impact of HHEI, we categorized HHEI based 

on the median observation (HHEI =0.483), and estimated a related model (Model 2) 

described below:  

 

………………………  MODEL 2 

 

Here CATHHEI is a categorical variable with 0 (1) indicating Low (High) HHEI for the 

engineer in a time period. Specifically, engineers with a HHEI during a time period of greater 

(lesser) than 0.483 were coded 1 (0). Note that in this model CATHHEI is allowed to interact 

with cumulative variety Vit. The estimates of this model are presented in Table 13. These 

estimates are generally consistent with those in Table 3. More importantly, this model helps 

us validate the nonlinear effect of the interaction between HHEI and its interaction with 

variety. The estimates indicate that when HHEI is high (=1), i.e., the past experience is 

highly concentrated, an increase in cumulative variety reduces debugging time and improves 

productivity. When CATHHEI =1, note that the total coefficient for cumulative variety in 

Model 2 is ( 64 ββ + ). The estimate for this coefficient was -0.078, which is significantly 

different from zero (p = 0.000, t = -4.93, 95% confidence interval of -109 to -.046). Further, 

when HHEI is set to zero, the coefficient of variety (now 4β ) is not significantly different 
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from zero. This suggests that increasing variety may help increase productivity when the 

experience of an individual is highly concentrated, but not when the experience of the 

individual is already highly dispersed. This argument is consistent with, and increases our 

confidence in the insights obtained from the estimation of Model 1.  

Variable Estimates Robust 
Std. error P-Value 

Log Individual Experience (t-1) -0.11 0.055 0.048 

Work in Progress 0.098 0.008 0.000 

Average Severity -0.205 0.04 0.000 

Fraction Requiring Information 0.072 0.073 0.325 

Total Team size -0.042 0.020 0.043 

Cumulative Variety Experience (t-1) -0.019 0.013 0.163 

Unique module allocation (t-1) 0.287 0.141 0.043 

Interaction between unique module allocation and 
experience (t-1) -0.04 0.022 0.076 

Joined/Team size at (t-1) 0.351 0.163 0.032 

Turnover/Team size at (t-1) 0.475 0.271 0.081 

Interaction of Categorical HHEI and Cumulative 
variety experience (t-1) -0.059 0.015 0.000 

HHEI Categorical (1 is High and 0 is low)  (t-1) 0.36 0.131 0.007 

Constant 3.745 0.349 0.000 

Adjusted R-Square 0.267   

Mean Square Error 1.017   

N 2794

F test for Engineer Fixed effects 2.295  0.000 

Table 14 #  Estimates for Model 2 
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3.7. Conclusion 

 Our findings have implications for both managers and researchers. 

Managerial Implications 

First, from the perspective of learning patterns, our findings suggest that managers 

must strive for the correct balance between specialization and exposure to variety in training. 

In fact, in our study, the effects of initial training were not significant in enhancing 

productivity (although some of that training may be necessary to “break-in” the engineers 

and get them started on the job). Much if the learning happens on the job. Therefore, 

managers must carefully consider the stage in which correct balance between specialization 

and exposure to variety is achieved, and its variation across individuals.  

Second, managers must be sensitive to the notion that there may be “too much 

variety.” In this context, our empirical findings reveal that learning and productivity drop 

when experience is overly scattered across different modules. In addition, our field research 

indicated that engineers who handled an excessively large variety of modules felt that they 

were penalized more for being productive. 

Third, our findings indicate that exposure to variety reduces productivity in the short 

term. Therefore, managers must both schedule an engineer’s exposure to variety when peak 

productivity is not required and must be prepared to wait awhile before the gains from 

variety-driven learning are realized.  

Fourth, managers must carefully consider how tasks must be allocated across the 

members in a team so that the overall productivity of the team is maximized. This decision 

has both spatial (task allocation across team members at a point in time) and temporal 

(change in the allocation of tasks over time) dimensions. For example, in the short term, our 
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findings indicate that the most experienced member of the team will be the most productive 

at a new task. However, for long term productivity, it may be optimal to allocate that task to 

a less experienced team member who is in a position to learn the most from such exposure. 

This member may struggle with the task, but the ultimate gain in long term productivity will 

likely be the highest in his or her case.  A possible allocation heuristic could involve 

exposing new members to a few modules to increase exposure to variety and to enhance 

rapid learning, and then introduce occasional variety possibly to enhance their intuitions on 

existing tasks as they gain in experience.  

 Finally, managers may need to shift from thinking about team turnover as a single 

concept, and focus on the separate effects of entry and exit of individuals into and from the 

team. While managers are generally concerned about exit, our findings suggest that entry 

may be more of a problem at least in the context of short term productivity. In most firms, an 

employee is required to provide notice sufficiently in advance of exit – this allows the work 

transition to be carefully planned so that productivity is maintained. However, the entry of a 

new employee is more difficult to plan for because the kind and depth of resources he or she 

will draw from the remaining team members to get up to speed are difficult to predict.  

 

Theoretical Implications 

Whereas the benefits of specialization have been expounded since Adam Smith, the 

role of task variety in enhancing learning has been recognized, or at least, sufficiently 

highlighted, only in relatively recent times (e.g., Schilling et al. 2003). Our work adds to 

existing perspectives on task specialization and variety by theoretically motivating and 

empirically establishing the idea of learning by doing in a real-life, knowledge-intensive, 
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while collar environment. In particular we find that the best learning occurs when there is a 

certain balance between specialization and variety.  

Second, while our analysis was mainly focused on individual learning, the results 

have implications for group/team learning as well. This is consistent with the notion that, 

depending on the context, the concepts of individual, group, and organizational learning may 

be highly interconnected (Argote 1993, Larson and Christensen 1993). In the firm we study, 

learning occurs not just from exposure to variety and specializing in tasks but also from the 

sharing of knowledge between team members. Therefore, if the individual is trained well, 

there are potentially some ripple effects on learning and productivity at the group level as 

well (Siemsen at al. 2006). Additionally, the firm usually benefits from overall team-level 

productivity more than it benefits from the productivity of an individual within the team.  

Third, in the methodological context, our conceptualization of the Herfindahl- 

Hirschman Experience Index (HHEI) can be applies to measure the dispersion of experience 

in future empirical studies of learning and associated phenomena. 

Finally, our findings on the team size, new joining and employee exit suggest that 

additions to and attritions from teams have distinct impacts on learning and productivity. 

Hence research must ideally consider and evaluate these concepts separately. In addition, we 

find that the absolute number of new or departing team members is less significant than the 

fraction of members joining anew or departing from the team. This is because the variables 

of greatest operational relevance to overall team productivity are the percentage of 

knowledge turned over (when team members depart) and the fractional additional load 

imposed on an existing team member (in case incoming team members need to be brought up 

to speed).  
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CHAPTER 4 

4. Optimal Resource Allocation in Software Maintenance 

4.1. Introduction 

A recent report by NIST (2002) estimates that the annual cost of software bugs16 to 

the economy is a staggering $59.5 billion. The key reasons cited are (1) lack of testing 

infrastructure; (2) inefficiency of testing process in capturing bugs and (3) progressively 

increasing complexity of software. It is acknowledged in the software maintenance literature 

that perfect software with zero bugs is unrealistic due to continually evolving nature of the 

product (Liberman 1997). Further, software maintenance is costly – maintenance budgets 

constitute between 50% and 80% of the overall IS budget (Nosek and Palvia 1990), and costs 

of maintenance are known to outweigh the costs of development by a factor between 2 and 

10 (Scacchi 1994). A considerable amount of the expense is expended on labor – close to 

75% (Amoribieta et al. 2001). Because the current business environment is characterized by 

scarce labor resources and high employee turnover– only 25% of hired engineers continue 

with a company for more than 5 years (Sudhakar 2002), managers handling maintenance 

activities are challenged to utilize available resources effectively.  

Increase in utilization of engineering resources can be accomplished in two ways. 

First, the productivity of engineers can be increased by increasing the rate of learning of 

 
16 Problem due to which the software does not meet the intended specifications 
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employees. This can be done by allocating tasks to individuals based on the amount of 

variety in their current assignments and the concentration of experience (Narayanan et al. 

2006), collocating team members (Teasley et al. 2002; Narayanan et al. 2006) and effectively 

managing the process of employee entry and employee exit (Narayanan et al. 2006). Second, 

adjustments can be made to the process of debugging based on the properties of the 

debugging task – focus of the current work.  

Software maintenance is divided into perfective, adaptive, corrective and preventive 

maintenance (Leintz et al. 1978). Corrective maintenance involves fixing bugs in the 

software. Perfective, adaptive and preventive maintenance tasks may involve addition of new 

features to improve functionality of the software or modifying the software specifications to 

meet future needs. A considerable amount of current academic work in software maintenance 

– from a management science perspective – is oriented towards understanding software 

enhancement (e.g. Banker and Slaughter 1997; Banker et al. 1998; Krishnan et al. 2004).  At 

the bug level, considerable work has been done on predicting occurrence rates of bugs (e.g. 

Elrich and Emerson 1987; Goel and Okumoto 1979; Littlewood 1980; van Pul 1994). ). 

Despite considerable amount of research on software maintenance, investigation on 

debugging process has been scarce to the extent that it has been labeled as a “scandal” by 

Liberman (1997). Current research in software debugging has focused on understanding 

cognitive behavior of engineers undertaking the debugging task (Hale and Haworth 1991; 

Hale et al. 1999). However, there is little or no work to the best of our knowledge that offers 

a management science perspective to the debugging process. Further, management of 

debugging efforts – queue management – is different from the management of enhancement 



90

activities in software – project management (April et al. 2004). Our work differs from the 

prior literature in software maintenance in the following aspects.  

First, we focus on individual software debugging tasks unlike enhancement projects 

as in the past literature (Banker et al. 2002; 1991;1998; Banker and Slaughter 1997; Kemerer 

and Slaughter 1997; Krishnan et al. 2004). Next, our focus is on the resources – labor 

resources – and utilization of those resources to extract maximum efficiency and not the 

software per se. Finally, we focus on capacity planning and enumerate the varied tradeoffs 

that managers face between the choice of capacity, queue length and management of the 

diversity of incoming tasks when resource endowments are limited.  

Our decision model involves two stages. In the first stage, we draw from theory and 

propose alternative econometric models of bug resolution. These models are then estimated 

and validated using bug resolution data from a large software software company.  Based on 

this analysis, we draw the insight that the fraction of bugs successfully resolved in each 

period decreases, as the bugs stay in the system longer. The best fitting model – which 

specifies a beta geometric distribution of the conditional probability of bug resolution during 

a given time period – is taken forward to the second stage.  

In the second stage, we develop a heuristic estimate of the effort required to resolve 

the incoming bugs under various output requirements. We present an optimization algorithm 

that imposes cut-off policies based on the time that bugs should be worked on without 

finding successful resolution. We demonstrate that such policies minimally impact rates of 

successful bug resolution, while simultaneously reducing waiting times for the assignment of 

incoming bugs to engineers and improving the overall productivity of the maintenance 
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operation. We extend our analysis to consider resource allocation decisions when the 

resource allocation priority can vary across the categories of incoming bugs. 

In § 2, we describe the research setting and the dataset used. In § 3, we examine 

competing model specifications and choose the model that provides the best prediction of the 

resolution phenomenon observed in our data. In § 4, we examine model validity and 

understand the implications of imposing a policy of threshold time period to cut off working 

on bugs. In § 5, we extend our analysis of the threshold policies to multiple groups. In § 6, 

we use queueing approximations from the literature to analyze the tradeoff between 

imposition of threshold policies and the waiting time of bugs in the system for two different 

queueing systems – First Come First Serve (FCFS) and Pre-Emptive Resume priority. 

Finally, in § 7, we outline limitations of the model, discuss the managerial implications and 

possible generalizations.   

 

4.2. Research setting and data 

Research Setting 

The data for the study was sourced from a large India-based, export-oriented software 

services provider. The firm employs over 10,000 engineers and develops and maintains both 

application and system software. Exports comprise more than 90% of the firm’s revenue. The 

research effort included on-site field work conducted over two months at the firm’s operating 

sites in India. The data covers 12503 debugging tasks performed on bugs originating from a 

large piece of system software. These tasks were assigned to engineers in project teams. The 

teams were supervised by lead engineers. 
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Resolution Process 

Each incoming bug is assigned to an engineer who works on the bug individually. 

Engineers also seek opinion of their counterparts or solicit help from email listserve’s and 

product documentation. Figure 3 shows the process of bug resolution. The resolution process 

is as follows: (1) the engineer investigates whether the bug is valid. If the bug is not valid 

bug then it can be designated as junk17. If the bug is valid, then the engineer tries to 

reproduce the bug in a laboratory setting. (2) If the bug is reproduced, then an attempt is 

made to resolve the bug. If not, the attempts to reproduce the bugs continue. If attempts to 

reproduce are repeated unsuccessfully, bugs can be designated as irreproducible18 (3) If the 

bug is successfully reproduced, an engineer attempts to resolve the bug. Such attempts can 

result in the bug being successfully resolved (Either resolved19 or duplicate20) or not being 

successfully resolved resulting in a closure21. We group irreproducible and closed bugs and 

classify them as unsuccessful resolutions. These are resolutions because effort is invested in 

resolving such bugs leading to an end state. They are unsuccessful because they do not 

directly contribute to improvement in the overall quality of the product. The other bugs are 

 
17 The bug does not require any changes to the software  
 
18 Problem cannot be reproduced by the evaluating or the test engineer. Typical reasons for a bug to be declared 

irreproducible bug is “compatibility problems with different software.” 
 
19 The bug has been resolved and fixed 
 
20 The bug report describes the same problem contained in another report 
 
21 The bug report is valid, but a conscious decision has been made not to fix the bug. The rights to this are 
available to the component owner. Typical reasons for closure of a bug are (a) a one off case that is not 
expected to repeat because the customer used the software in conditions that were not in conformance to 
specification (b) technical changes needed to fix the bug could potentially create problems in other features of 
the software. 
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designated as successful resolutions. They are successful because the bug has either been 

fixed or is tracked and tagged to a known problem.  

Our field interviews with the managers suggested that the engineers tend to work on 

problems in an iterative manner. On occasions, when a clear solution is not available, the 

engineer rests on the problem before making another attempt on the problem. This is in line 

with other investigations of engineer behavior during the debugging process (Hale and 

Haworth 1991). In any resolution iteration, the engineer generates a hypothesis on the cause 

of the bug, and implements a resolution tactic based on the current hypothesis. If the 

hypothesis is correct, the cause of the bug is found and the bug is resolved. If the hypothesis 

is incorrect, a different hypothesis is generated and another attempt is made at the resolution 

(Hale and Haworth 1991). 

Table 15 presents the resolution data with the time span of resolution divided into 

months – henceforth called a period. As seen in Table 15, in each period, some bugs are 

successfully resolved, some are designated as closed or irreproducible and the remaining 

bugs are carried forward into the next period since no conclusion can be reached on their 

status. As seen in Table 15 (Figure 4), the proportion of successful resolutions decreases with 

time. The intuition behind this decrease can be explained based on the Hale and Haworth 

(1991) model of debugging mentioned above. With each unsuccessful hypothesis generation 

exercise, the engineer takes longer to generate the next hypotheses given limitations of 

current know how. Also, the number of alternative hypothesis may also drop after each 

unsuccessful hypothesis because an even greater level of investigation may be called for.  
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Figure 3 # Bug resolution process 
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a bug spends in the system without successful resolution. Next, we model the ratios of 

successful resolutions over time shown in Table 15, to test whether the drop is significant 

using competing model specifications. 
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Figure 4 # Proportion of Successfully Resolved bugs in any time period 
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Time 
period 

(Months) 
Successful 

Resolutions Total 
Closed/ 

Irreproducible
Carried 
Forward 

Ratio 
Resolved 

1 7147 12503 1774 5356 0.572 
2 1067 3582 431 2515 0.298 
3 428 2084 215 1656 0.205 
4 260 1441 103 1181 0.18 
5 189 1078 51 889 0.175 
6 136 838 40 702 0.162 
7 96 662 42 566 0.145 
8 74 524 26 450 0.141 
9 52 424 15 372 0.123 
10 32 357 14 325 0.09 
11 34 311 27 277 0.109 
12 22 250 13 228 0.088 
13 23 215 5 192 0.107 
14 17 187 8 170 0.091 
15 11 162 12 151 0.068 
16 15 139 7 124 0.108 
17 18 117 7 99 0.154 
18 4 92 6 88 0.043 
19 10 82 9 72 0.122 
20 7 63 3 56 0.111 
21 3 53 2 50 0.057 
22 6 48 4 42 0.125 
23 5 38 3 33 0.132 
24 3 30 5 27 0.100 
25 3 22 3 19 0.136 
26 1 16 3 15 0.063 
27 2 12 0 10 0.167 
28 2 10 0 8 0.200 
29 1 8 0 7 0.125 
30 1 7 1 6 0.143 
31 2 5 1 3 0.400 
32 1 2 1 0 0.500 

Total 9672 25362  0.381

Table 15 #  Successful resolutions in each time period 
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Severity Windsorized 
Mean 

Median Mean  

1 8.5 2 15.22
2 12.8 3 27.85
3 20.12 3 44.39
4 46.86 7 82.16
5 59.61 9 115.20
6 62.54 3 117.43

Table 16 # Average waiting time (in days) before bug is assigned to engineers 
 

4.3. Alternative model formulations and results 

Table 15 summarizes the data for an overall 25362 bug-months that 12503 bugs spent 

in the system. To model the probability of successful resolution in each time period, a 

straightforward – naïve approach – would be to consider each entering bug having a 

homogeneous probability of resolution p in any time period22. In this case, the probability of 

resolution of a bug at any time t given unsuccessful resolution until t-1 is distributed 

geometric. The maximum likelihood estimate of p for this model evaluated using data given 

in Table 15 is 0.381 (0.003)23. This number is consistent with the maximum likelihood 

estimate of the resolution probability provided by Table 15 (9672/25362=0.381). A plot of 

the expected and the actual number of resolutions is shown in Figure 5. The estimates of the 

log likelihood and the chi-square are shown in Table 17. The plot between the expected and 

actual value and the chi-square statistic do not suggest a good fit for the model.  

 

22 We assume that there is at least one attempt made each month the bug is in the system 
 
23 Number in parenthesis is standard error 
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Expected Vs Actual - Naive Method 
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Figure 5 # Actual vs. Expected numbers for the naïve model 
 

Further, the reduction in the ratio of bugs resolved over time suggests heterogeneity 

in the population of bugs, i.e. the conditional probability that a bug is resolved in time t given 

that it has not been resolved until t-1, is a decreasing function of time. This heterogeneity has 

also been observed in other contexts such as fertility studies (Kaplan et al. 1992; Weinberg 

and Gladen 1986; Suchindran et al. 1974). Further, the significant reduction in probability of 

conception success with increasing trials has operational implications for managing the flow 

of entities in service system such as IVF-ET centers in hospitals as shown in Kaplan et al. 

(1992). We draw from this stream of literature and model the presence of heterogeneity in the 

incoming bugs using competing model specifications and assess comparative fit of the 

models using multiple criterions (graphical comparison, Pearson chi-square and log 

likelihood values – AIC Criterion).   
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Beta-geometric model 

A generalized expression for the probability of resolution in period t can be written 

as: 

∫ −−=
1

0

1' )()1( dppfppp tt
t (1) 

where, f(p) is the probability density function of p. Assuming that p is drawn from a beta 

distribution with parameters α and β , (Suchindran et al. 1974) we can show that the 

conditional probability of successfully resolving a bug in period t given that it has not been 

successfully resolved until period t-1 is: 

1−++
=

t
pt βα

α
(2) 

In equation 2, pt is monotonically decreasing with time, and 0→tp as t→∞ . The parameter 

estimates of α and β and the standard errors of estimates for the parameters for this model 

are presented in Table 17 (Beta-Geometric hazard case). Figure 6 shows the relative fit of the 

actual and the expected values. 
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Expected Vs Actual - Beta-Geometric Model 
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Figure 6 # Actual vs. Expected success with p distributed beta-geometric 
 

Split population geometric model 

Next we consider a split population geometric model (Kaplan et al. 1992). This model 

assumes that there is a fraction θ of the population of incoming bugs cannot be resolved. 

The probability of successful resolution in time t (pt), follows geometric distribution given by 

1)1( −−= tt
t ppp . The conditional probability of successfully resolving the bug in time t

given that the bug has not been resolved until t-1 is given by 

1

1

)1(1
)1(

−

−

−+−
−

= t

t

t p
ppp

θθ
θ

(3) 

Similar to equation 2, equation 3 also has the property that 0→tp as ∞→t . The plot 

showing the fit between predicted and actual values of the proportion of bugs resolved in 

each period is shown in Figure 7. The parameter estimates of p andθ , the standard errors, 

and the fit measures for this model are shown in Table 17.   
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Figure 7 # Expected vs. Actual for the Split Population Geometric Model 
 

Trinomial model 

The split population model and the beta-geometric model do not explicitly 

parameterize the bugs that are declared unsuccessfully resolved in each time period. A 

variant of the split population model can be created to explicitly account for this set of bugs. 

In this model, in each period, there are three groups. The first group of bugs is that which is 

successfully resolved, the second group of bugs is that which is declared as unsuccessfully 

resolved and the third group of bugs are those on which no decision is reached and these 

bugs are carried forward into the next period. We assume that the probability of resolution p 

in time t is given by the beta-geometric hazard – equation 2 – and the fraction of bugs that 

are unsuccessfully resolved in each time period by θ . We estimate three parameters – 

namely α , β , and θ – to completely characterize the distribution of successfully resolved 

bugs in each period in this case. The likelihood function is shown in the appendix (equation 

34). The model fit statistics and the parameter estimates with respective standard errors are 

shown in Table 17.  The relative fit of the actual and expected values is shown in Figure 8. 
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Figure 8 # Expected  vs. Actual for the Trinomial Model 
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that chi-square test is known to be sensitive to sample sizes24(Segars and Grover 1993). To 

overcome this problem, literature suggests the use of Normed Chi-Square as a measure of 

model fit Segars and Grover (1993). In majority of the cases we find that the normed chi-

square measure is less than the suggested metric of three. Finally, one may expect the three 

parameter model to outperform the two parameter model, however in our case, this 

expectation may not hold true because the beta-geometric and the trinomial models are non-

nested. Based on the above rationale, we choose beta-geometric model for our analysis.  

One of the implications of selecting the beta-geometric model is that, as ∞→t ,

0→tp . As stated earlier, when the teams are working at near 100% utilization, both the 

waiting and service times in the system will increase exponentially. In further sections, we 

consider the implications of imposing cut off policies on the resolution probability and the 

waiting times in the system. 

 

Model 
Chi-Square LL Parameter Estimates 

Std. 
Error 

Naïve  2517.17 -16858.75 p 0.381 0.003 
α 1.025 0.024 Beta Geometric 

Hazard 223.96 -14777.4 β 0.543 0.023 
θ 0.963 0.003 Split Population 

Geometric 4,976,653 -16308.15 p 0.436 0.002 
α 0.904 0.026 
β 0.426 0.018 

Trinomial  258.38 -21658.1 θ 0.11 0.001 

Table 17 # Estimates and Model fit of comparative models 
 
24 We ran the beta-geometric model with sub-groups of data drawn from individual teams. The beta-geometric 
specification performed very well and the chi-square test supports the null hypothesis that the model describes 
the data (For example in Table 18, the data for Deployment-related category accepts that null hypothesis that 
the underlying distribution is beta geometric – p value is 0.621). Finally as suggested by Segars and Grover 
(1993) – Normed Chi-Square -- our values of Chi-square/DF for most model other than the common model 
exhibited the property of Chi-square/DF being less than 3 for most models with reasonable sample sizes. 
 



104

4.4. Impact of cut off policies 

In this section, we explore the implications of imposing a threshold time period to cut 

off working on a bug (denoted by a) and move it to an unsuccessfully resolved state. In part 

the methodology follows Kaplan et al. (1992). We estimate implications of this policy for the 

common model25 that does not differentiate the incoming bugs in any manner. Later, in § 5, 

we also extend the analysis to a setting where bugs are differentiated based on the group that 

filed the bug. 

Let U – a random variable – be the time period when a bug exits the system as 

unsuccessfully resolved. Let S – a random variable – is the time period when a bug exits the 

system as successfully resolved. Finally, let X be the random variable indicating the actual 

number of periods taken to resolve the bug. Then assuming U and S are independent: 

X = Min {U, S} and,  

 }Pr{}Pr{}Pr{ xSxUxX ≥≥=≥ x = 1,2,3,….                                    (4) 

The number of time periods a bug is expected to last is given by  

∑
∞

=

≥=
1

}Pr{
x

xXe (5) 

When bugs are moved to an unsuccessfully resolved state after a threshold of a time periods, 

the probabilities 0})(Pr{ => aaU and 0})(Pr{ => aaS , can be written as a function of the 

cut off time period a. If a bug enters period a, it implies that it did not reach either resolved 

or unresolved states until period a-1. The probability that a randomly chosen bug gets 

resolved under a threshold policy of a time periods is given by: 

25 Common model refers to the combined dataset of 12503 bugs  
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x

a

x
pxaXaP ∑

=

≥=
1

})(Pr{)( (6) 

Where, xp is the conditional probability given by equation 2. Assuming that the arrival 

process is Poisson with rate λ per month, and n engineer slots available each month for 

assignment of incoming bugs, and a utilization rate of )(aρ , n )(aρ bugs will be worked on 

at any point in time. The exit rate of bugs from the system is given by  n
)(
)(

ae
aρ . In steady 

state, the condition for stability of the queue is: 

1)()( <=
n

aea λρ (7) 

Using equation 7, we formulate an optimization problem to maximize the overall number of 

successful resolutions given an available capacity of n engineer slots as shown below: 

)(aPMax
a

λ (8) 

Subject to   nae <)(λ a =1,2,3,4…  (9) 

Figure 9 # The queuing process 
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threshold policy of a months before declaring the bug as unsuccessfully resolved can be 

written as: 








>

=−
=≥ ∏
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=
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xaU

x
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x

0

......3,2,1),1(
})(Pr{

1

1 (10) 

where, xd is the conditional probability of moving the bugs to unsuccessfully resolved at the 

end of month x given that no decision has been reached on the state of the bug until month x-

1. Using equation 4 and equation 10, we can rewrite equation 6 as  

 ∑ ∏
∞

=

−

=
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where ∏
−

=

−=≥
1

1

)1(})(Pr{
x

j
jpxaS and 

1+−+
=

j
p j βα

α .

Given that the resolution can be cut off at t = a, expected time a bug stays in the system as a 

function of the threshold time period a is:  

∑
=

≥=
a

x
xaXae

1
})(Pr{)( (12) 

In equation 12, 1)1( =e , and )(∞e is the expected number of time periods a bug stays in the 

system when cut off policy is not imposed. Figure 10 and Figure 11 show the changes in 

)(ae and )(aP with increasing a. One can see in Figure 11, by the end of Month 7, P(a) is 

97.3 % of its peak value of 0.77.  

 Our dataset of 12503 bugs spanned a total of 97 months and came from 31 different 

teams. Treating them as a single group, and assuming steady state arrival of bugs implies an 

arrival rate of, =λ 12503/97 = 128.9/Month across all the projects. The maximum likelihood 
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estimate for xd was computed from Table 15 based on the proportion of bugs that were 

moved to unsuccessfully resolved state in period x conditional on no decision until period x-

1. The maximum likelihood values of α and β are shown in Table 17. The expected 

number of months taken to resolve under no threshold policy, )(∞e is 047.2 . The expected 

number of months the bugs are in the system based on data shown in Table 15 is 

25362/12503 = 2.028. Further, )(∞P – the proportion of bugs successfully resolved – as 

obtained from the model is 0.77. From Table 15, we can see that this turns out to be 

9672/12503= 0.77. The above numbers suggest that the aggregate model describes the 

phenomenon well. Finally, the total number of engineer slots required is given by 

26488.263204.2*9.128)( ≅==∞eλ engineer slots per month. In the next section, we 

understand the implications of imposing threshold cut-off time period in a multiple group 

setting. 

 

Figure 10 # Expected Resolution Time 
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Figure 11 # Cumulative probability of successful resolution with time 
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resolved bugs in each of the above categories. Any rule for allocating resources must specify 

how available capacity is allocated across the sub-groups of bugs. 

For the multi-group case equations 8 and equation 9 can be modified to: 

∑
=

k

i
iiia

aPMax
i 1

)(λ (13)

Subject to nae
k

i
iii <∑

=1
)(λ 4,3,2,1=∀ k …m (14) 

From equations 13 and 14, for any given slot size, we can determine the maximum resolution 

rate by enumerating all the feasible cut-offs over the 6 groups in question. However, 

enumerating all possible combinations of the cut-off time periods lead to 326 (1,073,741,824) 

combinations (6 groups and a possible maximum of 32 time periods for each group).  To 

reduce the number of enumerations, we can aggregate individual groups to form a meta-

group. We now present the grouping rationale. 

 

Creating Meta-groups 

From a software engineering perspective, the six sources of bugs described earlier can 

be divided into three meta-groups. The first meta-group comprises bugs discovered during 

development and development-related activities (including compilation, compliance 

examination, and code inspection tasks). These activities are usually performed by 

development/maintenance engineers who work closely with the software code. On account 

their good understanding of the code, these engineers can provide relatively precise 

information and guidance to the maintenance engineers work on bug resolution. Therefore, 

the bugs filed within this meta-group can be expected to have a high fraction of successfully 

resolved bugs as compared to those filed by other entities. The second meta-group comprises 
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bugs discovered during regression and unit testing. These types of testing are performed 

when various software components have been integrated, or when a completed module needs 

to be tested for its functionality. Bugs discovered during such testing can span multiple 

components, or multiple code bases within a component. Therefore, these bugs can be more 

difficult to reproduce and resolve. Finally, the third meta-group comprises bugs filed by 

customers and bugs which are deployment-related (the latter could include bugs discovered 

during the alpha and beta testing stages). Customers are least familiar with the software code. 

Further, during the alpha and beta testing stages and during the live deployment of the 

software at customer locations, the software may be put to work in diverse environments not 

encountered during the formal testing process. This may lead to the discovery of bugs which 

are either not well specified or not easily reproducible in the lab environment. Thus, these 

bugs are least likely to be successfully resolved.  

We now check this three-way grouping empirically. Consider the percentage of 

successfully resolved bugs across the meta-groups in Table 19. As expected, development 

and development-related bugs have the highest percentage of successfully resolved bugs (See 

actual fraction of bugs resolved in each subgroup), Customer found and deployment-related 

bugs have the least fraction of bugs resolved and finally the testing bugs fall between the 

other two. Further, we can empirically demonstrate the equivalence of the pairs of sources 

which are combined within each meta-group by comparing parameter estimates (α and β )

across the source-pairs. To verify this grouping rigorously, we investigated the equivalence 

of the parameters α and β by considering a pair of values in any given time and tested 
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whether they were significantly different from each other26. If both α and β are not 

significantly different from each other for individual groups, then the groups are equivalent. 

In that case, we created a new subgroup by treating the two groups to be the same and re-

estimated α and β for the combined group. If either α or β for two groups are 

significantly different from each other, we treat them as distinct groups.   

Our tests of parameter equivalence yielded three distinct meta-groups. Interestingly, 

these groups are consistent with earlier theoretical observations of grouping by stage of the 

development life cycle. The estimates of α and β , the log-likelihood, and the Pearson’s chi-

square for each of the meta-group is presented in Table 19. In addition to the calculated 

estimates of α and β , Table 19 also presents the data for the predicted and actual times the 

bug stays in the system, and the predicted and actual probability of a bug being successfully 

resolved, for each meta-group. The closeness of the predicted and actual estimates in Table 

19 suggests validation of the beta-geometric approach in individual meta-groups.  

 
26 This was done by a simple transformation of the beta geometric distribution to 1)b(ta

p
1

t
−+= based on 

Weinberg and Gladen (1986). We can introduce a covariate Z and write the function as 

))1(()1(1
11 −++−+= tdcZtba

pt
. This enables us to test for the significance of coefficients (obtained using 

maximum likelihood) c and d to estimate the equivalence between the groups.  
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Table 18 # Maximum Likelihood estimates of α and β

Main Group Sub Group Sample
Size

α β Chi-
Square(DF)

Log-
Likelihood

%
Successfully

Resolved
Common Group 1.025 0.543

Common Group
Standard Error

12503
0.024 0.023

223.96 (31) -14777.4 77.30%

Development 1.031 0.543
Standard Error

2245
0.066 0.046

73.58 (31) -2751.54 91.63%

Regression and
Automation 0.836 0.616

Standard Error
1818

0.084 0.073
40.23 (22) -1860.52 72.28%

Customer Found 0.871 1.198
Standard Error

2119
0.067 0.12

75.69 (31) -2964.77 69.80%

Devtest 0.795 0.575
Standard Error

5023
0.043 0.038

115.71 (31) -5445.33 74.74%

Development-related 1.207 0.663
Standard Error

729
0.154 0.107

40.80 (20) -864.035 87.40%

Deployment-related 0.97 1.087

Grouping by the
Filer of the Bug

Standard Error
512

0.369 0.145
27.99 (31) -698.409 74.41%

112
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Group Item Estimate Log
Likelihood Chi-Square

Arrival Rate 27.12/Month
α (S.E) 1.062 (0.060)
β (S.E) 0.565 (0.042)
Predicted expected time to successful resolution 2.08 Months
Actual expected time to successful resolution 2.07 Months
Predicted probability of successful resolution 0.9

Development
and

Development-
related

Actual fraction successfully resolved 0.905

-3636.52 101.68 (31)

Arrival Rate 70.52/Month
α (S.E) 0.804 (0.038)
β (S.E) 0.585 (0.033)
Predicted expected time to successful resolution 1.805 Months
Actual expected time to successful resolution 1.783 Months
Predicted probability of successful resolution 0.738

Regression
and

Devtest

Actual fraction successfully resolved 0.74

-7305.96 143.88 (31)

Arrival Rate 31.24/Month
α (S.E) 0.887 (0.061)
β (S.E) 1.172 (0.105)
Predicted expected time to successful resolution 2.62 Months
Actual expected time to successful resolution 2.61 Months
Predicted probability of successful resolution 0.703

Customer Found
and

Deployment-
related

Actual fraction successfully resolved 0.706

-3665.81 81.30 (31)

Table 19 # Maximum Likelihood estimates and related data for sub-groups

113
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Enumeration of cut-offs 

The creation of meta-groups simplifies the number of enumerations required 

considerably. As against the 326 (1,073,741,824) enumerations required earlier, we now have 

to consider only 323 (32,768) enumerations to choose the optimal cut-off combination. We 

now present the algorithm for choosing the optimal cut off. This algorithm is based on 

Kaplan et al. (1992).  

 

Initialize: Set LOWERBOUND  RR = 0, )(* nai =0, )(* na j =0,  )(* nak =0 3,2,1,, =∀ kji

Set UPPERBOUND ,)(max nai ),(max na j 3,2,1,,)(max =∀ kjinak

OUTER LOOP: FOR i = 1,2,3 )(nai = 1, 2, 3, 4, … )(max nai

MIDDLE LOOP:  FOR 3,2,1=j and ij ≠ , =)(na j 1,2,3,4….. )(max na j

INNER LOOP:  FOR 3,2,1=k , ik ≠ , jk ≠ 






 −−
= −

k

jjjiii
k

naenaen
ena

k λ
λλ )))(())(((

)( 1max  

If nnaenaenae kkkjjjiii <++ ))(())(())(( λλλ

if  RRaPaPaP kkkjjjiii >++ )()()( λλλ then 

set )()(* nana ii = , )()(* nana jj = , )()(* nana kk =

Set RRaPaPaP kkkjjjiii =++ )()()( λλλ

The optimal combination of )(nai for a given n (slot size) is one that maximizes the 

overall resolution rates for a given slot size. Figure 12 shows the optimal cut-off schedule for 

individual groups with increasing slot size. In particular, when the number of slots is lower, it 

reflects the tradeoffs that need to be made in imposing the cut off months on a type of bug.  

From Figure 12, we see that when the available number of slots is low, the resolution rate can 

be maximized by focusing on developer filed bugs. Intuitively, this is consistent with the 
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observation in our data that the probability of successful resolution of developer filed bugs is 

high (0.90). Note that in this allocation, all the incoming bugs from any source in a time 

period are treated equally, i.e., if even one bug from that source is admitted then all the bugs 

from that source should be admitted. For example, in period 1 if the management has 15 slots 

and the minimum number of slots needed to accommodate all the incoming arrivals of the 

developer filed bugs in period 1 is 28 slots, none of the bugs will be accommodated. We 

label this approach as the “equality rule.” However, this approach need not necessarily yield 

us the maximum resolution at any point in time.  

To maximize resolution rates for any given capacity without imposing the equality 

rule, one can follow a scheme where bugs are allocated based on the highest marginal 

resolution probability in each time period. We call this allocation scheme the “marginal 

probability rule.” In this case, given the availability of 30 slots, after completing the 

allocation of the slots to the bugs with highest probability of resolution – For example, 

developer filed bugs in the first time period because of highest resolution probability in the 

period –, any left over slots are given to the bugs with the next highest marginal resolution 

probability – In this case, tester filed bugs in the first time period. However, note that, not all 

arrivals of the second group can necessarily be served and to the extent that the slots for 

assignment are available a fraction of the bugs is served. For time periods that are greater 

than one month, we can determine the number of bugs in steady state that are carried forward 

to the next period (for example period 2) and assign only a fraction of the bugs for which the 

slots are available in that period. Table 20 shows a comparison of the resolution rates 

between the “marginal probability rule” and the “equality rule”. The following example 

illustrates the interpretation of the results shown in Table 20. For 150 slots, the optimal 
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policy would impose a cut off period of 2 months on development and development-related 

bugs, 2 months on regression and unit test bugs and one month on customer and deployment-

related bugs. Further, the policy indicates that engineers should work on all development and 

development-related bugs until the end of second period, work on all regression and unit test 

bugs until the end of first period and carry forward only 76% of the leftover bugs from this 

meta-group to be worked on in the second period, and finally, work on all customer and 

deployment-related bugs till the end of the first period (no bugs in this last meta-group are 

carried forward into the second period). Finally, note that as expected, the “marginal 

probability rule” allocation performs better in terms of the resolution rates particularly when 

the slot sizes are low. However, for all slot size numbers greater than 150, both the rules 

perform equally well. From a managerial perspective, however, implementing the “marginal 

probability rule” requires keeping track of the number of bugs that one needs to work on in a 

particular category for any slot size. 

Table 20 also shows the cumulative resolution rates based on the “equality rule.” 

Figure 13 shows the cut off combinations for the maximum resolution rate for the “Marginal 

Resolution rule” case. Figure 14 shows the relative percentage of bugs resolved – computed 

as 







∞+∞+∞

++
100*

)()()(
)()()(

332211

333222111

PPP
aPaPaP

λλλ
λλλ – with increase in number of slots available. This 

shows that the marginal rate of resolution of bugs reduces as the slot sizes increase indicating 

that the sensitivity of addition of capacity on overall rates of successful resolution is low as 

more people are added into the teams. 
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Table 20 # Integer Cutoffs and Fraction considered for resolution based on Marginal Probability Rule

 Maximum Integer Cut offs 
Fraction of Bugs considered for 

resolution in the “Maximum Integer 
Cut off period” 

Slots Devel-
opment Testing Customer Devel-

opment Testing Customer 

Resolution 
Rate -- 

Marginal 
Probability 

rule 

Resolution 
Rate -- 

Equality 
rule 

30 1.00 1.00 0.00 1.00 0.04 0.00 19.37 17.71 
35 1.00 1.00 0.00 1.00 0.11 0.00 22.27 20.88 
40 1.00 1.00 0.00 1.00 0.18 0.00 25.16 22.17 
45 1.00 1.00 0.00 1.00 0.25 0.00 28.06 23.25 
50 1.00 1.00 0.00 1.00 0.32 0.00 30.95 23.96 
55 1.00 1.00 0.00 1.00 0.40 0.00 33.85 24.37 
60 1.00 1.00 0.00 1.00 0.47 0.00 36.74 31.17 
65 1.00 1.00 0.00 1.00 0.54 0.00 39.64 31.17 
70 1.00 1.00 0.00 1.00 0.61 0.00 42.53 34.35 
75 1.00 1.00 0.00 1.00 0.68 0.00 45.43 40.83 
80 1.00 1.00 0.00 1.00 0.75 0.00 48.32 40.83 
85 1.00 1.00 0.00 1.00 0.82 0.00 51.22 40.83 
90 1.00 1.00 0.00 1.00 0.89 0.00 54.11 46.62 
95 1.00 1.00 0.00 1.00 0.96 0.00 57.01 46.62 

100 1.00 1.00 1.00 1.00 1.00 0.08 59.55 58.54 
105 1.00 1.00 1.00 1.00 1.00 0.23 61.71 58.54 
110 1.00 1.00 1.00 1.00 1.00 0.39 63.86 63.00 
115 1.00 1.00 1.00 1.00 1.00 0.55 66.02 64.33 
120 1.00 1.00 1.00 1.00 1.00 0.71 68.17 64.69 
125 1.00 1.00 1.00 1.00 1.00 0.87 70.32 67.50 
130 2.00 1.00 1.00 0.12 1.00 1.00 72.45 72.00 
135 2.00 1.00 1.00 0.35 1.00 1.00 72.45 72.00 
140 2.00 2.00 1.00 1.00 0.18 1.00 76.29 75.18 
145 2.00 2.00 1.00 1.00 0.47 1.00 77.97 77.13 
150 2.00 2.00 1.00 1.00 0.76 1.00 79.66 78.93 
155 3.00 2.00 1.00 0.21 1.00 1.00 81.30 80.97 
160 3.00 2.00 2.00 1.00 1.00 0.12 82.76 82.25 
165 3.00 2.00 2.00 1.00 1.00 0.50 84.21 83.33 
170 3.00 2.00 2.00 1.00 1.00 0.89 85.66 84.71 
175 3.00 3.00 2.00 1.00 0.39 1.00 86.93 86.67 
180 3.00 3.00 2.00 1.00 0.95 1.00 88.11 87.64 
185 4.00 3.00 3.00 1.00 1.00 0.13 89.25 88.79 
190 4.00 3.00 3.00 1.00 1.00 0.88 90.34 89.85 
195 5.00 4.00 3.00 1.00 0.34 1.00 91.30 91.12 
200 5.00 4.00 4.00 1.00 1.00 0.16 92.21 92.00 
205 5.00 4.00 4.00 1.00 1.00 0.82 93.07 92.80 
210 6.00 5.00 5.00 1.00 1.00 0.05 93.82 93.69 
215 7.00 5.01 5.00 1.00 0.01 1.00 94.54 94.43 
220 7.00 6.00 6.00 1.00 1.00 0.57 95.17 95.05 
225 9.00 6.00 6.00 1.00 1.00 0.64 95.76 95.65 
230 10.00 7.00 8.00 1.00 1.00 0.28 96.29 96.19 
235 11.00 8.00 9.00 1.00 1.00 0.34 96.76 96.65 
240 12.00 9.00 10.00 1.00 1.00 0.90 97.19 97.08 
245 14.00 11.00 11.00 1.00 0.63 1.00 97.56 97.47 
250 16.00 12.00 13.00 1.00 1.00 1.00 97.89 97.79 
255 19.00 15.00 16.00 1.00 1.00 0.36 98.17 98.07 
260 24.00 18.00 20.00 1.00 1.00 0.27 98.41 98.31 
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Figure 12 # Optimal cut off combinations for different groups given slot size – Equality Rule 
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Figure 13 # Optimal cut off combinations for different groups given slot size – Marginal Probability Rule 
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Figure 14 # Relative resolution rates for the three groups based on slot size 
 

4.6. Waiting Time tradeoffs 

In this section, we analyze the effects of imposing the cut off policies on the waiting 

times of bugs in the system. Longer queues not only lead to assignment delays, but also lead 

to resolution delays. Using approximations developed in prior literature, we analyze two 

different cases. First, we analyze the case where bugs are handled on a First Come First 

Serve (FCFS) basis. Next, we analyze the case assuming the incoming population follows a 

preemptive resume priority queue with higher severity bugs preempting the lower severity 

bugs.  

 

Non-preemptive FCFS case 

Let )(aWNP  be the total time a bug spends in the system when a threshold policy of a

time periods is enforced in the non-preemptive case. Therefore: 

)()()( aWaeaW QNP += (15) 
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)(aWQ is the waiting time in the queue with a threshold policy of a time periods and 

T(a) is the expected time that the bug spends in service – as calculated earlier. We assume 

that the arrival process of the bugs is poisson – with rate λ – consistent with related literature 

in software reliability (van Pul 1994). We assume the queue to be an M/G/n queue.  

The waiting times in queue for the non-preemptive FCFS case can be computed for 

the M/G/n queue using the approximation suggested by Whitt (1983). )(aWQ can be 

approximated by27 

)),(,(
)(

))((1
2
1)( 2 naPQ

ae
aXVaraWQ λ








+= (16) 

Here, )),(,( naPQ λ is the exact delay for a M/M/n system with arrival rate λ . Table 21 

shows the mean time a bug spends in the system and Table 22 gives the sensitivity analysis 

as the number of slots is increased from 264 to 275. One can see that the queue length 

reduces to zero as the slot size increases from 264 to 275. Note that the computation has an 

underlying assumption that each incoming bug can be assigned to any individual. However, 

in reality, teams are divided into individual “projects” – supervised by a lead – that may have 

reduced number of servers (engineers). This has a direct impact in increasing the waiting line 

of the bugs. To analyze the impact of this phenomenon, we show the similar analysis by 

using only one of the teams. The results of the waiting line and the impact of increase in 

number of slots in the system is shown in Table 23. This is considerably larger as compared 

to the waiting times shown in Table 21 implying that at a team level, such policies may have 

greater impact.  
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Preemptive resume priority case 

In this section, we investigate the case where higher severity bugs can be pre-empted 

by bugs of lower severity – consistent with the observation that higher severity bugs have to 

be resolved with a greater urgency. More specifically, we grouped the bugs into three 

categories (Group 1: Severity 1 and Severity 2, Group 2: Severity 3 and Severity 4, and 

Group 3: Severity 5 and Severity 6). To calculate the waiting times in queue under pre-

emptive resume priority, we use the method suggested by Bondi and Buzen (1984) as shown 

in equation 17. 28 

)1,,,(

),,,(
)1,,,(),,,(

)()(

)()(
)()()()(

pp

pp
pppp nFCFSW

nFCFSW
nPRIWnPRIW

λµ

λµ
λµλµ ≈ (17) 

Here, ),,,( )()(
nPRIW pp

λµ is the computed waiting time for the system with n servers under 

a pre-emptive resume priority (PRI) discipline for the p priority classes29, with an arrival rate 

vector ),...,( 21)( pp λλλλ = and a service rate vector denoted by ),...,( 21)( pp
µµµµ = .

),,,( )()(
nFCFSW pp

λµ is the waiting time for the M/G/n system with a first come first serve 

(FCFS) priority. This can be computed using the approximations in Nozaki and Ross (1978), 

or Boxma et al. (1978).  

 
27 We can also compute this using other approximations by Boxma et al. (1979) and by Nozaki and Ross 
(1978). We verified our waiting times with all the three approximations. They yield values that are very close to 
each other. The expressions for the approximations are given in the appendix. 
28 Notations used in the equations are consistent with Bondi and Buzen (1984) 
29 Note that our assumption of pre-emptive resume priority queue is reasonable in this scenario given that 
engineers have some prior knowledge of the resolution history of the preempted bug 
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)1,,,( )()( pp
nFCFSW λµ is the waiting time for the M/G/1 system with a first come first serve 

priority with an average service rate of )( pnµ , where )( pnµ is the mean service rate weighted 

by the p priority levels is given by  )( pµ
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Pollaczek-Khintchine Formula.
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)( λλ for the p priority classes and ∑
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1
)( ρρ . The condition of stability of 

the queue implies that ∑ <= 1/)( ii nr µλρ .

)1,,,( )()( pp
nPRIW λµ indicates the average waiting time for an M/G/1 pre-emptive priority 

queue with p priority classes and is computed as  
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Here, iW is the expected waiting time for individual priority class i and  
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Finally, the approximation given in equation 17 as suggested by Bondi and Buzen 

(1984) is better when the queue of the high priority customers is not very long. In our data 
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the grouping of Severity 1 and Severity 2 bugs constituted 3253/12503 = 26% of the overall 

number of bugs.  

Bondi and Buzen (1988) find that the approximation suggested by Boxma et al. 

(1978) gives more accurate predictions as opposed to the approximations suggested by 

Nozaki and Ross (1978) when they compared the approximations to the simulated values. 

Accordingly we computed the waiting times based on Boxma et al. (1978). Finally, the total 

time in the system W(a) is given by:  

)()()(
/1),,,()( pppPP nPRIWaW µλµ += (21) 

Here, )(aWPP is the overall waiting time for the PRI case. Table 21 provides estimates of 

)(aWPP  computed based on waiting time approximation suggested by Boxma et al. (1978). 

We find that preemption increases the overall delay significantly. In particular this is true for 

the lower priority classes. This illustrates that in reality, the waiting times may be 

significantly large due to the nature of the process, thus reinforcing the need for cutting off 

working on the bugs at any particular point in time. In particular, we also find that, while the 

resolution times of high severity bugs are not compromised in the overall system, preemption 

has a serious impact on the system waiting times of the low severity bugs with increasing 

time periods the bugs stay in the system. For clarity, Table 24 and Table 25 enumerate the 

steps used to compute WNP and WPP shown in Table 21.   
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Cut off time 
period (a) 

Resolution  
Probability 

WNP 
(264 slots) 

WNP 
(265 slots) 

WPP 
(264 slots) 30 

WPP 
(265 slots) 

1 0.566 1.00 1.00 1.000 1.000 
2 0.665 1.29 1.29 1.290 1.291 
3 0.704 1.45 1.45 1.449 1.449 
4 0.724 1.55 1.55 1.553 1.554 
5 0.736 1.63 1.63 1.630 1.632 
6 0.744 1.69 1.69 1.698 1.698 
7 0.750 1.74 1.74 1.781 1.772 
8 0.754 1.78 1.78 1.919 1.881 
9 0.757 1.82 1.82 2.178 2.072 
10 0.760 1.85 1.85 2.654 2.407 
11 0.762 1.88 1.88 3.478 2.968 
12 0.763 1.91 1.91 4.728 3.793 
13 0.764 1.94 1.94 6.592 4.985 
14 0.765 1.97 1.97 9.378 6.705 
15 0.766 2.01 2.00 13.387 9.079 
16 0.767 2.05 2.03 18.847 12.169 
17 0.768 2.09 2.07 26.349 16.193 
18 0.768 2.15 2.12 36.448 21.302 
19 0.769 2.22 2.18 50.031 27.702 
20 0.769 2.30 2.24 67.009 35.073 
21 0.769 2.41 2.31 89.900 44.073 
22 0.769 2.54 2.41 121.944 55.180 
23 0.770 2.72 2.52 165.156 67.926 
24 0.770 2.97 2.66 225.016 82.206 
25 0.770 3.26 2.81 299.609 95.844 
26 0.770 3.63 2.97 394.845 108.514 
27 0.770 4.08 3.14 509.075 118.875 
28 0.770 4.76 3.36 686.400 128.165 
29 0.770 5.95 3.64 996.681 133.695 
30 0.770 8.52 4.02 1672.947 128.995 
31 0.770 15.12 4.47 3402.699 119.444 
32 0.770 37.66 4.87   

Table 21 # Tradeoff between mean time a bug spends in the system and the probability of a successful 
resolution 
 

30 A breakup of waiting times by severity class is shown in Table 23 
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Non Preemptive setting Preemptive setting 
Slots 

Cut off 
Month 264 265 270 275 264 265 270 275 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 
3 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 
4 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 
5 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 
6 1.69 1.69 1.69 1.69 1.70 1.70 1.69 1.69 
7 1.74 1.74 1.74 1.74 1.78 1.77 1.75 1.74 
8 1.78 1.78 1.78 1.78 1.91 1.88 1.80 1.79 
9 1.82 1.82 1.82 1.82 2.14 2.08 1.85 1.83 
10 1.85 1.85 1.85 1.85 2.55 2.43 1.91 1.88 
11 1.88 1.88 1.87 1.87 3.24 3.02 1.99 1.93 
12 1.91 1.91 1.90 1.89 4.28 3.90 2.07 1.98 
13 1.94 1.94 1.92 1.91 5.81 5.17 2.17 2.04 
14 1.97 1.97 1.93 1.93 8.06 7.04 2.27 2.12 
15 2.01 2.00 1.95 1.95 11.26 9.66 2.39 2.19 
16 2.05 2.03 1.96 1.96 15.55 13.12 2.51 2.28 
17 2.09 2.07 1.98 1.98 21.38 17.73 2.62 2.36 
18 2.15 2.12 1.99 1.99 29.16 23.73 2.74 2.44 
19 2.22 2.18 2.00 2.00 39.53 31.50 2.85 2.53 
20 2.30 2.24 2.01 2.01 52.41 40.79 2.95 2.60 
21 2.41 2.31 2.02 2.01 69.64 52.69 3.05 2.68 
22 2.54 2.41 2.02 2.02 93.60 68.33 3.14 2.75 
23 2.72 2.52 2.03 2.03 125.70 87.80 3.23 2.82 
24 2.97 2.66 2.04 2.03 169.92 112.22 3.31 2.88 
25 3.26 2.81 2.04 2.04 224.69 139.22 3.38 2.93 
26 3.63 2.97 2.04 2.04 294.42 169.34 3.43 2.97 
27 4.08 3.14 2.05 2.04 377.95 200.38 3.48 3.01 
28 4.76 3.36 2.05 2.05 507.44 240.19 3.52 3.04 
29 5.95 3.64 2.05 2.05 733.76 292.85 3.57 3.08 
30 8.52 4.02 2.05 2.05 1226.61 365.47 3.61 3.11 
31 15.12 4.47 2.06 2.05 2485.66 449.36 3.64 3.13 

Table 22 #  Sensitivity of waiting line to slot size increments 
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Cut off time 
period (a) 

Probability of 
resolution  

Mean Time  
(52 slots) WNP 

Mean Time  
(53 slots) WNP 

1 0.531 1.00 1.00 
2 0.623 1.27 1.27 
3 0.657 1.41 1.41 
4 0.673 1.51 1.50 
5 0.682 1.59 1.58 
6 0.688 1.67 1.64 
7 0.693 1.76 1.71 
8 0.696 1.86 1.79 
9 0.698 1.99 1.87 
10 0.699 2.16 1.96 
11 0.701 2.37 2.07 
12 0.702 2.66 2.19 
13 0.702 3.02 2.32 
14 0.703 3.57 2.48 
15 0.704 4.56 2.68 
16 0.704 6.73 2.95 
17 0.704 12.74 3.25 

Table 23 # Tradeoff between mean time a bug spends in the system and the probability of a successful 
resolution – A single Project Case 
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Table 24 # Computation of waiting times of individual classes when preemptive resume priority is followed (264 Slots)

Cut off
period (a) 12W 34W 56W )1,,,( )()( pp

nPRIW λµ ),,,( )()(
nFCFSW pp

λµ )1,,,( )()( pp
nFCFSW λµ ),,,( )()(

nPRIW pp
λµ

1 0.000 0.000 0.000 0.000 0.000 0.002 0.000
2 0.124 1.134 2.874 1.018 0.000 0.005 0.000
3 0.166 1.921 6.132 1.819 0.000 0.008 0.000
4 0.203 2.783 10.745 2.783 0.000 0.013 0.000
5 0.238 3.725 17.017 3.939 0.000 0.018 0.001
6 0.271 4.754 25.435 5.332 0.000 0.025 0.007
7 0.304 5.866 36.461 7.000 0.000 0.033 0.037
8 0.336 7.015 50.277 8.926 0.001 0.043 0.123
9 0.367 8.205 67.575 11.174 0.002 0.054 0.318

10 0.397 9.459 89.515 13.855 0.003 0.067 0.699
11 0.427 10.768 117.218 17.059 0.007 0.083 1.370
12 0.456 12.061 150.058 20.685 0.012 0.101 2.387
13 0.485 13.395 190.516 24.981 0.019 0.123 3.896
14 0.513 14.775 241.780 30.219 0.030 0.149 6.130
15 0.540 16.159 305.764 36.533 0.046 0.181 9.307
16 0.566 17.515 383.596 43.998 0.068 0.219 13.589
17 0.591 18.844 480.436 53.048 0.097 0.266 19.403
18 0.616 20.173 601.213 64.119 0.137 0.323 27.173
19 0.641 21.473 753.451 77.826 0.189 0.393 37.535
20 0.662 22.663 933.795 93.833 0.255 0.475 50.401
21 0.680 23.809 1165.350 114.132 0.343 0.579 67.625
22 0.698 24.934 1476.345 141.121 0.466 0.718 91.581
23 0.716 25.953 1877.999 175.693 0.632 0.897 123.679
24 0.730 26.889 2422.525 222.269 0.860 1.139 167.895
25 0.739 27.620 3082.253 278.432 1.144 1.431 222.653
26 0.748 28.240 3902.323 348.055 1.507 1.794 292.383
27 0.758 28.745 4858.342 429.078 1.941 2.216 375.914
28 0.767 29.253 6304.280 551.451 2.616 2.854 505.402
29 0.777 29.762 8742.947 757.613 3.794 3.929 731.721
30 0.786 30.274 13722.794 1178.255 6.363 6.122 1224.560
31 0.792 30.555 20931.922 1786.899 12.955 9.321 2483.611

127
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Table 25 # Computation of waiting times of individual classes when preemptive resume priority is followed (265 Slots)

Cut off
Period (a) 12W 34W 56W )1,,,( )()( pp

nPRIW λµ ),,,( )()(
nFCFSW pp

λµ )1,,,( )()( pp
nFCFSW λµ ),,,( )()(

nPRIW pp
λµ

1 0.000 0.000 0.000 0.000 0.000 0.002 0.000
2 0.123 1.123 2.830 1.007 0.000 0.005 0.000
3 0.165 1.900 6.014 1.795 0.000 0.008 0.000
4 0.202 2.748 10.494 2.739 0.000 0.013 0.000
5 0.237 3.673 16.552 3.865 0.000 0.018 0.001
6 0.270 4.683 24.633 5.217 0.002 0.025 0.006
7 0.303 5.771 35.147 6.826 0.008 0.033 0.029
8 0.334 6.892 48.228 8.673 0.020 0.043 0.098
9 0.365 8.052 64.480 10.812 0.043 0.054 0.254

10 0.395 9.273 84.914 13.345 0.080 0.067 0.559
11 0.425 10.545 110.462 16.342 0.130 0.083 1.094
12 0.454 11.800 140.415 19.699 0.192 0.101 1.896
13 0.483 13.091 176.868 23.630 0.267 0.123 3.069
14 0.511 14.426 222.397 28.354 0.357 0.149 4.771
15 0.538 15.763 278.262 33.952 0.461 0.181 7.129
16 0.564 17.070 344.881 40.438 0.575 0.219 10.205
17 0.588 18.350 425.849 48.117 0.703 0.266 14.217
18 0.613 19.629 524.068 57.250 0.843 0.323 19.316
19 0.638 20.878 643.785 68.179 0.996 0.393 25.706
20 0.659 22.020 780.140 80.442 1.152 0.475 33.068
21 0.677 23.119 947.159 95.263 1.321 0.579 42.061
22 0.694 24.196 1158.476 113.809 1.510 0.718 53.162
23 0.712 25.171 1411.559 135.812 1.711 0.897 65.902
24 0.726 26.066 1723.454 162.727 1.913 1.139 80.177
25 0.735 26.765 2060.105 191.601 2.089 1.431 93.810
26 0.745 27.358 2426.795 222.940 2.243 1.794 106.477
27 0.754 27.840 2795.757 254.400 2.360 2.216 116.835
28 0.763 28.325 3260.879 293.976 2.450 2.854 126.123
29 0.773 28.812 3864.764 345.266 2.472 3.929 131.650
30 0.782 29.300 4679.512 414.354 2.330 6.122 126.949
31 0.789 29.569 5362.202 472.152 2.112 9.321 117.396
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4.7. Implications and conclusion 

Given that software maintenance is one of the most important and costly phases of the 

software product life cycle, managers need to explore newer ways of improving productivity 

in maintenance operations. Even though it is commonly believed that debugging is an 

important and resource intensive activity in software development life cycle, it has been 

labeled an understudied problem not only in computer science – as cited in Liberman (1997) 

– but also from a management science perspective. To the best of our knowledge, this is the 

first work to apply management science principles to manage debugging tasks in a software 

maintenance environment. From a managerial perspective, the implications of this work are 

the following: 

First, we suggest that managers may cut off working on a bug and still not greatly 

reduce their chance of successful resolution. Our computational study suggests time frames 

that one may pick for imposing the cut off threshold. We show that the probability of 

successfully resolving the tasks reduce with time, and imposition of threshold cut off can 

result in reducing the overall bug queues and minimize resolution delays without having a 

significant impact on the overall probability of successfully resolving bugs. From a service 

provider’s perspective, this can not only improve the utilization of current engineering 

resources, but also improve customer satisfaction by reducing waiting times.  

Second, the methodology can provide a good estimate of engineering capacity 

required in debugging environments. The fact that the estimates provided by the model 

closely matched the raw data in the example firm, lend credence to the approach adopted.  

Third, when individuals are working on bugs that come from multiple populations, 

we demonstrate that there may be benefits that can be gained if the nature of population is 
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taken into account particularly when the environment is capacity constrained. For example, 

the section on multiple group analysis investigates capacity constrained situations wherein 

the rates of successful resolution can be maximized. 

Bennett (1996) quotes: “The inability to undertake maintenance quickly, safely and 

cheaply means that for many organizations, a substantial applications backlog builds up.” 

(pp. 674) This phenomenon is clearly seen in our analysis. However, our analysis shows that 

one of the reasons for the phenomenon can be the nature of the process. We show that 

alternative policies of cutting off work beyond certain time may be a viable alternative to 

working on tasks that take unreasonably long.  

Finally, in this work, our objective is to study the performance of the service system, 

we abstract away from the question “what introduces heterogeneity in the population of 

bugs?31”However, the abstraction does not obscure the validity of the model (beta-geometric 

hazard). The model predicts both the combined data and sub classifications of the population 

very well. 

The idea of suggesting a threshold cut-off is not to suggest that bugs should be 

hidden, but we endeavor to understand the queueing tradeoffs in a debugging environment. 

Implementing such a policy in practice may be challenging. One of the ways such a policy 

can be implemented is that bugs could be flagged after x time periods for review by senior 

technical experts on the current situation to take an expedited decision on the current state of 

the bug.  

From the standpoint of generalization there are two aspects that need to be 

considered. First, can we use this approach to study other bug fixing situations? We believe 

 
31 Examples of work that investigate sources of heterogeneity are Kitchenham et al. (1999) and Kemerer and 
Slaughter (1997)  
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that this is possible given that the process of bug fixing is very much the same in most 

situations. However, this needs to be verified through further studies. Second, what are the 

other scenarios where this model may be applicable? We believe that such models can be 

applied to diverse environments/processes that may have the characteristics of decreasing 

probability of success with time. For example, product development environments where 

research has revealed the presence of a split population in the emergence of dominant designs 

with the passage of time (Srinivasan et al. 2006). Similar models with respect to developing 

new product or a project could be conceived where there is an uncertainty to completion of 

such projects and require a resource commitment from a management perspective. In the 

financial services industry, several researchers have used survival models for investigating 

the factors that affect the survival time of the loans (Shumway 2001; Roszbach 2004; Carling 

et al. 2001). Models used in this chapter can be adapted to examine the capacity of backend 

processes that may be needed in these environments.  
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CHAPTER 5 

5. Conclusion and Future Research 

Offshore outsourcing is today common in many industries, and one that is likely to 

grow over time as the legal, political, and technological barriers to global commerce are 

further dismantled. Despite this growth, the practitioner industry has cited dissatisfaction 

with the services that are delivered from such settings. This dissertation sheds light on 

managing software service operations by considering two different, but intricately linked 

facets of software operations – internal and external.  

The second chapter of the dissertation titled “Managing Outsourced Offshore 

projects: Antecedents of Project Performance and Customer Satisfaction” investigated the 

external facet of software operations. In this chapter, we adopted a multidisciplinary 

perspective to investigate how project management, team stability, communication 

effectiveness and other variables drive project performance and customer satisfaction. Using 

a structural equations model, first, we show that team stability, project management, 

communication effectiveness, and project performance impact overall customer satisfaction. 

Next, we demonstrate that contextual variables such as the nature of work (maintenance & 

development versus testing projects), the class of software (application software versus 

system software), and project duration (high age versus low age projects) moderate the 

overall impact of the antecedents on project performance and customer satisfaction.  
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In the third and fourth chapters of the dissertation, we investigate the “internal facet” 

of a software services organization. Focusing on software maintenance projects, we 

investigate antecedents of engineer productivity and methods to manage the process better 

with the aim of improving individual productivity. In chapter 3 of this dissertation titled 

“Individual Learning and Productivity in a Software Maintenance Environment: An 

Empirical Analysis” we investigate the determinants of individual learning in settings where 

individuals work on a variety of tasks. Our results in this work show that, first, performing a 

greater variety of tasks improves individual productivity. However, somewhat paradoxically, 

this increase in productivity involves an initial loss of productivity as the individual invests 

effort in learning new tasks to develop higher competency. Second, we also find that 

cumulative variety of tasks improves productivity. However, variety benefits more when the 

nature of experience is intensive. Third, we find that striving to gain a balance between 

intensiveness and extensiveness of experience leads to the highest productivity. Fourth, our 

results show that more experienced individuals can handle new tasks faster as compared 

individuals with less experience reflecting the transferable nature of experience accumulated. 

Fifth, individuals that belonged to a larger team were more productive than individuals that 

belonged to a smaller team reflecting evidence of learning in an environment where the 

individuals need not be performing the same task but can learn through collocation and 

informal collaboration and finally, we find empirical evidence of the impact of turnover and 

present nuances on the moderating effect of team size on the impact of turnover on 

productivity. 

Finally, in chapter 4 of the dissertation, titled “Resource Allocation in Software 

Maintenance,” we use the inherent characteristics of the debugging process to show that 
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productivity of software engineers can be improved by cutting off working on bugs after a 

certain time period.  We show using actual data that as software defects (bugs) stay in the 

system longer, the probability of successfully resolving them significantly reduces. Further, 

we use this insight to estimate required engineering resources to manage debugging efforts. 

Finally, we explore the cut off policies based on threshold time without finding a successful 

resolution. Our analysis in this work shows that such policies minimally impact rates of 

successful resolution, and reduce waiting times for incoming bugs in the system.  Through a 

computational study, we explore how such policies may improve overall productivity and 

enable efficient utilization of engineering resources. Together these three essays can 

contribute to the better management of software service operations and enable managers to 

improve productivity, and consequently, customer satisfaction.   

 

Extensions to Dissertation 

This dissertation can be extended on several fronts to understand the overall issue of 

offshore outsourcing better.   

 

Figure 15 #  Framework for future research 
 

Contracts

People

InfrastructureProcesses

Dissertation Dissertation 
essays 1 and 3essays 1 and 3

Dissertation Dissertation 
essay 2essay 2

ContractsContracts

People

InfrastructureProcesses

People

InfrastructureProcesses

Dissertation Dissertation 
essays 1 and 3essays 1 and 3

Dissertation Dissertation 
essay 2essay 2



135

Figure 15 gives a framework on which the current dissertation is built and will also 

provide a framework for future research. The underlying idea of the framework is the firms 

have to have effective integration of people, process and infrastructure and have this 

integration in harmony with the contractual agreements to achieve higher performance. The 

first and the third essays – chapter 2 and chapter 4 – of this dissertation investigate the 

process level perspectives of managing software operations. For example, in chapter 2 we 

investigate how processes of project management, communication and team stability need to 

be managed to enable better project performance and customer satisfaction. Similarly in 

chapter 4 we exploit the characteristics of the process (the probability of successful 

resolution reaches zero with increasing time) to investigate opportunities to make 

improvements in the efficiency of the process.  The second essay of the dissertation – chapter 

3 – investigates aspects of how people can be trained to increase their performance by 

designing task allocation mechanisms.  

Based on the above framework, several extensions are possible that would be worth 

exploring. At the process level, the first essay can be extended by looking at the following 

framework. The key antecedents of customer satisfaction can be divided into (a) Outcome 

based antecedents, refers to measurable outcomes such as timeliness and quality as 

considered in the current setting (b) Procedure related antecedents, refers to the means 

adopted for the delivery of the product (such as project management) and finally (c) 

Experience based antecedents, refer to issues that can contribute to the experiences of the 

client in the delivery process.  

Considering all the three antecedents can provide a holistic view of offshore project 

delivery. Table 26 outlines some of the key issues that can be addressed in any one of the 
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three classes of antecedents. For example, in the context of output, one could incorporate and 

measure the intellectual contributions of the software development teams to the customer’s 

knowledge base. In the context of procedure based antecedents, one could include clients 

satisfaction with the vendor’s staffing, training and resource management, intellectual 

property protection and quality related processes. These may have a direct impact on the 

operational efficiency at the vendors end. Similarly, some of the experience related 

antecedents may include the level of commitment and empathy shown by the vendor’s 

project teams with the client teams, the cultural compatibility between the client and the 

vendor staff, the level of ‘ownership’ of the work shown by the offshore team and their 

involvement in providing proactive suggestions on various aspects of the project. Further, the 

interplay between project performance and the nature of financial contracts signed between 

the customer and the service provider can be studied (e.g., Gopal et al. 2003). Finally, issues 

related to competition and market performance in the context of offshore outsourcing can be 

investigated in this context. 
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Outcome Based Antecedents Procedure based Antecedents Experience based Antecedents 

a) Quality of deliverable 
 
b) Timeliness of deliverables 
 
c) Adherence to service level 
agreement parameters 
 
d) Process and product innovations 

 
a) Was the project managed well? 
 
b) Are the processes appropriate? 
 
c) Does the vendor have clear 
guidelines for handling issues that 
the engagement may face? 
 
d) Does the vendor have adequate 
mechanisms to fill in vacant slots 
in projects 
 
e) What are the process 
improvement procedures in place? 
 
f) How are procedures on 
intellectual property protection 
enforced 

 
a) Do the vendors engineers 
communicate well? 
 
b) Is there culture compatibility 
between offshore and onsite teams? 
 
c) How does the vendor handle 
crisis situations? 
 
d) Do they proactively raise issues 
and bring problems to light? 
 
e) Ownership of products and 
services by the vendor 

Table 26 # Outcome, procedure and experience based antecedents in offshore projects 
 

In the context of learning (people related aspects of the framework in Figure 14), the 

following issues appear to particularly merit research attention. First, how should the learning 

pattern for an individual be crafted to maximize the productivity of the team and the firm? 

This pattern, which would ideally be sensitive to the existing experience of the individual and 

the knowledge sharing pathways within the team, would lay out how the individual’s 

exposure to task specialization and task variety would vary across time. This approach would 

also better integrate the training and knowledge sharing literatures. Further, the pattern of 

learning across projects can influence the adoption of higher-level problem solving strategies. 

For example, learning by trial and error and selectionism constitute two distinct problem 

solving strategies in the product development context (Sommer and Loch 2004). These 

approaches involve different levels of exposure to variety, and hence different learning 

outcomes.  
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Second, the roles of exposure to variety and specialization in driving learning can be 

connected more tightly with the concept of job design. One can conceptualize job design as 

detailing the choice and sequences of tasks carried out by an employee, the linkages between 

these tasks and those of co-workers, and the incentive and motivational system that 

encourages employees to input effort into the tasks. Next, the issue of how the concept of job 

design can be expanded to accommodate the correct balance between task specialization and 

exposure to variety towards enhancing employee learning and productivity becomes relevant 

in this context.  

Third, we can investigate the impact of “Recency Effect” – how recent is the 

exposure – on the overall rates of learning and the role of recent exposure to variety. For 

example Nembhard and Osothsilp (2001) compare different types of forgetting models in 

their work. Some of these models can be applicable in the context of knowledge workers. 

One such application was by Shafer et al. (2001) who investigated forgetting effects on 

assembly line workers by empirical means. In a similar environment McCreery et al. (2001) 

find that for complex tasks forgetting effects in assembly line environment may be high. 

Such effects may be worth investigating in our setting.  

Fourth, another potential area of research in the context of variety is to examine 

degree of interrelatedness of tasks on learning outcomes. Even though the tasks performed by 

the individuals in our study are related, the degree of interrelatedness and its effect on 

productivity needs to be better understood. This is because relatedness in task can be a 

continuum depending on the number of common skills between two different tasks since the 

time taken to learn a task is proportional to the total number of different skills required to 

learn the task (Jovanovic and Griliches 1995). Such an understanding may enable us to gain 
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insights on the relationship between task interrelatedness, productivity and task variety. 

However, given the nature of the current dataset that may not be a feasible option.  

Finally, the idea of HHEI can be applied to several other situations to explain the 

influence of variety on productivity in manufacturing operations literature. For example, 

Ramdas (2003) pointed out that researchers such as Fisher and Ittner (1999) and Macduffie et 

al. (1996) arrived at opposite conclusions on the impact of product variety on assembly line 

productivity. Indices such as HHEI could be tried in such contexts to investigate the overall 

exposure of relative variety levels in this scenario.  

Finally, from a process perspective, the work in chapter 4 can be expanded into other 

areas. First, the work on chapter 4 can also be extended to consider capacity planning and 

resource allocation in product development environments. This approach is also likely to be 

consistent with prior research that has revealed the presence of a split population – i.e. a few 

designs will never see the light of the day – in the emergence of dominant product designs 

(Srinivasan et al. 2006). Similar models with respect to developing new product or a project 

could be conceived where there is an uncertainty to completion of such projects and require a 

resource commitment from a management perspective.   

Second, we are currently considering is the idea of dynamic task allocation. These 

problems are also called online task allocation problems. In this setup, the manager faces the 

problem of scheduling tasks ‘real time’ to project members. The key characteristic of this 

problem is that tasks have to be assigned to engineers at a given time with uncertainty about 

future arrivals. This problem differs from standard scheduling problems in the sense that the 

after each allocation the experience of the engineer is updated and evolves and thus this also 

impacts the myopic allocation decisions. Understanding the effects of such myopic real time 
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task allocation on overall productivity of the team is an interesting problem that can be 

considered. 

Finally, on the role of contracts, one could investigate the role of contracts and 

incentives on the overall performance of the projects. For example Gopal et al. (2003) 

investigate the antecedents of fixed bid and time and material projects in organizations. They 

point to project characteristics that made organizations to sign fixed bid and time and 

material contracts in offshore projects. However, the nature of people that staff the projects 

are also governed by the nature of contracts. In this context, questions such as “Do projects 

perform better when contracts signed are fixed bid or time and material?,” “How do the 

contracts impact the choice of infrastructure, people and process related practices in an 

outsourced environment?,” still need to be answered. Many of these factors may have a direct 

impact on the performance of such projects. Further, the framework can also provide some 

insights and directions on evaluating the bids for projects for both the customer and the 

vendor by examining the linkages between the contracts and the other infrastructure 

parameters. These factors may be worth investigating as extensions to the dissertation.  
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APPENDIX 

 
Derivation of the Beta Geometric Distribution 

The generic probability of resolution when p is drawn from a distribution with pdf 

)( pf is given by equation 1
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When p is drawn from a beta distribution with parameters α and β :
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Substituting for f(p) in equation 22 we get 
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The probability of not resolving until period t-1 is given by  
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Using equations 25 and 26 the conditional probability of resolving at time t given that the 

bug has not been successfully resolved until time t-1 is given by: 
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Simplifying equation 27 gives us the expression in equation 2.

Likelihood Function – Beta-Geometric Hazard 

In each period the bugs can be classified as successfully resolved or unsuccessfully 

resolved. The likelihood function for each period can be written as:  

 mn
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m
tt ppmXP −−== )1()( (28) 
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The likelihood function can be written as:  
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An Alternative Approach to calculating the Beta-Geometric Hazard 

An alternative approach to calculating the hazard that we will frequently use for our 

purposes is attributed to Weinberg and Gladen (1986).  Equation 29 can be decomposed into 

a series of cycle specific hazard rates.  
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If we denote jp as the hazard rate then the equation 31 can be written as  
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Trinomial Model 

This model draws from the beta-geometric model. In this model bugs can be 

categorized into three distinct groups. The first group is one that is resolved in each period. 

The second group is the one that is classified as cannot be resolved. Finally, the third group is 

the carried forward into the next period on which no decision is made. We assume that in 

each trial, the probability of resolution is drawn from a beta-geometric distribution. The 

Likelihood function for this case is  

 

smnsm ppL −−−−−= ))1)(1(())1(( θθθ (34) 

Where θ is the population that cannot be resolved,  p is given by equation 2. The reasoning 

for the likelihood equation is as follows. In each period a bug is resolved with a probability 

p)1( θ− because the bug does not belong to the “irresolvable” category, is declared 

“irresolvable” with probability θ and finally can be carried forward with a probability 

))1)(1(( p−−θ .

Thus the resulting likelihood function for which parameters need to be estimated will be: 
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Nozaki and Ross (1978) approximation 
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The value of W(D) (waiting time for a M/D/n priority queue) can be obtained from the 

approximations suggested by Cosmetatos (1975) where 
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