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Abstract

Lauren L. Murphy: The Effects of Viscosity and Subsurface Heterogeneity on a Brine Barrier

Approach to DNAPL Remediation

(Under the direction of Cass T. Miller)

Dense nonaqueous phase liquids (DNAPLs) are a long-term source of groundwater con-

tamination. Difficulties of current remediation methods have led to the study of a novel brine

barrier remediation technology (BBRT) which presents a solution to current limitations. This

study utilized a mathematical model to advance understanding of BBRT at the macroscale. A

subset of stochastic functions was employed to represent correlated random permeability fields

and to asses their impacts on brine emplacement and brine removal efficiency.

The injection of a highly viscous brine into the subsurface was seen to cause a decrease in

permeability, leading to brine mounding around injection wells. For moderately heterogeneous

domains, this behavior was able to be mitigated by the use of sufficiently low injection rates.

However, local heterogeneities were shown to be the dominant factor in subsequent brine re-

moval, emphasizing the importance of subsurface knowledge for accurate modeling and efficient

implementation of BBRT.
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1 Introduction

Over the last 25 years, the growing concern of hazardous waste sites within the United

States has led to extensive research in the remediation of groundwater contamination. Dense

nonaqueous phase liquids (DNAPLs) persisting in the subsurface continue to be one of the

most difficult challenges to current removal techniques, and they are the most common class of

contaminants found within the most severe of these sites, collectively referred to as Superfund

sites [25]. In addition, DNAPLs, which include chlorinated solvents, such as trichloroethylene

(TCE) and tetrachloroethylene (PCE), and polynuclear aromatic hydrocarbon (PAH) mixtures

such as coal tar and creosote, are both a long-term source of groundwater contamination and

a health risk to humans at low concentrations [25]. In spite of substantial research efforts,

groundwater remediation techniques continue to be challenged by DNAPLs. Difficulties arise

due to a variety of factors including subsurface heterogeneities, complex multiphase behavior,

high DNAPL densities and viscosities, and slow transfer rates of DNAPL species to mobile phases.

The quest for the least costly and most efficient and effective DNAPL remediation strategy thus

remains a great environmental concern.

The importance and challenges of DNAPL removal in Superfund sites has in recent years led

to the study of a novel remediation technique involving a dense brine solution, hereafter referred

to as the brine barrier remediation technology (BBRT) [24, 29, 41]. The method is mobilization-

based, as it relies on surfactant flushing to decrease capillary pressure trapping DNAPL in

the pore space. However, the addition of a dense brine presents a solution to the difficulty of

controlling the mobilized contaminant phase. BBRT has met with great success in laboratory

experiments conducted to date, though topics requiring a more mature understanding remain.

The motivation of this work was to acquire a better knowledge of BBRT at the macroscale by



numerically investigating two open issues—the effects of subsurface heterogeneity on the behavior

of a dense brine solution and the viscous effects of brine.

Because of the inability to fully characterize subsurface properties, many groundwater flow

and transport models make the assumption that porous medium properties are constant across

the domain considered. Many studies of the consequences of this simplification are reported in

relevant literature [14, 31, 38, 46, 52, 52, 53, 55–58], all of which have shown a large dependence

of groundwater flow patterns on spatial variation in porous media. In addition, it has been

determined that groundwater solute transport is primarily controlled by heterogeneity in the

surrounding porous media and that the complexity of density dependent flow regimes is further

complicated by subsurface variability [7, 57]. These findings, compounded by the vast amount

of environmental issues requiring accurate groundwater flow models, have led to approaches

of representing the spatial variability of porous medium characteristics, including continuous

stochastic functions and various discrete paradigms.

The present study is aimed to utilize a subset of stochastic functions to numerically as-

sess the impact of heterogeneity on brine behavior. Three-dimensional laboratory experiments

investigating BBRT have accounted for subsurface variation, though a thorough investigation

including many possible porous medium characteristics would be extremely costly and time con-

suming. Therefore, mathematical modeling of BBRT is potentially beneficial to improving the

understanding of the processes involved in implementation.

Brine emplacement and recovery, two major stages of BBRT, were simulated using a do-

main representative of Dover National Test Site (DNTS), a field site in Dover, Delaware in

which a pilot study of BBRT was conducted. Analysis was performed to evaluate the effects

of heterogeneity on the efficiency and effectiveness of these processes. Also, it is hypothesized

that, in addition to subsurface heterogeneity, the high viscosity of brines used in BBRT plays

an important role in flow and transport. Further simulations were conducted to investigate this

hypothesis. Analysis of simulation results is intended to create a stronger foundation for future

2



modeling and implementation of BBRT.
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2 Background

2.1 Groundwater Remediation Strategies

Current groundwater remediation techniques can be classified by three major categories:

(1) mass-transfer-based, (2) mobilization-based, and (3) reaction-based techniques.

2.1.1 Mass-transfer-based Techniques

In mass-transfer-based techniques, such as the pump-and-treat method and vapor extrac-

tion, the contaminant species is solubilized or volatilized to a mobile phase so that it can be

extracted and treated. However, DNAPLs pose a challenge to these methods due to the contam-

inant species’ slow mass transfer rates to a mobile phase [6, 12]. The pump-and-treat method

involves the use of groundwater wells, which induce aqueous phase flow, to solubilize a contam-

inant phase and the subsequent extraction and treatment of the water. However, DNAPLs are

only slightly soluble in water [6, 12], and DNAPL source zones create a reduction in permeabil-

ity which causes water to flow around trapped DNAPL, reducing the compound solubilization

rate seen in conditions without such by-passing [4, 12]. The reduction in permeability can be

explained by the multiphase extension to Darcy’s Law:

qα = −kkα
r

µα
(∇pα − ραg) for α = aqueous phase, nonaqueous phase (1)

where qα is the Darcy velocity of the α phase, k is the intrinsic permeability of the medium, kα
r

is the relative permeability of the α phase, µα is the viscosity of the α phase, pα is the pressure

of the α phase, ρα is the density of the α phase, and g is a vector representing the acceleration

of gravity. In the presence of DNAPLs, kα
r , where α = the aqueous phase, decreases, as it is

a function of the DNAPL saturation in the system [27]. This causes the aqueous phase flow

velocity to decrease in the vicinity of DNAPLs. For this reason, among the others explained, the



pump-and-treat method requires long time scales for mass transfer and has thus been shown to

be ineffective for DNAPL remediation [37].

Vapor extraction, another mass-transfer-based remediation technique, employs production

wells to extract gas from the unsaturated zone. The pressure gradient created by the wells

results in gas phase flow, and the vapor pressure of the species causes volatilization to the gas

phase, where it can be removed and treated [12]. DNAPLs are relatively volatile, and so vapor

extraction is useful in their extraction from the unsaturated zone [12, 39]. However, due to

the dense nature of DNAPLs, most exist below the water table, making vapor extraction an

ineffective remediation option.

2.1.2 Mobilization-based Techniques

In mobilization-based remediation techniques, a force imbalance is induced so that the cap-

illary pressure causing contaminant pore entrapment can be overcome, causing the nonaqueous

phase to mobilize. Some methods used to create a force imbalance include thermal methods and

surfactant flushing. Thermal methods, the most common of which include steam heating and

electrical resistive heating, are often employed and have been shown to be effective for organic

chemicals [37]. Heating of the contaminants (including DNAPLs) often causes a reduction in

viscosity and density, causing them to be less resistant to flow, and DNAPL volatilization rates

increase as the boiling point is approached [37]. In addition, the compounds undergo a reduction

in interfacial tension, which may lead to mobilization—allowing the contaminants to be extracted

and treated [39].

Surfactant flushing employs compounds that act to reduce the interfacial tension between

a non-mobile contaminant phase and the aqueous phase. Surfactants are injected into con-

taminated regions, and if they are able to decrease the interfacial tension to a state in which

the capillary forces are dominated, then mobilization of the nonaqueous phase will occur [6, 12].

However, the risk common to any mobilization-based remediation method is the potential to con-

5



taminate previously uncontaminated areas due to the inability to control the newly mobilized

phase.

2.1.3 Reaction-based Techniques

Reaction-based methods, including bioremediation and chemical oxidation, induce chemical

reactions intended to convert a contaminant to a less harmful product. Chemical oxidation

involves the addition of an oxidant, such as hydrogen peroxide, to a contaminated system. The

oxidant is intended to induce a reaction which will oxidize the contaminant to a nontoxic product.

However, chemical oxidation causes the depletion of naturally occurring organic carbon which

results in a decrease in contaminant sorption sites and may ultimately lead to an increase in

contaminant concentration [37].

Bioremediation methods are becoming increasingly popular for DNAPL contaminated ar-

eas, as they are able to enhance dissolution rates [37]. Bioremediation in a contaminated area

is initiated by the creation or maintenance of an environment that is conducive to microbial

growth. In turn, the microbes act to biodegrade the contaminant species. These techniques

may cause daughter products that reduce the effectiveness of remediation; however, they may

result in a continued contaminant reduction after treatment, as the microbial process persists.

Reaction-based methods of DNAPL remediation are not optimal, as they require an initial trans-

fer of the contaminant species to a mobile phase, posing the same problem as mass-transfer-based

remediation methods [37].

2.2 Brine Barrier Remediation Technology

The dense brine approach to DNAPL remediation, an enhanced mobilization-based tech-

nique, offers a solution to the risk of contaminant spreading that is encountered with current

methods. In a typical BBRT application, the injection of a brine more dense than a trapped

DNAPL phase is intended both to affect the buoyancy forces, leading to the mobilization of

DNAPL pools, and to act as a barrier for the vertical movement of the DNAPL species.

6



In the first stage of BBRT, a brine barrier is systematically established on top of a low

permeability layer and is intended to assist in mobilization of a DNAPL phase. The addition of

the dense brine results in an increase in buoyancy forces which may act to overcome the capillary

forces causing DNAPL pools to persist in the saturated zone. In addition, DNAPL pools that

have settled on the low permeability layer may float above the denser brine due to the change in

buoyancy forces.

After a brine barrier is established in a contaminated system, surfactants or cosolvents

are added to enhance DNAPL mobilization. As the interfacial tension decreases, the dense

contaminant phase is mobilized downward. The vertical migration of the DNAPL is impeded

by the brine layer, which acts as a pooling surface. Thereafter, DNAPL mass is extracted from

the surface of the brine barrier using production wells, and residual DNAPL can be removed

using vapor extraction as a tertiary process. Following remediation, brine is extracted from the

production wells and can be reconcentrated for future BBRT reuse.

One-, two- and three-dimensional laboratory experiments investigating remediation meth-

ods in conjunction with brine have shown promise of controlling DNAPL migration [15, 24, 29,

41]. Three-dimensional experiments conducted on heterogeneous porous media contaminated

with TCE have been shown to remove greater than 99% of the DNAPL mass originally present

in the system [29]. Nonetheless, topics requiring a more mature understanding remain, including

(1) the effects of heterogeneity on brine emplacement and recovery, (2) surfactant composition

effects, (3) the effects of heterogeneity on DNAPL pool formation, (4) gravity-, viscous- and

dissolution-induced instabilities, (5) the movement of disconnected phases, and (6) the viscous

effects of brine.

The motivation of this study was to acquire a better understanding of BBRT at the

macroscale by numerically investigating two of these open issues: the effects of subsurface het-

erogeneity on the behavior of a dense brine solution, and the viscous effects of brine. Though the

investigation of DNAPL behavior is crucial to the overall understanding of BBRT, the computer

7



simulations conducted in this study were intended to analyze a subset of the processes in BBRT,

the behavior of brine, and thus a DNAPL phase was ignored. The following two sections give

relevant background and further motivation for the analyses conducted.

2.3 Effects of Heterogeneity on Brine Behavior

Brine behavior in the subsurface is affected both by the complexities of density and vis-

cosity dependent flow and by the effects of heterogeneity on groundwater flow and transport.

Both topics have been widely studied, both independently and in conjunction with each other.

The present study is aimed to determine the effects that heterogeneity may have on brine em-

placement and recovery at the field-scale. To understand the phenomena that may result from

the introduction of brine to the subsurface, a general knowledge of density dependent flow is

advantageous. The following sections outline the basic principles of variable density flow and the

impacts of subsurface heterogeneity thereon.

2.3.1 Density Dependent Flow

Groundwater systems may contain significant density variations, resulting from tempera-

ture changes, pressure shifts or changes in solute concentrations. Flow induced by the density

gradient is referred to as density dependent flow and is seen in a variety of situations that are im-

portant to current environmental issues, including possible nuclear waste disposal beneath rock

salt formations, dense contaminant migration, saltwater intrusion in aquifers, and geothermal

energy production [57]. For these reasons, investigations of variably dense groundwater flow and

transport are a great concern and have been given increased attention over the past 35 years

[1, 10, 21, 23, 43, 53, 54].

Thorough numerical and laboratory investigations have shown some systems with density

gradients as small as that between freshwater and seawater to result in complex flow patterns.

Though these unusual flow fields do not occur for DNAPL systems in general, as most are dilute

by nature, complexities do arise in certain DNAPL plumes. Therefore, the addition of a dense

8



brine phase to the subsurface is assumed to potentially generate complex flow behavior.

Density dependent flow occurs as a variably dense system tends toward a stable configura-

tion, or a stratified density, and it has a significant effect on species transport [56, 57]. Concen-

tration differences between dense plumes overlying fresh groundwater can cause free convection,

or a downward flow, due to buoyancy and gravity forces. This convection, depending on the

magnitude of the density difference, can lead to instabilities within the system, or downward and

nonuniform protrusions of the dense plume. In addition, the combination of the free convection

and hydraulically driven forced convection, or advection, can lead to hydrodynamic mixing, or

complex circular flow patterns, which are often difficult to predict [10]. In density driven flow,

this hydrodynamic mixing is usually seen to dominate molecular diffusion, as the amount of so-

lute that becomes involved in mixing is generally much greater than that in diffusion, and mixing

occurs more rapidly and over a much longer spatial scale than does diffusion [10, 52, 56, 57].

In addition to competition between buoyancy and dispersive forces in systems with dense

fluid above less dense fluid, complexities arise from phenomena that occur due to the ability of a

dense phase to occlude the pore space and block fluid flow. The resulting heterogeneity creates

an effect referred to as fingering, in which less dense fluid creates a “finger” as it flows through

more permeable regions more quickly than through the obstructed pore space. Though this effect

has been mathematically described for a DNAPL phase [27, 28, 40], as has DNAPL transport, no

three-dimensional model exists that can accurately simulate the flow of dense brine, DNAPL, and

surfactant in a heterogeneous porous medium. Because the recovery phase of BBRT involves the

displacement of brine by freshwater, which may lead to fingering, a model capable of predicting

this phenomenon would be beneficial.

As the physical characteristics of density dependent flow are complex, it follows that mod-

eling this behavior has proven to be challenging. Rayleigh, the pioneer in modeling density

dependent flow, studied systems thermally heated from below and used mathematical analysis

to determine the principles that describe the formation of density induced instabilities [48]. In

9



the 1970’s, mathematical models of brine transport in porous media were first presented by Bear

[3, 4] and have since been widely investigated on the applicability to high-concentration-gradient

fluid flow [19, 20, 23, 35]. Much can be found within the literature on mathematical models

[2, 21, 22, 54] and numerical simulations [1, 11, 42, 43, 45, 61] of systems with varying density,

however none of which have comparable gradients to those necessary in BBRT.

Numerical and experimental observations of density dependent flow reported in the litera-

ture all involve density gradients much smaller than those in BBRT experiments using calcium

bromide (CaBr2), which has a density of 1.7 g mL−1. Because of a limited knowledge of systems

with such a large density variation, in addition to the differences that arise between lab-scale

and field-scale phenomena, accurate models of brine emplacement and recovery are necessary to

assist in field-scale experiments involving BBRT. Many intricacies of this task arise from com-

plexities within the system, including density induced instabilities, and from the quantification of

subsurface heterogeneity which has also been shown to affect density dependent flow and solute

transport.

2.3.2 Effects of Heterogeneity on Flow and Transport

While the effects of density gradients on groundwater flow have been widely studied in

recent years, so have the effects of heterogeneity in hydraulic properties of porous media on

flow and transport [14, 31, 38, 46, 52, 52, 53, 55–58]. These properties include grain size,

permeability, porosity and storativity, all of which are included in the basic conservation equations

used to solve groundwater flow and transport problems. Studies involving spatial variability in

intrinsic permeability or hydraulic conductivity have all shown groundwater flow and solute

transport to be greatly dependent on changes in porous medium properties [57, 60]. In addition,

investigations of the effects of heterogeneity on density dependent flow have demonstrated a

dependence of instability onset and growth or decay on the magnitude of spatial variability in

subsurface characteristics [57]. Various approaches used to account for subsurface variability and

10



the resulting effects on solute transport are discussed in §2.5.

2.4 Viscous Effects of Brine

An overwhelming majority of variable density groundwater flow and transport models make

the assumption that the variation of fluid viscosity with concentration is negligible [44]. It is

common practice in numerical studies to assume a constant viscosity equal to that of freshwater,

as the effects of viscosity have been shown to depend on solute mass only in systems of high

concentration. However, the exact level at which concentration differences should be regarded is

uncertain and thus loosely defined.

Though various studies have been conducted, the result of neglecting viscosity changes

remains questionable [44]. Fried stated that viscous effects can be neglected when the maximum

salt concentration difference is that between freshwater and seawater [17]. In addition, Koch

and Zhang used mathematical analysis to conclude that the effects of viscosity are negligible

compared to the effects of density [33, 34]. They demonstrated that a viscosity difference of

5% would result in a velocity change of 5%; however, a similar variation could result from

numerical or physical uncertainties. To investigate the implications of neglecting viscosity, Ophori

conducted a numerical analysis of a system in which a horizontal pressure gradient created a

force for fluid flow, where recharge and discharge were allowed at the domain’s upper boundary.

Using a freshwater saturated system as his baseline, and comparing to an initially density-

stratified system, he concluded that the use of an unrealistically large viscosity value for a

given concentration resulted in an overestimation of groundwater movement upward through the

domain and an underestimation of recharge. Also, an insufficient value for viscosity resulted

in the prediction of exaggerated groundwater sinking and recharge and an underestimation of

groundwater floating [44].

The impact of viscosity variations on fluid velocities has been seen to cause “viscous fin-

gering,” or flow patterns similar to the density induced fingers described previously. Though
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overall groundwater instability formation depends on gravity and viscous forces, and on subsur-

face heterogeneity, independent studies of viscous fingering are important, as this phenomenon

could be the dominant mechanism of pattern formation in some quasi-homogeneous, low-density

flow systems [30]. Investigations have shown complex flow patterns to arise as less viscous fluid

displaces more viscous fluid. Finger-like protrusions arise due to velocity variations which result

from viscosity differences between phases or among a single phase. In miscible systems, the com-

plex flow patterns that ensue depend on viscosity variations and diffusive mixing. In immiscible

systems with variable density and viscosity, instabilities form due to viscosity differences and

gravity forces [26].

A typical brine solution used in BBRT contains much greater viscosity variations than those

seen in most viscosity related studies. To contrast the representative difference used in Koch

and Zhang’s analysis, the viscosity of CaBr2 is 600% of freshwater. Therefore, it is hypothesized

that viscous effects must be considered to properly model brine transport in porous media, as

they may have a significant effect on the velocity profile and may lead to viscous fingering. The

following section details methods used to represent heterogeneity in the previously mentioned

investigations, in addition to other popular approaches currently used.

2.5 Methods of Heterogeneity Representation

Porous media found within aquifers are inherently heterogeneous. However, since quan-

tification of hydraulic characteristics is costly, time consuming and impractical across an entire

domain, subsurface properties are often assumed to be constant in models used to simulate

groundwater flow and transport. However, studies of the errors generated by this simplification

have shown spatial variability in the subsurface to have a large effect on groundwater flow regimes

and contaminant transport [38, 50, 52, 53, 55, 57]. In turn, many methods have been employed

to attempt to account for this variability, including statistical covariance models, Markov chains,

continuous distribution models and discrete random fields employing geostatistical approaches,
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such as facies, layers or lenses [13, 31, 50, 57]. The effects of heterogeneity on flow and transport

have been analyzed using analytical, numerical and experimental methods, each employing a va-

riety of techniques to account for subsurface variability [31, 38, 52, 53, 55, 57]. Results conclude

that the degree and type of heterogeneity in the subsurface greatly impact groundwater flow and

transport.

2.5.1 Homogeneous Porous Media

Though subsurface properties are heterogeneous, accounting for spatial variation greatly

increases the complexity of numerical simulations. For this reason, many groundwater flow and

transport investigations make the assumption that porous medium properties are homogeneous.

Heterogeneity, however, greatly impacts flow and transport in porous media, yet the use of a

carefully chosen homogeneous model domain may result in adequate approximations of fluid flow

and solute transport. This is the basis of equivalent porous media.

Equivalent porous media employs homogenization theory, or the idea that hydraulic prop-

erties are identical across a representative elementary volume (REV), which Bear defines as the

smallest volume over which the governing equations of flow apply [3]. To quantify the subsurface

of a domain as an equivalent porous media, one attempts to find an “effective hydraulic con-

ductivity,” or the single value of hydraulic conductivity that can best represent a heterogeneous

domain. For the method to be accurate, the REV must be smaller than the major variations

in hydraulic conductivity [13]. To test this method, the average hydraulic head at any point

that is found from a stochastic solution must be equal to the value of hydraulic head found at

that point using a deterministic solution that employs the effective hydraulic conductivity [58].

Once an effective value is found, it may be utilized to simplify any further analysis. The use of

equivalent porous media models are able to fairly accurately predict flow patterns in the case

of karst aquifers, which are highly heterogeneous and fractured [51]. However, a majority of

systems are considered non-homogenizable, in which case, alternative measures must be taken

13



to represent subsurface heterogeneity.

2.5.2 Layered and Lenticular Porous Media

It is common to see a layering of geological media, as sedimentary structures are deposited

over time. Many groundwater flow and transport analyses have accounted for subsurface het-

erogeneity by assuming stratified layers of homogeneous media, or layers with varying averages

and variances [50]. A variation of layered media is the representation of porous media as lentic-

ular, or comprised of lens shaped structures, each with different characteristics [50, 53]. This

is often more representative than layering. As an example, an extensive investigation into the

hydraulic conductivity in the well-studied Borden aquifer revealed the site to be comprised of

many discontinuous lenses with different hydraulic properties [60].

McKibbin et al. experimentally studied thermal convection in heterogeneous media by rep-

resenting the media with layers of homogeneous material [38]. Their findings suggested that as

the number of layers increased, the flow system more closely resembled that found in a homoge-

neous domain. However, for systems of few layers, the velocity field became more dependent on

the layer properties.

Schincariol and Schwartz also employed the idea of layering in experimental designs to

investigate the migration of dense plumes in a freshwater saturated domain [53]. Using varying

sizes of industrial glass beads to mimic subsurface layers and using sodium chloride (NaCl) to

create a dense fluid, they were able to compare plume migration to that in homogeneous me-

dia. Within the experiments, density differences as low as 0.0008 g mL−1 were seen to produce

gravitational lobe shaped instabilities beginning at the bottom of the plume. Differences of only

0.0015 g mL−1 produced convective mixing, which significantly altered the spreading process.

Reductions of hydraulic conductivity of only a half order of magnitude led to changes in plume

flow, sometimes resulting in plume velocities larger than ambient groundwater velocities, de-

pending on the orientation of dipping layers. Although the dense plumes sank and convective
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mixing occurred in both homogeneous and layered media, mass was seen to accumulate at layer

interfaces in the heterogeneous media, forming mounds.

The complexity of the effects of heterogeneity was further demonstrated by the contradict-

ing effects of dipping beds on advective spreading (sometimes causing enhancement and other

times the opposite), explained by differences in the mean flow direction of ambient groundwa-

ter. As dense fluid mounded against low conductivity units, where the barrier to vertical flow

was dipping, the density forces created a component of flow that was down the topographic

gradient of the interface. If this component were in the same direction as the mean flow, then

plume migration was enhanced. If, however, these directions were opposites, plume spreading

was dissipated.

In addition to layered media, Schincariol and Schwartz were also able to represent lenticular

media using glass beads [53]. Conducted to create benchmarks, experiments containing homo-

geneous porous media, showed that in flow with small density differences, local-scale dispersion

effects and diffusion produced little mixing, which occurred only at the edge of the plume. In

experiments with higher density gradients (the highest of which involved NaCl with a density

of 1.0053 g mL−1), vertical mixing occurred as a result of convective dispersion. However, when

lenticular media were used, a combination of convective dispersion and nonuniform flow resulting

from heterogeneities created a much more highly dispersed plume, and the density induced insta-

bilities were dissipated by this dispersion. The spreading seen in lenticular media was much more

complex than that seen in the homogeneous and layered experiments because falling instabili-

ties were attracted into high conductivity lenses yet dissipated by low conductivity lenses. Some

lenses inhibited vertical motion and instability development, and the plume experienced splitting

around other lenses. Overall the plume experienced much greater mixing in the lenticular media

experiment than in the layered media experiment as demonstrated by the fact that the densest

plume took almost 7 times as long to reach the bottom of the tank in the former than in the

latter.
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2.5.3 Spatial Random Functions

The stochastic approach to representing subsurface heterogeneity employs statistical mod-

els to represent variables using spatial random functions (SRFs), with a given mean, variance,

covariance structure, and correlation length scale. SRFs are undoubtedly the most widely em-

ployed method to represent heterogeneity, as they are well understood, verified to be fairly

representative for certain domains and able to account for aggregate hydraulic properties as well

as for spatial variability within. For slightly heterogeneous areas, data collection has shown that

these statistical models are effective in the representation of hydraulic conductivity [18, 57, 60].

In addition, studies by Freeze, among others, have shown that hydraulic conductivity is often log-

normally distributed [16, 57]; i.e., the probability density function of ln K, where K represents

hydraulic conductivity, is normally distributed.

The objective of an SRF is to account for the fact that subsurface properties at points

in space are correlated depending on their distance apart. To do so, a covariance model is

used to create spatial random fields, and the flexibility of this method is found in the number of

distinctive covariance models that are employed [50]. Because the true nature of the heterogeneity

is uncertain, common stochastic analysis involves the solution of many equi-probable equations,

of which the average result is assumed to be a good approximation of the solution. This concept is

referred to as Monte Carlo analysis and is commonly employed in groundwater flow and transport

studies.

Spectral methods represent spatial variability as a set of waves with different parameters,

including wavelength of the periodic structure, mean value and amplitude, which accounts for

the amount of variation around the average value [50]. Researchers have suggested that hydraulic

properties can be well described by wave functions, such as sinusoidal distributions, and the use

of such methods is very popular due to the mathematical advantages provided [50]. Not only

can analytical solutions be more easily obtained, but the methodology introduces a technique to
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find the limits of spatial resolution given a set of field data.

In 1998, Schincariol was the first to numerically study density dependent flow in hetero-

geneous porous media using correlated random permeability fields [52]. He demonstrated that

the statistics of the permeability field, including its mean, variance and correlation length, were

important factors in both the onset of density induced instabilities and the growth and decay of

these instabilities. Also, local heterogeneity and the combination of low and high permeability

layers were shown to be important in determining the extent of mixing and the size of instabili-

ties. Schincariol’s numerical tests surfaced a contradiction that although heterogeneities created

initial plume perturbations, a greater heterogeneity and anisotropy led to a greater dampening

of instability growths.

Simmons et al. also used a numerical model to study dense plume migration in spatially

correlated permeability fields [57]. Though heterogeneity resulted in differing flow fields and

plume migration, prediction seemed to be extremely difficult as the results were all greatly de-

pendent on the cumulative distribution of high and low permeability regions. While areas of

high permeability enhanced plume migration, sections of low permeability dissipated instabili-

ties. Interestingly, in different heterogeneous systems with identical statistical properties, plume

migrations differed drastically, though, in each, instabilities were dissipated by dispersive mix-

ing. Through numerical simulations, Prasad and Simmons also found that randomly correlated

permeability fields caused convective mixing, which reduced plume instabilities [46].

Utilizing spectral methods, Simmons et al. conducted a numerical study to determine if

a relationship exists between permeability wavelength and the stability of a dense plume [57].

Stability was shown to be dependent on both the solute concentration and on the wavelength of

heterogeneity. It was demonstrated that in a system with small concentration gradients (0.005

g mL−1), larger permeability wavelengths were required to increase the plume instability, and as

concentration differences were increased to 0.1 g mL−1, smaller wavelengths were able to affect

instabilities.
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2.5.4 Multi-Scale Methods

Though the most common representation of subsurface variability is through the use of

SRFs, these methods are not optimal for the quantification of heterogeneity at multiple scales.

Because a great level of detail is needed to accurately represent heterogeneity, large scale simu-

lations can be computationally intensive. However, the level of detail necessary varies across a

domain, as a finer discretization is essential near wells or high conductivity lenses, but a coarser

grid is sufficient in areas in which velocities are relatively uniform. To take advantage of this, a

process referred to as upscaling can be performed [32, 50, 64, 65]. In this approach, an initially

refined grid is coarsened in areas requiring less resolution. Blocks which are coarsened retain a

“block-effective” property value based on values at the finer discretization [50]. Different meth-

ods for assigning block-effective conductivity are practiced. Some prefer the average of the flux

and the gradient over a block, while others claim the block effective conductivity should result

in the same value of energy dissipation as that seen with a refined mesh.

An additional method of accounting for multiple scale heterogeneity includes an extension

to the Markov chain, a conditional probability model often used to represent a discrete variable,

and therefore popular for modeling structures such as facies. The concept of facies begins with

bedsets, which are created as sediment is deposited over time. A collection of bedsets which

contain common physical characteristics is referred to as a lithofacies. A single lithofacies contains

regions, or facies, which have distinct permeability patterns, and the accumulation of these facies

is often represented by a Markov chain or a discrete spatial random function [50]. Though the

Markov chain technique does not employ a variogram, it accounts for spatial correlation by

employing conditional probabilities [14]. In random fields created using Markov chains, the

value of the variable at one location depends only on its value at the previous location, i.e., the

probability of a value at a location is conditioned upon the value at the previous location.

An advancement, proposed by Dekking et al., is a methodology to characterize subsurface
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properties using an extension to Markov chains that portrays coarse to fine scale transitions in

a variable [8]. The novelty of the technique, which is built on a changing scale representation of

heterogeneity on trees, is the ability to account for multi-scale heterogeneity. Referred to as “tree

index Markov chains,” they are beneficial due to their ability to account for both stationary and

nonstationary fields and to allow for conditioning on measured data.

For many heterogeneous domains, it is common to employ two or more methods of het-

erogeneity representation, as the subsurface is comprised of drastically different components. In

research on alluvial fans, which are one such set of these nonuniform domains, Weissmann and

Fogg use a transition probability/Markov geostatistical method, introduced by Carle and Fogg,

which can incorporate hard data and can account for multi-scale heterogeneity by dividing the

domain into separate “units” [5, 63]. The model determines the lengths, proportions and posi-

tions of facies probabilistically. This allows the alluvial fan to be represented as non-stationary.

Recent research has shown that geometry in the subsurface is often fractal in nature and

thus can not be properly defined by classical geometry. In this case, flaws are generated by the

use of multi-scale methods, including upscaling. Therefore, fractal models are being increasingly

employed in groundwater flow and transport analysis. In a 2002 study, Lu et al. statistically

analyzed a stochastic facies model that included both large differences in log permeability varia-

tion in each facies and large log permeability variations between facies. Analysis of overall values

of permeability resulted in a distribution function that seemed physically improbable, and the

researchers proposed an alternative heterogeneity model, which combined a fractal model and

stochastic facies model. In this fractal/facies methodology, large-scale facies characteristics are

generated with an indicator simulation, and fractal models are used to produce distributions

within each facies. Analysis of the methodology, using sets of laboratory and field data, supports

its validity for domains which can be divided into facies [36].
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what

3 Methods

3.1 SUTRA Computer Model

All computer simulations in this study were conducted using SUTRA Version 2D3D.1, a

model for saturated-unsaturated, variable-density groundwater flow with solute or energy trans-

port. SUTRA is provided by the United States Geological Survey (USGS) and is available

for download at http://water.usgs.gov/nrp/gwsoftware/sutra.html. The model simulates three-

dimensional saturated or unsaturated density-dependent groundwater flow and transport using

a hybrid finite-element mesh discretization and a finite difference time-stepping method to ap-

proximate the conservation of mass of a fluid and either the conservation of mass of a solute or

the conservation of energy of a fluid [62]. The code solves for fluid pressures and concentrations

as mass fractions as they change with time. As is true with all approximate, discretization-based

groundwater modeling applications, the method is accurate only for problems posed with proper

spatial and temporal discretizations. Related programs provided by the USGS and utilized in

this report are SutraPrep Version 3D.1 pre-processing software and SutraPlot Version 2D3D.1

graphical post-processing software [47, 59].

The governing equations required to describe the flow of a single, yet variably dense, aqueous

phase in porous media include the conservation of mass and momentum for the aqueous phase

and the conservation of mass and momentum for salt within the aqueous phase. The conservation

of mass and momentum for the solid phase can be ignored by assuming that the porous medium

is immobile and incompressible. In the simulations conducted, mass exchange of the salt species

from the aqueous phase to the solid phase was also ignored by making the common assumption

that salt is nonadsorbing.



The conservation of mass for the aqueous phase can be written as:

∂(εaρa)

∂t
+∇· (εaρava) = Sa (2)

where εa is the volume fraction of the aqueous phase (volume of the aqueous phase per volume

of the domain), ρa is the density of the aqueous phase, va is the velocity vector of the aqueous

phase, and Sa is any external aqueous phase source or sink.

For saturated flow, it is common practice for Darcy’s Law to be used to account for the

conservation of momentum of the aqueous phase. This is given as:

qa = εava = − k

µa
(∇pa − ρag) (3)

where qa is the Darcy velocity of the aqueous phase, k is the intrinsic permeability of the porous

media, µa and pa are the dynamic viscosity and pressure of the aqueous phase, respectively, and g

is the gravitational acceleration vector. Note, in saturated conditions, εa is equal to the system’s

porosity.

The conservation of mass for a nonreactive, nonadsorbing salt within the aqueous phase

can be written as:

∂

∂t
(εaρaωιa) +∇· (εavaρaωιa + J) = Sιa (4)

where ωιa is the mass fraction of salt in the aqueous phase, J is the dispersive mass flux vector,

and Sιa is any salt source or sink in the aqueous phase. To close the conservation equation,

Darcy’s Law can again be utilized, and a Fickian dispersion equation can be used to describe

the dispersive flux. The mass flux vector is mathematically described as:

J = −D · ∇Cιa (5)

where Cιa is the salt concentration (equal to ωιaρa) and D is the dispersion tensor, defined in

three dimensions by Bear [4] as:

D = I αT |q|+ (αL − αT )
qiqj

|q| + εaDιa
mτ ij for i, j = 1, 2, 3 (6)
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Here, Dιa
m is the free liquid diffusion coefficient of the salt species in the aqueous phase, αL and

αT are the longitudinal and transverse dispersivities of the porous media, τ ij is the tortuosity

tensor of the porous media, and I is the unit tensor. The dispersion process in SUTRA includes

both diffusion and velocity-dependent dispersion. The tortuosity tensor can be accounted for by

lowering the fluid diffusivity coefficient, which is a user defined parameter, as are the longitudinal

and transverse dispersivities.

It should be noted here that the Fickian dispersion equation utilized in SUTRA may not be

suitable for highly dense CaBr2. In spite of the broad application of Fick’s Law to describe salt

flux, both experimental and theoretical analysis have shown that Fick’s Law fails to accurately

describe salt mass flux in systems with large concentration gradients [22]. A non-linear dispersion

model has been proposed by Hassanizadeh to represent salt flux in high-concentration-gradient

flow such as that seen in BBRT. This model is given as:

(1 + β|J |)J = −ρaD · ∇ωia (7)

where D is the same dispersion tensor appearing in Fick’s Law, and β is a new dispersion

parameter.

In order to close the set of flow and transport equations, constitutive relations must be

employed for the aqueous phase density and viscosity. The density of a system is dependent on

the temperature, pressure, solute concentration and fluid compressibility, and the viscosity of a

system is dependent on temperature and solute concentration. However, fluid density has been

seen to be a weak function of pressure and to depend primarily on fluid solute concentration and

temperature. SUTRA solute transport simulations assume a constant temperature and employ

a first order Taylor series expansion in concentration about a base density for the density model.

This is given as:

ρa = ρa
0 +

∂ρa

∂ωιa
(ωιa − ω0) (8)

where ρa
0 is a base density, or the density of freshwater, ω0 is a base concentration, and ωιa is the
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solute concentration in the aqueous phase.

In addition, viscosity is said to be a weak function of pressure and to depend primarily on

temperature. Viscosity has been shown to be dependent on solute concentration only in systems

of high concentration. SUTRA solute transport simulations assume a solute concentration too

small to affect viscosity, and therefore viscosity is held constant. However, due to the high

concentration of CaBr2, and its non-linear relationship to salt mass fraction, changes were made

to the SUTRA source code to account for viscosity and density differences. These modifications

are detailed in §3.1.1.

With porosity, intrinsic permeability, molecular diffusion, and dispersivity parameters de-

fined, and with equations of state for density and viscosity, the system of equations is closed

for saturated conditions. However, for unsaturated flow, aqueous phase saturation is no longer

equal to porosity, adding additional unknowns. The addition of a gas phase elicits the use of

a multiphase extension to Darcy’s Law to account for the conservation of momentum. This is

given as:

qa = εava = −kka
r

µa
(∇pa − ρag) (9)

where ka
r is the relative permeability to flow for the aqueous phase. Where intrinsic permeability

can be defined as the ease of fluid flow through saturated pore space, relative permeability is the

fraction of the intrinsic permeability that remains in unsaturated conditions.

In order to close the set of conservation equations for fluid in the unsaturated zone, a set

of pressure-saturation relations must be employed. SUTRA employs the commonly used van

Genuchten pressure-saturation equations:

ka
r =

(
Sw − Swres

1− Swres

) 1
2

·


1−

[
1−

(
Sw − Swres

1− Swres

) n
n−1

]n−1
n





2

(10a)

and

Sw = Swres + (1− Swres)

[
1

1 + (αpc)
n

]n−1
n

(10b)

23



where Sw is the saturation of the aqueous phase (volume of aqueous phase per volume of pore

space), Swres is the residual saturation of the aqueous phase (the saturation below which the

aqueous phase is not expected to fall), pc is capillary pressure, and both α and n are parameters

dependent upon the porous media [62]. Note that when conditions are saturated (pc =0), ka
r is

equal to 1, and classical Darcy’s law applies.

A list of parameters used for the simulations in this analysis can be found in §4.1.3 (Table

4.3). Section 3.2 details the application used to generate heterogeneous permeability fields for

use in SUTRA and the methodology behind this application.

3.1.1 SUTRA Modifications

To facilitate this study, a few changes were made to the SUTRA source code. The modifica-

tions were useful in the representation of brine recovery and necessary for accurate representation

of brine behavior.

Because the brine used at DNTS was both highly concentrated (0.53 salt mass fraction)

and extremely dense, the SUTRA source code was modified to account for its viscosity and to

accurately represent its density. A number of lab experiments using CaBr2 were conducted to

investigate the relationships between both salt mass fraction and density, and salt mass fraction

and viscosity. The maximum variation in density in the experiments was that between freshwater

(998.2 kg m−3) and CaBr2 (1700 kg m−3). The viscosity ranged from 0.00097 kg m−1 s−1

(freshwater) to 0.006 kg m−1 s−1 (CaBr2). Using a polynomial least-squares fitting method on

data acquired from experiments, the following relations were derived:

ρa = ρa (ωιa) = 1127.69 (ωιa)2 + 736.01ωιa + 998.2 (11a)

µa = µa (ωιa) = e[17.5(ωιa)3−6.57(ωιa)2+1.95ωιa−6.94] (11b)

Figure 3.1 shows superpositions of both equations of state and the data points from which

they were approximated. As can be seen, in the salt mass fraction range (0.0 kg kg−1 to 0.53 kg
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kg−1) for which density and viscosity were measured, the data and mathematical equations are

in close agreement. The R2 value for the density relationship is 0.9998, based on 6 data points,

and the R2 value for the viscosity function is 0.9973, based on 35 data points. The functions were

added to the SUTRA source code so that the viscosity and density would be properly accounted

for in the conservation equations.

Recall however, CaBr2 likely exhibits non-Fickian behavior when added to a freshwater

system, due to the ensuing high concentration gradient. Hassanizadeh and Leijnse have sug-

gested that the use of a linear model for the dispersive mass flux, as implemented in SUTRA,

inadequately predicts the dispersion of a system [22]. In a laboratory investigation, they ob-

served the dispersive mass flux in high-concentration-gradient experiments (with differences as

high as 0.23 kg kg−1) to be two orders of magnitude greater than in low concentration gradient

experiments with differences of 0.0015 kg kg−1. However, to predict the higher flux in the high-

concentration-gradient experiments, the value of longitudinal dispersivity had to be decreased

by a factor of three. Though no dispersion studies involving fluid concentrations comparable

to CaBr2 are reported in the literature, it is likely that the use of a linear dispersion equation

decreased the accuracy of simulations.
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Figure 3.1: Density and viscosity as a function of salt mass fraction for calcium bromide
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A further modification to the SUTRA source code involved altering extraction specifications

and was essential for the brine recovery simulations. The SUTRA model requires mass rate inputs

for any external sources or sinks. However, in a field-scale demonstration of BBRT, volumetric

injection and extraction rates will be used in order to monitor the level of the water table in the

aquifer. Since the amount of mass being recovered from a well varies with time, it is not feasible

to convert a desired volume extraction rate to a mass rate necessary for SUTRA input.

Source code modifications were made such that a volume extraction rate could be specified

in a simulation. To make this change, the concentration output at each time step in SUTRA,

(ωιa)t, and the density equation of state reported previously, ρa(ωιa), were utilized. From a

given volumetric extraction rate (EV ), the mass extraction rate at time step t (Et
m), required by

SUTRA, was approximated by:

Et
m = EV ·

(
ρa(ωιa)t−1

)
(12)

With a small time step, Equation (12) gives a good approximation for the desired mass extraction

rate at each time t. This change is advantageous for modeling the pilot study of BBRT, and it

also allows for the use of a small unsaturated zone in simulations, as the amount of fluid in the

system can be simulated to remain approximately constant.

3.1.2 Model Verification

SUTRA is a well-accepted and commonly used groundwater flow and transport model, and

the documentation provides illustrations of its validity. Benchmark problems of variable-density

flow are detailed, and model results are shown to be consistent with solutions known to be

true. However, modifications made to the SUTRA source code elicited additional verification.

In addition, preliminary comparisons between DNTS data and simulation data were made, to

gain some understanding of the accuracy represented in the present study. These results are

detailed in §5.1.

No well-studied problems of high viscosity and high density exist, and so preliminary simula-
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tions were conducted to use for comparison. Since the original SUTRA code has been extensively

tested and provides mass balance results with each simulation, it was assumed that the model

presented accurate solutions to the preliminary variable-density brine transport problems. After

the new viscosity and density functions were added, simulations were repeated, and the results

were then compared to the preliminary simulations. Although the concentration profiles changed,

as was to be expected, the mass balance results were equivalent.

The second change to SUTRA, the addition of a volume extraction option, had no impact

on the precision of the results, as it simply varied the extraction rate at each time step. However,

measures were taken to ascertain whether a given volume extraction rate did indeed result in an

equivalent mass removal rate. To test the modification, various simulations were run with the

injection and extraction of 13.25 m3 of fluid over a number of different time periods. In each, the

level of the water table was monitored over time. Because the water table elevation was seen to

stay approximately constant in the simulations, it was concluded that an equal volume of fluid

was being injected and extracted. Therefore, the goal of the modification was attained.

3.2 GSLIB Software Library

Application-based engineers initiated the study of geostatistics in the late 1960’s. Origi-

nally, geostatistic research involved mapping of spatial distributions and the determination of a

covariance model. Since this time, applications have been extended to include approximating

uncertainty models based on the spatial distribution of data acquired. GSLIB, a geostatistical

library developed by a Stanford research group, is a public-domain software package that includes

many algorithms useful for geostatistical applications . The GSLIB source code utilized in this

study was acquired with the second edition of GSLIB: Geostatistical Software Library and User’s

Guide, published in 1992 [9].

Correlated random permeability fields used in all heterogeneous simulations were created

using the sequential Gaussian simulation (SGSIM) program provided by GSLIB. SGSIM creates
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equi-probable realizations of data with a mean of 0 and variance of 1, with a given covariance

structure, horizontal and vertical correlation lengths, and anisotropy factor. The data generated

can thereafter be transformed by the user to a desired mean and variance.

The three most common covariance models used in groundwater modeling are Gaussian,

exponential, and spherical, and they are shown in Figure 3.2. Represented here, each model

is a function of separation distance only, which implies that each assumes stationarity, or a

covariance independent of spatial location. The same covariance models can be used for non-

stationary systems by techniques such as specifying a model and a parameter at a point in space.

Traditionally, however, the stationary forms of the models are most commonly used.
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Figure 3.2: Spatial correlation models

The spatial distribution of a variable, Z, modeled by the Gaussian covariance function, is

described by the following equation:

CZ(r) = σ2
Zexp(−h2) (13)

where

h =

∣∣∣∣∣∣

√√√√
m∑

i=1

(
ri

li

)2

∣∣∣∣∣∣
and r = a separation vector between two points, σ2

Z = the variance of Z, m = the number

of dimensions, and li = a scaling length parameter in the ith dimension. The scaling length
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parameter in a Gaussian model is equal to 2λi/
√

π where λi is referred to as the correlation

length scale in the ith direction. The correlation length scale represents the average length

over which a variable is positively correlated at neighboring points [58]. When the Gaussian

covariance function is used, the variable Z will be normally distributed, i.e., the probability

density function (PDF) will be Gaussian. Note that the Gaussian covariance function is both

continuous and differentiable at the origin (at zero separation distance), which implies a smooth

transition of the variable between closely situated nodes. Therefore, this model, which creates

visually continuous fields, is best used for gradually changing subsurface properties [50].

The exponential covariance model is written as:

CZ(r) = σ2
Zexp(−h) (14)

The scaling length parameter in this model is equal to the correlation length scale (li = λi). The

exponential model is best suited for a rugged subsurface in which porous media properties might

vary greatly. This can be implied from the function’s shape, which is nondifferentiable at the

origin. In this case, the model is a better fit for modeling of larger domains, as sharp transitions

occur between neighboring nodes. Also, the spatial correlation decreases more rapidly than in

both the Gaussian and spherical models [50].

The spherical covariance function is most closely related to the exponential function and is

suitable for similar types of domains. The spherical covariance function is given as:

CZ(r) =

{
σ2

Z [1− 3h/2 + h3/2] , h ≤ 1

0 otherwise
(15)

Its most distinctive difference from the exponential covariance function is that the correlation is

equal to zero at a finite separation distance determined by the scaling length parameter. The

scaling length parameter, li, in the spherical model is equal to 8λi/3.

In addition to the previous covariance functions, a model referred to as a “nugget model”

may be useful, especially in the quantification of a domain which has no correlation over the grid

chosen. This function may be employed if the distance between nodes in a numerical simulation
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is larger than the correlation length, in which case there is assumed to be no correlation between

any of the nodes [50]. Among the covariance functions detailed, a model of a variable comes close

to being represented by a nugget model, or having “zero nugget,” as the correlation length tends

to zero. The nugget covariance function is equal to the variance at zero separation distance and

rapidly descends to zero covariance thereafter.

Overall, stochastic methods are able to account for many aspects of spatial variability.

Representing anisotropic systems, or systems whose covariance varies with a rotation of the

domain, is accomplished by differences in correlation length scales of each dimension. The nugget

determines the small scale spatial variability, as a higher nugget produces a lower proportion of

correlated residuals, resulting in a smoother distribution. The covariance structure chosen affects

the large-scale variability, and the probability distribution function determines the mean, variance

and frequency of a variable. Lastly, varying the correlation length scale results in different sizes

of continuous images [50]. The flexibility and possibilities afforded by these methods make them

popular for heterogeneity representation in groundwater modeling.

3.3 Computing Environment

The modified SUTRA source code was compiled using the IBM xlf90 Fortran 90 com-

piler. Compilation was performed on the University of North Carolina’s IBM AIX login node,

Happy. SUTRA simulations were submitted to and executed on the University’s processor high-

performance computing server, Yatta, a 32-CPU IBM P690. Windows executable files available

for SutraPlot and SutraPrep were downloaded from

http://water.usgs.gov/nrp/gwsoftware/sutra.html. These were run on a Windows PC for pre-

processing and post-processing uses.

GSLIB source code was compiled on the University of North Carolina’s 352-CPU Linux

Beowulf cluster, Baobab, using f77 Fortran 77 compiler. The SGSIM executable was also run on

Baobab, a sealed server managed by Information Technology Services for scientific computing
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and available to the research community on campus.

3.4 Analysis

Three types of simulations were performed using the GSLIB software and SUTRA model

detailed previously. The methods of analyzing the simulation results are detailed in the following

sections.

3.4.1 Brine Emplacement

The first stage of BBRT involves the establishment of a layer of dense brine below a DNAPL

source zone. The high viscosity of brines used in the remediation process causes mounding around

injection wells, which results in large density differences at a given elevation across the domain.

This phenomenon was observed in three-dimensional laboratory experiments using CaBr2 to form

a brine barrier. At later times, these mounds were seen to dissipate, and the density within the

system became more stratified. Therefore, an increase in brine mounding results in a longer time

scale to establish a stratified brine barrier.

Because dense brines are expensive and remediation experiments are timely, approximating

the most efficient means of creating a brine barrier is important. This involves approximating

a brine injection rate that will minimize mounding yet advance the emplacement of brine in an

efficient manner. In addition to injection rate, the degree of heterogeneity in the subsurface will

also affect the amount of mounding that will occur in the system.

Brine emplacement simulations representative of the process as it occurred at DNTS were

conducted in this study. Breakthrough curves of solute concentration, across the domain, at

a constant depth were compared to analyze the amount of brine mounding that occurs for a

given injection rate and heterogeneity profile. The mean and variance of the concentration at

different depths were evaluated to determine the change in thickness of a dense layer over time. In

addition, the simulations were analyzed to detect if any types of heterogeneity led to instabilities,

or less dense fluid lying below a denser fluid. Concentration plots were also generated to visualize
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the mounding that occurs in a dense brine system.

Model results can determine the approximate length of time required to reach a desired

concentration with a tolerated amount of mounding in the system. This information can assist

in decision-making during field-scale implementations of BBRT and help predict a range of times

that may be expected to complete the emplacement process.

3.4.2 Brine Recovery

As an optimal brine injection strategy is essential to remediate areas in a timely man-

ner, efficient recovery of brine thereafter is equally important. Dense brines used in BBRT are

expensive, and therefore their reuse is beneficial. After brine is removed from the system, it

can be reconcentrated for later use by evaporation. The cost of this process decreases as the

concentration of the brine increases, and therefore the cost of recycling brine is a function of

the solute concentration as it is extracted from the system. For this reason, it is important to

have a knowledge of fluid concentrations that will be extracted throughout the brine recovery

procedure.
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Figure 3.3: Typical profile of solute concentration in fluid effluent during brine recovery process

Figure 3.3 represents a typical profile of solute concentrations extracted from a well during

the brine recovery process. Because the extraction rates vary with the simulations conducted in
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this analysis, the integration of concentration curves could not be compared to analyze the total

mass recovered. Therefore, mass fractions provided by SUTRA were converted to a corresponding

density. This density, in addition to the volume extraction rate used, gives a total mass rate

extracted at each time step reported. Numerical integration of the area under this curve, which

is an approximation of the total mass recovered, was compared among simulations.

During brine extraction, freshwater in simultaneously injected into the domain to maintain a

certain water level and to further induce flow. Two methods of freshwater flushing were compared

among simulations. The fraction of mass removed as a function of pore volume of fluid extracted

was analyzed to determine the efficiency of an extraction rate for a specific heterogeneous field

and flushing scenario. Comparisons were made to determine both the impacts of heterogeneity

and the effects of varying pumping rates on brine recovery efficiency. Simulation results can

be used to determine efficient brine recovery rates, to predict the time required to recover the

solute mass desired and to compare the cost of brine reconcentration between different recovery

scenarios.

3.4.3 Viscous Effects of Brine

To evaluate the dominant mechanisms for brine behavior, simulations were conducted in

which brine properties were manipulated. It was assumed that, by separating these proper-

ties, the effects of their independent forces could be approximated. Identical simulations were

performed, each with one of three different fluids:

1. a dense, yet non-viscous brine,

2. a viscous, yet non-dense brine, or

3. a dense and viscous brine.

Average velocities across the domain were observed to evaluate the differences in solute

transport between simulations. Comparison of velocity values allowed for the approximation of
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the effects of viscosity and density on phase flow. In addition, concentration profiles were plotted

to investigate whether instabilities formed in the simulations.
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what

4 Application

Three groups of simulations were conducted to evaluate the behavior of brine in the sub-

surface. The first two groups—modeling brine emplacement and brine recovery—were based on

a pilot study at DNTS, though they were generalized to apply to typical BBRT implementation

and to allow for a more thorough investigation of the processes involved. The third group of sim-

ulations utilized a regular rectangular domain to investigate the effects of viscosity and density

on brine flow and transport. The simulations in this analysis represent grid independent solu-

tions as evidenced by an evaluation of the L1- and L2-norms of simulated concentration values.

A detailed summary of the simulations is provided in the following sections.

4.1 Brine Emplacement

The allocation of injection and extraction wells used for brine emplacement at DNTS was

determined based on the location of each well and its corresponding depth to an impermeable

clay layer. With no information on the heterogeneity of the domain, it was assumed that depth

of the domain was the most important variable in the decision-making process. As an irregularly

shaped clay layer was used on which to form the brine barrier, the deepest points of the clay

layer, requiring the greatest volume to fill, were chosen as initial injection locations. Holding the

DNTS pumping strategy constant, three-dimensional simulations were conducted to determine

the effects of heterogeneity, combined with varying injection rates, on brine emplacement.

4.1.1 Dover National Test Site Domain

A plan view of the Dover National Test Site test cell, which is approximately 4.8 meters

× 3.2 meters, is shown in Figure 4.1. The cell is surrounded by double sheet piling, which has



been inserted into the ground and through a clay layer at an average depth of approximately

12.2 meters. The clay layer, which was used for the formation of the brine barrier, is irregularly

shaped, adding complications to both the physical experiment and to computer modeling.

 

 B1  � 

B3  � 

B4 � B2 � 

� A1    A5 � 

� A4 

   A7 � 

   A6 � 

� A3 

� A2 

Sheetpile Wall  

   A8 � 

Figure 4.1: Plan view of DNTS test cell with injection and extraction wells labeled

Data, which can be found in Table 4.1, has been collected on the depth to the clay layer at

each of the well locations seen in Figure 4.1 [49]. In order to construct a mesh to represent the

DNTS test cell in SUTRA, a Matlab script was written to create an irregularly shaped domain.

The code used data from Table 4.1 to approximate the clay surface throughout the system using

triangle-based linear interpolation and to output a desired discretized domain suitable for a

SUTRA input file. A three-dimensional image of the interpolated clay layer, which represented

a Neumann boundary condition equal to zero in the simulations, is shown in Figure 4.2.

The generated discretized domain spanned [0,4.8] meters along the x axis and [0,3.2] meters

along the y axis. The maximum z axis value was set to 9.0 meters below ground level (z = -9.0

meters) and decreased to the clay layer below. The domain was discretized into 41 elements

along the x axis, 28 elements along the y axis and 46 elements along the z axis. Realizations of

permeability data were generated using SGSIM for a three-dimensional domain specific to DNTS.

It was assumed that changes in subsurface properties were gradual and that the domain was best
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Table 4.1: Depth to clay at injection and extraction well locations

Well No. Depth (m) Well No. Depth (m)

A1 12.10 A7 11.73

A2 12.37 A8 12.01

A3 12.19 B1 12.50

A4 12.34 B2 12.53

A5 12.41 B3 12.50

A6 12.31 B4 12.25

Figure 4.2: Interpolated clay layer at DNTS based on 12 data points

represented by a Gaussian covariance model. Due to a lack of spatial hydraulic conductivity

data, a correlation length scale could not be determined. Values of 0.5 m and 2.5 m for the

vertical and horizontal correlation length scales, respectively, were assumed, and the domain was

considered isotropic. The data realizations were transformed to a set with a mean value of ln
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3×10−12 m2, where 3×10−12 m2 was the one value of intrinsic permeability available for the test

cell [49]. A range of variances were considered to analyze the disparities this could create.

SGSIM was employed to create sets of data both for heterogeneous domains represented

by a Gaussian SRF and for layered domains. In the latter, SGSIM was used to indicate a

desired vertical correlation length scale and vertical covariance structure. Detailed information

on permeability fields used in each brine emplacement simulation can be seen in Table 4.2 in

Section 4.1.3.

4.1.2 Boundary and Initial Conditions

Initial pressure conditions were hydrostatic with pressure equal to zero at z = -10.0 meters.

This allowed for the representation of an unsaturated zone from z = [-10.0,-9.0] meters, to more

realistically depict the brine emplacement process at DNTS. Initial groundwater concentration

was zero throughout the domain. All boundaries were Neumann boundaries equal to zero,

allowing no dispersive flux normal to the boundaries.

4.1.3 Simulation Summary

Each brine emplacement simulation involved the injection of 13.25 m3 of brine, through

various injection wells, across the bottom 0.6 meters of each well. Initially, half this volume

was injected in wells B1, B2, B3, and B4. Concurrently, an equivalent volume was extracted

from the upper portion of the saturated zone through wells A1, A2, A3, A4, A5, A6, and A8

(well A7 was inoperable throughout the field experiment and, so, was removed from simulations).

Thereafter, the injection and extraction wells were reversed, and the remaining 6.625 m3 of brine

was injected.

Variable in the simulations were pumping rate, total pumping time, and permeability fields.

A summary of values for each simulation is found in Table 4.2. A list of model parameters used

in all brine emplacement and recovery simulations can be found in Table 4.3.
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Table 4.2: Summary of brine emplacement simulations

Simulation Domain Variance λx λz Days m3 Day−1

E1 Homogeneous 0 - - 32 0.414

E2 Gaussian SRF 0.25 2.5 m 0.5 m 32 0.414

E3 Gaussian SRF 1 2.5 m 0.5 m 32 0.414

E4 Layered 0.25 - 0.5 m 32 0.414

E5 Layered 1 - 0.5 m 32 0.414

E6 Layered 2 - 0.5 m 32 0.414

E7 Homogeneous 0 - - 12 1.104

E8 Gaussian SRF 0.25 2.5 m 0.5 m 12 1.104

E9 Gaussian SRF 1 2.5 m 0.5 m 12 1.104

E10 Layered 0.25 - 0.5 m 12 1.104

E11 Layered 1 - 0.5 m 12 1.104

E12 Layered 2 - 0.5 m 12 1.104
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Table 4.3: Model parameters used in brine emplacement and recovery simulations

Model parameter Value

Freshwater density 998.2 kg m−3

Freshwater viscosity 9.683 × 10−4 kg m−1 s−1

Brine source concentration 0.53 kg kg−1

Brine source density 1700 kg m−3

Brine source viscosity 6.0 × 10−6 kg m−1 s−1

Water compressibility 0.0 m s2 kg−1

Soil compressibility 0.0 m s2 kg−1

Porosity 0.35

Mean intrinsic permeability 3 × 10−12 m2

Longitudinal dispersivity 0.48 m

Transverse dispersivity 0.16 m

Molecular diffusivity 1.22 × 10−9 m2 s−1

Acceleration due to gravity 9.8 m s−2

Aquifer length 4.8 m

Aquifer width 3.2 m

n (van Genuchten) 2.0

α (van Genuchten) 5 × 10−5 m−1
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4.2 Brine Recovery

The brine recovery process involves both the extraction of fluid from the bottom of the

domain and the injection of an equal volume of freshwater at auxiliary locations. This combi-

nation both maintains the water table elevation and creates a stronger gradient for flow toward

extraction wells. Though it is optimal for brine to be extracted in a timely manner, increasing

rates of freshwater flushing can lead to brine instabilities, which ultimately make extraction less

efficient. These instabilities, as described previously, are also affected by subsurface heterogene-

ity. Simulations with varying extraction rates and degrees of heterogeneity were conducted to

analyze the total mass removed from the system.

4.2.1 Model Domain, Boundary Conditions and Initial Conditions

Since the water table was lower prior to the brine recovery phase than it was prior to brine

emplacement during the field experiment, the initial conditions were altered for the recovery sim-

ulations. A pressure of zero was set at z = -11.5 meters, thus creating saturated conditions below

this level. Initial groundwater concentration was represented by fully concentrated brine between

the clay surface and z = -11.5 meters, with a brine layer of linearly decreasing concentration

between z = -11.5 meters and z = -10.9 meters. All boundaries were Neumann boundaries equal

to zero. The same model domain and discretization were used in the brine recovery simulations

as were used for brine emplacement.

4.2.2 Simulation Summary

Two types of brine recovery simulations were conducted—those in which freshwater was

injected along the bottom 0.3 meters of the domain during extraction and those in which fresh-

water was injected along the upper 0.3 meters of the saturated zone during extraction. In each

simulation, a total of 13.25 m3 of fluid was extracted from wells B1, B2, B3 and B4, and fresh-

water was simultaneously injected into wells A1, A2, A3, A4, A5, A6,and A8. A summary of the

recovery simulations conducted, which utilized the same parameters found in Table 4.3, can be
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seen in Table 4.4.

Table 4.4: Summary of brine recovery simulations

Simulation Domain Variance λx λz Days m3 Day−1 Flush Location

R17 Homogeneous 0 - - 12 1.104 Clay Layer

R18 Gaussian SRF 0.25 2.5 m 0.5 m 12 1.104 Clay Layer

R19 Layered 0.25 2.5 m 0.5 m 12 1.104 Clay Layer

R20 Layered 1 - 0.5 m 12 1.104 Clay Layer

R21 Homogeneous 0 - - 12 1.104 Water Table

R22 Gaussian SRF 0.25 2.5 m 0.5 m 12 1.104 Water Table

R23 Layered 0.25 2.5 m 0.5 m 12 1.104 Water Table

R24 Layered 1 - 0.5 m 12 1.104 Water Table
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Table 4.4: Summary of brine recovery simulations
*Continued on following page

Simulation Domain Variance λx λz Days m3 Day−1 Flush Location

R1 Homogeneous 0 - - 32 0.414 Clay Layer

R2 Gaussian SRF 0.25 2.5 m 0.5 m 32 0.414 Clay Layer

R3 Layered 0.25 2.5 m 0.5 m 32 0.414 Clay Layer

R4 Layered 1 - 0 .5 m 32 0.414 Clay Layer

R5 Homogeneous 0 - - 32 0.414 Water Table

R6 Gaussian SRF 0.25 2.5 m 0.5 m 32 0.414 Water Table

R7 Layered 0.25 2.5 m 0.5 m 32 0.414 Water Table

R8 Layered 1 - 0.5 m 32 0.414 Water Table

R9 Homogeneous 0 - - 18 0.736 Clay Layer

R10 Gaussian SRF 0.25 2.5 m 0.5 m 18 0.736 Clay Layer

R11 Layered 0.25 2.5 m 0.5 m 18 0.736 Clay Layer

R12 Layered 1 - 0.5 m 18 0.736 Clay Layer

R13 Homogeneous 0 - - 18 0.736 Water Table

R14 Gaussian SRF 0.25 2.5 m 0.5 m 18 0.736 Water Table

R15 Layered 0.25 2.5 m 0.5 m 18 0.736 Water Table

R16 Layered 1 - 0.5 m 18 0.736 Water Table
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4.3 Viscosity Simulations

A group of simulations was conducted to evaluate the effects of viscosity on brine flow

and transport in a confined aquifer. Since SUTRA neglects viscosity variations, as do most

groundwater flow and transport models, the goal of this investigation was to assess the impact

this negligence has on the flow of a fluid representative of CaBr2. This evaluation was possible

because of modifications made in the SUTRA source code.

The simulations were divided into Set 1 simulations (W1—W6) and Set 2 simulations (B1—

B6). Set 1 corresponds to a freshwater-saturated system that is displaced by brine flowing from

a vertical boundary. Set 2 corresponds to a saturated system of initial concentration 0.53 kg

kg−1 that is displaced by freshwater from the maximum horizontal boundary. The combination

of simulations was intended to compare the differences in pattern formation between systems in

which:

1. a dense, non-viscous fluid displaces freshwater (W1/W4),

2. a viscous, non-dense fluid displaces freshwater (W2/W5),

3. a dense, viscous fluid displaces freshwater (W3/W6),

4. freshwater displaces a dense, non-viscous fluid (B1/B4),

5. freshwater displaces a viscous, non-dense fluid (B2/B5), and

6. freshwater displaces a dense, viscous fluid (B3/B6).

Comparison allows for the investigation of independent viscous effects as well as the effects of high

viscosity in combination with high density. Both a homogeneous and a heterogeneous simulation

were performed for each case.
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Figure 4.3: Model domain, boundary conditions and initial conditions for simulations W1—W6

4.3.1 Model Domain, Boundary Conditions and Initial Conditions

The domain used in both Set 1 and Set 2 simulations was 5 meters in the x axis direction,

5 meters in the y axis direction and 2 meters in the z axis direction, discretized into 40 elements

in each dimension. A representation of the scenario used in simulations W1—W6 is seen in

Figure 4.3. Initial pressure in these simulations was hydrostatic, with pressure equal to 101,000

Pa on the top boundary, and initial groundwater concentration was zero. The x = 0 m boundary

condition was hydrostatic with a value of 101,000 Pa at the maximum vertical boundary, and

the x = 5 meter boundary condition was hydrostatic with a value of 100,000 Pa at the maximum

vertical boundary. All other boundaries were Neumann boundaries equal to zero. The pressure

gradient in the x-direction allowed fluid to flow into the domain from the x = 0 m plane. The

concentration of inflowing fluid was specified as 0.53 kg kg−1.

Simulations B1—B6 correspond to a system initially at hydrostatic pressure, with pressure

equal to 101,000 Pa on the top boundary. All boundaries were Neumann boundaries equal to

zero except the x = 0 meter and x = 5 meter planes, both of which had constant hydrostatic

pressure conditions. The system was initially saturated with fluid of concentration 0.53 kg kg−1,

and freshwater was injected across the top of the domain as shown in Figure 4.4.
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Figure 4.4: Model domain, boundary conditions and initial conditions for simulations B1—B6

4.3.2 Simulation Summary

Simulations W1—W6 involved the introduction of concentrated fluid, induced by a hor-

izontal pressure gradient, into a freshwater-saturated domain. The gradient, which was held

constant by the boundary conditions, was a decrease in 1,000 Pa across 5 horizontal meters,

equivalent to a change in hydraulic head of 0.1 meters over 5 horizontal meters. The inflowing

fluid concentration was 0.53 kg kg−1. The simulation time was 2.5 days, and a 4 minute time

step was used.

Simulations B1—B6 involved the displacement of a brine-saturated domain by freshwater

injected across the maximum horizontal boundary. The fluid source was added at a rate of 72.62

cubic meters per day for 2.5 days. The time step used in the simulations was 4 minutes.

Tables are supplied to detail the simulations. Tables 4.5 and 4.6 provide information about

the porous media type, the displacing and ambient fluids, and the brine properties that are

accounted for in specific simulations. All homogeneous domains have an intrinsic permeability,

k, equal to 3 × 10−12 m2. All heterogeneous domains are distributed such that Y ∼ N(ln
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Table 4.5: Summary of Set 1 viscosity simulations

Simulation Domain Displacing Fluid Brine Properties

W1 Homogeneous Brine Dense

W2 Homogeneous Brine Viscous

W3 Homogeneous Brine Dense & Viscous

W4 Heterogeneous Brine Dense

W5 Heterogeneous Brine Viscous

W6 Heterogeneous Brine Dense & Viscous

3×10−12,1) where k = eY . The heterogeneous domains have a Gaussian covariance structure,

where the horizontal correlation length scale is equal to 2.5 meters, and the vertical correlation

length scale is equal to 0.5 meters. Tables 4.7—4.10 group the simulations into homogeneous and

heterogeneous Set 1 simulations (in which freshwater is displaced by brine) and homogeneous and

heterogeneous Set 2 simulations (in which brine is displaced by freshwater). The tables provide

parameters used for the properties of freshwater and fully concentrated (0.53 kg kg−1) fluid.
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Table 4.6: Summary of Set 2 viscosity simulations

Simulation Domain Displacing Fluid Brine Properties

B1 Homogeneous Freshwater Dense

B2 Homogeneous Freshwater Viscous

B3 Homogeneous Freshwater Dense & Viscous

B4 Heterogeneous Freshwater Dense

B5 Heterogeneous Freshwater Viscous

B6 Heterogeneous Freshwater Dense & Viscous

Table 4.7: Set 1: Homogeneous viscosity simulations

Initial Density Initial Viscosity Displacing Fluid Displacing Fluid

Simulation (kg m−3) (kg m−1 s−1) Density (kg m−3) Viscosity (kg m−1 s−1)

W1 998.2 9.7×10−4 1700.0 9.7×10−4

W2 998.2 9.7×10−4 998.2 6.0×10−3

W3 998.2 9.7×10−4 1700.0 6.0×10−3

Table 4.8: Set 1: Heterogeneous viscosity simulations

Initial Density Initial Viscosity Displacing Fluid Displacing Fluid

Simulation (kg m−3) (kg m−1 s−1) Density (kg m−3) Viscosity (kg m−1 s−1)

W4 998.2 9.7×10−4 1700.0 9.7×10−4

W5 998.2 9.7×10−4 998.2 6.0×10−3

W6 998.2 9.7×10−4 1700.0 6.0×10−3
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Table 4.9: Set 2: Homogeneous viscosity simulations

Initial Density Initial Viscosity Displacing Fluid Displacing Fluid

Simulation (kg m−3) (kg m−1 s−1) Density (kg m−3) Viscosity (kg m−1 s−1)

B1 1700.0 9.7×10−4 998.2 9.7×10−4

B2 998.2 6.0×10−3 998.2 9.7×10−4

B3 1700.0 6.0×10−3 998.2 9.7×10−4

Table 4.10: Set 2: Heterogeneous viscosity simulations

Initial Density Initial Viscosity Displacing Fluid Displacing Fluid

Simulation (kg m−3) (kg m−1 s−1) Density (kg m−3) Viscosity (kg m−1 s−1)

B4 1700.0 9.7×10−4 998.2 9.7×10−4

B5 998.2 6.0×10−3 998.2 9.7×10−4

B6 1700.0 6.0×10−3 998.2 9.7×10−4
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5 Results and Discussion

5.1 Brine Emplacement at Dover National Test Site

Homogeneous SUTRA simulations were conducted to represent brine emplacement as it

occurred at DNTS. A total of 0.103 PV of brine was added to the domain using the same injection

and extraction schematic detailed in the brine emplacement simulations. Figures 5.1(a)—5.1(d)

demonstrate measured and simulated data at different multi-level sampler sites in the domain,

and Figures 5.2(a) and 5.2(b) provide simulated and measured data after a 0.041 PV and 0.103

PV injection of brine.

This preliminary comparison showed model results to provide a good estimation of con-

centration variation throughout the domain, though instabilities observed in the field were not

predicted, and simulated concentrations were consistently lower than data obtained. Though

SUTRA concentration results were significantly less than actual data suggested, model predic-

tions became better as more brine was added to the system. Note that the concentration data

provided, which was much greater than simulated, was obtained from multi-level sampler loca-

tions, away from injection and extraction wells. Therefore, since an equivalent volume of mass

was added to the system in simulations as was added in the field experiment, it is assumed that

simulated data at injection well locations may be higher than measured. This could result from

an underestimation of dispersion in the numerical model, heterogeneities in the field, measure-

ment error, or simulation imprecision. However, to determine the validity of these assumptions, a

more thorough investigation of data analysis must be made. Comparison of representative brine

recovery simulations to measured data would also further demonstrate the accuracy of SUTRA

for BBRT modeling.
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Figure 5.1: Simulated and measured concentrations at various multi-level sampler sites
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5.2 Brine Emplacement Simulations

The first group of simulations examined the effects of subsurface heterogeneity and injection

rate variation on the brine emplacement process. The injection of 13.25 m3, or 0.33 pore volume

(PV), of brine across the lower 0.6 meters of injection wells was simulated. Solute concentration

across the domain was monitored over time to evaluate the establishment and stratification of

the brine layer. Initially, breakthrough curves (BTCs) were plotted at injection and extraction

well locations, as well as at five other monitoring points. These points, labeled C1—C5 in Figure

5.3, were selected to compare concentration profiles at well locations to profiles at points between

the wells.
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Figure 5.3: Plan view of DNTS test cell with monitoring points C1—C5 labeled

Analysis of BTCs demonstrated that the variance among constant elevation points moni-

tored was not always indicative of the variance across the domain at that elevation. For example,

it was observed in simulation E11 that at a height 0.6 meters above the clay layer (ACL) there

was a large variance in concentration between the injection and extraction wells relative to that

in other simulations. However, a small concentration variance relative to other simulations was

seen between locations C1—C5. This supports the idea that average values across horizontal
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planes must be used to make significant conclusions.

Nonetheless, example BTCs are given to demonstrate the differences between concentra-

tions over time at well locations and at points in between. Figures 5.4(a)—5.4(d) represent BTC

patterns typical of those seen in the 12 brine emplacement simulations. Figures 5.4(a) and 5.4(b)

give BTCs from simulation E1 at a height 0.6 meters above the clay layer, while Figures 5.4(c)

and 5.4(d) represent BTCs at the clay layer surface from simulation E11.
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Figure 5.4: Breakthrough curves: Simulations E1 and E11
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In an ideal brine emplacement, all solute injected would remain in the lower portion of the

domain, or within the layer that a brine barrier is desired. In addition, the brine layer would

be stratified, or have no variance in concentration at a constant height. However, subsurface

heterogeneity and instabilities that form during the injection process diminish efficiency. The

analyses conducted utilize these assumptions for an ideal establishment of a brine barrier to

investigate the efficiency of brine emplacement under various circumstances. Therefore, to eval-

uate the formation of a brine layer, the variance in concentration and the average concentration

across horizontal planes were monitored over time.

The variances in concentration seen at four elevations, in each simulation, are shown in

Figures 5.5(a)—5.5(d). Thereafter, Table 5.1 provides the variance in concentration at given

heights within the lower 0.6 meters of the domain, averaged over time. The simulations are

listed in order of increasing variance to represent the rank of efficiency. Recall that simulations

E1—E6 represent a low-rate (LR) brine injection of 0.010 PV day−1, while simulations E6—E12

represent a high-rate (HR) brine injection of 0.028 PV day−1.
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Figure 5.5: Variance in concentration at various heights in simulations E1—E12

The following observations can be made from analysis of Figures 5.5(a)—5.5(d):

1. Initially, different concentration variance values are seen among the simulations, though

the degree of heterogeneity is not indicative of the amount of concentration variation. For

example, the concentration variance seen in the homogeneous simulation E1 is consistently

less than that seen in simulation E3 (Gaussian SRF, σ2
Y = 1) but consistently greater than

that seen in simulation E5 (layered, σ2
Y = 1).

2. Excluding the two simulations in which σ2
Y = 2 (E6 and E12), the concentration variance

values, which initially range between 0.00373 and 0.00743, converge after 0.25 pore volume

is injected.
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Table 5.1: Variance in concentration (σ2
c ) at given heights ACL averaged over the injection period

0.00 m ACL M 0.15 m ACL M 0.30 m ACL M 0.45 m ACL M 0.60 m ACL

Sim σ2
c Sim σ2

c Sim σ2
c Sim σ2

c Sim σ2
c

E5 0.0013 E5 0.0014 E5 0.0016 E5 0.0017 E5 0.0016

E1 0.0016 E1 0.0017 E1 0.0018 E1 0.0019 E1 0.0019

E2 0.0017 E2 0.0018 E2 0.0019 E4 0.0020 E4 0.0019

E11 0.0018 E4 0.0019 E4 0.0019 E2 0.0020 E3 0.0019

E4 0.0018 E11 0.0019 E3 0.0021 E3 0.0020 E2 0.0020

E3 0.0019 E3 0.0020 E11 0.0021 E11 0.0023 E11 0.0022

E7 0.0022 E7 0.0023 E7 0.0025 E6 0.0024 E6 0.0024

E8 0.0024 E8 0.0025 E6 0.0025 E10 0.0026 E10 0.0026

E10 0.0026 E10 0.0026 E10 0.0026 E7 0.0026 E7 0.0026

E9 0.0027 E9 0.0028 E8 0.0027 E8 0.0028 E9 0.0028

E6 0.0091 E6 0.0037 E9 0.0029 E9 0.0029 E8 0.0028

E12 0.0148 E12 0.0057 E12 0.0034 E12 0.0032 E12 0.0030

3. In the upper half of the injection area, the concentration variance values of all simulations

converge after 0.25 pore volume is injected.

The variance patterns in Figures 5.5(a)—5.5(d) imply that, if a sufficient brine layer can be

reached before 0.25 pore volume is injected, an injection rate of 0.010 PV day−1 is more optimal

than 0.028 PV day−1. This will result in less brine mounding which is necessary to proceed to

the subsequent stage of BBRT. However, if a layer of sufficient concentration is not expected

to be reached before the change in variance tends to zero (or before 0.25 PV is injected), then

injection rate will not be the most important factor in brine layer formation. As the volume

required to reach a barrier of specified concentration increases, the mounds which have formed

have more time to dissipate. In this case, a HR may be beneficial to expedite the emplacement

process.

Table 5.1 suggests that injection rate is dominant over subsurface heterogeneity as a factor

in the determination of concentration variance when the heterogeneity of the ln permeability

is less than 1. With the exception of E11 and E6, the variance is smaller in each of the LR

simulations than in any HR simulations. Although E11 and E6 are outliers, the variance in E11
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is consistently smaller than in E5 (the LR simulation with a corresponding permeability field),

and the same relationship is seen between E6 and E12.
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Figures 5.6(a) and 5.6(b) show the horizontal variance in concentration, averaged over time

and over elevations up to 0.6 meters ACL, as a function of both heterogeneity and injection

rate. Though not shown, various plots were generated for specific elevations and injection times.

Because similar patterns were seen among these plots, the average is used as a representation.

The figures suggest that, for moderately heterogeneous domains, concentration variance is more

greatly dependent on injection rate than on the degree of subsurface heterogeneity. With the

exception of the two highly heterogeneous simulations, E6 and E12, a greater amount of variation

is seen among simulations with the same permeability field than among simulations with the same

injection rate. Therefore, in moderately heterogeneous cases, the rate of brine emplacement has

a greater effect on brine mounding than does the heterogeneity of subsurface permeability.

The concentration of the brine layer necessary for BBRT depends on the density of the

DNAPL being removed. Therefore, concentration profiles are equally as important as concen-

tration variances in determining the efficiency of brine emplacement scenarios. Figures 5.7(a)—

5.7(d) represent average concentrations through four horizontal slices of the domain from simu-
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lations E1—E12. Since the density of DNAPL used in the pilot study of BBRT was 1.6 g mL−1,

the brine barrier concentration necessary was 0.48 kg kg−1.
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Figure 5.7: Average concentration across the domain at various heights

An “effective concentration” was calculated by subtracting the standard deviation across

a plane from the average concentration. It was assumed that this value could conservatively

represent the concentration of brine at a given elevation. Using this analysis, it was concluded

that simulations E1—E4 all reached a concentration of 0.48 kg kg−1 up to 0.3 meters ACL after

0.33 pore volume was injected. Simulations E5 and E11 resulted in sufficient brine barriers up to

a height of 0.45 meters ACL after the same volume was injected. After termination, a sufficient

brine barrier was yet to be established in the remaining simulations. This can be explained by
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analysis of Table 5.2.

Table 5.2 provides the average concentration over time at various elevations to show the

general trends in concentration comparisons between simulations. The simulations are listed in

order of decreasing concentration. The table can be used to analyze the amount of brine in the

lower half of the injection area relative to that in the upper half. The numbers demonstrate

that the ratio of mass between 0.0 and 0.3 meters ACL to mass between 0.3 and 0.6 meters

ACL is greater in the LR simulations than in the HR simulations, with the exception again of

simulations E11 and E6. It is observed that the higher injection rate causes more solute mass to

travel upward through the domain than does the lower injection rate. This suggests that the LR

simulations are more efficient than the HR simulations, as the brine layer is intended to form on

the clay layer at the bottom of the injection area.

Table 5.2: Concentration at given heights ACL averaged over the injection period

0.00 m ACL M 0.15 m ACL M 0.30 m ACL M 0.45 m ACL M 0.60 m ACL

Sim Conc Sim Conc Sim Conc Sim Conc Sim Conc

E5 0.465 E5 0.461 E5 0.451 E5 0.438 E6 0.427

E11 0.459 E11 0.456 E1 0.447 E4 0.438 E4 0.425

E1 0.457 E11 0.454 E11 0.446 E1 0.436 E10 0.424

E2 0.456 E2 0.452 E2 0.445 E2 0.435 E12 0.422

E3 0.454 E3 0.451 E4 0.445 E10 0.435 E1 0.421

E4 0.452 E4 0.449 E3 0.443 E11 0.435 E2 0.421

E7 0.451 E7 0.448 E7 0.441 E6 0.433 E5 0.420

E8 0.450 E8 0.447 E8 0.440 E3 0.432 E7 0.419

E9 0.449 E9 0.445 E10 0.440 E7 0.432 E3 0.419

E10 0.445 E10 0.443 E9 0.438 E8 0.431 E8 0.418

E6 0.342 E6 0.410 E6 0.434 E9 0.429 E11 0.417

E12 0.296 E12 0.389 E12 0.426 E12 0.427 E9 0.417

Combining analysis of concentration variance and average concentration, it was concluded

that the most heterogeneous domains (those with a ln permeability variance equal to 2) were the

least efficient overall. In BBRT implementation, systems of this type may require considerably

more time and brine injection. However, strong conclusions can not be made from the simulations,

since only one representation of a heterogeneity field with σ2
Y = 2 was used. Analysis of the
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randomly generated field did indeed show that a value of relatively low permeability was used

for the bottom layer of the domain. This is assumed to have contributed, in simulations E6 and

E12, to the high variances in concentration seen at lower elevations and to the relatively large

amount of solute which moved upward into the domain.

In the moderately heterogeneous and homogeneous simulations, the efficiency was more

dependent on injection rate than on the degree of heterogeneity. HR simulations reached similar

concentrations as the corresponding LR simulations after an average additional of 0.08 pore

volume was injected. Though HR simulations reach a given volume sooner than LR simulations,

the brine mounding that ensues may take an undesirable amount of time to relax and dissipate.

5.3 Brine Recovery Simulations

Simulations representing brine recovery were performed to evaluate the effects of hetero-

geneity and extraction rate on solute recovery. A total of 0.33 PV of fluid was extracted over

a period of 32 days in the low rate (LR) simulations, 18 days in the medium rate (MR) simu-

lations and 12 days in the high rate (HR) simulations. Two methods of simultaneous flushing

were considered among the simulations—one in which freshwater was injected at points along

the top of the saturated zone, hereafter referred to as the upper flush (UF), and another in which

freshwater was injected at points directly above the clay layer but away from extraction wells,

or a lower flush (LF).

Solute concentrations at well effluents were monitored over time. Conversion of these con-

centrations to corresponding mass removal rates allowed for numerical integration to approximate

the solute mass removed. The general trends found in these values can be seen in Figure 5.8.

Fractional solute recovered from a domain containing approximately 5,598 kg solute (or 0.17

PV of fully concentrated brine) was used to compare the efficiency of brine recovery between

simulations.

Initial analysis concluded that each UF simulation was more efficient than every LF sim-
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Figure 5.8: Average concentration at effluents and fractional solute mass removed in recovery
simulations

ulation. The average fraction of solute mass removed in the UF simulations was 0.946, with a

variance of 6.04×10−5, and the average removed in the LF simulations was 0.914, with a vari-

ance of 2.60×10−4. Individual simulation results are represented in Table 5.3 (UF) and Table 5.5

(LF), in which they are listed in decreasing order of solute fraction removed during brine recov-

ery. Because it was apparent that the most dominant factor in efficiency among the simulations

was the flushing method, analyses of the impacts of subsurface heterogeneity and extraction rate

variation were conducted on the LF and UF scenarios independently.

Analysis of Table 5.3 suggests that, using the UF scenario, an increase in heterogeneity

does not correspond to an increase or decrease in brine extraction efficiency. All simulations

conducted with Gaussian and layered permeability fields with σ2
Y = 0.25 resulted in less solute
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Table 5.3: Fractional mass removed in upper flush simulations

% Solute

Simulation Removed Domain Variance Rate

R24 95.89 Layered 1 High

R16 95.84 Layered 1 Medium

R8 95.66 Layered 1 Low

R21 94.59 Homogeneous 0 High

R13 94.56 Homogeneous 0 Medium

R5 94.56 Homogeneous 0 Low

R6 94.33 Gaussian 0.25 Low

R14 94.24 Gaussian 0.25 Medium

R22 94.18 Gaussian 0.25 High

R7 93.91 Layered 0.25 Low

R15 93.76 Layered 0.25 Medium

R23 93.74 Layered 0.25 High

removal than did the homogeneous simulations. However, the simulations conducted in which

the heterogeneity was layered and σ2
Y =1 resulted in the greatest amount of solute removal. This

suggests that a knowledge of simply the variance of heterogeneity will not allow for the prediction

the brine removal efficiency.

The grouping of heterogeneity fields in Table 5.3 implies that the specific subsurface field is

the dominant factor in the amount of solute removed. Though the degree of overall heterogeneity

may not be the determining factor in brine removal efficiency, the specific location and orientation

of low permeability and high permeability areas may have a large impact on recovery. Therefore,

since the difference in an extraction rate of 0.010 PV day−1 and 0.028 PV day−1 is negligible

compared to the effects of subsurface variation, a high extraction rate can efficiently be utilized

to expedite the recovery process.

Figures 5.9(a) and 5.9(b) demonstrate the fractional solute mass removed in UF simula-

tions as a function of (a) ln permeability variance and (b) extraction rate. Table 5.4 provides the

variance between the groups of simulations represented in Figures 5.9(a) and 5.9(b). Analysis

of these figures further suggests that brine recovery efficiency is more dependent on subsurface
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Figure 5.9: Solute recovery in UF simulations

Table 5.4: Variance in solute recovery among groups of UF simulations

UF Simulation laurenlei σ2 in Solute

Group Recovery

Low Rate 5.62×10−5

Medium Rate 7.86×10−5

High Rate 8.66×10−5

Homogeneous 2.17×10−8

Gaussian, σ2=0.25 5.60×10−7

Layered, σ2=0.25 8.32×10−7

Layered, σ2=1.0 1.45×10−7

heterogeneity than on the rate of brine removal. The variances in solute recovery among simu-

lations with equivalent permeability fields are at least two orders of magnitude less than those

among simulations with a constant extraction rate. This finding is contrary to the results seen

in the brine emplacement simulations.

Equivalent analysis was conducted on LF simulations, though correlations were less ap-

parent. Table 5.5 provides LF simulations listed in order of decreasing fractional solute mass

removed. Unlike the pattern seen in the UF simulations, each specific permeability field does

not correspond to a rank of brine removal efficiency.
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Table 5.5: Fractional mass removed in lower flush simulations

% Solute

Simulation Removed Domain Variance Rate

R4 92.50 Layered 1 Low

R9 92.48 Homogeneous 0 Medium

R10 92.46 Gaussian 0.25 Medium

R18 92.11 Gaussian 0.25 High

R11 92.01 Layered 0.25 Medium

R17 91.95 Homogeneous 0 High

R1 91.66 Homogeneous 0 Low

R19 91.56 Layered 0.25 High

R2 91.53 Gaussian 0.25 Low

R3 91.36 Layered 0.25 Low

R12 90.15 Layered 1 Medium

R20 86.68 Layered 1 High

Figures 5.10(a) and 5.10(b) were generated to assess the solute recovery as a function of

ln permeability variance and extraction rate. Values for the variance in solute recovery between

the simulation groups represented in these figures are presented in Table 5.6. Again, no strong

correlation is seen, and the results are inconclusive. However, a more comprehensive investigation

is unnecessary as it has been concluded that UF schemes are more optimal than LF schemes.
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Figure 5.10: Solute recovery in LF simulations

Figures 5.11(a) and 5.11(b) are concentration profiles, generated using SutraPlot, shown

to represent instabilities seen in homogeneous LR simulations using (a) a UF scheme and (b)
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Table 5.6: Variance in solute recovery among groups of LF simulations

LF Simulation laurenlei σ2 in Solute

Group Recovery

Low Rate 2.55×10−5

Medium Rate 1.22×10−4

High Rate 6.80×10−4

Homogeneous 1.71×10−5

Gaussian, σ2=0.25 2.21×10−5

Layered, σ2=0.25 1.12×10−5

Layered, σ2=1.0 8.57×10−4

a LF scheme. These figures are provided to demonstrate a possible reason for the decreased

efficiency among LF simulations. Though both scenarios produce instabilities, it appears that

the LF scheme allows a much greater amount of solute mass to remain in the upper portion of

the domain.

(a) Concentration profile: UF simulation R5 (b) Concentration profile: LF simulation R1

Figure 5.11: Instabilities in concentration in homogeneous recovery simulations
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5.4 Viscosity Simulations

5.4.1 Set 1 Simulations

The first set of viscosity simulations was performed to analyze the independent effects of vis-

cosity and density as brine displaces freshwater horizontally, as is seen in the brine emplacement

stage of BBRT. As mathematical modeling of brine processes are important for BBRT imple-

mentation, it is beneficial to evaluate the impacts of assumptions made by common groundwater

flow and transport models, such as linearly varying density or negligible viscosity changes.
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Figure 5.12: Average horizontal and vertical velocities in Set 1 simulations

Figures 5.12(a)—5.12(d) show the average horizontal and vertical velocities in the Set 1

simulations. Vertical velocities are represented as negative values to indicate a downward flow.
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The following observations can be made from the figures:

1. In homogeneous simulations, the horizontal velocity was seen to depend only on the viscos-

ity of the fluid (Figure 5.12(a)). As time increased and solute moved into the domain, the

fluid in which viscosity was held constant (W1) encountered no change in horizontal veloc-

ity. However, when the viscosity equation of state was added to the model, the horizontal

velocity after 2.5 days was seen to decrease by 24% when density changes were neglected

(W2) and to decrease by 70% when density changes were accounted for (W3).

2. In homogeneous simulations, the vertical velocity was seen to depend only on the density of

the fluid (Figure 5.12(b)). As solute moved into the domain, no change in vertical velocity

was observed for the fluid in which density was held constant (W2). After 2.5 days, a dense

yet non-viscous fluid (W1) encountered an increase in vertical velocity of 2.04 m day−1,

while a dense and viscous fluid (W3) encountered an increase of 0.50 m day−1.

3. The effect of viscosity on horizontal velocity was increased when density effects were added.

The horizontal velocity of the dense and viscous fluid decreased more rapidly than did the

viscous fluid.

4. When combined with viscous effects, the rate at which density caused the fluid’s vertical

velocity to increase was minimized.

5. As can be seen in Figures 5.12(c) and 5.12(d), the added complexities of subsurface hetero-

geneity had a significant impact on velocity. Horizontal velocity was no longer dependent

solely on viscosity and was, on average, approximately half the rate of that seen in homo-

geneous simulations. Vertical velocity was still largely dependent on density, yet velocity

was sill approximately half that seen in homogeneous simulations.

These observations demonstrate the importance of accounting for density and viscosity

variations when modeling a fluid with behavior similar to CaBr2. As can be seen from velocity
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profiles, the negligence of viscosity changes leads to an overestimation of both horizontal and

vertical flow, while the negligence of density variations results in an overestimation of horizontal

flow and the underestimation of vertical flow.

Homogeneous concentration profiles are not shown because uniform flow, which can be

conceptualized by Figures 5.12(a) and 5.12(b), was observed. However, the use of a heterogeneous

domain, seen in Figure 5.13, resulted in interesting solute transport patterns. Figures 5.14(a)—

5.14(c) provide profiles seen after 0.625 days across the vertical plane z = 0.1 meters. Comparison

of Figure 5.13 to the Figures 5.14(a) and 5.14(c) demonstrates the shorter solute travel distance

seen near the origin, in which a low permeability region exists. However, the concentration

profile for the viscous, non-dense brine does not appear to be as greatly impacted by the low

permeability region.
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Figure 5.13: ln permeability field, profile of [4.8,4.8.0.1] meters : Set 1 heterogeneous simulations

(a) Concentration profile at z = 0.1 m after 0.625 days:
simulation W4

(b) Concentration profile at z = 0.1 m after 0.625 days:
simulation W5

(c) Concentration profile at z = 0.1 m after 0.625 days:
simulation W6

Figure 5.14: Concentration profiles from heterogeneous Set 1 simulations
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5.4.2 Set 2 Simulations

The second set of viscosity simulations examined the effects of density and viscosity on the

displacement of brine by freshwater. The simulations are representative of the upper flush of

freshwater performed in the brine recovery process. Similar analysis was conducted, in which

the average velocity over time was monitored and compared between systems in which solute

concentration had different effects. Figures 5.15(a)—5.15(d) demonstrate the average horizontal

and vertical velocities seen in the Set 2 simulations. Both horizontal and vertical velocities

remained relatively constant over time in all simulations. This suggests that the enforced pressure

boundaries may have had a larger impact on fluid flow than did the displacing freshwater. For

this reason, an analysis of the magnitude of viscosity and density effects over time could not

be conducted. However, a comparison of the velocities of the three types of fluids was useful.

Analysis of Figures 5.15(a)—5.15(d) suggest the following:

1. In homogeneous simulations, horizontal velocity of a dense fluid was 38.7 times greater

than a viscous, non-dense fluid and was 5.1 times greater than a dense and viscous fluid.

2. In homogeneous simulations, vertical velocity of a dense fluid was 127.3 times greater than

a viscous, non-dense fluid and was 5.1 times greater than a dense and viscous fluid.

3. In heterogeneous simulations, horizontal velocity of a dense fluid was 22.8 times greater

than a viscous, non-dense fluid and was 5.6 times greater than a dense and viscous fluid.

4. In heterogeneous simulations, vertical velocity of a dense fluid was 52.9 times greater than

a viscous, non-dense fluid and was 4.6 times greater than a dense and viscous fluid

5. Horizontal velocity in a given homogeneous simulations was, on average, 7.4 times greater

than in the corresponding heterogeneous simulation. Vertical velocity in a given homo-

geneous simulations was, on average, 1.8 times greater. However, since only one random
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Figure 5.15: Average horizontal and vertical velocities in Set 2 simulations

permeability field was utilized, this result can not be assumed to be indicative of hetero-

geneous domains with a similar degree of heterogeneity.

The velocity profiles demonstrate the impacts of density and viscosity on fluid velocities,

and stress the importance of including both effects in flow and transport modeling. As suggested

by Figures 5.15(a)—5.15(d), neglecting a change in viscosity with concentration variation will

lead to the overestimation of horizontal and vertical flow. In addition, negligence of density

changes will lead to an underestimation of horizontal and vertical fluid velocities.

Figures 5.16(a)—5.16(c) show concentration profiles from the homogeneous simulations,

which represent solute travel resulting from velocity patterns given previously. The profiles also
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(a) Concentration profile at y = 2.5 m after 1.25 days:
simulation B1

(b) Concentration profile at y = 2.5 m after 1.25 days:
simulation B2

(c) Concentration profile at y = 2.5 m after 1.25 days:
simulation B3

Figure 5.16: Concentration profiles from homogeneous Set 2 simulations

demonstrate instabilities which form as dense fluid is displaced by less dense fluid (Figures 5.16(a)

and 5.16(c)). The instabilities are not seen in 5.16(b), the system in which density differences

were neglected.

Figures 5.18(a)—5.18(c) give concentration profiles from heterogeneous simulations utiliz-

ing the Gaussian random field shown in Figure 5.17. Visual comparison of the figures shows

the instabilities propagating near high permeability areas and diffusing in the vicinity of low

permeability regions. As was seen in the Set 1 simulations, it appears that the system in which

brine was represented as viscous and non-dense (B5) was less affected by the heterogeneity than

were the other systems.
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Figure 5.17: ln permeability field, profile of [4.8,2.5,0.1] meters: Set 2 heterogeneous simulations

(a) Concentration profile at y = 2.5 m after 1.25 days:
simulation B4

(b) Concentration profile at y = 2.5 m after 1.25 days:
simulation B5

(c) Concentration profile at y = 2.5 m after 1.25 days:
simulation B6

Figure 5.18: Concentration profiles from heterogeneous Set 2 simulations
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5.5 Comparison of Results to Previous Studies

Though no research was found involving the injection of a dense brine at points in a do-

main, comparisons between brine emplacement results and density-dependent-flow literature can

be made. As suggested by previous research, the dense brine did form mounds on the imper-

meable clay surface, and the amount of mounding that occurred was dependent on subsurface

heterogeneity and fluid velocity [53]. In a density dependent flow experiment employing layered

media, Schincariol and Schwartz observed that as the number of layers increased, the flow and

transport of a dense plume began to more closely resemble that seen in homogeneous exper-

iments [53]. In the present study, this generalization was not valid, as evidenced by analysis

of simulation E6. Over a height of 3.2 meters, 46 layers were utilized—an amount that would

imply resultant behavior representative of that in the homogeneous simulations. Yet, the pres-

ence of a low permeability layer near the clay surface caused instabilities to form and resulted in

concentration profile patterns which varied greatly from all other simulations. This is, however,

in accordance with Simmons et al., who demonstrated that local heterogeneities, as opposed to

permeability field statistics, determine instability patterns [57]. The ln permeability field used

in simulation E6, as well as resulting concentration profiles, can be seen in Figures 5.19(a) and

5.19(b).

Brine recovery simulations further verify theory found in the literature that flow and trans-

port are greatly dependent on the cumulative distribution of high and low permeability areas

[57]. Though the efficiency of solute removal did not depend on the variance of the permeability

field, the specific heterogeneous domain was the greatest factor in the amount of solute removed.

In addition, instabilities were seen to form in both the LF and UF simulations, as freshwater

displaced a dense brine. These instabilities, portrayed previously in Figures 5.11(a) and 5.11(b),

were expected, based on previous investigations of density dependent flow. Though not quanti-

fied in this study, complex velocity profiles were observed in brine recovery simulations. This is
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(a) ln permeability field, profile of (4.7,3.1,0.1) meters: Sim-
ulation E6

(b) Concentration profile at y = 0.1 m after 16
days: simulation E6

Figure 5.19: ln permeability fields and concentration profiles: Simulation E6

in agreement with various studies in which small density differences led to mixing [10, 52, 56, 57].

However, it can not be determined whether complex flow fields in simulations were a result of

density differences, heterogeneity, or simply the combination of fluid injection and extraction.

In all viscosity simulations, the negligence of viscosity variations led to an overestimation

of both horizontal and downward vertical velocities. In homogeneous Set 1 simulations, the final

horizontal velocity was overestimated by 0.12 m day−1, and the vertical velocity by 2.04 m day−1.

In homogeneous Set 2 simulations, the horizontal and vertical velocities were overestimated

by 1.47 m day−1 and 3.63 m day−1, respectively. This supports Ophori’s hypothesis that an

underestimation of viscosity leads to an overestimated prediction of groundwater sinking [44].

More importantly, it demonstrates the importance of accounting for viscosity variations when

modeling systems containing a dense and viscous brine.

Set 1 viscosity simulations also demonstrated an effect observed by Schincariol and Schwartz.

In laboratory experiments, they observed that a dense plume moved horizontally in freshwater

at a much greater velocity than that of a low density injection [53]. In viscosity simulations

in which brine displaced freshwater, the final horizontal velocity of the dense brine was 0.34 m

day−1 greater than the non-dense brine in homogeneous simulations and 0.12 m day−1 greater

in heterogeneous simulations.
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Though performed to evaluate the effects of viscosity on brine behavior, the Set 1 and

Set 2 viscosity simulations also further demonstrated the significant effect that heterogeneity

has on fluid velocities. On average, the velocity in heterogeneous simulations was 33% smaller

than that seen in corresponding homogeneous simulations. Though only one correlated random

permeability field was used in the viscosity simulations, and a relationship between velocity and

heterogeneity can not be made, it is obvious that subsurface heterogeneity impacts fluid flow and

solute transport.
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what

6 Conclusions

As DNAPL contamination continues to be a challenge to groundwater remediation efforts,

a novel brine barrier approach is being tested in the laboratory, as well as at the field-scale.

Though experiments have addressed the effects of subsurface heterogeneity on its efficiency, a

more comprehensive study is afforded by mathematical modeling. The objective of this project

was to utilize a numerical model to investigate open issues relating to BBRT—specifically, the

effects of heterogeneity and viscosity on brine behavior.

Simulations showed highly viscous CaBr2 to form mounds around injection wells when

introduced into a freshwater-saturated domain. However, the use of a moderate rate of brine

emplacement was able to control the amount of mounding that occurred and to limit the amount

of mass which dispersed upward into the domain. Highly heterogeneous domains resulted in an

insufficient brine barrier establishment over the simulation period. However, among moderately

heterogeneous domains, the subsurface variation was less dominant a factor in brine emplacement

efficiency than was the injection rate.

Contrary to results found in brine emplacement analysis, the efficiency of brine recovery

was seen to depend strongly on subsurface heterogeneity and be a weak function of extraction

rate. Though the variance of the permeability field was not indicative of overall efficiency, local

heterogeneities were the dominant factor in fractional solute recovery. Therefore, it is beneficial

to have a knowledge of the subsurface prior to implementation, as this information will help

determine the feasibility of BBRT.

The present study demonstrated the promise of BBRT and suggested methods of increasing

the efficiency of brine emplacement and recovery. However, concerns were raised on the applica-

bility of many groundwater flow and transport models, especially those in which a homogeneous



domain and constant viscosity are assumed. Accounting for the subsurface variability was shown

to be essential, as it may determine whether BBRT is appropriate for a specific domain. In ad-

dition, viscosity simulations demonstrated inaccuracies caused by neglecting viscosity variations,

as they were seen to significantly affect fluid velocities.

To better understand the processes involved in BBRT, further research should be conducted

on the dispersion of brine. Though diffusion observed in laboratory experiments is best estimated

by a coefficient twice that of the published value for CaBr2, the overall effects of hydrodynamic

dispersion have yet to be studied. Specifically, the proposed non-linear dispersion theory should

be investigated on its applicability to a dense brine. It is possible that non-linear dispersion

effects may counteract the effects of viscosity by dispersing mounds.
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