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Abstract

KAI DING: THE SINGLE-INDEX HAZARDS MODEL.
(Under the direction of Dr. Michael Kosorok and Dr. Donglin Zeng.)

We first propose the single-index hazards model for right censored survival data. As

an extension of the Cox model, this model allows nonparametric modeling of covariate

effects in a parsimonious way via a single-index. In addition, the relative importance of

covariates can be assessed via this model. We consider the conventional profile-kernel

method based on the local likelihood for model estimation. It is shown that this method

may give consistent estimation under certain restrictive conditions, but in general it

can yield biased estimation. Simulation studies are conducted to demonstrate the bias

phenomena. The existence and nature of the failure of this commonly used approach is

somewhat surprising.

The interpretation of covariate effects in the aforementioned single-index hazards

model is difficult. Thus, we further propose the partly proportional single-index haz-

ards model in which the effect of covariates of primary interest is represented by the

regression parameter while “nuisance” covariates can have nonparametric effect on the

survival time. We again consider the conventional profile-kernel method and it leads to

biased estimation as well. A bias correction method is then proposed and the corrected

profile local likelihood estimators are shown to be consistent, asymptotically normal and

semiparametrically efficient. We evaluate the finite-sample properties of our estimators

through simulation studies and illustrate the proposed model and method with an appli-

cation to a dataset from the Multicenter AIDS Cohort Study (MACS).

Besides the profile-kernel method, we also study the profile stratified likelihood method

based on stratification of the single-index. In the single-index hazards model, this method
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may give consistent estimation under the restrictive “independent censoring” condition,

but in general it can yield biased estimation. Simulation studies are conducted to demon-

strate the situations in which the bias phenomena do (or do not) exist; In the partly

proportional single-index hazards model, we demonstrate numerically the existence of

the bias and then propose a bias correction method. The estimators from the corrected

profile stratified likelihood method are shown to be consistent. Their finite-sample prop-

erties are evaluated through simulation studies. The corrected profile stratified method

is applied to the aforementioned MACS study for illustration.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

1.1.1 Semiparametric and Nonparametric Regression Models

for Survival Data

In survival analysis, investigators often wish to assess the effect of covariates on the risk of

the event of interest. For example, in the Multicenter AIDS Cohort Study (MACS), one

important research question is to evaluate the effect of patient’s baseline age, ethnicity,

CD4 positive cell counts, viral loads, serum β2-microgloburin levels and serum neopterin

levels on survival time (i.e. time to death due to AIDS) among HIV positive men. The

four biomarkers (CD4 positive cell counts, viral loads, serum β2-microgloburin levels

and serum neopterin levels) were identified as the most predictive prognostic factors in

Mellors et al. (1997). The Cox proportional hazards model (Cox 1972) is a popular and

classical choice in such scenarios due to its nice interpretation of regression parameters

and the availability of efficient inference procedures implemented in all statistical software

packages. In this model, the conditional hazard rate of failure time given covariates,

denoted by W , is modeled as h(t|W ) = λ(t)eβT W , where λ(·) is a completely unknown

baseline hazard function. The regression parameters, β, can be nicely interpreted as the



log-hazard ratios of the covariates W . Cox (1975) also proposed the partial likelihood

to estimate the regression parameters. The by now classical large sample properties of

the partial likelihood estimators were later proved in Andersen and Gill (1982). See also

Fleming and Harrington (1991) and Andersen, Borgan, Gill, and Keiding (1993) for the

literature concerning this model.

An underlying assumption of the Cox model is the so-called proportional hazards

assumption, that is, the hazard ratio remains constant over time or covariates have

log-linear effects on the risk of the event of interest. However, in many real datasets,

covariates may exhibit much more complicated effects than log-linear effects; thus the

proportional hazards assumption may be violated and the Cox model may not be an

appropriate choice. For example, in the aforementioned MACS data, testing for the

proportional hazards assumption based on martingale residuals (Lin, Wei, and Ying

1993) reveals that the covariate viral load (after taking logarithmic transformation) does

not satisfy this assumption (p = .006). Thus the inference based on the Cox model may

not be valid due to model misspecification.

For this reason, many authors have considered alternatives or extensions of the Cox

proportional hazards model. For example, the accelerated failure time model (Cox and

Oakes 1984, chap. 5) is attractive due to its direct physical interpretation. This model

takes the form log T = −βT W + ε, where T denotes the survival time, ε is independent

of W and has an unspecified distribution. Note that by assuming this model, the covari-

ates W have effects on the survival time and so the interpretation is direct. The rank

estimator was studied by Prentice (1978) and the least-squares estimator was studied

by Buckley and James (1979). Neither estimator achieves the semiparametric efficiency

bound defined in Bickel, Klaassen, Ritov, and Wellner (1993). Recently, Zeng and Lin

(2007a) provided a computationally tractable and semiparametrically efficient estimator

for the regression parameter β using a kernel approximation of the profile likelihood.

Moreover, their method can handle time-dependent covariates as well.
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Alternatively, instead of assuming a constant hazard ratio over time as in the Cox

model, the proportional odds model (Bennett 1983; Pettitt 1984) assumes the odds ratio

of survival to be constant over time. Consequently, the ratio of the hazards converges

to unity as time increases. The model takes the form − log{ST |W (t)/(1 − ST |W (t))} =

G(t)+βT W , where ST |W (·) denotes the conditional survival function of T given covariates

W and G(t) = log{F (t)/(1− F (t))}. Here F (t) = P (T ≤ t) is the baseline distribution

function of the survival time T . The maximum likelihood estimation for this model was

studied by Murphy, Rossini, and van der Vaart (1997). The profile likelihood estimator

for the regression parameter was shown to be consistent, asymptotically normal and

semiparametrically efficient. They also provided the profile likelihood ratio test for the

regression coefficient β.

The Cox proportional hazards model and the proportional odds model are special

cases of the generalized odds-rate model considered in Scharfstein, Tsiatis, and Gilbert

(1998). The odds-rate model takes the form gρ(ST |W (t)) = α(t) + βT W , where ST |W (t)

has the same meaning as in the proportional odds model, gρ(x) equals log(ρ−1(x−ρ− 1))

when ρ > 0 and equals log(− log(x)) when ρ = 0 and α(·) is some arbitrary increasing

function. If ρ = 0, this model is equivalent to the Cox proportional hazards model and

if ρ = 1, this model reduces to the proportional odds model. Scharfstein et al. (1998)

showed that the nonparametric maximum likelihood estimator for β is semiparametrically

efficient.

Another general model which includes the proportional hazards model and the pro-

portional odds model as special cases is the proportional hazards frailty regression model

studied in Kosorok, Lee, and Fine (2004). In this model, the conditional hazard takes

the form h(t|W,U) = λ(t)eβT W+log(U), where U is a continuous frailty with mean 1 within

a known one-parameter family of distribution and λ(·) is an unspecified baseline hazard

function. That is, the hazard given the covariates W and a random frailty U unique

to each individual has the proportional hazards form multiplied by the frailty. A robust
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nonparametric likelihood-based inference was carried out to allow for model misspecifica-

tion. The profile likelihood estimators for the finite dimensional parameters were shown

to be semiparametric efficient when the model is correctly specified. It was also proved

in Kosorok et al. (2004) that the bootstrap gives valid inferences for all parameters, even

under model misspecification.

An even more general class of models which includes the generalized odds-rate model

as its special case is the class of linear transformation models (Dabrowska and Doksum

1988; Slud and Vonta 2004; Zeng and Lin 2007b) with the form H(t|W ) = G(Λ(t)eβT W ),

where H(·|W ) denotes the conditional baseline cumulative hazard function given co-

variates W , Λ(·) denotes the baseline cumulative hazard function and both G(·) and

Λ(·) are unspecified. Equivalently, the linear transformation model can be written as

Λ(T ) = −βT W + ε, where Λ(·) is an unspecified increasing function and ε is a random

error with a specified parametric distribution. The choice of the extreme value and stan-

dard logistic error distributions yield the proportional hazards and proportional odds

model, respectively. In particular, Zeng and Lin (2007b) proposed a very general class of

transformation models for counting processes which encompasses linear transformation

models and which accommodates time-varying covariates and recurrent events and they

also proved the semiparametric efficiency for the estimator of the regression parameter

using nonparametric maximum likelihood estimation (NPMLE).

Among other extensions of the Cox model is the fully nonparametric model of the

form h(t|W ) = λ(t,W ) studied by Nielsen and Linton (1995), where the function λ(·, ·) is

unspecified. One nice feature about this model is that the covariates do not need to satisfy

the proportional hazards assumption and it provides the most flexible way to model

covariate effects. A kernel estimator for the conditional hazard rate was proposed and its

uniform convergence and asymptotic normality were established. The rate of convergence

for their estimator is slower than
√

n and decreases as the dimension of the covariates

increases. Later, Nielsen, Linton, and Bickel (1998) studied a semiparametric model of
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the form h(t|W ) = λθ(t)g(W ), where λθ(·) is the parametric baseline hazard function

indexed by a parameter θ and g(·) is completely unknown. Note that this multiplicative

model is a special case of Nielsen and Linton (1995). A kernel smoothed estimator

for the nonparametric function g(·) was proposed and the estimator for the regression

parameter β was constructed based on a kernel smoothed profile likelihood function.

The resulting estimator for β was shown to achieve the semiparametric efficiency bound.

Although assuming a parametric baseline hazard function may seem reasonable in certain

settings, it is more desirable to assume a nonparametric baseline hazard function instead

so that the model is more robust to misspecification. Furthermore, all covariates in this

model are required to satisfy the proportional hazards assumption. Instead of assuming

a parametric baseline hazard function, Fan, Gijbels, and King (1997) focused on another

multiplicative nonparametric model of the form h(t|W ) = λ(t)eφ(W ), where the logarithm

of the conditional hazard rate function is assumed to be the sum of an unknown function

of covariates and an unknown function of the survival time. Note that this model is

also a special case of the model studied in Nielsen and Linton (1995). The estimation of

φ(·) was based on its local approximation by a polynomial function and the estimation

for β was based on a local version of the partial likelihood. The estimator for β was

shown to be asymptotically normal but no results on semiparametric efficiency were

reported. Similar to the model studied in Nielsen et al. (1998), proportionality is an

implicit requirement for all covariates. Note that all covariates in these three models

have nonparametric effects. Although this may seem flexible, the interpretation of the

covariate effects is difficult and the nonparametric estimation of the unknown function

in each of these models is feasible only if the dimension of W is low. That is, all these

three models suffer from the so-called “curse of dimensionality”.

5



1.1.2 Single-Index Models

One of the most convenient models for dimension reduction is the single-index model,

which is commonly used in biometrics and econometrics, discussed by Härdle and Stoker

(1989) and Härdle, Hall, and Ichimura (1993). The model takes the form Y = η(βT W )+ε,

where Y denotes the response, the univariate smooth function η(·) is completely unknown,

β is an unknown unit vector with one coordinate positive for identification purposes and

E(ε|W ) = 0 almost surely. Note that, in contrast to a nonparametric model of the

form Y = η(W ) + ε, the parsimonious single-index model is particularly attractive since

the original multi-dimensional covariate vector W has been replaced by a 1-dimensional

“single-index” (the linear combination βT W ). Through dimension reduction in this way,

the nonparametric estimation of η(·) becomes feasible. Another attractive property about

this single-index model is that the relative importance of the components of W can be

fully characterized by the orientation vector β since the derivative of E(Y |W ) with respect

to Wi, the ith component of the covariates W , is proportional to βi, the ith component of

β. Thus βi characterizes how fast E(Y |W ) changes with Wi. This piece of information

on the relative importance of components of W is practically useful for designing future

studies. For instance, one only need to measure those important biomarkers but ignore

those non-important ones that may be expensive to measure. We note that β does not in

general represent the covariate effects as in a linear regression model. However, if η(·) is a

monotone function, then β has the same role as “effect” parameters. Two popular meth-

ods for estimating the single-index model are the average derivative estimation method

proposed by Härdle and Stoker (1989) and the method of Härdle et al. (1993), who used

the kernel smoothing method to construct the estimator of the unknown function η(·) of

the single-index and the estimator of the orientation vector β minimizes a modified mean

square error function. Härdle et al. (1993) also suggested an empirical rule for selecting

the bandwidth.

In some sense, a single-index βT W can be viewed as a principle component of the
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covariate vector W . When the dimension of this covariate vector is high, one may wish

to include multiple principle components into the model so that “enough” information

is extracted from the covariates. Thus it may be attractive to consider a model of the

form Y = m(βT
1 W, · · · , βT

k W ) + ε, where m(·) is an unknown k−variate function and

E(ε|W ) = 0 almost surely. Here k ≥ 1 is a pre-specified integer less than the dimension

of the covariates W . This model has been studied extensively in the literature. Recent

work includes Cook and Li (2002), Xia, Tong, Li, and Zhu (2002) and Yin and Cook

(2002), among others.

Since it is likely that one of the dimension reduction components (or single-indices)

βT
1 W, · · · , βT

k W affects the response linearly and the other k − 1 components affect the

response nonlinearly, it is natural to consider a multiple-index model (Ichimura and Lee

1991; Horowitz 1998; Xia 2008; among others) of the form Y = G(βT
1 W, · · · , βT

k−1W ) +

βT
k W + ε, where E(ε|W ) = 0 almost surely and G(·) is an unknown link function. Com-

pared to the model with nonparametric modeling of all single-indices, this partly linear

model enjoys an easier interpretation and better estimation due to the further dimension

reduction in the unknown nonparametric function m(·). When the number of single-

indices k is large (although less than the dimension of W already), it may be beneficial

to consider the so-called additive-index model (Chiou and Müller 2004) of the form

Y =
∑k

j=1 mj(β
T
j W ) + ε, where mj(·) is an unknown univariate function, j = 1, · · · , k,

and again E(ε|W ) = 0 almost surely. Note that such a model replaces the unknown

function of k variables in Cook and Li (2002), Xia et al. (2002) and Yin and Cook (2002)

by k unknown univariate functions and thus offers a better estimation due to dimension

reduction. One special case of the additive-index model is the additive single-index model

studied by Naik and Tsai (2001) which takes the form Y = m1(α
T W1) + m2(γ

T W2) + ε,

where W T = (W T
1 ,W T

2 )T . This is a special case of the additive-index model of Chiou

and Müller (2004) by setting k = 2, βT
1 = (αT , 0T )T and βT

2 = (0T , γT )T .
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In the survival analysis context, the model with the conditional hazard function spec-

ified as h(t|W ) = λ(t)eφ(βT W ), where both λ(·) and φ(·) are unknown, was studied by

Wang (2004) and Huang and Liu (2006). If φ(x) = x, this model reduces to the Cox pro-

portional hazards model. Note that this model is similar in form to the model studied by

Fan et al. (1997) except that the single-index βT W replaces the original covariates W for

dimension reduction. In Wang (2004), covariates are allowed to be time-dependent and

potentially missing. When the missing covariates are present, a two stage approach was

proposed to account for the missingness. In the first stage, the missing time-dependent

covariates were imputed using functional data analysis methods. In the second stage,

a two-step iterative algorithm was performed to estimate the unknown function φ(·).
Asymptotic properties were derived for the estimator of the nonparametric function

when time-dependent covariates are not missing, but there are no asymptotic proper-

ties for the estimator of β presented in that paper. Later, Huang and Liu (2006) used

spline smoothing techniques to approximate the unknown link function φ(·) and then

employed the maximum partial likelihood to estimate the regression parameter β. They

also established inference procedures for the function φ(·) and the index coefficient vec-

tor β, and discussed the interpretation of the regression coefficients in detail, but no

results on semiparametric efficiency were presented. Furthermore, in the aforementioned

two models, all of the covariates are incorporated into one single-index term, no matter

whether they have linear or nonlinear effects on the hazard and thus the interpretation of

covariate effects are difficult. Also, all covariates must meet the proportional hazards re-

quirement. Recently, Xia, Zhang, and Xu (2010) studied a very general regression model

of the form T = G(BT W, ε), where T is the survival time, G(·, ·) is completely unknown,

B is a parameter matrix with the column dimension less than the row dimension and ε

is independent of the covariates W . Note that this model includes the transformation

model (Zeng and Lin 2007b) and the accelerated failure time model (Cox and Oakes

1984, chap. 5) as its special cases. Xia et al. (2010) also proposed a novel dimension

8



reduction method by introducing a nominal regression model to estimate the conditional

hazard function via estimation of the central subspace in the presence of censoring. Sim-

ilarly, this model treats all the covariates in the same way (via nonparametric modeling

of single-indices) and so the model interpretation is difficult.

It is worthwhile at this stage to point out that given a set of available covariates, one

should always screen out those covariates that are inappropriate for control before model

fitting, as suggested by Greenland (1989). For example, in epidemiologic studies, “it is

well known that covariates influenced by the exposure or disease are inappropriate for

control, since control of such covariates may lead to considerable bias” (Greenland 1989);

thus, we assume throughout this dissertation that the covariates W are those remaining

after the screening. We also note that “covariates” used in this dissertation could be

other types of relevant quantities. For example, principle components are widely used

in genetics as “covariates”, as in Kong, Pu, and Park (2006), Chen, Wang, Smith, and

Zhang (2008) and Ma and Kosorok (2009). In the sequel, we will use “covariates” despite

the note we just made.

1.1.3 Partially Linear Models for Survival Data

In all of the aforementioned models, all components of W are treated equally in the sense

that no distinction is made as to which components are more interesting to investigators

than the others. In practice, covariates W can often be partitioned into two parts, say X

and Z, corresponding to the covariates of primary interest and the “nuisance” covariates

(potential confounders), respectively. We assume in the sequel that X is p dimensional

and Z is q dimensional. For example, in the aforementioned MACS data, one might be

interested in assessing the effect of patient’s ethnicity, baseline age, viral loads and CD4

counts on the risk of death due to AIDS, controlling for serum β2-microgloburin levels

and serum neopterin levels. Thus patient’s ethnicity, baseline age, viral loads and CD4

counts are treated as covariates of primary interest X and serum β2-microgloburin levels

9



and serum neopterin levels are treated as “nuisance” covariates Z. One might also wish

to assess in particular the effect of patient’s ethnicity and baseline age on the risk of

death due to AIDS, controlling for the remaining 4 biomarkers. Thus in this instance the

covariates of primary interest are patient’s ethnicity and baseline age and the remaining

4 biomarkers are “nuisance” covariates.

Since covariates of primary interest are given more priority, X is often modeled para-

metrically to ensure model interpretability but Z is modeled nonparametrically to al-

low for model flexibility. One example of such a modeling strategy is the partially lin-

ear Cox model studied by Sasieni (1992a, b). The model takes the form h(t|X, Z) =

λ(t)eβT X+φ(Z), where both λ(·) and φ(·) are completely unknown. Note that by assuming

proportionality of X through a parametric function βT X, the regression parameter β can

now be interpreted as the log-hazard ratio for X and the “nuisance” covariates Z can

have nonparametric effects on the hazard function. The estimation method for this model

in Sasieni (1992a, b) was based on a spline smoothed partial likelihood. Sasieni (1992a,

b) also provided the efficient score and information bound for estimating β. However,

no details were provided on the asymptotic distribution of the suggested spline based

estimators.

The special case when Z is 1-dimensional and λ(·) is a parametric function indexed

by a finite dimensional parameter θ in the partially linear Cox model was studied by

Lu, Singh, and Desmond (2001), who proposed to estimate β by maximizing a profile

likelihood after profiling out φ(·) estimated by using the local likelihood. The resulting

estimator for (β, θ) was
√

n−consistent, asymptotically normal and semiparametrically

efficient. Heller (2001) considered the same model as in Lu et al. (2001) except assuming

a nonparametric baseline hazard function. Similarly, his estimator for β was based on

a profile likelihood after profiling out the infinite dimensional parameters using kernel

smoothing. The resulting estimator for β was again shown to be semiparametrically ef-

ficient. To our best knowledge, the large sample properties of estimators of the partially
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linear Cox model with multi-dimensional “nuisance” covariates have not been studied.

Although the partially linear Cox model is flexible in term of modeling “nuisance” covari-

ate effects, it has two potential drawbacks. First, as in Nielsen and Linton (1995), Fan

et al. (1997) and Nielsen et al. (1998), the nonparametric estimation is only practically

feasible when the dimension of the “nuisance” covariates Z is low; Second, “nuisance”

covariates are required to satisfy the stringent proportional hazards assumption.

To tackle the first drawback of the partially linear Cox model in Sasieni (1992a, b),

Huang (1999) studied the partly linear additive Cox model by assuming h(t|X,Z) =

λ(t)eβT X+
∑q

i=1 φi(Zi), where λ(·) and φi(·) are unknown functions and Zi is the ith com-

ponent of the q-dimensional covariates Z, i = 1, · · · , q. Thus one unknown function of

q variables in Sasieni (1992a, b) has been replaced by q unknown univariate functions

and so it breaks the “curse of dimensionality”. Note that this model is a special case of

Sasieni (1992a, b). The polynomial spline method was used to estimate the nonparamet-

ric functions φi(·), i = 1, · · · , q and the estimators of the regression parameters maximize

the induced spline smoothed partial likelihood, which were shown to be
√

n-consistent,

asymptotically normal and semiparametrically efficient. Note that such a model requires

estimating q unknown functions and so is computationally intense. Moreover, the “nui-

sance” covariates are still required to satisfy the proportional hazards assumption.

The second drawback of Sasieni’s (1992a, b) model can be overcome by assum-

ing a partly proportional hazards model (Dabrowska 1997) of the form h(t|X,Z) =

λ(t, Z)eβT X , where λ(·, ·) is an unknown bivariate baseline hazard function which de-

pends on the “nuisance” covariates Z. Note that this model includes Sasieni (1992a, b)

model as a special case. The parameter estimation in Dabrowska (1997) was based on

a kernel smoothed partial likelihood. It was shown that when the dimension of Z is at

most 3, the estimator for β is asymptotically normal at rate
√

n. However, the proposed

estimator fails to be
√

n−consistent when the dimension of Z is larger than 3. A one-step

estimator was then suggested to achieve the
√

n rate. Therefore, as in Sasieni (1992a,

11



b), this model is only practically feasible when Z is low dimensional. Furthermore, there

are no results on semiparametric efficiency in this instance.

In the current setting of semiparametric modeling of covariates effects, the aforemen-

tioned strategy for dimension reduction via a single-index can also be used. For example,

Xia, Tong, and Li (1999) studied the partially linear single-index model of the form

Y = βT X + η(γT Z) + ε, where η(·) and ε are defined in the aforementioned single-index

model. Again, the kernel smoothing method was used to construct the estimator of the

unknown function η(·) of the single-index. More generally, Carroll, Fan, Gijbels, and

Wand (1997) proposed the generalized partially linear single-index model of the form

g(E(Y |X, Z)) = βT X + η(γT Z), where g(·) is a known link function and η(·) is un-

specified. A local quasi-likelihood was used to estimate the unknown function of the

single-index. However, a
√

n−consistent pilot estimator for γ and under-smoothing are

needed. Later, Xia and Härdle (2006) proposed the minimum average variance estima-

tion method which does not require a
√

n−consistent pilot estimator and the bandwidth

can be selected at the optimal smoothing rate. Besides kernel smoothing methods, other

smoothing methods have been studied. For example, Yu and Ruppert (2002) considered

the penalized spline method in the partially linear single-index model (Xia et al. 1999)

and showed that the penalized spline method performs better than the kernel smoothing

method of Carroll et al. (1997).

In the survival analysis context, Lu, Chen, Song, and Singh (2006) considered the par-

tially linear single-index survival model of the form h(t|X,Z) = λθ(t)e
βT X+η(γT Z), where

the form of the baseline hazard function is known up to an Euclidean parameter θ and

η(·) is unknown. The estimation of η(·) was based on a local linear fit and the estima-

tor for (β, γ, θ) was shown to be asymptotically normal and semiparametrically efficient.

Even though the parametric baseline hazard appears reasonable in many applications,

it is desirable to have a more flexible nonparametric hazard instead. In that direction,

Sun, Kopciuk, and Lu (2008) studied a more general partially linear proportional hazards

12



model of the form h(t|X, Z) = λ(t)eβT X+η(γT Z), where λ(·) is now unspecified. Sun et

al. (2008) adopted a polynomial spline smoothing technique for estimating the unknown

smooth function η(·). However, no asymptotic results were presented in this instance.

Furthermore, all covariates in Lu et al. (2006) and Sun et al. (2008) must satisfy the

proportional hazards assumption.

1.2 Outline of Dissertation

In this dissertation, we first consider the “single-index hazards model”, a modification of

the model studied in Nielsen and Linton (1995), by assuming a nonparametric baseline

hazard function that depends on W through a single index βT W . Specifically, we consider

a model of the form h(t|W ) = λ(t, βT W ), where λ(·, ·) is an unknown bivariate function.

Note that this model includes the Cox model and all the transformation models mentioned

before as special cases. In addition, the model has several nice features. First, covariates

are allowed to have nonparametric effects on the hazard function. This is particularly

useful if covariates W do not satisfy the proportional hazards assumption so that the

Cox model may not be appropriate. Second, the relative importance of the components

of W can be fully characterized by the orientation vector β since the derivative of h(t|W )

with respect to Wi, the ith component of the covariate vector W , is proportional to βi,

thus βi characterizes how fast h(t|W ) changes with Wi. Third, this single-index hazards

model is more parsimonious than the model in Nielsen and Linton (1995) since the multi-

dimensional vector W has been replaced by a one-dimensional single-index βT W . The

local likelihood approach is commonly used for the single-index model. Thus we adapt

this approach for parameter estimation in our single-index hazards model. Surprisingly,

we find, both theoretically and numerically, that this commonly used approach in general

yields inconsistent estimators and it may work only under very specific conditions.

13



Since the aforementioned single-index hazards model cannot in general address co-

variate effects, especially the effect of covariates of main interest, we further propose the

“partly proportional single-index hazards model” by assuming h(t|X, Z) = λ(t, γT Z)eβT X ,

where λ(·, ·) is an unknown function. The model has several nice features. First, by as-

suming proportionality of X via the linear combination βT X, the regression parameter

β can be interpreted as the log-hazard ratio of the covariates of primary interest X

for any given Z, while Z is allowed to have nonparametric effects. The nonparametric

modeling of Z is particularly useful if the “nuisance” covariates do not satisfy the pro-

portional hazards assumption so that the Cox model may yield biased results. Second,

this model overcomes both drawbacks associated with Sasieni’s (1992a, b) model. Specif-

ically, it is parsimonious since the q-dimensional covariates Z have been replaced by a

one-dimensional single-index γT Z, and thus nonparametric estimation becomes feasible.

Furthermore, as in Dabrowska’s (1997) model, the proportional hazards assumption is

relaxed for Z. Third, similar to the single-index hazards model, the relative importance

of the components of Z can be fully characterized by the orientation vector γ since the

derivative of h(t|X, Z) with respect to Zi, the ith component of the “nuisance” covari-

ates Z, is proportional to γi, the ith component of γ. Thus γi characterizes how fast

h(t|X,Z) changes with Zi, i = 1, · · · , q. To estimate the regression parameters β and γ,

we construct a profile likelihood after profiling out the baseline hazard function, which is

estimated based on a local likelihood function. Similar to the single-index hazards model,

it is shown that this conventional profile-kernel method leads to biased estimation of the

regression parameters. We also believe that this bias phenomenon extends to other model

settings besides our partly proportional single-index hazards model. To address the bias

issue in this model, we propose a bias correction method which is shown to have nice

asymptotic properties and works well in finite-sample settings.

In addition to the profile local likelihood method, we consider another popular ap-

proach for model estimation, named the profile stratified likelihood approach based on
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stratification on the single-index. In the single-index hazards model, this method may

give consistent estimation under the restrictive “independence censoring” condition, but

in general it can yield biased estimation. Simulation studies are conducted to demon-

strate the situations in which the bias phenomena do (or do not) exist; In the partly

proportional single-index hazards model, we demonstrate numerically the existence of

the bias and then propose a bias correction method using a similar idea for correcting

the bias in the profile local likelihood method. The estimators from the corrected profile

stratified likelihood method are shown to be consistent. Their finite-sample properties

are evaluated through simulation studies and this bias corrected method is applied to

the aforementioned MACS study for illustration.

The remainder of this dissertation is organized as follows. Chapter 2 focuses on the

bias analysis of the profile local likelihood approach in the single-index hazards model.

In Section 2.1, we describe the single-index hazards model and the data structure. In

Section 2.2, we describe how to adapt the commonly used profile local likelihood method

for parameter estimation. We then study the asymptotic bias of this approach in Section

2.3 and identify conditions under which this approach may work. In Section 2.4, we

demonstrate our findings via a series of simulation studies. In Chapter 3, we focus on the

partly proportional single-index hazards model. In Section 3.1, we describe the model

and the data structure. In Section 3.2, we consider again the commonly used profile

local likelihood method and study the estimation bias associated with this method, both

theoretically and numerically. A bias correction method is then proposed and results

on the asymptotic and finite-sample properties of the corrected profile local likelihood

estimator are given in Section 3.3. In Section 3.4, we illustrate the proposed model and

method with an application to a dataset from the MACS. Chapter 4 studies the profile

stratified likelihood method. In Section 4.1, we consider this method in the single-index

hazards model and its performance is studied both asymptotically and numerically. In

Section 4.2, we consider this method in the partly proportional single-index hazards
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model. Specifically, we demonstrate the estimation bias numerically, propose a bias

correction, give some asymptotic results of the corrected stratified likelihood method

and apply the partly proportional single-index hazards model to the dataset from the

MACS using the bias corrected method. Finally, the dissertation is concluded with a

discussion in Chapter 5. Technical proofs are given at the end of each chapter.
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Chapter 2

Single-Index Hazards Model

2.1 Model and Data Structure

We assume the following single-index hazards model

h(t|W ) = λ(t, γT W ), (2.1)

where γ ∈ Rq and λ(·, ·) is an unknown bivariate function. To ensure identifiability, we

first impose the restriction that ‖γ‖ = 1 with the last component γq positive, that is, the

γ vector is restricted to the half unit sphere. This assumption is practically reasonable

when at least one covariate has a non-zero effect.

Suppose we observe a random sample of size n, (Yi = Ti ∧ Ci, ∆i,Wi), i = 1, · · · , n,

where T is the survival time, C is the censoring time, a∧ b = min(a, b), ∆ = I(T ≤ C) is

the censoring indicator and W is the covariate vector. The subscript i is used to denote

the ith subject. The log-likelihood function is

1

n

n∑
i=1

[
∆i log λ(Yi, γ

T Wi)− Λ(Yi, γ
T Wi)

]
. (2.2)

This function has a maximum value of infinity and thus cannot be used directly for

parameter estimation. In nonparametric maximum likelihood estimation (NPMLE), we



maximize

1

n

n∑
i=1


∆i log Λ{Yi, γ

T Wi} −
∑

Yj≤Yi

Λ{Yj, γ
T Wi}


 . (2.3)

Here, Λ{Yi, γ
T Wi} is the jump size of Λ(Yi, γ

T Wi) at Yi. However, the profile likelihood

function based on (2.3), obtained by profiling out Λ{·, ·}, is a constant and is thus not

a valid objective function. In the next section, we consider a commonly used estimation

approach for model (2.1), the local profile likelihood approach.

2.2 Profile Local Likelihood

Local likelihood has been frequently used to estimate the unknown function in a semi-

parametric model. In this approach, a local likelihood is constructed to estimate the

nonparametric function and then the estimated function is plugged into the likelihood

(or some variant of the likelihood) to obtain the profile likelihood function. This con-

ventional profile-kernel method was adopted, for example, by Fan et al. (1997). Carroll

et al. (1997) used the same method except that a quasi-likelihood played the role of the

regular likelihood function. Specifically for our likelihood (2.3) and fixed γ, we would

estimate Λ{·, ·} by maximizing the following local likelihood:

1

n

n∑
i=1


∆i log Λ{Yi, u} −

∑
Yj≤Yi

Λ{Yj, u}

 Kan(γT Wi − u),

where Kan(t) = K(t/an)/an, K is a mean zero symmetric density function and Λ{Yi, w}
is the jump size of Λ(Yi, w) at Yi for each w. This is the local constant fit weighted by

the function Kan(·). The maximizer can be found as

Λ̂{Yi, u} =
∆iKan(γT Wi − u)∑
Yj≥Yi

Kan(γT Wj − u)
. (2.4)
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After plugging (2.4) into (2.3), we obtain, up to a constant, that the profile local likelihood

is

− 1

n

n∑
i=1

∆i log


 1

nan

∑
Yj≥Yi

K

(
γT (Wj −Wi)

an

)


− 1

n

n∑
i=1

1

nan

∑
Yj≤Yi

∆jK
(

γT (Wj−Wi)

an

)

1
nan

∑
Yk≥Yj

K
(

γT (Wk−Wi)
an

) . (2.5)

We will show in Lemma 2.5.1 in Section 2.5 that the second term of (2.5) equals a constant

(with respect to the parameter) asymptotically. As a result, the estimator of γ is the

maximizer of the local profile likelihood function plloc
n (γ), which only includes the first

term. That is,

plloc
n (γ) = − 1

n

n∑
i=1

∆i log


 1

nan

∑
Yj≥Yi

K

(
γT (Wj −Wi)

an

)
 .

Note that this function is smooth in γ. Thus numerically it can be easily maximized.

For example, the quasi-Newton search algorithm can be used.

2.3 Bias Analysis

In this section, we aim to rigorously study the estimation bias based on the profile local

likelihood plloc
n (γ). We impose the following regularity conditions:

(C1) γ0 ∈ Γ, where Γ ∈ Rq is compact.

(C2) The random covariate vector W has a continuous density on its support.

(C3) The non-uniform kernel function K(·) has zero mean with finite second moment.

Moreover, supx |K ′(x)| is finite, where K ′(x) denotes the derivative function of

K(x).
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(C4) The bandwidth an = nν1 with ν1 ∈ (−1/2, 0).

Remark 2.3.1. Many kernel functions satisfy condition (C3), for example, the standard

Gaussian kernel K(u) = 1/
√

2π exp(−u2/2) and the Epanechnikov kernel K(u) = 3/4(1−
u2)I(|u| ≤ 1).

The following theorem gives the asymptotic limit of plloc
n (γ).

Theorem 2.3.1. If conditions (C1)-(C4) hold, then supγ |plloc
n (γ) − plloc(γ)| →a.s. 0,

where

plloc(γ) = −E
[
∆ log

(
P (Y ≥ y|γT W )|y=Y fγT W (γT W )

)]
.

Here fγT W (·) is the density function of γT W .

Thus the local profile likelihood estimator should converge to the maximizer of plloc(γ)

almost surely by Theorem 2.12 of Kosorok (2008). Suppose the latter is the true param-

eter γ0, then the derivative of plloc(γ) with respect to γ should be proportional to γ0 if

evaluated at γ0. This proportionality to γ0 is due to the restriction ‖γ‖ = 1. However,

we show in the next theorem that this may not be true under the following two regularity

conditions:

(C5) Given covariates W , T and C are independent.

(C6) P (T > τ) < 1, where τ denotes the end of the study.

Remark 2.3.2. Condition (C6) implies a positive probability of non-censoring so that

plloc
n (γ) is not a constant with respect to γ.

Theorem 2.3.2. Assume conditions (C5) and (C6) hold and suppose C is independent

of W and W ∼ N(µ, Σ) with Σ positive definite, then ∂
∂γ

∣∣
γ=γ0

plloc(γ) ∝ γ0 if and only if

Σγ0 = cγ0 for some constant c.

Remark 2.3.3. This theorem suggests that even in the special case where the covariate

vector follows a normal distribution and C is independent of W , the profile local likelihood
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approach may give consistent estimation only under the restrictive condition Σγ0 = cγ0.

Thus, in the more general set-up, plloc(γ) may not be maximized at γ0, and thus the

procedure may be inconsistent.

2.4 Simulation Studies

We conduct numerical studies to demonstrate the estimation bias associated with the

aforementioned profile local likelihood approach. In this section, we assume that the

covariate vector W = (W1,W2) is two dimensional and is generated from a bivariate

normal distribution with zero means and unit variances. The true parameter for γ is

γ0 = (−1/2,
√

3/2)T . The following four simulation settings are considered: (i) The

censoring time C is independent of W , λ0(t, u) = 0.5eut, W has no correlation; (ii) C is

independent of W , λ0(t, u) = 0.5eut and the covariance between W1 and W2 is 0.5; (iii)

C is independent of W , λ0(t, u) = 0.25(t + u2) and we use the same covariance matrix as

in setting (ii); (iv) C and W are dependent, λ0(t, u) = 0.25(t + u2) and we use the same

covariance matrix as in setting (ii). In settings (i)-(iii), C is generated from the uniform

[0, τ ] distribution with τ = 10 and C = 4eW2 ∧ τ in setting (iv). Note that in setting (i)

and (ii), the proportional hazards assumption is satisfied, but this assumption is violated

in settings (iii) and (iv). The censoring rate ranges approximately from 20% to 28%.

We choose the kernel function to be the standard normal density and the parameter

is estimated by using the quasi-Newton search algorithm in the R software package. The

initial value is set to zero. The bandwidth is chosen to be c1 × IQR1 × n−1/4, where the

tuning parameter c1 is chosen from {2, 1, 1/2} and IQR1 is the inter-quartile range of

‖W‖ in each simulated data set. For each simulation setting, the tuning parameter c1

which gives the smallest bias when n = 10000 is chosen and then the same parameter

value is used for other sample sizes.

Table 2.1 summarizes the simulation results in setting (i)-(iv) with sample sizes 2000,
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Table 2.1: Simulation results of local likelihood in single-index hazards model

Local likelihood Cox model
Simulation settings Parameter Sample size Bias SE Bias SE

(i) C ⊥ W γ1 2000 .153 .421 -.001 .026
λ0(t, u) = 0.5eut 5000 .018 .183 .000 .017

cov(W ) = 0 10000 .013 .113 .000 .012
(ii) C ⊥ W γ1 2000 1.198 .035 -.001 .030

λ0(t, u) = 0.5eut 5000 1.195 .023 .000 .019
cov(W ) = 0.5 10000 1.195 .017 .001 .014
(iii) C ⊥ W γ1 2000 1.188 .037 .500 .032

λ0(t, u) = 0.25(t + u2) 5000 1.189 .022 .501 .020
cov(W ) = 0.5 10000 1.185 .017 .500 .014
(iv) C 6⊥ W γ1 2000 1.338 .027 .446 .033

λ0(t, u) = 0.25(t + u2) 5000 1.340 .016 .448 .022
cov(W ) = 0.5 10000 1.342 .011 .447 .015

NOTE: Each entry is based on 500 replicates.

5000 and 10000, where γ1 is the first component of the γ vector. As expected by The-

orem 2.3.2, the local likelihood approach fails in settings (ii)-(iv) due to the correlation

among the vector W and γ0 not being an eigenvector of the covariance matrix of W .

Theorem 2.3.2 also suggests that the local likelihood approach may work in setting (i)

because the identity covariance matrix is used. We have also reported the results from

the Cox proportional hazards model. The Cox model produces consistent estimators in

setting (i) and (ii) since the proportional hazards assumption is satisfied, but it gives

biased estimation in setting (iii) and (iv) due to the violation of this assumption.

Figure 2.1 shows the profile local likelihood function based on a simulated data set

of size 10000 in each simulation setting. The upper two panels pertain to case (i) and

(ii), respectively; The bottom two panels pertain to case (iii) and (iv), respectively.

The bandwidth is 1 × n−1/4. Again, the profile local likelihood approach gives biased

estimators except in setting (i).
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Figure 2.1: Profile local likelihood curve of γ1 in single-index hazards model
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2.5 Proofs of Theorems

We denote the second term of (2.5) by (B).

Lemma 2.5.1. If conditions (C1)-(C4) hold, then supγ |(B)− 1/n
∑n

j=1 ∆j| →a.s. 0.

Proof of Lemma 2.5.1

We partition Γ into small cubes such that any two points in the same cube have

distance no large than δn to be determined later. The number of partitions, denoted by

m∗
n, is of order 1/δq

n. Choose one arbitrary point from each of these partitions and denote

them as γ(1), . . . , γ(m∗
n). For γ1 and γ2 in the same cube, any fixed y, w,

∣∣∣∣∣
1

nan

∑
Yj≥y

K

(
γT

1 (Wj − w)

an

)
− 1

nan

∑
Yj≥y

K

(
γT

2 (Wj − w)

an

) ∣∣∣∣∣ ≤
c

a2
n

‖γ1 − γ2‖, and

∣∣∣∣
1

an

E

[
I(Y ≥ y)K

(
γT

1 (W − w)

an

)]
− 1

an

E

[
I(Y ≥ y)K

(
γT

2 (W − w)

an

)] ∣∣∣∣ ≤ c1‖γ1−γ2‖,

for universal constants c and c1. If we choose δn/a2
n → 0 as n →∞, then for any δ > 0,

P

(
sup
γ,y,w

∣∣∣∣
1

nan

∑
j

I(Yj ≥ y)K

(
γT (Wj − w)

an

)
− 1

an

E

[
I(Y ≥ y)K

(
γT (W − w)

an

)] ∣∣∣∣ > δ

)

≤ P

(
max

1≤l≤m∗
n

sup
y,z

∣∣∣∣∣
1

nan

∑
j

I(Yj ≥ y)K

(
γ(l)T

(Wj − w)

an

)

− 1

an

E

[
I(Y ≥ y)K

(
γ(l)T

(W − w)

an

)] ∣∣∣∣∣ >
δ

2

)

≤
m∗

n∑

l=1

P

(
sup
y,z

∣∣∣∣∣
1

nan

∑
j

I(Yj ≥ y)K

(
γ(l)T

(Wj − w)

an

)

− 1

an

E

[
I(Y ≥ y)K

(
γ(l)T

(W − w)

an

)] ∣∣∣∣∣ >
δ

2

)

≤ c0m
∗
n exp(−c1nδ2a2

n),

where the exponential bound in the last step makes use of the result on the empirical
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CDF due to Dvoretzky, Keifer and Wolfowitz (1956). Therefore,

∞∑
n=1

P

(
sup
γ,y,z

∣∣∣∣
1

nan

∑
j

I(Yj ≥ y)K

(
γT (Wj − w)

an

)
− 1

an

E

[
I(Y ≥ y)K

(
γT (W − w)

an

)] ∣∣∣∣ > δ

)

≤ c2

∞∑
n=1

δ−q
n exp(−c1nδ2a2

n).

If we choose δn = a3
n, then the previous display becomes

c2

∞∑
n=1

a−3q
n

ec1nδ2a2
n
≤ c3

∞∑
n=1

a−3q
n

(na2
n)m

,

for any positive integer m. Since an = nν1 with ν1 ∈ (−1/2, 0), we can choose m to be

larger than (1 − 3qν1)/(1 + 2ν1) such that the previous display is finite. Then, by the

Borel-Cantelli lemma,

sup
γ,y,w

∣∣∣∣∣
1

nan

∑
Yj≥y

K

(
γT (Wj − w)

an

)
− 1

an

E

[
I(Y ≥ y)K

(
γT (W − w)

an

)] ∣∣∣∣∣ −→a.s. 0.

For any fixed γ, it can be shown that

1

an

E

[
I(Y ≥ y)K

(
γT (W − w)

an

)]
= E

(
I(Y ≥ y)|γT W = γT w

)
fγT W (γT w) + O(a2

n),

where fγT W (·) is the density function of γT W and O(a2
n) does not depend on y and w.

Hence for any given γ,

sup
y,w

∣∣∣∣
1

an

E

[
I(Y ≥ y)K

(
γT (W − w)

an

)]
− E

(
I(Y ≥ y)|γT W = γT w

)
fγT W (γT w)

∣∣∣∣ −→ 0.

Note that both 1/anE
[
I(Y ≥ y)K

(
γT (W−w)

an

)]
and E

(
I(Y ≥ y)|γT W = γT w

)
fγT W (γT w)

are equi-continuous in γ. Hence,

sup
γ,y,w

∣∣∣∣
1

an

E

[
I(Y ≥ y)K

(
γT (W − w)

an

)]
−E

(
I(Y ≥ y)|γT W = γT w

)
fγT W (γT w)

∣∣∣∣ −→ 0.
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Therefore, we have proved that

sup
γ,y,w

∣∣∣∣
1

nan

∑
Yj≥y

K

(
γT (Wj − w)

an

)
− E

(
I(Y ≥ y)|γT W = γT w

)
fγT W (γT w)

∣∣∣∣ −→a.s. 0.

It then follows that

sup
γ

∣∣∣∣∣(B)− 1

n

n∑
j=1

∆j
1

nan

n∑
i=1

I(Yi ≥ Yj)K
(

γT (Wi−Wj)

an

)

E (I(Y ≥ y)|γT W = γT Wi) |y=Yj
fγT W (γT Wi)

∣∣∣∣∣ −→a.s. 0.

Similar arguments can be used to show that

sup
γ,y,w

∣∣∣∣∣
1

nan

n∑
i=1

I(Yi ≥ y)K
(

γT (Wi−w)
an

)

E (I(Y ≥ y)|γT W = γT Wi) fγT W (γT Wi)

− 1

an

E


 I(Y ≥ y)K

(
γT (W−w)

an

)

E (I(Y ≥ y)|γT W ) fγT W (γT W )




∣∣∣∣∣ −→a.s. 0.

Simple calculation shows that the second term inside the absolute value equals 1. There-

fore,

sup
γ

∣∣∣∣∣∣
1

n

n∑
j=1

∆j
1

nan

n∑
i=1

I(Yi ≥ Yj)K
(

γT (Wi−Wj)

an

)

E (I(Y ≥ y)|γT W = γT Wi) |y=Yj
fγT W (γT Wi)

− 1

n

n∑
j=1

∆j

∣∣∣∣∣∣
−→a.s. 0

and thus supγ |(B)− 1/n
∑n

j=1 ∆j| −→a.s. 0.

Proof of Theorem 2.3.1

Following the proof for Lemma 2.5.1, we obtain

sup
γ

∣∣∣∣∣
1

n

∑
i

∆i log


 1

nan

∑
Yj≥Yi

K

(
γT (Wj −Wi)

an

)


− 1

n

∑
i

∆i log
(
E

(
I(Y ≥ y)|γT W = γT Wi

) |y=Yi
fγT W (γT Wi)

)
∣∣∣∣∣ −→a.s. 0.
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The second term inside the absolute value converges uniformly in γ to

E
{
∆ log

(
E

(
I(Y ≥ y)|γT W

) |y=Y fγT W (γT W )
)}

,

since the involved class of functions is strong P-GC. Therefore,

sup
γ

∣∣plloc
n (γ)− plloc(γ)

∣∣ →a.s. 0.

Proof of Theorem 2.3.2

Note that − ∂
∂γ

∣∣
γ=γ0

plloc(γ) equals

E

[
∆
∇γ

(
E(I(Y ≥ y)|γT W )fγT W (γT W )

)

E(I(Y ≥ y)|γT
0 W )fγT

0 W (γT
0 W )

∣∣∣∣
y=Y

]

= EW

[ ∫ ∇γ

(
E(I(Y ≥ t)|γT W )fγT W (γT W )

)

E(I(Y ≥ t)|γT
0 W )fγT

0 W (γT
0 W )

λ0(t, γ
T
0 W )GC(t) exp

(−Λ0(t, γ
T
0 W )

)
dt

]

= EW

[ ∫ ∇γ

(
E(I(Y ≥ t)|γT W )fγT W (γT W )

)

fγT
0 W (γT

0 W )
λ0(t, γ

T
0 W )dt

]

=

∫∫
λ0(y, γT

0 w)fW (w)

fγT
0 W (γT

0 w)
∇γ

(
E(I(Y ≥ y)|γT W = γT w)fγT W (γT w)

)
dydw,

where GC(·) denotes the survival function of C. The quantity inside the gradient operator

can be written as

lim
h→0

1

h
E

[
I(Y ≥ y)K

(
γT W − γT w

h

)]
= lim

h→0

1

h
EW

[
K

(
γT W − γT w

h

)
g(y, γT

0 W )

]
,

where g(y, u) = GC(y) exp (−Λ0(y, u)) . Thus

− ∂

∂γ

∣∣∣∣
γ0

plloc(γ) =

∫∫
λ0(y, γT

0 w)fW (w)

fγT
0 W (γT

0 w)

× lim
h→0

EγT
0 W

[
1

h2
K ′

(
γT

0 W − γT
0 w

h

)
(E(W |γT

0 W )− w)g(y, γT
0 W )

]
dydw.

27



Let r(u) ≡ E(W |γT
0 W = u), then the limit inside of the integral is

lim
h→0

∫
1

h2
K ′

(
u− γT

0 w

h

)
(r(u)− w)g(y, u)fγT

0 W (u)du

= −g′2(y, γT
0 w)fγT

0 W (γT
0 w)r(γT

0 w)− g(y, γT
0 w)f ′γT

0 W (γT
0 w)r(γT

0 w)

− g(y, γT
0 w)fγT

0 W (γT
0 w)r′(γT

0 w) + g′2(y, γT
0 w)fγT

0 W (γT
0 w)w + g(y, γT

0 w)f ′γT
0 W (γT

0 w)w,

where g′2(y, u) = ∂
∂u

g(y, u). Hence, the double integral equals

∫
EW

[
λ0(y, γT

0 W )

(
− g′2(y, γT

0 W )r(γT
0 W )− g(y, γT

0 W )
f ′

γT
0 W

fγT
0 W

(γT
0 W )r(γT

0 W )

− g(y, γT
0 W )r′(γT

0 W ) + g′2(y, γT
0 W )W + g(y, γT

0 W )
f ′

γT
0 W

fγT
0 W

(γT
0 W )W

)]
dy

=−
∫

EγT
0 W

(
λ0(y, γT

0 W )g(y, γT
0 W )r′(γT

0 W )
)
dy.

Since W ∼ N(µ, Σ), r′(u) = (γT
0 Σγ0)

−1Σγ0 for any u. Thus the last display becomes

−(γT
0 Σγ0)

−1Σγ0

∫
EγT

0 W

(
λ0(y, γT

0 W )g(y, γT
0 W )

)
dy = −E[∆](γT

0 Σγ0)
−1Σγ0.

By (C6), E[∆] > 0. Thus the display is proportional to γ0 if and only if Σγ0 ∝ cγ0 for

some constant c. This completes the proof.
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Chapter 3

Partly Proportional Single-Index

Hazards Model

3.1 Model and Data Structure

In this chapter, we assume the following partly proportional single-index hazards (PPSIH)

model

h(t|X, Z) = λ(t, γT Z)eβT X , (3.1)

where β ∈ Rp, γ ∈ Rq and λ(·, ·) is an unknown bivariate function. When γ is a con-

stant and Z is one dimensional, (3.1) reduces to a special case of the model studied by

Dabrowska (1997). When β is zero or there is no X, (3.1) reduces to the single-index

model proposed in Chapter 2. To ensure identifiability of this model, we first impose the

restriction that ‖γ‖ = 1 with the last coordinate γq of γ positive, that is, γ is restricted

to the half unit sphere. This assumption is practically reasonable when at least one

“nuisance” covariate has a non-zero effect. Other identifiability and regularity conditions

are given in Sections 3.2 and 3.3.

Suppose we observe a random sample of size n, (Yi = Ti∧Ci, ∆i, Xi, Zi), i = 1, · · · , n,

where T is the survival time, C is the censoring time, a ∧ b = min(a, b), ∆ = I(T ≤



C) is the censoring indicator, X is the covariate vector of main interest and Z is the

“nuisance” covariate vector. The subscript i denotes the ith subject. We make the

standard assumptions that C is independent of T conditional on (X, Z) and that the

distribution of C does not depend on the parameters (i.e. non-informative censoring).

The log-likelihood function is

1

n

n∑
i=1

[
∆i

(
log λ(Yi, γ

T Zi) + βT Xi

)− eβT XiΛ(Yi, γ
T Zi)

]
. (3.2)

This function has the maximum value of infinity, thus it cannot be used directly for

parameter estimation. Instead, in the setting of nonparametric maximum likelihood

estimation (NPMLE), we maximize

1

n

n∑
i=1


∆i

(
log Λ{Yi, γ

T Zi}+ βT Xi

)− eβT Xi

∑
Yj≤Yi

Λ{Yj, γ
T Zi}


 . (3.3)

Here, Λ{Yi, u} is the jump size of the “baseline” cumulative hazard function Λ(t, u) at Yi

for fixed u. However, the profile likelihood function based on (3.3) obtained by profiling

out Λ{·, ·} is a constant, thus it is not a valid objective function. In the next section,

we consider a commonly used estimation method, namely the profile local likelihood

approach, for model estimation.

3.2 Profile Local Likelihood

3.2.1 Method

In a semiparametric model, a local likelihood using kernel smoothing is frequently con-

structed to estimate the unspecified function and then the estimated function is plugged

into the likelihood (or some variant of the likelihood) to obtain the profile likelihood

function. This conventional profile-kernel method is adopted by Dabrowska (1997) and
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Fan et al. (1997). Specifically for our likelihood (3.3) and fixed (β, γ), we estimate Λ{·, ·}
by maximizing the following local likelihood:

1

n

n∑
i=1


∆i

(
log Λ{Yi, u}+ βT Xi

)− eβT Xi

∑
Yj≤Yi

Λ{Yj, u}

 Kan(γT Zi − u),

where Kan(t) = K(t/an)/an, K(·) is a mean zero symmetric density function and Λ{Yi, u}
is the jump size of Λ(t, u) at Yi for each u. This is the local constant fit weighted by the

function Kan(·). The maximizer can be found as

Λ̂{Yi, u} =
∆iKan(γT Zi − u)∑

Yj≥Yi
eβT XjKan(γT Zj − u)

. (3.4)

We plug Λ̂{Yi, u} into (3.3) to obtain, up to a constant, the profile likelihood

plloc
n (β, γ)− 1

n

n∑
i=1

1

nan

eβT Xi

∑
Yj≤Yi

∆jK
(

γT (Zj−Zi)

an

)

1
nan

∑
Yk≥Yj

eβT XkK
(

γT (Zk−Zi)
an

) , (3.5)

where

plloc
n (β, γ) =

1

n

n∑
i=1

∆iβ
T Xi − 1

n

n∑
i=1

∆i log


 1

nan

∑
Yj≥Yi

eβT XjK

(
γT (Zj − Zi)

an

)
 .

We will show in Lemma 3.5.1 in Section 3.5 that under some regularity conditions,

the second term of (3.5) converges uniformly in β and γ to 1/n
∑

i ∆i, which is a constant

with respect to (β, γ). As a result, the estimator for (β, γ) is obtained by maximizing

the profile local likelihood function plloc
n (β, γ). Note that this function is smooth in both

β and γ. Thus numerically it can be easily maximized. For example, the quasi-Newton

search algorithm can be used.
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3.2.2 Bias Analysis

Let (β0, γ0) denote the true parameter value of (β, γ). We impose the following regularity

conditions:

(C1) β0 ∈ B, γ0 ∈ Γ, where B ⊂ Rp, Γ ⊂ Rq are compact.

(C2) The random vector Z has a continuous positive density on its support.

(C3) The kernel function K(·) has mean zero with finite second moment. Moreover,

supx |K ′(x)| is finite, where K ′(x) denotes the derivative function of K(x).

Remark 3.2.1. Many kernel functions satisfy condition (C3), for example, the standard

Gaussian kernel K(u) = 1/
√

2π exp(−u2/2) and the Epanechnikov kernel K(u) = 3/4(1−
u2)I(|u| ≤ 1).

Theorem 3.2.1. If conditions (C1)–(C3) hold and let an = nν1 with ν1 ∈ (−1/2, 0),

then supβ,γ |plloc
n (β, γ)− plloc(β, γ)| →a.s. 0, where

plloc(β, γ) = E

[
∆

(
βT X + log

1

E
(
I(Y ≥ y)eβT X |γT Z

) |y=Y fγT Z(γT Z)

)]
.

Here fγT Z(·) is the density function of γT Z.

Thus the profile local likelihood estimator should converge to the maximizer of plloc(β, γ)

almost surely by Theorem 2.12 of Kosorok (2008). Suppose the latter is the true param-

eter (β0, γ0), then the partial derivative of plloc(β, γ) with respect to β should be zero if

evaluated at (β0, γ0) and the partial derivative of plloc(β, γ) with respect to γ should be

proportional to γ0 if evaluated at (β0, γ0). The latter is due to the restriction ‖γ‖ = 1.

However, we show in Theorem 3.2.2 that the true parameter (β0, γ0) may not maximize

plloc(β, γ).

Theorem 3.2.2. Suppose C is independent of (X, Z), Z ∼ N(µ, Σ) with Σ > 0 and is

independent of X, then
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(i) ∂
∂β

∣∣
β=β0,γ=γ0

plloc(β, γ) = 0.

(ii) ∂
∂γ

∣∣
β=β0,γ=γ0

plloc(β, γ) ∝ γ0 if and only if Σγ0 = cγ0 for some constant c.

Remark 3.2.2. This theorem shows that the profile local likelihood approach only works

in very special cases in view of the requirement Σγ0 = cγ0 and the independence assump-

tion between X and Z. Thus, in the more general set-up, plloc(β, γ) may not be max-

imized at (β0, γ0). Consequently, the profile local likelihood estimator is not in general

consistent.

In addition to the theoretical investigation of the asymptotic bias, we conduct sim-

ulation studies to examine the numerical performance of the profile local likelihood es-

timator. For simplicity, we assume that X is one dimensional, Z = (Z1, Z2) is two

dimensional and the censoring time C is generated from the uniform [0, 10] distribution.

Jointly, (X,Z) is generated from a multivariate normal distribution with zero means

and unit variances. The true parameters are β0 = 1, γ0 = (1/2,
√

3/2). The following

four simulation settings are considered: (i) λ0(t, u) = 0.5eut, X and Z are independent,

cov(Z1, Z2) = 0; (ii) λ0(t, u) = 0.5eut, X and Z are independent, cov(Z1, Z2) = 0.5;

(iii)λ0(t, u) = 0.5eut and the covariance between any pair of {X, Z1, Z2} is 0.5; (iv)

λ0(t, u) = 0.25eeut and we use the same covariance matrix as in setting (iii). Note that

in setting (i)–(iii), the proportional hazards assumption is satisfied, but this assumption

is violated in setting (iv). The censoring rate ranges approximately from 19% to 25%.

We choose the kernel function to be the standard normal density. Parameters are

estimated by using the quasi-Newton search algorithm in the R software package. The

initial values are set to zero. The bandwidth is chosen to be c1 × IQR1 × nν , where

c1 ∈ {0.5, 1, 1.5, 2}, ν ∈ {−1/4,−1/5} and IQR1 is the inter-quartile range of ‖Z‖ in

each simulated dataset. For each simulation setting, the tuning parameters c1 and ν

which give the smallest bias when n = 400 are chosen and then the same values are used

for the cases n = 100 and n = 200.
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Table 3.1 summarizes the simulation results in setting (i)–(iv) with sample sizes 100,

200 and 400, where γ1 is the first coordinate of the γ vector. As expected from Theo-

rem 3.2.2, the profile local likelihood method works in setting (i) but fails in settings (ii)

due to the non-zero correlation between Z1 and Z2 together with the fact that γ0 is not

an eigenvector of cov(Z). Our simulation results in setting (iii) and (iv) show that this

method also fails when X and Z are dependent in the presence of non-zero correlation

between Z1 and Z2. For comparison, results from the Cox model are also presented. The

Cox model works very well in setting (i)–(iii) as we expect, but it gives asymptotically

biased estimators in setting (iv) because of the violation of the proportional hazards

assumption.

Figure 3.1 shows the profile likelihood curve of γ1, the first coordinate of γ, in each

simulation setting based on a simulated dataset with n = 5000. The upper two panels

pertain to case (i) and (ii), respectively; The bottom two panels pertain to case (iii) and

(iv), respectively. The bandwidth is 2 × n−1/4. It is observed again that this approach

leads to asymptotically biased estimation except in case (i).

3.3 Corrected Profile Local Likelihood

3.3.1 Method

Since the profile local likelihood method generates biased results in general, this section

focuses on the bias correction. The idea is to construct a “baseline hazard function”

λ̃(t, z; β, γ) such that the corrected asymptotic limit, cplloc(β, γ), can be written as

E
[
∆

(
βT X + log λ̃(Y, Z; β, γ)

)
− eβT XΛ̃(Y, Z; β, γ)

]

with λ̃(t, z; β0, γ0) = λ0(t, γ
T
0 z) and Λ̃(t, z; β, γ) =

∫ t

0
λ̃(v, z; β, γ)dv. It then follows that

cplloc(β, γ) is maximized at the true parameter value (β0, γ0) by the non-negativity of
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Table 3.1: Simulation results of local likelihood in PPSIH model

Local likelihood Cox model
Simulation settings Sample size Parameters Bias SE Bias SE

(i) X ⊥ Z 100 β -.113 .161 .030 .163
λ0(t, u) = 0.5eut γ1 -.264 .440 .015 .134

cov(Z) = 0 200 β -.091 .113 .018 .105
γ1 -.150 .358 .009 .090

400 β -.067 .077 .006 .072
γ1 -.045 .221 .005 .063

(ii) X ⊥ Z 100 β -.052 .173 .028 .163
λ0(t, u) = 0.5eut γ1 .093 .192 .014 .154

cov(Z) = 0.5 200 β -.050 .110 .018 .104
γ1 .128 .125 .010 .103

400 β -.045 .076 .006 .072
γ1 .146 .078 .006 .072

(iii) X 6⊥ Z 100 β -.020 .206 .027 .193
λ0(t, u) = 0.5eut γ1 .092 .231 .014 .164

cov(Z) = 0.5 200 β -.031 .131 .019 .123
γ1 .144 .153 .008 .109

400 β -.038 .086 .006 .083
γ1 .167 .102 .005 .077

(iv) X 6⊥ Z 100 β -.045 .194 -.125 .163
λ0(t, u) = 0.25eeut γ1 .091 .204 -.048 .147

cov(Z) = 0.5 200 β -.051 .123 -.139 .103
γ1 .137 .138 -.044 .104

400 β -.054 .083 -.151 .073
γ1 .151 .096 -.041 .070

NOTE: Each entry is based on 1000 replicates.
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Figure 3.1: Profile local likelihood curve of γ1 in PPSIH model
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Kullback-Leibler information together with the identifiability conditions.

Consider

λ̃(t, z; β, γ) ≡
d
dt

E
(
I(∆ = 1, Y ≤ t)|γT Z = γT z

)

E
(
I(Y ≥ t)eβT X |γT Z = γT z

) .

With this “baseline hazard function”, we will show in the proof of Theorem 3.3.1 that

λ̃(t, z; β0, γ0) = λ0(t, γ
T
0 z) and that E[eβT XΛ̃(Y, Z; β, γ)] = E[∆] for any β and γ. There-

fore, up to a constant (E[∆]), the corrected asymptotic limit is

cplloc(β, γ) = E

[
∆

(
βT X + log

d
dy

E
(
I(∆ = 1, Y ≤ y)|γT Z

)

E
(
I(Y ≥ y)eβT X |γT Z

)
∣∣∣∣
y=Y

)]
.

Note that the difference between cplloc(β, γ) and plloc(β, γ) is

E

[
∆ log

(
d

dy

∣∣∣∣
y=Y

E
(
I(∆ = 1, Y ≤ y)|γT Z

)
fγT Z(γT Z)

)]
,

which can be approximated by

1

n

n∑
i=1

∆i log

[
1

nanbn

n∑
j=1

∆jK

(
Yj − Yi

bn

)
K

(
γT (Zj − Zi)

an

)]

uniformly in β and γ, where an and bn are bandwidth parameters. Hence, the corrected

profile local likelihood function is

cplloc
n (β, γ) =plloc

n (β, γ)

+
1

n

n∑
i=1

∆i log

[
1

nanbn

n∑
j=1

∆jK

(
Yj − Yi

bn

)
K

(
γT (Zj − Zi)

an

)]
.

We denote its point of maximum as (β̂n, γ̂n). Given (β̂n, γ̂n), we propose to estimate

Λ(t, u) by

Λ̂(t, u) =
∑
Yi≤t

∆iKan(γ̂T
n Zi − u)∑

Yj≥Yi
eβ̂T

n XjKan(γ̂T
n Zj − u)

. (3.6)

Note that this is exactly the baseline hazard estimator in Section 3.2.
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3.3.2 Asymptotic Results

In addition to conditions (C1)–(C3), we further impose the following regularity condi-

tions:

(C4) λ0(t, u) has a non-zero partial derivative function with respect to u for some t.

(C5) For any scalar α1 and constant vector α2 satisfying α1 + αT
2 X = 0 with probability

1, we must have α1 = 0 and α2 = 0. Furthermore, the support of Z given X

contains 0.

Remark 3.3.1. Conditions (C4) and (C5) are used for model identifiability. Note that

∂/∂uλ0(t, u) = 0 implies λ0(t, u) is constant in u and thus Z has no effect on the hazard

function. Therefore, assuming (C4) is not unreasonable.

Theorem 3.3.1. Under conditions (C1)–(C5), let an = nν1 , bn = nν2 with ν1, ν2 ∈
(−1/2, 0), then β̂n → β0 and γ̂n → γ0 almost surely.

Theorem 3.3.2. Under conditions (C1)–(C5), let an = nν1 , bn = nν2 with ν1, ν2 ∈
(−1/2,−1/4), then

√
n(β̂n−β0, γ̂n,(−q)−γ0,(−q)) converges weakly to a zero mean Gaussian

distribution, where γ0,(−q) is the true parameter value γ0 with the last component deleted.

Furthermore, (β̂n, γ̂n) is semiparametrically efficient.

Remark 3.3.2. The covariance matrix for (β̂n, γ̂n,(−q)) can be consistently estimated

based on a plug-in estimator of the efficient score function. See the proof of Theorem 3.3.2

for details.

Theorem 3.3.3. Under the conditions of Theorem 3.3.1, supt,u |Λ̂(t, u)−Λ0(t, u)| →a.s. 0.

Remark 3.3.3. Although plugging (3.6) into (3.3) yields biased estimation for (β, γ), it

is interesting to observe that (3.6) is in fact consistent provided that (β̂n, γ̂n) is consistent.
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3.3.3 Simulation Studies

In this section, we consider the same simulation settings studied in Section 3.2, but now

with the corrected profile local likelihood method.

We again choose the kernel function to be the standard normal density and the

parameters (β, γ) are estimated by using the quasi-Newton search algorithm in the R

software package. The initial values are set to zero. The results summarized in Table 3.2

are based on the bandwidths ci×IQRi×n−1/3 for point estimation and di×IQRi×n−1/4

for variance estimation, where ci and di are tuning parameters and IQR1 and IQR2

are the inter-quartile ranges of ‖Z‖ and Y , respectively. According to our experience,

selection of the tuning parameters ci and di is data-adaptive and thus they can vary case

by case and the bandwidths for variance estimation need to be larger than those for point

estimation. The following values of (c1, c2, d1, d2) are used: In setting (i), (c1, c2, d1, d2) =

(1.5, 4, 3, 8); In setting (ii), (c1, c2, d1, d2) = (1.5, 2, 3, 8); In setting (iii), (c1, c2, d1, d2) =

(2, 2.5, 3.5, 8); In setting (iv), (c1, c2, d1, d2) = (1, 2, 3, 8); These simulation results suggest

that the corrected profile local likelihood method works well under every simulation

setting.

The profile local likelihood curve after the bias correction (dashed curve) in each

simulation setting based on a simulated dataset of size 5000 is plotted in Figure 3.2. The

upper two panels pertain to case (i) and (ii), respectively; The bottom two panels pertain

to case (iii) and (iv), respectively. The bandwidth is 2×n−1/4. In each case, the maximizer

of the corrected profile local curve is around the true value 0.5 of γ1, suggesting that the

corrected method gives estimators with very little bias. For comparison, the profile local

likelihood curves before the bias correction (solid curves) are also plotted.
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Table 3.2: Simulation results of corrected local likelihood in PPSIH model

Corrected Local likelihood
Simulation settings Sample size Parameters Bias SE SEE CP

(i) X ⊥ Z 100 β -.062 .156 .155 .911
λ0(t, u) = 0.5eut γ1 -.077 .197 .208 .932

cov(Z) = 0 200 β -.046 .102 .106 .929
γ1 -.028 .124 .125 .954

400 β -.037 .072 .073 .926
γ1 -.009 .083 .078 .937

(ii) X ⊥ Z 100 β -.071 .156 .157 .918
λ0(t, u) = 0.5eut γ1 -.060 .214 .255 .925

cov(Z) = 0.5 200 β -.054 .103 .108 .920
γ1 -.017 .157 .160 .927

400 β -.042 .073 .075 .918
γ1 -.001 .108 .103 .921

(iii) X 6⊥ Z 100 β .025 .191 .196 .953
λ0(t, u) = 0.5eut γ1 -.099 .288 .282 .868

cov(Z) = 0.5 200 β -.006 .122 .131 .963
γ1 -.035 .173 .184 .938

400 β -.011 .087 .091 .957
γ1 -.017 .119 .118 .935

(iv) X 6⊥ Z 100 β -.030 .184 .185 .936
λ0(t, u) = 0.25eeut γ1 -.150 .255 .279 .886

cov(Z) = 0.5 200 β -.038 .119 .124 .945
γ1 -.053 .174 .175 .927

400 β -.039 .083 .085 .935
γ1 -.005 .113 .109 .930

NOTE: Each entry is based on 1000 replicates.
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Figure 3.2: Profile local likelihood curves (corrected and uncorrected) of γ1 in PPSIH
model
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3.4 Data Application

We consider a dataset from the Multicenter AIDS Cohort Study (MACS), which contains

survival times and 6 covariates for 471 HIV positive men. The survival time is the time to

death due to AIDS. The 6 covariates include ethnicity (white or non-white), baseline age,

viral loads, CD4 positive cell counts, serum β2-microgloburin levels and serum neopterin

levels. Note that the latter 4 covariates are the most predictive prognostic factors identi-

fied in Mellors et al. (1997) and the baseline is defined to be one year after recruitment.

The censoring rate in this dataset is about 27%.

In AIDS studies, one might be interested in assessing the effect of patient’s ethnicity,

baseline age, viral loads and CD4 counts on the risk of death due to AIDS, controlling for

serum β2-microgloburin levels and serum neopterin levels. One might also wish to assess

in particular the effect of patient’s ethnicity and baseline age on the risk of death due

to AIDS, controlling for the remaining 4 biomarkers. Both questions can be addressed

by fitting either the Cox model or our partly proportional single-index hazards (PPSIH)

model. Before the model fitting, we take the logarithmic transformation of covariates

viral loads and CD4 positive cell counts and then standardize all continuous covariates

(log(viral load), log(CD4 counts), neopterin, microgloburin and baseline age) so that they

have zero means and unit variances.

The results from fitting the Cox proportional hazards model are presented in Table 3.3.

Note, however, that testing for the proportional hazards assumption based on martingale

residuals (Lin et al. 1993) reveals that the covariate log(viral load) does not satisfy this

assumption (p = .006). Thus the inference based on the Cox model may not be valid.

We now fit the proposed partly proportional single-index hazards (PPSIH) model

using the corrected profile local likelihood method with the standard normal kernel func-

tion to address the first aforementioned research question. Covariates ethnicity, baseline

age, viral loads and CD4 counts are treated as covariates of interest and the remaining

2 are treated as “nuisance” covariates. The bandwidths are ci × IQRi × n−1/3 for point
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estimation and di×IQRi×n−1/4 for variance estimation, where ci is selected using cross-

validation, i = 1, 2. For this dataset, we choose c1 = 2.5 and c2 = 2.5. For simplicity, we

set di = ci, i = 1, 2. The results from our model are summarized in Table 3.3 (columns

labeled with “PPSIH model (1)”). Next, we investigate whether the proportional hazards

assumption holds for the covariates of primary interest since this is implicitly assumed

by our model. In view of the similarity of our model to a stratified Cox model, this can

be done easily by fitting a stratified Cox model in SAS (version 9.2), where we use 2

strata based on the values of γ̂T
n Z. It is found that covariates log(viral load) and baseline

age violate the proportional hazards assumption, with p-values equal to .017 and .019,

respectively. Thus the inference based on our modified partly proportional single-index

hazards model may not be valid either.

To address the second research question and the aforementioned issue using the pro-

posed partly proportional single-index hazards model, we treat patient’s baseline age and

ethnicity as covariates of interest and the remaining 4 covariates as potential confounders.

Again, the bandwidths are ci× IQRi×n−1/3 for point estimation and di× IQRi×n−1/4

for variance estimation, where ci is selected using cross-validation and we set di = ci for

simplicity, i = 1, 2. We choose c1 = 2 and c2 = 3. The results are shown in Table 3.3

(columns labeled with “PPSIH model (2)”). Using the same model checking technique,

we find that both covariates of interest do not seem to violate the proportional hazards

assumption, with p-values equal to .119 and .607, respectively. It is interesting to note

that the covariate white becomes non-significant under our model while it is significant

under the Cox model. This suggests that the apparent initial significance of the white

covariate may be spurious and attributable to model misspecification in this instance.

The cumulative baseline hazard function plotted in Figure 3.3 also suggests that the Cox

model may not be appropriate. We also conclude by using our model that the baseline age

does not have any effect on the survival time and that the “nuisance” covariates sorted

by relative importance are viral loads, serum β2-microgloburin levels, CD4 positive cell
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Table 3.3: Analysis of MACS Data under PPSIH Model (1), (2) and Cox Model

PPSIH Model (1) PPSIH Model (2) Cox Model

Parameter Est. SE p-value Est. SE p-value Est. SE p-value
age .015 .064 .815 .011 .068 .871 .021 .053 .692
white .596 .198 .003 .409 .263 .120 .647 .235 .006
log(CD4) -.168 .063 .008 -.232 .119 .051 -.204 .056 <.001
log(viral) .654 .055 <.001 .933 .041 <.001 .657 .064 <.001
microgloburin .655 .057 <.001 .267 .115 .020 .100 .053 .059
neopterin .756 .049 <.001 .069 .106 .515 .092 .055 .094
NOTE: “white” is an indicator for whites. Est. and SE denote the parameter
estimate and (estimated) standard error, respectively.

counts and serum neopterin levels, in that order.

3.5 Proofs of Theorems

We denote the second term of the profile likelihood function (3.5) by (A).

Lemma 3.5.1. If conditions (C1)–(C3) hold and let an = nν1 with ν1 ∈ (−1/2, 0), then

supβ,γ |(A)− 1/n
∑n

i=1 ∆i| →a.s. 0.

Proof of Lemma 3.5.1

We partition B into small cubes such that any two points in the same cube have

distance no large than αn to be determined later. The number of partitions, denoted

by mn, is of order 1/αp
n. Choose one arbitrary point from each of these partitions and

denote them as β(1), . . . , β(mn). Similarly, we partition Γ into small cubes such that any

two points in the same cube have distance no large than δn to be determined later. The

number of partitions, denoted by m∗
n, is of order 1/δq

n. Choose one arbitrary point from

the each of these partitions and denote them as γ(1), . . . , γ(m∗
n). For β1 and β2 in the same
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Figure 3.3: Cumulative baseline hazard estimator Λ̂(t, u) under PPSIH model (2).
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where the exponential bound in the last step makes use of the result on the empirical

CDF due to Dvoretzky et al. (1956). Therefore,
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for any positive integer m. By assumption, an = nν1 with ν1 ∈ (−1/2, 0), we can choose

m to be larger than (1 − (2p + 3q)ν1)/(1 + 2ν1) such that the previous display is finite.

Then, by the Borel-Cantelli lemma,
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converges to 0. Similarly, it can be shown that both terms inside of the absolute value

are equi-continuous in γ, hence
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Simple calculation shows that the above display equals 1. Therefore,
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Proof of Theorem 3.2.1

1/n
∑n

i=1 ∆iβ
T Xi converges uniformly on a compact set of β to E[∆βT X] almost

surely since {∆βT X : β ∈ B} is a Glivenko-Cantelli class. Following the proof for
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Lemma 3.5.1, we obtain
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since the involved class of functions is strong P-GC. Therefore,
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Proof of Theorem 3.2.2
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and (i) holds. Next, by the independence assumptions, −∂plloc(β, γ)/∂γ|β=β0,γ=γ0 equals
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T
0 Z)dt

]

=

∫∫
λ0(y, γT

0 w)fZ(w)

fγT
0 Z(γT

0 w)
∇γ

(
E(I(Y ≥ t)eβT

0 X |γT Z = γT w)fγT Z(γT w)
)

dydw,

where ∇γ means taking the gradient with respect to γ and then evaluating at γ0. The

quantity inside the gradient operator can be written as

lim
h→0

1

h
E

[
I(Y ≥ y)eβT

0 XK

(
γT Z − γT w

h

)]

= lim
h→0

1

h
EZ

[
K

(
γT Z − γT w

h

)
g(y, γT

0 Z)

]
,

= lim
h→0

∫
g(y, γT

0 w̃)
1

h
K

(
γT w̃ − γT w

h

)
fZ(w̃)dw̃

where

g(y, γT
0 Z) = E

[
GC(y)eβT

0 X exp
(
−eβT

0 XΛ0(y, γT
0 Z)

) ∣∣∣Z
]
.

Note the validity of this notation depends on the assumption that X is independent of

Z. Thus −∂plloc(β, γ)/∂γ|β=β0,γ=γ0 equals

∫∫
λ0(y, γT

0 w)fZ(w)

fγT
0 Z(γT

0 w)
lim

h→w0
EZ

[
1

h2
K ′

(
γT

0 Z − γT
0 w

h

)
(Z − w)g(y, γT

0 Z)

]
dydw

=

∫∫
λ0(y, γT

0 w)fZ(w)

fγT
0 Z(γT

0 w)
lim
h→0

E

[
1

h2
K ′

(
γT

0 Z − γT
0 w

h

)
(E(Z|γT

0 Z)− w)g(y, γT
0 Z)

]
dydw.
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Let r(u) ≡ E(Z|γT
0 Z = u), then the limit inside of the integral is

lim
h→0

∫
1

h2
K ′

(
u− γT

0 w

h

)
(r(u)− w)g(y, u)fγT

0 Z(u)du

= −g′2(y, γT
0 w)fγT

0 Z(γT
0 w)r(γT

0 w)− g(y, γT
0 w)f ′γT

0 Z(γT
0 w)r(γT

0 w)

− g(y, γT
0 w)fγT

0 Z(γT
0 w)r′(γT

0 w) + g′2(y, γT
0 w)fγT

0 Z(γT
0 w)w

+ g(y, γT
0 w)f ′γT

0 Z(γT
0 w)w.

Hence, the double integral equals

∫
EZ

[
λ0(y, γT

0 Z)

(
− g′2(y, γT

0 Z)r(γT
0 Z)− g(y, γT

0 Z)
f ′

γT
0 Z

fγT
0 Z

(γT
0 Z)r(γT

0 Z)

− g(y, γT
0 Z)r′(γT

0 Z) + g′2(y, γT
0 Z)Z + g(y, γT

0 Z)
f ′

γT
0 Z

fγT
0 Z

(γT
0 Z)Z

)]
dy

=−
∫

EγT
0 Z

(
λ0(y, γT

0 Z)g(y, γT
0 Z)r′(γT

0 Z)
)
dy.

Since Z ∼ N(µ, Σ), r′(u) = (γT
0 Σγ0)

−1Σγ0 for any u. Thus the last display becomes

−(γT
0 Σγ0)

−1Σγ0

∫
EγT

0 Z

(
λ0(y, γT

0 Z)g(y, γT
0 Z)

)
dy = −E[∆](γT

0 Σγ0)
−1Σγ0.

Thus it is proportional to γ0 if and only if Σγ0 ∝ cγ0 for some constant c.

Proof of Theorem 3.3.1

By similar arguments to the proof of Lemma 3.5.1, we can show that

1

n

n∑
i=1

∆i log

[
1

nanbn

n∑
j=1

∆jK

(
Yj − Yi

bn

)
K

(
γT (Zj − Zi)

an

)]

converges uniformly in γ to

E

[
∆ log

(
d

dy

∣∣∣∣
y=Y

E
(
I(∆ = 1, Y ≤ y)|γT Z

)
fγT Z(γT Z)

)]
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almost surely. Thus cplloc
n (β, γ) converges almost surely to

E

[
∆

(
βT X + log

d
dy

E
(
I(∆ = 1, Y ≤ y)|γT Z

)

E
(
I(Y ≥ y)eβT X |γT Z

)
∣∣∣∣
y=Y

)]

= E
[
∆

(
βT X + log λ̃(Y, Z; β, γ)

)]

uniformly in (β,γ). Also, we can readily prove that

E[eβT XΛ̃(Y, Z; β, γ)] = E[∆]

for any β, γ. In addition,

E

(
I(Y ≥ t)eβT

0 X |γT
0 Z = γT

0 z

)

= E
[
eβT

0 X exp
(
−eβT

0 XΛ0(t, γ
T
0 Z)

)
GC|X,Z(t)

∣∣∣γT
0 Z = γT

0 z
]
,

where GC|X,Z(t) is the survival function for the censoring time C conditional on covariates

(X, Z), and

d

dt
E

(
I(∆ = 1, Y ≤ t)|γT

0 Z = γT
0 z

)

= λ0(t, γ
T
0 z)E

[
eβT

0 X exp
(
−eβT

0 XΛ0(t, γ
T
0 Z)

)
GC|X,Z(t)

∣∣∣γT
0 Z = γT

0 z
]
.

Thus we have proved that λ̃(t, z; β0, γ0) = λ0(t, γ
T
0 z). Now suppose that (β∗, γ∗) maxi-

mizes

E[∆(βT X + log λ̃(Y, Z; β, γ))],

then it should also maximize

E[∆(βT X + log λ̃(Y, Z; β, γ))− eβT XΛ̃(Y, Z; β, γ)]. Thus
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E
[
∆

(
β∗T X+ log λ̃(Y, Z; β∗, γ∗)

)− eβ∗T XΛ̃(Y, Z; β∗, γ∗)
]

≥ E
[
∆

(
βT

0 X + log λ0(Y, γT
0 Z)

)− eβT
0 XΛ0(Y, γT

0 Z)
]
.

Since the Kullback-Leibler information is always non-negative, it then follows, with prob-

ability 1, that

exp
{

∆
(
β∗T X + log λ̃(Y, Z; β∗, γ∗)

)− eβ∗T XΛ̃(Y, Z; β∗, γ∗)
}

= exp
{

∆
(
βT

0 X + log λ0(Y, γT
0 Z)

)− eβT
0 XΛ0(Y, γT

0 Z)
}

. (A.1)

By choosing ∆ = 0 and Y = τ in (A.1), we obtain exp(−eβ∗T XΛ̃(τ, Z; β∗, γ∗)) =

exp(−eβT
0 XΛ0(τ, γ

T
0 Z)). Next, we choose ∆ = 1 and integrate both sides of (A.1) with

respect to Y for y to τ , 0 ≤ y < τ . The resulting equation together with the above

display implies that eβ∗T XΛ̃(y, Z; β∗, γ∗) = eβT
0 XΛ0(y, γT

0 Z) with probability 1. After

taking the logarithmic transformation on both sides, we obtain β∗ = β0 by condition

(C5) after setting Z = 0. Hence, λ̃(y, Z; β∗, γ∗) = λ0(y, γT
0 Z). By condition (C4), this

implies γ∗ ∝ γ0 if we take derivative w.r.t. Z on both sides. We further conclude that

γ∗ = γ0 in view of the restrictions that γ∗ and γ0 have unit norms and positive last coor-

dinates. Finally we obtain the consistency of (β̂n, γ̂n) by Theorem 2.12 of Kosorok (2008).

Proof of Theorem 3.3.2

Let Pn denote the empirical measure. Define

g1n(y, z; β, γ) = Pn

[
I(Y ≥ y)XeβT X 1

an

K

(
γT Z − γT z

an

)]

g2n(y, z; β, γ) = Pn

[
I(Y ≥ y)eβT X 1

an

K

(
γT Z − γT z

an

)]

g3n(y, z; β, γ) = Pn

[
I(Y ≥ y)eβT XK(1)

(
γT Z − γT z

an

)
Z − z

a2
n

]
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g4n(y, z; γ) = Pn

[
∆K(1)

(
γT Z − γT z

an

)
1

bn

K

(
Y − y

bn

)
Z − z

a2
n

]

g5n(y, z; γ) = Pn

[
∆

1

an

K

(
γT Z − γT z

an

)
1

bn

K

(
Y − y

bn

)]
.

Let gk0(·) be the expectation of gkn(·), for k = 1, · · · , 5. By definition of (β̂n, γ̂n), we have

the score equation for β,

√
nPn

[
∆

(
X − g1n(Y, Z; β̂n, γ̂n)

g2n(Y, Z; β̂n, γ̂n)

)]
= 0.

We denote by Gn =
√

n(Pn − P ) the empirical process and let (Ỹ , ∆̃, Z̃) be an

independent copy of (Y, ∆, Z), where P is the probability measure. The above display

can be written as

Gn

{
∆

(
X − g1n(Y, Z; β̂n, γ̂n)

g2n(Y, Z; β̂n, γ̂n)

)
−Xeβ̂T

n XP̃


∆̃I(Ỹ ≤ Y ) 1

an
K

(
γ̂T

n (Z−Z̃)
an

)

g2n(Ỹ , Z̃; β̂n, γ̂n)




+ eβ̂T
n XP̃


∆̃g10(Ỹ , Z̃; β̂n, γ̂n)I(Ỹ ≤ Y ) 1

an
K

(
γ̂T

n (Z−Z̃)
an

)

g2n(Ỹ , Z̃; β̂n, γ̂n)g20(Ỹ , Z̃; β̂n, γ̂n)




}

+
√

nP

[
∆

(
X − g10(Y, Z; β̂n, γ̂n)

g20(Y, Z; β̂n, γ̂n)

)]
= 0.

The first term of the above equation can be written as

Gn

[
∆

(
X − s10(Y, γT

0 Z)

s2(Y, γT
0 Z)

)
−XeβT

0 XΛ0(Y, γT
0 Z)

+ eβT
0 X

∫ Y

0

s10(t, γ
T
0 Z)

s2(t, γT
0 Z)

λ0(t, γ
T
0 Z)dt

]
+ oP (1) ≡ Gn

[
˜̀
1(D; β0, γ0)

]
+ oP (1),

where

s10(y, u) = E
[
I(Y ≥ y)XeβT

0 X |γT
0 Z = u

]

s2(y, u) = E
[
I(Y ≥ y)eβT

0 X |γT
0 Z = u

]
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and D ≡ (Y, ∆, X, Z) denotes the data. Next, without loss of generality, we assume the

last coordinate of γq×1 is positive since the norm of γ is non-zero. That is, γT = (γT
(−q), γq),

where γ(−q) is the γ vector with the last coordinate γq deleted and γq > 0. Thus the score

function for γ is

∂cplloc
n (β, γ)

∂γ(−q)

=

(
∂γ

∂γ(−q)

)T
∂cplloc

n (β, γ)

∂γ
≡ M(γ)

∂cplloc
n (β, γ)

∂γ
,

where

M(γ) =

(
I(q−1)×(q−1),−

γ(−q)

γq

)
.

Here, I(q−1)×(q−1) is the identity matrix. Thus the score equation for γ is

−√nPn

[
∆M(γ̂n)

(
g3n(Y, Z; β̂n, γ̂n)

g2n(Y, Z; β̂n, γ̂n)
− g4n(Y, Z; γ̂n)

g5n(Y, Z; γ̂n)

)]
= 0.

It can be written as

−Gn

{
M(γ̂n)

(
∆

g3n(Y, Z; β̂n, γ̂n)

g2n(Y, Z; β̂n, γ̂n)
+ eβ̂T

n XP̃


∆̃I(Ỹ ≤ Y )K(1)

(
γ̂T

n (Z−Z̃)
an

)
Z−Z̃
a2

n

g2n(Ỹ , Z̃; β̂n, γ̂n)




− eβ̂T
n XP̃


∆̃g30(Ỹ , Z̃; β̂n, γ̂n)I(Ỹ ≤ Y ) 1

an
K

(
γ̂T

n (Z−Z̃)
an

)

g2n(Ỹ , Z̃; β̂n, γ̂n)g20(Ỹ , Z̃; β̂n, γ̂n)


−∆

g4n(Y, Z; γ̂n)

g5n(Y, Z; γ̂n)

−∆P̃


∆̃K(1)

(
γ̂T

n (Z−Z̃)
an

)
Z−Z̃
a2

n

1
bn

K
(

Y−Ỹ
bn

)

g5n(Ỹ , Z̃; γ̂n)




+ ∆P̃


∆̃g40(Ỹ , Z̃; γ̂n) 1

an
K

(
γ̂T

n (Z−Z̃)
an

)
1
bn

K
(

Y−Ỹ
bn

)

g5n(Ỹ , Z̃; γ̂n)g50(Ỹ , Z̃; γ̂n)




)}

−√nP

[
M(γ̂n)∆

(
g30(Y, Z; β̂n, γ̂n)

g20(Y, Z; β̂n, γ̂n)
− g40(Y, Z; γ̂n)

g50(Y, Z; γ̂n)

)]
= 0.
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Similarly, the first term of the above equation can be written as

Gn

{
−M(γ0)

[
∆

(
s01(Y, γT

0 Z)

s2(Y, γT
0 Z)

− Z

)
λ

(0,1)
0 (Y, γT

0 Z)

λ0(Y, γT
0 Z)

+ eβT
0 XZΛ

(0,1)
0 (Y, γT

0 Z)

− eβT
0 X

∫ Y

0

s01(t, γ
T
0 Z)

s2(t, γT
0 Z)

λ
(0,1)
0 (t, γT

0 Z)dt

]}
+ oP (1) ≡ Gn

[
˜̀
2(D; β0, γ0)

]
+ oP (1),

where

s01(y, u) = E[I(Y ≥ y)ZeβT
0 X |γT

0 Z = u] and

λ
(0,1)
0 (t, u) =

∂λ0(t, u)

∂u
.

Thus combined, we have

oP (1) +Gn




˜̀
1(D; β0, γ0)

˜̀
2(D; β0, γ0)


 +

√
nP




∆
(
X − g10(Y,Z;β̂n,γ̂n)

g20(Y,Z;β̂n,γ̂n)

)

−M(γ̂n)∆
(

g30(Y,Z;β̂n,γ̂n)

g20(Y,Z;β̂n,γ̂n)
− g40(Y,Z;γ̂n)

g50(Y,Z;γ̂n)

)


 = 0.

By Taylor’s expansion, the third term equals

√
nP




∆
(
X − g10(Y,Z;β0,γ0)

g20(Y,Z;β0,γ0)

)

−M(γ0)∆
(

g30(Y,Z;β0,γ0)
g20(Y,Z;β0,γ0)

− g40(Y,Z;γ0)
g50(Y,Z;γ0)

)




+ P




Σ11 Σ12

Σ21 Σ22



√

n




β̂n − β0

γ̂n,(−q) − γ0,(−q)


 , where

Σ11 =
∂

∂β

∣∣∣
β∗,γ∗

[
∆

(
X − g10(Y, Z; β, γ)

g20(Y, Z; β, γ)

)]

Σ12 =
∂

∂γ(−q)

∣∣∣
β∗,γ∗

[
∆

(
X − g10(Y, Z; β, γ)

g20(Y, Z; β, γ)

)]

Σ21 =
∂

∂β

∣∣∣
β∗,γ∗

[
−M(γ)∆

(
g30(Y, Z; β, γ)

g20(Y, Z; β, γ)
− g40(Y, Z; γ)

g50(Y, Z; γ)

)]
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Σ22 =
∂

∂γ(−q)

∣∣∣
β∗,γ∗

[
−M(γ)∆

(
g30(Y, Z; β, γ)

g20(Y, Z; β, γ)
− g40(Y, Z; γ)

g50(Y, Z; γ)

)]
,

for β∗ falling between β̂n and β0 and γ∗ falling between γ̂n and γ0. After replacing

gk0(·), k = 1, · · · 5, by their limits together with the condition that an = nν1 and bn = nν2

with ν1, ν2 ∈ (−1/2,−1/4), we can show that

√
nP




∆
(
X − g10(Y,Z;β0,γ0)

g20(Y,Z;β0,γ0)

)

−M(γ0)∆
(

g30(Y,Z;β0,γ0)
g20(Y,Z;β0,γ0)

− g40(Y,Z;γ0)
g50(Y,Z;γ0)

)


 = oP (1),

PΣ11 →P P


 ∂

∂β

∣∣∣∣∣
β0,γ0

˜̀
1(D; β, γ)


 , PΣ12 →P P


 ∂

∂γ(−q)

∣∣∣∣∣
β0,γ0

˜̀
1(D; β, γ)


 and

PΣ22 →P P


 ∂

∂γ(−q)

∣∣∣∣∣
β0,γ0

˜̀
2(D; β, γ)


 .

Later in this proof, we will show that (˜̀1(D; β0, γ0)
T , ˜̀

2(D; β0, γ0)
T ) corresponds to the

score function of some submodel and thus by the usual equality in classical likelihood

theory,

− P


 ∂

∂β

∣∣∣∣∣
β0,γ0

˜̀
1(D; β, γ)


 = P

[
˜̀
1(D; β0, γ0)˜̀1(D; β0, γ0)

T
]

− P


 ∂

∂γ(−q)

∣∣∣∣∣
β0,γ0

˜̀
1(D; β, γ)


 = P

[
˜̀
1(D; β0, γ0)˜̀2(D; β0, γ0)

T
]

and

− P


 ∂

∂γ(−q)

∣∣∣∣∣
β0,γ0

˜̀
2(D; β, γ)


 = P

[
˜̀
2(D; β0, γ0)˜̀2(D; β0, γ0)

T
]
.

Combined, we have

Ĩβ0,γ0

√
n




β̂n − β0

γ̂n,(−q) − γ0,(−q)


 = Gn




˜̀
1(D; β0, γ0)

˜̀
2(D; β0, γ0)


 + oP (1), where
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Ĩβ0,γ0 = P




˜̀
1(D; β0, γ0)˜̀1(D; β0, γ0)

T ˜̀
1(D; β0, γ0)˜̀2(D; β0, γ0)

T

˜̀
2(D; β0, γ0)˜̀1(D; β0, γ0)

T ˜̀
2(D; β0, γ0)˜̀2(D; β0, γ0)

T


 .

It then follows that

√
n




β̂n − β0

γ̂n,(−q) − γ0,(−q)


 Ã N

(
0, Ĩ−1

β0,γ0

)
.

Next, we prove semiparametric efficiency defined in Bickel et al. (1993) by showing that

the influence function for estimating (β0, γ0,(−q)) is in fact the efficient influence function.

Note that each coordinate of the influence function for estimating (β0, γ0,(−q)) is some

linear combination of the form

vT
1

[
∆

(
X − s10(Y, γT

0 Z)

s2(Y, γT
0 Z)

)
−XeβT

0 XΛ0(Y, γT
0 Z) + eβT

0 X

∫ Y

0

s10(t, γ
T
0 Z)

s2(t, γT
0 Z)

λ0(t, γ
T
0 Z)dt

]

+ vT
2 M(γ0)

[
∆

(
Z − s01(Y, γT

0 Z)

s2(Y, γT
0 Z)

)
λ

(0,1)
0 (Y, γT

0 Z)

λ0(Y, γT
0 Z)

− eβT
0 X

(
ZΛ

(0,1)
0 (Y, γT

0 Z)−
∫ Y

0

s01(t, γ
T
0 Z)

s2(t, γT
0 Z)

λ
(0,1)
0 (t, γT

0 Z)dt

) ]
,

for some vectors v1 and v2. This function is exactly the score function of a submodel

(β0 + εv1, γ0,(−q) + εv2, λ0(t, u) + εvT
1 µ(t, u)λ0(t, u) + εvT

2 M(γ0)η(t, u)λ
(0,1)
0 (t, u)), where

µ(t, u) = −s10(t, u)/s2(t, u) and η(t, u) = −s01(t, u)/s2(t, u). Thus the influence function

belongs to the tangent space of the model at (β0, γ0, λ0(·)) and hence is the efficient in-

fluence function.

Proof of Theorem 3.3.3

In empirical process notation, Λ̂(t, u) can be written as

Pn


 I(Y ≤ t)∆ 1

an
K

(
γ̂T

n Z−u
an

)

1
n

∑
Yj≥Y eβ̂T

n Xj 1
an

K
(

γ̂T
n Zj−u

an

)

 .
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By Theorem 3.3.1, β̂n −→a.s. β0 and γ̂n −→a.s. γ0. Similar arguments to those used in

the proof of Lemma 3.5.1 can be used to prove that

sup
y,u

∣∣∣∣∣∣
1

n

∑
Yj≥y

eβ̂T
n Xj

1

an

K

(
γ̂T

n Zj − u

an

)
− E

(
I(Y ≥ y)eβT

0 X |γT
0 Z = u

)
fγT

0 Z(u)

∣∣∣∣∣∣
−→a.s. 0.

Using standard empirical process arguments, we have

sup
t,u

∣∣∣∣∣∣
Λ̂(t, u)− E


 ∆I(Y ≤ t) 1

an
K

(
γT
0 Z−u

an

)

E
(
I(Y ≥ y)eβT

0 X |γT
0 Z = u

) |y=Y fγT
0 Z(u)




∣∣∣∣∣∣
−→a.s. 0.

Straightforward calculation reveals that the second term inside the absolute value in the

above display equals Λ0(t, u). This completes the proof.
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Chapter 4

Profile Stratified Likelihood

4.1 Single-Index Hazards Model

4.1.1 Method

For a fixed γ, model (2.1) can be viewed as a stratified hazards model with strata defined

by values of γT W . The model is in spirit similar to the stratified Cox model, which is

commonly used in epidemiologic studies, such as in Motzer et al. (1999) and Chow et al.

(2006). This similarity also allows us to consider the following profile stratified likelihood

approach.

For any fixed γ, we stratify the range R of γT Wi, i = 1, · · · , n based on the sample

quantiles. Specifically, let min1≤i≤n γT Wi = t0 < · · · < tJn = max1≤i≤n γT Wi be a

partition of R into Jn subintervals [tk−1, tk), k = 1, · · · , Jn such that tk = F−1
n (k/Jn),

where Fn(·) is the empirical distribution of γT Wi, i = 1, · · · , n. Note that ti is a random

variable depending on γ. Also, it is clear by the above construction that I(γT Wi ∈
[tk−1, tk)) = I(Fn(γT Wi) ∈ [(k − 1)/Jn, k/Jn)). Let Sk ≡ [(k − 1)/Jn, k/Jn). We assume

for any (t, u),

λ(t, u) =
Jn∑

k=1

I(u ∈ [tk−1, tk))λk(t) =
Jn∑

k=1

I(Fn(u) ∈ Sk)λk(t),



thus we assume the baseline hazard function takes different forms on different strata

defined by the sample quantiles of γT W . Plug this into (2.2) and then in the setting of

the NPMLE, we maximize

1

n

n∑
i=1

[
∆i

Jn∑

k=1

log Λk{Yi}I(Fn(γT Wi) ∈ Sk)−
Jn∑

k=1

I(Fn(γT Wi) ∈ Sk)
∑

Yj≤Yi

Λk{Yj}
]
. (4.1)

The maximizer for Λk{Yi} is

Λ̂k{Yi} =
∆iI(Fn(γT Wi) ∈ Sk)∑
Yj≥Yi

I(Fn(γT Wj) ∈ Sk)
. (4.2)

After plugging (4.2) into (4.1), we obtain, up to a constant, that the profile stratified

likelihood function is

plsn(γ) = − 1

n

n∑
i=1

∆i

Jn∑

k=1

[
I

(
Fn(γT Wi) ∈ Sk

)
log

(
Jn

n

∑
Yj≥Yi

I
(
Fn(γT Wj) ∈ Sk

) )]
.

Note that plsn(γ) is not smooth in γ so that it is numerically difficult to find its maximizer.

In the following simulation studies, we use the grid search to find the maximum point.

However, the grid search becomes infeasible when the dimension of W increases.

4.1.2 Bias Analysis

Let γ̂n denote the maximizer of plsn(γ). We now study the asymptotic property of γ̂n

by first obtaining the asymptotic limit pls(γ) of plsn(γ) given in Theorem 4.1.1. The

following regularity conditions are imposed:

(C1) γ0 ∈ Γ, where Γ ∈ Rq is compact.

(C2) Jn/
√

n → 0, Jn →∞.

(C3) λ0(t, u) has non-zero partial derivative with respect to u for any t ∈ [0, τ ]; Moreover,
∫ τ

0
λ0(t, u)dt < ∞, for any u ∈ R.

62



(C4) Given covariates W , T and C are independent.

(C5) P (T > τ) < 1, where τ denotes the end of the study.

Theorem 4.1.1. If conditions (C1) and (C2) hold, then supγ |plsn(γ) − pls(γ)| →P 0,

where

pls(γ) = −E
[
∆ log P

(
Y ≥ y|FγT W (γT W )

) |y=Y

]
= −E

[
∆ log P

(
Y ≥ y|γT W

) |y=Y

]
.

Here FγT W (·) is the distribution function of γT W .

Note that the difference between plloc(γ) given in Theorem 2.3.1 and pls(γ) is that the

latter does not involve the density fγT W (γT W ) in the log function. The reason is that

the stratified method is based on FγT W (γT W ) which follows the uniform distribution on

[0, 1].

From Theorem 4.1.1, we conclude similarly that γ̂n converges to the maximizer of

pls(γ) in probability. Next, we show in Theorem 4.1.2 that γ̂n is consistent for γ0 under

certain restrictive conditions.

Theorem 4.1.2. Assume conditions (C1) and (C2)-(C5) hold and suppose C is inde-

pendent of W , then γ̂n →P γ0.

Remark 4.1.1. ∂/∂uλ0(t, u) = 0 implies λ0(t, u) is constant in u and thus W has no

effect on the hazard function. Therefore, assuming the first part of condition (C3) is

not unreasonable. The second part of condition (C3) ensures a positive probability of

censoring. Also, we have assumed the independence between C and W . Without this

assumption, we conjecture that the stratified likelihood approach would lead to biased

estimation. In fact, the simulation studies suggest that this approach can fail if C and

W are dependent.

We reconsider the 4 simulation settings in Section 2.4, using the aforementioned profile

stratified likelihood. A grid search with step size 0.01 is used since the objective function
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Table 4.1: Simulation results of stratified likelihood in single-index hazards model

Stratified likelihood Cox model
Simulation settings Parameter Sample size Bias SE Bias SE

(i) C ⊥ W γ1 2000 .003 .076 -.001 .026
λ0(t, u) = 0.5eut 5000 -.000 .059 .000 .017

cov(W ) = 0 10000 -.001 .039 .000 .012
(ii) C ⊥ W γ1 2000 .001 .066 -.001 .030

λ0(t, u) = 0.5eut 5000 .004 .049 .000 .019
cov(W ) = 0.5 10000 .002 .034 .001 .014
(iii) C ⊥ W γ1 2000 .015 .121 .500 .032

λ0(t, u) = 0.25(t + u2) 5000 .008 .078 .501 .020
cov(W ) = 0.5 10000 .003 .057 .500 .014
(iv) C 6⊥ W γ1 2000 -.312 .030 .446 .033

λ0(t, u) = 0.25(t + u2) 5000 -.310 .018 .448 .022
cov(W ) = 0.5 10000 -.310 .014 .447 .015

NOTE: Each entry is based on 500 replicates.

is not continuous in γ. The number of strata is chosen from 4, 8 or 12 for γT W . We

report the results from the number of strata yielding the smallest bias.

Table 4.1 summarizes the simulation results in setting (i)-(iv) with sample sizes 2000,

5000 and 10000, where γ1 is the first component of the γ vector. As expected by Theo-

rem 4.1.2, the stratified approach works in simulation settings (i)-(iii). However, it fails

in setting (iv) probably due to the dependence between C and W . Figure 4.1 shows

the profile stratified likelihood function in each simulation setting based on a simulated

data set of size 10000. The upper two panels pertain to case (i) and (ii), respectively;

The bottom two panels pertain to case (iii) and (iv), respectively. The number of strata

is 12 for γT Z. Again, the stratified profile likelihood curves are maximized around the

true value −0.5 of γ1 in the first three simulation settings, suggesting that the stratified

approach yields estimators with little bias in these settings, but it gives biased estimation

in setting (iv) where C depends on W .
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Figure 4.1: Profile stratified likelihood curve of γ1 in single-index hazards model
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4.2 Partly Proportional Single-Index Hazards Model

4.2.1 Method

Similarly, for any fixed γ, model (3.1) can be viewed as a stratified Cox model with strata

defined by values of γT Z. Given the data, we consider stratifying the range R of γT Zi, i =

1, · · · , n based on the sample quantiles. Specifically, for any fixed γ, let min1≤i≤n γT Zi =

t0 < · · · < tJn = max1≤i≤n γT Zi be a partition of R into Jn subintervals [tk−1, tk), k =

1, · · · , Jn such that tk = F−1
n (k/Jn), where Fn(·) is the empirical distribution of γT Zi, i =

1, · · · , n. Note that ti is a random variable depending on γ. Also, it is clear by the

above construction that I(γT Zi ∈ [tk−1, tk)) = I(Fn(γT Zi) ∈ [(k − 1)/Jn, k/Jn)). Let

Sk ≡ [(k − 1)/Jn, k/Jn). We assume for any t, u,

λ(t, u) =
Jn∑

k=1

I(u ∈ [tk−1, tk))λk(t) =
Jn∑

k=1

I(Fn(u) ∈ Sk)λk(t),

thus we assume that the baseline hazard function takes different forms on different strata

defined by the sample quantiles of γT Z. Plug this into (3.2) and then in the setting of

NPMLE, we maximize

1

n

n∑
i=1

[
∆i

(
βT Xi +

Jn∑

k=1

log Λk{Yi}I(Fn(γT Zi) ∈ Sk)

)

− eβT Xi

Jn∑

k=1

I(Fn(γT Zi) ∈ Sk)
∑

Yj≤Yi

Λk{Yj}
]
. (4.3)

The maximizer for Λk{Yi} is

Λ̂k{Yi} =
∆iI(Fn(γT Zi) ∈ Sk)∑

Yj≥Yi
eβT XjI(Fn(γT Zj) ∈ Sk)

. (4.4)
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After plugging (4.4) into (4.3), we obtain, up to a constant, the profile stratified likelihood

function as

plsn(β, γ) =
1

n

n∑
i=1

∆iβ
T Xi

− 1

n

n∑
i=1

∆i

Jn∑

k=1

[
I

(
Fn(γT Zi) ∈ Sk

)
log

(
Jn

n

∑
Yj≥Yi

eβT XjI
(
Fn(γT Zj) ∈ Sk

) )]
.

Note that plsn(β, γ) is not smooth in γ so that we have to use grid search to find the

maximum point. However, grid search becomes infeasible when the dimension of Z

increases.

4.2.2 Bias Analysis

We impose the following regularity conditions:

(C1) β0 ∈ B, γ0 ∈ Γ, where B ∈ Rp, Γ ∈ Rq are compact.

Theorem 4.2.1. If condition (C1) holds, Jn/
√

n −→ 0 and Jn −→∞, then

supβ,γ |plsn(β, γ)− pls(β, γ)| −→P 0, where

pls(β, γ) = E

[
∆

(
βT X + log

1

E
(
I(Y ≥ y)eβT X |FγT Z(γT Z)

) |y=Y

)]

= E

[
∆

(
βT X + log

1

E
(
I(Y ≥ y)eβT X |γT Z

) |y=Y

)]
.

Here FγT Z(·) is the distribution function of γT Z.

Notice that the difference between plloc(β, γ) given in Theorem 3.2.1 and pls(β, γ)

is that the latter does not have the density fγT Z(γT Z) in the denominator of the log

function. The reason is that the stratified method is based on FγT Z(γT Z) which follows

the uniform distribution on [0, 1].
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From Theorem 4.2.1, we conclude similarly that the profile stratified likelihood es-

timator converges to the maximizer of pls(β, γ) in probability. Next, we show in The-

orem 4.2.2 that in some special cases, pls(β, γ) indeed has zero derivatives at the true

parameter (β0, γ0).

Theorem 4.2.2. Suppose C is independent of (X, Z), and Z is independent of X, then

(i) ∂
∂β
|β=β0,γ=γ0pl

s(β, γ) = 0; (ii) ∂
∂γ
|β=β0,γ=γ0pl

s(β, γ) = 0.

Remark 4.2.1. This theorem is based on the restrictive independent censoring assump-

tion and the critical assumption that X and Z are independent. When X and Z are

dependent, we conjecture that part (ii) in Theorem 4.2.2 no longer holds. In fact, our

simulation results will show that the profile stratified likelihood method fails when X

and Z are correlated.

We now reconsider the 4 simulation settings studied in Section 3.2.2, using the afore-

mentioned profile stratified likelihood. A grid search with step size 0.01 was used since

the objective function is not continuous in γ. The number of strata was chosen from 4,

8 or 12 for γT Z. We reported the results from the number of strata yielding the smallest

bias.

Table 4.2 summarizes the simulation results in setting (i)-(iv) with sample sizes 100,

200 and 400, where γ1 is the first coordinate of the γ vector. As expected from Theo-

rem 4.2.2, the profile stratified method works in setting (i) and (ii) since the censoring

time C is independent of covariates (X, Z) and X is independent of Z. However, this

methods fails in setting (iii) and (iv) due to the dependence between X and Z. Figure 4.2

shows the profile stratified likelihood curve (of γ1) in each setting based on a simulated

dataset with n = 5000. The upper two panels pertain to case (i) and (ii), respectively;

The bottom two panels pertain to case (iii) and (iv), respectively. The number of strata

is 12 for γT Z. It is observed again that the profile stratified likelihood approach works

in setting (i) and (ii), but fails in setting (iii) and (iv).
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Table 4.2: Simulation results of stratified likelihood in PPSIH model

Stratified likelihood Cox model
Simulation settings Sample size Parameters Bias SE Bias SE

(i) X ⊥ Z 100 β .033 .178 .030 .163
λ0(t, u) = 0.5eut γ1 -.022 .236 .015 .134

cov(Z) = 0 200 β -.014 .110 .018 .105
γ1 -.013 .169 .009 .090

400 β .005 .077 .006 .072
γ1 -.006 .118 .005 .063

(ii) X ⊥ Z 100 β .014 .178 .028 .163
λ0(t, u) = 0.5eut γ1 -.034 .304 .014 .154

cov(Z) = 0.5 200 β -.033 .110 .018 .104
γ1 -.015 .226 .010 .103

400 β -.003 .079 .006 .072
γ1 -.003 .153 .006 .072

(iii) X 6⊥ Z 100 β .330 .211 .027 .193
λ0(t, u) = 0.5eut γ1 -.964 .447 .014 .164

cov(Z) = 0.5 200 β .254 .137 .019 .123
γ1 -.964 .397 .008 .109

400 β .210 .097 .006 .083
γ1 -1.005 .333 .005 .077

(iv) X 6⊥ Z 100 β .233 .189 -.125 .163
λ0(t, u) = 0.25eeut γ1 -.949 .464 -.048 .147

cov(Z) = 0.5 200 β .163 .120 -.139 .103
γ1 -.952 .419 -.044 .104

400 β .126 .084 -.151 .073
γ1 -1.021 .364 -.041 .070

NOTE: Each entry is based on 1000 replicates.

69



−1.0 −0.5 0.0 0.5 1.0

−
0.

40
−

0.
35

−
0.

30

γ1

P
ro

fil
e 

lik
. f

un
ct

io
n

−1.0 −0.5 0.0 0.5 1.0

−
0.

40
−

0.
35

−
0.

30

γ1

P
ro

fil
e 

lik
. f

un
ct

io
n

−1.0 −0.5 0.0 0.5 1.0

−
0.

38
−

0.
37

−
0.

36
−

0.
35

−
0.

34
−

0.
33

γ1

P
ro

fil
e 

lik
. f

un
ct

io
n

−1.0 −0.5 0.0 0.5 1.0

−
0.

19
−

0.
18

−
0.

17
−

0.
16

−
0.

15
−

0.
14

γ1

P
ro

fil
e 

lik
. f

un
ct

io
n

Figure 4.2: Profile stratified likelihood curve of γ1 in PPSIH model
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4.2.3 Bias Correction

The bias can be corrected by using essentially the same argument as those in Section

3.3.1. Recall that the corrected asymptotic limit is

cpls(β, γ) ≡ E

[
∆

(
βT X + log

d
dy

E
(
I(∆ = 1, Y ≤ y)|γT Z

)

E
(
I(Y ≥ y)eβT X |γT Z

)
∣∣∣∣
y=Y

)]
.

Note that the difference between cpls(β, γ) and pls(β, γ) is

E

[
∆ log

(
d

dy

∣∣∣∣
y=Y

E
(
I(∆ = 1, Y ≤ y)|FγT Z(γT Z)

)
)]

,

which can be approximated by

1

n

n∑
i=1

∆i

Jn∑

k=1

In∑
m=1

[
I

(
Fn(γT Zi) ∈ Sk, Yi ∈ Tm

)

× log

(
InJn

nM

n∑
j=1

∆jI
(
Fn(γT Zj) ∈ Sk, Yj ∈ Tm

)
)]

uniformly in β and γ, where Sk = [(k − 1)/Jn, k/Jn), Tm = [(m − 1)M/In,mM/In),

In and Jn are the number of strata for Y and γT Z respectively and [0,M ] contains all

values of Y . Note that, unlike for γT Z, we have equally partitioned the range of Y in

the stratified approach. Hence, the corrected profile stratified likelihood function is

cplsn(β, γ) = plsn(β, γ)+
1

n

Jn∑

k=1

In∑
m=1

[(
n∑

i=1

∆iI
(
Fn(γT Zi) ∈ Sk, Yi ∈ Tm

)
)

× log

(
InJn

nM

n∑
i=1

∆iI
(
Fn(γT Zi) ∈ Sk, Yi ∈ Tm

)
)]

.

We denote its point of maximum as (β̃n, γ̃n). We will show (β̃n, γ̃n) is consistent with the

following two additional conditions:

(C2) λ0(t, u) has non-zero partial derivative with respect to u.
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(C3) The column vectors of the matrix [1, X] and the column vectors of the matrix

[1, Z] are linearly independent. Furthermore, the support of Z given X contains

the zero-vector.

Theorem 4.2.3. Under conditions (C1)-(C3), suppose In/
√

n → 0, Jn/
√

n → 0, In →
∞, Jn →∞, then β̃n

P→ β0 and γ̃n
P→ γ0.

We again consider the same settings studied in Section 3.2.2, but now applying the

corrected profile stratified likelihood method. A grid search with step size 0.01 was used

to obtain the point of maximum. The number of strata for γT Z and the number of strata

for Y were chosen from {4, 8, 12}. In each setting for each sample size, we reported the

best result. Simulation results reported in Table 4.3 suggest that the corrected profile

stratified likelihood method works very well under every simulation setting. The profile

stratified likelihood curves (corrected and uncorrected) in each setting based on a dataset

of size 5000 were also plotted in Figure 4.3. The upper two panels pertain to case (i) and

(ii), respectively; The bottom two panels pertain to case (iii) and (iv), respectively. The

number of strata is 12 for γT Z. In each case, the corrected curve is maximized around

the true value 0.5 of γ1, suggesting that the corrected profile likelihood methods give

estimators with little bias.

4.2.4 Data Application

In Section 3.4, by treating patient’s ethnicity and baseline age as covariates of main

interest while treating the remaining 4 biomarkers as “nuisance” covariates, the partly

proportional single-index hazards model (PPSIH Model (2)) fits the MACS data set well.

The results reported in Table 3.3 suggest that the “nuisance” covariates log(CD4) and

neopterin are not significant at the .05 significance level. Thus it appears reasonable to

consider a model (PPSIH model (3)) by still treating patient’s ethnicity and baseline age

as covariates of main interest, but only controlling for the significant “nuisance” covariates
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Table 4.3: Simulation results of corrected stratified likelihood in PPSIH model

Corrected stratified likelihood
Simulation settings Sample size Parameters Bias SE

(i) X ⊥ Z 100 β -.006 .185
λ0(t, u) = 0.5eut γ1 -.016 .228

cov(Z) = 0 200 β .006 .120
γ1 -.013 .171

400 β -.004 .079
γ1 -.004 .108

(ii) X ⊥ Z 100 β -.014 .184
λ0(t, u) = 0.5eut γ1 -.030 .278

cov(Z) = 0.5 200 β -.002 .121
γ1 -.001 .223

400 β -.000 .082
γ1 -.001 .158

(iii) X 6⊥ Z 100 β .127 .227
λ0(t, u) = 0.5eut γ1 -.101 .369

cov(Z) = 0.5 200 β .079 .138
γ1 -.037 .233

400 β .035 .093
γ1 -.017 .175

(iv) X 6⊥ Z 100 β .075 .207
λ0(t, u) = 0.25eeut γ1 -.092 .357

cov(Z) = 0.5 200 β .035 .135
γ1 -.027 .212

400 β .010 .086
γ1 -.017 .131

NOTE: Each entry is based on 1000 replicates.
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Figure 4.3: Profile stratified likelihood curves (corrected and uncorrected) of γ1 in PPSIH
model
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Table 4.4: Analysis of MACS Data under PPSIH Model (3)

Corrected Profile Stratified Corrected Profile Local
Parameter Est. SE p-value Est. SE p-value
age .022 .053 .678 .016 .065 .805
white .198 .258 .443 .296 .264 .264
log(viral) .903 .116 <.001 .990 .007 <.001
microgloburin .285 .299 .341 .139 .053 .009
NOTE: “white” is an indicator for whites. Est. and SE denote the
parameter estimate and (estimated) standard error, respectively.

log(viral) and microgloburin. We fit this model using both the corrected profile stratified

likelihood and the corrected profile local likelihood methods.

For the corrected profile stratified likelihood method, we choose the number of strata

for the single-index and the survival time Y to be 8 and 12, respectively. The variances

are estimated using 500 bootstrap samples. For the corrected profile local likelihood

method, the bandwidths are ci×IQRi×n−1/3 for point estimation and di×IQRi×n−1/4

for variance estimation, where ci is selected using cross-validation and we set di = ci for

simplicity, i = 1, 2. We choose c1 = 1 and c2 = 3.5.

Table 4.4 summarize the results. It is observed that the variance estimators for “nui-

sance” covariates (log(viral) and microgloburin) are much larger under the stratification

method than those under the local likelihood method. This again suggests that, com-

pared to the corrected profile local likelihood method, the corrected profile stratified

method may not produce efficient parameter estimators, especially the estimators for

the single-index coefficient γ. For the MACS data, one would conclude that the covari-

ate microgloburin is not significant using the stratification approach while it is highly

significant under the local likelihood approach.
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4.3 Proofs of Theorems

Proof of Theorem 4.1.1

−plsn(γ) =
Jn∑

k=1

Pn

[
∆I

(
Fn(γT W ) ∈ Sk

)
log

(
Jn

n

∑
j

I(Yj ≥ Y )I

(
Fn(γT Wj) ∈ Sk

))]
.

Since Jn/
√

n → 0 and by Donsker arguments, we have

∣∣∣∣
Jn

n

∑
j

I(Yj ≥ y)I
(
Fn(γT Wj) ∈ Sk

)− JnE
[
I(Y ≥ y)I(FγT W (γT W ) ∈ Sk)

] ∣∣∣∣
P−→ 0,

uniformly in y and γ, where FγT W (·) is the distribution function of γT W . Note that

JnE
(
I(Y ≥ y)I(FγT W (γT W ) ∈ Sk)

)

= E
[
I(Y ≥ y)|FγT W (γT W ) = (k − 1)/Jn

]
+ o(1). Hence,

∣∣∣∣
Jn

n

∑
j

I(Yj ≥ y)I
(
Fn(γT Wj) ∈ Sk

)− E
[
I(Y ≥ y)|FγT W (γT W ) = (k − 1)/Jn

] ∣∣∣∣
P−→ 0,

uniformly in y and γ. Next, by either Glivenko-Cantelli or Donsker arguments,

∣∣∣∣− plsn(γ)−
Jn∑

k=1

E

[
∆I(FγT W (γT W ) ∈ Sk) log E

[
I(Y ≥ y)|FγT W (γT W ) =

k − 1

Jn

] ∣∣∣
y=Y

] ∣∣∣∣
P−→ 0,

uniformly in γ. The second term inside the absolute value of the above display equals

Jn∑

k=1

1

Jn

E

[
∆ log E

[
I(Y ≥ y)|FγT W (γT W )

] ∣∣∣
y=Y

∣∣∣∣FγT W (γT W ) = (k − 1)/Jn

]
,
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which converges to

∫ 1

0

E

[
∆ log E

[
I(Y ≥ y)|FγT W (γT W )

] ∣∣∣
y=Y

∣∣∣∣FγT W (γT W ) = u

]
fF

γT W
(γT W )(u)du

= E

{
E

[
∆ log E

[
I(Y ≥ y)|FγT W (γT W )

] ∣∣∣
y=Y

∣∣∣∣FγT W (γT W )

]}

= E

[
∆ log E

[
I(Y ≥ y)|FγT W (γT W )

] ∣∣∣
y=Y

]
.

Hence, we have shown that plsn(γ) converges uniformly in γ to pls(γ).

Proof of Theorem 4.1.2

By Theorem 2.12 of Kosorok (2008) and Theorem 4.1.1, it suffices to show that γ0 is

the unique maximizer of pls(γ). Since

pls(γ) = −E

[∫
log P

(
Y ≥ t|γT W

)
fT |W (t)GC(t)dt

]

= −E

[∫
log

(
GC(t)E(ST |W (t)|γT W )

)
fT |W (t)GC(t)dt

]

= −E

[∫
log E(ST |W (t)|γT W )fT |W (t)GC(t)dt

]
− E

[∫
log GC(t)fT |W (t)GC(t)dt

]

= −E

[∫ (
E(fT |W (t)|γT W ) log E(ST |W (t)|γT W )

)
GC(t)dt

]

− E

[∫
log GC(t)fT |W (t)GC(t)dt

]

and

E(fT |W (t)|γT W ) log E(ST |W (t)|γT W ) =− d

dt

[
E(ST |W (t)|γT W ) log E(ST |W (t)|γT W )

]

− E
(
fT |W (t)|γT W

)
,
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pls(γ) =

∫
d

dt

{
E

[
E(ST |W (t)|γT W ) log E(ST |W (t)|γT W )

]}
GC(t)dt +

∫
E

[
fT |W (t)

]
GC(t)dt

− E

[∫
log GC(t)fT |W (t)GC(t)dt

]
.

The first term of the previous display equals

∫
GC(t)dE

[
E(ST |W (t)|γT W ) log E(ST |W (t)|γT W )

]

=

∫
E

[
E(ST |W (t)|γT W ) log E(ST |W (t)|γT W )

]
fC(t)dt

≤
∫

E
[
E

(
ST |W (t) log ST |W (t)|γT W

)]
fC(t)dt

=

∫
E

(
ST |W (t) log ST |W (t)

)
fC(t)dt,

where the inequality follows from Jensen’s inequality since g(x) ≡ x log x is a convex

function. Therefore, for any γ, pls(γ) is less than or equal to

∫
E

(
ST |W (t) log ST |W (t)

)
fC(t)dt +

∫
E

[
fT |W (t)

]
GC(t)dt

− E

[∫
log GC(t)fT |W (t)GC(t)dt

]

=−
∫

E
(
ST |W (t) log ST |W (t)

)
dGC(t) +

∫
E

[
fT |W (t)

]
GC(t)dt

− E

[∫
log GC(t)fT |W (t)GC(t)dt

]

=

∫
GC(t)dE

(
ST |W (t) log ST |W (t)

)
+

∫
E

[
fT |W (t)

]
GC(t)dt

− E

[∫
log GC(t)fT |W (t)GC(t)dt

]

=−
∫

GC(t)E
[
fT |W (t) log P (Y ≥ t|W )

]
dt

=− E
[
∆ log P (Y ≥ t|γT

0 W )|t=Y

]

=pls(γ0).

Suppose pls(γ∗) = pls(γ0), then conditional on γ∗T W , ST |W (t) is a constant almost surely
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since the function g(·) is strictly convex. That is, ST |W (t) = h(t, γ∗T W ) almost surely

for some function h(·). After taking the derivative with respect to W on both sides, we

obtain γ∗ ∝ γ0. The proof is complete in view of the requirements that γ∗ has a unit

norm with one positive component.

Proof of Theorem 4.2.1

Denote plsn(β, γ) by (1) − (2). (1) converges uniformly on a compact set of β to

E[∆βT X] as in Theorem 2. Since Jn/
√

n → 0 and by Donsker arguments, we have

∣∣∣∣
Jn

n

∑
j

I(Yj ≥ y)eβT XjI
(
Fn(γT Zj) ∈ Sk

)− E

[
I(Y ≥ y)eβT X |FγT Z(γT Z) =

k − 1

Jn

] ∣∣∣∣

P−→ 0,

uniformly in y, β and γ. Next, by Donsker arguments again,

∣∣∣∣(2)−
Jn∑

k=1

E

(
∆I(FγT Z(γT Z) ∈ Sk) log E

[
I(Y ≥ y)eβT X |FγT Z(γT Z) =

k − 1

Jn

] ∣∣∣
y=Y

) ∣∣∣∣
P−→ 0,

uniformly in β and γ. The second term inside the absolute value of the above display

equals

Jn∑

k=1

1

Jn

E

[
∆ log E

[
I(Y ≥ y)eβT X |FγT Z(γT Z)

] ∣∣∣
y=Y

∣∣∣∣FγT Z(γT Z) = (k − 1)/Jn

]
,

which converges to E

[
∆ log E

[
I(Y ≥ y)eβT X |FγT Z(γT Z)

] ∣∣∣
y=Y

]
. Hence, we have shown

plsn(β, γ) converges uniformly in β and γ to pls(β, γ).

Proof of Theorem 4.2.2

Part (i) follows by using the same arguments as used in the proof of Theorem 3.2.2.
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The independence between C and (X,Z) together with the independence between X and

Z imply that

− ∂

∂γ

∣∣∣∣
β0,γ0

pls(β, γ) =

∫∫
λ0(y, γT

0 w)fZ(w)∇γ

(
E(I(Y ≥ y)eβT

0 X |γT Z = γT w)
)

dydw.

Note the gradient equals

∇γ

[
E(I(Y ≥ y)eβT

0 X |γT Z = γT w)fγT Z(γT w)

fγT Z(γT w)

]

= ∇γ


 limh→0

1
h
EZ

[
K

(
γT Z−γT w

h

)
g(y, γT

0 Z)
]

fγT Z(γT w)




= g′2(y, γT
0 w)(w − r(γT

0 w)),

where g(y, γT
0 Z) and r(·) are defined in the proof of Theorem 3.2.2 and we also use the

kernel representation of fγT Z(γT w) by limh→0 E[K(γT (Z − w)/h)/h]. Therefore,

− ∂

∂γ

∣∣∣∣
β=β0,γ=γ0

pls(β, γ) =

∫
EZ

[
λ0(y, γT

0 Z)g′2(y, γT
0 Z)

(
Z − r(γT

0 Z)
)]

dy = 0.

Proof of Theorem 4.2.3

By Theorem 4.2.1, supβ,γ |plsn(β, γ)− pls(β, γ)| →P 0, as n →∞. Similar arguments

to those used in the proof of Theorem 4.2.1 can be used to show

InJn

nM

n∑
j=1

∆jI
(
Fn(γT Zj) ∈ Sk, Yj ∈ Tm

)

converges uniformly in β and γ to

E
(
∆|Y, FγT Z(γT Z)

)
fY,F

γT Z
(γT Z)

(
Y, FγT Z(γT Z)

) ∣∣∣
Y =(m−1)/In,F

γT Z
(γT Z)=(k−1)/Jn

.
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Denote the above quantity by g((m− 1)/In, (k − 1)/Jn). Also,

1

n

n∑
i=1

∆i

Jn∑

k=1

In∑
m=1

[
I

(
Fn(γT Zi) ∈ Sk, Yi ∈ Tm

)

× log

(
InJn

nM

n∑
j=1

∆jI
(
Fn(γT Zj) ∈ Sk, Yj ∈ Tm

)
) ]

converges uniformly in β and γ to

Jn∑

k=1

In∑
m=1

E
(
∆I

(
FγT Z(γT Z) ∈ Sk, Y ∈ Tm

)
log g ((m− 1)/In, (k − 1)/Jn)

)

−→
∫∫

g(y, u) log g(y, u)dydu

= E

[
∆ log

(
d

dy

∣∣∣∣
y=Y

E
(
I(∆ = 1, Y ≤ y)|FγT Z(γT Z)

)
)]

.

The last equality follows since FγT Z(γT Z) follows a uniform distribution. Therefore, the

corrected profile stratified likelihood cpls(β, γ) converges uniformly to

E

[
∆

(
βT X + log

d
dy

E
(
I(∆ = 1, Y ≤ y)|γT Z

)

E
(
I(Y ≥ y)eβT X |γT Z

)
∣∣∣∣
y=Y

)]
.

This coincides with the limit of the corrected profile local likelihood cplloc(β, γ). The rest

of proof is identical to that given in Theorem 3.3.1.
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Chapter 5

Discussion

In this dissertation, we have proposed the single-index hazards model for right-

censored survival data. The commonly used profile local likelihood approach was consid-

ered. Even under the restrictive condition that the censoring time C and the covariate

vector W are independent, the profile local likelihood method gives inconsistent estima-

tion in general. Therefore, this method should not be used for this single-index hazards

model. In contrast, under this independent censoring assumption and some other regular-

ity conditions, the profile stratified likelihood method always yields consistent estimation.

We note that the stratification needs to be based on sample quantiles of the single-index

since an equally spaced stratification on the original scale of the single-index would lead

to the same limiting profile likelihood function as under the local likelihood approach

and thus the same estimation bias would occur.

In addition to the independent censoring assumption, another requirement in order for

the stratified likelihood approach to be a consistent procedure in the single-index hazards

model is a positive probability of censoring in the data, as guaranteed by the second part

of condition (C3) in Section 4.1.2. If there is no censoring present, it can be shown that

plsn(γ) is free of γ and converges to the constant 1 (the limit function pls(γ) ≡ 1 as well.),

and thus cannot be used for parameter estimation. That the presence of censoring is

required to achieve consistency is quite surprising.



We note that the independent censoring assumption is crucial for the stratified like-

lihood approach to work. Without this assumption, we conjecture that the stratified

likelihood method fails, which is demonstrated numerically. Therefore, one should not

use the stratified likelihood approach either unless the independent censoring can be rea-

sonably assumed. One possible way to relax this restrictive assumption is to modify the

limiting profile stratified likelihood function so that the modified function has a unique

maximizer at the true parameter value without assuming the independence between C

and W . We then can make a corresponding modification in the original profile stratified

likelihood function and use it for estimation.

Besides the aforementioned methods, the spline method can also possibly be used for

parameter estimation in our single-index hazards model. For example, Yu and Ruppert

(2002) considered the penalized spline method in a partially linear single-index model

and they showed that their method outperforms the local likelihood method adopted by

Carroll et al. (1997). It would then be worthwhile to examine a spline method for our

model and to investigate whether or not the estimation bias issue still exists.

The existence and nature of the failures of the two commonly used estimation ap-

proaches considered is somewhat surprising and suggest that nonstandard approaches

may be needed. In addition to the aforementioned spline approach, there are yet other

approaches which may need to be considered in order to find an estimator that is con-

sistent under realistically general conditions.

One drawback of the single-index hazards model is that the interpretation of covariate

effects is in general difficult. In practice, it is of great interest to have a model which

can address the effect of covariates of primary interest, while allows for flexible modeling

of effects of “nuisance” covariates. In this spirit, we have proposed the partly propor-

tional single-index model. The conventional profile-kernel method was studied under this

model and the profile likelihood formed by plugging the baseline hazard estimator (3.6)

into the nonparametric maximum likelihood leads to biased estimation in the regression
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parameters. However, it is interesting, as shown in Theorem 3.3.3, that the baseline

hazard estimator (3.6) is in fact consistent provided that consistent estimators for β and

γ can be obtained. Thus the bias is not due to “bad” estimation of the infinite dimen-

sional parameter, but due to an “unbalanced” structure resulting from combining a local

baseline hazard estimator and the nonparametric maximum likelihood function. Note

that this conventional profile local likelihood method may work under some stringent

conditions (e.g. those stated in Theorem 3.2.2). Similar phenomena was also observed

in the longitudinal data setting (Lin and Carroll 2001).

Since the partly proportional single-index hazards model can be viewed as a stratified

Cox model, we can construct another profile likelihood based on stratification of the

single-index. Simulation results reveal that this approach may work under the stringent

conditions of independent censoring and the independence between covariates of primary

interest and “nuisance” covariates, but in general it can lead to biased estimation in the

regression parameters as well.

An ad hoc approach has been proposed to correct the bias in both the profile local

likelihood method and the profile stratified likelihood method. Simulation studies suggest

that the standard errors using the corrected profile stratified likelihood approach are

always bigger than those using the corrected profile local likelihood approach. Thus the

former method may yield estimators not as efficient as those estimated from the latter

method. However, it would still be worthwhile to investigate the asymptotic properties

(semiparametric efficiency in particular) of this stratification-based method.

In the partly proportional single-index hazards model, covariates of primary interest

need to satisfy the proportional hazards assumption. Although this assumption can be

checked in view of the similarity between our model and the stratified (on the single-

index) Cox model, development of direct model checking techniques would be of great

interest.

Due to the so-called “curse of dimensionality”, dimension reduction is an important
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issue in model estimation. Recent work in survival analysis includes Sun et al. (2008)

who studied a partially linear proportional hazards model in which a single-index was

used for dimension reduction and Xia et al. (2010) who proposed a novel dimension

reduction method to estimate the conditional hazard function via estimation of the central

subspace in a general model which includes the transformation model (Zeng and Lin

2007b) and the accelerated failure time model (Cox and Oakes 1984, chap. 5) as its

special cases. Similarly in our partly proportional single-index hazards model, the single-

index is introduced for dimension reduction so that the nonparametric estimation of the

baseline hazard function becomes feasible. In some sense, a single-index can be viewed

as a principle component of the “nuisance” covariate vector. When the dimension of the

“nuisance” vector is high, one may wish to include multiple principle components into

the model. Thus it may be attractive to consider a partly proportional multiple-index

hazards model. Models involving multiple single-indices have been recently studied by

Ichimura and Lee (1991), Horowitz (1998) and Xia (2008), among others. The challenges

in this partly proportional multiple-index model setting would then be the choice of the

number of single-indices and the statistical inference.
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Härdle, W., Hall, P., and Ichimura, H. (1993), “Optimal Smoothing in Single-Index
Models,” The Annals of Statistics, 21, 157–178.

Heller, G. (2001), “The Cox Proportional Hazards Model with a Partly Linear Relative
Risk Function,” Lifetime Data Analysis, 7, 255–277.

Horowitz, J. (1998), Semiparametric Methods in Econometrics, New York: Springer.

Huang, J. (1999), “Efficient Estimation of the Partly Linear Additive Cox Model,” The
Annals of Statistics, 27, 1536–1563.

Huang, J.Z., and Liu, L. (2006), “Polynomial Spline Estimation and Inference of Pro-
portional Hazards Regression Models with Flexible Relative Risk Form,” Biometrics,
62, 269–276.

87



Ichimura, H., and Lee, L. F. (1991), “Semiparametric Least Squares Estimation of Multi-
ple Index Models: Single Equation Estimation,” in Nonparametric and Semiparamet-
ric Methods in Econometrics and Statistics: Proceedings of the Fifth International
Symposium in Economic Theory and Econometrics, eds. W. A. Barnett, J. Powell,
and G. Tauchen, Cambridge, U.K.: Cambridge University Press.

Kong, S. W., Pu, W. T., Park, P. J. (2006), “A Multivariate Approach for Integrat-
ing Genome-Wide Expression Data and Biological Knowledge,” Bioinformatics, 22,
2373–2380.

Kosorok, M. R. (2008), Introduction to Empirical Processes and Semiparametric Infer-
ence, New York: Springer.

Kosorok, M. R., Lee, B. L., and Fine, J. P. (2004), “Robust Inference for Univariate
Proportional Hazards Frailty Regression Models,” The Annals of Statistics, 32, 1448–
1491.

Lin, D. Y., Wei, L. J., and Ying, Z. (1993), “Checking the Cox Model with Cumulative
Sums of Martingale-Based Residuals,” Biometrika, 80, 557–572.

Lin, X., and Carroll, R. J. (2001), “Semiparametric Regression for Clustered Data Using
Generalized Estimating Equations,” Journal of the American Statistical Association,
96, 1045–1056.

Lu, X., Chen, G., Song, X.-K., and Singh, R. S. (2006), “A Class of Partially Linear
Single-Index Survival Models,” The Canadian Journal of Statistics, 34, 97–112.

Lu, X, Singh, R. S., and Desmond, A. F. (2001), “A Kernel Smoothed Semiparametric
Survival Model,” Journal of Statistical Planning and Inference, 98, 119–135.

Ma, S., and Kosorok, M. R. (2009), “Identification of Differential Gene Pathways with
Principle Component Analysis,” Bioinformatics, 25, 882–889.

Mellors, J. W., Munoz, A., Giorgi, J. V., Margolick, J. B., Tassoni, C. J., Gupta, P.,
Kingsley, L. A., Todd, J. A., Saah, A. J., Detels, R., Phair, J. P., and Rinaldo Jr.,
C. R. (1997), “Plasma Viral Load and CD4+ Lymphocytes as Prognostic Markers of
HIV-1 Infection,” The Annals of Internal Medicine, 126, 946–954.

Motzer, R. J., Mazumdar, M., Bacik, J., Berg, W., Amsterdam, A., and Ferrara, J.
(1999), “Survival and Prognostic Stratification of 670 Patients with Advanced Renal
Cell Carcinoma,” Journal of Clinical Oncology, 17, 2530–2540.

88



Murphy, S. A., Rossini, A. J., and van der Vaart, A. W. (1997), “Maximal Likelihood
Estimation in the Proportional Odds Model,” Journal of the American Statistical
Association, 92, 968–976.

Naik, P. A., and Tsai, C. (2001), “Single-Index Model Selection,” Biometrika, 88, 821–
832.

Nielsen, J. P., and Linton, O. B. (1995), “Kernel Estimation in a Nonparametric Marker
Dependent Hazard Model,” The Annals of Statistics, 23, 1735–1748.

Nielsen, J. P., Linton, O. B., and Bickel, P. J. (1998), “On a Semiparametric Survival
Model with Flexible Covariate Effect,” The Annals of Statistics, 26, 215–241.

Pettitt, A. N. (1984), “Proportional Odds Models for Survival Data and Estimates Using
Ranks,” Applied Statistics, 33, 169–175.

Prentice, R. L. (1978), “Linear Rank Tests with Right Censored Data,” Biometrika, 65,
167–179.

Sasieni, P. (1992a), “Information Bounds for the Conditional Hazard Ratio in a Nested
Family of Regression Models,” Journal of Royal Statistical Society, Ser. B, 54, 617–
635.

Sasieni, P. (1992b), “Non-orthogonal Projections and Their Application to Calculating
the Information in a Partly Linear Cox Model,” Scandinavian Journal of Statistics,
19, 215–233.

Scharfstein, D. O., Tsiatis, A. A., and Gilbert, P. B. (1998), “Semiparametric Efficient
Estimation in the Generalized Odds-Rate Class of Regression Models for Right-
Censored Time-to-Event Data,” Lifetime Data Analysis, 4, 355–391.

Slud, E. V., and Vonta, F. (2004), “Consistency of the NPML Estimator in the Right-
Censored Transformation Model,” Scandinavian Journal of Statistics, 31, 21–41.

Sun, J., Kopciuk, K. A., and Lu, X. (2008), “Polynomial Spline Estimation of Par-
tially Linear Single-Index Proportional Hazards Regression Models,” Computational
Statistics and Data Analysis, 53, 176–188.

Wang, W. (2004), “Proportional Hazards Regression Model with Unknown Link Function
and Time-Dependent Covariates,” Statistica Sinica, 14, 885–905.

Xia, Y. (2008), “A Multiple-Index Model and Dimension Reduction,” Journal of the
American Statistical Association, 103, 1631–1640.

89
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