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ABSTRACT 

JAE HO SHIN: Synthesis and Characterization of Nitric Oxide-Releasing Silica Materials 
for Sensing Applications 

(Under the direction of Professor Mark H. Schoenfisch) 

 

Nitric oxide (NO), a free radical endogenously synthesized in the human body, 

regulates a range of biological processes in the cardiovascular, genitourinary, respiratory, and 

nervous systems. With the discovery of NO as a potent inhibitor of platelet activation and its 

identification as an antibacterial agent, the utility of NO has been expanded to developing 

more biocompatible materials that resist to biofouling. My research has focused on the 

development of NO-releasing glucose biosensors via xerogel/polyurethane hybrid 

membranes that release NO in a controlled fashion. This new class of glucose biosensors was 

characterized by both adequate analytical response to glucose and improved bacterial 

adhesion resistance at NO fluxes ≥ 5 pmol·cm-2·s-1 for 20 h. 

To further elucidate the complex and wide ranging roles of NO in physiology, an 

amperometric xerogel-based NO microsensor was fabricated. Several silicon-based NO 

sensor membranes were synthesized by doping alkyl/amino-alkoxysilane-based xerogels with 

Nafion. The performance of xerogel-based NO sensors was then evaluated to identify the 

optimum xerogel composition that maximized NO permeability and provided sufficient 

selectivity for NO. Xerogel permeability and selectivity were further manipulated as a 

function of specific reaction/processing conditions. The analytical performance of the 

xerogel-based sensor far exceeded that of current commercial sensors. 
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Silica nanoparticles capable of controlled NO release were also synthesized via sol–gel 

chemistry. Control over both the structure and concentration of the silane precursors (i.e., 

tetraalkoxy- and aminoalkoxysilanes) and the synthetic conditions used to prepare the silica 

allowed for the preparation of NO donor-modified silica nanoparticles of widely varying size 

(d = 20 – 500 nm), NO payloads (50 – 74000 nmol·mg-1), maximum NO release amounts (10 

– 103000 ppb·mg-1), half-lives (0.1 – 12 h), and NO release durations (up to 30 h). Nitric 

oxide-releasing silica nanoparticles may prove useful in the development of glucose sensors 

with extended NO release durations and as new NO-derived anti-tumor chemotherapeutics. 

Preliminary studies evaluating the anti-cancer efficacy of NO-releasing silica nanocom-

posites against human ovarian surface epithelial (HOSE) cancer cells were conducted. The 

viability of HOSE cancer cells was significantly reduced upon exposure to the NO-releasing 

silica nanoparticles. Such scaffolds may allow for future tissue/cell targeting via particle size 

(enhanced permeability/retention effect) and/or ligand-receptor binding chemistry. 
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Chapter 1: 

Improving the Biocompatibility of In Vivo Sensors via 

Nitric Oxide Release 

 

1.1  In Vivo Sensor Biocompatibility 

The demand for implantable chemical sensors capable of monitoring the physiological 

status of patients on a continuous, real-time basis under physiological conditions continues to 

be of great importance in human health care.1-4 In vivo sensors must operate reliably, rapidly, 

and selectively over extended periods under harsh conditions. Despite considerable efforts, 

designing in vivo sensors for clinical use remains a major challenge due to compromised 

sensor performance upon implantation and severe health risks to the implant recipient. These 

serious obstacles result primarily from undesirable interactions between the sensor surface 

and biological mileau.1,5 Indeed, the insertion of a foreign material into the body brings about 

immediate physiological responses that are dependent upon the location of indwelling probes 

(i.e., blood, tissue, etc.). 

Blood-contacting sensors trigger a biofouling cascade including protein adsorption, 

platelet adhesion/activation, and surface-induced thrombosis (Figure 1.1A).1,6-9 Such 

biofouling often plagues intravascular sensors. The adsorption of plasma proteins (e.g., 

fibrinogen and von Willebrand factor) on the implant surface is the first stage of the surface 

fouling process. Platelets adhere to surface-bound proteins via the expression of platelet 

receptors (e.g., glycoprotein IIb/IIIa), and then spread on the surface to form aggregates with 
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Figure 1.1. Illustrations of (A) pathological thrombus formation and (B) fibrous 
tissue encapsulation occurring at the blood- and tissue-contact 
interfaces, respectively.1,5
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adjacent platelets via interactions with fibrinogen and other plasma ligands. Platelet 

aggregation triggers structural changes in the organization of the surface membrane, leading 

to exposure of a highly procoagulant lipid surface to blood, which facilitates thrombin 

activation. Thrombin then serves to convert fibrinogen to a polymeric fibrin mesh, 

subsequently resulting in the accumulation of a dense network of fibrin, platelets, and 

entrapped blood cells, known as a thrombus (blood clot). Surface fouling leads to significant 

deterioration in sensor reliability and/or longevity.1,10,11 The adsorption of metabolically 

active cells (e.g., platelets) alters the chemical environment adjacent to the implant via 

consumption of oxygen (O2) and production of carbon dioxide (CO2), subsequently lowering 

the local or measured pH. Furthermore, normal blood flow may be inhibited by the presence 

of the thrombus and/or constriction of the vascular walls around the implant, increasing the 

risk of thrombo-embolism. 

Sensors implanted in the subcutaneous tissues are more susceptible to cell adhesion and 

fibrous tissue encapsulation in response to the body’s self-defense mechanisms.4,12-15 Upon 

implantation, tissue is disrupted and capillaries damaged, concomitantly initiating a wound 

healing cascade (i.e., immune response), consisting of four distinct stages that are expressed 

at different times ranging from seconds to weeks: 1) hemostasis, 2) inflammation, 3) repair, 

and 4) encapsulation (Figure 1.1B). The acute inflammatory response takes place within 

seconds after the sensor is implanted. During this stage, proteins and inflammatory cells 

adsorb to the sensor surface. Phagocytic cells (e.g., neutrophils, monocytes, and 

macrophages) then surround the device (minutes to hours later) and attempt to destroy it. 

Such membrane biofouling is detrimental to sensor function resulting in restriction of analyte 

diffusion to the sensor and/or degradation of the sensor membrane. Macrophages adsorbed 
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closely to the sensor surface also perturb local concentrations of analytes due to the 

consumption of glucose and O2, and the release of reactive oxygen species (ROS; e.g., H2O2, 

O2-, and OH-). During the repair or wound healing stage (occurring days later), the tissue 

surrounding the implant becomes increasingly avascular as the body attempts to encapsulate 

and isolate the foreign material. Encapsulation further aggravates the flux of analyte to the 

sensor surface. 

An equally challenging problem affecting in vivo sensors to be implanted for extended 

periods is bacterial adhesion that can lead to infection with serious risks to implant 

recipients.16-20 The initial adhesion of bacterial cells is preceded by the surface adsorption of 

a conditioning film of small organic compounds and macromolecules including proteins. 

Subsequently, the physicochemical forces that mediate bacterial adhesion can be divided into 

two time-dependent phases (Figure 1.2).16,18 Phase I involves reversible cellular association 

with the surface of the indwelling device over the first 1 – 2 h post-implantation. This non-

specific association is mediated through long-range (e.g., gravitational, van der Waals, and 

electrostatic interactions) and short-range (e.g., hydrogen bonding, dipole-dipole, ionic, and 

hydrophobic interactions) forces. Phase II begins 2 – 3 h later and is characterized by 

stronger adhesion between the bacteria and the foreign material. Specific chemical reactions 

between compounds on the bacterial cells and the substrate surface result in irreversible 

molecular bridging. Beyond Phase II (approximately 1 d after), certain bacterial strains are 

capable of secreting a protective polymeric shield (biofilm) consisting of exopolysaccharides. 

Once formed, biofilms are formidable physiological and chemical barriers, impeding both 

phagocytosis by the body’s immune system and the action of conventional antibiotic 

therapies. As a result, implant recipients often suffer from serious and persistent infections 
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Figure 1.2. Schematic representation of non-specific bacterial adhesion to an 
implanted sensor surface.18,19
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that necessitate removal of the implanted device. 

 

1.2 Strategies for Improving the Biocompatibility of In Vivo Sensors 

Tremendous research has been devoted to developing coatings with improved blood 

and tissue compatibility and reduced bacterial adhesion/infection via either passive or active 

strategy.21 “Passive” coatings form a barrier to prevent protein and/or cell adhesion and 

proliferation by suppressing undesirable non-specific interactions (e.g., van der Waals, 

hydrophobic, and electrostatic forces). “Active” biomaterials are designed to controllably 

release an anticoagulant or antimicrobial agent at the implant site to reduce thrombus 

formation and pathogenic infection, respectively. 

 

1.2.1  Passive Biomaterials 

Biological interactions occurring at the blood- or tissue-contact interface are directly 

affected by a number of physicochemical properties including wettability, structural rigidity 

and morphology, hydrogen-bonding interactions, polarity, and surface roughness and 

charge.21,22 Passive coatings have been developed by manipulating these physicochemical 

properties of the materials via the use of new synthetic polymers distinctively designed as a 

medical-grade biomaterial and/or the surface modification of the existing polymers. 

Synthetic polymers such as polyurethane, silicone rubber, poly(vinyl chloride) (PVC), 

polystyrene, and Nafion have been employed in biomedical applications because they are 

easy to manufacture and inexpensive, and can be prepared with a wide range of chemical and 

physical properties.23-29 Polyurethanes are a family of block copolymers consisting of 

alternating hard- and soft-segment units joined via urethane linkages.25 Some medical-grade 

polyurethanes such as Tecoflex and Pellethane (polyether-based thermoplastic elastomers) 
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have been exploited not only for manufacturing implantable devices but also for formulating 

in vivo or in vitro ion sensors and biosensors.30-32 Silicone rubber is an elastomeric 

hydrophobic polymer that has a backbone of silicon-oxygen bonds.23,28 This class of 

polymers is suitable for medical sensor applications because it is mechanically robust, 

chemically inert, and gas permeable, and has a high degree of biocompatibility. 

Several polymeric materials including hydrogels, phospholipid-based biomimicry, 

Nafion, surfactant-derived membranes, diamond-like carbons, and anticoagulant-grafted 

films, have also been used to modify the sensor surface to passively suppress protein and cell 

adhesion.20,21,33-39 The hydrogel layer can be prepared by either incorporating or 

immobilizing hydrophilic polymeric chains including poly(ethylene glycol and oxide) (PEG 

and PEO) and poly(hydroxyethyl methacrylate) (pHEMA) to conventional polymers (e.g., 

polyurethane and PVC).40 The hydrophilic nature of these hydrogels results in low interfacial 

energy between the sensor surface and the aqueous surrounding, thereby minimizing protein 

adsorption. In addition, the hydrophilicity of the polymer can be altered through gaseous (e.g., 

oxygen and argon) plasma exposure. Triandafillu et al. reported that after oxygen plasma 

treatment the wettability of PVC films was dramatically increased (water contact angle 

change from 80o to 10o), leading to significant inhibition of Pseudomonas aeruginosa 

adhesion (70% decrease).41 Nafion, a perfluorosulfonate-based anionic polymer with both 

hydrophilic and hydrophobic domains, has been widely used as a coating for indwelling 

chemical and biosensors.24,27,39 The polyanionic property of this material is useful to both 

exclude anionic interfering species from the sensor surface and prevent protein adsorption. 

Though successful at short periods (<10 d), the clinical use of Nafion-modified sensors still 

remains limited due to material degradation and long-term membrane fouling. Finally, 
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despite sterilization and aseptic procedures, bacterial infection remains a great impediment to 

the utility of all indwelling devices.17 Although helpful in minimizing bacteria, sterilization is 

often destructive (e.g., polymer degradation) and does not eliminate the risk of bacterial 

infection. Therefore, the approaches to date have not proven effective clinically (i.e., in vivo). 

 

1.2.2  Active Biomaterials 

Strategies based on the use of more “active” biomaterials designed to controllably 

release or generate an anticoagulant (e.g., heparin)36,38 or antimicrobial agent (e.g., 

antibiotics)42,43 at the implant site have thus been pursued. Active biomaterials interact with 

proteins or organisms on a molecular/cellular level, inhibiting protein activation or disrupting 

metabolic and replication processes to prohibit cell function. 

Heparin is a highly sulfated glycosaminoglycan widely used as an anticoagulant and is 

used to decrease the clotting ability of the blood via the rapid complex with antithrombin III 

and inactivation of thrombin, thus preventing the conversion of fibrinogen to fibrin.36 For 

example, Michanetzis et al. demonstrated the haemocompatibility improvement of several 

heparin-modified biomaterials prepared via either direct incorporation or indirect surface 

grafting of heparin to four polymer systems (i.e., silicone rubber, PVC, polyethylene, and 

polypropylene).38 All heparinized polymers exhibited significantly reduced platelet adhesion 

and aggregation due to slow leaching of heparin under physiological conditions. In particular, 

heparinized PVC synthesized via the grafting method was characterized by the most effective 

yield of heparin immobilization. While anticoagulant treatment may be useful for preventing 

thrombus formation at the blood-material interface, it may also lead to undesirable systemic 

effects (e.g., uncontrolled bleeding), a serious problem for patients who suffer from medical 

conditions such as hemophelia, renal failure, or thrombocytopenia that affect blood 
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clotting.38,44 

Similar to the controlled release of anticoagulants, antibiotics have also emerged into 

the polymer matrix as a potential antimicrobial additive to actively resist bacterial adhesion 

and infection. Schierholz et al. reported on the synthesis of biomedical polyurethane coatings 

that locally delivery and release antibiotics (e.g., ciprofloxacin and gentamycin) at the 

implant site.43 The antibacterial efficacy of these coatings is strongly dependent on the 

antibiotic release profile from the polymer as a function of chemical compatibility (e.g., 

hydrophobicity) between the drug and the polymer and drug distribution within the matrix. In 

addition, polyclonal antibodies (e.g., IgG) integrated into a polyurethane matrix have proven 

effective at reducing bacterial adhesion in vitro.45 However, antibiotics in general are 

becoming less effective due to antibiotic resistance among pathogens and the related side 

effects often associated with such drugs.46 Polymers doped with antibodies may also have in 

vivo complications associated with the host’s immune system.47 Consequently, the 

development of a truly biocompatible sensor has not yet been realized, despite significant 

advances in designing synthetic polymers for in vivo sensor applications. 

 

1.3 Nitric Oxide and Prevention of Biofouling 

Nitric oxide (NO), a diatomic free radical is one of the smallest and simplest 

biologically active molecules in mammalian species.48 Since the first discovery of NO as a 

vasodilatory messenger and, in particular, after its identification as an endothelium-derived 

relaxing factor (EDRF) in the middle of 1980s, research efforts have been devoted to 

elucidating the pathways of NO generation and action in vivo.49 To date, researchers have 

discovered that NO regulates a range of crucial biological processes in the cardiovascular, 

gastrointestinal, genitourinary, respiratory, and central and peripheral nervous systems.48,49 In 

 
9



fact, these discoveries led to the designation of NO as the “Molecule of the Year” in 1992 by 

Science magazine.50 Furthermore, three American scientists, Robert F. Furchgott, Louis J. 

Ignarro, and Ferid Murad, were awarded the Nobel Prize in Physiology or Medicine in 1998 

for their discoveries linking “Nitric Oxide as a Signaling Molecule in the Cardiovascular 

System.” The relatively recent discovery of NO as a potent inhibitor of platelet adhesion and 

activation, and its identification as both an antimicrobial agent and angiogenic factor have 

extended NO research to the field of biomaterials.48,51-53 

 

1.3.1  Endogenous Pathway of Nitric Oxide Generation 

Nitric oxide is endogenously synthesized in the human body via L-arginine catabolism 

whereby L-arginine is converted to L-citrulline by a class of enzymes known as nitric oxide 

synthase (NOS).48,54 As shown in Figure 1.3, L-arginine is first hydroxylated to NG-hydroxyl-

L-arginine in the presence of reduced nicotinamide adenine dinucleotide phosphate 

(NADPH) and oxygen (O2).54 This enzyme-bound intermediate is consequently oxidized to 

L-citrulline and NO, with additional consumption of NADPH and O2. This biocatalytic 

process requires bound cofactors, including (6R)-5,6,7,8-tetrahydrobiopterin (BH4), flavin 

adenine dinucleotide (FAD), flavin mononucleotide (FMN), calmodulin, and iron 

protoporphyrin IX (heme). Briefly, an electron (e-) is donated by NADPH to the reductase 

domain of the enzyme NOS and proceeds via FAD and FMN redox carriers to the oxygenase 

domain, where it interacts with the heme iron and BH4 at the active site to catalyze the 

reaction of O2 with L-arginine, generating L-citrulline and NO. The electron flow through the 

reductase domain requires the presence of bound calcium ion (Ca2+)/calmodulin. 

Three distinct isoforms of NOS have been identified, ranging in molecular weight from 

about 130 - 160 kDa: neuronal, endothelial, and inducible types.55,56 Each isoforms is 
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Figure 1.3. Biosynthesis of NO catalyzed by NOS enzyme in the body: (A) reaction 
scheme for the conversion of L-arginine to NG-hydroxyl-L-arginine, 
followed by oxidation to L-citrulline and NO; and (B) overall catalytic 
reaction, cofactors, and the direction of electron flow in NOS.48,54
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associated with a particular physiological function. Neuronal NOS (nNOS) is involved in 

neurotransmission and long-term potentiation. Endothelial NOS (eNOS) regulates 

vasodilation, smooth muscle relaxation, and blood pressure. These two isoforms (i.e., nNOS 

and eNOS) represent constitutive enzymes, modulated by Ca2+ influxes (Ca2+-dependent), 

and generate a relatively small amount (~nM) of NO. Conversely, inducible NOS (iNOS) is 

found in many cell types (e.g., macrophages) and is mediated by inflammatory cytokines and 

host defense stimuli. The iNOS produces high levels (~μM) of NO for extended periods of 

time. At micromolar concentrations, NO participates in a response to pathogens and tumor 

cells. This iNOS has tightly bound calmodulin with Ca2+, and therefore functions via a Ca2+-

independent mechanism. 

 

1.3.2 Biological and Pathobiological Roles of Nitric Oxide 

The complex and wide ranging roles of NO in biology are primarily determined by its 

chemical properties.48,57 Most of the actions of NO are ascribed to either its free radical 

nature or its participation in a number of redox reactions. In an attempt to ascertain the 

pertinence of these diverse reactions to biological systems, Wink and coworkers introduced 

the concept of “the chemical biology of NO.”57 This scheme divides the NO’s chemical 

reactions into two categories: direct and indirect effects (Figure 1.4).48,57 

Direct effects of NO are attributed to reactions that are fast enough to occur between 

specific biological targets and NO at nanomolar concentrations (generated by nNOS or 

eNOS).55 Of several types of reactions of NO with metals and radicals, nitrosyl formation 

with a metal (usually iron)-centered heme is particularly facile and should be of primary 

consideration in any mechanism involving NO. Many basic regulatory actions of NO engage 

in interactions preferentially with heme complexes including guanylate cyclase and 
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Figure 1.4. Chemical biology of NO representing its pathways for physiological and 
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cytochrome P-450.58 In vivo, the most notable heme protein that forms an iron–NO adduct is 

soluble guanylate cyclase (sGC), an enzyme involved in vasodilation and 

neurotransmission.59 In the presence of NO, the iron heme of sGC is highly susceptible to 

formation of the five-coordinate nitrosyl complex by decoupling the distal histidine. This 

configurational change in the protein activates the enzyme, leading to conversion of 

guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). Ultimately, the 

increased production of cGMP results in the relaxation of smooth muscle, thereby mediating 

vasodilation. This mechanism (i.e., the NO-induced activation of sGC) is also responsible for 

both regulating blood flow and pressure and modulating platelet activity. Furthermore, 

subsequent studies have revealed that NO binds directly to other heme-containing proteins 

including hemoglobin, peroxidase, NOS, and myoglobin.55,60 

Indirect effects of NO arise via intermediate formation of reactive nitrogen oxide 

species (RNOS; e.g., NO2, NO2
-, ONOO-, and N2O3) derived from the reactions of NO with 

either O2 or superoxide (O2
-). Such indirect effects require much higher concentrations 

(~μM) of NO (generated by iNOS). These RNOS are generally more reactive than NO itself 

and associated with the immune system and pathological mechanisms of NO. Indirect effects 

can be further divided into two categories of nitrosative and oxidative stress.61 

In nitrosative stress, two equivalents of NO react with O2 to form dinitrogen tetraoxide 

(N2O4), which can quickly decompose into nitrogen dioxide (NO2) under physiological 

conditions.61 Subsequently, dinitrogen trioxide (N2O3) is generated through the coupling of 

NO and NO2. Thiols and amines are the biological targets for nitrosation reactions involving 

N2O3 and N2O4. The nitrosative NO-derived species (e.g., N2O3) are trapped by thiols to 

yield S-nitroso compounds, species believed to play a role in NO transport and storage.62 S-
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Nitrosation of free thiols in proteins also disrupts DNA repair and enzyme function by 

displacing metallothionen pairs or creating disulfide bridges. Nitrosative reactions with 

primary and secondary amines have been linked to the creation of DNA mutations through 

the deamination of nucleic acids and DNA damage and carcinogenesis via nitrosamine 

formation, respectively.63,64 

Oxidative stress involves NO’s reacts with O2
- at diffusion-controlled rates yielding the 

potent oxidizing species, peroxynitrite (ONOO-), which is theorized as a primary pathway of 

macrophage-mediated cell death.65,66 The oxidative reactions from ONOO- also lead to the 

oxidation of thiols, lipid peroxidation, and the cleavage of DNA strands.67,68 Nitrite (NO2
-), 

the end-product of NO autoxidation and ubiquitous degradation product of NO under 

aqueous conditions, and nitrate (NO3
-), the stable end-product of NO’s reaction with 

oxygenated hemeproteins, both participate in NO elimination reactions. 

 

1.3.3 Implications of Nitric Oxide for Designing In Vivo Sensors 

The four biological roles of NO including thromboresistivity, phagocytosis, wound 

healing, and angiogenesis may effectively help reduce biofouling and increase blood flow, 

thus minimizing the body’s response that tend to diminish the performance of in vivo sensors 

(for monitoring K+, Na+, Ca2+, Cl-, pH, PCO2, PO2, glucose, and lactate, for example). The 

non-thrombogenic properties of the vascular endothelium are primarily attributed to NO.69,70 

Both basal and stimulated endothelial cells continuously release NO into the lumen of blood 

vessels at an estimated flux of 0.5 – 1.0 x 10-10 mol·cm-2·min-1.71 The NO release regulates 

blood flow and pressure, and prevents platelet aggregation under normal conditions. The 

generation of NO by macrophages has been implicated in fighting invading microorganisms 

(e.g., bacteria).48 Monocytes and macrophages stimulated by foreign cells produce NO to 
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destroy such pathogens via pathways mediated by NO and its RNOS (e.g., ONOO- and 

N2O3). Nitric oxide plays a role in wound healing. Although NO’s action in this process is 

not fully understood, NO may mediate immune and inflammatory responses. Finally, NO’s 

action is involved in angiogenesis or the formation and growth of new blood vessels.48 With 

respect to subcutaneous sensor applications, NO may allow for increased blood flow to or 

near the sensor surface, thus enhancing mass transfer of analyte, while reducing bacterial 

adhesion and associated infection risks. 

In addition to NO’s numerous biological and pathobiological functions, its effects are 

localized due to its short half-life (ranging from 1 s to a few minutes depending on the 

concentration of oxygen and the presence of NO scavengers such as oxyhemoglobin) in 

biological milieu.48,72 For example, NO released from the surface of a sensor is rapidly 

consumed via reactions with oxygen and other scavengers (e.g., hemoglobin and thiols). 

Thus, certain health risks associated with systemic administration of anticoagulants and 

antibiotics may be avoided by employing NO-release coatings. 

 

1.4  Synthetic Nitric Oxide Donors 

Elucidating the complex and multifaceted roles of NO in physiology demands methods 

for stable storage and specific delivery of NO to biological targets. Because of the limited 

utility of NO gas in experimental systems and its instability in the presence of oxidants (e.g., 

oxygen, oxyhemoglobin, and thiols), synthetic compounds that chemically store and release 

NO in a controlled fashion have been developed. Such “NO donors” facilitate the improved 

understanding of the pivotal function of NO in biological systems and may potentially serve 

as therapeutic agents for a number of disease states. 
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1.4.1  Major Classes of Nitric Oxide Donors 

Although little had been known about their physiological mechanism of action, 

nitroglycerin and nitroprusside NO donors have been used for medicinal purposes since the 

mid-1800s.73,74 The growing interest of NO in biology since the middle of 1980s has led to 

the development of new NO donors that offer several advantages over nitroglycerin and 

nitroprusside, including spontaneous release of NO, donation of NO under controlled rates, 

and even the targeting of NO to certain tissues. 

Due to the structural diversity of NO donors, the pathways for NO generation by each 

class of compounds may differ significantly.73,74 As each class of compound offers distinct 

biochemical properties, it allows one to choose a compound that best meets the demands of 

specific investigations. Classification of all NO donors can be confusing, since all nitrogen- 

or oxygen-bound compounds have the potential to decompose, be oxidized, or be reduced to 

reactive nitrogen species. However, similar chemical structures usually have a similar NO-

releasing mechanism, so all current major classes of NO donors and their pathways of NO 

generation are summarized in Table 1.1 according to their chemical classification.75-90 

 

1.4.2  Diazeniumdiolate Chemistry 

A number of synthetic NO donors including nitrosothiols, NO-metal complexes, 

nitrosamines, diazeniumdiolates, and organic nitrates/nitrites have been used to design 

polymer coatings capable of slowly releasing therapeutic levels of NO that are effective in 

reducing biofouling.74 Of these NO donor species, 1-amino-substituted diazen-1-ium-1,2-

diolates (or simply “N-diazeniumdiolates”) have emerged as attractive candidates for 

designing more biocompatible coatings due to their ability to generate NO spontaneously 

under physiological conditions.75-77 Since the first report on the synthesis of N-
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diazeniumdiolates by Drago and Paulik in 1960,91 several diazeniumdiolate species have 

been synthesized using a range of nucleophilic residues that encompass simple primary/ 

secondary amines, polyamines, and secondary amino acids.75-77 Keefer and coworkers have 

reviewed the synthesis of these nucleophilic NO adducts via the reaction of polyamines with 

NO at elevated pressure.75 N-Diazeniumdiolates can be classified within two broad 

categories: 1) zwitterionic, and 2) anionic stabilized species (Figure 1.5).75-77 Initially, one 

equivalent of amine (N) reacts with two equivalents of NO for both types of N-

diazeniumdiolates. A second equivalent of base (i.e., another amine) is then protonated to 

sustain the newly formed [N(O)NO]- group, yielding zwitterionic stabilized structures 

(Figure 1.5A). In the presence of a stronger base such as methoxide (MeO-), a second 

equivalent of MeO- removes a proton from a secondary amine nitrogen to create the anionic 

structure. (Figure 1.5B). While stable under ambient conditions, N-diazeniumdiolates 

decompose spontaneously in aqueous media to generate NO at rates dependent upon pH, 

temperature, and/or the structure of the amine moiety. 

The majority of N-diazeniumdiolates are relatively stable in solid form at low 

temperatures. However, such NO donors spontaneously decompose and release up to two 

molecules of NO in solution.75 Figure 1.6 shows example structures of N-diazeniumdiolates 

and their half-lives ranging from 2 s to 20 h at pH 7.4 and 37 oC.92 Decomposition and 

dissociation follow first-order kinetics at constant hydrogen activity. One interesting 

characteristic of N-diazeniumdiolates is that decomposition is greatly slowed at elevated pH. 

This provides significant convenience for the preparation of the N-diazeniumdiolate stock 

solutions. 
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Figure 1.5. Reactions of NO with amine to produce (A) Zwitterionic and (B) anionic 
stabilized N-diazeniumdiolate NO donors followed by the subsequent 
release of NO in the presence of a proton. R1 and R2 represent side 
groups.75
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Figure 1.6. Example structures of various N-diazeniumdiolate-modified amines and 
their half-lives (t1/2) measured in phosphate-buffered silane (PBS) at pH 
7.4 and 37 oC. Abbreviations: DEA, diethylamine; PIPERAZI, piperazine; 
EP, ethylputreanine; DETA, diethylenetriamine; DMHA, N,N’-dimethyl-
1,6-hexanediamine; PROLI, proline; SPER, spermine; and DMAEP, 2-
(dimethylamino)ethylputreanine.92

DEA/N2O2 (t1/2 = 2 min) PIPERAZI/N2O2

(t1/2 = 5 min) 

PROLI/N2O2 (t1/2 = 2 s)DETA/N2O2 (t1/2 = 20 h) DMHA/N2O2 (or MAHMA/N2O2)
(t1/2 = 1 min) 

EP/N2O2 (t1/2 at 25 oC= 143 min)

DMAEP/N2O2 (t1/2 at 25 oC= 135 min)SPER/N2O2 (t1/2 = 5-46 min)
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1.4.3  Nitric Oxide-Releasing Polymers for Designing In Vivo Sensors 

The original approach for preparing NO-releasing polymers was to incorporate or 

disperse small molecule N-diazeniumdiolate NO donors into a polymer during synthesis of 

the polymer. Espadas-Torre et al. demonstrated the utility of such NO-releasing polymers to 

prepare potentiometric ion sensors for the measurements of potassium (K+) and hydrogen 

(H+).93 Plasticized PVC and polyurethane membranes were doped with an appropriate 

ionophore (i.e., valinomycin for K+ and tridodecylamine for H+, respectively) and (Z)-1-(N-

methyl-N-[6-(N-methylammoniohexyl)amino]diazen)-1-ium-1,2-diolate or diazeniumdiolate-

modified N,N’-dimethyl-1,6-hexanediamine (MAHMA/N2O2). Schoenfisch et al. 

subsequently reported the fabrication of a Clark-style amperometric oxygen-sensing catheter 

using a MAHMA/N2O2-doped silicone rubber (SR) polymer film as a gas-permeable outer 

membrane.94 These intravascular sensors generated NO upon exposure to aqueous solutions 

(e.g., blood) and exhibited significantly improved in vitro and in vivo hemocompatibility 

without impaired analytical performance. Unfortunately, the non-covalently entrapped NO 

donors (e.g., MAHMA/N2O2) and their carcinogenic decomposition byproducts (e.g., 

diamines and corresponding nitrosamines) were found to leach from the polymer matrix into 

the surrounding media.95 

To address leaching concerns, efforts were devoted to (1) utilize more lipophilic NO 

donors that would preferentially remain in the organic polymer phase; and, (2) covalently 

tether the NO donor agents to the polymer backbone. Batchelor et al. increased the 

lipophilicity of the original NO donor MAHMA/N2O2 by using longer alkyl chains (i.e., 

diazeniumdiolated N,N’-dibutylhexanediamine; DBHD/N2O2).96 A catheter-type ampero-

metric oxygen sensor coated with a hydrophobic SR membrane containing such lipophilic 
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NO donors (i.e., DBHD/N2O2) was then fabricated and its analytical performance evaluated 

in vivo.10 The NO-release properties of the sensor were controllable by varying the amount of 

NO donors blended into the polymer casting solution. Both leaching of the NO donor and 

platelet aggregation were significantly reduced. In an alternative approach, the N-

diazeniumdiolate moiety has been covalently attached to the backbone of the polymer. For 

example, the synthesis of diazeniumdiolated polymethacrylate, piperazine-modified PVC, 

poly(ethyleneimine), diamine-modified silicone rubber, and polyurethane has been 

reported.95,97,98 Mowery et al. demonstrated the fabrication of K+- and H+-selective 

membrane electrodes using diazeniumdiolated poly(ethyleneimine) (PEI/N2O2) and 

methoxymethyl-protected diazeniumdiolated piperazine-PVC (mompipPVC/N2O2).99 

Hydrophobic silicone materials were similarly synthesized by cross-linking N-(6-

aminohexyl)-3-aminopropyltrimethoxysilane (DACA-6) with poly(dimethylsiloxane) 

(PDMS), followed by forming N-diazeniumdiolates in situ (DACA-6/N2O2-SR).100 DACA-

6/N2O2-SR films was also successfully employed as NO-releasing outer coatings for the 

fabrication of amperometric100 and fluorescence-based oxygen sensors,101 and a potentio-

metric carbon dioxide-sensing catheter.10 

 

1.5  Sol–Gel Chemistry for Nitric Oxide-Releasing Coatings 

Schoenfisch and coworkers have focused on the synthesis and characterization of 

silicon-based sol–gel materials (e.g., silica xerogels) whereby the N-diazeniumdiolate NO 

donors are covalently bound to the xerogel backbone.102-109 Similar to the above diazenium-

diolated polymers, undesirable leaching of residual amines is avoided because the NO donor 

remains covalently linked to the silane. 
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1.5.1  Sol–Gel Chemistry 

Sol–gel chemistry allows for the synthesis of inorganic and inorganic-organic hybrid 

ceramic materials for a range of applications.110,111 Although various metal alkoxides (based 

on titanium, zirconium, vanadium, tungsten, aluminum, and borate) exist for preparing sol–

gel derived materials, the most common precursors are silicon alkoxides. Materials of many 

forms can be prepared including powders (particles), fibers, monoliths, films, and 

coatings.112-114 The exact form of the silica ceramic can be prepared via control over the 

composition of silane precursors and reaction/processing conditions (i.e., sol–gel chemistry). 

The sol–gel process can be divided into the following four categories: mixing (to form 

a sol), gelation, aging, and drying.112-114 In a typical procedure, alkyl- and organoalkoxysilane 

precursors are mixed with appropriate amounts of water, methanol or ethanol, and a catalyst 

(e.g., acid or base), to form a solution (the sol). The silane precursors are hydrolyzed, 

resulting in the formation of silanol groups (Si–OH) (Figure 1.7A). The reactive silanols 

subsequently cross-react (i.e., condense) with either alkoxy (Si–OR) or other silanol groups 

to yield siloxane bridges (Si–O–Si) where R is typically a methyl or ethyl group, and R’ is an 

organic functional group (Figure 1.7B). Eventually, polycondensation reactions lead to the 

formation of a polymeric gel network. Several organically modified silane precursors with 

different functional groups have been reported in the literature, including those with alkyl 

chains, amines, thiols, epoxides, and methacrylates. In the following aging and drying 

processes, polycondensation reactions continue and residual solvent is removed from the 

interconnected pore network, thereby increasing the strength and density of the gel. Control 

over the silane precursors and reaction/processing conditions (e.g., pH, solvent, silane/water 

ratio, catalyst, and drying time and temperature) allows for tremendous physical and 
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Figure 1.7. Schematic of sol–gel process illustrating (A) hydrolysis of silane 
precursors and (B) subsequent condensation reactions where R is 
typically a methyl or ethyl group and R’ is an organic group for 
preparing functional xerogels.112
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chemical flexibility in creating xerogels with tunable porosity, rigidity, and wettability. 

A range of inorganic-organic hybrid xerogels functionalized for sensor applications 

have been synthesized using sol–gel chemistry.110,111 Indeed, xerogels have emerged as a 

class of materials suitable for a wide range of biosensor applications since they are: (1) 

synthesized under mild conditions; (2) enable tremendous chemical flexibility; and, (3) 

generally porous (700 – 900 m2·g-1), thus facilitating the diffusion of analyte to the transducer 

(usually electrochemical and optical). Sol–gel derived films also exhibit strong adhesion to a 

variety of sensor substrates (e.g., metal/metal oxides and silica substances). The chemical 

flexibility allowed via sol–gel chemistry can be further manipulated by doping other 

molecules (e.g., biomolecules, polymers, and electrochemical or optical sensing elements) 

within the xerogel network. 

 

1.5.2  Nitric Oxide-Releasing Xerogels for In Vivo Chemical Sensing 

The Schoenfisch group has focused on synthesizing sol–gel derived materials capable 

of generating NO at variable rates and amounts (without concomitant leaching) that can be 

subsequently used for implantable devices, including in vivo sensors.102,109 A range of N-

diazeniumdiolate-modified xerogels have been synthesized and their properties tailored by 

varying the type and amount of alkyl- and aminoalkoxysilane precursors and specific 

reaction/processing conditions. Several alkyl- and aminoalkoxysilane precursors have been 

employed for this purpose, including methyl-, ethyl-, and butyltrimethoxysilanes (MTMOS, 

ETMOS, and BTMOS, respectively), (aminoethylaminomethyl)phenethyltrimethoxysilane 

(AEMP3), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAP3), N-(6-aminohexyl)-

aminopropyltrimethoxysilane (AHAP3), and N-[3-(trimethoxysilyl)propyl]diethylenetri-

amine (DET3) (Figure 1.8). The amine functional groups in the cured xerogel structure are 
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Figure 1.8. Structures of aminoalkoxysilanes: A) N-(2-aminoethyl)-3-aminopropyl-
trimethoxysilane (AEAP3); B) (aminoethylaminomethyl)phenethyltri-
methoxysilane (AEMP3); C) N-(6-aminohexyl)aminopropyltrimethoxy-
silane (AHAP3); and, D) N-[3-(trimethoxysilyl)propyl]diethylenetri-
amine (DET3). 
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converted to N-diazeniumdiolate NO donors via exposure to high pressures (5 atm) of NO. 

As described earlier, the generation of NO from diazeniumdiolated xerogels is triggered by 

the presence of a proton donor such as water (Figure 1.9). 

Xerogel coatings with average NO surface flux ranging from <1 to 60 pmol·cm-2·s-1 

have been synthesized by simply altering the identity and relative ratios of the 

aminoalkoxysilane precursor in the sol. The flux of NO from these xerogels is sufficient to 

reduce platelet and bacterial (P. aeruginosa) adhesion by 90% and 70 – 80%, 

respectively.109,115 More recently, in vitro cell adhesion experiments were expanded to 

include other clinically relevant bacterial species including Proteus mirabilis, Staphylococcus 

aureus, and Staphylococcus epidermidis.106,108 Similar to P. aeruginosa, NO-releasing 

xerogel coatings inhibited cell adhesion to these pathogens (50 – 90% reduction) as well. 

Such coatings may thus prove useful for reducing biofouling and the occurrence of implant-

related infection for in vivo sensor applications. 

Marxer et al. reported on an amperometric sol–gel derived sensor that released NO and 

was capable of measuring physiologically relevant concentrations of oxygen.116 The sensor 

consisted of a platinum electrode coated with 20% AHAP3 (balance ETMOS) hybrid xerogel 

film. Hydrophilic polyurethane (HPU) was doped into the xerogel membrane to increase 

oxygen permeability and reduce the time required to hydrate the membrane. N-

Diazeniumdiolate NO donors were formed within the polymer matrix by exposing the cured 

film to high pressures of NO. The coating released up to 4.3 x 10-10 mol·cm-2·min-1 of NO 

over the first 12 h and maintained measurable levels of NO release through 48 h. Oxygen 

sensors modified with HPU-doped, NO-releasing xerogels effectively inhibited platelet 

adhesion without serious deterioration in sensor performance. In addition, the HPU-doped 
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Figure 1.9. Schematic of NO generation from N-diazeniumdiolate-modified xerogel 
network occurring upon exposure to aqueous conditions. N-[3-(Trimeth-
oxysilyl)propyl]diethylenetriamine (DET3) was used as an example 
aminoalkoxysilane precursor. 
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xerogel coating was stable in buffer solution for over 48 h. While advances in the synthesis 

of NO-releasing polymers have led to significant progress in the development of 

intravascular sensors for blood gas and electrolyte measurements,1,10,116 the application of 

such coatings to subcutaneous glucose sensors may also prove beneficial, and represents a 

portion of this dissertation research. 

 

1.6  In Situ and In Vivo Measurements of Nitric Oxide 

Despite the above discoveries, much is still not understood about NO’s many biological 

roles and metabolic pathways in the body. Furthermore, the demand for in situ, real-time 

measurement of NO at or near the surface of materials that controllably release NO to 

elucidate the relationship between local NO concentrations and surface fouling would aid in 

the design more effective biomaterials. The importance of NO determination has resulted in 

an increasing interest in the development of methods for detecting and monitoring this 

molecule. Designing appropriate sensors, however, has not been trivial due to difficulties 

associated with measuring NO in physiological media due to its low concentration (nM – 

μM), high reactivity with various endogenous components (e.g., free radicals, transition 

metal ions, and oxygen) and short half-life (usually < 10 s).48,117 Moreover, the complexity 

and limited dimensions of biological samples ranging from tissue to cells, for example, 

significantly hinder the detection of NO. Most techniques for measuring NO are indirect, 

relying on the determination of a secondary species such as L-citrulline (a coproduct of NO 

synthesis), nitrite or nitrate (oxidation products of NO).118,119 Indirect methods have often fail 

to accurately reflect the spatial and temporal distribution of NO in biological environments. 

Of the feasible approaches to overcome such drawbacks, electrochemical (e.g., amperometric 

redox)120-123 and optical (e.g., chemiluminescence124 and fluorescence125) sensors represent 
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the most promising strategies for detecting NO. Such sensors provide direct, real-time 

measurement of NO both in vitro and in vivo, and their microfabrication is inexpensive.126,127 

1.6.1  Electrochemical Nitric Oxide Sensors 

Electrochemical detection of NO in biological media can be accomplished via either 

direct or electrocatalytic reduction or oxidation of NO.128 Although a number of reactions 

have been identified for the direct reduction of NO, the kinetics are typically slow and give 

rise to large overpotentials ranging from ca. –0.9 to –1.2 V (versus Ag/AgCl).128 This 

reaction can be summarized as follows (Equation 1.1): 

 

 2NO + 2e-  N2O2
2-  (Equation 1.1) 

 

Intermediates for this reaction include NO- and/or HNO: these species are also reduced 

to NH2OH. The direct electroreductive methods for detecting NO usually provide better 

specificity since most potential interfering species are not reduced at these potentials. 

However, molecular oxygen is reduced at these working potentials, rendering this detection 

system inadequate for in vivo applications. Recently, electrodes modified with 

electropolymerized films of transition metal complexes (e.g., [Cr(v-tpy)2]3+) have been 

reported, where v-tpy is the ligand 4’-vinyl-2,2’,6’,2’’-terpyridyl.129 This chemistry has 

resulted in the design of sensors that reduce NO at less negative potentials. 

Alternatively, the electrochemical oxidation of NO proceeds via the following 

reactions:120,121,128 

 

 NO  NO+ + e- (Equation 1.2) 

 NO+ + OH-  HNO2  (Equation 1.3) 

In the first step (Equation 1.2) an electron is transferred from NO to the electrode, 
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generating an oxidation current. Since nitrosonium ion (NO+) is a relatively strong Lewis 

acid, it is converted to nitrite (NO2
-) in the presence of OH- (Equation 1.3). Ultimately NO2

- 

is further oxidized to nitrate (NO3
-) the final product of electrochemical oxidation of NO, and 

results in the additional transfer of two electrons: 

 

 HNO2 + H2O  NO3
- + 3H+ + 2e-  (Equation 1.4) 

 

Because the direct electrooxidation of NO requires a relatively high working potential 

(ca. +0.7 to +1.0 V vs. Ag/AgCl), its amperometric detection is often hindered by the 

presence of readily oxidizable species including nitrite, ascorbic acid, uric acid, 

acetaminophen, and dopamine.120,121 Current electrooxidative techniques for in situ and in 

vivo detection of NO are based on either Clark-style electrodes or surface-modified 

electrodes.120-123 

Clark-style electrodes are fabricated by placing the working (platinum) and pseudo-

reference (silver) electrodes into a micropipette filled with an internal electrolyte solution and 

sealed/covered with a gas-permeable membrane.130 In this configuration, platinum and silver 

wires are placed in close proximity coaxially (tip diameter of 10 μm). The microelectrode 

can thus be used to measure NO in tissue and isolated cells with relatively high spatial 

resolution. Several gas-permeable membranes have been used to achieve high selectivity for 

NO over the aforementioned interfering species, including chloroprene, collodion/ 

polystyrene, Nafion/cellulose acetate, and nitrocellulose/silicone. Unfortunately, Clark-style 

sensors are limited by both low sensitivity and comparatively slow response times relative to 

the rate of physiological changes in NO levels.121,130 

Surface-modified electrodes are fabricated by coating various electrodes (e.g., platinum, 
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glassy carbon and carbon fiber) with catalytically active materials such as metalloporphyrins 

(e.g., Ni-, Fe-, and Mn-porphyrins), o-phenylenediamine, or metal phthalocyanine to lower 

the working potential by ca. 0.3 V relative to an unmodified electrode.122,131 Bare electrodes 

are typically modified via electrochemical polymerization by either entrapping the catalytic 

compounds during the polymerization of a given monomer or using monomers that have 

covalently linked electrocatalysts. Control of the polymer thickness can be achieved by 

measuring the charge transferred during the polymer-formation process. Such composite 

electrodes may be further modified with a permselective barrier membrane (e.g., cellulose 

acetate and Nafion) to reduce interferences by size exclusion and/or electrostatic repulsion. 

For this particular design, a carbon fiber is coated sequentially with monomeric tetrakis(3-

methoxy-4-hydroxyphenyl) nickel porphyrin (Ni-TMPP), Nafion, and finally o-phenylenedi-

amine.131 

 

1.6.2  Optical Nitric Oxide Sensors 

The reaction of NO with ozone or luminol-H2O2 is the basis of chemiluminescence-

based optical NO sensors, and represents a promising alternative to electrochemical 

methods.124,132,133 Indeed, optical sensors exhibit excellent detection limits (ca. 10-13 mol·L-1), 

but consequently require a large sample size.132 Recently, however, fiber-optic based sensors 

have been introduced, significantly reducing the sample size requirement (~300 μm to 3 

mm).133 Nitric oxide from a sample diffuses through a gas-permeable silicone rubber 

membrane and enters an internal solution composed of H2O2 and luminol. The NO 

immediately reacts with H2O2 to form peroxynitrite (ONOO-), a strong oxidant that quickly 

reacts with luminol to generate light. A fiber-optic probe collects a fraction of the produced 

light and directs it to a photomultiplier tube for detection. Detection limits of ca 1.3 X 10-6 
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mol·L-1 can be achieved using fiber optics.133 

 

1.6.3 Protein-Based Nitric Oxide Biosensors 

To achieve optimum selectivity for NO in complex biological conditions, a number of 

enzyme- and metalloprotein-based biosensors have been developed in which the interaction 

of the protein with NO leads to an appropriate electrochemical or fluorescent signal.126,127 

Nitric oxide is known to inactivate biologically important enzymes including glucose oxidase, 

horseradish peroxidase, and polyphenol oxidase via reaction with the metal center, S-

nitrosylation or sulfhydril oxidation. However, the exact inhibition mechanism is not clearly 

defined, and most likely differs depending on the protein system employed. Because 

immobilizing enzymes onto electrodes and detecting changes in enzyme product are both 

reasonably straightforward, several electrochemically-based biosensor systems have been 

developed. However, fiber optic-based fluorescent sensors using metalloproteins such as 

cytochrome c’ and sGC are equally capable of detecting and monitoring NO.134,135 Briefly, 

cytochrome c’ is labeled with a fluorescent spectator dye. The quantum yield (e.g., ability to 

fluoresce) of the dye molecule decreases in the presence of NO. 

 

1.7 Summary of Dissertation Research 

The goal of my dissertation research was to explore the feasibility of coupling sol–gel 

derived NO release with the chemistry of electrochemical glucose sensing to improve 

lingering biofouling problems. A hybrid xerogel/polyurethane glucose biosensor was 

developed via the use of NO-releasing xerogel particles that were prepared by grinding 

xerogel films. Although such NO-releasing hybrid coatings represent useful materials for 

reducing bacterial adhesion, their in vivo applications remained limited due to the relatively 
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short NO release duration (<15 – 20 h at higher than therapeutic concentration of NO). To 

improve the longevity of NO release, N-diazeniumdiolate-modified silica nanoparticles with 

more tunable NO release properties were prepared via a one-pot synthesis. In addition, an 

amperometric sol–gel derived NO microsensor having superior analytical performance 

compared to existing sensors was developed. 

The specific aims of my research included: 

1) the evaluation of xerogel permeability before and after exposure to high pressures 

of NO necessary to form N-diazeniumdiolate NO donors; 

2) the preparation and characterization of NO-releasing xerogel/polyurethane hybrid 

coatings for use as glucose sensor membranes; 

3) the investigation of the in vitro glucose sensor performance with respect to 

sensitivity, response time, and long-term stability; 

4) the synthesis of N-diazeniumdiolated silica nanoparticles using various primary/ 

secondary and secondary amine-based alkoxysilane precursors; 

5) the comparison and optimization of synthetic strategies for preparing silica 

nanoparticles with enhanced NO release properties; 

6) exploring the feasibility of using xerogel films as permselective membranes for 

sensing NO amperometrically; and, 

7) determining the optimum xerogel composition for maximizing NO permeability 

while providing sufficient selectivity for NO in the presence of common 

interfering species. 

 

The goal of this introduction chapter was to provide both a brief overview of the current 
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advances and the potential implication of NO in the development of biomaterials for in vivo 

sensor applications. The research discussed in Chapter 2 describes the preparation of a NO-

releasing xerogel/polyurethane hybrid coating and its application to in vivo glucose sensing. 

The utility of xerogel films for fabricating amperometric NO microsensors is discussed in 

Chapter 3. Chapters 4 focuses on the synthesis and characterization of NO-releasing silica 

nanoparticles with tunable physical and chemical properties (e.g., size, porous structures, 

functionality, and NO release). Finally, Chapter 5 discusses the synthesis of a NO delivery 

scaffold based on inorganic-organic hybrid silica nanocomposites and its tumoricidal efficacy 

against human ovarian surface epithelial cancer cells. 
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Chapter 2: 

Nitric Oxide-Releasing Xerogel Particle/Polyurethane Glucose Biosensors 

 

2.1  Introduction 

Mild synthesis conditions and tremendous chemical flexibility have made sol–gel 

chemistry the focus of much biosensor research. The porous nature of most sol–gel derived 

materials (i.e., xerogels) makes them ideal for sensor coatings since analyte diffusion is 

minimally obstructed. In addition, ambient and aqueous processing conditions favor the 

entrapment of enzymes for biosensor fabrication.1-3 For example, glucose oxidase (GOx) 

retains its activity and exhibits increased stability when immobilized within a xerogel. The 

above attributes have led to the development of several classes of xerogels based glucose 

biosensors.4-15 

Designing in vivo glucose biosensors for clinical use, however, remains a significant 

challenge due to poor biocompatibility resulting largely from bacterial adhesion and scar 

tissue formation around the sensor.16 Indeed, surface fouling negatively impacts the long-

term utility of such devices by reducing glucose diffusion to the sensor and increasing the 

risk of infection.17 To address surface fouling, a number of strategies have been explored 

including modifying the outer surfaces of biosensors with a range of polymeric membranes 

that resist biofouling in vitro including silicone rubber and polyurethane,18-20 hydrogels,21 and 

Nafion,22 for example. Antimicrobial agents including antibiotics23 and polyclonal 

antibodies24 have also been doped into polymers such that their slow leaching with time 



decreases bacterial adhesion and biofilm formation at the material-tissue interface. 

Unfortunately, none of the above strategies has dramatically improved the long-term 

performance of in vivo glucose sensors. Infection and scar tissue formation still dictate sensor 

durability. 

With the discovery of nitric oxide (NO) as a potent inhibitor of platelet adhesion and 

activation,25 and its identification as both an angiogenic factor26 and antibacterial agent,27 the 

study of NO has been extended to the field of biomaterials.27-35 Due to its short half-life in 

biological milieu (<1 s),36 NO represents an attractive species for improving the 

biocompatibility of in vivo sensors because its effect will be local, not systemic. Furthermore, 

the potential to both reduce bacterial adhesion and enhance wound healing at the sensor site 

may prove effective in improving the biocompatibility of subcutaneous tissue-based glucose 

biosensors. The most promising NO-releasing coatings developed to date are based on the 

incorporation of N-diazeniumdiolate NO donors into hydrophobic polymers.33 N-

Diazeniumdiolates are synthesized by the reaction of di- and triamines with NO at elevated 

pressure (Figure 1.5, where R1 and R2 represent side groups), and capable of generating NO 

spontaneously in aqueous environments at rates dependent upon pH, temperature, and the 

identity of the amine precursor. 29,37-39

Recently the synthesis of sol–gel derived NO-releasing materials whereby amine-

functionalized silicon alkoxides (aminoalkoxysilanes) were bound to a xerogel backbone was 

reported.27, 40 Through exposure to high pressures of NO, the covalently linked amine groups 

were converted to N-diazeniumdiolates. These materials represent ideal sensor coatings 

because they combine the utility of NO release with the versatility of sol–gel chemistry. A 

range of N-diazeniumdiolate-modified xerogels can be synthesized and their properties 
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tailored by varying the type and content of alkyl- and aminoalkoxysilane precursors and 

processing conditions.40  Furthermore, the flux of NO from these xerogels was sufficient to 

reduce bacterial adhesion,27,35,41,42 indicating that such coatings may prove useful for 

reducing the occurrence of implant-related infection. 

While advances in the synthesis of NO-releasing materials have led to significant 

progress in the development of intravascular (i.e., blood contacting) gas sensors,43-45 the 

application of these materials to enzymatic-based biosensors has not yet been explored. 

Although NO has proven to be beneficial at low concentrations, it is a highly reactive radical 

and may effect enzymatic activity. Indeed, NO has been shown participate in the inactivation 

of several enzymes.46-48 Herein, we explore the feasibility of coupling NO release with the 

chemistry of enzymatic biosensing. We report on the fabrication and in vitro performance of 

a glucose biosensor using a new type of NO-releasing coating, a hybrid polyurethane/xerogel 

film that contains anchored N-diazeniumdiolate functional groups on xerogel particles. These 

hybrid polymers inhibit undesirable leaching of the potentially toxic N-diazeniumdiolate 

precursors while providing steady, tunable NO release.40 The optimal design of the NO-

releasing glucose biosensor, its NO generation profiles, and the stability of the xerogel 

particles in the supporting polymer matrix are discussed. 

 

2.2 Experimental Section 

2.2.1  Reagents and Materials 

Glucose oxidase (GOx; type VII-S from Aspergillus niger; 245,900 units/g), 

horseradish peroxidase (HRP; type I, 148 units/mg), o-dianisidine, hydrogen peroxide (H2O2; 

3 wt% solution in water), and β-D-glucose anhydrous were purchased from Sigma (St. Louis, 

MO). Methyltrimethoxysilane (MTMOS) and isobutyltrimethoxysilane (BTMOS) were 
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purchased from Aldrich (Milwaukee, WI). (Aminoethylaminomethyl)phenethyltrimethoxy-

silane (AEMP3) and N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3) were 

purchased from Gelest (Tullytown, PA); Tecoflex polyurethane (TPU; SG-80A) was 

purchased from Thermedics (Woburn, MA). Nitric oxide (NO) and argon (Ar) gases were 

purchased from National Welders Supply (Durham, NC). Hydrophilic polyurethane (HPU; 

MW 5.74 x 105 g/mol; 40 wt% water uptake) was a gift from Professor Geun Sig Cha of the 

Department of Chemistry at Kwangwoon University (Seoul, Republic of Korea). Other 

solvents and chemicals were analytical-reagent grade, and used as received. Water was 

purified with a Milli-Q UV Gradient A10 System (Millipore Corp.) Final resistivity of the 

ultrapure water was 18.2 MΩ·cm, and the total organic content was ≤6 ppb. 

 

2.2.2  Effect of NO on Enzyme Activity in Solution 

In the homogeneous solution-based assay, GOx was introduced to both control and NO-

saturated (approximately 2 mM NO) phosphate buffered saline (PBS) solutions (0.1 M, pH 

7.4) to assess the effect of NO on enzyme activity. PBS was purged with Ar for 20 min to 

remove oxygen and then saturated with NO for 20 min to produce a ca. 2 mM NO PBS 

solution.49 Control and NO-saturated buffers were used to prepare dilute solutions of GOx 

(0.1 μg GOx/mL). The activity of the GOx was measured via an absorbance assay using o-

dianisidine, a H2O2 sensitive dye, and a PerkinElmer Lamda 40 UV/Vis Spectrometer 

(Norwalk, CT).50 Exactly 200 μL of 400 mM glucose, 200 μL HRP (5.4 units/mL), and 100 

μL of GOx solution (i.e., control or NO-saturated) were added to a cuvette containing 500 μL 

of 0.3 mM o-dianisidine (in phosphate buffer). The absorbance change due to oxidized o-

dianisidine was measured at 436 nm. The activity of the NO-exposed GOx was normalized to 

 
52



control GOx solutions not exposed to NO. 

 

2.2.3  Effect of NO on MTMOS Xeroge-Based Glucose Biosensor 

Functional glucose biosensors were prepared as follows to determine the effect of NO 

on xerogel immobilized GOx. Cylindrical polycrystalline platinum (Pt) working electrodes 

(0.031 cm2) were mechanically polished with successively finer grades of alumina slurries 

down to 0.05 μm. An ultrasonic cleaner was used to remove residual alumina loosely bound 

to the surface. A GOx-containing sol was prepared by mixing 50 μL of water containing 6 mg 

GOx, 100 μL of ethanol, and 25 μL of MTMOS. A 5-μL aliquot of this solution was cast onto 

the Pt working electrode. A TPU/HPU polyurethane polymer solution was prepared by 

mixing 5 mg TPU, 5 mg HPU, 250 μL THF, and 250 μL ethanol. A 25 μL aliquot of this 

solution was applied to the sensor surface as a barrier membrane to limit glucose diffusion to 

the electrode and enhance analyte response over a wide range of glucose concentrations. The 

sensors were dried for 1 d under ambient conditions and soaked in either PBS (control) or 

NO-saturated PBS for 1 h. The sensor response to glucose was then evaluated as described 

below. 

 

2.2.4  Sensor Performance Evaluation 

To evaluate the analytical performance of the glucose biosensors, amperometric 

measurements were performed using a CH Instruments 660A potentiostat (Austin, TX). The 

electrode assembly (3-electrode configuration) consisted of a xerogel modified Pt working 

electrode, Pt wire counter electrode, and a Ag/AgCl (3.0 M KCl) reference electrode. 

Response and calibration curves were obtained by adding aliquots of a 1.0 M glucose 

solution to 50 mL of 0.01 M PBS (pH 7.4) at room temperature with constant stirring. 
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Current was recorded at an applied potential of +0.7 V vs. Ag/AgCl. The permeability of 

H2O2 through the xerogel film was evaluated by measuring the ratio of peak currents at the 

xerogel coated and bare (control) Pt electrodes (ΔIx/ΔIb) in the presence of 0.1 mM H2O2.51 

Current was recorded at an applied potential of +0.7 V vs. Ag/AgCl. Biosensors were stored 

in PBS at room temperature between measurements. 

 

2.2.5  Nitric Oxide-Releasing AEMP3/MTMOS Xerogel-Based Glucose Biosensor 

The effect of exposing GOx to the conditions necessary for N-diazeniumdiolate 

formation was evaluated by entrapping the enzyme in xerogels containing 

aminoalkoxysilanes and directly exposing them to high pressures of NO. The biosensor 

coating was prepared by mixing 25 μL of total silane consisting of 0 to 5 μL of AEMP3 

(balance MTMOS), 100 μL of ethanol, and 50 μL of water with and without 6 mg of GOx for 

10 min. A 5-μL aliquot of the silane mixture was deposited onto a platinum (Pt) working 

electrode and dried under ambient conditions for 1 d. The xerogel coated Pt electrodes were 

placed in an in-house NO reaction vessel,27 flushed with Ar to remove air and water, and then 

exposed to 1, 3, and 5 atm of NO or Ar (control) for 1 h. The response of the biosensors to 

glucose was then evaluated as described above. 

 

2.2.6  Synthesis of N-Diazeniumdiolated Xerogel Particles 

Aminoalkoxysilane-based xerogel particles (XGPs) were prepared by mixing the 

aminoalkoxysilane AHAP3 with either MTMOS or BTMOS. Xerogel monoliths were 

initially synthesized by mixing 80 μL of AHAP3, 120 μL of the alkylalkoxysilane (MTMOS 

or BTMOS), 200 μL of ethanol, and 600 μL of water. To make BTMOS-based xerogels, 10 
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μL of 0.5 M HCl was added as a catalyst. All solutions were mixed for 10 min, poured into 

Teflon plates, and allowed to dry and age at 70 oC for 3 d. The monoliths were then ground 

into powders (roughly 10 – 200 μm in diameter) using a mortar and pestle. The ensuing 

XGPs were placed in an in-house NO reactor as described above, and exposed to 5 atm NO 

for 3 d to convert accessible amine groups to NO donors (N-diazeniumdiolates). Prior to 

removing the N-diazeniumdiolate-modified particles, the reactor was purged with Ar to 

eliminate residual NO not chemically bound to the XGPs. The N-diazeniumdiolated-modified 

xerogel particles (N2O2-XGPs) were stored in a sealed container at -20 oC until used. 

 

2.2.7  Preparation of Hybrid NO-Releasing Xerogel/Polyurethane Glucose Biosensors 

Hybrid XGP-based glucose biosensors were fabricated by applying enzyme-

immobilized MTMOS (layer 1), inner polyurethane (layer 2), NO-donor XGP (N2O2-XGP) 

(layer 3), and outer polyurethane membranes (layer 4), in that order, onto a polished 

cylindrical Pt working electrode (0.3 cm2). Layer 1 was formed by casting 3 μL of a 

MTMOS sol consisting of 6 mg of GOx, 25 μL MTMOS, 100 μL ethanol, and 50 μL of 

water, onto the Pt electrode. Layer 2 was formed by casting 10 μL of TPU/HPU solution 

prepared by mixing 5 mg TPU, 5 mg HPU, 250 μL THF, and 250 μL ethanol. Layer 3 was 

prepared by casting 5 μL of the above polyurethane solution containing either 6 mg N2O2-

XGPs or XGPs (controls). Finally, a barrier polyurethane membrane (layer 4) was added by 

applying 20 μL of polyurethane solution (the same composition as layer 2) on top of the 

XGP-containing polyurethane layer. Each layer on the sensor was dried under ambient 

condition for 30 min before casting the subsequent layer. All biosensors (i.e., control and 

NO-releasing) were stored in air at 4oC until use to preserve both GOx and N-
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diazeniumdiolate stability. Following initial evaluation, sensors were stored in PBS at room 

temperature. 

 

2.2.8  Xerogel Particle Characterization 

NO release from the N2O2-XGPs modified sensors was measured in PBS at room 

temperature using a chemiluminescence-based Sievers Nitric Oxide Analyzer 280 (Boulder, 

CO). NO release profiles were obtained for the different N2O2-XGPs and their hybrid films 

containing 3, 6, 12, and 18 mg N2O2-XGPs in 500 μL polyurethane (solution). 

The stability of the XGPs in the multilayer membrane was evaluated by incubating the 

hybrid films in PBS for 24 and 48 h at room temperature. The Si content from the soak 

solutions, an indicator of XGP leaching from the PU matrix, was measured using an ARL-

Fisons Spectraspan 7 direct current plasma optical emission spectrometer (DCP-OES; 

Beverly, MA). 

 

2.2.9  Bacterial Adhesion 

Pseudomonas aeruginosa cultures were grown from -80 oC stock in tryptic soy broth 

(TSB) for 12 h at 37 oC. A 1 mL aliquot of the cell culture was incubated in 150 mL of TSB 

for ~6 h at 37 oC until a ~108 cfu/mL culture (ODλ=600 = 0.2) was obtained. Cultures were 

centrifuged and resuspended in PBS. To fluorescently label P. aeruginosa, BacLight 

fluorescent probe (Molecular Probes; Eugene, OR) was incubated with the bacterial 

suspension for 30 min. The labeled cells were pelleted, rinsed, and resuspended in PBS. Cell 

counts on tryptic soy agar were performed to obtain the cell concentration. Control and NO-

releasing XGP-modified polyurethane films cast on glass slides were immersed into 5 mL of 

the labeled cell suspension for 30 min at 37 oC. Fluorescent optical micrographs were 
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obtained using a Zeiss Axiovert 200 inverted microscope (Chester, VA) equipped with a Syto 

9 filter set from Chroma (Brattleboro, VT). 

 

2.3 Results and Discussion 

The biochemical interactions of NO with mammalian proteins are among the most 

important biological reactions in which NO participates.52-54 Metal centers, including heme, 

non-heme, and metal-sulfur clusters of proteins, all form nitrosyl complexes with NO. 

Furthermore, NO and its derivatives are highly reactive with non-metallic coordination sites 

such as thiol and sulfhydryl groups. For enzymes, reaction with NO often has both reversible 

and irreversible effects on biological activity. While the influence of NO on enzyme activity 

has been evaluated for a number of enzymes including xanthine oxidase, glutathione 

peroxidase, and NADPH-oxidase,47,52 the influence of NO on GOx, a flavoprotein consisting 

of two identical polypeptide chain subunits linked covalently by a disulfide bond,55 remains 

unknown. Thus, the influence of NO on GOx in solution was studied to determine the 

feasibility of developing a NO-releasing glucose biosensor. 

 

2.3.1  Effect of NO on GOx 

The effect of NO on GOx was assessed using a solution-based spectrophotometric GOx 

activity assay. As shown in Table 2.1, the activity of GOx decreased considerably 

(approximately 40% at t = 0) upon exposure to a saturated buffer solution of NO (~2 mM). 

The activity of the GOx recovers to 100% after 24 h, indicating that the inhibitory effect of 

NO is reversible. Of note, bubbling the buffer solution with NO decreased the pH of the 

solution from 7.4 to 6.7. Since the activity of the enzyme is maximized between pH 5 – 6,56 a 

corresponding increase in GOx activity was observed. To account for this, the pH of the 
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 Normalized GOx activitya 

Time (days) Control 2 mM NO 

0  1.00 ± 0.02 0.62 ± 0.21 

1  1.20 ± 0.11 1.18 ± 0.03 
4  1.01 ± 0.12 1.05 ± 0.04 

Table 2.1. Changes of solution GOx activity as a function of time 

aActivities are normalized to the control at t = 0. 
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control solution was also adjusted to pH 6.7. These results indicate that while enzyme 

activity in solution is reduced in the presence of NO, the influence of NO on the enzyme is 

neither devastating nor irreversible, and thus should not preclude the development of a NO-

releasing glucose biosensor. 

To further evaluate the feasibility of coupling NO release with GOx-based glucose 

sensing, the effect of NO on the activity of GOx immobilized within a xerogel was assessed. 

A functional sol–gel derived glucose biosensor was prepared and exposed to a NO-saturated 

buffer (~2 mM) for 1 h. As shown in Figure 2.1, the sensitivity of the biosensor decreased 

from -6.3 x 10-2 to -1.9 x 10-2 μA/mM (roughly 70%) upon NO exposure. Remarkably, the 

response of the biosensor remained linear (r = 0.9997) suggesting that although high 

concentrations of NO may decrease GOx activity, such high NO concentrations do not 

completely compromise the sensor’s analytical utility. In contrast to GOx in solution, the 

effect of NO on the biosensor was permanent (i.e., the response of the biosensor did not 

return to its original value) indicating that immobilized GOx is more harshly influenced by 

NO than GOx in solution. Although xerogels are known to promote enzyme stability, once 

denatured, proteins are unlikely to return to their native state due to interaction with the 

xerogel matrix.57 

 

2.3.2 Effect of NO on GOx-Based Xerogel Films 

To introduce NO release capability, aminoalkoxysilane-based xerogel glucose sensors 

were doped with GOx and exposed to 5 atm NO for 1 h. The response of the GOx-

aminoalkoxysilane-based xerogel sensor to glucose before and after NO exposure is shown in 

Figure 2.2. As expected based on the above data, the response of the biosensor after NO 

exposure is reduced by 99.8% (Figure 2.2b). This decreased sensitivity is significantly 
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Figure 2.1. Calibration curves of glucose biosensors pre-soaked in (a) PBS 
(control); and (b) NO-saturated PBS for 1 h. 
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Figure 2.2. Glucose response of (a) control and (b) NO exposed (5 atm 
NO for 1h) AEMP3/MTMOS glucose biosensors. (Inset) is the 
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greater than for the biosensor that had been exposed to 2 mM NO, indicating that more than 

reduced GOx activity is altering the sensor’s analytical sensitivity. Indeed, this behavior is 

attributed to both enzyme inactivation and reduced xerogel permeability upon exposure to 

high pressures of NO. 

To assess the effect of NO on the permeability of the xerogel film, the diffusion of H2O2 

through MTMOS and AEMP3/MTMOS xerogel films (without enzyme) exposed to either 5 

atm NO or Ar was evaluated. (The ambient laboratory air served as the blank.) As shown in 

Table 2.2, the aminoalkoxysilane-based xerogel is less permeable than typical xerogel 

without aminoalkoxysilanes (e.g., MTMOS alone). These permeability differences likely 

account for part of the reduced sensor response to glucose (see Figure 2.2). Notably, the 

permeability of xerogels exposed to Ar decreased only slightly, indicating that exposure to 

high pressures alone does not significantly affect the physical structure of the xerogel. The 

permeability of aminoalkoxysilane-based coatings after NO exposure was remarkably 

diminished. To further evaluate the effect of NO on the xerogel matrix, the permeability of 

AEMP3/MTMOS membranes exposed to 1 – 5 atm NO was measured as a function of time 

the electrode was soaked in PBS solution. Irrespective of the pressure, exposure to NO 

significantly reduced the permeability of AEMP3/MTMOS xerogel films. Furthermore, the 

reduced permeability was irreversible (see Figure 2.3). 

The basis of sol–gel chemistry is the formation of a polymeric gel through the 

hydrolysis and polycondensation of silicon alkoxides.58 The degree of polycondensation, 

determined by the type and concentration of the silicon alkoxide precursors, the reaction 

conditions (e.g., pH, catalyst, and water content), and the drying/aging time and temperature, 

influences both the physical porosity and rigidity of the resulting xerogel.58,59 In general, high 
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Table 2.2. Permeability of H2O2 through xerogel membranes after exposure to NO and Ar 
for 1 h 

 Permeability (is/ib) 

Conditions MTMOS AEMP3/MTMOS

Ambient 0.059 ± 0.005 0.034 ± 0.003 

5 atm NO 0.031 ± 0.008 < 0.0001 
5 atm Ar n/a 0.026 ± 0.006 
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concentrations of residual silanol groups lead to highly porous xerogel materials. We 

hypothesize that the markedly lower permeability of xerogel films following NO exposure is 

the result of enhanced poly-condensation catalyzed by NO. 

 

2.3.3 Hybrid NO-Releasing Glucose Biosensors 

Since the analytical response characteristics of aminoalkoxysilane-derived xerogel 

glucose biosensors are compromised due to inadequate permeability and reduced GOx 

activity, hybrid polyurethane/xerogel coatings capable of NO release were synthesized using 

N-diazeniumdiolate-modified xerogel “particles” and polyurethane membranes. Xerogel 

particles were prepared by grinding xerogel films or monoliths to a fine powder resulting in 

particles with diameters ranging from 10 – 200 μm. To facilitate NO release, the diamine 

groups in the xerogel were converted to N-diazeniumdiolates by exposing the powder to 5 

atm NO for 3 d. A multi-membrane NO-releasing glucose biosensor was then prepared as 

depicted in Figure 2.4. To start, a glucose oxidase-containing xerogel film (<25 μm) was cast 

onto a polished Pt electrode. Microencapsulation of the enzyme within a xerogel was chosen 

over simple physisorption to minimize enzyme leaching.7 An “enzyme protecting” 

polyurethane layer was cast on the GOx-based xerogel to minimize the effect of NO on GOx 

activity by separating the xerogel encapsulated GOx and the NO releasing layer. The third 

layer consisted of the N-diazeniumdiolate-modified xerogel particles (or unmodified xerogel 

particle controls) dispersed in polyurethane. Additional polyurethane was cast on top of this 

layer as a barrier membrane to reduce the potential of xerogel particle leaching. The 

polyurethane layers also serve to limit the diffusion of glucose relative to oxygen, 

maximizing the sensor’s dynamic response to glucose. 

As previously reported, the amount and duration of NO-release are easily controlled 
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Figure 2.4. Schematic of the hybrid xerogel/polyurethane glucose biosensor 
employing NO donor-modified xerogel particles in a polyurethane 
supporting matrix. 
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using xerogel chemistry by varying the type and amount of the aminoalkoxysilane precursor 

in the sol.40 Of the xerogel precursors studied to date, AHAP3/BTMOS xerogels release both 

the highest levels of NO and for the longest periods (up to 20 d with average fluxes up to  

10-11 mol·s-1·cm-2 (for 50 μm thin films).40 Thus, AHAP3-based xerogels were evaluated for 

their utility as NO-releasing xerogel particles. The combination of AHAP3/MTMOS proved 

to be superior over other mixtures including AHAP3/BTMOS for xerogel particle synthesis 

because of the ability to form a fine powder. Indeed, other aminoalkoxysilane/BTMOS 

combinations often resulted in less glass-like (i.e., more flexible) materials that were difficult 

to crush and grind. The NO-release kinetics of AHAP3/MTMOS xerogels was similar to 

AHAP3/BTMOS xerogels with NO release increasing as a function of the concentration of 

AHAP3 in the xerogel (data not shown). 

Upon dispersing the xerogel particles in polyurethane films, a slight decrease in the flux 

of NO release was observed. This result is not surprising since water must presumably be 

absorbed by the polymer for NO release to commence. Mowery et al. previously noted the 

influence of water uptake on the NO release kinetics of N-diazeniumdiolate-doped 

hydrophobic polyurethane and poly(vinyl chloride) polymers.43 Both the amount and duration 

of NO release from the xerogel/polyurethane hybrid films was varied by doping different 

amounts of the AHAP3/MTMOS xerogel particles in the polyurethane. As shown in Figure 

2.5, the flux and duration of NO release was amplified proportionately by increasing the 

mass of xerogel particles in the polyurethane. Of note, previous studies have revealed that 

only approximately 1 – 20% of the amines in a xerogel matrix are converted to NO donors.40 

Efforts to lengthen the duration of NO release by employing different aminoalkoxysilane 

precursors and/or increasing the efficiency of how amines are converted to N-
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diazeniumdiolates by incorporating proton sponges (e.g., sodium methoxide) in the sol 

cocktail to better stabilize the N-diazeniumdiolate structure34 are currently underway. 

Improvements in the NO release longevity will certainly impact the development of more 

biocompatible in vivo NO-releasing glucose biosensors, particularly with respect to reducing 

bacterial adhesion at extended periods. However, how much NO and for how long NO 

release are necessary to improve in vivo biocompatibility remains to be studied. 

The stability of the xerogel particle-doped polyurethane membrane in buffer solution is 

an equally important consideration for sensor development. Direct current plasma-optical 

emission spectroscopy (DCP-OES) analysis was used to assess whether the xerogel particle 

leached from the polyurethane into solution when immersed in PBS. The percent 

fragmentation of silicon by mass relative to the mass of the xerogel for hybrid xerogel 

particle/polyurethane films prepared without the barrier membrane was 6.0 ± 0.7 and 12.5 ± 

0.9%, after 24 and 48 h, respectively, indicating slight leaching of the xerogel particles from 

the polyurethane. The xerogel particle leaching decreased significantly to 1.1 ± 0.4 and 3.0 ± 

0.2%, after 24 and 48 h, respectively with the addition of the outer polyurethane “barrier” 

layer (layer 4). Notably, a difference in the NO release kinetics was not observed with the 

addition of this thin outer barrier layer (see Figure 2.6). 

The calibration and response curves of glucose sensors prepared using a) two-layer 

blank; b) four-layer control (with unmodified XGPs); and, c) four-layer NO-releasing (N2O2-

XGPs) polymer membrane configurations are shown in Figure 2.7. The sensitivity for the 

NO-releasing xerogel/polyurethane glucose biosensors was -3.8 x 10-2 μA/mM (r = 0.9968), 

and only slightly lower than the control (-5.7 x 10-2 μA/mM; r = 0.9971) and blank (-4.8 x 

10-2 μA/mM; r = 0.9973) sensors. Surprisingly, the sensitivity of the control biosensor was 
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increased slightly relative to the blank (-5.7 x 10-2 vs. -4.8x10-2 μA/mM). We attribute this to 

greater glucose diffusion through the XGP-doped polymer via gaps or channels created by 

the particles. An elevated surface roughness was noted in the scanning electron microscopy 

images of NO-releasing and control XGP-containing polyurethane membranes relative to 

blanks (see Figure 2.8). The analytical sensitivity of the NO-releasing xerogel particle/ 

polyurethane hybrid glucose biosensor is dramatically improved over the AEMP3/MTMOS 

xerogel film-based biosensors that were subsequently exposed to NO to establish NO release 

(Figure 2.2b). The slight decrease in sensor response is attributed to enzyme inactivation by 

the NO that diffuses back through the protecting polyurethane membrane (layer 2). Although 

slight enzyme deactivation occurred in the short-term, the response of the NO releasing 

biosensor increased slightly after 24 h indicating that the degradation does not continue with 

NO release. In fact, the response characteristics of the hybrid NO-releasing glucose biosensor 

remained stable through 18 d, after which the linear range decreased from 0 – 60 mM to 0 – 

20 mM glucose, and the response time (t95%) increased from less than 20 s to over 65 s. Of 

note, the sensors were tested on days 1, 2, 3, and 5, and then every 3 – 4 d until day 22, at 

which point sensor performance was compromised. 

To evaluate the potential biocompatibility of N2O2-XGP modified glucose biosensors, 

P. aeruginosa adhesion to control and NO-releasing membranes was assessed using 

fluorescence microscopy.36,38,56 While cell adhesion was observed in the scanning electron 

microscopy analysis of control and NO-releasing xerogel/polyurethane membranes, the 

relative amounts of bacterial adhesion were difficult to quantify due to fluorescence from the 

XGPs (data not shown). In a separate study, NO fluxes as low as 5 pmol·cm-2·s-1 were 

determined sufficient to reduce P. aeruginosa adhesion to poly(vinyl chloride)-coated NO-
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Figure 2.8. Scanning electron microscopy images of surfaces of (A) polyurethane 
two-layer blank and (B) N-diazeniumdiolated-modified xerogel particle/ 
polyurethane films. 
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releasing xerogels.42

 

2.4 Conclusions 

Sol–gel chemistry represents a flexible approach for combining the chemistries of NO 

release and enzyme-based glucose sensing. Despite a major compromise in the sensitivity of 

xerogel film-based glucose biosensors after exposure to NO, functional NO-releasing glucose 

biosensors can be prepared by doping N-diazeniumdiolate-modified xerogel particles in a 

polyurethane membrane. This NO-releasing layer is sandwiched by additional polyurethane 

membranes to reduce both enzyme inactivation by NO (by minimizing NO exposure) and 

xerogel particle leaching. The NO release is easily controlled by varying the amount of N-

diazeniumdiolate-modified xerogel particles in the polyurethane. The NO-releasing xerogel 

particle/polyurethane glucose biosensors demonstrate good sensitivity and reproducibility, 

and fast response times. Studies in progress include identifying methods to improve the 

duration of NO release and comprehensive in vivo biocompatibility testing of NO-releasing 

xerogels. 
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Chapter 3: 

Sol–Gel Derived Amperometric Nitric Oxide Microsensor 

 

3.1  Introduction 

Endogenously produced nitric oxide (NO) has been studied extensively in recent years 

due to its roles in numerous physiological processes including neurotransmission, 

vasodilatation, blood pressure regulation, platelet adhesion and activation, angiogenesis, 

wound healing, and phagocytosis.1-3 In vivo measurements of NO have proven challenging 

because NO is both present in low concentrations in the body (sub-micromolar levels) and 

highly reactive with numerous endogenous species including free radicals, transition metals, 

metalloproteins, peroxides, and oxygen.2,4 Indeed, the half-life of NO in biological milieu is 

<10 s.4 Consequently, indirect detection methods (e.g., spectroscopically determining a 

secondary species such as L-citrulline5 or nitrite/nitrate6) often fail to accurately reflect the 

spatial and temporal distributions of NO in biological environments. Direct measurement 

strategies are therefore necessary for investigating the physiological origin and action of 

endogenously produced NO. 

Several methods exist for directly measuring NO including electron paramagnetic 

resonance (EPR) spectroscopy,7 chemiluminescence,8,9 fluorescence,10,11 and electrochemical 

sensing.12-14 Of these approaches, miniaturized electrochemical (e.g., amperometric and 

voltammetric) sensors represent the most promising means for determining the spatial and 

temporal distributions of NO near its physiological source.14 In addition to providing real-



time measurements of NO, electrochemical sensors are readily miniaturized thereby allowing 

for the fabrication of relatively inexpensive microelectrode devices. The most straightforward 

detection scheme to date involves the electrochemical oxidation of NO at a metal (e.g., 

platinum and gold) or carbon electrode.13 The direct electrooxidation of NO, however, 

requires a relatively high working potential (+0.7 to +0.9 V vs Ag/AgCl), thus interference 

from other readily oxidizable biological species including nitrite, ascorbic acid, uric acid, and 

acetaminophen often precludes selective detection of NO.14 

Attempts to enhance selectivity for NO in the presence of such interfering species have 

included modifying the electrode surface with either an electrocatalytic metal complex or a 

thin polymeric film.12,14 Metalloporphyrins,15,16 metal phthalocyanines,17,18 and other 

organometallic compounds19-22 containing nickel, cobalt, iron, and copper centers have been 

employed to lower the oxidation potential of NO at both carbon and metal (e.g., platinum) 

electrodes. However, further surface modification with permselective membranes (e.g., 

cellulose acetate and Nafion) is required to achieve the desired selectivity for NO via size 

exclusion and/or electrostatic repulsion.16,18,20 

Alternatively, Shibuki reported on a Clark-style NO microsensor in which the working 

(platinum) and reference (Ag/AgCl) electrodes were placed in a glass micropipette filled with 

an internal electrolyte solution, and subsequently sealed with a chloroprene gas-permeable 

membrane.23 While effective at improving the selectivity for NO, the use of such sensors for 

in vivo measurements remains limited due to inherent difficulties in sensor miniaturization 

and slow response times with respect to the rate of physiological changes in NO 

concentrations.14 To improve NO permeation properties and facilitate the fabrication of NO 

microsensors, significant efforts have been devoted to developing more efficient 
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permselective coatings.12,14 Indeed, several polymeric materials have been evaluated as gas-

permeable or permselective membranes including polycarbazole,24 o- and m-phenylenedi-

amine,25 collodion,26 Nafion,27 poly(tetrafluoroethylene) (PTFE),28 polydimethylsiloxane 

(silicone rubber),29-31 cellulose acetate,19,32 and multilayer hybrids of these polymers. Notably, 

the utility of these polymeric membranes for improving in vivo sensor performance also 

remains limited. 

Sol–gel derived materials (i.e., xerogels) have emerged as a class of materials suitable 

for a wide range of sensing applications since they are synthesized under mild conditions, 

enable tremendous chemical flexibility, and strongly adhere to a variety of substrates (e.g., 

metal/metal oxides and silica substrates).33,34 The physical and chemical properties of sol–gel 

derived sensors are readily tailored by varying the silicon alkoxide precursors and/or 

coupling specific functional compounds (e.g., ion-exchange or redox polymers, biomolecules, 

and electrochemical or optical sensing elements) to the polymer backbone.34,35 Organically-

modified xerogel films are particularly advantageous for gas sensing applications. The 

porous inorganic network provides an open, rigid structure that allows for rapid diffusion of 

gaseous molecules while the organic groups impart hydrophobicity to the membrane thereby 

preventing leaching of the internal electrolyte.36,37 

Herein, we explore the feasibility of using sol–gel derived materials as gas-permeable 

membranes for amperometric NO sensing. A systematic evaluation of silicon-based xerogel 

films is performed to identify the optimum formulation for maximizing NO permeability 

while providing sufficient selectivity for NO in the presence of common interfering species. 

Electrochemistry and surface wettability measurements are used to monitor changes in the 

chemical structure of the xerogel as a function of sol-gel composition and reaction/processing 
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conditions. The effect of incorporating Nafion (a perfluorinated cation-exchange polymer) 

into the xerogel matrix and the stability of the ensuing xerogel/Nafion hybrid film are also 

discussed. Finally, we report on the fabrication and in situ performance of a NO-selective 

microsensor prepared with the optimized xerogel composite membrane. 

 

3.2 Experimental Section 

3.2.1  Reagents and Materials 

Methyltrimethoxysilane (MTMOS), isobutyltrimethoxysilane (BTMOS), N-[3-(trimeth-

oxysilyl)propyl]diethylenetriamine (DET3), Nafion (5 wt% solution in a mixture of lower 

aliphatic alcohols and water), glutaraldehyde (25% in water), and uric acid were purchased 

from Aldrich (Milwaukee, WI). (Aminoethylaminomethyl)phenethyltrimethoxysilane 

(AEMP3), N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3), and aminopropyltri-

methoxysilane (APTMS) were purchased from Gelest (Tullytown, PA). Polyvinylpyrrolidone 

(PVP; MW 10000) was purchased from Fluka (Buchs, Switzerland). Ascorbic acid, 

acetaminophen, and sodium nitrite were purchased from Sigma (St. Louis, MO). Platinizing 

solution (3% chloroplatinic acid in water) was purchased from LabChem (Pittsburgh, PA). 

Nitric oxide (NO), argon (Ar), and nitrogen (N2) gases were obtained from National Welders 

Supply (Raleigh, NC). Other solvents and chemicals were analytical-reagent grade, and used 

as received. A Millipore Milli-Q UV Gradient A10 System (Bedford, MA) was used to purify 

distilled water to a final resistivity of 18.2 MΩ·cm and a total organic content of ≤6 ppb. 

 

3.2.2  Preparation of Sol–Gel Derived Gas-Permeable Membranes 

Glass slides were cleaned in 10% nitric acid (v/v in water) for 20 min at 80 °C, and then 

modified by sequential immersion in 10% APTMS (v/v in water, pH 6.5) for 1 h at 80 °C and 
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10% glutaraldehyde (v/v in water) for 1 h at room temperature.38 The surfaces were rinsed 

thoroughly with water and dried with a stream of N2 prior to modification with xerogel films. 

Cylindrical polycrystalline platinum (Pt) working electrodes (2 mm diameter; 6 mm diameter 

including the surrounding insulator) were mechanically polished with successively finer 

grades of agglomerated alumina slurries down to 0.05 μm. An ultrasonic cleaner was used to 

remove residual alumina loosely bound to the surface. Xerogel casting solutions were 

prepared by mixing 25 – 50 μL MTMOS or BTMOS with 200 μL of ethanol and 100 μL of 

water for 10 min. The synthesis of BTMOS-based xerogels was catalyzed by the addition of 

10 μL of 0.5 M HCl. The aminoalkoxysilane content was varied from 0 to 50% (v/v, balance 

MTMOS or BTMOS) by the addition of 0 – 25 μL of AEMP3, AHAP3, or DET3 (for a total 

silane volume of 50 μL). To formulate the xerogel/Nafion hybrid composites, 5, 10, or 15 μL 

aliquots of Nafion (corresponding to 9, 17, and 23%, v/v in 50 μL of total silane, 

respectively) were added to the sol and mixed for an additional 5 min. The ensuing solution 

was then deposited onto either the modified glass substrates (for material characterization) or 

the Pt working electrodes (0.02, 0.04, 0.08 and 0.12 μL·mm-2) and allowed to cure for 24 h 

under ambient conditions. The porous structure of the cured sol–gel derived films was varied 

via one of the following processing conditions: (1) aging under ambient conditions for 7 d; 

(2) heat-annealing at 80 °C for 24 h; or, (3) NO-induced catalytic polycondensation by 

exposure to 1 – 5 atm of NO, hereafter referred to as “charging”.39,40 Xerogel-coated 

electrodes were charged with NO in an in-house reactor that was first flushed with Ar to 

remove oxygen and any residual moisture, and then pressured to 1, 3, or 5 atm NO 

or Ar (control) for 10 min to 5 h. Prior to removing the modified xerogel electrodes, 

unreacted, physically adsorbed NO was purged from the chamber with Ar. Xerogel film 
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thickness was measured using a Tencor Alpha Step-100 profilometer (Brumley South; 

Mooresville, NC).41 

 

3.2.3  Sensor Performance Evaluation 

To evaluate the analytical performance of the NO sensors, amperometric measurements 

were performed using a CH Instruments 660A potentiostat (Austin, TX). The electrode 

assembly (3-electrode configuration) consisted of a xerogel-modified Pt working electrode (2 

mm diameter), Pt coiled counter electrode (0.6 mm diameter), and a Ag/AgCl (3.0 M KCl) 

reference electrode. The permeability of the sol–gel derived films to NO ( e
NOP ) and nitrite 

(
2

e
NO

P − ) was evaluated electrochemically by measuring the ratio of peak currents at the xerogel 

coated and bare Pt electrodes (ΔIx/ΔIb) in 10 μM NO and 100 μM nitrite solutions, 

respectively.42 The selectivity of the xerogel-modified sensors for NO in the presence of 

interfering species was determined using the separation solution method.43 The amperometric 

selectivity coefficients ( ,log amp
NO jK ) were calculated using the following equation (3.1): 

 ,log log

j

jamp
NO j

NO

NO

I
c

K I
c

Δ⎛ ⎞
⎜ ⎟
⎜=
⎜ Δ
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟
⎟

 (Equation 3.1) 

where ΔINO and ΔIj are the measured current values for the target analyte (NO) and 

interfering species (j = nitrite, ascorbic acid, uric acid, and acetaminophen), respectively. The 

concentration of each interfering substance (cj) was selected to be 100 μM, roughly 10 times 

greater than the concentration of NO (cNO). To further evaluate the ability of xerogel films to 
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differentiate NO over nitrite, the ratio of NO and nitrite permeability was used to determine 

permselectivity (
2,

α −NO NO
):44 

 
2

2

,

e
NO
eNO NO

NO

P
P

α −

−

=  (Equation 3.2) 

A standard NO solution (1.9 mM) was prepared by purging phosphate-buffered saline 

(PBS; 0.01 M, pH 7.4) with Ar for 20 min to remove oxygen, followed by NO (99.5%) for 20 

min.28 The solutions of NO and interfering species were freshly prepared every 2 d, and 

stored at 4 ºC. All sensors were pre-polarized for at least 0.5 h and tested in deoxygenated 

PBS at room temperature with constant stirring, and currents were recorded at an applied 

potential of +0.8 V (vs. Ag/AgCl). Sensors were stored in PBS at room temperature between 

measurements. 

 

3.2.4  Xerogel Material Characterization 

Xerogel surface wettability was evaluated with a KSV Instruments Cam 200 optical 

contact angle meter (Helsinki, Finland). Static water contact angles were obtained before and 

after NO charging. 

Solid-state cross polarization/magic angle spinning (CP/MAS) 29Si nuclear magnetic 

resonance (NMR) spectra were obtained at 293 K on a Bruker 360 MHz DMX spectrometer 

(Billerica, MA) equipped with wide-bore magnets (triple axis pulsed field gradient double 

resonance probes). Xerogel samples (before and after exposure to 5 atm NO for 1 h) were 

packed into 7 mm rotors (double resonance frequency of 71.548 MHz) and spun at a speed of 

8.0 kHz. The chemical shifts were determined in ppm relative to a tetramethylsilane (TMS) 

external standard. 
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Film stability was evaluated by soaking xerogel-coated glass slides in PBS (pH 7.4) 

under ambient conditions for 1 to 10 d. Xerogel fragmentation was determined by measuring 

the Si concentration in the soak solutions using an ARL-Fisons Spectrascan 7 direct current 

plasma optical emission spectrometer (DCP-OES; Beverly, MA). After converting the 

measured silicon concentration (ppm) to moles, the extent of fragmentation was calculated as 

a function of exposed xerogel surface area (μmol·cm-2). 

 

3.2.5  Preparation and Evaluation of NO Microsensors 

The NO microsensor (2-electrode configuration) consisted of a Pt wire working 

electrode and a Ag/AgCl reference electrode (see Figure 3.1). A septum theta borosilicate 

glass capillary (1.5/1.02 mm o.d./i.d.; World Precision Instruments; Sarasota, FL) was used 

as a sensor sleeve to prevent direct electrical contact between the working and reference 

electrodes. Platinum (127 μm diameter) and silver (250 μm diameter) wires were inserted 

into separate barrels of the capillary. The end of the sleeve was shielded using a flame torch 

and mechanically polished with successive alumina slurries down to 0.05 μm to expose the 

Pt and Ag disks. The Ag/AgCl reference electrode was formed by immersing the sensing tip 

in an aqueous 0.1 M FeCl3 solution for 2 min. The Pt working electrode was platinized in 3% 

chloroplatinic acid (v/v in water) by cycling the potential from +0.6 to –0.35 V at a scan rate 

of 20 mV/sec using a CH Instruments 660A potentiostat.28 The internal electrolyte layer 

(thickness ~1.5 μm) was deposited by dipping the capillary electrode into a solution of 30 

mM NaCl, 0.3 mM HCl, and 1% PVP (w/w in water), and drying for 10 min under ambient 

conditions. The electrode was then modified with the optimized xerogel/Nafion-derived gas-

permeable membrane by dip-coating the sensor tip into a solution consisting of 40 μL of 
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Figure 3.1. Schematic of the hybrid xerogel/Nafion-modified NO 
microsensor. 
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MTMOS, 10 μL of AEMP3, 10 μL of Nafion, 200 μL of ethanol, and 100 μL of water. After 

allowing the xerogel layer to cure for 5 min, the process was repeated to yield a membrane 

with a thickness of ~2.5 μm. The modified electrode was then allowed to dry for 24 h under 

ambient conditions. Finally, the resulting xerogel-coated microsensor was exposed to 5 atm 

NO for 10 min to catalyze further polymer condensation. 

Response and calibration curves were obtained by injecting aliquots of the standard NO 

solution (1.9 mM) into 100 mL of PBS (pH 7.4; not deoxygenated) at room temperature 

under constant stirring. All microelectrodes were pre-polarized for 3 to 5 h. Currents were 

recorded every second at an applied potential of +0.7 and +0.8 V (vs. Ag/AgCl) for the 

platinized and non-platinized working electrodes, respectively. 

 

3.3 Results and Discussion 

Despite the versatility of sol–gel chemistry for preparing a variety of useful sensors, 

xerogels have yet to be employed as permselective membranes for NO sensors due to 

difficulties in discriminating NO from biologically important interfering species based on 

size. Although both the physical porosity and hydrophobicity of a xerogel are readily 

controlled by the extent of polycondensation and the type and concentration of 

alkylalkoxysilane precursors, most xerogels are quite porous (e.g., 100 – 1000 m2/g).45 

Recently, we reported that the porosity of aminoalkoxysilane/alkylalkoxysilane hybrid 

xerogels was significantly reduced compared to their alkylalkoxysilane counterparts due to 

enhanced polycondensation catalyzed by the aminoalkoxysilane.40,42,46 The permeability of 

the cured aminoalkoxysilane-based xerogels was further reduced upon exposure to high 

pressures of NO.42 

In the present study, the effects of the xerogel composition, sol-gel reaction/processing 
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conditions, and NO exposure on permselectivity are evaluated to determine the feasibility of 

developing a xerogel derived membrane for selective amperometric detection of NO. 

 

3.3.1  Optimization of Xerogel Composites as NO-Permselective Membranes 

Several xerogel films prepared by combining an alkylalkoxysilane (i.e., MTMOS or 

BTMOS) with an aminoalkoxysilane (i.e., AEMP3, AHAP3, or DET3) were evaluated as 

potential gas-permeable membranes for NO sensing (Table 3.1). Of note, AHAP3/MTMOS 

and DET3/ MTMOS xerogels were not pursued due to their instability in aqueous solution.40 

The concentration of the aminoalkoxysilane used to prepare each xerogel was 20% (v/v, 

balance MTMOS or BTMOS). The influence of the reaction/processing conditions (i.e., 

drying/aging time and temperature, and exposure of the cured film to high pressures of NO) 

on membrane NO permeability ( e
NOP ) and selectivity over nitrite (

2,
α −NO NO

 and 
2,

amp
NO NO

K −) was 

investigated. With respect to measuring NO electrochemically, nitrite is the most problematic 

interfering species present in biological milieu due to its similarity in size to NO. To identify 

the optimum xerogel composition and processing conditions, the performance of xerogel-

modified NO sensors using macroelectrodes (Pt, 2 mm diameter) was evaluated. 

Both the permeability and selectivity of xerogel-based NO sensors were significantly 

affected by the type of alkyl/aminoalkoxysilanes used to prepare the membrane and specific 

reaction/processing conditions (Table 3.1). Films with high NO permeability ( e
NOP ) were 

characterized by poor selectivity (
2,

amp
NO NO

K −). Such behavior was expected since glassy and 

rubbery polymers previously employed as permselective membranes for sensor and 

separation applications exhibit poor selectivity due to high overall permeability regardless of 

the analyte’s size.47 Of the xerogel combinations studied, AEMP3 (balance MTMOS, 
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Table 3.1. Electrochemical characteristics of sol-gel derived NO sensors as a function of 
xerogel composition and processing conditionsa

Permeability,e e
iP  Compositionb,c/ 

processing conditionsd i = NO i = NO2
- 

Permselectivity, 

2,
α −NO NO

 
Selectivity,e,f

2,
log −

amp

NO NO
K

Bare Pt (control)    –1.51 ± 0.09

MTMOS 0.52 ± 0.05 0.32 ± 0.09 1.6 ± 0.5 –1.74 ± 0.16

MTMOS (NO) 0.65 ± 0.04 0.40 ± 0.05 1.6 ± 0.2 –1.66 ± 0.06

BTMOS 0.83 ± 0.08 0.83 ± 0.12 1.0 ± 0.2 –1.60 ± 0.03

BTMOS (NO) 0.95 ± 0.08 0.89 ± 0.17 1.1 ± 0.2 –1.64 ± 0.03

AEMP3/MTMOS 0.11 ± 0.01 0.008 ± 0.001 14 ± 2 –2.49 ± 0.41

AEMP3/MTMOS (aging) 0.09 ± 0.009 0.006 ± 0.002 15 ± 5 –3.28 ± 0.11

AEMP3/MTMOS (heat) 0.16 ± 0.02 0.004 ± 0.001 40 ± 11 –2.90 ± 0.10

AEMP3/MTMOS (Ar) 0.09 ± 0.02 0.010 ± 0.003 9 ± 3 –2.55 ± 0.32

AEMP3/MTMOS (NO) 0.03 ± 0.006 <0.0001 300 –4.38 ± 0.49

AEMP3/BTMOS 0.15 ± 0.07 0.007 ± 0.002 21 ± 12 –2.87 ± 0.33

AEMP3/BTMOS (NO) 0.02 ± 0.002 0.002 ± 0.001 10 ± 5 –3.62 ± 0.11

AHAP3/BTMOS 0.27 ± 0.04 0.21 ± 0.04 1.3 ± 0.3 –1.77 ± 0.11

AHAP3/BTMOS (NO) 0.28 ± 0.05 0.02 ± 0.002 14 ± 3 –2.75 ± 0.04

DET3/BTMOS 0.20 ± 0.05 0.11 ± 0.01 1.8 ± 0.5 –1.85 ± 0.09

DET3/BTMOS (NO) 0.17 ± 0.02 0.05 ± 0.03 3.4 ± 2.1 –2.16 ± 0.24
aNumber of samples: n = 3 or 5. bMTMOS, methyltrimethoxysilane; BTMOS, isobutyltrimethoxysilane; 
AEMP3, (aminoethylaminomethyl)phenethyltrimethoxysilane; AHAP3, N-(6-aminohexyl)aminopropyl-
trimethoxysilane; and DET3, N-[3-(trimethoxysilyl)propyl]diethyl-enetriamine. cAll aminosilane-based 
xerogels contain 20% of aminosilane (balance MTMOS or BTMOS). dAll xerogel coatings were dried 
under ambient conditions for 24 h. The term aging refers to drying under ambient conditions for 7 d; heat 
= annealing at 80 °C for 24 h; and NO and Ar = exposing to 5 atm of NO and Ar for 1 h, respectively. 
eMeasured in deoxygenated PBS (0.01 M, pH 7.4). Values were determined at 10 μM of NO and 100 μM 
of NO2

-, respectively. fTo determine selectivity, the separate solution method was employed. 
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hereafter AEMP3/MTMOS) membranes exhibited the most ideal compromise between 

permeability and selectivity. Indeed, AEMP3/MTMOS xerogels were characterized by 

approximately an order of magnitude greater NO selectivity over nitrite (14 of 
2,

α −NO NO
 and  

–2.49 of 
2,

amp
NO NO

K − ) compared to other aminoalkoxysilane/alkylalkoxysilane combinations 

(Table 3.1). The sensor performance of AEMP3/MTMOS xerogels was thus further 

manipulated by varying the following reaction/ processing conditions: 1) aging under 

ambient conditions for 7 d; 2) heat-annealing at 80 °C for 24 h; and, 3) NO or Ar charging at 

5 atm for 1 h. As shown in Table 3.1, exposing the AEMP3/MTMOS xerogel sensor to high 

pressures of NO was more effective than aging or annealing. In fact, sensors fabricated with 

20% AEMP3/MTMOS xerogels charged with 5 atm NO for only 1 h demonstrated a 

dramatically improved selectivity (–4.38 of 
2,

amp
NO NO

K − ) compared to controls. Neither the 

permeability nor the selectivity of analogous sensors charged with 5 atm Ar were changed, 

indicating that exposure to high pressures alone does not significantly affect the physical 

structure of the xerogel. 

To better understand the influence of NO exposure on xerogel structure, solid-state 29Si 

NMR spectra were collected for AEMP3/MTMOS and AHAP3/BTMOS xerogel samples 

(Figure 3.2). Three peaks were observed in the 29Si NMR spectra of the aminoalkoxysilane-

modified xerogels, indicating three distinct silicon chemical environments. Indeed, the peaks 

at chemical shifts of –51, –60, and –68 ppm are representative of silicon connected to two 

hydroxyl groups (–OSi(OH)2R; designated T1), one hydroxyl group (–O2Si(OH)R; T2), and 

zero hydroxyl groups (–O3SiR; T3), respectively.48 After NO charging, the relative intensities 

of the T1 and T2 peaks were reduced, while the intensity of the T3 peak remained constant. 

Quantitative analysis of these structures is complicated because the intensity of each peak 
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Figure 3.2. (A) Solid-state 29Si NMR spectra of the AHAP3/BTMOS 
xerogel before (solid red line) and after (dashed blue line) NO 
exposure (5 atm, 1 h). (B) Cartoon representing structural 
changes in the porous network of xerogels after NO charging. 
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depends on the efficiency of cross polarization and the proton relaxation time.49 Nonetheless, 

the reduced intensity of the T1 and T2 peaks upon NO exposure suggests slightly enhanced 

polycondensation, as expected based on the permeability data.  

In addition to changing certain physical properties of the xerogel (e.g., permeability), 

the NO charging process may trigger the formation of diazeniumdiolate NO donor molecules. 

We have reported previously on the synthesis of NO-releasing xerogels via exposure of 

aminoalkoxysilane-derived xerogels to high pressures of NO.39,40 Such materials slowly 

release NO upon immersion in aqueous solutions as the diazeniumdiolate NO donor 

decomposes to NO and the precursor aminoalkoxysilane. Although perhaps not surprising 

based on the inability to measure NO (via chemiluminescence; detection limit <1 ppb) from 

AEMP3-derived xerogels charged for short periods (5 atm, 1 h), changes in the magnitude of 

the background current of the NO sensor due to NO generation within the xerogel membrane 

were not observed. This result suggests that NO charging for short periods (less than 1 h) 

does not effectively convert amines within the xerogel to NO donors, even though such 

conditions are enough to alter the overall permeability and selectivity of the membrane. 

To evaluate the effect of varying the xerogel aminoalkoxysilane concentration on 

membrane permeability and sensor performance, the relative percent AEMP3 used to prepare 

the membrane was varied from 10 to 50% (balance MTMOS). Based on the above results, 

xerogel films were cured under ambient conditions for 24 h and charged with NO (5 atm, 1 

h) to enhance the polycondensation of the xerogel network. As shown in Figure 3.3, 

electrodes modified with a 20% AEMP3 xerogel membrane were characterized by the 

highest NO permeability. Although membranes prepared with 40% AEMP3 were most 

effective at discriminating NO over nitrite, their permeability to NO was significantly 
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Figure 3.3. NO permeability (bar graphs, for left axis) and selectivity over 
nitrite (scatter plots, for right axis) as a function of the 
concentration of AEMP3 (balance MTMOS) after exposure to 
5 atm NO for 1 h. The dashed line indicates NO selectivity of 
the bare Pt electrode over nitrite. 
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reduced. Coatings prepared with 20% AEMP3 exhibited the most ideal characteristics for 

maximizing NO permeability while imparting selectivity for NO over nitrite (<–4 of 
2,

amp
NO NO

K −). 

The observed trends in permeability and selectivity may be the result of subtle changes 

in the hydrophobicity of the xerogel matrix. Static water contact angle measurements 

confirmed variations in surface wettability for xerogels prepared with 0 – 50% AEMP3 

(Figure 3.4). In fact, 20% AEMP3-derived membranes were the most hydrophobic of all the 

xerogel coatings investigated. As such, an enhanced partitioning of NO into the 20% AEMP3 

membranes would be expected since NO is a hydrophobic molecule.2 Pontie et al. reported a 

similar correlation between NO sensitivity and surface wettability for NO microsensors 

fabricated using carbon/o-phenylenediamine/Nafion and carbon/nickel tetrasulfonated 

phthalocyanine/Nafion composite membranes.18

The thickness of 20% AEMP3 xerogels was also varied to identify the optimum 

membrane thickness for maximizing NO permeability without compromising sensor 

selectivity. Sensors coated with 0.02, 0.04, 0.08, and 0.12 μL·mm-2 of sol resulted in 

membrane thicknesses of 0.2, 0.7, 2.5, and 5.9 μm, respectively. As shown in Figure 3.5, the 

0.2 and 0.7 μm thick membranes exhibited greater NO permeability than the 2.5 and 5.9 μm 

membranes. Unfortunately, the thinner membranes were characterized by poorer selectivity 

over nitrite. The optimum xerogel membrane thickness was thus determined to be 2.5 μm 

since this film demonstrated the best compromise between permeability and selectivity. 

The influence of treating the xerogels with NO gas was further evaluated as a function 

of NO pressure and exposure time. Significant changes in xerogel permeability or selectivity 

were not observed upon varying the pressure of NO from 1 to 5 atm (data not shown). 

Increasing the NO exposure time from 10 min to 5 h at 5 atm reduced the xerogel’s 
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Figure 3.4. Static water contact angles as a function of AEMP3 composition 
(balance MTMOS) after exposure to 5 atm NO for 1 h. 
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Figure 3.5. NO permeability (bar graphs, for left axis) and selectivity over 
nitrite (scatter plots, for right axis) as a function of the membrane 
thickness of 20% AEMP3/MTMOS xerogels after exposure to 5 
atm NO for 1. The dashed line indicates NO selectivity of the bare 
Pt electrode over nitrite. 
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permeability to NO and slightly improved its selectivity over nitrite (Figure 3.6). Even only a 

minimal exposure to 5 atm of NO (~10 min) significantly altered the xerogel’s permeability 

and selectivity relative to controls. For the sake of preparation time, 5 atm of NO at 10 min 

was chosen as the optimum NO exposure condition for subsequent experiments. 

Nafion, a commercially available perfluorosulphonate cation exchange polymer, was 

doped into the xerogel matrix to determine whether the selectivity over nitrite and other 

negatively charged species could be further improved. The amount of Nafion was 

systematically varied from 9 to 23% (v/v in 50 μL of total silane). The Nafion-doped 

xerogels (20% AEMP3/MTMOS) were cured under ambient conditions for 24 h and charged 

with 5 atm NO for 10 min. As shown in Table 3.2, increasing the Nafion concentration led to 

corresponding enhancements in both permeability and selectivity. The change in NO 

permeability may be the result of slight changes in the hydrophobicity of the xerogel/Nafion 

composite films. Indeed, as the amount of Nafion was increased from 0 to 17% (v/v), the 

surface water contact angles increased from 88 ± 1.4 to 95 ± 2.3°, respectively. Although 

membranes doped with greater amounts of Nafion (23%) might be expected to have even 

more enhanced permeability and selectivity, such composite were not pursued due to the 

inhomogeneity of the starting sols. Based on the above results, a 2.5 μm thick 20% 

AEMP3/MTMOS xerogel containing 17% Nafion (v/v, total silane) exposed to 5 atm NO for 

10 min was determined to be the optimum membrane for fabricating a xerogel-based NO 

sensor. The resulting xerogel/Nafion hybrid composite was characterized by a NO 

permeability of 0.1 and selectivity ( ,log amp
NO jK ) of –5.8, <–6, <–6, and <–6 for j = nitrite, 

ascorbic acid, uric acid, and acetaminophen, respectively. 
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Figure 3.6. NO permeability (bar graphs, for left axis) and selectivity over nitrite 
(scatter plots, for right axis) as a function of NO exposure time (5 atm) of 
20% AEMP3/MTMOS. The dashed line indicates NO selectivity of the 
bare Pt electrode over nitrite (n = 3). 
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Table 3.2. Electrochemical characteristics of xerogel/Nafion composite NO sensorsa,b

Permeability,c e
iP  

 
i = NO i = NO2

- 

Permselectivity, 

2,
α −NO NO

 
Selectivity,c,d

2,
log −

amp

NO NO
K  

Controle 0.03 ± 0.006 <0.0001 300 –4.58 ± 0.51

9% (v/v) Nafionf 0.06 ± 0.02 <0.0001 

 

600 –4.91 ± 0.13

17% (v/v) Nafionf 0.10 ± 0.03 <0.0001 1000 –5.79 ± 0.08
aNumber of samples: n = 3. bXerogel composition used: 20% AEMP3/MTMOS. All composite 
coatings were dried under ambient conditions for 24 h and charged with NO (5 atm, 10 min). 
cMeasured in deoxygenated PBS (0.01 M, pH 7.4). Values were determined at 10 μM of NO and 
100 μM of NO2

-, respectively. dTo determine selectivity, the separate solution method was 
employed. eComposition without Nafion. fThe addition of 5 or 10 μL of Nafion in 50 μL of total 
silane (20% AEMP3/MTMOS), respectively. 
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3.3.2 Xerogel Material Stability 

The stability of the sol–gel derived coatings under biological conditions is a critical 

consideration for the development of in vivo NO sensors. Fragmentation of the xerogel film 

may present toxicity concerns and lead to loss of sensor function. Furthermore, the addition 

of Nafion to the xerogel could compromise the stability of the film by disrupting the cross-

linking (polycondensation) of silane precursors. Thus, DCP-OES analysis was performed to 

monitor the stability of xerogels prepared with and without Nafion. 

Xerogels prepared with the aforementioned optimized composition (20% AEMP3, 

balance MTMOS and doped with Nafion of 17% (v/v, total silane) were cured, charged with 

NO (5 atm, 10 min), and then immersed in PBS for 1 to 10 d. While a slight increase in 

silicon (Si) fragmentation was observed at longer immersion times, both control and 

composite films were relatively stable with a maximum Si fragmentation of only 0.61 ± 0.08 

μmol·cm-2 (Table 3.3) at 10 d. These results indicate that Nafion doping does not compromise 

xerogel stability. Although the addition of Nafion did not influence xerogel fragmentation, 

previous studies have indicated that film stability is significantly affected by both the type 

and amount of alkyl- and aminoalkoxysilanes used to prepare the sol.40 Of the xerogel 

precursors and combinations studied herein, 20% AEMP3 (balance MTMOS) is the most 

stable xerogel formulation with negligible fragmentation for immersion times up to 2 

weeks.40 

 

3.3.3 Characterization of NO Microsensors 

An integrated NO microsensor was fabricated by placing both a Pt wire working 

electrode and a Ag/AgCl wire reference electrode into a borosilicate glass capillary. Before 

modifying the end of the glass capillary that exposed the wire electrodes with an internal 
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Table 3.3. Stability of 20% AEMP3/MTMOS xerogels prepared with and without 
Nafiona,b

Xerogel fragmentation, Si (μmol·cm-2) 
 

1 d 4 d 6 d 10 d 

Controlc < 0.04d 0.06 ± 0.02 0.22 ± 0.06 0.61 ± 0.08 

17% (v/v) Nafione < 0.04 0.05 ± 0.03 0.20 ± 0.04 0.52 ± 0.10 
aNumber of samples: n = 15. bDetermined using DCP-OES analysis. cComposition without 
Nafion. dThe detection limit of the instrument. eThe addition of 10 μL of Nafion (17%) in 
50 μL of total silane (20% AEMP3/MTMOS). 
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hydrogel layer and the xerogel permselective membrane, the surface of the bare Pt wire 

electrode was platinized. Platinization has been shown to improve sensitivity by increasing 

the effective surface area of the electrode and slightly lowering the working potential for NO 

oxidation.28 To assess the influence of the platinization process on the electrode response 

properties, calibration plots for NO were obtained at an applied potential of +0.7 and +0.8 V 

vs. Ag/AgCl for the platinized and non-platinized Pt electrodes, respectively (Figure 3.7). 

Notably, the sensitivity of the platinized electrodes was roughly 5 times greater than that of 

the non-platinized electrodes. Therefore, all subsequent experiments were conduced with 

platinized Pt microelectrodes. 

Prior to xerogel coating, the platinized Pt microelectrode was modified with an internal 

hydrogel layer (30 mM NaCl, 0.3 mM HCl, and 1% PVP; pH 3.5). The sensor was then 

coated with the optimized xerogel/Nafion-derived NO-permselective membrane by 

immersing the tip of the sensor into a solution consisting of 40 μL of MTMOS, 10 μL of 

AEMP3, 10 μL of Nafion, 200 μL of ethanol, and 100 μL of water. (A final membrane 

thickness of ~2.5 μm was achieved by repeating this procedure.) After curing for 24 h under 

ambient conditions, the xerogel was charged (5 atm NO for 10 min) to increase 

polycondensation of the network. The analytical performance of the resulting NO 

microsensor was then investigated. The calibration and dynamic response curves for NO and 

various interfering species (e.g., nitrite, ascorbic acid, acetaminophen, and ammonia) are 

shown in Figure 3.8. The concentration of each interfering substance was chosen to be 

greater than the highest level that would be present in a physiological sample (i.e., 100 μM 

each of nitrite, ascorbic acid, acetaminophen, and ammonia). The performance of the NO 

microsensor prepared using the MTMOS/AEMP3/Nafion hybrid permselective membrane 
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Figure 3.7. Dynamic response and calibration curves (inset) of the non-platinized (a) 
and platinized (b) Pt microelectrodes. The response sensitivity to NO was 
19.8 (r = 0.9919) and 90.2 (r = 0.9930) pA/μM for the non-platinized and 
platinized Pt microsensors, respectively. 
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Figure 3.8. Dynamic response to NO and interfering species, and calibration curve 
(inset) of the AEMP3/MTMOS/Nafion composite NO microsensors: 
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and ammonia. 
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was comparable to that of previously reported NO sensors with respect to sensitivity (0.17 ± 

0.02 pA/nM), linearity (r = 0.9991, 25 – 800 nM NO range), detection limit (25 nM, based 

on S/N = 3), and response time (t95% = 9 sec for an increase in NO concentration from 400 to 

500 nM). Remarkably, the xerogel-derived sensor responded linearly to NO up to 15 μM 

(67.7 pA/μM, r = 0.9998; Figure 3.9). In total, the analytical performance of the xerogel-

derived NO microsensor was comparable to other recently reported NO microsensors (Tables 

3.4 and 3.5).50-74 In contrast to other sensor configurations, however, the fabrication of NO 

microsensors via sol-gel chemistry is significantly more straightforward. 

The response variation of the microsensor to NO (0 – 800 nM) and multiple interfering 

species (100 μM each of nitrite, ascorbic acid, acetaminophen, and ammonia) for the 

xerogel/Nafion composite NO microsensor is shown in Figure 3.10. The sensor retained 93% 

of its initial sensitivity at 4 d. Even after 8 d, 82% of the sensor’s initial response (sensitivity) 

was maintained when soaked in PBS under ambient conditions. Furthermore, the selectivity 

of the sensor did not change as a function of soak time. The gradual decrease in analytical 

sensitivity over 8 d is likely due to the accumulation of nitrate produced by the 

electrochemical oxidation of NO within the internal hydrogel layer,32 as opposed to 

destabilization of the xerogel/Nafion composite film. Fragmentation of the hybrid membrane 

would significantly impact sensor performance by increasing analyte permeability and 

reducing sensor selectivity. The microsensor's ability to maintain excellent selectivity 

indicates that neither significant structural changes (i.e., pore size and membrane thickness) 

nor Nafion leaching occurred during the initial 8 d. 
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Figure 3.9. Dynamic response and calibration curve (inset) of the MTMOS/AEMP3/ 
Nafion composite NO microsensor in the extended NO concentrations: (a) 
100 μM of nitrite, (b) 100 μM of ascorbic acid, and (c) 100 μM of 
acetaminophen. The response sensitivity to NO was 67.7 pA/μM (r = 
0.9998) from 5 to 15 μM NO. 
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Figure 3.10. Variations in response properties for NO (●, for left axis) and interfering 
species (○, for right axis) measured from 25 – 800 nM NO and 100 μM 
each of nitrite, ascorbic acid, acetaminophen, and ammonia for the 
AEMP3/MTMOS/Nafion composite NO microsensor. 
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3.4 Conclusions 

Sol–gel chemistry represents a novel approach for preparing permselective membranes 

for NO gas sensors. Several xerogel films were fabricated by varying the type and 

concentration of alkyl- and aminoalkoxysilane precursors as well as the reaction/processing 

conditions to identify the optimum membrane composition. The addition of Nafion to the 

xerogel matrix enhanced both the sensitivity and selectivity of the xerogel-derived NO 

sensors, and did not adversely affect the stability of the xerogel matrix under aqueous 

conditions. In contrast to other electrochemical NO sensor designs, xerogel-based NO 

microsensors are fabricated using a simple dip-coating procedure, characterized by high 

sensitivity, selectivity, and reproducibility. Studies are currently underway to alter the porous 

structures of the xerogel by incorporating silane precursors with increased hydrophobicity to 

further improve microsensor sensitivity and allow for the measurement of nanomolar 

concentrations of NO. 
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Chapter 4: 

Synthesis of Nitric Oxide-Releasing Silica Nanoparticles 

 

4.1  Introduction 

Nitric oxide (NO) is a diatomic free radical endogenously synthesized in the human 

body when L-arginine is converted to L-citrulline by a class of enzymes known as nitric oxide 

synthase (NOS).1,2 Since the first reports describing NO’s action as an endothelium-derived 

relaxation factor (EDRF) in the mid-1980s, much research has been devoted to elucidating 

the pathways of NO generation and action in vivo.3 To date, researchers have discovered that 

NO regulates a range of biological processes in the cardiovascular, gastrointestinal, 

genitourinary, respiratory, and central and peripheral nervous systems.2,4 Furthermore, the 

discoveries of NO as a vasodilator,5 antibacterial agent,6,7 and tumoricidal factor8-10 has made 

NO a promising pharmaceutical agent. To further comprehend the complex and wide ranging 

roles of NO and facilitate its therapeutic use, a number of synthetic compounds that 

chemically store and release NO in a controlled fashion have been developed. 

Several classes of NO donors exist including nitrosothiols, nitrosamines, diazenium-

diolates, NO-metal complexes, and organic nitrites and nitrates.11,12 Of these, 1-amino-

substituted diazen-1-ium-1,2-diolates (or simply N-diazeniumdiolates) are particularly 

attractive due to their ability to generate NO spontaneously under biological conditions.13,14 

Since the first report on the synthesis of N-diazeniumdiolates via the reaction of amines with 

NO at elevated pressure in the 1960s,15,16 several N-diazeniumdiolate compounds have been 



synthesized using a range of nucleophilic residues that encompass primary and secondary 

amines, polyamines, and secondary amino acids.13 While stable under ambient conditions, N-

diazeniumdiolates decompose spontaneously in aqueous media to generate NO at rates 

dependent upon pH, temperature, and the structure of the amine moiety.13 For example, N-

diazeniumdiolate-modified proline (PROLI/N2O2), 2-(dimethylamino)ethylputreanine 

(DMAEP/N2O2), N,N’-dimethylhexanediamine (DMHA/N2O2), and diethylenetriamine 

(DETA/N2O2) have been developed as effective small molecule NO donors with diverse NO 

release half-lives ranging from 2 s to 20 h at pH 7.4 and 37 oC.13,17 

Considerable effort has been devoted to developing NO storage/delivery systems 

whereby such NO donors are attached to macromolecular frameworks.18-22 Such scaffolds 

possess large quantities of NO with readily modifiable NO release kinetics. For example, 

Pulfer et al. reported the synthesis of N-diazeniumdiolate-modified polyethyleneimine 

microspheres (d = 10 – 50 μm) that were embedded into vascular grafts to prevent 

thrombosis and restenosis.20 Likewise, Hrabie et al. synthesized water-soluble NO donor–

protein conjugates via covalent attachment of methoxymethyl-protected N-diazeniumdiolated 

piperazine (MOM-PIPERAZI/N2O2) ligands to the lysine residues of both bovine and human 

serum albumin.18 Jeh et al. demonstrated the delivery of NO to the alveolar region of the 

lungs via inhalable, biodegradable microparticles (d = 10 – 35 μm) prepared using poly-

lactic-co-glycolic acid or polyethylene oxide-co-lactic acid copolymer that encapsulated 

small molecule NO donors (e.g., PROLI/N2O2).19 More recently, our laboratory has focused 

on the synthesis and characterization of NO-releasing monolayer protected gold clusters21 

and dendrimer conjugates.22 Despite their small size, unprecedented NO release properties, 
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and potential for targeting the delivery of NO, the complex synthesis and potential toxicity of 

the gold cluster and dendrimer constructs remain notable concerns. 

Inorganic-organic hybrid silica nanoparticles, functionalized ceramic materials 

prepared from silicon dioxide, have been employed as carrier systems for the controlled 

delivery of drugs, genes, and proteins.23-27 The drug delivery potential of silica has received 

much attention because of its physical and chemical versatility (e.g., ability to tune the 

mesoporous structure and control specific surface properties) and non-toxic nature.28-31 The 

synthesis of inorganic-organic hybrid silica modified with reactive organic groups (e.g., 

amines, carboxylates, thiols, olefins, halides, and epoxides) capable of further 

functionalization with deliverable molecules has been reported.30,31 Indeed, silane-coupling 

agents with the aforementioned functional moieties are available for surface grafting (via free 

silanol groups) of drugs and other therapeutics.32 Meyerhoff and coworkers previously 

reported the synthesis of NO-releasing fumed silica (amorphous particles of d = 0.2 – 0.3 

μm) via grafting amine-functionalized silylation reagents onto the silica surface, and then 

converting the amines to N-diazeniumdiolates.33 Despite the unique advantages of combining 

the N-diazeniumdiolate chemistry with the versatility of micro- and nanocomposite materials, 

the usefulness of such scaffolds as therapeutic NO delivery systems remains hindered by the 

complicated synthesis and purification, and limited size control. 

Herein, we report a new synthetic approach to preparing NO-releasing silica 

nanoparticles via a one-pot31,34,35 sol–gel process (Figure 4.1) followed by exposure to 5 atm 

of NO under basic conditions. Amine-functionalized hybrid silica composites were prepared 

via co-condensation of tetraethoxy- or tetramethoxysilane (TEOS or TMOS) and 

aminoalkoxysilane with appropriate amounts of ethanol (or methanol), water, and ammonia. 
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Figure 4.1. Synthesis of N-diazeniumdiolate-modified silica nanoparticles using tetra-
methoxysilane (TMOS) and N-(6-aminohexyl)aminopropyltrimethoxysilane 
(AHAP3) as example tetraalkoxy- and aminoalkoxysilane precursors. 
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The amine functional groups within the silica particles were subsequently converted to N-

diazeniumdiolate NO donors via exposure to high pressures of NO (5 atm) in the presence of 

sodium methoxide (NaOMe) base.13 The advantage of a one-pot approach for preparing the 

silica is that the N-diazeniumdiolate NO donor precursors are distributed uniformly 

throughout the particle as opposed to only at the surface (as is the case for amine-modified 

silica33 or gold particles21 formed via surface grafting methods). The selection of the silane 

precursors (e.g., type and concentration) and specific reaction/processing conditions (e.g., 

solvent, catalyst, pH, and temperature) allows for tremendous chemical flexibility in creating 

nanoparticles of diverse size31,36 and NO release properties (e.g., NO payload and delivery 

kinetics). 

 

4.2 Experimental Section 

4.2.1  Reagents and Materials 

Tetraethoxysilane (TEOS), tetramethylsilane (TMS), and sodium methoxide (NaOMe) 

were purchased from Fluka (Buchs, Switzerland). (Aminoethylaminomethyl)phenethyltri-

methoxysilane (AEMP3), N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3), and N-

(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAP3) were purchased from Gelest 

(Tullytown, PA). Tetramethoxysilane (TMOS) and N,N-dimethylformamide (DMF) were 

purchased from Sigma (St. Louis, MO). Methanol (MeOH), ethanol (EtOH), toluene, and 

ammonia solution (NH4OH, 30 wt% in water) were purchased from Fisher Scientific (Fair 

Lawn, NJ). Nitric oxide (NO, 99.5%), argon (Ar), and nitrogen (N2) gases were obtained 

from AGA Gas (Maumee, OH) or National Welders Supply (Raleigh, NC). Other solvents 

and chemicals were analytical-reagent grade and used as received. A Millipore Milli-Q UV 

Gradient A10 System (Bedford, MA) was used to purify distilled water to a final resistivity 
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of 18.2 MΩ·cm and a total organic content of ≤6 ppb. 

 

4.2.2  Synthesis of Nitric Oxide-Releasing Silica Nanoparticles 

Amine-functionalized silica composite particles were synthesized via a co-condensation 

process (Figure 4.1).31,34,35 First, the silane solutions were prepared by mixing 2.78 mmol 

(620 μL) of TEOS or TMOS with different concentrations of AEAP3, AHAP3, or AEMP3 (0 

– 18.6 mmol corresponding to 0 – 87 mol%, balance TEOS or TMOS) for 5 min. The silane 

solution was then combined with 22 mL of EtOH or MeOH and 6 mL of ammonia (30 wt% 

in water), and vigorously stirred for 30 min under ambient conditions. The white precipitate 

was collected by centrifugation (5000 rpm, 5 min), washed with EtOH copiously, and dried 

under vacuum overnight. 

The resulting amine-functionalized silica was resuspended in 18 mL of DMF and 2 mL 

of MeOH in the presence of NaOMe (0.32 – 18.6 mmol; adding an equimolar amount of 

NaOMe corresponding to the secondary amine content of silica composites)13,33 and placed in 

10 mL-vials equipped with a stir bar. The vials were placed in a Parr bottle (200 mL), 

connected to an in-house NO reactor, and flushed with Ar for 10 min six times to remove 

oxygen in the suspension. The reaction bottle was then charged with NO to 5 atm and 

sealed for 3 d while stirring. The NO gas was purified over KOH pellets for 2 h to remove 

trace NO degradation products. Prior to removing the silica particles, unreacted NO was 

purged from the chamber with Ar. The N-diazeniumdiolate-modified silica particles were 

recollected by centrifugation at 5000 rpm for 5 min, washed copiously with ethanol, dried 

under ambient conditions for 1 h, and stored in a sealed container at –20 oC until used. 
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4.2.3  Characterization of Functionalized Silica 

Prior to analysis via atomic force microscopy (AFM), the silica particles were 

suspended in toluene, deposited on a freshly cleaved mica surface (SPI; West Chester, PA), 

and dried under ambient conditions for 3 h. Contact mode AFM images were obtained in air 

using a Molecular Force Probe 3D Atomic Force Microscope (Asylum Research; Santa 

Barbara, CA) controlled with a MFP-3D software running under Igor Pro (Wavemetrics; 

Lake Oswego, OR). Triangular silicon nitride cantilevers with a nominal spring constant of 

0.12 N·m-1 and resonance frequency of 20 kHz (Veeco; Santa Barbara, CA) were used to 

acquire height/topography images at a scan rate of 0.5 Hz. 

Solid-state cross polarization/magic angle spinning (CP/MAS) 29Si nuclear magnetic 

resonance (NMR) spectra37,38 were obtained at 293 K on a Bruker 360 MHz DMX 

spectrometer (Billerica, MA) equipped with wide-bore magnets (triple axis pulsed field 

gradient double resonance probes). Silica composite particles were packed into 4 mm rotors 

(double resonance frequency of 71.548 MHz) and spun at a speed of 8.0 kHz. The chemical 

shifts were determined in ppm relative to a TMS external standard. 

Nitric oxide release profiles of the N-diazeniumdiolate-modified silica nanoparticles 

were measured in deoxygenated phosphate-buffered saline (PBS, 0.01 M; 37 oC) at a pH 3.3, 

4.3, 5.3, 6.0, 7.4, and 9.5 using a Sievers NOA 280i chemiluminescence nitric oxide analyzer 

(Boulder, CO).22,39 Nitric oxide released from the silica was transported to the analyzer by a 

stream of N2 (70 mL·min-1) passed through the reaction cell. The instrument was calibrated 

with air passed through a zero filter (0 ppm NO) and 24.1 ppm of NO standard gas (balance 

N2, purchased from AGA Gas). 

The surface area and pore volume of the silica were determined via nitrogen 
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adsorption/desorption isotherms38 collected with a Beckman Coulter SA3100 Surface Area 

and Pore Size Analyzer (Fullerton, CA). The surface area and pore volume were calculated 

using the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Prior 

to the measurements, all silica samples were degassed at 200 oC for 3 h. 

Elemental (CHN) analyses were performed by Midwest Microlab, LLC (Indianapolis, 

IN) to determine the concentration of amines incorporated in the functionalized silica 

nanoparticles. 

 

4.3 Results and Discussion 

4.3.1  Synthesis and Characterization of Functionalized Silica Nanoparticles 

To synthesize organically-modified hybrid silica via a one-pot strategy, two silicon 

alkoxide precursors, tetramethoxy- and tetraethoxysilanes (TMOS and TEOS), were used as 

backbone silanes (Figure 1.7).40 The choice of the tetraalkoxysilane is crucial for the 

formation of silica composites with homogeneous distributions of active functionalities.41-43 

For example, differences in the hydrolysis and condensation rates of tetraalkoxy- and 

organoalkoxysilanes often result in disordered, inhomogeneous silica.36,41,42,44 As such, 

matching the hydrolysis and condensation rates of bi- and multicomponent silane systems 

plays an important role in synthesizing well-ordered, mesoporous materials.36,41,42,44 In 

general, the following factors can be used to predict hydrolysis and condensation propensities 

of the silanes: 1) a methoxy ligand is more readily hydrolyzed than an ethoxy one; 2) the 

hydrolysis of organoalkoxysilanes is slower than fully hydrolysable tetraalkoxysilane with 

the same alkoxy identity; and, 3) the long alkyl chain, steric hindrance, and hydrophobic 

nature of the organic group often impede the overall hydrolytic polycondensation 

reactions.36,41,42,44 With these factors in mind, TEOS was selected as the initial silicon 
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alkoxide backbone for study because of its similar hydrolysis rate to the aminoalkoxysilanes 

(i.e., AHAP3, AEAP3, and AEMP3) used in this study. 

Control over both the structure and concentration of the aminoalkoxysilane precursors 

and specific synthetic conditions allowed for the preparation of NO donor silica nanoparticles 

of widely varying size and NO release properties. As shown in Figure 4.2, the size of the 

silica nanoparticles was tunable by varying the type and concentration of aminoalkoxysilane 

used. The diameter of control (TEOS only) silica particles was 250 ± 20 nm. Adding 10 

mol% AHAP3 to the TEOS solution decreased the diameter of the particles to 20 ± 2 nm. In 

contrast, silica particles prepared from 10 mol% AEAP3 (balance TEOS) were roughly twice 

as large (d = 500 ± 45 nm) as TEOS controls. As the mol% of AEAP3 was increased from 10 

to 17 mol%, the diameter of the particle decreased to 92 ± 16 nm, revealing a pseudo-linear 

relationship between particle size and aminoalkoxysilane concentration (Figure 4.2F). 

Particle size was not altered upon conversion of the amines to N-diazeniumdiolates, 

indicating that the structural integrity of the silica particles is not compromised by the 

conditions necessary to form the NO donor (data not shown). 

Solid-state 29Si NMR was used to (1) confirm the incorporation of aminoalkyl 

functionalities within the silica network (Figure 4.3), and (2) determine the surface coverage 

of such ligands (Table 4.1).38 Cross polarization and magic angle spinning (CP/MAS) 

techniques were employed to increase the signal resolution and sensitivity. The spectra for 

control and amine-functionalized silica particles prepared from 0 and 10 – 17 mol% AEAP3 

(balance TEOS) are shown in Figure 4.3. For TEOS control silica, three distinct peaks in the 

29Si NMR spectrum were observed at -90, -101, and -109 ppm, respectively, representative of 

 (geminal silanol; –O2Q 2Si(OH)2),  (single silanol; –O3Q 3Si(OH)), and  (siloxane;   4Q
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Figure 4.2. Contact mode AFM images of (A) control silica (TEOS only); (B) silica with 
10 mol% of AHAP3 (balance TEOS); and, (C) 10 mol% and (D) 17 mol% 
AEAP3 silica particles on a mica surface. (E) Enlargement of a single particle 
from (B). (F) Relationship between the AEAP3 content (balance TEOS) in the 
silica composite and particle size. 



Figure 4.3. (A) Solid-state 29Si CP/MAS NMR spectra of functionalized 
silica materials with various amounts of AEAP3: (a) 0 
(control), (b) 10, (c) 13, and (d) 17 mol% (balance TEOS). (B) 
Schematic illustration of silicon chemical environments at the 
surface of AEAP3-modified silica composites. (C) Plot of % 
surface coverage (%SC) of functional ligands versus AEAP3 
content loaded during the synthesis. 
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Table 4.1. 29Si chemical shifts (δSi from tetramethylsilane) and relative concentrations of 
T n and Q n structures for functionalized silica as a function of AEAP3 mol%a

aData obtained via deconvolution of 29Si CP/MAS NMR spectra. bTEOS, tetraethoxysilane; and TMOS, 
tetramethoxysilane. cBalance TEOS or TMOS. dSurface coverage was calculated with the equation of SC = 
( 2T + 3T )/( 2T + 3T + 2Q + 3Q ). eImmobilization efficiency (eimmo) was determined as the ratio of %SC and 
mol% of AEAP3 loaded during the synthesis. fAEAP3, N-(2-aminoethyl)-3-aminopropyltrimethoxy-silane. 

aminoalkoxysilane Si structure (%) 
tetraalkoxy-

silaneb type mol%c 
 T 2 

(–52 ppm)
T 3 

(–65 ppm)
Q 2 

(–90 ppm)
Q 3 

(–101 ppm)
Q 4 

(–109 ppm) 
%SCd eimmo

e

TEOS AEAP3f 10  5 9 16 38 32 21 2.1
  13  9 14 17 27 33 34 2.6
  17  7 19 11 34 29 37 2.2
           
           

TMOS AEAP3 10  3 4 37 39 17 8 0.8
  30  3 19 22 36 20 28 0.9
  70  7 20 23 26 24 36 0.5
           



–O4Si) silicons.37,38 For the aminoalkoxysilane-modified silica particles, five peaks were 

observed in the spectra, indicating two additional silicon chemical environments (graphs b-d 

in Figure 4.3A). Indeed, the peaks at chemical shifts of approximately -52 and -65 ppm are 

representative of silicon connected to  (–O2T 2Si(OH)R) and  (–O3T 3SiR) structures, 

respectively (where R is an aminoethylaminopropyl group).37,38 The presence of  bands 

suggests the existence of covalent linkages between aminoalkyl groups and the silica 

backbone. The , , and  resonance lines also appeared at the expected positions. 

As the AEAP3 content was increased from 10 to 17 mol%, the surface coverage of 

aminoalkyl ligands [SC = ( + )/( + + + )]

nT

2Q 3Q 4Q

2T 3T 2T 3T 2Q 3Q 38,45 increased from 21 to 37% 

(Figure 4.3C), respectively. The ligand immobilization efficiency (eimmo), defined as the ratio 

of %SC and AEAP3 content (mol%) incorporated in the starting sol, was between 2.1 and 2.6, 

indicating effective immobilization of aminoalkyl groups. Of note, the integration and 

quantitative analysis of these structures is complicated because the intensity of each peak 

depends on the efficiency of cross polarization and the proton relaxation time.46 
 

The surface area and pore volume of the silica nanoparticles were evaluated via 

nitrogen adsorption-desorption isotherms.38 As expected, the amine-functionalized silica 

proved to be nonporous with surface areas (SBET) of 10 – 20 m2·g-1 and pore volumes (Vp) of 

0.02 – 0.06 mL·g-1 (at p/p0 = 0.98). Indeed, previous reports of organically-modified hybrid 

silica synthesized by the co-condensation method indicated highly dense, nonporous, and 

amorphous structures.30,31 

 

4.3.2 Nitric Oxide Release Characteristics 

Nitric oxide release was evaluated as a function of tetraalkoxy- and aminoalkoxysilane 
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structure and concentration. The NO release profiles of two representative silica 

nanoparticles (10 mol% AHAP3 and 17 mol% AEAP3, balance TEOS) are shown in Figure 

4.4. These representative compositions illustrate the drastic effects of amine-derivatization on 

several NO release properties including the total amount of NO (t[NO]), half-life of NO 

release (t1/2), maximum flux of NO release ([NO]m), and time necessary to reach [NO]m (tm). 

Both the NO payload and release rates were significantly affected by the concentration and 

chemical identity of the amine ligands (e.g., AEAP3, AHAP3, and AEMP3) used to prepare 

the silica nanoparticles (Table 4.2). At a fixed aminoalkoxysilane concentration of 10 mol% 

(balance TEOS), the trend in t[NO] was AHAP3>AEAP3>AEMP3 (380, 145, and 53 

nmol⋅mg-1, respectively). For AEAP3 and AEMP3 silica, increasing the concentration of 

aminoalkoxysilanes from 10 to 20 mol% led to notable increases in both t[NO] and [NO]m. 

For the AEAP3 system, both the t1/2 and tm decreased with increasing aminoalkoxysilane 

concentration (12 to 3.4 h and 8.0 to 2.1 h for 10 to 17 mol% AEAP3 silica, respectively). 

The decrease in NO release kinetics corresponded directly with nanoparticle size and 

predicted water uptake. A shorter water diffusion distance to interior NO donor ligands would 

be expected for smaller diameter particles, resulting in more rapid N-diazeniumdiolate 

breakdown and NO release. For AEMP3 silica nanoparticles, the t1/2 and tm were constant 

regardless of the aminoalkoxysilane concentration. Such fixed NO release kinetics for 

AEMP3 was expected due to the similar size of the particles (~30 – 50 nm) over the range of 

aminoalkoxysilane concentrations studied (i.e., 10 – 20 mol%, balance TEOS). As shown in 

Table 4.3, the amine to N-diazeniumdiolate conversion efficiencies for the TEOS-derived 

silica nanoparticles ranged from ~6 to 19%, depending on the size and composition of the 

nanoparticle. Larger silica nanoparticles were characterized by lower conversion efficiencies 
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Figure 4.4. (A) NO release profiles and (B) total NO release of 10 
mol% of AHAP3 (dashed blue) and 17 mol% of AEAP3 
(solid red) silica nanoparticles (balance TEOS). 
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Table 4.2. NO release properties of N-diazeniumdiolate-modified silica nanoparticles 
with different tetraalkoxy- and aminoalkoxysilane precursorsa,b

aminoalkoxysilane tetraalkoxy-
silanec typed mol%e 

particle 
sizef (nm)

t[NO] 
(nmol·mg-1) t1/2 (h) [NO]m 

(ppb·mg-1) tm (h) 

TEOS AEMP3 10 50 ± 5 53 ± 3 6.0 ± 0.2 10 ± 2 0.12 ± 0.01
  13 43 ± 4 81 ± 3 6.5 ± 0.3 22 ± 2 0.10 ± 0.01
  17 40 ± 5 118 ± 5 5.7 ± 0.5 32 ± 2 0.11 ± 0.02
  20 30 ± 4 170 ± 10 5.4 ± 0.3 40 ± 3 0.11 ± 0.01
        

 AEAP3 10 500 ± 45 145 ± 10 12 ± 4 14 ± 3 8 ± 1 
  13 210 ± 25 392 ± 15 6 ± 1.5 92 ± 5 4 ± 1 
  17 92 ± 16 600 ± 25 3.4 ± 0.4 140 ± 10 2.1 ± 0.3 
        

 AHAP3 10 20 ± 2 380 ± 20 0.9 ± 0.1 370 ± 10 0.35 ± 0.05
        
        

TMOS AEAP3 10 270 ± 25 46 ± 4 1.9 ± 0.3 40 ± 7 0.18 ± 0.04
  30 130 ± 10 156 ± 10 1.7 ± 0.1 146 ± 20 0.08 ± 0.01
  50 98 ± 8 308 ± 35 1.9 ± 0.4 308 ± 100 0.25 ± 0.04
  70 74 ± 8 414 ± 20 1.6 ± 0.1 1100 ± 240 0.14 ± 0.01
  87 58 ± 10 330 ± 10 0.1 ± 0.02 5500 ± 300 0.06 ± 0.01
        

 AHAP3 10 64 ± 4 101 ± 5 0.2 ± 0.04 560 ± 40 0.07 ± 0.02
  30 55 ± 5 230 ± 40 0.3 ± 0.09 730 ± 290 0.10 ± 0.03
  50 51 ± 6 440 ± 30 0.7 ± 0.2 510 ± 30 0.11 ± 0.04
  60 58 ± 5 680 ± 40 0.5 ± 0.01 1900 ± 190 0.07 ± 0.01
  70 48 ± 7 1700 ± 20 0.9 ± 0.1 2660 ± 190 0.12 ± 0.07
  77 65 ± 5 1780 ± 50 0.9 ± 0.2 2810 ± 210 0.11 ± 0.3 
        
        

 2N[2]g  200 – 300 580 2.4   
 2N[6]g  200 – 300 560 ± 60 0.7   
        

an is at least 3. bValues were measured in phosphate-buffered saline (PBS) at pH 7.4 and 37 oC. 
cTEOS, tetraethoxysilane; and TMOS, tetramethoxysilane. dAEMP3, (aminoethylaminomethyl)-
phenethyltrimethoxysilane; AEAP3, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane; and, 
AHAP3, N-(6-amino-hexyl)aminopropyltrimethoxysilane. eBalance TEOS or TMOS. fDiameter. 
gRef. 33. Amine-modified silica particles were prepared via the surface-grafting method. 
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Table 4.3. Nitrogen content (%N), amine concentration (Camine), N-diazeniumdiolate 
concentration (Cdiaz), and amine to N-diazeniumdiolate conversion efficiency (%Conv) of 
various silica nanoparticles prepared with different tetraalkoxy- and aminoalkoxysilane 
precursors 

aminoalkoxysilanetetraalkoxy-
silanea typeb mol%c %Nd Camine

e 
(μmol·mg-1)

Cdiaz
f 

(μmol·mg-1) %Conv 

TEOS AEAP3 10 3.39 1.21 0.07 5.8 
  13 3.90 1.39 0.20 14.4 
  17 5.45 1.95 0.30 15.4 
       

 AHAP3 10 2.74 0.98 0.19 19.4 
       
       

TMOS AEAP3 30 1.94 0.69 0.08 11.6 
  50 2.91 1.04 0.15 14.4 
  70 3.69 1.32 0.21 15.9 
  87 3.22 1.15 0.17 14.8 
       

 AHAP3 10 1.45 0.52 0.05 9.6 
  30 2.84 1.01 0.11 10.9 
  50 3.12 1.11 0.22 19.8 
  60 4.19 1.50 0.34 22.7 
  70 4.74 1.69 0.85 50.3 
  77 4.81 1.72 0.89 51.7 
       
       

 2N[2]g   1.23 0.29 24 
 2N[6]g   0.86 0.28 33 
       

aTEOS, tetraethoxysilane; and TMOS, tetramethoxysilane. bAEAP3, N-(2-amino-
ethyl)-3-aminopropyltrimethoxysilane; and AHAP3, N-(6-aminohexyl)amino-
propyltrimethoxysilane. bBalance TEOS or TMOS. dObtained by elemental 
analyses within 0.3% error. eAmine concentration is the concentration of diamine. 
fDetermined by measuring the total NO concentration (t[NO]) released from the 
particles using a chemiluminescence nitric oxide analyzer. gRef. 33. Amine-
modified silica particles were prepared via the surface-grafting method. 
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than smaller sized particles (e.g., 6 vs. 15% for 10 and 17 mol% AEAP3 silica, respectively). 

Similar to other N-diazeniumdiolate NO donor scaffolds, the mechanism of NO release 

was proton initiated as evidenced by pH-dependent NO release behavior. The effect of pH on 

the NO release kinetics from the silica scaffolds was also evaluated (Figure 4.5). Consistent 

with the behavior of small molecule N-diazeniumdiolates, NO release was accelerated under 

acidic conditions (pH 3.3). Conversely, NO release was slowed considerably at elevated pH 

(9.5), consequently demonstrating a simple method for storing and transporting NO donor 

nanoparticles without significant deterioration of the N-diazeniumdiolate. The t[NO] was 

similar at all pH values, but the NO release kinetics were dramatically increased at lower pH. 

A nine-fold increase in the maximum flux of NO released ([NO]m) was observed at pH 3.3 

compared to that at pH 7.4. Such behavior, combined with the pH dependent dissociation of 

N-diazeniumdiolates confirms that the dominate mechanism of NO release for the silica 

scaffolds is proton initiated. 

Although a diverse range of NO release properties were obtained from the silica 

prepared via combination of TEOS and AHAP3, AEAP3, or AEMP3, the aminoalkoxysilane 

content was limited to <20 mol% due to aggregation resulting from hydrogen bonding 

interactions between amines and adjacent silanols and/or other amines.47 The synthesis of 

particles using TMOS as the backbone precursor was thus evaluated as a strategy for 

increasing the aminoalkoxysilane concentration and bolstering NO storage capacity since the 

rate of TMOS hydrolysis is faster than TEOS.36,42 Accelerated hydrolytic polycondensation 

reactions (i.e., quick production and consumption of silanols) would be expected to reduce 

potential amine-silanol and/or amine-amine interactions during particle formation. As shown 

in Table 4.2, the concentration of aminoalkoxy ligand that could be used to prepare non-
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Figure 4.5. NO release of AEAP3-based silica nanoparticles as a function of pH at 
37 ºC. Insert: total NO release. 
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aggregated particles approached 77 and 87 mol% for AHAP3- and AEAP3-based TMOS 

particles, respectively. Similar to TEOS, the diameter of TMOS-derived particles decreased 

with increasing aminoalkoxysilane concentration (270 to 58 nm for 10 to 87 mol% AEAP3 

and 64 to 48 nm for 10 to 70 mol% AHAP3, respectively). 

Surprisingly, the NO payload of aminoalkoxysilane/TMOS particles prepared using 10 

mol% aminoalkoxysilane was slightly lower than that for similarly prepared TEOS silica 

(145 versus 46 nmol·mg-1 and 380 versus 101 nmol·mg-1 for 10 mol% AEAP3 and AHAP3, 

respectively) (Table 4.2), indicating that the immobilization efficiency of the aminoalkoxy 

ligand depends on the tetraalkoxysilane backbone. Both 29Si NMR (Table 4.1) and elemental 

analyses (Table 4.3) indicate that the levels of aminoalkoxy ligands in the silica particles are 

not directly proportional to the aminoalkoxysilane concentration in the sol. Indeed, the eimmo 

of AEAP3/TMOS silica ranged from 0.5 – 0.9, three to five times less than AEAP3/TEOS 

(eimmo = 2.1 – 2.6). Nevertheless, the t[NO] and [NO]m of AHAP3/TMOS silica was 

significantly enhanced (up to 1780 nmol·mg-1 and 2810 ppb·mg-1, respectively) relative to the 

TEOS silica systems. Both the t1/2 and tm also increased with increasing aminoalkoxysilane 

concentration (0.2 to 0.9 h and 0.07 to 0.12 h for 10 to 70 mol% AHAP3, respectively). 

The NO release characteristics of N-diazeniumdiolate-modified silica nanoparticles 

prepared via a one-pot strategy are significantly expanded than that of both small molecule 

N-diazeniumdiolates and the 200–300 nm NO-releasing fumed silica prepared by surface 

grafting. The greatest t[NO], 1780 nmol·mg-1, was achieved with 77 mol% AHAP3/TMOS 

silica, a concentration roughly three times greater than 2N[6]-N2O2 surface-grafted silica 

(t[NO] = 560 nmol·mg-1) prepared using the equivalent amine precursor structure (i.e., 

aminohexylaminopropyl ligand).33 The greatest t1/2 for AHAP3/TMOS silica was 0.9 h (54 
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min), significantly longer than the analogous small molecule DMHA/N2O2 (t1/2 = 3 min) and 

2N[6]-N2O2 surface-grafted silica (t1/2 = 0.7 h or 42 min) systems. Likewise, t1/2 of AEAP3 

silica was 3.4 – 12 h (204 – 720 min) (depending on the aminoalkoxysilane concentration), 

while t1/2 of the surface-grafted AEAP3 silica (i.e., 2N[2]-N2O2) was only 2.4 h (144 min).33 

 

4.4 Conclusions 

The synthesis of NO-releasing nanoparticles represents an important step toward the 

development of NO storage/delivery systems that bridge the gap between small molecule N-

diazeniumdiolates and N-diazeniumdiolate-modified macromolecules. Control over both the 

structure and concentration of tetraalkoxy- and aminoalkoxysilane precursors allows for the 

preparation of NO donor-modified silica nanoparticles of widely varying sizes (d = 20 – 500 

nm) and NO release properties (e.g., NO payload of 50 – 1780 nmol·mg-1, maximum NO 

fluxes (10 – 5500 ppb·mg-1), half-lives (0.1 – 12 h), and NO release durations (15 – 30 h). 

Silica nanoparticles prepared via a one-pot approach exhibit an increased NO payload of up 

to three times greater than that attainable via surface-grafted silica.33 In addition, the diversity 

of NO release kinetics and scaffold size, and favorable toxicity represent distinct advantages 

for silica over previously reported nanoparticles. Indeed, the ability to tune both the NO 

storage/release characteristics and size of the silica nanoparticles may facilitate the 

development of new pharmaceuticals for medical conditions and/or diseases requiring NO-

based therapy. Recent work suggests that the size of the delivery vehicle is particularly 

important in determining cellular/tissue uptake and accumulation, with particles having a 

diameter between 20 and 100 nm as most optimal.48-50 The NO-releasing silica nanoparticles 

synthesized herein fit this range. The silica particles also avoid some practical limitations of 

previously reported nanoconstructs (e.g., dendrimers) in that their synthesis and purification 
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is simple, and their precursors inexpensive. Since concentration dictates NO’s biological 

action, a scaffold with wide-ranging NO payloads and NO release kinetics may prove useful 

for a range of applications (e.g., pM to nM for regulating vasodilation and angiogenesis, and 

sub-μM to μM for killing bacteria or tumor cells). 
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Chapter 5: 

Nitric Oxide-Releasing Silica Nanoparticles: Synthesis, Characterization, and 

Efficacy Against Ovarian Cancer Cells 

 

5.1  Introduction 

Nitric oxide (NO), a free radical bioregulator endogenously synthesized in the body, 

impacts multiple stages of tumor development, spanning cytostatic processes, cellular 

transformation, formation of neoplastic legions, and regulation of various aspects of tumor 

biology.1-4 Some consequences of NO production demonstrate that NO has tumoricidal 

effects, including inhibition of several classes of enzymes and iron metabolism proteins, cell 

apoptosis, and alternation of metastasis.4-7 Studies have shown that reactive nitrogen oxide 

species (RNOS; e.g., NO2, NO2
-, ONOO-, and N2O3) derived from NO affect the expression 

and activity of proteins critical to the cell cycle and apoptosis.4,8,9 Additional properties of 

NO that may be beneficial in the treatment of cancer include its roles in the anti-pathogenic 

and tumoricidal response of the immune system.4,10 In seminal experiments involving co-

cultures of macrophages and lymphoma cells, Hibbs et al.11 and Stuehr et al.12 reported that 

NO generated from macrophages inhibited cellular respiration in cancer cells. Subsequent 

reports demonstrated that NO derived from macrophages, natural killer cells, and endothelial 

cells is tumoricidal against many types of tumors.13-15

To harness the tumoricidal potency of NO, a variety of small molecule NO donors (e.g., 

NO-metal complexes, nitrosothiols, organic nitrites/nitrates, and diazeniumdiolates) have 



been developed and evaluated with respect to NO storage capacity and efficacy against tumor 

cells (Table 5.1).16-27 Of these, 1-amino-substituted diazen-1-ium-1,2-diolates (or simply N-

diazeniumdiolates) are particularly attractive due to their ability to generate NO 

spontaneously under biological conditions.19-21,28 Several small molecule N-diazeniumdiolate 

species have been synthesized using a range of nucleophilic residues that encompass simple 

primary/secondary amines, polyamines, and secondary amino acids.29,30 While stable under 

ambient conditions, N-diazeniumdiolates decompose spontaneously in aqueous media to 

generate NO at rates dependent on pH, temperature, and/or their structures.29 Although small 

molecule NO donors have shown some efficacy against tumor cells, their usefulness as anti-

cancer agents remains hindered by difficulties in controlling their NO release properties (e.g., 

quantities and delivery rates) and imparting cell- or tissue-specific targeting ability. 

Based on the unique size-dependent physical and chemical properties, nanoparticles 

have the potential to revolutionize the field of medicine.31,32 Nanotechnology has already 

been employed for a number of biomedical applications including drug and gene delivery,33 

fluorescent biological labels,34 pathogen and protein detectors,35 DNA structure probes,36 and 

MRI contrast agents.37 Considerable effort has been expended towards developing NO 

storage/delivery systems via macromolecular frameworks that can store large quantities of 

NO, impart cell- or tissue-specific targeting, and modulate NO release kinetics.38-42 Several 

NO donor micro- and nanocomposite materials have been developed using 

polyethyleneimine microspheres,38 albumin conjugates,39 poly-lactic-co-glycolic acid 

copolymers,40 gold clusters,41 and dendrimers.42

Mesoporous silica nanoparticles, ceramic materials prepared from silicon dioxide, have 

been explored as carrier systems for controlled delivery of drugs, biocides, genes, and 
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Table 5.1.  Representative examples of the tumoricidal effect of previously reported 
small molecule NO donors against a variety of cancer cell lines in vitro 

Class of NO donor Name of NO donor Cancer type Effect Ref.

NO-metal complex 
 
 

SNPa 
 
 

Prostate 
(PC-3) 

 

anti-proliferative and apoptotic 
effects through arrest of G1 phase of 
cell cycle 

18
 
 

Diazeniumdiolate 
 

DETA/N2O2
b 

 
Breast 

(MDA-MB-231) 
induced cytostasis, arrested in the G1 
phase of cell cycle 

19
 

 
 

PABA/N2O2
c Ovarian 

(A2780, OVCAR-3)
Melanoma 

(LOXIMVI) 
Colon 

(HCT-15) 

in vitro/in vivo anticancer activity 20

 
 

MAHMA/N2O2
d 

 
Colon 

(HT-29) 
anti-proliferative through inhibition 
of ornithine decarboxylase activity 

21
 

Nitrosothiol 
 

S-Nitrosocaptopril
(CapNO) 

Prostate 
(PC-3, CaP) 

enhanced the effect of Taxol induced 
cytotoxicity 

22
 

 SNAPe Oral 
(CAL27, HSC-2) 

cytotoxicity against oral cancer cells 
in vitro 

23

 Glyconitrosothiol 
(fructose-1-SNAP)

Prostate 
(DU-145) 

cytotoxicity against prostate cancer 
cells in vitro 

24

NO-NSAIDf 
 

NO-donor aspirin 
(NO-ASA) 

Lung, Colon, 
Breast, Skin 

inhibition of cell proliferation and 
induced apoptosis 

25
 

 NCX-4016g Ovarian 
(CS, CR) 

enhanced cytotoxic effect of cisplatin 
against cisplatin-resistant cells in 
vitro 

26

Organic nitrate 
 

Glyceryl trinitrate 
(GTN) 

Breast 
(MCF-7) 

cytotoxicity against cancer cells in 
vitro 

27
 

aSodium nitroprusside. b(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate. 
cO2-[2,4-dinitro-5-(4-carboxylatophenyl)amino]phenyl 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate. 
d(Z)-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-1-ium-1,2-diolate. eS-Nitroso-N-acetyl- 
penicillamine. fConjugates of NO donor and non-steroidal anti-inflammatory drug. g2-(Acetyloxy)-
benzoic acid 3-(nitrooxymethyl)phenyl ester. 
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proteins.43-47 The drug delivery potential of silica has received a great deal of attention 

because of its non-toxic nature,48 and tunable physical and chemical properties (e.g., ability 

to tune the size and mesoporous structure).49,50 The synthesis of hybrid inorganic-organic 

silica nanospheres modified with reactive functional groups (e.g., amines, thiols, 

carboxylates, and halides) has been widely reported.49,50 Such chemistry allows for further 

functionalization with drug molecules, for example. Zhang et al. previously reported the 

synthesis of NO-releasing fumed silica (amorphous particles of d = 0.2 – 0.3 μm) by grafting 

the silica surface with amine-functionalized silylation reagents, followed by N-diazenium-

diolate formation.51 The silica particles prepared via this surface-grafting method released 

NO up to 0.56 μmol·mg-1. More recently, Shin et al. demonstrated a new synthetic strategy 

for preparing NO-releasing silica prepared via a “one-pot” co-condensation of tetra-

alkoxysilane and aminoalkoxysilane. The amine functional groups in the silica were 

converted to N-diazeniumdiolate NO donors via exposure to high pressures of NO (5 atm). 

As described in Chapter 4, control over both the structure and concentration of the silane 

precursors allowed for the preparation of NO donor silica particles of widely varying sizes (d 

= 20 – 500 nm) and higher NO payloads (up to 1.8 μmol·mg-1). 

Although the total NO release levels of the silica nanoparticles prepared via a “one-pot” 

approach were significantly greater than small molecule and surface-grafted silica NO donor 

counterparts,30,51 the aminoalkoxysilane content used to prepare the nanoparticles was limited 

to <20 mol% due to particle aggregation at higher aminoalkoxysilane concentrations, 

attributed to interactions between the amines and adjacent silanols and/or other amines via 

hydrogen bonding.52,53 
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To increase the concentration of aminoalkoxysilanes and bolster NO storage capability, 

I investigated an alternative strategy for synthesizing the silica nanoparticles. In contrast to 

synthesizing the silica nanoparticles prior to “charging” with NO (necessary to form N-

diazeniumdiolate NO donors, hereafter referred to as post-synthesis charging or simply 

“post-charging”), the N-diazeniumdiolate moieties were synthesized prior to preparing the 

silica nanocomposites (“pre-charging”) (Figure 5.1). Briefly, an appropriate amount of 

aminoalkoxysilane was dissolved in a mixture of EtOH, MeOH, and NaOMe. The stirring 

solution was pressured with NO (5 atm, 3 d) to allow the formation of N-diazeniumdiolate-

modified amino-alkoxysilanes. The nanoparticles were then synthesized by mixing TEOS 

with different ratios of the N-diazeniumdiolate-modified aminoalkoxysilane in the presence 

of an ammonia catalyst. The pre-charging strategy should facilitate greater access of NaOMe 

and NO to the amine precursors without aggregation as the hydrogen-bonding interactions of 

amine sites during particle formation are avoided. The cytotoxicity of such NO donor 

vehicles against human ovarian surface epithelial immortalized and cancer cell lines is also 

presented. 

 

5.2 Experimental Section 

5.2.1  Reagents and Materials 

Tetraethoxysilane (TEOS), methylaminopropyltrimethoxysilane (MAP3), pyrrole, and 

sodium methoxide (NaOMe) were purchased from Fluka (Buchs, Switzerland). (Aminoethyl-

aminomethyl)phenethyltrimethoxysilane (AEMP3), N-(6-aminohexyl)aminopropyltrimeth-

oxysilane (AHAP3), N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAP3), aminopro-

pyltrimethoxysilane (APTMS), N-[3-(trimethoxysilyl)propyl]diethylenetriamine (DET3), N-
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A BA B

Figure 5.1. Schematic of NO delivery silica nanoparticles synthesized by two different 
strategies: A) post-charging; and, B) pre-charging approaches. Tetraethoxy-
silane (TEOS) and N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3) 
were used as example tetraalkoxy- and aminoalkoxysilane precursors. 
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phenylaminopropyltrimethoxysilane (PAP3), n-butylaminopropyltrimethoxysilane (nBAP3), 

cyclohexylaminopropyltrimethoxysilane (cHAP3), 3-(N-allylamino)propyltrimethoxysilane 

(AAP3), N-ethylaminoisobutyltrimethoxysilane (EAiB3), and t-butylaminopropyltrimethoxy-

silane (tBAP3) were purchased from Gelest (Tullytown, PA). Fluorescein isothiocyanate 

(FITC), tetramethylrhodamine methyl ester (TMRM), dimethyl sulfoxide (DMSO), 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), N-2-hydroxyethylpiperazine-

N’-2-ethanesulfonic acid (HEPES), N,N-dimethylformamide (DMF), Roswell Park Memorial 

Institute (RPMI) 1640 medium, and insulin were purchased from Sigma (St. Louis, MO). 

Fetal bovine serum (FBS) was purchased from Hyclone (Logan, UT). Methanol (MeOH), 

ethanol (EtOH), 2-propanol (PrOH), 1-butanol (BuOH), toluene, and ammonia solution 

(NH4OH, 30 wt% in water) were purchased from Fisher Scientific (Fair Lawn, NJ). Nitric 

oxide (NO), carbon dioxide (CO2, 5%), argon (Ar), and nitrogen (N2) gases were obtained 

from AGA Gas (Maumee, OH) or National Welders Supply (Raleigh, NC). Other solvents 

and chemicals were analytical-reagent grade and used as received. A Millipore Milli-Q UV 

Gradient A10 System (Bedford, MA) was used to purify distilled water to a final resistivity 

of 18.2 MΩ·cm and a total organic content of ≤6 ppb. 

 

5.2.2  Synthesis and Characterization of N-Diazeniumdiolate-Modified Aminoalkoxysilanes 

An aminoalkoxysilane solution was prepared by dissolving 10.3 mmol of an amino-

alkoxysilane precursor (e.g., AHAP3, MAP3, nBAP3, etc.) in 24 mL of EtOH and 6 mL of 

MeOH in the presence of NaOMe (10.3 mmol, an equimolar amount corresponding to the 

secondary amine content of silane structures). The solution was then placed into 10-mL vials 

equipped with a stir bar. The vials were placed in a Parr bottle, connected to an in-house NO 

reactor, and flushed with Ar six times to remove oxygen in the solution. The reaction bottle 
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was charged with NO to 5 atm for 3 d under stirring. Prior to removing the modified silane 

sample, unreacted, physically adsorbed NO was purged from the chamber with Ar. 

Nitric oxide release profiles of the N-diazeniumdiolate-modified aminoalkoxysilane 

were measured in deoxygenated phosphate-buffered saline (PBS, 0.01 M) at pH 7.4 and 37 

oC using a Sievers NOA 280i chemiluminescence nitric oxide analyzer (Boulder, CO).ref 

Nitric oxide released from the silane precursor was transported to the analyzer by a stream of 

N2 (70 mL·min-1) passed through the reaction cell. The instrument was calibrated with air 

passed through a zero filter (0 ppm NO) and 24.1 ppm of NO standard gas (balance N2, 

purchased from AGA Gas). 

 

5.2.3  Synthesis of Nitric Oxide Donor Silica Nanoparticles 

The silane solutions were prepared by mixing 1.4 mmol (310 μL) of TEOS with 

different contents (0.16 – 4.17 mmol corresponding to 10 – 75 mol%, balance TEOS) of N-

diazeniumdiolated AEAP3, AHAP3 or MAP3 for 5 min. The silane solution was then added 

into 22 mL of solvent [i.e., 100% EtOH, 50/50% (v/v) EtOH/PrOH, or 50/50% (v/v) 

EtOH/BuOH] and 6 mL of ammonia (30 wt% in water), and vigorously stirred for 30 min at 

4 oC. (The reaction was performed at low temperatures of 4 oC to minimize the thermal 

decomposition of N-diazeniumdiolates.) The white precipitate was collected by centrifu-

gation (5000 rpm, 5 min), washed with EtOH copiously, dried under ambient conditions for 1 

h, and stored in a sealed container at –20 oC until used. 

 

5.2.4  Characterization of Functionalized Silica Nanoparticles 

For atomic force microscopy (AFM) analysis, the silica particles were suspended in 

toluene, deposited on a freshly cleaved mica surface (SPI; West Chester, PA), and dried 
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under ambient conditions for 3 h. Contact mode AFM images were obtained in air using a 

Molecular Force Probe 3D Atomic Force Microscope (Asylum Research; Santa Barbara, CA) 

controlled with MFP-3D software running under Igor Pro (Wavemetrics; Lake Oswego, OR). 

Triangular silicon nitride cantilevers with a nominal spring constant of 0.12 N·m-1 and 

resonance frequency of 20 kHz (Veeco; Santa Barbara, CA) were used to acquire height/ 

topography images at a scan rate of 0.5 Hz. 

Chemiluminescence data for the NO-releasing silica particles were represented in two 

graphical forms or plots: (1) chemiluminescence response in ppb NO/mg silica vs. time; and, 

(2) the total amount of NO release (t[NO]) vs. time. The maximum flux of NO release 

([NO]m) and the time required to reach that maximum (tm) were obtained from plot 1. The 

half-life (t1/2) of NO release as well as the t[NO] (μmol NO/mg) were determined from plot 2. 

 

5.2.5 Cell Culture 

Immortalized human ovarian surface epithelial cells (T29) and carcinoma cells (A2780 

and OVCAR-3) were obtained from Dr. Gordon Mills (M. D. Anderson Cancer Center; 

Houston, TX) and American Type Culture Collection (ATCC; Manassas, VA), respectively. 

Cells were cultured in RPMI 1640 medium supplemented with 10% FBS and 10 μg·mL-1 

insulin at 37 °C in a humidified atmosphere containing 5% CO2. 

 

5.2.6  Cell Viability Assay 

The MTT cell viability assay was employed to determine the relative sensitivities of 

T29, A2780, and OVCAR-3 cell lines to NO donor small molecule (i.e., PYRRO/N2O2) and 

silica nanoparticles (i.e., 45 mol% AHAP3 and 75 mol% MAP3). Viable cells were seeded in 

6 replicates at 1 – 5 x 103 cells per well in 96-well microtiter plates (polystyrene; BD 
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Biosciences, Franklin Lakes, NJ), incubated overnight, and exposed to different 

concentrations (from 0.013 to 1 mg·mL-1) of NO-releasing and control nanoparticle solutions 

at 37 oC and 5% CO2 for 48 h. The NO-releasing medium was then removed and replaced by 

MTT solution (1 mg·mL-1 in PBS, pH 7.4), upon which the cells were subsequently 

incubated for an additional 4 h at 37°C. Following removal of the MTT, 100 μL of DMSO 

was added, and the absorption of the solution was measured at 560 nm using a 

SpectraMaxPlus 2.01microplate reader (Molecular Devices; Sunnyvale, CA). The absorption 

of the MTT/DMSO solution was used as a zero reference. 

 

5.2.7 Cellular Uptake 

The NO-releasing silica nanoparticles were fluorescently labeled via the “one-pot” co-

condensation of three silane precursors including FITC-modified APTMS, N-diazenium-

diolated MAP3, and TEOS. First, FITC-APTMS conjugates were synthesized by dissolving 

16 μmol of FITC and 0.64 mmol of APTMS in 500 μL of DMF, and stirring in the dark for 

24 h (Figure 5.2). A silane solution was then prepared by mixing 1.4 mmol of TEOS with 

4.17 mmol of N-diazeniumdiolated MAP3 (75 mol%, balance TEOS), and 0.32 mmol of 

FITC-APTMS conjugate for 5 min. The silane solution was combined with 22 mL of EtOH 

and 6 mL of ammonia (30 wt% in water), and vigorously stirred for 30 min at 4 oC. The 

yellow precipitate was collected by aforementioned procedures including centrifugation, 

washing, and drying. The resulting multifunctionalized silica nanoparticles (FITC-labeled 

and NO donor-modified 75 mol% MAP3) were stored in a sealed container at –20 oC in the 

dark until used. 

Human ovarian epithelial cancer cells (A2780) were plated to ∼20% confluency on 

glass bottom microscopy plates and incubated overnight at 37 oC and 5% CO2. Prior to 
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imaging, the incubation medium was discarded and replaced with Krebs-Henseleit imaging 

buffer (10 mM HEPES, pH 7.4) containing 100 nM of TMRM dye to selectively stain the 

mitochondria of the A2780 cancer cells (30 min incubation). A 100-μL aliquot of FITC-

labeled NO-releasing MAP3 silica nanoparticles dissolved in the imaging buffer was added 

directly to the cells on the stage of the microscope, yielding a nanoparticle concentration of 

100 μg·mL-1. A Zeiss Laser Scanning Microscope (LSM 510; Germany) was used to perform 

the fluorescence measurements. The red fluorescence of TMRM (helium-neon laser 

excitation at 543 nm) and the green fluorescence of the FITC-labeled silica nanoparticles 

(argon laser excitation at 488 nm) were monitored at 650 and 520 nm, respectively. Confocal 

images were collected for 1 h at 5 min intervals to monitor the cellular uptake of the green 

fluorescent nanoparticles. 

 

5.3 Results and Discussion 

5.3.1  N-Diazeniumdiolate-Modified Aminoalkoxysilanes 

Prior to preparing silica nanoparticles, several primary/secondary and secondary amine-

based alkoxysilanes were converted to N-diazeniumdiolate NO donors via exposure to high 

pressures of NO (5 atm, 3 d). These N-diazeniumdiolated aminoalkoxysilanes were evaluated 

as potential NO donor moieties in terms of total NO concentration (t[NO]), half-life of NO 

release (t1/2), and amine to N-diazeniumdiolate conversion efficiency (%Conv) (Table 5.2). 

Selected example structures of secondary amine-based alkoxysilane precursors are shown in 

Figure 5.3 (for primary/secondary amine-based alkoxysilane structures, see Figure 1.8). Both 

t[NO] and t1/2 were significantly affected by the type and structure of aminoalkoxysilane 

precursors used. Of note, aminoalkoxysilanes with both primary and secondary amine sites 

usually exhibited longer t1/2 than only secondary amine-based alkoxysilanes (i.e., 69 to 264 
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Aminoalkoxysilane 
Class Typea 

t[NO] 
(μmol·mg-1)

t[NO] 
(μmol·μmol-1) t1/2 (min) %Conv 

AEAP3 6.61 1.47 114 74 

AHAP3 7.27 1.99 9 99 

AEMP3 0.75 0.23 264 12 

 

Primary/ 
secondary 

DET3 2.95 0.79 69 20 
      

Secondary PAP3 0.50 0.14 72 7 

 MAP3 10.3 1.98 3 99 

 nBAP3 8.02 1.89 7 95 

 tBAP3 1.93 0.31 4 16 

 cHAP3 1.67 0.44 5 22 

 EAiB3 6.16 1.37 10 69 

 AAP3 4.70 1.05 17 53 

Table 5.2. Total NO concentration (t[NO]), half-life of NO release (t1/2), and amine to N-
diazeniumdiolate conversion efficiency (%Conv) of N-diazeniumdiolate-modified 
primary/secondary and secondary amine-based alkoxysilanes 

aAEAP3, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane; AHAP3, N-(6-amino-
hexyl)aminopropyltrimethoxysilane (AHAP3); AEMP3, (aminoethylaminomethyl)-
phenethyltrimethoxysilane (AEMP3); DET3, N-[3-(trimethoxysilyl)propyl]diethylene-
triamine; PAP3, N-phenylaminopropyltrimethoxysilane; MAP3, methylaminopropyltri-
methoxysilane; nBAP3, n-butylaminopropyltrimethoxysilane; tBAP3, t-butylamino-
propyltrimethoxysilane; cHAP3, cyclohexylaminopropyltrimethoxysilane; EAiB3, N-
ethylaminoisobutyltrimethoxysilane; and, AAP3, 3-(N-allylamino)propyltrimethoxy-
silane (AAP3). 
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Figure 5.3. Example structures of secondary amine-based alkoxysilanes studied.
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min vs. 3 to 72 min, respectively). The NO release kinetics of primary/secondary amine-

based alkoxysilanes are attributed to the stabilizing effect of N-diazeniumdiolates by the 

adjacent primary amines, forming a N(O)N–O···H–N structure.29,54 The t1/2 of AHAP3 is 

exceptionally short (i.e., 9 min) because the primary amine is too far away (C6) from the N-

diazeniumdiolate to interact favorably. 

The formation of N-diazeniumdiolates on the secondary amine sites (%Conv) was also 

drastically influenced by the structure of the alkyl terminus attached to nitrogen. While n-

butyl-terminated aminopropyltrimethoxysilane (n-BAP3) possessed the high yield of N-

diazeniumdiolate formation (95%), t-butyl-terminated one (t-BAP3) exhibited a decreased 

conversion efficiency (16%) (Table 5.2 and Figure 5.3). The increased steric hindrance 

around the secondary amine by the t-butyl group appears to drastically influence N-

diazeniumdiolate formation. N-Diazeniumdiolate-modified AEAP3, AHAP3, and MAP3 

were thus selected as effective NO donors for pursuing subsequent nanoparticle synthesis due 

to their favorable NO release properties, (e.g., t[NO], %Conv, and/or t1/2). 

 

5.3.2 Nitric Oxide Release Properties of Silica Nanoparticles 

The NO release characteristics of N-diazeniumdiolate-modified silica nanoparticles 

prepared via the pre-charging approaches are summarized in Table 5.3. The NO release 

profiles of two example silica nanocomposites (45 and 75 mol% of AHAP3 and MAP3, 

respectively) are shown in Figure 5.4. Both the total NO released (t[NO]) and the maximum 

amount of NO released ([NO]m) were increased considerably compared to NO-releasing 

silica prepared by the post-charging method at identical aminoalkoxysilane concen-trations. 

For example, t[NO] and [NO]m for 17 mol% AEAP3 were increased from 0.6 to 0.8 

μmol·mg-1 and 140 to 1200 ppb·mg-1 for post- and pre-charging systems, respectively. We 
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AminoalkoxysilaneSynthetic 
strategy Typeb mol%c 

t[NO] 
(μmol·mg-1) t1/2 (min) [NO]m 

(ppb·mg-1) tm (min)

AEAP3 17 0.6 204 140 126 
      

Post-
chargingd AHAP3 10 0.4 54 370 21 

       
       

AEAP3 17 0.8 66 1200 7 
 25 1.2 90 1600 8 
 35 1.5 108 1400 8 

Pre- 
charging 

 45 1.7 132 1300 8 
       

 AHAP3 10 0.6 18 3400 3 
  25 1.6 18 9500 3 
  35 2.6 24 14500 5 
  45 3.8 18 21700 8 
       

 MAP3 45 1.6 6 33000 3 
  55 2.9 6 60000 3 
  65 4.3 6 73000 3 
  75 7.4 6 103000 3 
       

Table 5.3. NO release properties of N-diazeniumdiolate-modified silica nanoparticles with 
different amine ligands and contents prepared via post- and pre-charging strategiesa

aValues were measured in phosphate-buffered saline (PBS) at pH 7.4 and 37 oC. bAEAP3, N-(2-
aminoethyl)-3-aminopropyltrimethoxysilane; AHAP3, N-(6-aminohexyl)aminopropyl-
trimethoxysilane; and, MAP3, methylaminopropyltrimethoxysilane. cBalance tetraethoxy-
silane (TEOS). dData from ref. 52. 
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Figure 5.4. NO release profiles of 45 mol% of AHAP3 (a) and 77 mol% of 
MAP3 (b) silica nanoparticles. Insert: total NO concentration. 
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attribute the elevated quantities of NO release is attributed to a more homogeneous 

distribution of the diazeniumdiolate NO donors throughout the silica particle, as depicted in 

Figure 5.1B. More importantly, the pre-charging approach enabled us to increase the AEAP3 

or AHAP3 content up to 45 mol% without aggregation, resulting in concomitant increases in 

t[NO] and [NO]m. 
 

Methylaminopropyltrimethoxysilane (MAP3), an aminoalkoxysilane containing a 

methyl-terminated secondary amine, was also used to prepare NO-releasing silica 

nanoparticles. By removing primary amines and the potential for hydrogen-bonding 

interactions, we were able to synthesize silica particles with MAP3 aminoalkoxysilane 

concentrations up to 75 mol% with corresponding diameter ranging from 90 – 600 nm 

depending on the solvent55 employed during synthesis. The advantage of MAP3 is that it 

contains no primary amines. This attribute with respect to cytotoxicity is discussed in greater 

detail below. As expected, increasing the mol% of MAP3 from 10 to 75 mol% led to a 

corresponding increase in total NO release (e.g., t[NO] increased from 1.6 to 7.4 μmol·mg-1). 

In addition, the initial NO release of MAP3-based silica nanoparticles was characterized by a 

large burst (33000 – 103000 ppb·mg-1) and ~5 min of t1/2. 

The rapid kinetics and burst of NO from MAP3 silica represent significant strides 

toward developing a nanoparticle capable of releasing large amount of NO in a small volume. 

The pursuit of nanoparticles that release NO at different rates to study NO’s effect on tumor 

cell toxicity represents a potential application of this work. The synthesis of NO-releasing 

nanoparticles thus represents a new NO delivery system that bridges the gap between small 

molecule N-diazeniumdiolates and NO-releasing dendrimers. Indeed, control over both the 

structure and concentration of the aminoalkoxysilane ligand and the synthetic approach used 

 165



to prepare the silica allows for the preparation of NO release scaffolds of widely varying size 

and NO release properties. The distinct advantages of the NO-releasing silica-based particles 

over dendrimers include simple one-pot synthesis and straightforward material purification 

and tunable size control, and low-cost. 

 

5.3.3 In Vitro Ovarian Cancer Cell Viability Studies 

Ovarian cancer is the leading cause of death from gynecological malignancies in the 

United States.56 The high mortality rate is attributed to lack of early diagnosis and difficulties 

associated with treatments. Platinum-derived chemotherapy (e.g., cisplatin and carboplatin) 

is currently the primary ovarian cancer treatment.26,57,58 However, the clinical response of 

advanced-stage ovarian cancer to platinum-based therapy is only 40 – 60%.57 The primary 

factor that limits the success of chemotherapy in the treatment of ovarian cancer is the 

acquired clinical resistance to chemotherapeutic agents such as cisplatin.57,58 Therefore, the 

development of novel molecular-targeted strategies for the treatment of ovarian cancer is 

clearly warranted. 

To study the tumoricidal potential of NO donor-modified silica nanoparticles, the 

cytotoxicity of control and NO-releasing silica on immortalized, untransformed (T29) and 

cancer (A2780 and OVCAR-3) human ovarian surface epithelial (HOSE) cells was evaluated. 

Normal HOSE cells, the precursor cell for the majority of ovarian carcinoma cells, have only 

limited proliferative capacity, and are not readily available for in vitro testing.59 Primary 

cultures of normal HOSE cells were thus immortalized by ectopic expression of the catalytic 

subunit of telomerase (hTERT) and the Simian virus (SV40) small and large T antigens.60 

The immortalized HOSE cells were then sensitive to tumorigenic transformation by the Ras 

oncogene. 
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The MTT cell proliferation assay was employed to determine the relative sensitivities 

of HOSE cells to the AHAP3-derived nanoparticles. As shown in Figure 5.5, A2780 ovarian 

epithelial tumor cells were treated with varying doses of control and NO-releasing AHAP3 

silica (13 – 1000 μg·mL-1) for 48 h. The viability of the A2780 cells was reduced upon 

exposure to NO-releasing AHAP3 silica at low doses and the proliferation of A2780 cells 

was almost completely inhibited by NO-releasing AHAP3 silica at a dose of 500 μg·mL-1 

[minimum inhibitory concentration (MIC) at <5% survival; corresponding to 0.75 mM of 

NO]. In addition, the IC50 dose (50% inhibitory concentration) of NO donor AHAP3 silica 

was 20 μg·mL-1 (30 μM NO). Notably, the inhibitory concentrations of the NO-releasing 

silica proved to be significantly lower than those of small molecule NO donors tested (e.g., 

MIC and IC50 for PYRRO/N2O2 were 4.5 and 1.8 mM NO, respectively) (Figure 5.6). 

Control silica nanoparticles also exhibited cytotoxic effects against the tumor cells (IC50 

= 120 μg·mL-1), albeit less than that of their NO-releasing counterparts. Nonetheless, the 

undesirable cytotoxicity of control vehicles may be the result of free primary amines on the 

surface of the silica structures. Indeed, such amines have reported cytotoxic properties.61 To 

reduce the cytotoxicty of control and NO-releasing nanoparticles with primary amines, the 

MAP3 aminoalkoxysilane (containing only secondary amines) was employed to create more 

biocompatible vehicles. As expected, the cytotoxicty of MAP3 controls against the 

immortalized (T29) and tumor (A2780) cells was low, whereas NO-releasing MAP3 silica 

exhibited significant cytotoxicity against both untransformed T29 and A2780 tumor cells 

(Figure 5.7). OVCAR-3 ovarian adenocarcinoma cells also showed similar cytotoxic trends 

with increasing concentrations of NO-releasing silica nanoparticles (data not shown). 

To investigate whether nanoparticle size affects cytotoxicity, two silica nanoparticles 
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Figure 5.5. Cytotoxicity of control and NO-releasing 45 mol% AHAP3 silica on 
A2780 ovarian epithelial tumor cells. 
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Figure 5.6. Cytotoxicity comparison between small molecule (PYRRO/N2O2) 
and macromolecule (45 mol% AHAP3 silica/N2O2) NO donors 
against human ovarian surface epithelial cancer cells (A2780). 
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Figure 5.7. Cytotoxicity of control and NO-releasing MAP3 silica 
nanoparticles on ovarian epithelial normal (T29, immortalized) 
and tumor (A2780) cell lines. 
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(75 mol% MAP3, balance TEOS) of different particle sizes were synthesized (small 90 ± 10 

nm S-MAP3 and large 350 ± 50 nm L-MAP3) (Figure 5.8). Indeed, silica diameter is easily 

tunable by varying the solvent (i.e., alcohols) system during the sol–gel process.55 Increasing 

the MW of the alcohol used during synthesis led to a corresponding increase in the particle 

size [e.g., 100% (v/v) ethanol and 50/50% (v/v) ethanol/butanol mixture were used to prepare 

S-MAP3 and L-MAP3, respectively]. Cell viability was determined by incubating untrans-

formed T29 and A2780 tumor cells with control MAP3 particles (80 nm), and NO-releasing 

S-MAP3 or L-MAP3 (400 μg·mL-1, 48 h) (Figure 5.9). Notably, the small diameter NO-

releasing silica (S-MAP3) proved cytotoxic against both immortalized (T29) and cancer 

(A2780) cells (12 ± 1.1 and 5 ± 0.2% survival, respectively). In contrast, the larger NO-

releasing silica (L-MAP3) was significantly more cytotoxic towards the tumor cells than non-

tumor cells (37 ± 2.0 versus 6 ± 1.2% survival for T29 and A2780, respectively). The 

reduced toxicity of the larger NO delivery vehicles against T29 cells represents a major step 

toward the development of nanodevices capable of releasing tumoricidal concentrations of 

NO with little toxic effects against healthy cells. 

 

5.3.4 Cellular Uptake and Confocal Microscopy 

To study cellular uptake of the NO-releasing silica nanoparticles using confocal 

fluorescence microscopy, a laser scanning microscope was used. The multifunctionalized 

silica nanoparticles were prepared via the “one-pot” co-condensation of three silane 

precursors including FITC-modified APTMS, N-diazeniumdiolated MAP3 (75 mol%), and 

TEOS (Figure 5.10). 

The red fluorescence of TMRM was monitored to provide a map of the intracellular 

location of mitochondria and an outline of A2780 nuclei (Figure 5.11). A 100-μL aliquot of 
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Figure 5.9. Effect of the silica particle size (75 mol% MAP3, 
balance TEOS) on cytotoxicity against normal T29 and 
tumor A2780 cell lines. *P < 0.001 compared with 
control MAP3- treated group. 
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Figure 5.10. Schematic of multifunctionalized silica nanoparticles synthesized via 
the “one-pot” co-condensation of three silane precursors including 
FITC-modified APTMS, N-diazenium-diolated MAP3, and TEOS. 
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Figure 5.11. Laser scanning microscope images of A2780 ovarian cancer cells taken 
at 5 min (A,C) and 60 min (B,D) after incubation with (A,B) FITC-
labeled MAP3 silica nanoparticles and (C,D) 100 nm tetramethylrhod-
amine methyl ester (TMRM) mitochondrial stain. 
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FITC-labeled NO-releasing MAP3 silica nanoparticles dissolved in the imaging buffer was 

added directly to the cells on the stage of the microscope, yielding a nanoparticle 

concentration of 100 μg·mL-1. Immediately, the green fluorescence of the FITC-labeled silica 

nanoparticles was observed at 520 nm, resulting in a green outline of the A2780 cancer cells. 

Confocal images were collected at 5 min intervals to monitor the cellular uptake of the green 

fluorescent nanoparticles. After 1 h, substantial intracellular accumulation of nanoparticles 

was observed (Figure 5.11B). As well, the red fluorescence characteristic of mitochondrial 

viability was absent in a number of cells (Figure 5.11D) and the cells appeared to be 

shrinking in size, both indicative of cell death. 

Currently, the mechanism of cellular uptake is not clear. Further studies will be 

conducted to probe whether these particles enter the cell through endocytosis or direct 

permeation through the plasma membrane. Confocal microscopy experiments will provide us 

with knowledge regarding cellular uptake, and will be used to support conclusions drawn 

from the tumor cell viability assays. Cellular uptake with both immortalized and cancerous 

cells will be studied as a function of nanoparticle size, composition, and surface 

modifications. 

 

5.4 Conclusions 

A silica nanoparticle-derived drug delivery system capable of controlled release of NO 

was developed. The NO-releasing silica scaffolds prepared via a pre-charging “one-pot” 

synthesis was able to store and release unprecedented quantities of NO (up to 7.4 μmol·mg-1). 

Control over both the structure and concentration of the aminoalkoxysilane ligand and the 

synthetic approach used to prepare the silica allows for the preparation of NO release 

scaffolds of widely varying size (d = 90 – 350 nm) and NO release kinetics ([NO]m = 1200 – 
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103000 ppb·mg-1 and t1/2 = 6 – 132 min). The advantages of silica-derived NO delivery 

systems over conventional small molecule NO donors include the ability to 1) store large 

quantities of NO; 2) modulate NO release kinetics; 3) tune the physical and chemical 

properties of the silica (e.g., the mesoporous structure, particle size, and specific surface 

properties); and, 4) impart multifunctionalities (e.g., immobilizing cancer cell targeting 

ligands and fluorescent labeling). 

These nano-scale vehicles can be used as effective anticancer agents to kill tumor cells, 

potentially reducing tumor growth. In preliminary studies to evaluate the anti-cancer efficacy 

of NO-releasing silica nanocomposites, the cytotoxic activity against HOSE cancer cells was 

evaluated, and indicated that the viability of HOSE cancer cells is significantly reduced upon 

exposure to NO-releasing silica nanoparticles. More importantly, silica-derived NO delivery 

devices may allow for targeting via particle size (enhanced permeability/retention effect).62 Such 

cancer-specific targeting ability may be further modulated via ligand-receptor binding chemistry 

(e.g., folate-folate receptor interactions).63 Specific toxicity against cancer over healthy cells 

represents a major step toward the development of nanodevices capable of releasing tumoricidal 

concentrations of NO with reduced side effects on healthy cells. 
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Chapter 6: 

Summary and Future Research Directions 

 

6.1  Summary 

The continuous, real-time monitoring of clinically important analytes (e.g., PO2, PCO2, 

pH, K+, Na+, glucose, and lactate) is of great importance to human health care. Despite 

considerable efforts spanning several decades, the clinical utility of in vivo sensors remains 

limited due to inadequate biocompatibility. The discovery of nitric oxide (NO) as an effective 

inhibitor of platelet and bacterial adhesion has opened a new direction of research related to 

designing the next generation of in vivo sensors. While advances in the synthesis of NO-

releasing materials have led to significant progress in the development of intravascular (i.e., 

blood-based) chemical sensors,1-3 the application of these materials to enzyme-based 

biosensors has yet to be explored. In my dissertation research, I have focused on developing 

a subcutaneous glucose sensor by coupling sol–gel derived NO release with the chemistry of 

enzymatic biosensing. 

As described in Chapter 2, a hybrid xerogel/polyurethane glucose biosensor that 

releases NO was developed and characterized. The biosensor consisted of a platinum 

electrode coated with four polymeric membranes including: (1) xerogel with immobilized 

glucose oxidase (GOx); (2) polyurethane to protect the enzyme; (3) NO donor-modified 

xerogel particle-doped polyurethane; and (4) polyurethane. This configuration was developed 

in response to the drastic reduction in sensitivity observed for NO donor-modified xerogel 



film-based glucose sensors. For the hybrid xerogel/polyurethane biosensor, xerogel particles 

(d = 10 – 200 μm) were first modified with the NO donor and then incorporated into a 

polyurethane layer that was coated onto the pre-immobilized GOx electrode. In this manner, 

the GOx layer was not exposed to the harsh conditions necessary to impart NO release ability 

to the biosensor. As such, only a minimal decrease in sensitivity due to NO release was 

observed (-5.7 x 10-2 vs. -4.8 x 10-2 μA·mM-1 for control and NO-releasing sensors, 

respectively). The NO release properties were readily tunable by varying the amount of N-

diazeniumdiolate-modified xerogel particles in the polyurethane. In vitro bacterial adhesion 

assays confirmed that NO-releasing hybrid xerogel/polyurethane films were effectively 

resistant to cell adhesion at NO fluxes ≥ 5 pmol·cm-2·s-1 for 20 h. Although the NO-releasing 

xerogels represent promising coatings for reducing platelet and bacterial adhesion in vitro, 

their in vivo applications still have limitations. Specifically, the NO release longevity of such 

coatings is limited by both the relatively small reservoir of NO donors that may be loaded 

into a thin film and the restricted control in NO release kinetics. Improving the duration of 

NO release is likely to impact the development of more biocompatible in vivo NO-releasing 

sensors, particularly with respect to reducing platelet and bacterial aggregation at extended 

periods. Therefore, methods to lengthen the NO release duration are discussed in Future 

Research Directions. 

An amperometric sol–gel derived NO microsensor was described in Chapter 3. Several 

silicon-based xerogel membranes (the combinations of alkyl- and aminoalkoxy-silanes) were 

evaluated to identify the optimum composition for maximizing NO permeability while 

providing sufficient selectivity for NO in the presence of common interfering species. 

Xerogel permeability and selectivity were further manipulated as a function of 
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reaction/processing conditions (i.e., drying/aging time and temperature, and exposure of the 

cured film to high pressures of NO or Ar). In addition, the effects of incorporating Nafion 

into the xerogel matrix on sensor performance and the stability of the ensuing xerogel/Nafion 

hybrid film were evaluated. The optimal permselective membrane was achieved by 

catalyzing polycondensation of the xerogel composed of 20 v/v% (aminoethylamino-

methyl)phenethyltrimethoxysilane (AEMP3)/methyltrimethoxysilane (MTMOS) and Nafion 

(17 v/v%) with exposure to NO (5 atm, 10 min). The resulting NO microsensor (prepared 

using 127 and 250 μm o.d. of platinized Pt working and Ag/AgCl reference electrodes, 

respectively) exhibited comparable sensor performance to previously reported NO sensors 

with respect to: sensitivity of 0.17 ± 0.02 pA·nM-1 (from 25 to 800 nM, r = 0.9991), linearity 

(r = 0.9991, 25 – 800 nM NO range), detection limit of 25 nM (S/N = 3), response time of 9 s 

(t95%, a NO concentration change from 400 to 500 nM), selectivity ( ) of  -5.8, <-6, 

<-6, and <-6 for j = nitrite, ascorbic acid, uric acid, and acetaminophen, and lifetime of 8 d 

(82% of initial sensitivity without serious deterioration in selectivity). In contrast to other 

electrochemical NO sensor designs, however, the fabrication of xerogel-based NO 

microsensors is both simple and reproducible. Such sensors may prove useful employed for 

in vivo monitoring of NO and in situ, real-time measurements at or near the surface of 

materials that controllably release NO to elucidate the relationship between local NO 

concentrations and surface fouling. Such studies might aid in the design of more effective 

biomaterials. 

,log amp
NO jK

As outlined in Chapter 4, the synthesis and characterization of a new NO-releasing 

scaffold prepared from amine-functionalized silica nanoparticles were reported. Inorganic-

organic hybrid silica was prepared via co-condensation of tetraethoxy- or tetramethoxysilane 
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(TEOS or TMOS) and aminoalkoxysilane [e.g., N-(2-aminoethyl)-3-aminopropyltrimethoxy-

silane (AEAP3), N-(6-aminohexyl)aminopropyltrimethoxysilane (AHAP3), and N-[3-(tri-

methoxysilyl)propyl]diethylenetriamine (DET3)] with appropriate amounts of ethanol (or 

methanol), water, and ammonia. The amine functional groups in the silica were converted to 

N-diazeniumdiolate NO donors via exposure to high pressures of NO (5 atm) under basic 

conditions. Control over both the structure and concentration of the silane precursors (i.e., 

tetraalkoxy- and aminoalkoxysilanes) and specific synthetic conditions allowed for the 

preparation of NO donor silica particles of varying size (d = 20 – 500 nm), NO payloads (50 – 

1780 nmol·mg-1), maximum amounts of NO released (10 – 5500 ppb·mg-1), half-lives (0.1 – 

12 h), and NO release durations (up to 30 h). The advantages of silica-derived NO 

storage/delivery systems over previously reported macromolecular NO donors include the 

ability to 1) store large quantities of NO; 2) modulate NO release kinetics; and, 3) readily 

tune particle size based on the composition of the particle. In addition, a one-pot strategy for 

preparing the NO donor-modified silica enables straightforward, high-throughput synthesis 

and purification. The NO-releasing silica nanoparticles may prove useful for developing 

sensor biomaterials with extended NO release durations. 

The development of a NO-releasing silica nanoparticle-derived drug delivery system 

with cytotoxic efficacy against human ovarian surface epithelial (HOSE) immortalized (T29) 

and cancer (A2780 and OVCAR-3) cell lines was described in Chapter 5. These nano-

scaffolds were demonstrated as effective anticancer agents by preferentially killing tumor 

cells. My studies indicated that the viability of HOSE cancer cells (A2780) was significantly 

reduced upon exposure to NO-releasing 45 mol% AHAP3 silica nanoparticles (MIC = 750 

μM NO and IC50 = 30 μM NO). These values were significantly lower than those of small 
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molecule NO donors (e.g., MIC and IC50 for PYRRO/N2O2 were 4.5 and 1.8 mM NO, 

respectively), indicating that the nanoparticle-based NO delivery system is more effective 

against ovarian cancer cells. To evaluate the effect of particle size on cytotoxicity, silica 

nanoparticles (75 mol% MAP3, balance TEOS) of different sizes were synthesized (small 90 

± 10 nm and large 350 ± 50 nm). While the small diameter NO-releasing silica (S-MAP3) 

proved cytotoxic against both T29 and A2780 cells (12 ± 1.1 and 5 ± 0.2% survival, 

respectively), the larger NO-releasing silica (L-MAP3) exhibited greater cytotoxicity towards 

the tumor cells than non-tumor cells (37 ± 2.0 versus 6 ± 1.2% survival for T29 and A2780, 

respectively). Such size-dependent cytotoxicity of silica NO donors was attributed to the 

enhanced permeability and retention (EPR) effect, also known as a “passive” targeting. A 

couple of “active” targeting strategies for further modification of silica nanoparticles are 

discussed below. 

 

6.2 Future Research Directions 

The ability to tailor nanoparticle surface chemistry may allow for the doping of large 

stores of NO into polymer films without undesirable leaching of the nanoparticles and/or NO 

donor byproducts that have plagued previously reported systems.4 Furthermore, the 

hydrophobic nature of silica particles may prolong NO release duration because water 

triggers N-diazeniumdiolate decomposition.5 Hydrophobic silica nanoparticles may be 

synthesized using various ratios of aminoalkoxysilane (e.g., AHAP3 and MAP3), tetra-

alkoxysilane (e.g., TEOS), and hydrophobic or alkylalkoxysilanes. The addition of alkyl-

alkoxysilanes of different alkyl lengths (e.g., methyl-, ethyl-, hexyl- or octyltrimethoxysilane) 

and/or perfluorinated silanes (e.g., nonafluorohexyltrimethyoxysilane, tridecafluoro-1,1,2,2-

tetrahydrooctyl)trimethoxysilane, and [heptadecafluoro-1,1,2,2-tetrahydrodecyl]trimethoxy-
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silane) may also prove useful for preparing more hydrophobic nanoparticles. 

Alternatively, the nanoparticles may be coated with polymers (i.e., shells) to prolong 

NO release. Core/shell composites have been previously synthesized by encapsulating silica 

with shells consisting of polymers that are degradable, swell, and/or hydrophobic.6 The 

properties of the shell may prove useful for controlling NO release. For example, the 

degradation rate of poly(lactic acid-co-glycolic acid) (PLGA), a fully biodegradable aliphatic 

polyester,7 may be tuned by altering molecular weight and the ratio of copolymer compo-

sition, leading to a range of polymer degradation kinetics and associated NO release rates. As 

depicted in Figure 6.1, the shell decomposition would be an irreversible process that exposes 

NO donors to a protic environment (water) for subsequent N-diazeniumdiolate decompo-

sition (i.e., NO release). Similar to the degradable polymer core/shell system, hydrophobic 

xerogel polymers may slow the rate of water diffusion into the nanoparticle. 

The future for developing NO-releasing silica-derived anti-cancer agents includes 

synthesizing biocompatible nanoparticles capable of delivering NO to a specific site of 

interest. To deliver therapeutic concentrations of NO to tumor tissue, for example, the use of 

active targeting strategies including folate-folate receptor (FR) interactions should be 

investigated (Figure 6.2). Folate receptors are frequently overexpressed in many cancer types, 

with the highest frequency being ovarian cancers (>90%).8 Normal ovarian epithelial cells 

display lower levels of FR expression making the FR a valuable therapeutic target for the 

delivery of NO-releasing nanoparticles.9 The FR density also appears to increase with 

advanced stages of cancer tissue growth.10 A major advantage of folate-mediated drug 

conjugates is their incredibly low toxicity towards healthy tissue. The minimal normal cell 

expression of the FR coupled with the high binding affinity of folate to folate receptor should 
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Figure 6.1. Illustration representing formation of the NO donor silica core/ 
biodegradable polymer shell structure and its deformation/ 
degradation. 

 191



Figure 6.2. Folic acid activation and coupling to nanoparticle exterior: 
a) N-hydroxysuccinimide (NHS), dicyclohexylcarbodi-
imide (DCC), and dimethyl sulfoxide (DMSO); and b) 
primary amine terminated nanoparticle and DMSO. 

a 

b 
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allow the use of folate-modified nanoparticles to exhibit elevated selectivity for diseased 

tissue.11

Alternative chemistries for “active” targeting may include the use of magnetic core 

nanoparticles. Indeed, the use of magnetic nanoparticles for targeted delivery has been 

widely studied.12,13 The attractive characteristics of magnetic therapy over traditional drug 

delivery methods include: 1) minimally invasiveness and suitability for in vivo applications 

since magnetic fields are not screened by biological fluids and do not interfere with most 

physiological processes; and, 2) the delivery of high concentrations of drug to targeted areas 

without undesirable side effects on neighboring normal organs and tissues.14,15 Since the first 

reports on clinical experiments for the treatment of solid tumors in human patients with 

magnetic targeting of drugs in the mid 1990s, this strategy has been one of the most active 

research topics in drug delivery.14,15

The efficacy of magnetic therapy in vivo depends on the applied field strength as well 

as the size, stability, biocompatibility, and specific magnetic properties of the particle.12 

Many of these critical requirements may be achieved by varying the composition of the 

particle core (e.g., FePt, γ-Fe2O3, Fe3O4, and MnFe2O4), specific reaction/processing 

conditions (e.g., solvent systems, temperatures, reaction times, and types of catalysts and 

stabilizers), and/or the use of an appropriate shell structure.16 The shell layer may be a bi-

functional coating to both reduce cytotoxicity and the formation of bioaggregates, and impart 

NO storage/delivery compartments. To evaluate the feasibility of developing a magnetic NO 

delivery system, a novel core/shell composite could be synthesized by coating iron oxide 

(Fe3O4; magnetite) magnetic particles with an amine-modified silica shell structure. The 

synthetic route for preparing such nanoparticles is shown in Figure 6.3. 
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6.3 Conclusions 

Sol–gel chemistry represents a novel approach for synthesizing NO-releasing materials 

due to its tremendous flexibility in tuning NO release properties. In addition, control over 

reaction/processing conditions allows for the selection of physicochemical properties (e.g., 

density, permeability, and mesoporosity) that may also impact NO release. In my dissertation 

research, NO-releasing xerogel particle/polyurethane hybrid glucose biosensors were 

developed and characterized with respect to electrochemical performance and in vitro 

bacterial adhesion characteristics. Furthermore, xerogel membranes were synthesized via 

combination of various alkyl- and aminoalkoxysilanes as membrane for amperometric NO 

sensors. Finally, NO-releasing silica nanoparticles were synthesized using similar sol–gel 

processing methods. Both the synthetic approach used to prepare the N-diazeniumdiolate-

modified silica and the cytotoxic efficacy of such particles against human ovarian surface 

epithelial cancer cell lines were evaluated. 
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Figure 6.3. Synthesis of N-diazeniumdiolate-modified magnetic silica (core/ 
shell) nanospheres. 

Fe3O4

Core
Shell (Silica)

TEOS/
AHAP3 or

AEAP3
NO

(5 atm, 3 d)

N-Diazeniumdiolate
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