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ABSTRACT 
 

Joanna H. Fried: The Role of RasGRP3 in the Embryonic Response to Phorbol Esters and 
Diabetes 

 
(Under the direction of Victoria L. Bautch) 

 RasGRP3 is a novel endothelial diacylglycerol (DAG) receptor expressed in 

developing blood vessels.  Because DAG levels are elevated in diabetes, I hypothesized a 

role for RasGRP3 in the embryonic response to disrupted DAG signaling.  Using whole 

embryo culture, I ascertained differences between wildtype embryos and embryos 

genetically deleted for RasGRP3 exposed to excess glucose or phorbol 12-myristate 13-

acetate (PMA), a compound that mimics the effects of diacylglycerol.  Wildtype embryos 

exhibited numerous vascular and nonvascular defects when cultured with excess glucose 

and increased severity of defects when cultured with PMA, most notably in the yolk sac 

vasculature.  Deletion of RasGRP3 partially protected embryos from defects experienced 

by wildtype embryos cultured with PMA or glucose. I also analyzed embryos developing 

in a maternal diabetic environment induced by streptozotocin injection.  In this system, 

wildtype embryos had defects similar to those seen in embryo culture studies, while 

embryos deleted for RasGRP3 were partially protected.   
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CHAPTER 1: INTRODUCTION 
 

1.1. Blood vessel development 

 Proper development of blood vessels is critical both during embryonic 

development (to provide nutrients and allow gas exchange in developing organs) and 

during specific events in adulthood, such as during wound healing and growth of 

placental vessels during pregnancy.  Blood vessels develop via coordination of two 

processes: vasculogenesis and angiogenesis.  Vasculogenesis occurs as blood vessel 

precursors called angioblasts proliferate, differentiate, and migrate to form primitive 

blood vessels.  Angiogenesis occurs as those primitive vessels are remodeled through 

further migration and proliferation.  Processes such as sprouting of new vessels off pre-

existing ones and pruning of existing vessels help to form a branched vascular plexus (for 

review: Beck and D'Amore 1997).  This remodeling process occurs along with 

recruitment of pericytes and smooth muscle cells to bolster the walls of some vessels.  

Both vasculogenesis and angiogenesis must occur properly to form a fully functional 

vascular plexus, and it is the coordination of these processes with other developmental 

programs that result in temporally and spatially consistent vascular patterning (for 

review: Hogan and Bautch 2004).  Blood vessel development begins around E7.5 in mice 

and continues throughout gestation.  During mid-gestation, it generally progresses in an 

anterior to posterior fashion. 

 

 



 

1.2. Signaling pathways 

 Many signaling pathways contribute to blood vessel patterning, including the 

Notch, Ephrin, and TGF-β pathways, as well as a variety of signals controlling cell-cell 

and cell-matrix interactions (Jain 2003).  In our lab, we are primarily interested in the 

VEGF-A and Ras signaling pathways.  We have only recently developed an interest in 

the Ras signaling pathway, as recent work in the lab has discovered a VEGF-responsive 

gene involved in the Ras signaling pathway that is expressed in developing blood vessels.  

A more detailed introduction to these signaling pathways and our interest in them is 

provided below. 

VEGF signaling 

 The VEGF family of mammalian proteins contains five members, all of which are 

secreted ligands that bind to tyrosine kinase receptors on their target cells.  Family 

members include VEGF-A, VEGF-B, VEGF-C, VEGF-D, and Placental Growth Factor 

(PlGF), all of which have roles in development (for review: Yamazaki and Morita 2006).  

VEGF-A was the first family member discovered and has been the most well-

characterized.  It has diverse roles in the developing embryo, functioning in the 

patterning of bone and the nervous system as well as in its well-characterized role as a 

potent pro-angiogenic factor (for review: Coultas et al. 2005).   

 VEGF-A (hereafter called VEGF) exists as several isoforms generated by 

alternative splicing that are secreted from hypoxic cells and differ in their degree of 

association with the ECM, thereby presumably providing some molecules which can 

diffuse to more distant targets while others remain near the non-endothelial source 
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(Ruhrberg et al. 2002).  When VEGF reaches its target cell, it binds the high-affinity 

membrane-bound receptor Flk1 (VEGFR-2 in humans).  Flk1 mediates most of the 

downstream intracellular signaling functions of VEGF, including increased proliferation, 

migration, and survival of endothelial cells (Ferrara et al. 2003 ; Cross et al. 2003).   

 In addition to signaling through Flk-1, VEGF also binds the soluble or membrane-

bound receptor Flt-1 (VEGFR-1) which acts as a negative regulator of angiogenesis 

during development (Kearney et al. 2002; Kearney 2004; Tanaka et al. 1997; Shibuya 

2001).  Mouse-derived ES cells can differentiate in vitro to form numerous cell types, 

including endothelial cells. ES-cell-derived blood vessels mutant for Flt1 experience an 

overgrowth of endothelial cells (Kearney et al. 2002), making this mutation the 

equivalent of a VEGF gain of function.  A similar phenotype has been observed in vivo in 

embryos with a Flt1 null mutation (Fong et al. 1995; Kearney et al. 2002). 

 In addition to Flk-1 and Flt-1, VEGF binds Neuropilin-1 (Npn-1) on endothelial 

cells (Gu et al. 2003).  Npn-1 acts as a co-receptor for VEGF, enhancing its signaling 

through Flk-1 to regulate angiogenesis by stimulating branching and growth of blood 

vessels (Soker 2002).   There are many VEGF-responsive genes expressed during 

development. One of these is the Ras activator RasGRP3.  This was shown by Northern 

blot analysis of human endothelial cells stimulated with VEGF-A (Roberts et al. 2004).  

This, as well as work from other labs, provides evidence for a link between the VEGF 

and Ras signaling pathways during angiogenesis (Berra et al. 2000; Kranenburg et al. 

2004). 
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Ras signaling 

 The Ras superfamily of proteins consists of more than 20 members that are 

involved in a wide variety of cellular processes.  The members of this superfamily in 

which we are particularly interested  are the small GTPase Ras and its closest relative, 

Rap1.  We are interested in these two proteins because we know they are activated by our 

protein of interest, RasGRP3 (see below). Ras is localized primarily to the plasma 

membrane and has a wide variety of downstream effectors, resulting in modulation of 

gene expression of various targets. One key endpoint of Ras activation in some cell types 

is the destabilization of cell-cell junctions, which occurs by downstream signaling 

through the MAPK cascade involving Mek and Erk (Lu et al. 1998). 

 Rap1 is another small GTPase, but it is localized predominantly in the perinuclear 

region (specifically, in the endoplasmic reticulum and Golgi apparatus).  Rap1 has some 

of the same downstream effectors as Ras, and early studies suggested that Rap1 

functioned to competitively inhibit Ras activity by binding to some of the same 

downstream effectors, such as Raf1 (Repasky et al. 2004).  More recent studies, however, 

have found numerous independent downstream pathways through which Rap1 may 

function (Kooistra et al. 2007).  One key function of Rap1 is the stabilization of cell-cell 

junctions (Bos 2005; Knox and Brown 2002), which it accomplishes by regulating 

cadherin-based cell-cell contacts as well as assembly and disassembly of myosin-II (Jeon 

et al. 2007).  Rap1 is also important in establishing and maintaining cell polarity 

(Schwamborn and Puschel 2004). 

 Ras family members exist in an inactive GDP-bound state and are activated by 

several families of guanine exchange factors (GEFs).  A GEF forms a complex with the 
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Ras family member to cause release of the GDP molecule, allowing binding of GTP to 

take place, thereby activating the Ras protein (for review: Bourne et al. 1990).  The 

specificity of RasGEFs for the various Ras family members is complicated, with some 

GEFs activating multiple proteins and some proteins being activated by multiple GEFs 

(Tian and Feig 2001).  Three families of RasGEFs have been identified thus far: Son-of-

sevenless (Sos), Ras guanosine nucleotide releasing factors (RasGRFs), and Ras 

guanosine nucleotide releasing proteins (RasGRPs) (for review: Quilliam et al. 2002).  Of 

these, we are most interested in the RasGRP family because it contains two members 

expressed in the developing vasculature.   

 There are four members of the RasGRP family of RasGEFs.  These proteins are 

all similar structurally but are localized to different cell types and have varying 

specificities for which specific Ras family member they activate.  RasGRP3 is of most 

interest to us, for the reasons detailed below. 

1.3. RasGRP3 

 Our lab became interested in RasGRP3 before I joined, based on its identification 

through a gene-trap screen looking for novel genes expressed in the developing 

vasculature.  The insertion of the lacZ gene-trap resulted in a null mutation 

(RasGRP3gt/gt), but mutant mice are viable and fertile and are born at expected Mendelian 

frequencies (Roberts et al. 2004).  Although these results showed that RasGRP3 is not 

required during normal development, my thesis project focused on understanding its 

potential role in development during situations when normal signaling is disrupted. 

 RasGRP3 is one of the first non-PKC diacylglycerol (DAG) receptors to be 

described (Teixeira et al. 2003).  Like other RasGRP family members and unlike 
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members of the other two families of RasGEFs, RasGRP3 is not tethered to a membrane-

bound receptor.  Instead, it can be found localized subcellularly in the perinuclear region, 

specifically in the endoplasmic reticulum and Golgi apparatus (Lorenzo et al. 2001).  Due 

to this localization, RasGRP3 is able to activate the specific population of Ras localized 

to the Golgi, unlike other Ras activators tethered via adaptor proteins to the plasma 

membrane and restricted to activating the Ras there (Caloca et al. 2003).   However, if 

RasGRP3 becomes localized to the plasma membrane, it can also activate that 

populations of Ras or Rap localized there (Stope et al. 2004). 

  RasGRP3 contains several functional motifs that are also common to other 

RasGRP family members.  These motifs include a catalytic GEF domain that is active in 

removing the GDP molecule from RasGRP3 targets, a pair of calcium-binding E/F hands 

whose roles are still being elucidated, and also a C1 domain.  The C1 domain is essential 

in that it is responsible for binding DAG to target RasGRP3 to the plasma membrane.  

This reliance on the second messenger DAG sets RasGRP3 apart from the Sos and GRF 

families of RasGEFs, and the specificity of its C1 domain differs from that of other GRP 

family members, some of which bind phospholipids other than DAG and have varying 

affinities for DAG and phorbol esters (Johnson et al. 2007).  Another difference between 

RasGRP3 and other family members is the existence of a DLC1 domain in RasGRP3, 

which binds dynein light chain 1 (Okamura et al. 2006).  In addition to a requirement for 

binding DAG, RasGRP3’s GEF function seems to hinge on its phosphorylation state, and 

this phosphorylation is PKC-dependent (Zheng et al. 2005).  RasGRP3 has been shown in 

vitro to activate Ras, Rap1, and R-Ras (Rebhun et al. 2000; Reuther et al. 2002). 
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  As mentioned previously, RasGRP3 is a VEGF responsive gene.  It is expressed 

in endothelial cells and is upregulated in response to a VEGF signal.  RasGRP3 is 

expressed during development in the developing blood vessels and early somites.  It is 

downregulated in adult tissues but is reexpressed in adult blood vessels undergoing 

physiological or pathological angiogenesis, such as in maternal vessels of the decidua 

during pregnancy and in the invading vessels during tumorigenesis (Roberts et al. 2004). 

 Redundancy between other RasGRP family members may explain the lack of 

phenotype in RasGRP3gt/gt mice, and RasGRP2 is the most likely candidate for 

redundancy because it is the only other RasGRP family member expressed in an 

endothelial cell line (D. Roberts, unpublished data). It is also the only other family 

member that has been reported to activate both Ras and Rap1 (Clyde-Smith et al. 2000). 

 The results of previous experiments in our lab led us to hypothesize a role for 

RasGRP3 in development during abnormal signaling events.  DAG activity can be 

mimicked in vitro through use of the compound phorbol 12-myristate 13-acetate (PMA), 

which induces RasGRP3 relocalization to the plasma membrane (Lorenzo et al. 2001).  

When ES cultures differentiated in vitro are treated with 100nM PMA, they show a 

phenotype marked by formation of endothelial sheets which looks very similar to the 

previously mentioned phenotype of Flt1 mutant endothelial cells.  RasGRP3gt/gt cells are 

refractory to this PMA treatment and form a normal vascular plexus when treated with 

PMA (Roberts et al. 2004).  Therefore, even though the viability of RasGRP3gt/gt mice 

indicates that RasGRP3 is not required under normal physiological conditions, the 

phenotype seen in this differentiated ES cell experiment suggests it is potentially required 

to mediate certain abnormal/disease states, most likely when DAG is elevated. 
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1.4. Diabetes 

 Diabetes is one disease that has been shown both in vitro and in vivo to be marked 

by elevated DAG levels in many cell types (Craven 1989; Verrier et al. 2004).  Evidence 

indicates that these elevated DAG levels result from an increase in de novo DAG 

synthesis during metabolism of the elevated amounts of glucose present in diabetes 

(Craven 1990).  In diabetes, DAG is synthesized de novo from products of glycolysis 

such as dihydroxyacetone phosphate and glycerol 3-phosphate (Lee et al. 1989). Elevated 

DAG levels highly correlate with many of the complications of diabetes and are 

accompanied by an increase in activation of PKC.  DAG activates PKC by targeting it to 

the plasma membrane by binding its C1 domain, and activated PKC is involved in 

activation of numerous signaling pathways which result in many of the vascular 

complications of diabetes (Koya and King 1998). 

 The physiological response to elevated blood glucose levels depends on hormone 

production by the pancreas.  The pancreas contains specialized groups of cells called 

Islets of Langherhans which contain several different cell types grouped around 

interspersed capillaries.  The two pancreatic cell types in these islets that are most 

relevant to diabetes are the β-cell and the α-cell, each of which is specialized to produce 

one hormone important in glucose homeostasis.  Under normal physiological conditions, 

a feedback loop exists in the body such that elevated blood glucose levels stimulate the β-

cells to increase their production of insulin, while lower blood glucose levels cause the α-

cells to increase their production of glucagon.  Glucagon stimulates hydrolysis of 

glycogen in the liver to release more glucose into the bloodstream to bring blood glucose 

levels back up. Conversely, insulin functions both at the liver to stimulate increased 
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storage of glucose as glycogen and at a wide assortment of body tissues to stimulate 

increased uptake of glucose from the blood.  Both of these functions of insulin result in 

blood glucose levels decreasing back to an acceptable level.   

 Diabetes results when there are problems in this feedback system that allow the 

blood glucose level to remain consistently higher than normal.  There are 2 types of 

diabetes, both of which result in hyperglycemia but through different mechanisms. Type I 

diabetes is an autoimmune disease caused by destruction of pancreatic β-cells leading to 

loss of insulin production.  With no insulin production, blood glucose levels climb and 

tissues are exposed to pathogenic concentrations of glucose. Type II diabetes, on the 

other hand, is caused by cells developing insulin-resistance.  In Type II diabetes, the 

pancreas still senses hyperglycemia and responds by increasing insulin production, but 

target tissues have reduced capacity to respond to the insulin signal and fail to filter the 

glucose from the blood.  

 Diabetes is a disease marked by problems in practically every system in the body, 

including numerous occurrences of vascular complications, or vasculopathy. These 

complications directly correlate with the level of hyperglycemia that exists (Algenstaedt 

et al. 2003).  One example of diabetic vasculopathy in the adult occurs in the retina, 

where numerous vascular problems occur that are collectively termed diabetic 

retinopathy.  Diabetic retinopathy is marked by increased permeability (leakiness) and 

occlusion of some vessels, resulting in hypoxia that induces neovascularization, which is 

growth of some vessels into what are supposed to be avascular areas (for review: Gariano 

and Gardner 2004; Zhang et al. 2005).  These problems will eventually cause blindness, 

as hemorrhaging and accumulation of scar tissue lead to retinal detachment.  Diabetic 
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retinopathy is one of the leading causes of blindness in the world.  Diabetic nephropathy, 

or kidney disease, is also a vascular problem.  Progressive thickening of the glomerulus 

eventually destroys the kidney’s filtering capacity, and leaky vessels allow important 

components such as serum proteins to pass into the urine (for review: Mogensen 1983). 

There is also an increased incidence of cardiovascular disease (Haffner et al. 1998), as 

well as problems such as limb ischemia that often result in amputation of limbs. 

 In addition to these problems in the adult, there is also a two to four-fold increase 

in the incidence of birth defects in offspring of diabetic females compared to offspring of 

nondiabetic mothers (Eriksson 1991).  These birth defects include both vascular and 

nonvascular problems, with cardiovascular complications among the most common 

defects observed (Becerra 1990).  Common nonvascular problems include neural tube 

closure defects and improper patterning of the body axis.  Vascular problems include 

many defects in tissues such as the yolk sac and placenta that form the interface between 

mother and fetus and that are key to maintaining nutrient supply between the maternal 

systems and the developing embryo.   

 Normal vascular patterning of the murine yolk sac proceeds in a well-

characterized fashion. Endothelial precursor cells are visible by E7.0, very shortly after 

origination of the yolk sac, and by E10.0 a fully functional circulation is present 

(Auerbach et al. 1996).  At E8.5, a plexus of primitive, homogeneous vessels has formed, 

which is remodeled between E8.5 and E9.5 to form a hierarchial arborized plexus by 

E9.5 (Wang 1998).  This is also the time during which bloodflow is established through 

the yolk sac vasculature and the embryo becomes dependent on it for survival.  Defects in 

the yolk sac vasculature can therefore result in embryonic defects or fatality.  Diabetes-
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related defects in the yolk sac vasculature have been observed in yolk sacs of embryos 

grown in hyperglycemic conditions using whole embryo culture as well as in yolk sacs of 

embryos from streptozotocin-induced diabetic mothers (Pinter et al. 1999; Pinter et al. 

2001).  These defects may result from disruption of normal VEGF-A signaling during 

hyperglycemia (Pinter et al. 2001).   

 Because DAG is elevated in diabetes and RasGRP3 is activated by DAG, I 

hypothesized a role for RasGRP3 in mediating the embryonic vascular defects seen in 

diabetes.  By treating embryos with DAG-mimicking PMA in a whole-embryo culture 

system, I can determine whether RasGRP3 has a role in mediating the embryonic 

response to this compound.  Also, by using the whole-embryo culture system and treating 

embryos with excess glucose, I can determine whether RasGRP3 mediates the response 

of embryos to elevated glucose levels.  I also used another, more biologically-relevant 

approach to this question by creating diabetic mice via streptozotocin injection.  

Streptozotocin has been used for years to generate Type I diabetes in lab animals. By 

using this system, I can compare effects of diabetes on development of embryos in mice 

that are wildtype or mutant for RasGRP3.  I hope by these experiments to further 

understand the role of RasGRP3 in development, specifically in systems experiencing 

abnormal signaling events. 
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CHAPTER 2: MATERIALS AND METHODS 
 

Rat serum isolation 

 Rat serum was obtained using 19-gauge needles to collect blood from the aortas 

of retired male breeder rats deeply anesthetized with ether.  Blood was decanted into 

15mL conical tubes and immediately centrifuged at speed setting 7 on a tabletop 

centrifuge at room temperature.  Serum was removed from the top layer with a pasteur 

pipet and collected in a fresh tube on ice.  The fibrin clot in the original tube was 

squeezed with forceps and then centrifuged again.  Serum was removed with a pipet after 

each centrifuge step until no additional serum was released from the clot.  Serum was 

pooled into groups A, B, and C based on its quality, with A being the highest-quality, 

hemolysis-free serum.  Serum from batch A was used for all embryo culture experiments.  

Serum was heat-inactivated for 30 minutes at 56°C.  Serum was then stored at -80°C until 

immediately before use, when it was thawed at room temperature and had 5% CO2 

bubbled through it for two minutes to eliminate residual ether.   

 

Whole embryo culture 

 Embryos were dissected into M2 media from maternal decidua with their yolk 

sacs intact.  Dissections were performed on either E7.5 or E8.5 (based on counting 

midday of the day a plug was observed as E0.5).  Embryos were cultured for 24 hours in 

25mL Nunc screwcap tubes on rollers at 37°C. Culture media contained 50% rat serum, 

50% Tyrode’s salt solution, and 0.1X penicillin/streptomycin and was sterile filtered 



using a 0.2 µM filter.  A minimum of 0.75 mL of media was used per embryo.  During 

culture, the media was treated at 12-hour intervals with a gas mixture containing 20% O2 

and 5% CO2 and the tubes were sealed with vacuum grease.  Some embryos started in 

culture at E7.5 were treated with 50nM PMA (phorbol 12-myristate 13-acetate), while 

some embryos started in culture at E8.5 were treated with 20mM glucose.  After 24 

hours, embryos were dissected away from the yolk sac in PBS. Wholemount pictures 

were taken before and after dissection, after which embryos were fixed for staining. 

 

Genotyping of embryos from RasGRP3gt/+ x RasGRP3gt/+ crosses 

 Embryos from RasGRP3 intercross litters were genotyped using a fragment of 

yolk sac removed during the final dissection.  PBS was removed from the tissue and the 

tissue was stored at -20°C in 1.5mL tubes until use. DNA was extracted from yolk sacs 

by incubation for one hour at 95°C in 30µL of 25mM NaOH + 0.2mM EDTA, followed 

by neutralization with 30µL of 40mM TrisHCl, pH 5.  Two PCR amplification reactions 

were performed for each sample: a RasGRP3 reaction which ran for 30 cycles and a LacZ 

reaction which ran for 36 cycles. Each LacZ reaction contained 5 µL DNA, 11.625 µL 

dH2O, 2.5 µL 10X Qiagen PCR buffer with dye, 0.2 µL 25mM dNTPs, 0.25 µL each 

forward and reverse primers, 5 µL Q buffer, and 0.175 µL Taq polymerase. Each 

RasGRP3 reaction contained 5 µL DNA, 11.725 µL dH2O, 2.5 µL 10X Qiagen PCR 

buffer with dye, 0.2 µL 25mM dNTPs, 0.2 µL each forward and reverse primers, 5 µL Q 

buffer, and 0.175 µL Taq polymerase  The primers for the RasGRP3 reaction were 

forward 5’-AGAGAACCACTGCCTCGTAC-3’ and reverse 5’-

GTGTTGCCGCTTTCCCGAGC-3’.  The primers for the LacZ reaction were forward 5’-
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TTGAAAATGGTCTGCTGCTG-3’ and reverse 5’-TTGGCTTCATCCACCACATA-3’.  

Products were analyzed on a 3% agarose/TBE gel with ethidium bromide.  

 

Wholemount PECAM staining of embryos and yolk sacs 

 Embryos were dissected into ice-cold PBS and then fixed in 4%PFA/PBS 

overnight at 4°C, with one embryo or yolk sac per well of a 48-well plate.  All wash steps 

used a minimum 200µL of solution per well.  Embryos were washed 15 minutes in PBS, 

then dehydrated through a methanol:PBS series (15 minutes each, same methanol:PBS 

series described above).  Endogenous peroxidase activity was blocked by incubating 4 

hours at RT with 5%H2O2 in methanol.  Embryos were stored overnight in 100% 

methanol at -20°C, then rehydrated through a methanol/PBS series, blocked 2x 1 hour in 

PBT (0.2%BSA, 0.1% Triton X-100 in PBS), and incubated overnight at 4°C in 1:200 rat 

anti-mouse CD-31 (PECAM) primary antibody (BD Pharmingen 553370) in PBT.  

Embryos were rinsed 5x 1hour in PBT and incubated overnight at 4°C in 1:200 goat anti-

rat HRP-conjugated secondary antibody (Kirkegaard & Perry, cat. #474-1612) in PBT.  

Embryos were rinsed 5x 1hour in PBT, then developed for 20 min. at RT in DAB 

solution (Vector Laboratories, cat. #SK-4100).  After developing, embryos were rinsed 

2x 5 minutes in PBT, 2x 5 minutes in PBS, and fixed overnight at 4°C in 

2%PFA/0.1%glutaraldehyde in PBS.  Embryos were rinsed 3x 5 minutes in PBS, then 

stored in PBS at 4°C. 
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Xgal staining for β–galactosidase expression 

 Embryos were dissected into PBS, then washed 1x 5 minutes in 0.1M phosphate 

buffer (0.1M sodium phosphate monobasic, 0.1M sodium phosphate dibasic).  Embryos 

were fixed (15 minutes for E7.5 or 8.5 embryos, 30 minutes for E9.5 or 10.5 embryos) in 

gluteraldehyde fixative made fresh before use.  Embryos were then washed 3x 15 minutes 

in Xgal wash buffer at room temperature, then incubated overnight at 37°C in Xgal stain 

(made fresh every two weeks).  The following morning, embryos were washed 1x 15 

minutes in Xgal wash buffer, then fixed overnight at 4°C in gluteraldehyde fixative.  The 

following morning, embryos were washed 1x 5 minutes in PBS, then underwent paraffin 

embedding and sectioning as described above. 

 

Paraffin embedding and sectioning of embryos 

 After PECAM antibody-staining or Xgal staining, embryos were dehydrated 

through a PBS:methanol series (100% PBS, 75% PBS:25% methanol, 50% PBS:50% 

methanol, 25% PBS:75% methanol, then 100% methanol for 10 minutes each), then were 

transferred to glass vials and incubated 2x 10 minutes in 100% ethanol.  Embryos were 

cleared 3x 5 minutes in HistoClear, then changed to 100% paraffin for 1 hour. Embryos 

were then incubated overnight at 58°C in fresh paraffin.  Paraffin was changed out until 

all residual HistoClear had been removed, at which time the embryos were embedded in 

disposable plastic embedding molds and left to harden overnight.  Twelve µM sections 

were taken and floated on distilled water on slides and left to dry overnight.  Sections 

were cleared for 7 minutes in HistoClear and then rehydrated through an ethanol:PBS 

series (100% ethanol, 75% ethanol:25% PBS, 50% ethanol:50% PBS, 25% ethanol:75% 
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PBS, 100% PBS, 100% PBS, all for 2 minutes each). Rehydrated slides were dried for 2 

minutes, after which several drops of GlycerGel Mounting Media were placed on the 

slide and a coverslip was floated on top and allowed to set overnight.   

 

Induction of diabetes via streptozotocin injection 

 Streptozotocin (stored at -20°C) was dissolved to a final concentration of 

7.5mg/mL in 0.1M Na-Citrate buffer (pH 4.5) immediately prior to injection.  Female 

mice (ideally 6-8 weeks of age and weighing 20-25g) were injected intraperitoneally with 

a dose of 50mg STZ per kg mouse (on average, a volume of 150-200µL per mouse) for 5 

consecutive days.  Injections were given after noon so that mice would have fasted 

several hours pre-injection (because they are nocturnal).  Blood glucose levels of mice 

were monitored using a OneTouch Ultra device to read glucose levels of blood acquired 

from a nick in the distal portion of the tail.  Mice were considered diabetic with blood 

glucose levels over 250mg/dL.  Most mice become diabetic by 2 to 3 weeks after the last 

injection and remained diabetic long-term.  Once mice were diabetic, they were mated 

and embryos were dissected out at E9.5. 
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CHAPTER 3: RESULTS 

 
3.1. Effects of RasGRP3 on the embryonic response to phorbol ester 

 As mentioned previously, RasGRP3 is required in differentiated ES cells for a 

response to treatment with the phorbol ester PMA.  Wildtype ES cells form endothelial 

sheets in response to PMA treatment while RasGRP3gt/gt ES cells are refractory to this 

response (Roberts et al. 2004).  I wanted to test the hypothesis that RasGRP3 is also 

required in vivo for the embryonic endothelial response to PMA.  

 I tested this hypothesis using whole embryo culture to grow E7.5 mouse embryos 

for 24 hours either with or without PMA.  I chose this stage of development because the 

embryo is not yet fully dependent on the yolk sac for survival at E7.5.  PMA is known to 

disrupt development of the yolk sac (Chen 1994), making it imperative that these 

experiments be performed prior to the stage at which dependence of the embryo on the 

yolk sac makes any effects of PMA treatment lethal to the embryo.  My initial 

experiments were performed using 100nM PMA.  This concentration was chosen based 

on a dosage curve previously performed showing that the endothelial response to PMA 

occurred over doses ranging from 10nM to 1000nM (D. Roberts, unpublished results).  

Embryos in these initial experiments experienced such severe defects that I reduced the 

PMA concentration to 50nM in subsequent experiments. 

 My first experiments were performed separately on RasGRP3gt/gt embryos or 

wildtype embryos.  These wildtype embryos were from a strain of mice that express β-

galactosidase through a gene trap knockin at the PECAM locus.  PECAM (platelet 



endothelial cell adhesion molecule) is expressed primarily in endothelial cells, so I used 

Xgal staining to visualize the developing blood vessels in these embryos. These 

experiments showed that wildtype embryos exhibited severe defects when treated with 

100nM PMA, while RasGRP3gt/gt embryos appeared indistinguishable from controls 

(Figure 1A-D).  As expected based on the gross defects seen in wildtype embryos treated 

with PMA, quantitation of general health characteristics of embryos in these experiments 

confirmed that wildtype embryos treated with 100nM PMA were unhealthy compared to 

control wildtype embryos.  Wildtype embryos treated with 100nM PMA had 

cardiovascular problems such as lack of heartbeat as well as nonvascular problems 

including failure of somites to develop.  RasGRP3gt/gt embryos treated with 100nM PMA 

were as healthy as their control counterparts based on these marks of general health 

(Table 1).  I also examined the yolk sacs of these embryos, and I noticed severe defects in 

the yolk sac vasculature of wildtype embryos cultured with 100nM PMA.  The vessels 

appeared abnormally large and were very irregularly-shaped compared to controls 

(Figure 1E, F).  In contrast, RasGRP3gt/gt yolk sacs had a more moderate phenotype.  

While the vessels in RasGRP3gt/gt yolk sacs appeared larger and more irregular than yolk 

sacs cultured without PMA, the severity of the phenotype was much reduced compared to 

that of the wildtype embryos (Figure 1G).   

 While these results were interesting, it was clear that I needed to reduce the PMA 

concentration.  Culture with 100nM PMA had such drastic and detrimental effects on 

wildtype embryo development that it was impossible to determine whether any vascular-

specific effects had taken place in the embryo.  By reducing the PMA concentration to 

50nM, I hoped that embryos would undergo more normal development and that I would 
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be able to see vascular-specific defects rather than gross morphological defects.  

Wildtype embryos cultured with 50nM PMA did, in fact, develop much more normally 

than they did when treated with 100nM PMA, although development was still clearly 

affected by the PMA (Figure 1H). 

 In addition to reducing the PMA concentration to clarify the results, I also wanted 

to perform a better-controlled experiment.  I accomplished this first by switching my 

staining methods from Xgal staining to PECAM antibody staining to eliminate any 

differences based on the different reporter strains of mice.  Another advantage of using 

PECAM antibody staining was that intersomitic vessels could be seen in RasGRP3gt/gt 

mice, which could not be seen in Xgal-stained embryos due to transient somitic 

expression of RasGRP3 during development.  Additionally, I performed experiments on 

RasGRP3 intercross litters to have internal controls.  By crossing two RasGRP3gt/+ mice, 

I had RasGRP3gt/gt, RasGRP3gt/+, and RasGRP3+/+ (wildtype) embryos all included in the 

same experiment.  While these embryos were still not genetically identical, there was a 

much higher degree of genetic similarity between these siblings than there was between 

the random and highly-varied genetic backgrounds of the embryos I had used in my 

initial experiments.   

 Culturing embryos from RasGRP3 intercross litters with 50nM PMA confirmed 

the results of my preliminary experiments.  Differences between the genotypes were 

striking immediately after the conclusion of their 24 hours in culture.  Some of these 

embryos that had been treated with 50nM PMA appeared indistinguishable from embryos 

cultured without PMA (Figure 2A,C,I), while other embryos treated with 50nM PMA 

exhibited a severe phenotype marked by a puckered or otherwise irregularly-shaped yolk 
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sac and by abnormal interconnections between the yolk sac and the amnion (Figure 2E).  

There was also a phenotype intermediate between these two in which the yolk sac’s shape 

was often slightly modified from its normal round appearance and some interconnections 

between the amnion and yolk sac were visible (Figure 2G).  

 Based on my initial experiments using 100nM PMA, I hypothesized that the most 

severe defects were experienced by wildtype embryos and that the embryos 

indistinguishable from the controls were RasGRP3gt/gt embryos.  After characterizing the 

phenotypes, I determined the embryos’ genotypes by extracting DNA from a fragment of 

each yolk sac.  PCR amplification and analysis of these samples confirmed my 

hypothesis: RasGRP3gt/gt embryos appeared normal when cultured with 50nM PMA, and 

wildtype embryos had the most severe defects.  Interestingly, I found that RasGRP3gt/+ 

embryos experienced an intermediate response to culture with 50nM PMA.  Most of 

these heterozygous embryos had phenotypes that, while abnormal, were not as severe as 

those seen in wildtype embryos.  Some heterozygous embryos appeared completely 

normal when examined immediately after the 24 hour culture period ended.   

 After examining the general morphology of these embryos and their yolk sacs, I 

dissected the embryo away from the yolk sac and performed PECAM antibody staining 

to analyze the vascular patterning of these embryos.  These results mirrored those 

described above for general morphology.  When matched to their genotype, I determined 

that RasGRP3gt/gt embryos treated with PMA had vessel patterns most similar to the 

control embryos.  They had a vessel plexus forming in the head and also had some 

intersomitic vessels (Figure 2B,D).  Wildtype embryos treated with PMA had the most 

severe phenotype.  They were less developed than the other genotypes even though they 
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were littermates, and no distinct blood vessel staining was visible (Figure 2F).  

RasGRP3gt/+ embryos again displayed a range of phenotypes: some appeared normal, 

with a developing head plexus and intersomitic vessels (Figure 2J) while others were 

smaller and less-developed with no clear vessel staining (Figure 2H).  This range of 

phenotypes in RasGRP3gt/+ embryos correlated with the state of abnormality seen in their 

yolk sacs, with the most abnormal embryos growing in the most abnormal yolk sacs.  

Table 2 summarizes the general health as well as the specific vascular defects seen in the 

different genotypes. 

 Based on these results, I concluded that RasGRP3 is required to mediate the 

embryonic response to PMA.  My RasGRP3 intercross embryo culture experiments 

provide strong evidence that RasGRP3 is required for embryos to experience the full 

range of adverse effects from prolonged exposure to phorbol ester.  Furthermore, based 

on the severity of phenotype seen in the yolk sac and amnion, it is possible that defects 

seen in the embryo proper are secondary to disruptions in development of the yolk sac 

and connections to the mother.  The mechanism for this response is still under 

investigation.  Ongoing experiments seek to further characterize the specific defects in 

the yolk sac and determine the extent of the yolk sac’s role in the response to PMA. 

 

3.2. Effects of RasGRP3 on the embryonic response to elevated glucose levels in vitro 

 Based on results suggesting that RasGRP3 is required for the embryonic response 

to PMA, I next wanted to determine whether RasGRP3 is also required for embryos to 

respond to treatment with elevated glucose levels.  As previously mentioned, the blood 

glucose level is elevated in diabetic individuals, and metabolism of this excess glucose 
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results in higher exposure of cells to DAG.  I hypothesized that treatment of embryos 

with PMA mimicked elevated DAG exposure, so I asked whether embryos incubated 

with an elevated concentration of glucose also exhibited defects.  To test this hypothesis, 

I performed embryo culture of E8.5 embryos for 24 hours, with or without addition of 

20mM glucose.  Use of E8.5 embryos and the concentration 20mM glucose were chosen 

based previous work characterizing defects in wildtype embryos exposed to elevated 

glucose in a whole embryo culture system during this time period (Pinter et al. 1999). 

 Results of these preliminary experiments suggest that RasGRP3 is also required 

for the embryonic response to elevated glucose levels.  Wildtype embryos cultured with 

glucose have defects in the vascular plexus of the head as well as many nonvascular 

defects such as open neural tubes.  RasGRP3gt/gt embryos have no obvious vascular or 

nonvascular defects when cultured with glucose (Figure 3).  It is possible that defects in 

the wildtype embryos are secondary to yolk sac defects, but further analysis and more 

experiments would be required to determine this, as yolk sacs were not analyzed in these 

experiments.  This was because the yolk sac phenotype observed in embryo culture 

experiments with PMA had not yet been observed when these embryo culture 

experiments with glucose were performed.  However, potential defects in the yolk sac of 

these embryos are most likely not as severe as those seen in wildtype embryos cultured 

with PMA, because embryos cultured with glucose are still able to establish blood flow in 

the yolk sac vasculature.  In fact, both wildtype and RasGRP3gt/gt embryos cultured with 

glucose are as healthy as their control counterparts in terms of establishing heartbeat, 

yolk sac bloodflow, and somite development (Table 3).  The maintenance of general 

health in these embryos even when cultured with glucose suggests that the defects I saw 
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are more likely to be specifically vascular rather than secondary effects of a nonvascular 

problem. 

 

3.3. Effects of RasGRP3 on the embryonic response to streptozotocin-induced 

diabetes 

 Based on my preliminary experiments with embryos exposed to elevated glucose 

and on my striking results with RasGRP3 intercross litters of embryos exposed to PMA, I 

next wanted to see if there was a difference in the way embryos respond in vivo to the 

more complex system of growth in a diabetic maternal environment.  I injected female 

mice with streptozotocin (STZ), which results in destruction of the insulin-producing β–

cells of the pancreas to create the same type of situation experienced in type I diabetes.  

Once these mice were diabetic, I mated them and observed what effects this maternal 

diabetic environment had on the development of embryos.  Embryos would presumably 

respond to the elevated levels of glucose circulating in the maternal bloodstream by 

elevating DAG levels.  Previous work has shown that approximately 40% of wildtype 

embryos grown in a streptozotocin-induced diabetic environment exhibit vascular or 

nonvascular defects (Pinter et al. 1999).  Additionally, these embryonic defects have been 

found to occur in conjunction with defects in the yolk sac vasculature (Pinter et al. 1986).  

I wanted to know if RasGRP3 must be present in the embryo in order for these defects to 

occur. 

 The first embryos from diabetic mothers that I analyzed were wildtype or 

RasGRP3gt/gt embryos from a mother of the same genotype.  These mice were on a mixed 

genetic background.  There was a significantly higher incidence of both vascular and 
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nonvascular defects in wildtype embryos compared to RasGRP3gt/gt embryos from 

diabetic mothers (Table 4).  Defects seen in wildtype embryos included nonvascular 

defects such as an improperly patterned body axis or failure of the neural tube to close 

(Figure 4 A,B,D).  Vascular defects such as crooked, thickened, or truncated intersomitic 

vessels and reduced small vessels in the vascular plexus of the head were also seen 

(Figure 4A-D).  The yolk sac vasculature in these wildtype embryos also had visible 

defects.  A vascular plexus formed in these yolk sacs, but it was not organized as the 

arborized, hierarchial vascular structure seen in normally-developed yolk sacs (Figure 

4H,I). The majority of RasGRP3gt/gt embryos observed developed normally and formed a 

well-developed head plexus and straight, narrow, evenly-spaced intersomitic vessels 

(Figure 4E,F), but among those that did have defects, the severity of nonvascular defects 

was much reduced compared to wildtype.  Nonvascular defects in RasGRP3gt/gt embryos 

were limited to neural tube closure defects, and the only vascular defects observed in 

these embryos were in the small vessels of the head plexus (Figure 4G).  Additionally, all 

RasGRP3gt/gt yolk sacs showed normal organization of the vascular plexus, with well-

defined arborized vessels (Figure 4J). These results showed that when developing in a 

diabetic maternal environment, RasGRP3gt/gt embryos had a lower incidence of both 

vascular and nonvascular defects compared to wildtype embryos. (Table 4).  When these 

results were compared to those from the experiments culturing embryos ex vivo with 

elevated glucose, I found that the incidence of defects was very similar between the two 

experimental systems.  In both cases, wildtype embryos have a higher prevalence of 

defects in all categories than do RasGRP3gt/gt embryos (Table 5). 
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 These results were striking, but with the genetic variation between the wildtype 

and RasGRP3gt/gt mice, it was clear that better-controlled experiments were needed to 

confirm these results.  My first attempt to better control these experiments was to create 

diabetic RasGRP3gt/+ female mice and perform intercrosses so that, as in the embryo 

culture experiments with PMA, I would have RasGRP3gt/gt, RasGRP3gt/+, and 

RasGRP3+/+ (wildtype) embryos all in the same litter.  Genetic variability still exists 

between the siblings, but they are much more comparable genetically than were the 

varied genetic backgrounds of the mice used in the original group of STZ-induced 

diabetic mice.  However, I found no predictable pattern to the responses of the different 

embryonic genotypes to the maternal diabetes.  Moreover, none of the embryos from 

these litters exhibited the severity of phenotype I had seen in the initial experiments (data 

not shown).  Several embryos had neural tube closure defects, but none had the severe 

body axis defects seen in many wildtype embryos from the original experiment (data not 

shown).  I hypothesized that perhaps the maternal genotype (RasGRP3gt/+ in this 

experiment, RasGRP3gt/gt or RasGRP3+/+ previously) affected the embryonic response to 

a diabetic environment. 

 To eliminate the variable of maternal genotype, I created diabetic mice on an 

inbred background, using wildtype C57BL/6J (B6) mice as well as RasGRP3gt/gt mice 

that had been crossed into the B6 background for 6 generations (N6).  These female mice 

did not show the same severity of response to the STZ treatment as the original outbred 

mice did; on average the B6 mice became more mildly diabetic than did the outbred 

mice.  As could perhaps be expected of embryos developing in a less hyperglycemic 

maternal environment, wildtype embryos from these more moderately diabetic B6 mice 
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had less severe phenotypes than did the wildtype embryos from the more severely 

diabetic outbred mice.   However, significantly fewer defects in RasGRP3gt/gt embryos 

were scored on the B6 background, regardless of the mother’s blood glucose level 

(Figure 5A,B).  Vascular phenotypes of embryos from moderately diabetic wildtype B6 

mice were generally limited to minor defects, most noticeable in the intersomitic vessels 

which could be crooked, thickened, or growing in aberrant locations (Figure 5C,D).  

RasGRP3gt/gt B6 embryos had less defects, both vascular and nonvascular, than wildtype 

B6 embryos (Table 6). 

 Unfortunately, most of the STZ-injected B6 mice that had blood glucose levels as 

high as those of the outbred mice had severe reproductive problems, and they either did 

not mate or did not carry the pregnancy successfully to mid-gestation.  However, one 

litter of wildtype B6 embryos were successfully dissected from a mother with a blood 

glucose level of 513 mg/dL (in the range of those in the initial outbred mouse 

experiment).  Embryos from this litter had a high incidence of neural tube closure and 

body axis defects, similar to the initial results (Figure 5E-G).  These results suggest that 

RasGRP3 is, in fact, required for the embryonic response to maternal diabetes.   
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Figure 1: RasGRP3gt/gt embryos are refractory to defects induced by PMA.  (A, B, H) 
Embryos at E8.5 with lacZ inserted into the PECAM locus (wildtype) were cultured 24 
hours without PMA (A), with 100nM PMA (B), or with 50nM PMA (H) and stained for 
β–gal expression.  (C and D) Embryos at E8.5 with lacZ inserted into the RasGRP3 locus 
(RasGRP3gt/gt) were cultured 24 hours without (C) or with (D) 100nM PMA and stained 
for β–gal expression.  (E-G) Cross-sections through E8.5 yolk sacs from wildtype 
embryos cultured without (E) or with (F) 100nM PMA and from (G) RasGRP3gt/gt 
embryos cultured with 100nM PMA. (A-D,H) a = anterior, p = posterior, red line = body 
axis). 
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Genotype Treatment Heartbeat Yolk sac 

bloodflow
Average 
number 

of 
somites 

 
PECAMlacZ/+ 

 

 

 
Control 

 
100% 
(5/5) 

 
100% 
(5/5) 

 
5.2 

 
PECAMlacZ/+ 

 

 

 
100nM 
PMA 

 
36% 

(5/14) 

 
0% 

(0/14) 

 
0.7 

 
RasGRP3gt/gt 

 

 

 
Control 

 
67% 
(4/6) 

 
50% 
(3/6) 

 
9.1 

 
RasGRP3gt/gt 

 

 

 
100nM 
PMA 

 
83% 
(5/6) 

 
17% 
(1/6) 

 
9.3 

 
Table 1: General health of PECAMlacZ/+ and RasGRP3gt/gt embryos after 24 hours in 
embryo culture with or without 100nM PMA. 
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Figure 2: In RasGRP3 intercross litters, RasGRP3gt/gt yolk sac, amnion, and embryo 
morphology are partially refractory to defects induced by culture with PMA.  Embryos 
growing in the most severely-affected yolk sacs exhibit the most severe embryonic 
vascular and morphological defects. (A,B) control embryo cultured without PMA, (C-J) 
embryos cultured 24 hours with 50nM PMA: (C,D) RasGRP3gt/gt, (E,F) 
RasGRP3+/+(wildtype), (G-J) RasGRP3gt/+.  (A,C,E,G,I) embryo in intact yolk sac at 
termination of 24-hour culture period. (B,D,F,H,J) PECAM-stained embryos.  In each set 
of images, the embryo seen in the upper panel still in its yolk sac is the same embryo seen 
dissected out and PECAM-stained in the lower panel. 
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Genotype Treatment Heartbeat Yolk sac 
bloodflow

Lumpy, 
abnormal 
yolk sac 

Connections 
between 

amnion and 
yolk sac 

Abnormal 
heartbeat 
(ie: yolk 
sac beats 
w/ heart) 

Intersomitic 
vessels 

absent or 
abnormal 

Head 
plexus 

absent or 
abnormal

Abnormal 
body axis 

Average 
number 

of 
somites 

Wildtype Control  100% 100% 0% 0% 0%   0%   
(2/2) (2/2) (0/2) (0/2) (0/2) n.d.* n.d.* (0/2) 21 

RasGRP3gt/+ Control  100% 57% 0% 0% 0% 0% 0% 0%  
(7/7) (4/7) (0/7) (0/7) (0/7) (0/7) (0/7) (0/7) 9.1  

RasGRP3gt/gt Control  100% 100% 50% 0% 0% 0% 0% 0%  
(2/2) (2/2) (1/2) (0/2) (0/2) (0/2) (0/2) (0/2) 19.5  

Wildtype 50nM 
PMA 

80% 0% 80% 100% 20% 100% 100% 100%   
(4/5) (0/5) (4/5) (5/5) (1/5) (4/4) (4/4) (4/4) 4.4 

RasGRP3gt/+ 50nM 
PMA 

87% 0% 13% 73% 20% 50% 83% 47%  30

(13/15) (0/15) (2/15) (11/15) (3/15) (6/12) (10/12) (7/15) 9.1  

RasGRP3gt/gt

 
50nM 
PMA 

89% 0% 11% 33% 0% 57% 57% 11%   
(8/9) (0/9) (1/9) (3/9) (0/9) (4/7) (4/7) (1/9) 

 

6.7 

Table 2: Wildtype embryos treated with PMA experience more severe defects than RasGRP3gt/+ or RasGRP3gt/gt embryos, although 
markers of general health are comparable between the different genotypes. 

 
 

*: Embryos were not PECAM-stained so these traits were not observed.

 



 
 

Figure 3: RasGRP3gt/gt embryos are refractory to defects induced by treatment with 
20mM glucose.  (A and B) E9.5 embryos with lacZ inserted into the PECAM locus, 
cultured without (A) and with (B) 20mM glucose and stained for β–gal expression.  (C 
and D) E9.5 embryos with lacZ inserted into the RasGRP3 locus (RasGRP3gt/gt) cultured 
without (C) and with (D) 20mM glucose and stained for β–gal expression. 
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Genotype Treatment Heartbeat Blood 

flow in 
yolk sac 

Closed 
neural 
tube 

Anterior 
limb buds 

Average 
somite 
number  

PECAMlacZ/+ Control 100% 
(15/15) 

93% 
(14/15) 

73% 
(11/15) 

93% 
(14/15) 

20.6 

PECAMlacZ/+ 20mM 
glucose 

100% 
(15/15) 

100% 
(15/15) 

60% 
(9/15) 

80% 
(12/15) 

19.2 

RasGRP3gt/gt Control 80% 
(8/10) 

 

60% 
(6/10) 

60% 
(6/10) 

90% 
(9/10) 

17.8 

RASGRP3gt/gt 20mM 
glucose 

85% 
(17/20) 

60% 
(12/20) 

65% 
(13/20) 

80% 
(16/20) 

18.8 

 
Table 3: General health of PECAMlacZ/+ (wildtype) and RasGRP3gt/gt embryos is not 
impacted by 24 hours in culture with or without 20mM glucose.

 32



 
Genotype Environment Head 

plexus 
defects 

(no head 
deformity)

Head 
plexus 
defects  

(with head 
deformity)

Inter-
somitic 
vessel 
defects

Non-
vascular 

deformities 

Average 
number 

of 
somites 

Wildtype normoglycemic 
mother 

0% 
(0/9) 

0% 
(0/9) 

0% 
(0/9) 

11% 
(1/9) 

 22.4 

Wildtype diabetic mother 25% 
(9/36) 

33% 
(12/36) 

81% 
(29/36)

44% 
(16/36) 

21.3 

RasGRP3gt/gt normoglycemic 
mother 

8% 
(2/25) 

4% 
(1/25) 

8% 
(2/25) 

4% 
(1/25) 

22.9  

RasGRP3gt/gt

 
diabetic mother 8% 

(1/12) 
0% 

(0/12) 
0% 

(0/12) 
8% 

(1/12) 
27.4 

 
Table 4: Comparison of E9.5 PECAM antibody-stained wildtype and RasGRP3gt/gt 
embryos from normoglycemic or STZ-induced diabetic mothers on outbred backgrounds. 

 
 
 

 33



 
 

Figure 4: RasGRP3gt/gt embryos are partially protected from defects experienced by 
wildtype embryos growing in a diabetic mother on outbred backgrounds.  (A-D) E9.5 
wildtype (mixed genetic background) embryos dissected from mothers with blood 
glucose levels in excess of 600 mg/dL (33mM) exhibit a range of phenotypes:  (A) no 
visible defects, (B) gross defects of the body axis and general disruption of development, 
(C) truncated, thickened, or crooked intersomitic vessels (arrows), abnormal protrusion 
from body axis (arrowhead), (D) open neural tube with accompanying disruption of 
vascular plexus of the head.  (E-G) E9.5 RasGRP3gt/gt embryos dissected from mothers 
with blood glucose levels in excess of 600 mg/dL (33mM) (E,G) and of 552 mg/dL 
(31mM) (F). RasGRP3gt/gt embryos generally either appear normal (E,F), or have 
vascular defects only in the head plexus (F). (H-J) PECAM-stained yolk sacs from (H) 
normoglycemic, (I) diabetic wildtype, or (J) diabetic RasGRP3gt/gt mice. 
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Figure 5: RasGRP3gt/gt embryos are less susceptible than wildtype embryos to defects 
induced by maternal diabetes on the C57BL/6J inbred genetic background.  A-G: E9.5 
PECAM antibody-stained embryos, (A) RasGRP3gt/gt embryo dissected from mother with 
blood glucose level of 376 mg/dL (21 mM), (B) magnified view of outlined portion of 
6A.  (C) Wildtype embryo dissected from mother with blood glucose level of 482 mg/dL 
(27mM) and exhibiting intersomitic vessel defects, (D) magnified view of outlined 
portion of 6C: white arrows indicate aberrant vessel growth in somites. (E) Wildtype 
embryo dissected from mother with blood glucose level of 392 mg/dL (22 mM) and 
exhibiting neural tube closure and intersomitic vessel defects (white arrows).  (F,G) 
Wildtype embryos dissected from mother with blood glucose level of 513 mg/dL (29 
mM) and exhibiting (F) intersomitic vessel defects (white arrows) and growth of 
abnormal structure from dorsal aspect of tail (white arrowhead) and (G) neural tube 
closure defect and crooked body axis with intersomitic vessel defects (white arrow). 
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Genotype 
 

Treatment 
Head 

plexus 
defects 
alone 

Head 
plexus 

defects + 
head 

deformed

Inter-
somitic 
vessel 
defects 

Non-
vascular 

deformities 

Average 
number 

of 
somites 

PECAMlacZ/+ Cultured  
w/ 20mM 
glucose 

 

 
36% 

(4/11) 

 
27% 

(3/11) 

 
27% 

(3/11) 

 
27% 

(3/11) 

 
19.2 

PECAMlacZ/+ STZ-
induced 
diabetic 
mother 

 
25% 

(9/36) 

 
33% 

(12/36) 

 
81% 

(29/36) 

 
44% 

(16/36) 

 
21.3 

RasGRP3gt/gt Cultured 
w/ 20mM 
glucose 

 

 
0% 

(0/17) 

 
0% 

(0/17) 

 
no 

data* 

 
0% 

(0/17) 

 
18.8 

RasGRP3gt/gt

 
STZ-

induced 
diabetic 
mother 

 
8% 

(1/12) 

 
0% 

(0/12) 

 
0% 

(0/12) 

 
8% 

(1/12) 

 
26.6 

 
Table 5: Comparison of defects in E9.5 wildtype and RasGRP3gt/gt embryos from STZ-
induced diabetic mothers or cultured with 20mM glucose for 24 hours. 
 
 
*: Intersomitic vessels could not be analyzed in these embryos due to somitic expression 
of RasGRP3 driving β–gal expression.
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Genotype Blood glucose 

levels 
Head 
plexus 
defects 
alone 

Head 
plexus 
defects  
+ head 

deformed

Inter-
somitic 
vessel 
defects

Non-
vascular 

deformities 

Average 
somite 
number 

wildtype normoglycemic
(avg. 182 
mg/dL) 

0% 
(0/9) 

0% 
(0/9) 

0% 
(0/9) 

0% 
(0/9) 

39.3 

wildtype diabetic 
(avg. 416 
mg/dL) 

3% 
(1/30) 

20% 
(6/30) 

71% 
(22/31)

45% 
(14/31) 

23.3 

RasGRP3gt/gt normoglycemic
(avg. 216 
mg/dL) 

0% 
(0/9) 

11% 
(1/9) 

11% 
(1/9) 

11% 
(1/9) 

33.4 

RasGRP3gt/gt diabetic 
(avg. 319 
mg/dL) 

0% 
(0/18) 

0% 
(0/18) 

17% 
(3/18) 

6% 
(1/18) 

21.9 

 
Table 6: RasGRP3gt/gt embryos are less susceptible than wildtype embryos to defects 
induced by maternal diabetes on the C57BL/6J inbred genetic background. 
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GTP

C1
GRP3

C1
GRP3

DAG

Ras or 
Rap

GDP

normally-developing 
yolk sac

normally-developing 
embryo

normal glucose levels
normal DAG 

levels

Normal 
development: 

RasGRP3 
present

 
glucose exposure ↑

DAG ↑

GTP
DAG

Ras or 
Rap

yolk sac defects

embryonic 
defects

C1
GRP3

C1
GRP3

Maternal 
diabetes: 
RasGRP3 

present

 

GTP

C1
GRP3

C1
GRP3

DAG

Ras or 
Rap

GDP

normally-developing 
yolk sac

normally-developing 
embryo

DAG ↑

Maternal 
diabetes: 

RasGRP3 absent

glucose exposure ↑

X
 

 
Figure 6: Model of impact of disrupted glucose or DAG signaling events on wildtype or 
RasGRP3gt/gt embryos compared to normal development.
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CHAPTER 4: DISCUSSION 
 
4.1. Effects of RasGRP3 on the embryonic response to phorbol ester 

 My research has provided strong evidence that RasGRP3 is required for the 

embryonic response to phorbol esters.  My initial experiments using wildtype and 

RasGRP3gt/gt embryos from different litters suggested this scenario, and experiments 

culturing embryos from the same RasGRP3 intercross litter with PMA confirmed this 

result.   I believe that the many defects exhibited by wildtype embryos treated with PMA 

are in large part secondary to those induced by PMA in their extraembryonic membranes, 

including vascular defects in the yolk sac.  Blood vessels begin developing in these yolk 

sacs, but regulation of this formation appears to be disrupted to allow formation of 

dramatically enlarged and irregular vessels that do not establish a functional circulation.  

This phenotype has also been observed in yolk sacs of mice with a genetic deletion of 

vascular endothelial cell-specific tyrosine phosphatase (VE-PTP), a protein that has been 

found to be required for maintenance and remodeling of the primitive vascular plexus to 

establish functional and properly arborized yolk sac vasculature (Baumer et al. 2006).  

PMA-treated wildtype yolk sacs were able to successfully establish at least a primitive 

vasculature, so it is likely that the vascular defects in these yolk sacs are a result of 

misregulation of some remodeling step. 

 A mechanism by which these enlarged vessels could form is through failure of the 

process of intussusceptive angiogenesis.  This is the process by which a large vessel 

grows a new wall through its lumen to split into two smaller vessels, and it has been 



shown in multiple locations (including the yolk sac) to be an important complement to 

sprouting/branching angiogenesis (Djonov et al. 2003).  Vessel fusion could also 

contribute to these abnormally large vessels.  If VEGF signaling is not properly 

regulated, hyperfusion of vessels can occur to result in exceedingly large vessels (Drake 

and Little 1995).  A third possibility is that the cells of the yolk sac vasculature are 

dividing more rapidly when exposed to PMA, resulting in larger vessels.  To determine 

which, if any, of these mechanisms contributes to the formation of the enlarged vessels in 

PMA-treated wildtype yolk sacs, closer analysis of these yolk sacs will be required.  Cell 

divisions in the yolk sac could be monitored using BrdU labeling.   To determine whether 

vessel hyperfusion or failure of intussusception occurs in these yolk sacs would require 

measuring some of the more easily-recognizable vessels at intervals throughout the 24-

hour PMA treatment period.  If, over the 24 hours, a vessel continuously grows larger in 

both control and PMA-treated yolk sacs, then the grossly-enlarged PMA-induced vessels 

are likely due to vessel hyperfusion.  If timepoints are frequent enough, fusion between 

two neighbouring vessels could potentially be observed.  However, if a vessel measured 

in control yolk sacs grows to a certain point and then decreases in size as a result of 

intussusceptive growth or some other remodeling process while the same vessel in a 

PMA-treated yolk sac continues to simply grow bigger, then the enlarged vessel is due to 

a failure of intussusception or remodeling. 

 The larger size of these vessels could affect embryonic development through 

changes in blood flow dynamics, as the velocity of blood flow might be reduced in the 

yolk sac due to the lack of small vessels.  In addition to reduced flow, these large vessels 

could have altered vascular permeability.  Increased angiogenic growth of vessels is 
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accompanied by an increase in vascular permeability in many pathological conditions 

(for review: Byrne et al. 2005).  Misregulation of VEGF signaling can lead to increased 

vascular permeability via signaling through several pathways, one of which requires 

DAG activation (for review: Bates and Harper 2002).  Changes in permeability could 

impact the nutrients reaching the embryo, resulting in embryonic defects.  Alterations in 

yolk sac vascular permeability could potentially be assessed by injection of colored dye 

into the yolk sac vessels or heart to determine whether this is a factor in wildtype or 

RasGRP3gt/gt embryos cultured with PMA. 

 The mouse embryo is not completely dependent on yolk sac circulation for 

survival at the stages I analyzed.  This explains why the yolk sac defects I observed were 

not lethal.  However, I believe that while not yet lethal, the severity of these partially 

RasGRP3-dependent primary defects in the yolk sac is enough to disrupt the embryo’s 

normal environment, causing secondary defects in the embryo proper.  RasGRP3gt/gt 

embryos, with their less severe yolk sac vascular defects, are unaffected by PMA 

treatment, suggesting that the vessels of the yolk sac may need to be disrupted and 

enlarged past some critical point in order to cause defects in the development of the 

embryo.  Thus, although the vessels of RasGRP3gt/gt yolk sacs treated with PMA are 

larger and more irregular than those of controls, they may not be so irregular as to 

actually disrupt development of the embryo, allowing RasGRP3gt/gt embryos to appear 

normally-developed even when treated with 100nM PMA.  It would be interesting to 

measure the average vessel diameter in yolk sacs treated with PMA to determine if there 

is a cutoff point of yolk sac vessel size that leads to defects in the embryo proper.  With 

their range of phenotypes when exposed to PMA, RasGRP3gt/+ embryos would be the 
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ideal genotype to analyze for this purpose.  If the most normal embryos have the smallest 

yolk sac vessels while the most abnormal embryos have the largest vessels, it would 

definitely suggest that the abnormally large vessels of the yolk sac are at least partially 

responsible for the defects in the embryo proper. 

 Further experiments are required to more fully characterize the yolk sac defects 

caused by PMA.  These experiments include hematoxylin and eosin (H&E) staining and 

PECAM antibody-staining of these yolk sacs.  H&E staining will show the yolk sac 

defects on a cellular level, as hematoxylin stains nuclei and eosin stains the cytoplasm.  

PECAM antibody-staining will help elucidate the vascular-specific impact of PMA 

treatment.  These two staining methods will help us to interpret the PMA-induced gross 

morphological defects we see in the yolk sac and to further understand how they might 

contribute to the failure to establish a functional yolk sac circulation. 

 One further point of interest in the response of RasGRP3 intercross embryos to 

PMA is the intermediate phenotype exhibited by RasGRP3gt/+ embryos.  We had not 

previously looked at the response of heterozygous embryos to PMA, so this intermediate 

phenotype was particularly interesting.  RasGRP3gt/+ ES-derived vessels show an 

intermediate response to PMA compared to RasGRP3gt/gt or wildtype ES-derived vessels 

(Roberts et al. 2004), and my work showed that this is also the case in whole embryos.  

This provides further evidence that RasGRP3 functions in a dosage-dependent fashion to 

mediate the response to PMA treatment.   
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4.2. Effects of RasGRP3 on the embryonic response to elevated glucose levels in vitro 

 Although investigations of the role of RasGRP3 on the response to embryo 

culture with glucose were not extensive, my results suggest that RasGRP3 is required to 

mediate this response as well.  I do not have as much insight into the origin of glucose-

induced defects as I had into the origin of PMA-induced defects.  This was primarily 

because of the fact that these experiments were concluded before the importance of the 

yolk sac became apparent in the experiments with PMA.  Therefore, in future 

experiments, it will be important to examine the effects of glucose treatment on the yolk 

sac.   

 In wildtype embryos cultured with 20mM glucose, the vessels of the yolk sac are 

enlarged and irregular (Pinter et al. 1999).  This phenotype is similar to but less severe 

than what I saw in PMA-treated wildtype yolk sacs.  If yolk sac defects are, in fact, 

contributing to embryonic defects, then this reduced severity of yolk sac vascular defects 

in glucose-treated compared to PMA-treated embryos could explain the more dramatic 

defects seen in PMA-treated embryos.  This prediction is supported by the fact that 

wildtype embryos treated with glucose for 24 hours are still alive and still have a 

functional yolk sac circulation at E9.5.  This would be impossible for wildtype PMA-

treated embryos at this stage of development because even at E8.5 their yolk sacs are so 

severely impacted by the PMA that they do not have a functional circulation and so 

would most likely be dead before E9.5. 

 Based on previous work that showed elevated glucose levels and increased 

glucose metabolism increased de novo synthesis of DAG (Craven 1990), I hypothesized 

that treating embryos with glucose induced upregulation of DAG levels in these embryos.  
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Because PMA functions as a DAG analog, the functional significance is that treatment 

with glucose is predicted to manipulate the pathway further upstream of RasGRP3 than 

would treatment with PMA, which is directly upstream of RasGRP3 activation.  

Manipulating this pathway at a point further upstream would give any resultant effects 

more relevance and applicability to a true in vivo situation, but it could also lead to either 

more non-specific effects or, as I saw, more subtle defects than direct manipulation via 

PMA treatment.  This could be due to activation of pathways and molecules in addition to 

RasGRP3 and/or to compensatory or checkpoint mechanism activation to reduce the 

severity of the response. 

 These experiments were performed comparably to the initial PMA experiments.  

Therefore, to be entirely confident in these results, it would be necessary to perform more 

stringently-controlled experiments, similar to the RasGRP3 intercross experiments I 

performed to confirm the PMA results.  However, I sought to determine the role of 

maternal diabetes in development in vivo, using the streptozotocin-induced diabetic 

model of type I diabetes, discussed below. 

 

4.3. Effects of RasGRP3 on the embryonic response to streptozotocin-induced 

 diabetes 

 RasGRP3gt/gt embryos experience less severe vascular and nonvascular defects 

than do wildtype embryos when growing in a diabetic maternal environment.  PECAM 

antibody-staining of yolk sacs was somewhat inconsistent due to procedural problems.  

However, I achieved sufficient staining of the yolk sac vessels in these experiments to be 

able to state with confidence that the vessel patterning of the yolk sacs of some wildtype 
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embryos from diabetic mothers is abnormal compared to those from normoglycemic 

mothers or compared to any RasGRP3gt/gt yolk sacs.  These abnormal yolk sacs show 

disruption of the normal arborized pattern of the vasculature.  

 In addition to the VE-PTP mutant mice discussed earlier (see chapter 4.1), there 

are numerous genetic knockout mice that have severe defects in the yolk sac and other 

extraembryonic membranes, and many of these knockouts are genes important in cell 

adhesion.  I believe this is one area that could prove essential to understanding how yolk 

sac dysmorphogenesis occurs in embryos treated with PMA or grown in a diabetic 

environment, and investigating a role for RasGRP3 in mediating cell-cell contacts is an 

ongoing project in our lab.  Fibronectin is important in early vascular events in the yolk 

sac, and its loss results in failure of the yolk sac mesoderm and endoderm to fuse, leading 

to complete failure of blood vessel plexus formation in the yolk sac (George et al. 1993).  

Vascular cell adhesion molecule 1 (VCAM-1) is important early in extraembryonic tissue 

development, where it is essential for proper patterning of these tissues, as well as later 

for development of functional umbilical vessels (Kwee et al. 1995).  Other cell adhesion 

molecules are also critical in these processes, including α4-integrins that can interact with 

VCAM-1 for proper development of the extraembryonic membranes (Yang et al. 1995).  

In human endothelial cells, phosphorylated PECAM interacts with β1-integrins to tighten 

cell-cell contacts and reduce migration and proliferation (Lu et al. 1996).  These and 

other results provide a solid body of work highlighting the importance of regulation of 

cell-cell contacts for proper vascular development in the yolk sac and elsewhere. 

 RasGRP3 has been shown in vitro to activate both Ras and Rap1 (Rebhun et al. 

2000), both of which have downstream targets controlling junctional stability.  Increasing 
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RasGRP3 activation by exposing cells to elevated PMA (a RasGRP3 activator) or to 

elevated glucose which increases levels of DAG (another RasGRP3 activator) could 

increase downstream activation of Ras and/or Rap1 to modulate junctional stability.  

Because destabilization of junctions is associated with migration and proliferation as well 

as with disease conditions such as tumor angiogenesis, I would predict that in the diabetic 

condition junctions are destabilized as well.  Because increased Ras activation leads to 

decreased junctional stability, the level of Ras activation could be examined by Western 

blot analysis of homogenized yolk sac tissues.  If the yolk sac vascular phenotype is 

characterized by a decrease in junctional stability, I would expect to see an increase in 

Ras activation, whereas increased junctional stability would be marked by an increase in 

Rap1 activation.   

 Additionally, there is evidence in the ES cell model that the major vascular 

adherens junction component VE-cadherin is mislocalized to the cytoplasm during PMA-

induced vascular dysmorphogenesis and that this mislocalization is RasGRP3-dependent 

(P. Randhawa, unpublished results).  VE-PTP has been shown to act on VE-cadherin to 

increase its stability in junctions and reduce vascular permeability (Nawroth et al. 2002).  

This is interesting, because, as previously mentioned, the vascular phenotypes of VE-PTP 

knockout embryos bear many striking similarities to those I see in wildtype embryos 

treated with PMA or grown in a diabetic mother. Analysis of VE-cadherin localization 

during PMA- or diabetes-induced embryonic vascular dysmorphogenesis could determine 

whether alterations in the adherens junctions are important in this system as well.  

 Defects induced in the yolk sacs of these embryos may disrupt the embryo’s 

environment enough to cause defects such as failure of neural tube closure and 
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mispatterning of small vessels such as intersomitic vessels and head plexus vessels.  In 

addition to abnormally large yolk sac vessels, VE-PTP mutant mouse embryos have 

defects in the head plexus and intersomitic vessel formation that are most likely 

attributable to the defects in the yolk sac (Baumer et al. 2006).  These angiogenic events, 

as well as nonvascular events such as neural tube closure, are all processes that occur 

during the stages of development assayed, making them susceptible to defects induced by 

improper establishment of yolk sac circulation during the same time period.  In fact, 

many of these defects have been found to be very temporally specific and will only occur 

if hyperglycemic conditions are present during a narrow window of time between E8.0 

and E9.5 (Pinter et al. 1999). 

 When RasGRP3gt/+ female mice were made diabetic, the embryos showed very 

few defects.  While this was disappointing in terms of not adding support to my results on 

outbred mice, it is very interesting because it suggests that the genotype of the mother 

may play a role in the response of the embryo to maternal diabetes.  RasGRP3 is re-

expressed in maternal blood vessels undergoing neoangiogenesis during pregnancy.  

Therefore, it may be the case that RasGRP3gt/gt mothers confer protection to their 

RasGRP3gt/gt offspring, while wildtype mothers (who express RasGRP3 in the developing 

vessels that support the embryos) contribute to or exacerbate embryonic defects.  

RasGRP3gt/+ mothers, with a lower level of RasGRP3 expression in these maternal 

vessels, may also confer protection to the developing embryos, regardless of their 

genotype.  It would be interesting to investigate this result in more detail.  One possible 

approach to this question could be to implant wildtype embryos in a diabetic 

RasGRP3gt/gt mother, or vice versa.  If wildtype embryos developing in a RasGRP3gt/gt 
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mother have less severe defects than wildtype embryos developing in a wildtype mother, 

it would support the idea that the mother’s genotype is a key determinant of an embryo’s 

response to maternal diabetes.  Maternal tissues could also be examined for diabetes-

induced vascular defects, either in the decidua at the stages investigated or later in 

development, once the placenta is established.  Differences between diabetic wildtype 

and diabetic RasGRP3gt/gt maternal vessels could also provide insight into how RasGRP3 

affects embryonic vascular development. 

 In the inbred B6 mice, defects in moderately-diabetic wildtype embryos were less 

severe than those seen in the extremely diabetic outbred mice.  This can be explained by 

previous work that showed vascular defects directly correlate with the level of 

hyperglycemia (Algenstaedt et al. 2003).  Further support for this is observed in the 

severe defects seen in a wildtype B6 litter that had a blood glucose level comparable to 

that of the outbred mice.  It will take more time to compile greater numbers to confirm 

the results observed in this litter because of the reproductive problems documented in B6 

mice and further compounded in diabetic mice (Levine 1965; Pinter et al. 1999).  While 

none of the RasGRP3gt/gt B6 mice had blood glucose levels exceeding 500 mg/dL, there 

were no defects in any embryos from moderately diabetic (blood glucose levels of 300-

500 mg/dL) mothers.  Thus, while it would be best to have embryos from an extremely 

diabetic mother to support the finding that RasGRP3gt/gt embryos are refractory to 

diabetes-induced defects, I believe that my results up to this point offer fairly convincing 

evidence that this is the case.   

 In conclusion, it is clear from my results that RasGRP3 is critical in mediating 

disrupted signaling events during embryogenesis.  During normal embryogenesis, 
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RasGRP3 is not required for proper development, but when DAG levels are elevated in a 

pathological condition such as diabetes, increased activation of RasGRP3 may contribute 

to vascular dysmorphogenesis.  Vascular and nonvascular defects experienced in these 

disease states are at least in part secondary to defects in the yolk sac vasculature (Figure 

6).  Future work will expand on this model and explore the mechanisms and specific role 

of RasGRP3 in mediating these yolk sac vascular defects and their impact on the embryo, 

including potentially increased vascular permeability or decreased cell-cell adhesion. 
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