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ABSTRACT 

 
RACHAEL ANN TURNER: Grafting Technologies for Use in Liver Cell Therapies of 

Human Hepatic Stem Cells 
(under the direction of Lola M. Reid) 

 

While the healthy liver is capable of rapidly regenerating after acute injury, patients 

with severe liver disease can undergo acute liver failure. The only widely used treatment for 

severe damage and failure is liver transplantation, but the paucity of available donor organs 

and the overwhelming number of patients waiting for transplants prompts a need for the 

development of alternative therapeutic strategies. Current therapies primarily introduce 

mature donor cells into hosts via cell suspension delivered through a vascular route; this 

results in inefficient engraftment, the engraftment of cells at ectopic sites, and can lead to 

complications with emboli formation and the need for immunosuppression. Sourcing of the 

cells to be transplanted is difficult, due mostly to the scarcity of available normal human 

tissue, in addition to poor cryopreservation methods, forcing one to obtain and utilize freshly 

isolated cells whenever available. Key problems associated with liver regeneration can be 

solved using tissue engineering themes which take advantage of the proliferative capacity of 

the stem cell population, along with its associated matrix. These strategies have been applied 

to three key facets needed for clinical programs in liver cell therapies: cryopreservation, 3-

dimensional (3-D) cultures, and grafting technologies for transplantation of the cells. 
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The optimization of cryopreservation methods for stem cell banking was first 

achieved through the use of hyaluronan (HA) hydrogels. Isotonic medium supplemented with 

small amounts of HA (0.05 or 0.10%) improved cell attachment and colony formation due at 

least in part to increased expression of key cell adhesion factors in the stem and progenitor 

cell populations. The culturing and expansion of hHpSCs in an ex vivo three-dimensional (3-

D) environment was achieved using hyaluronan hydrogels mixed with other matrix 

components found in the liver’s stem cell niche, in combination with a tailored serum-free 

medium. Cell aggregates formed within the HA hydrogels, remained viable, and 

demonstrated a stable stem cell phenotype after weeks of culture. Finally, culturing 

conditions were utilized in vivo to improve methods of cell transplantation through the 

incorporation of grafting strategies after hepatic injury. These strategies were compared with 

current methods for transplantation of liver cells, which resulted in scattered aggregates 

within the liver and loss of significant numbers of cells to other locations. By contrast, 

grafting strategies provided a suitable scaffold which allowed all transplanted cells to remain 

within the liver and dramatically improved engraftment and expansion without evidence of 

emboli formation. The techniques developed here have improved current alternative methods 

available for the treatment of liver failure and are preclinical, but are expected to rapidly 

translate to therapeutic uses.  
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CHAPTER I 

Introduction 

 

Motivation 

As one of the most complex organs in the body, the liver is responsible for 

maintaining numerous functions, including toxin removal, production of bile and hormones, 

regulation of nutrients, and the synthesis of serum proteins. After acute injury, the liver is 

able to regenerate rapidly within days to a few weeks. However, patients whose disease is too 

severe can undergo liver failure. According to the Organ Procurement and Transplantation 

Network (www.optn.org), over 30,000 patients die annually from liver failure in the United 

States alone. Currently, the only widely used treatment for severe damage and failure is liver 

transplantation. However, the paucity of available donor organs has the consequences of 

leaving over 18,000 patients on the US waiting list and thousands more unable to get onto the 

list. With this overwhelming number of patients waiting for transplants, there is a great need 

for the development for alternative therapeutic strategies. Two such therapies being 

developed are transplantation of liver cells, currently as cell suspensions into patients, and 

bioartificial livers that can be used as assist devices.  

Essential in developing alternative therapies is understanding and utilizing the liver’s 

biology in terms of maturational lineage biology. The liver’s maturational lineages are 

comprised of both the parenchymal and mesenchymal cells and are regulated by paracrine 

http://www.optn.org/�
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signals produced by both subpopulations. The maturation of the two is paralleled by changes 

in the chemistry of the paracrine signals. The Reid lab is working on both therapeutic options 

making use of subpopulations of human liver cells with extraordinary expansion potential: 

human hepatic hHpSCs and their immediate descendents, hHBs, and committed progenitors. 

Extensive research has also been done on identifying the paracrine signals, comprising the 

matrix components and the soluble signals, found within the stem cell niche and between the 

parenchymal and mesenchymal cell partners during maturation to adult fates. The 

combination of the lineage-stage specific parenchymal and mesenchymal cell partners and 

their unique set of paracrine signals are ideal for tissue engineering applications. 

Another development that has proven important is a method of culturing hHpSCs and 

hHBs in a three-dimensional (3-D) environment by using hyaluronan hydrogels as a base 

scaffold. Hyaluronans are present in all stem cell niches including those for liver. They are 

being used as a base condition for culture, cryopreservation and grafting technologies that 

collectively should greatly facilitate clinical and commercial programs utilizing liver cells as 

well as for basic research in mechanisms in stem cell biology and tissue engineering.  

Current methodologies for cell therapies introduce donor cells into hosts via a 

vascular route. This works well for hemopoietic cells that float and have mechanisms of 

homing to appropriate sites, but it does not work well for cells from solid organs. The reports 

in the literature indicate that there is inefficient engraftment of cells in the appropriate 

location, and engraftment of cells at ectopic sites, that is those other than the liver (e.g. lung), 

as well as emboli formation. Grafting methods are being developed that combine cells within 

an appropriate matrix and hormonal environment to provide an optimal starting environment 

for survival, expansion and vascularization after transplantation.  
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Additionally, the supply of human hepatic cells depends on the availability of liver 

tissues from resections and rejected organs from organ donation programs. This supply is 

extremely limited and becomes available at unpredictable times. Methods for 

cryopreservation and long-term storage of isolated cells is vital in facilitating full use of the 

cells, thereby optimizing this scarce resource. An effective method of cryopreserving 

hHpSCs with consistent viability and attachment is needed for use in both research and 

clinical applications. In the last 20 years, multitudes of studies have been performed to 

establish a feasible freezing protocol on multiple tissue types from diverse species. No 

standard protocol has emerged, though several factors have been identified as being 

important for successful protocol. In combination with the protective characteristics of 

hyaluronan hydrogels, an effective method of cryopreservation for hHpSCs is being 

developed.  

 

Objectives  

 Given the current limitations of liver disease therapies, improvements in cell 

cryopreservation and expansion, ex vivo bioreactors, and in vivo cell transplants can have 

huge benefits. The studies of this dissertation utilized the proliferative capacity of the stem 

cell population, along with its associated matrix components, to solve key problems 

associated with liver regeneration using tissue engineering themes. This first goal involves 

the optimization of cryopreservation methods for stem cell banking through the use of 

multiple variables found essential and with the addition of hyaluronan hydrogels. Secondly, 

the culturing and expansion of hHpSCs in hyaluronan hydrogels mixed with a combination 

of other matrix components ex vivo is being explored. Finally, these cultures can be utilized 
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in vivo to establish grafting methods that are being tested in immunocompromised murine 

hosts with and without hepatic injury. By embedding the cells into a microenvironment that 

mimics the liver’s stem cell niche, current therapies can be vastly improved. These grafting 

technologies are explored and developed in this dissertation.  



CHAPTER II 

Human Hepatic Stem Cell and Maturational Liver Lineage Biology 

 

Prologue 

Hepatic stem cells and maturational lineage biology of the liver are central themes in 

my studies. This paper was published in Hepatology 2011, 53(3), p1035-1045, and is 

reprinted with permission from John Wiley and Sons, License # 2624911209300, and 

summarizes this maturational lineage biology, both intra- and extra-hepatically. Recognition 

of maturational lineage biology and its regulation by multiple mechanisms offers new 

understandings of liver biology, pathologies, and strategies for regenerative medicine. As a 

comprehensive review, additional authors also contributed to the writing of this manuscript. 

Oswaldo Lozoya prepared the sections on mechanical effects on cells. Yungfang Wang 

helped with sections on the biliary tree stem cells and on regulation of the cells by paracrine 

signaling. The sections on the biliary tree, biliary tree stem cells, and cholangiocytes were 

written and edited by Drs. G. Alpini, D. Alvaro, E. Gaudio and V. Cardinale.  
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Abstract 

Livers are comprised of maturational lineages of cells beginning extrahepatically in 

the hepato-pancreatic common duct near the duodenum and intrahepatically in zone 1 by the 

portal triads. The extrahepatic stem cell niches are the peribiliary glands deep within the 

walls of the bile ducts; those intrahepatically are the canals of Hering in postnatal livers and 

that derive from ductal plates in fetal livers. Intrahepatically, there are at least 8 maturational 

stages from the stem cells located in zone 1 (periportal), through the midacinar region (zone 

2), to the most mature cells and apoptotic cells found pericentrally in zone 3. Those found in 

the biliary tree are still being defined. Parenchymal cells are closely associated with lineages 

of mesenchymal cells, and the maturation of parenchymal and mesenchymal lineages is 

coordinate. Each lineage stage consists of parenchymal and mesenchymal partners 

distinguishable by their morphology, ploidy, antigens, biochemical traits, gene expression, 

and ability to divide. Lineage stages are governed by changes in chromatin (e.g. 

methylation), gradients of paracrine signals (soluble factors and insoluble extracellular 

matrix components), mechanical forces, and feedback loop signals derived from late lineage 

cells. Feedback loop signals, secreted by late lineage stage cells into bile, flow back to the 

periportal area and regulate the stem cells and other early lineage stage cells, in mechanisms 

dictating the size of the liver mass. Recognition of maturational lineage biology and its 

regulation by these multiple mechanisms offers new understandings of liver biology, 

pathologies, and strategies for regenerative medicine.  
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The Liver’s Maturational Lineages 

General Comments on Lineages 

All tissues are organized with a stem cell niche containing stem cells and committed 

progenitors that give rise to daughter cells, maturing step-wise to adult cells, and transition to 

apoptotic cells [1]. The kinetics of the lineage and tissue turnover is tissue-specific and 

correlates inversely with the extent of polyploidy. Rapidly regenerating tissues have lineages 

with fast kinetics, and typically have only 5-10% polyploid cells. Newly recognized lineages 

are those associated with quiescent tissues (e.g. liver, pancreas, lung, kidney), with turnovers 

estimated to be months to years. The extent of polyploidy in these tissues in adults is from 

20% to 95% [2].  

Fetal and neonatal tissues are entirely diploid, and their transition to adult ploidy 

varies from species to species. In mice, it occurs within 3 weeks; in rats within 4 weeks; in 

humans by late teenage years [2]. With increasing age, the percentage of diploid cells 

steadily declines. In liver it increases from ~20% in young adults to over 50% in the elderly, 

a presumed variable in the regenerative capacity of the tissues [3]. 

The zonal distribution of the liver’s known heterogeneity of functions has been 

described extensively in the past. In Table 1 and Table 2, we summarize these past studies on 

specific zones (periportal, midacinar, and pericentral) functions and include findings from 

more current literature to provide additional markers that are distributed zonally. 
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Table 1. Zonal Distribution of Cellular Subpopulations 

Cellular Subpopulations Stem Cell 
Niche* 

Zone 1 Zone 2 Zone 3 

Parenchymal Cell Populations 

Hepatic stem cells (HpSCs)  ++ - - - 

Hepatoblasts (HBs) ++ - - - 

Committed progenitors ++ - - - 

Hepatocytes - +++ +++ +++ 

Cholangiocytes - +++ 
(later lineage 
stages are 
extrahepatic) 

- - 

Mesenchymal/Endothelial Cell populations 

Angioblasts ++ - - - 

Endothelia cells (few, large 
fenestrations) 

- ++ + - 

Endothelia cells (numerous, 
small fenestrations) 

- - ++ +++ 

Hepatic stellate cell 
(HpSTC) precursors 

++  
(with 
HpSCs) 

- - - 

HpSTCs  ++ (with 
hHBs) 

+++ +/- 
(+ in disease 
states) 

-  
(+ in disease 
states) 

Stromal cells - ++ 

(most are 
extrahepatic 
biliary tissue) 

- - 

Hemopoietic Cells 

Hemopoietic progenitors 
(CD34+ ) 

++ - - - 

Kupffer Cells 
(monocytes) 

- ++ 
(phagocytosis) 

++ +++ 
(cytotoxicity) 

Lymphocytes - ++ ++ ++ 

Pit cells (liver natural 
killer cells)  

- ++ ++ ++ 
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Table 2. Intrahepatic Zonation of Functions 

 Protein or 
Activity/ 
mRNA 

Zone 1 

Periportal 

Zone 2 

Mid-Acinar 

Zone 3 

Perivenous 

Carbohydrate Metabolism 

Phosphoenolpyruvate 
carboxykinase (glycogen from 
pyruvate) 

Protein +++  + 

mRNA ++++  + 

Fructose-1,6-bisphospatase Protein +  + 

mRNA +++  + 

Gluconeogenesis (from lactate, 
amino acids) 

 +++  + 

Gluconeogenesis (from 
pyruvate) 

 +++  + 

Glycogen Synthesis (from 
lactate) 

 +++  ++ 

Glycogen Synthesis (from 
glucose) 

 ++  +++ 

Pyruvate kinase Type L  +  +++ 

Glycolysis (glucose to 
pyruvate) 

  -- +++ 

Glucokinase (glycogen from 
glucose) 

Protein +  ++ 

mRNA +  + 

Amino Acid and Ammonia Metabolism 

Tyrosine aminotransferase  ++ + + 

Serine dehydratase  +++  + 

Glutamine synthetase 
(glutamine from ammonia; also 
from glutamate, α-
oxoglutarate, ornithine) 

 --  +++ 

Ureogenesis (from ammonia, 
amino acid nitrogen via 
carbamoyl phosphate 
synthetase) 

 +++  + 

Lipid Metabolism 

HMG-CoA reductase Protein +++  -- 



11 

mRNA ++  -- 

β-Oxidation  +++  + 

Liponeogenesis Ketogenesis  +  +++ 

Cholestrol Biosynthesis  +++ -- -- 

Bile Acid Synthesis  -- + ++ 

Sulfation  +++  + 

Glucuronidation  +  +++ 

Glutathione Content  +++  + 

Glutathione-S-Transferases  +  +++ 

Glutathione Peroxidase  +++  + 

Bile Acid Uptake Na+ dependent +++ + -- 

Na+ independ. ++  ++ 

Uptake of many organic anions 
and cations in presence (with) 
or absence (without) of 
albumin 

without ++ + -- 

With ++  ++ 

Oxidative Energy Metabolism 

Succinate dehydrogenase  ++  -- 

O2 uptake  ++++  ++ 

Mixed Function oxidation 
(NADPH cytochrome c 
reductase, epoxide hydrolase) 

 -- ++ ++++ 

Cytochrome P450 Isozymes 

Cyp 3A7   +++  - 

CYP 1A, IIA, IIB, IIE, 3ª  -  ++++ 

Specific Proteins 

Transferrin Protein +/- ++ +++ 

mRNA +++ +++ +++ 

ICAM-1 (sinusoidal endothelia 
and parenchyma associated 
with them) 

 ++ +++ ++++ 

NCAM (only in parenchymal 
cells in the stem cell niche) 

 + 
(niche) 

 -- 

EpCAM (hepatic 
stem/progenitors and 

 ++ - - 
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intrahepatic cholangiocytes) 

α-Fetoprotein (only in 
hepatoblasts) 

 ++ 
(niche) 

 -- 

Albumin  ++ ++++ 
(full transcriptional 

regulation) 

Connexin 26  +++  + 

Connexin 32  +  +++ 

Extracellular Matrix Components 

Collagen I  +  ++++ 

Collagen III  ++  ++++ 

FIbronectin (tissue)  ++ ++ ++++ 

Fibronectin (plasma)  --  ++++ 

Heparin-PG  -  ++++ 

Collagen IV  ++++  -- 

Collagen V  ++++  ? 

Collagen VI  ++++  ? 

Collagen XVIII  +++  ? 

Laminin  ++++  -- 

Hyaluronans (produced by 
hHpSTCs and endothelia) 

 ++++  --- 

Chondroitin sulfate-PGs  ++++ ++ + 

Heparan sulfate-PGs  ++ ++ ++ 

Dermatan sulfate-PGs  ++ ++ + 

*Stem cell niche: ductal plates (also called limiting plates) in fetal and neonatal livers; 
canals of Hering in pediatric and adult livers . 

++++ = strong signal; + = weak signal ; -- = no signal.  

Tables have been prepared from data in reviews on heterogeneity of functions in liver by 
Gebhardt[4] [see Figures 3 and 4 and Tables 2 and 3] and by Jungermann and Kietzmann[5] 
[see Figures 2, 3 and Tables S2 and S3] and from diverse, more recent studies [6-9] 

 

Extrahepatic Lineages in the Biliary tree. Multipotent stem cell populations have been 

identified recently in the peribiliary glands of the biliary tree, giving rise to liver, bile duct, 
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and pancreas under specific culture conditions or with transplantation in vivo [10, 11]. The 

antigenic and biochemical profiles of the biliary tree stem cell populations at different sites in 

the extrahepatic bile ducts are suggestive of multiple lineage stages with the most primitive 

ones being within the hepato-pancreatic common duct near to the duodenum (Figure 1). 

Later stages are found in the cystic duct and hilum. Related cells, possibly transit amplifying 

cells, are found within the gallbladder that does not have peribiliary glands. Further 

characterization of these cells should elucidate possible precursor-descendent relationships 

including if they are precursors to intrahepatic lineages. A review summarizing the extant 

knowledge of these newly discovered lineages is given elsewhere [11].  

 

Known Maturational Lineage Stages found within Human Livers 

This overview will focus on diploid subpopulations, particularly stem/progenitors for 

which less has been published. The extrahepatic lineages and the adult lineage stages are 

noted with brief descriptions of their phenotypic features. Schematic figures demonstrating 

the concepts of hepatic lineages can be seen in Figure 1 and Figure 2. Currently, there is 

evidence for at least 8 intrahepatic lineage stages [12-17]. As efforts continue to characterize 

the liver’s lineage biology, we assume that additional lineage stages will be identified.  
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Figure 1. Schematic image of liver, the biliary tree and pancreas and their connections with the 
duodenum. The blue stars indicate sites at which there are high numbers of peribiliary glands, the stem 
cell niches of the biliary tree. 
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Figure 2: Schematic image of intrahepatic maturational lineages. 
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Intrahepatic Lineage-Stage 1. Human hepatic stem cells (hHpSCs) are 

multipotent stem cells located within the liver’s stem cell compartment, the ductal plates of 

fetal and neonatal livers and canals of Hering in pediatric and adult livers[12, 18-23]. The 

compartment represents the anatomic and physiological link between the intralobular 

canalicular system of hepatocytes and the biliary tree and resides along an array of sites that 

project starlike from the portal tracts. The hHpSCs cells range in size from 7-10 μm in 

diameter and have a high nucleus to cytoplasmic ratio. They are tolerant of ischemia and can 

be found as viable cells in cadaveric livers for up to ~6 days after asystolic death [22, 24]. 

The hHpSCs form colonies in culture capable of self-replication [25] and of differentiation to 

mature cells in culture and in vivo [18, 26]. They constitute ~0.5-2% of the parenchyma of 

livers of all age donors. Their known antigenic profile comprises epithelial cell adhesion 

molecule(EpCAM), neural cell adhesion molecule (NCAM), CD133, CXCR4, SOX9, 

SOX17, FOXA2, cytokeratins(CK) 8/18/19, hedgehog proteins (Sonic and Indian), claudin 3, 

and with weak (if any) expression of albumin, MHC antigens, certain pluripotency genes 

(Nanog,KLF4,OCT4, and SOX 2), and no expression of α-fetoprotein(AFP), intercellular 

adhesion molecule(ICAM-1), P450s, markers for hemopoietic cells (e.g. CD34,38,45,90, or 

glycophorin), endothelial cells (e.g. VEGFr, CD31, von Willebrand factor) or mesenchymal 

cells (e.g. CD146, desmin, vitamin A, CD105) [17, 18, 26]. C-kit(CD-117) has also been 

found in the liver’s stem cell niches [19, 27, 28], but flow cytometric sorts for CD117+ cells 

selects for angioblasts [18, 26]. Therefore, it remains unclear if it is on the hHpSCs or on 

angioblasts closely bound to hHpSCs, so further studies are needed to clarify this point. The 

hHpSCs have pumps such as MDR1 that eliminate xenobiotics [29]. In addition, they express 

telomerase mRNA and have telomerase protein entirely localized within the nucleus [30]. 
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Some proteins, such as CK19, are synthesized and found in punctuate form, but not 

converted to filaments [18]. Ability of the cells to form the filamentous form occurs at the 

next lineage stage, the hepatoblasts. Similarly, albumin is weakly synthesized (if at all) but is 

not packaged as it will be in the hepatoblasts and later lineage stages. This implicates 

lineage-dependent distinctions in how some proteins are processed post-transcriptionally and 

translationally. 

The hHpSCs are readily isolated by immunoselection for cells doubly positive for 

[EpCAM+ NCAM+] from livers of all donor ages. In adult livers in which hepatoblasts are 

scarce, selection for EpCAM+ cells results in predominantly hHpSCs [18, 31]. They expand 

ex vivo if in a serum-free medium, “Kubota’s Medium”, designed for endodermal progenitor 

cell populations [32, 33] and if co-cultured with angioblasts, plated onto purified type III 

collagen, or embedded into loosely cross-linked hyaluronan hydrogels [26, 34]. If 

transplanted into immunocompromised hosts, they yield mature liver tissue. If cultured under 

distinct conditions (see below) they lineage restrict into hepatoblasts [26]. 

Intrahepatic Lineages-Stage 2. Hepatoblasts are diploid, bipotent cells giving rise 

to hepatocytic and cholangiocytic lineages and capable of enormous expansion potential, but 

not yet found to have self-replication ability [18, 26]. The requirements for their expansion 

overlap with but also include distinctions from those of the hHpSCs [26]. The gene 

expression profile comprises stem/progenitor cell genes (e.g. EpCAM, CXCR4, CD133, 

pumps such as MDR1 [29] that enables them to eliminate xenobiotics), usually faint or no 

expression of pluripotency genes (e.g. OCT4,Nanog,KLF4), and some genes unique to the 

hepatic fates (e.g. albumin, AFP). Hepatoblasts (hHBs) are the immediate descendents of the 

hHpSCs, are the liver’s probable transit amplifying cells, and the expression of AFP is a 
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signature feature. They are located just outside the stem cell niche proper, as a single cell or 

small aggregate of cells adjacent to or tethered to the ends of the ductal plates or canals of 

Hering [19]. These cells are larger (10-12μm) with higher amounts of cytoplasm and are 

found in vivo throughout the parenchyma in fetal and neonatal livers. They have telomerase 

protein within the nucleus and approximately 5X the telomerase activity of that in the 

hHpSCs and telomerase protein found both in the nucleus and in the cytoplasm [30]. CK14 

and CK19 are found as filaments [19, 28, 35] and albumin localized in discrete packets 

cytoplasmically [18]. With donor age, the hHBs decline in numbers to <0.01% of the 

parenchymal cells in postnatal livers [18, 19]. They have been shown to expand during 

regenerative processes, especially those associated with certain diseases such as cirrhosis. 

Previously, these cells were referred to as “intermediate hepatobliliary cells of the ductular 

reactions”[36]; however, extensive characterization enabled us to replace the nomenclature 

with hepatoblasts [19]. A comparison of the phenotypic profiles of HpSCs and HBs can be 

found in Table 3, Figure 3 and Figure 4. 

Table 3. Phenotypic Profiles of Multipotent Cell Populations in Human Livers 

Property Human Hepatic Stem Cells 
(hHpSCs) 

Human Hepatoblasts 

(hHBs) 

Average diameter 
(measured by forward 
scatter in flow cytometric 
analyses of isolated cells)  

7-9 μm 10-12 μm  

Nucleus to cytoplasmic 
ratio  

Highest observed of all 
parenchymal progenitor 
subpopulations evaluated  

Intermediate between that in 
hHpSCs and mature 
parenchymal cells  

Percentage of 
parenchymal cells [18] 

0.5-1.5 % in livers of all donor 
ages and with minimal 
ischemia; percentages higher in 
ischemic livers  

>80% (fetal livers)  

~50% (neonatal livers) 
[percentages change rapidly 
day by day postnatally]  



19 

<0.01% (adult livers)  

Survival after cardiac 
arrest (tolerance for 
ischemia) [18] 

Viable cells for several days 
after cardiac arrest  

Viable for more than a day, 
but not as long as hHpSCs  

Morphology of colonies 
in vitro [18] 

Uniform; densely packed; look 
similar to ES cell colonies  

Cord-like colonies 
interspersed with clear 
channels that are 
presumptive canaliculi  

Evidence for Self-
renewal [25] 
 

Clonogenic expansion with 
stability of phenotype; 
doubling times of ~36 hours on 
plastic; can be passaged 
repeatedly; fastest doubling 
times (~20-24 hours) for 
hHpSCs on substrata of type 
III collagen  

Significant expansion 
potential but not yet 
evidence for self-replication 
(under the conditions tested 
to date). Probable transit 
amplifying cells  

Pluripotency [18] Multipotent Bipotent 

Anaerobic metabolism 
(metabolomic studies) 
[34]  

+++ +++ 

Conditions for clonogenic 
expansion [32] 

 

Kubota’s Medium plus feeders 
of angioblasts replaceable with 
type III collagen (monolayers) 
or hyaluronans into which is 
mixed type III collagen (3-D)  

Kubota’s Medium plus 
feeders of hepatic stellate 
cells replaceable with type 
IV collagen/laminin 
(monolayers) or hyaluronans 
into which is mixed type IV 
collagen/ laminin (3-D)  

CD44H  

(hyaluronan receptor) 
[37]  

High concentrations High concentrations 

Claudin 3 [31] +++ Negative 

Indian Hedgehog [12] +++  

Highest level in cells in the 
center of the colonies  

++ 

Lower levels, but pattern of 
distribution is the same 

Sonic Hedgehog [12] ++ 
Located at edge of cells; 
concentrated in cells at edge of 
colonies at sites of high 
concentration of angioblasts  

+ 
Lower levels, but pattern of 
distribution is the same  
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Patched  
(Hedgehog receptor) [12] 

+++ 

Found in all cells and in 
colonies throughout the colony  

++ 

Levels lower, but still 
evident  

Telomerase [30] + 

mRNA encoding telomerase 
and the protein found in 
nucleus. No telomerase protein 
in the cytoplasm 

+++ 

mRNA encoding telomerase 
and the protein found in 
nucleus; with differentiation, 
increasing numbers of the 
cells have it in the 
cytoplasm; 5X higher 
activity than in hHpSCs  

P450s [31] Negative for all assayed P450 A7 but not late forms 
of P450s 

CK 8 and 18 [31] ++ ++ 

CK 19 [18, 31] ++ (not in filament form) ++ (filaments evident) 

E-cadherin [18] ++ ++ 

EpCAM [18, 19] +++  

(throughout the cells)  

++ 

(plasma membrane) 

NCAM /ICAM-1 [18, 
19] 

++ /- -/++ 

Albumin [18] ± ++ 

α-fetoprotein [18, 19] Negative +++ 

*Mesenchymal Markers  Negative Negative 

**Angioblasts/ 

Endothelial cell Markers  

Negative Negative 

***Hemopoietic markers  Negative Negative 
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Figure 3: Human hepatic stem cell and hepatoblast phenotypes in vivo. a,b) EpCAM expression in fetal 
liver: EpCAM expressed in the ductal plate is not only at the cell surface but also in the cytoplasm. EpCAM 
expressed in the hepatoblasts is specific to the cell surface. d,e) EpCAM expression in adult liver: One end of 
the Canal of Hering connects to the bile duct, the other end connects to hepatoblasts (arrow), indicating that the 
hepatoblasts are derived from primitive hepatic stem cells harbored in Canals of Hering. c) Double staining for 
CK-19/AFP and f) Ep-CAM/AFP of human fetal liver in the portal triad area and analyzed by confocal 
microscopy. CK-19 (c, green) is expressed not only by remodeling ductal plate but faintly expressed by some of 
the hepatoblasst. Ep-CAM (f, green) is detected in all the parenchymal cells and biliary epithelial cells forming 
bile duct and ductal plate (DP). AFP(red) is expressed by hepatoblasts throughout the fetal liver and 
undetectable in the ductal plate. (PT: Portal triad; DP: Ductal Plate) 

 

 

Figure 4: Human hepatic stem cell and hepatoblast phenotypes in culture. a) Morphology of human hepatic 
stem cells and b) human hepatoblasts in culture on plastic. c) Albumin staining of human hepatic stem cells, 
transitioning to hepatoblasts. d) hepatic stem cells stained with NCAM (green) and hepatoblasts stained with 
ICAM (red). 
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The antigenic profile of hHBs overlaps in part with that of the hHpSCs [17, 18, 28] 

with shared markers being cytokeratins(CK) 8/18 and 19, hedgehog proteins (Sonic and 

Indian), and no expression late P450s (e.g. P450-3A), markers for hemopoietic cells (e.g. 

CD34,38,45,90,or glycophorin), endothelial cells (e.g. VEGFr,CD31,von Willebrand factor) 

or mesenchymal cells (e.g. CD146,desmin,vitamin A,CD105). The changes comprise a 

reduction in levels of EpCAM restricting it primarily to the plasma membrane surface, a 

switch from NCAM to ICAM-1, elevated expression of albumin, expression of early P450s 

(e.g. P450-A7), of CK7, and very strong expression of AFP. The AFP expressed by hHBs is 

distinct from one expressed by hemopoietic progenitors only by the sequences expressed in 

exon 1, a probable clue of mesendoderm to endoderm differentiation [38]. 

The hHBs can be purified from liver cell suspensions by immunoselection for cells 

that are doubly positive for [EpCAM+, ICAM-1+]. They can be expanded in culture in 

Kubota’s Medium and on feeders of hepatic stellate cells [26, 39] that can be replaced, in 

part, with substrata of purified type IV collagen mixed with laminin or 3-dimensionally in 

cross-linked hyaluronans, ideally into which are mixed type IV collagen and laminin [26, 

37]. 

Intrahepatic Lineages-Stage 3. Committed progenitors are diploid, unipotent, 

immature cells ~12-15 µm in diameter. These precursors give rise to only one adult cell type. 

They no longer express some of the stem cell genes (e.g. EpCAM, NCAM) or the 

pluripotency genes, and express only faintly other genes strongly expressed by the stem cells 

such as CD133/1 or Hedgehog proteins. They express either hepatocytic markers or biliary 

markers, but not both. They are found in large numbers in fetal and neonatal tissues, rarely 

observed in normal adult tissues, and are observed again in large numbers in chronic liver 
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diseases (viral, alcoholic and non-alcoholic fatty liver diseases, autoimmune hepatitis, 

cholangiopathies) [40, 41]. 

Committed hepatocytic progenitors, also called intermediate hepatocytes, express 

albumin, glycogen, and the enzymes associated with glycogen synthesis (e.g. glucose-6-

phosphate); they do not express biliary markers, such as CK19, and minimal (if any) 

EpCAM. If AFP is expressed, it is found only as faint or weak expression. Cells are located 

in vivo in the liver plates between the hHBs and the diploid adult hepatocytes. The numbers 

are very small except in disease states. 

“Small cholangiocytes” are hypothesized to be committed biliary progenitors and co-

localize with the hHpSCs in the stem cell niche, lining the canals of Hering, intrahepatic bile 

ducts and bile ductules with an internal diameter of less than 15 µm [42]. The canals of 

Hering link directly to bile ductules which may or may not traverse the limiting plate, and 

thus may have an intralobular segment (periportal) in addition to their intraportal location. 

Small cholangiocytes are diploid, are ~6-8 µm in diameter, have a cuboidal shape, a high 

nucleus to cytoplasm ratio, and inconspicuous endoplasmic reticulum [43, 44]. In human and 

rodent livers, small cholangiocytes express high levels of the anti-apoptotic proteins, annexin 

V and bcl2 (B-cell lymphoma 2 protein). At a functional level, they express various genes, 

including receptors for endothelin receptors type A (EDNRA) and type B (EDNRB), 

endogenous opioid peptides, insulin, histamine (H1), acetylcholine (M3), and α-1-adrenergic 

agonists, aquaporin 4, but not the Cl-/HC03
- exchanger, secretin or somatostatin receptor, nor 

the Na+-dependent bile acid transporter, ABAT (apical bile acid transporter). CFTR (cystic 

fibrosis transmembrane conductance regulator) was found in human, but not rodent, small 

cholangiocytes [42]. Finally, small cholangiocytes exhibit the de novo expression of the 
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apical sodium-dependent bile acid transporter during chronic feeding with the bile salts, 

taurocholate, and taurolithocholate, suggesting a role in the cholehepatic recirculation of bile 

salts in conditions of overload [45]. 

Intrahepatic Lineages-Stages 4-6. Diploid adult cells are able to undergo complete 

cell division and are the only adult parenchymal cells with significant proliferative capacity 

under all known in vitro or in vivo conditions. There are two exceptions with respect to 

findings in vivo: tyrosinemia [46] or massive loss of most mature parenchymal cells (e.g. 

>80%) due to a transgene [47]. It is hypothesized that tyrosinemia and/or loss of most of the 

mature parenchyma by such experimental manipulations causes reprogramming 

(demethylation of the chromatin) of the transplanted cells, a process that would restore 

cytokinesis. Thus, the controversial claim that all adult hepatocytes are stem cell-like [48] is 

unproven and based on findings relevant to a unique disease or experimental condition. 

The zone 1, mature hepatocytes can form colonies from 6-7 rounds of division within 

2-3 weeks but have limited capacity to be subcultured [32, 49, 50]. As one progresses in the 

lineage stages towards the central vein, the ability of any diploid subpopulations to undergo 

complete cell division (that is, with cytokinesis) is minimal. The proportion of diploid mature 

cells in young adults is only ~3% in mice, ~10% in rats, and the majority of the parenchyma 

in humans. 

Intrahepatic Lineage-Stage 4. Periportal parenchymal cells (zone 1) are 

comprised of “small (diploid) hepatocytes” [50] and intrahepatic biliary epithelia, or “large 

cholangiocytes” [42]. The hepatocytes are ~18 µm and the large cholangiocytes are ~14 µm 

in diameter. The hepatocytes form plates or cords of cells bound on their lateral borders to 

each other by a mix of lateral matrix components (cell adhesion molecules, proteoglycans), 
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tight junctions (cadherins), and gap junctions (connexins) [51-53]. The proteoglycans on the 

lateral borders are known to regulate multiple aspects of gap junction functions as well as 

transcription of tissue-specific genes [53, 54]. In the center of the lateral border connection 

between two hepatocytes is the bile canaliculus, a region of undulating membrane studded 

with enzymes and pumps that transfer hepatocyte-derived products into bile in the 

canaliculus [42]. 

Hepatocytes are unique among epithelia in having two basal surfaces, bound to 

extracellular matrix components (collagens, proteoglycans, adhesion molecules) in the Space 

of Disse, produced by the hepatocytes and their mesenchymal cell partners, endothelial cells 

and pericytes [7, 55-59]. Zone 1 metabolic activities (see Table 2) are highest in periportal 

hepatocytes. In brief, they produce factors and enzymes associated with gluconeogenesis, 

amino acid and ammonia metabolism, urea synthesis, and glutathione peroxidase [16]. 

Large cholangiocytes are columnar in shape and display a small nucleus and 

conspicuous cytoplasm. An abundant Golgi apparatus is observed between the apical pole 

and the nucleus, and rough endoplasmic reticulum is more abundant than small 

cholangiocytes [42]. Large cholangiocytes line interlobular ducts located in the portal triads 

and all larger intrahepatic ducts. They express CFTR and Cl-/HC03
- exchanger, aquaporin 4 

and aquaporin 8, secretin and somatostatin receptors other than receptors for hormones and 

neuropeptides. In addition, they express the Na+-dependent bile acid transporter apical bile 

acid transporter ABAT(SLC10A4), multidrug transporters MDR3(ABCB4) and 

MDR1(ABCB1), and multidrug resistance associated proteins, MRP2(ABCC2) and 

MRP3(ABCC3) [60]. When large cholangiocytes are damaged by acute carbon tetrachloride 

(CCl4) or GABA administration, small cholangiocytes proliferate, and acquire phenotypical 
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and functional features of large cholangiocytes [61, 62]. This suggests that the population of 

small cholangiocytes lining the canals of Hering and ductules may represent precursors of 

large cholangiocytes lining larger ducts. By using microarray methods, the integrated 

differential gene expression between small and large normal cholangiocytes demonstrate that 

the proteins related to cell proliferation tend to be highly expressed by small cholangiocytes, 

whereas large cholangiocytes express more functional and differentiated genes [63]. This is 

consistent with studies showing, either with bile duct injury due to CCl4 and GABA 

administration or with bile duct regrowth following partial hepatectomy, that small 

cholangiocyte proliferation is activated presumably to repopulate bile ducts. These findings 

suggest that small cholangiocytes are less mature, have a high resistance to apoptosis, and 

have marked proliferative activities, while large cholangiocytes are more differentiated, 

contributing mainly to ductal bile secretion and absorption. Therefore, while hepatocytic cell 

lineages proceed from periportal areas toward the central vein, cholangiocytes proceed in the 

opposite direction from canals of Hering/bile ductules toward larger ducts. 

Intrahepatic Lineages- Stage 5. Midacinar hepatocytes (Zone 2) are diploid in 

humans, tetraploid in rats, and 4-8 N in mice, ~22-25 µm in diameter, and located in the 

midacinar zone [2]. The strategies for studying zonation of functions, selective destruction of 

periportal or pericentral cells with detergents characterizing cell suspensions, are not able to 

give precise definition to the functions of zone 2 cells [64]. Recognition of some unique 

features of the midacinar parenchymal cells has emerged with immunohistochemical and in 

situ hybridization studies on sections of livers. The midacinar hepatocytes are the first stages 

to have peak levels of certain transcription factors regulating albumin enabling these cells to 

produce especially high levels of the protein [65, 66]. In addition, transferrin mRNA is 
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expressed in earlier lineage stages, but it does not translate to protein at detectable levels until 

zone 2 (midacinar), correlating with production of specific elongation factors associated with 

translation of transferrin mRNA to protein [31]. It is unknown whether this is true for other 

proteins. There must be distinctions in posttranscriptional and translational regulation of 

certain mRNAs for early lineage stage cells versus later ones, observations yet to be fully 

explored. 

Intrahepatic Lineage-Stage 6. Pericentral diploid hepatocytes (zone 3) are found 

in small numbers in human livers, but in rats and mice there are none; all rodents have only 

polyploid cells in zone 3. The diploid parenchymal cells in humans decline with age in 

parallel with an increase in polyploidy. In culture, they are able to undergo DNA synthesis 

but with limited, if any, ability to undergo cytokinesis, and no capacity to be subcultured 

[33]. In addition to albumin, tyrosine aminotransferase, and transferrin, they also strongly 

express a number of the P450s that handle xenobiotic metabolism (e.g. P450-3Aa), 

glutathione transferases, and UDP-glucuronyl-transferases [67, 68] 

Intrahepatic Lineage- Stage 7. Pericentral parenchymal cells (zone 3) can 

undergo DNA synthesis but are unable to undergo cytokinesis in all species [2]. In humans 

they are tetraploid; in rats they are octaploid; and in mice they are 16-32 N. They are much 

larger (>30 µm in diameter in human hepatocytes and up to 75 µm in rodents) due to the 

hypertrophy associated with polyploidy. They express high levels of the late genes including 

the late P450s, glutathione transferases, UDP-glucuronyl-transferases, glutamine synthetase 

and heparin proteoglycans [69, 70]. 
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Intrahepatic Lineage- Stage 8. Apoptotic cells express various markers of apoptosis 

and demonstrate DNA fragmentation. Clustered near to these apoptotic cells are Kupffer 

cells, responsible, in part, for eliminating the dying parenchymal cells [69]. 

 

Regulation of the Parenchymal Cell Lineages 

Paracrine Signaling between Epithelial-Mesenchymal Partners 

Paracrine signaling is the primary form of regulation between parenchymal cells and 

their partner mesenchymal cells and represents the classic epithelial-mesenchymal 

relationship described by embryologists and developmental biologists since the 1930s. The 

epithelial-mesenchymal relationship’s importance in development and in adult tissues has 

been thoroughly described in the primary literature and in many reviews and will not be 

presented here [71, 72]. Rather, the only new facet requiring recognition is that coordinate 

maturation of the parenchymal and mesenchymal cell partners occurs and is associated with 

lineage-dependent gradients of paracrine signals [26]. 

Within the stem cell niche, the hHpSCs are partnered with angioblasts and regulated 

by a set of paracrine signals. As hHpSCs mature through hepatocytic or cholangiocytic 

lineages, they are partnered by specific lineage stages of mesenchymal cells; each stage is 

defined by a unique set of paracrine signals. The intrahepatic lineages begin with 

hHpSCs/angioblasts giving rise to hHBs/precursors of stellate and endothelial cells. This 

splits to yield lineages of hepatocytes/endothelia and cholangiocytes/mature stellate cells 

progressing to cholangiocytes/myofibroblasts. The gradients of paracrine signals (soluble 
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signals and insoluble extracellular matrix components) govern the biological responses of the 

cells at each stage [71, 73]. 

Some sets of paracrine signals have been partially defined and have been used to 

establish parenchymal cells at a specific lineage stage in culture (Figure 5). For example, the 

stem cell niche has been found to contain type III collagen, a laminin form binding to α6β4 

integrin, hyaluronans and a minimally sulfated chondroitin sulfate proteoglycan(CS-PG) 

[26]. With hHBs, the signals change to type IV collagen, laminin binding to αβ1, 

hyaluronans, more sulfated CS-PGs and forms of heparan sulfate-PGs. The hepatocytic 

lineage is associated with network collagens (e.g. type IV and VI) and forms of heparan 

sulfate-PGs (HS-PGs) with increasing sulfation ending, in zone 3, in heparin-PGs, HP-PGs. 

The cholangiocytic lineage is associated with fibrillar collagens (e.g. type I and type III) and 

forms of CS-PGs ending in highly sulfated forms, i.e. dermatan sulfate-PGs, DS-PGs [25, 26, 

37]. The gradients in matrix chemistry are paralleled by ones of soluble signals, most being 

bound to various matrix components, particularly the glycosaminoglycans (GAGs) that are 

part of the PGs [74]. The chemistry of the matrix works synergistically with the soluble 

signals to dictate specific biological responses from the cells. Indeed, the soluble factors are 

biphasic, yielding mitogenic effects when complexed with the less sulfated proteoglycans 

and causing growth arrest and differentiation when complexed with the highly sulfated ones. 

These effects are mediated by classic signal transduction pathways complemented by the 

mechanical effects of the matrix (see below). 



30 

 

Figure 5: Schematic image indicating the Coordinate Maturation of the Epithelia (Parenchymal cells) 
and their Mesenchymal Partners and some of the identified extracellular matrix components found at the 
particular lineage stages. Not shown in the figure are the soluble signals that also are lineage dependent. Some 
of those identified and that are lineage dependent are: hepatic stem cells are LIF, IL-6, IL-11, and acetylcholine; 
hepatoblasts are HGF, EGF, bFGF, IL-6, IL-11, and acetylcholine; hepatocytes are HGF, EGF, bFGF, T3, 
glucagon, and hydrocortisone; cholangiocytes are VEGF, HGF, bFGF. and acetylcholine. 

 

Regulation by Mechanical Forces 

An important aspect of homeostatic regulation in liver and other organs (e.g. 

pancreas), is the effect of mechanical stimuli. Research on the mechanical forces contributing 

to differentiation has revealed that differentiation involves stiffness-dependent mechanisms 

[75] accompanied by loss of mechanical compliance in cells [76], and that embryos exhibit 
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phase ordering that parallels behavior in liquid mixtures [77-79]. The role of active flow 

induction by mechanical organelles, such as cilia, has been linked to differentiation patterns 

in embryos [80]. These physical principles, present in early development, are active also in 

mature tissues controlling tissue formation, turnover and maintenance of mechanically 

controlled mechanisms at all stages in life [81]. 

Mature tissues become specialized both through cellular differentiation mediated by 

their surrounding extracellular matrix and soluble signal composition. In general, cells 

require specific machinery to sustain forces that reach them. Differentiation occurs in cells in 

part due to gradients in the matrix chemistry synergizing with soluble signals during tissue 

development, but also because of differential mechanical properties of the matrix [82, 83]. As 

noted above, the maturational cellular lineages in adult liver are paralleled by distinct matrix 

gradients. That for the hepatocytes and their associated endothelial cell partners is soft, 

highly porous with parallels for that found in capillary beds. That for the cholangiocytes-

stellate cell/stromal cell partners is highly cross-linked and more rigid. This defines a 

durotactic gradient [9, 84]. Findings indicate that stiffness is a driving force causing hHpSCs 

to become hepatoblasts [37] and increasing rigid microenvironments eliciting differential 

maturation towards cholangiocytes [26, 37]. 

The mechanical forces can be altered in diseased states. Liver injury in cirrhosis is 

followed by expansion of hepatic stellate cells associated secondarily by altered matrix 

composition and extent of rigidity; this can result in portal hypertension resulting in apoptotic 

responses of parenchymal cells, phenomena that are paralleled by the responses to intraductal 

pressure manipulation via bile duct ligation [85, 86]. 
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The cytoskeleton is a cellular component that fulfills the characteristics of 

amplification systems, in which all mechano-transduction mechanisms involving the 

cytoskeleton induce rearrangements of this network through modulation of Rho- and ROCK-

associated proteins. The connections between the matrix and cells allow them to sense the 

rigidity of their environment through non-muscle myosin II, which directs stiffness-

dependent differentiation in mesenchymal stem cells [75]. Germ layer organization and cell 

sorting depends on cell adhesion forces and cortex tension, which rely on actomyosin 

network activity [87]. Mechanical stretch in liver cells can induce the activation and 

synthesis of morphogens, such as those in the TGF-β family of Activin/Nodal signaling [88]. 

Integrins, a large family of transmembrane proteins involved in mechanical sensing, connect 

the cell to matrix substrates, recruit focal adhesions to adapt to mechanical stresses, bind 

external ligands and regulate intracellular signaling [83]. In TGF-β signaling, the 

transcription factor Smad2 is activated and reaches the nucleus through kinesin-mediated 

shuttling along intact microtubular networks [89]. In general, SMAD transcription factors are 

the backbone of TGF-β signaling pathways and fall into two categories: the receptor-

mediated Smads (R-Smads) that work as substrates to activated cell receptors to transduce 

their signals; and common partnering Smads that either form complexes with R-Smads to 

sequester them and inhibit signaling cascades or shuttle to the nucleus and interact with other 

transcription factors to regulate gene expression [90]. 

Many cells in soft organs possess functional organelles like primary cilia that extrude 

microtubular structures into luminal spaces to detect flow effects at distances above cell 

apical surfaces and, as a result, amplify the effects of flow. Amplification of mechanical and 

chemical stimuli in primary cilia is possible through a polarized signal transduction pathway, 
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and uses the cytoskeleton to ensure faithful trafficking to the nucleus in a specific and non-

diffusable fashion and trigger a global cellular response [91]. PDGRα and Hedgehog 

signaling pathways take place in primary cilia [92, 93]. Hedgehog signaling pathways are 

present in liver of all donor ages [12], and involves dynein-mediated shuttling of Gli 

transcription factors [94]. Some noteworthy target genes of Gli transcription factors include 

PTCH genes, which introduce auto-regulation to the Hh signaling, as well as members of the 

TGF-β family like WNT and BMP genes, all involved in multiple embryonic development 

and differentiation mechanisms by their own function and by induction of other pathways 

[95-97]. Therefore, primary cilia and fluid flow are relevant participants in endoderm 

maturation and fate specification since Hh expression gradients demarcate the extension of 

endodermal organs during development [93, 98]. 

Mechanical interpretation of signaling mechanisms involved in liver development 

links differentiation with homeostatic control in adult stages. Future translational medicine 

strategies using stem cell biology principles will depend on biochemical signaling in 

appropriate physical environments, thus underlining the role of mechanics in tissue 

development. 

 

Feedback Loop Signals and forms of Liver Regeneration 

Signals produced by late lineage stage cells include both positive and negative 

regulators, and include bile salts, various soluble factors and components of the extracellular 

matrix [7, 74, 99, 100]. Bile secretion is an especially important mechanism of homeostatic 

control of tissue mass, operating as a mechano-transduction inductor. It is well known that 
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changes in bile tonicity also affect its viscosity and mechanical properties in a salt 

concentration-dependent fashion [101, 102]. Bile is reportedly a Newtonian fluid in normal 

physiological conditions whose tonicity increases down the biliary tree as hepatic 

parenchyma perform their secretory functions. Remarkably, abnormal bile tonicity is also 

characteristic of pathological conditions [103]. Since shear flow forces are proportional to 

viscosity, bile could function as a long-range mechanical signal that communicates to 

cholangiocytes in the proximal biliary tree the state of hepatic function across the entire liver 

maturational gradient through primary cilia bending, triggering stress-induced Ca2+ and 

cAMP signaling cascades as well as receptor-mediated PDGRα and Hedgehog signaling. 

Primary cilia in the periportal zone are responsible for homeostatic control of the liver by 

sensing the physical and chemical properties of bile [104]. 

Another facet of regulation is mediated by acetylcholine. It stimulates proliferation of 

both stem/progenitor cells and cholangiocytes expressing the M3 acetylcholine receptor [6, 

105, 106]. In the normal liver, late lineage stage hepatocytes that lack M3 receptors produce 

acetyl cholinesterase, which destroys acetylcholine in the stem cell niche, thus blocking the 

proliferation of progenitor cells and cholangiocytes. This also occurs after partial 

hepatectomy, since the feedback loop is still intact. In contrast, during conditions of 

pericentral hepatocyte damage, acetylcholine is free to induce ductular reaction and 

cholangiocyte progenitor cell expansion. The modulatory effects by acetylcholine on the 

proliferation of cells lining the canals of Hering are absent in the denervated transplanted 

liver. The number of progenitor cells and reactive ductular cells in the transplanted liver 

injured by hepatitis were significantly lower than in innervated matched controls [106]. This 

clinical observation was confirmed at the experimental level where vagotomy induces an 
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impaired regeneration of progenitor cells and ductal reaction, in galactosamine damaged rat 

liver cholangiocytes [6]. 

Positive regulators include hepatopoietin, released by dying zone 3 cells and shown to 

stimulate expansion of stem/progenitors (M. Roach and J. Hambor, Pfizer Pharmaceuticals, 

unpublished observations). Another mechanism involved in the feedback loop signals is 

linked with the interaction between portal fibroblasts and cholangiocytes in periportal areas, 

regulated by the expression of the ecto-nucleotidase, NTPDase2 [107]. Under normal 

conditions, expression of NTPDase2 by portal fibroblasts inhibits the activation, mediated by 

extracellular nucleotides, of basolateral P2Y receptors expressed by cholangiocytes. After 

experimental cholestasis, portal fibroblasts lose their expression of NTPDase2, therefore 

allowing activation of P2Y receptors by nucleotides and downstream events upregulating 

cholangiocyte proliferation. Finally, cholangiocytes display primary cilia in their apical pole, 

which could be of relevance for maintaining cholangiocytes in a quiescent state because, as 

recently proposed, cilia bending maintains intracellular Ca2 [Ca2]i at a threshold where 

cAMP, an intracellular modulator of proliferation, is inhibited [108]. 

Feedback loop signalling is particularly relevant to the known forms of liver 

regeneration: 1) that which occurs after partial hepatectomy and 2) that which occurs after 

toxic injury to zone 3 (and sometimes also zone 2) parenchymal cells. 

After partial hepatectomy, many (perhaps most) of the feedback loop signals remain 

intact. There is a wave of DNA synthesis across the liver plates, but with only a portion of 

the cells undergoing cytokinesis [69]. This results in an increase in polyploidy yielding 

hypertrophic cells with a higher level of expression of late genes, but also with a higher 

frequency of cells transitioning into apoptosis. Loss of cells by apoptosis is accompanied by 
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cell replacement from the stem cell compartment via an increased speed in the kinetics of the 

lineage. The stem/progenitors generate more cells to progress through the lineage and with 

time (typically weeks) gradually restore the normal ploidy profile. 

After toxic injury to zone 3 (and sometimes also to zone 2) cells, there is a cellular 

“vacuum” of the late lineage stage cells, and the feedback loop signals are lost or drastically 

altered. The result is that the periportal cells undergo rapid, hyperplastic growth (complete 

cell division) followed by differentiation to later lineage stages. These phenomena, the 

classic “oval cell response” in rodents and the “ductular reactions” seen in human massive 

hepatic necrosis (e.g. acetaminophen toxicity, acute hepatotropic viral infection) have long 

been recognized to involve extensive expansion of the stem/progenitor cell populations [23, 

109]. Chronic injury to the liver, as occurs with certain viral infections (e.g. hepatitis B or C), 

repeated drug exposures, or radiation result in loss of late lineage stage cells, and elicits 

chronic regenerative responses. Chronic regeneration can lead to mutational events 

associated with malignant transformation. 

The feedback loop signals are an explanation also for the behavior of liver cells in 

culture. The diploid subpopulations, including the stem/progenitor cells, do not grow if they 

are co-cultured with late lineage stage parenchymal cells or are provided conditioned 

medium from the zone 3 cells [33]. 

 

Relevance of Cell Sources and Feedback Loop Signals to Clinical Programs 

Lineages in fetal tissues are skewed towards early stages, particularly the 

subpopulations of stem/progenitors, and have no fully mature diploid cells (lineage stages 5 
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and 6) or polyploid cells (stage 7). Those in adult tissues have cells representative of all 

lineage stages (including stem/progenitors) but are skewed towards later lineage stages. The 

speed of turnover of a given lineage has a base rate and a more rapid rate induced by injury 

processes. Donor ages dictate the relative proportions of cells at particular lineage stages, so 

are therefore essential in sourcing of cell populations for therapies. 

Recognition of the feedback loop will have bearing for many clinical programs. Liver 

cell therapies for inborn errors of metabolism must use strategies that accommodate the intact 

feedback loop signaling present. The patients are often difficult to manage clinically, and 

livers are for the most part normal, except for the effects of the defective gene. The liver’s 

feedback loop in these patients is intact, so large numbers of stem cells must be implanted. 

The missing function(s) due to the genetic condition must be constantly monitored. Although 

the immunological issues are evident, one may be able to modulate immunology with the use 

of hepatic stellate cells to avoid immuno-suppression. 

By contrast, patients in liver failure (conditions involving a loss of feedback loop 

signals) can be transplanted with smaller numbers of cells since there will be strong pressure 

for the transplanted cells (along with endogenous early lineage stage cells) to expand quickly 

to reconstitute the liver mass. Concerns include sufficient engraftment of cells to overcome 

liver failure, the possible rejection of cells once they mature. Again, the use of hepatic 

stellate cells (and/or angioblasts) from the recipient should alleviate the immunological 

issues. Most importantly, it will be essential to convert to grafting methods to optimize 

transplantation of liver cells and to identify non-invasive methods of monitoring cells after 

transplantation [110, 111]. 
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Liver Cancer Stem Cells 

An old idea, now revisited by many investigators, is that cancers are transformed 

stem cells or early progenitors. The idea originated with the pioneering work of Van Potter in 

the 1960s. He proposed that hepatomas contain cells undergoing “blocked ontogeny” [112, 

113]. The idea was more carefully elucidated as one generic for all types of cancers as 

neoplasms of mutated stem cells by Barry Pierce and Stewart Sell [114-116]. Many functions 

thought to be related to cancer (e.g. α-fetoprotein expression in liver cancers) are now 

realized to be perfectly normal functions of an expanded stem/progenitor cell population. 

Therefore, current efforts focus on comparing cancer cells to their normal stem cell 

counterparts in order to identify the changes in a specific stem/progenitor cell population that 

have given rise to the malignancy [117-119]. Therefore, cancer cells are from a lineage stage 

at which cell division is a dominant feature [112, 120]. Indeed, investigators have found that 

normal stem/progenitor cells are strikingly similar to tumor cells in their appearance, their 

gene expression, and their growth properties, and that specific tumors, especially specific 

tumor cell lines, can be mapped or identified as an expanded lineage stage [119, 121]. It 

indicates that existing tumor cell line model systems can be used to define properties of their 

normal stem cell counterparts, and that comparison of those tumors to the normal 

counterparts should be extraordinarily revealing about key aspects of the malignant 

transformation process [118]. The clinical use of stem cells may come with an increased risk 

of tumors depending on the donors (e.g. if there are undiagnosed tumor cells among the 

endogenous stem cells) and on the patient’s medical condition (e.g. severe 

immunosuppression). 
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Cancer of the liver, whether primary or metastatic, must be treated with recognition 

of the feedback loop mechanisms, and that tumor cells are probable transformants of a 

stem/progenitor subpopulation. Treatments of the cancer with drugs or radiation kill later 

lineage stages. If they target also the mutated lineage stage(s), then the treatment can be 

curative. If they fail to target specifically the tumor cell, the transformed stem/progenitor is 

able to expand rapidly in the absence or reduction in feedback loop regulation. Therefore, 

future cancer therapies should involve strategies to use the feedback loop signals and/or 

regulators of the paracrine signaling pathways unique to stem/progenitors. Such therapies 

should prove more effective and less damaging to the health of the patient. Partial 

hepatectomy, as often occurs with treatment for patients with liver cancers, is associated with 

a slow regenerative response, since the turnover of the liver is predicated on an increased 

kinetic rate associated with increased apoptosis of the residual liver mass [69]. 

Treatment of patients will improve with strategies recognizing lineage biology. If a 

patient’s tumor can be mapped to a specific lineage stage, then treatment of that patient (e.g. 

with chemotherapies, radiation therapies, etc.) must be targeted to the lineage stage(s) of 

aberrant cells. If the treatment eliminates cells at a later lineage stage but not the stage with 

the aberrant cells, then the treatment will actually worsen the patient’s prognosis, since the 

feedback loop regulation will be eliminated by the treatment’s killing of late (mature) lineage 

stages and subsequent disinhibition of the mutated cells [118, 119]. 

 

Conclusions 

The intrahepatic maturational lineages have been defined, beginning at the stem cell 

compartment, located periportally and progressing through the midacinar region and ending 
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pericentrally. The parenchymal cells, along with their mesenchymal cell partners, are 

governed by gradients of paracrine signals, including both sets of soluble factors and 

insoluble extracellular matrix components, and by specific mechanical forces. Feedback loop 

signals regulate the stem/progenitors, controlling liver mass and tissue regeneration. 

Understanding the lineage biology in the liver and its regulation offers new considerations 

for developing strategies tailoring potential therapies for patients in clinical programs.
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Abstract 

Current methodologies of solid-organ derived cell transplant therapies introduce donor 

cells into hosts via a vascular route, a strategy modeled after hematopoietic therapies. These 

strategies fail due to inefficient engraftment, poor survival of the cells, and propensity for 

formation of life-threatening emboli. Transplant success necessitates grafting methods, 

requiring a mixture of appropriate cell sources embedded into or onto precise mixes of 

extracellular matrix components and then localized to the diseased or dysfunctional tissue, 

promoting necessary proliferation, engraftment and vascularization. Grafting technologies 

are rapidly translatable to therapeutic uses in patients and provide alternative treatments for 

regenerative medicine.  
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Introduction 

As the field of regenerative medicine continues to advance, transplant physicians 

around the world have launched or are about to launch clinical trials transplanting cells from 

solid organs into recipients to treat a number of diseases and conditions, including acute liver 

failure, diabetes, spinal cord injury, and myocardial infarctions. Although some conditions 

like diabetes have been treated with limited success by islet transplantation, the diseases of 

most solid organs have yet to be treated successfully. Cell transplantation involving solid 

organ-derived cells are typically performed via a vascular route, and results routinely show 

overwhelming evidence of inefficient engraftment and marginal effects. We propose that 

successful therapies involving cells from solid organs will be accomplished with strategic 

grafting protocols. Examples include skin grafting that is performed with existing methods 

and FDA approved reagents. The exact method of grafting can be precisely tailored to the 

patient’s needs.  

The era of cell transplant therapies first began with hematopoietic stem cells as 

therapies for cancer. Strategies pioneered by E. Donnall Thomas, began with human bone-

marrow grafting into patients after total body irradiation, resulting in the recovery of bone 

marrow and lymphoid tissue [122]. Hematopoietic cell therapies are easily performed as 

these cells are maintained in suspension and have inherent features, including the acquisition 

of antigens, which support their homing to specific target tissues. However, the studies 

involving transplantation of hematopoietic cell subpopulations have little relevance to 

applications from solid organs such as skin or internal organs (e.g. liver, lung, heart). Results 

from the initial clinical trials involving cell therapies have been encouraging [123-125], but 

the results are compromised by inefficient engraftment, lack of vascularization, lack of 
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growth when transplanting mature cells, and highly immunogenic properties of the cells 

necessitating long-term immunosuppression. Other hurdles include the sourcing of clinical 

grade, high-quality cells and the need to use freshly isolated cells due to difficulties with 

cryopreservation [126].  

Engraftment efficiencies for cell transplants remain low, since many cells die during 

the engraftment process or become located in organs other than the target tissue [127-130]. 

For example, cardiomyocytes injected into the heart after injury are washed out via the 

vasculature into other organs in the body [131]. Similarly, injection of liver cells via vascular 

routes results in donor cells in most if not all of the tissues of the body [132]. In addition to 

the inefficiencies, cell transplantation via a vascular route is potentially lethal. The cells from 

solid organs have surface molecules (cell adhesion molecules, tight junction proteins) that 

make the cells bind to each other rapidly and enhance aggregation. This clumping 

phenomenon can result in life-threatening pulmonary emboli. 

Different strategies are required for cells from solid organs. The development of 

grafting technologies involve the delivery of transplanted cells as an aggregate on or in 

scaffolds that can be localized to the diseased tissue to promote necessary proliferation and 

engraftment. Thus, one must look not only at the cell type to be transplanted, but the cell type 

in combination with the appropriate biomaterials and grafting method for the most efficient 

and successful transplant therapies. 
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Cell Sourcing and Requisite Cells  

Cell sourcing for different therapies requires the use of lineage-staged populations. 

Progenitor cells establish all lineage stages of the tissue. However, the use of later lineage 

stages are preferred if there is a need for rapid acquisition of functions offered only by the 

late lineage cells, or if the recipient has a lineage-dependent virus that preferentially infects 

the stem cells and/or progenitors such as what occurs with hepatitis C [133] or papilloma 

virus [134]. 

The graft’s cellular components should mimic the categories comprising the 

epithelial-mesenchymal cell relationships, the cellular foundation of all tissues. For stem cell 

grafts, the cellular populations comprise angioblasts, the epithelial stem cells, and “nurse” 

cells, providing critical regulatory signals, both soluble and insoluble extracellular matrix 

components. Using liver cell therapies as a model a stem cell graft comprises the hepatic 

stem cells, angioblasts and hepatic stellate cell precursors [19]. In contrast, a mature liver 

graft comprises hepatocytes, mature endothelial cells and pericytes, the mature stellate cells 

[135, 136].  

The ideal ratios of the cell populations should replicate those found in vivo and in cell 

suspensions of the tissue. The mix of cells allows for maturation or maintenance of the adult 

cell types along with requisite vascularization. The issue of vascularization is extremely 

important for all grafts, as shown by the initial frustrations with pancreatic islet transplants. 

Success was achieved with the Edmonton protocol, in which cells were transplanted into the 

liver, a site providing the needed vascularization, as well as the use of specific drugs to 

control immunological reactions. For most conditions, we assume that stem cell grafts will be 

ideal, given their expansion potential, their ability to mature into all of the adult cell types, 
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their tolerance for ischemia, enabling their sourcing from cadaveric tissue, and their minimal 

immunogenicity [137-139]. 

 

Grafting Materials 

Successful grafting strategies can be guided by clinical programs involving skin. As 

an alternative to skin autografts or allografts, artificial skin is created using biomaterials. This 

approach provides a scaffold for cell support and signaling that assist in the success of the 

grafting and regenerative processes. As living tissue in an organism undergoes constant 

remodeling, dissociated cells tend to reform their native structures under appropriate 

environmental conditions. Normal epithelial cells from solid organs are anchorage dependent 

and require a matrix scaffold, various soluble signals, and a three dimensional (3-D) structure 

to guide regeneration [140]. 

Synergistic effects between soluble and matrix factors dictate growth and differentiative 

responses by the cells [141-143]. The matrix components are the primary determinants of 

attachment, survival, cell shape (as well as the organization of the cytoskeleton), and 

stabilization of requisite cell surface receptors that prime the cells for responses to specific 

extracellular signals [33].  

The choice of matrix components includes selection of particular collagens, adhesion 

molecules, proteoglycans (PGs) and their glycosaminoglycan (GAG) chains. There are at 

least 25 collagen types, each one encoded by distinct genes and with unique regulation and 

functions [144, 145]. In parallel, there are multiple families of each of the other categories of 

matrix components [74, 146]. Alternative biomaterials can also be considered. Inorganic, 
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natural materials like chitosan and alginate are promising materials, as are many synthetic, 

biodegradable and biocompatible polymers [147-149]. These materials are often solidified 

through methods including thermal gelation, photo cross-linking, or chemical cross-linking. 

With each method it will be important to use strategies that account for potential cellular 

damage (e.g. temperature ranges, UV exposure).  

Fortunately, the selection of which matrix components to use is guided by gradients 

in vivo, that change from the stem cell compartment to the late lineage stage cells. The 

chemistry of the matrix molecules changes with maturational stages, with host age, and with 

disease states [150]. Therefore, graft biomaterials should mimic the matrix chemistry of the 

particular lineage stages desired for the graft. One can test the efficacy of the mix of matrix 

components in ex vivo studies using purified matrix components and soluble signals, many of 

which are commercially available, many in GFP forms, and can be used in clinical trials 

[151, 152]. The biomaterials selected for the graft should elicit the appropriate growth and 

differentiation responses required for successful cell transplantation. Grafting with 

appropriate materials should optimize engraftment of transplanted cells in a tissue, prevent 

dispersal of the cells to ectopic sites, minimize embolization problems, and enhance the 

ability of the cells to integrate within the tissue as rapidly as possible. Moreover, the factors 

within the graft can also be chosen to minimize immunogenicity problems.  

 

Grafting Methods 

Grafting methods will eventually become a major field for clinical and experimental 

research. The type of grafting material also has an influence on the methodology as some 

methods enhance localization to certain tissue types, as seen in Figure 6. For tissues where 
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grafts would replace a diseased or missing tissue (bone, for example), an implantable solid 

matrix allows cells to be seeded with necessary growth factors into the matrix, cultured, and 

then implanted into the patient.  

Injectable grafts are likely to dominate future cell therapies, as these grafts can fill any 

deficit shape or space (e.g. damaged organs or tissues). Co-culturing and injecting with a cell 

suspension embedded in gelable biomaterials allow for solidification in situ, using the 

various crosslinking methods available for a given biomaterial chemistry, and can easily 

incorporate soluble signals or specific matrix components. Since these grafts can easily be 

injected into the target area, there is no or minimal need for invasive surgery, reducing 

patient discomfort, lowering risk of infection, scar formation, and keeping down overall cost 

[153]. In some cases, one can design a graft to be placed onto the tissue’s surface, in which 

case the graft would be held in place with a biocompatible and biodegradable covering. For 

some abdominal organs, this covering could be from autologous tissues such as a patient’s 

omentum.  

The ability of the transplanted cells to survive and expand in the recipient is affected by 

whether the tissue in the recipient is in a quiescent or regenerative state. Patients with acute 

or chronic liver failure suffer from a loss of late lineage stage cells (i.e pericentral 

parenchymal cells). These late lineage stage cells are the source of feedback loop signals that 

regulate the kinetics of the liver turnover. With liver failure, there is a cellular “vacuum” and 

muting or loss of feedback loop signals, resulting in rapid expansion of both the transplanted 

cells and host periportal cells, followed secondarily by differentiation to later lineage stages 

[109]. Patients in liver failure can be transplanted with smaller numbers of cells per body 

weight of the patient, since there will be strong pressure for transplanted cells to expand 
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quickly and join with the endogenous periportal cells to reconstitute the liver mass. The 

expansion of cells is increased when combined with hepatic irradiation [154, 155]. It is 

estimated that 1-5% of the liver mass is needed for regeneration therapies, corresponding to 

8.8E9 hepatocytes for a human liver. 

If transplanted into quiescent tissue, as occurs in patients with inborn error(s) of 

metabolism, the donor cells engraft and minimally expand. Late lineage stage cells are 

present and producing the feedback loop signals that inhibit or slow the kinetics of the liver 

lineage. Liver cell therapies for patients with inborn errors of metabolism require relatively 

large numbers of cells, or multiple treatments, to compensate for the minimal expansion 

potential of the transplanted cells. 
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Figure 6: Methods for grafting to different target tissues, including implantable grafts, injectable grafts, 
and patch grafts. Dependent on the diseased tissue type, one method may be more appropriate than another. 

 

Conclusions 

In tissue engineering, the key goal is to mimic the complexity of the native 

microenvironment with a minimum number of components that allow transplantation of cells 

to successfully engraft, expand and then rebuild the tissue. At the same time, a one-

combination-fits-all solution is not logical. Different tissue niches require different strategies 
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to allow for maximum regeneration, and the grafts must be specifically designed for tissues. 

By combining the native epithelial-mesenchymal partners of a specific maturational lineage 

stage in combination with the lineage-specific biomaterials (the matrix components and 

soluble signals), cells will be in a specific microenvironment needed for optimal regenerative 

response. Grafting should be localized to the diseased or dysfunctional tissue, minimizing the 

loss of cells to ectopic sites. The use of grafts can facilitate cell transplantation, greatly 

reduces the cost for the procedures, and allow for scalable grafts, enabling transplantation of 

large numbers of cells. Technologies developed are rapidly translatable to therapeutic uses, 

and can benefit patients by providing an alternative treatment to transplants that may 

regenerate lost tissue.
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Abstract 

The supply of human hepatic cells (hHpSCs) is often limited and dependent on the 

availability of liver tissues from surgical resections and rejected organs from organ donation 

programs. To optimize this scarce resource, an effective method is needed for 

cryopreservation of cells, yielding consistent ability for the cells to survive freezing and to 

grow and function in culture after thawing for use in both research and clinical applications. 

The aim of this study was to assess the effects of hyaluronans (HA) to improve preservation 

of adhesion mechanisms that could facilitate culturing the cells and preservation of functions 

postthawing. Freshly isolated hHpSCs and hepatoblasts (hHBs) were isolated from fetal 

livers and cryopreserved in one of a number of different cryopreservation buffers, with or 

without supplementation of 0.5 or 0.10% hyaluronans (HA). All of the buffers tested yielded 

high viabilities (80-90%) on thawing. However, supplementation with HA showed 

considerable improvement in the ability to attach and to be cultured. Best results observed 

were for cells cryopreserved in CS10 isotonic medium supplemented with small amounts of 

hyaluronans (0.05 or 0.10%). Success correlated with improved expression of adhesion 
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molecules (Integrin β1, E-Cadherin). The findings reveal improved methods in 

cryopreservation of freshly isolated human hepatic progenitors under serum-free conditions, 

offering more efficient methods for stem cell banking in both research and potential therapy 

applications. 
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Introduction 

On a cellular level, the start of hypoxemia is initiated the moment a tissue is removed 

from a living organism; it leads quickly to tissue and organ damage. Freezing cells is a 

method to arrest cells for future use and leads to the continuing interest on understanding the 

ability of cells to survive freezing to be used in numerous therapeutic possibilities. Due to the 

common sourcing issues with human cells, extensive research has been done on methods of 

cryopreservation and viability and proliferation after thawing. If proliferative cells can be 

successfully cryopreserved and recovered, many sourcing problems in clinical therapies can 

be alleviated. Cryopreservation of hepatocytes is extremely difficult due to the sensitivity of 

liver cells, causing them to be easily damaged by the freezing and thawing processes [156]. 

In addition, stem and progenitor cells have proven difficult because they are more likely to 

lineage restrict during cryopreservation, caused by the freezing process and/or the added 

factors [156]. Unprotected freezing is normally lethal, and standard buffers and procedures 

have been adopted beginning as early as 1949 with Polge, Smith and Parke’s paper 

preserving spermatozoa to survive prolonged freezing at -80oC using 10-20% glycerol [157]. 

Several factors have been investigated when studying cryopreservation techniques, including 

the use of cryopreservation agents [158, 159], encapsulation techniques [160-162], pre- and 

post- treatment of cells [163], and regulation of freezing temperature [164, 165]. Current 

challenges to hepatic cell cryopreservation are the loss of cells, cell viability (at best 62-85%) 

and high variability (5-95%) in cell adherence to culture dishes in post-thawing [163, 166, 

167]. Some of the key variables identified are summarized below: 

 



55 

Isotonic Media. The usual culture media are not isotonic and, upon freezing, result in 

massive influx of water into cells, that in turn results in ice crystal formation and damage or 

death to the cells. This is prevented by the use of isotonic media prevents and greatly 

improves cell survival, ability to attach and grow in culture and differentiated functions [168-

172]. 

Cryopreservation agents. The function of cryoprotectants is to avoid ice formation 

and cellular dehydration [159]. Common methods of cryopreservation include the use of a 

cryopreservation agent to reduce internal ice formation, and include dimethyl sulfoxide 

(DMSO), glycerol, trehalose, ethanediol, and propanediol that permeate the cell, and sugars 

and polymers that are non-permeating such as PVP dextrans, [158, 159, 163, 173]. Glycerol 

is found in the cells and tissues of many organisms living in freezing conditions including the 

Artic, Antartic and high mountains [174], but its viscosity makes it difficult to utilize in 

routine procedures. Dimethyl sulfoxide (DMSO) at 2-20% is commonly used for freshly 

isolated (primary) cells. DMSO is more soluble than glycerol in aqueous buffers and 

penetrates cells readily making it the most commonly used cryopreservation agent. The only 

concern for use of DMSO is that it has been reported to drive differentiation of hemopoietic 

stem cells [175]. Rate of DMSO addition is important, as DMSO in cell suspension causes 

osmolarity of the solution to be many times higher than solutions without it. Therefore, the 

slow addition of this cryoprotectant may be beneficial for the cells to allow them to adjust to 

the change of osmolarity [176]. It was found important to remove the DMSO quickly after 

thawing to avoid damage to the cells by prolonged exposure to DMSO [177].  

Antifreeze Proteins. (AFPs) or ice structuring proteins (ISPs) facilitate cell survival 

under freezing conditions. They were first identified in fish found in Artic or Antartic [178] 
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but have been found in the cells of many species that live in such frigid environments. They 

involve mechanisms that include interactions with cell membranes that protects the cells and 

in the establishment of thermal hysteresis, a process that results in the inhibition of growth of 

ice crystals.  

Antioxidants. A combination of antioxidant compounds can treat the stress of 

isolation that occurred when hepatocytes were taken from the liver prior to cryopreservation 

[179]. The hydroxyl radicals, lipid peroxides, nitric oxide and hydrogen peroxides in the 

isolated cells were scavenged by the antioxidants to prevent cell damaging. Addition of 

antioxidants to the cryopreservation buffers results in increased cell survival and preservation 

of cell functions after freezing.  

Regulation of rate of freezing process. Mazur first published in 1963 the finding 

that the rate of temperature change plays a large role in cell viability during cryopreservation 

because the rate of change of temperature affects the transport of water and solute across the 

cell membrane [173, 180]. Today, it is accepted that mammalian cells can be cooled and 

stored in liquid nitrogen temperatures by freezing with a cryoprotectant at a rate of about -

1oC/min by placing cells in a freezing container at -80oC for a few hours and then moving to 

liquid nitrogen storage (below -130oC); this method is better known as progressive freezing 

(PF). In stepwise freezing (SF), the cells are brought down in steps of set time intervals with 

controlled temperature rates in a controlled rate freezer [167].  
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Studies on Liver Cells 

There are many publications on the cryopreservation of mature hepatocytes, and more 

recently focus on cryopreservation of stem cells with their ability to proliferate and function 

after freezing. Rat small hepatocytes, diploid cells that are ~17-18 µm diameter, were 

maintained at -80oC for over 6 months, and 60% attachment and proliferation of colonies was 

observed [156]. Liver function including albumin production and other serum proteins was 

also observed. Studies on the cryopreservation of adult human hepatocytes obtained from 

liver biopsies compared differences in freezing methods, including stepwise freezing (SF) 

and progressive freezing (PF) [167], both previously developed methods [181]. Freshly 

isolated hepatocytes showed a viability of 88% and plating efficiency of 79%. After 

cryopreservation/thawing using SF, only 12% recovery was seen. PF gave higher recoveries 

of 38%. Of this 38%, 40% of the viable cells were shown to successfully plate. When the PF 

samples were pre-incubated in medium for 30 minutes, the plating efficiency increased to 

64%. Conclusions involving the cryopreservation of human hepatocytes show greatest 

success with a progressive freezing following a pre-incubation and could potentially be used 

in cell banking.  

Work has also been done involving the cryopreservation of hepatic stellate cells 

[182], which as discussed previously are an important player in the successful culturing of 

hHpSCs and their descendents. Both cooling rates and cryoprotectants were investigated. It 

was found that DMSO as a cryoprotectant gave superior attachment and viability. Recent 

studies that freeze cells in media designed to be isotonic at freezing temperatures, instead of 

culture media, have shown to improve primary cells and stem cell survival [168-172]. 
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The non-attachment of cryopreserved hepatocytes may in large part be due to the loss 

of cell adhesion molecules, specifically β1-integrin and E-cadherin molecules. Both proteins 

have been found to be significantly reduced after cryopreservation [183]. Freezing cells 

within hyaluronans may inhibit this protein degradation, allowing for better cell attachment. 

In addition, studies on the entrapment of hepatocytes within alginate beads has been shown 

to have protective effects [184]; the cells within the alginate beads can be transplanted into 

rats after freezing, still maintaining their viability [185]. In addition, a hyaluronan matrix can 

provide a facile way to transfer cells from one condition to another. Given the presence of 

hyaluronans in the native stem cell niche and the protective properties seen in other 

entrapment methods, freezing using hydrogels may prove to be an optimal method for 

increased cell viability and attachment, to be used for future therapeutic strategies.  

In this study, we evaluated cryopreservation conditions, including different isotonic 

mediums with and without the presence of hyaluronans, to determine the best freezing 

method for future cell banking. Cell viability, expression of cell adhesion molecules, and 

immunohistochemistry on matrix components were used to assess and determine the optimal 

freezing conditions of human hepatic progenitor cells. 

 

Methods 

Liver sourcing and processing 

Liver tissue was provided by an accredited agency (Advanced Biological Resources) 

from fetuses between 14-20 wk gestational age that were obtained by elective terminations of 

pregnancy. The research protocol was reviewed and approved by the Institutional Review 
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Board for Human Research Studies at the University of North Carolina. All processing and 

cell enrichment procedures were conducted in a cell wash buffer composed of a basal 

medium (RPMI 1640) supplemented with 0.1% bovine serum albumin, BSA (BSA Fraction 

V; Sigma-Aldrich), insulin and iron-saturated transferrin (both at 5 ug/ml; Sigma-Aldrich), 

trace elements (300 pM selenious acid and 50 pM ZnSO4), and antibiotics (AAS; Invitrogen). 

Liver tissue was subdivided into 3-ml fragments (total volume ranged from 2 – 12 ml) for 

digestion in 25 ml of cell wash buffer containing type IV collagenase and deoxyribonuclease 

(both at 6 mg per ml; Sigma- Aldrich) at 32°C with frequent agitation for 15 – 20 min. This 

resulted in a homogeneous suspension of cell aggregates that were passed through a 40-

gauge mesh and spun at 1,200 RPM for 5 min before resuspension in cell wash solution. 

Erythrocytes were eliminated by either slow-speed centrifugation or by treating suspensions 

with anti-human red blood cell antibodies (1:5,000 dilution; Rockland) for 15 min, followed 

by LowTox Guinea Pig complement (1:3,000 dilution; Cedarlane Labs) for 10 min, both at  

37°C. Estimated cell viability by Trypan blue exclusion was routinely >95%.  

 

Hepatic Stem Cell Culture Conditions 

The fetal human liver cells were suspended into a serum-free medium tailored for 

hepatic progenitors consisting of a serum-free basal medium (RPMI 1640, Gibco–Invitrogen, 

Carlesbad, CA) containing no copper, low calcium (< 0.5 mM) and supplemented with 

insulin (5 ug/mL), transferrin/Fe (5 ug/mL), high density lipoprotein (10 ug/mL), selenium 

(10M), zinc (10M) and 7.6 uE of a mixture of free fatty acids bound to purified albumin; the 

detailed methods for its preparation have been published elsewhere[33]. 
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Fresh fetal liver cell mix was plated at ~300,000 cells per 100mm2 round culture dish 

(78.5cm2 surface area) or ~ 500,000 cells per plate in a standard 6-well (10cm2 surface area 

per well). The low cell concentration and the conditions in KM were not conducive to 

survival of mature liver cells. If serum is added, the angioblasts lineage restricted rapidly to 

the hHpSTC precursors and to mature hHpSTCs that subsequently dominated the cultures. 

Use of serum-free conditions was essential to keep the hHpSCs and angioblasts stably in the 

lineage stage enabling them to self-replicate. Cells were plated with KM with 10% fetal 

bovine serum (FBS) for at least 6 hrs and up to 24 hrs to facilitate attachment but transferred 

under serum-free conditions thereafter. Cell media were changed every 3-4 days with serum 

free KM. Typical plates had single cells and small clusters of cell that adhered after the initial 

24hrs. Colonies began to appear after 1-2 weeks.  

 

Freezing Conditions  

Freshly isolated human hepatic progenitors were allowed to recover at 4°C for 2 hrs 

prior to freezing in KM. Samples were frozen at 2E6 cells /1ml in cryopreservation vials 

(Nunc). Cryopreservation solution consisted of either culture medium supplemented with 

10% DMSO or CryoStorTM-CS10 (Biolife Solutions), and with 0, 0.05, or 0.10% Hyaluronan 

hydrogel (Glycosan) by weight. Cells were allowed to equilibrate in the cryopreservation 

solution for 10 min at 4°C.  

Samples were frozen in a low percent of hyaluronan (HA) that was uncrosslinked. In 

general the hyaluronans increase the sample viscosity, but HA without cross-linker does not 

form a rigid gel. Samples were prepared by mixing three parts: cells in freezing medium, gel 

in freezing medium, and freezing medium to adjust volume. Hyaluronan from HyStem Kit 
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(Glycosan), comes in sterile bottles dissolved by addition of 500µL DI water and 15minutes 

in warm water bath 37oC, making a 2% HA solution. Then 200uL of DMSO and 1300µL of 

culture freezing media (KM, CryoStorTM-CS10) were added to make a 0.5% gel in either 

media. A summary of freezing and thawing methods, with temperatures, can be seen in 

Figure 7. 

 

Figure 7: Schematic of cryopreservation and thawing methods. 
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Freezing Rate  

A controlled freezing rate program was devised to provide a repeatable program for 

freezing cryo vials that maximized cell survival. Samples were frozen using a Cryomed 1010 

control rate freezer (Forma Scientific). The freezing program was modified after Hubel et al 

[186], and can be seen with the chamber and sample temperatures with respect to time in 

Figure 8.  

 

Figure 8: Controlled rate freezing program minimizes liquid-ice phase entropy preventing internal ice 
damage and allows for repeatable freezing. A) Graph shows chamber temperature in relation to sample 
temperature (10% DMSO). B) freezing progam rates used for Cryomed 1010 system. 

 

Plating on Collagen III coated plates 

Cells were plated onto 6-well cell culture plates (Becton-Dickinson and NUNC) that 

provide a charge to the polystyrene facilitating cell attachment. It is known that 

cryopreservation with DMSO causes a decrease in adhesion molecules and attachment, either 

mechanically or through down regulation of gene expression [182, 183]. Plates were coated 
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with collagen III at 1 ug/cm2 (Sigma-Aldrich, type X) to facilitate stem cell attachment by 

more closely resembling the normal microenvironment of the stem cells [25].  

 

Viability 

Cell viability was determined post-thaw by Trypan blue exclusion assays. Samples 

were thawed by quickly heating vials in a warm water bath at 37°C until the ice is melted. 

Samples were slowly diluted with culture media at room temperature or on ice at 

approximately 1 ml/min. The hepatic cell mix was diluted to <0.5% DMSO when plated. 

After cell counting, the cells were plated in culture media on 6-well plates, containing a 

9.8cm2 attachment area per well, at 500,000cells/plate. 

 

Colony Counting 

Hepatic progenitor colonies began to appear between 1-2 weeks after plating, and the 

tight cells cluster were observed by looking at the plate with the naked eye, but easily were 

identified by inspection at 10X with a light microscope. Any size colony was counted as one, 

whether large ones at >3000 cells or small ones at <200 cells. Each well of 6-wells was 

looked at using 10X magnification for colonies and counted after 2-3 weeks of culture. 

Observations of colony number, size and morphology were noted. 

 

Quantitative Real Time PCR (qRT-PCR).  

Gene-specific primer sequences for quantitative gene expression analysis of 

differentiation markers [17, 33, 189, 190] were designed and validated for PCR doubling 
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efficiency and priming specificity using cDNA templates assembled from Total RNA of 

relevant cell lines (listed in Table 5) positively expressing each gene of interest extracted 

with the RNeasy Mini Plus kit (QIAGEN). Quantitative Real Time PCR (qRT-PCR) 

measurements were performed with an Applied Biosystems® 7500 Real-Time PCR System 

available in the Functional Genomics Core Facility at UNC Chapel Hill. Primers used can be 

found in Table 4. All measurements of relative expression were normalized with respect to 

GAPDH by the absolute quantification method described elsewhere [191, 192]. 

 

Table 4: Primer sequences used for quantitative RT-PCR. 

Gene Description Primer Sequence (5’ → 3’) NCBI Ref. Seq.  

CDH1 E-cadherin 

Forward: TCACAGTCACTGACACCAACGA 

NM_004360.3 Reverse: GGCACCTGACCCTTGTACGT 

Reverse: GCCAGCTTTGAGCAAATGACAGTATTTTG 

CD44 Hyaluronic acid receptor 
Forward: TGCCGCTTTGCAGGTGTAT 

NM_000610.3 
Reverse: GGCCTCCGTCCGAGAGA 

ITGB1 Integrin β1 
Forward: CAAAGGAACAGCAGAGAAGC 

NM_002211.3 
Reverse: ATTGAGTAAGACAGGTCCATAAGG 

ITGB4 Integrin β4 

Forward: CTGTGTGCACGAGGGACATT 

NM_000213.3 Reverse: AAGGCTGACTCGGTGGAGAA 

Reverse: CTCCGGAGGCTTCACAGGTA 

GAPDH Glycerine aldehyde-3-
phosphate dehydrogenase 

Forward: AAGGTGAAGGTCGGAGTCAA 
NM_002046.3 

Reverse: AATGAAGGGGTCATTGATGG 

 

Immunohistochemistry.  

By 24 hrs after plating, cells were fixed for 2 hrs with 4% PFA. Plates were then 

washed with PBS, bordered using a PAP-PEN, and blocked for using PBS + 0.1% Triton + 

10% goat serum. Primary antibodies were applied and allowed to incubate, followed by 

another wash and the application of secondary (Alexa Fluor) antibodies. Once tagged, a 

mounting medium containing DAPI was applied and slides were imaged using confocal 
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fluorescent microscopy. For a list of primary and secondary controls, please see Table 5. 

Positive control cell lines are listed, and samples stained with only secondary antibodies will 

be used as negative controls. 

Table 5: Antibodies and respective positive control cell lines used for immunohistochemistry. 

Marker Description Manufacturer 
(Cat. No.) 

Source 
(Isotype/Emission) 

Stock 
Concentration Titer 

Positive  
(Cell 
Line) 

CDH1 
(human) E-cadherin Abcam® Inc. 

(ab8993) 
mouse anti-human 

(IgG2B) 1 mg/ml 1:100 

Hep3B EPCAM 
(human) 

Epithelial 
cell adhesion 

molecule 

Lab 
Vision/Neomarkers 

(MS-181-P1) 

mouse anti-human 
(IgG1) 

200 µg/ml 1:500 

CD44 
(human) 

Hyaluronan 
receptor 

Abcam® Inc. 
(ab6124) 

mouse anti-human 
(IgG2A) 100 µg/ml 1:100 MDA-

MB-231 

IgG2A 
(mouse) 

Alexa 
Fluor® 647 

Invitrogen™ 
Molecular Probes® 

(A690311) 

goat anti-mouse 
(647 nm) 

2 mg/ml 1:800 N/A IgG2B 
(mouse) 

Alexa 
Fluor® 488 

Invitrogen™ 
Molecular Probes® 

(A21141) 

goat anti-mouse 
(488 nm) 

IgG1 
(mouse) 

Alexa 
Fluor® 568 

Invitrogen™ 
Molecular Probes® 

(A21124) 

goat anti-mouse 
(568 nm) 

 

 

Microscopy 

Cells stained and tagged with secondary antibody fluoroprobes were identified using 

fluorescent microscopy. Negative controls were used to normalize backgrounds and 

eliminate image acquisition noise. Microscopy was performed at the Microscopy Core 

Laboratory, a CORE laboratory of UNC-CH. An Olympus IX 81-ZDC Inverted Fluorescence 

Microscope was used, with Phase Contrast, and fluorescent filters at 350nm, 488nm, 568nm, 

and 647nm. Equipped with a fully motorized stage, computer controlled by Improvision’s 

Velocity software, and a Hammatsu ORCA RC camera and QImaging RETIGA 4000R color 

camera.  
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Statistical analysis 

 Results were presented as mean ± standard error of the mean. Statistical analysis of 

data was performed by a one-way ANOVA. Significant findings were followed with pair-

wise t-tests corrected for multiple comparisons using the step-down Bonferroni method. 

 

Results 

Effect of freezing conditions and hyaluronans on cell viability and colony counts 

Immediately after cell thawing, the viability of thawed cells was assessed. After 

viability was determined, cells were seeded at equal densities on collagen III coated plates, as 

discussed in the methods, and allowed to grow. At 2-3 weeks, stem cell colony formation 

was assessed to determine the ability to attach and form colonies. The viability and cell 

colony formation counts for the various freezing conditions are summarized in Figure 9. 

Although there was a trend seen in viability post-thaw, where cells frozen in CS10 with 

hyaluronan hydrogels showed better viability percentages (KM= 83.2% ± 1.2%, 

CS10+0.05%HA = 86.8% ± 1.6%), there was no statistical difference between the samples. 

Similarly, no statistical significance was seen in the colony counts.  
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Figure 9: A) Cell Viability % of cryopreserved fetal hepatic cells post-thaw. B) Colony counts after 3 
weeks of culture for each condition, normalized to fresh samples. Results are reported as mean ±standard 
error of the mean. KM= Kubotas Medium with 10% DMSO and10% FBS. CS10=cryostor, 
CS10+sup=cryostor10 with KM supplements. 0.05% and 0.10% refer to the HA% supplemented in each 
sample.  

 

Effect of hyaluronans on genetic expression of cell adhesion molecules and 

immunohistochemistry of adhesion proteins. 

A closer look was given to the expression of key cell-cell and cell-matrix adhesion 

factors. A summary of the genetic expression profiles of cell adhesion molecules in 

cryopreserved samples can be seen in Figure 10. The highest expression of Integrinβ1 post-
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thaw was seen in samples frozen in CS10 +0.05% HA (0.130±0.028, n=28). This is 

significantly different when compared to expression seen in fresh samples (0.069±0.007, n= 

24, p<0.01). Integrinβ4 expression between fresh and cryopreserved samples was not seen to 

be significant (p<0.05). CDH-1 (Ecadherin) expression in cells frozen in CS10+0.1%HA 

(0.049±0.006, n=20) and CS10+0.05%HA (0.064±0.003, n=16) showed significant increases 

in expression when compared to fresh samples (0.037±.005, n=36, p<0.05). Expression in 

CD44 between samples were also very similar, with negligible significant differences, 

though a trend of higher expression was seen in samples frozen with HA. 

Immunohistochemistry on cells 24hrs after thaw in CS10 sample conditions showed 

positive co-staining for E-cadherin in Ep-CAM positive hepatic progenitors (hHpSCs and 

hHBs). When cells were frozen with HA, increased CD-44 stained feeder cells were more 

abundant near paranchymal cell colonies when compared to those samples without 

hyaluronans.  
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Figure 10: Relative mRNA expression normalized to GAPDH expression. Mean ±standard error of the 
mean. Significance *p>0.05 to Fresh samples. KM= Kubotas Medium with 10% DMSO and 10% FBS. 
CS10=cryostor, CS10+sup=cryostor10 with KM supplements. 0.05% and 0.10% refer to the HA% 
supplemented in each sample. 
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Figure 11: Cryopreserved hepatic progenitor cells after 24hr attachment on collagen III. CS10=cryostor, 
CS10+sup=Cryostor10 with KM supplements. 0.05% and 0.10% refer to the HA% supplemented in each 
sample. 

 

Discussion 

As previously described, the rate at which samples freeze is a key component in 

cryopreservation success. The freezing rate, in combination with components in the freezing 

media, affects the formation of ice and response to injury. A slow cooling rate leads to 

external ice crystals, causing mechanical lesions on the cell membrane, dehydrating the cells 

as water exits and solute enters. A fast cooling rate leaves small intracellular crystals in the 

cells, but does not dehydrate the cells and prevents larger external ice crystals. As water 

freezes intra- and extra-cellularly, solute and salts in the freezing media diffuse and are 

pumped across the membrane to find an osmotic balance. Cryopreservation depends on cell 

properties, such as membrane diffusivity, membrane permeability, surface area to volume 
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ratio as well as freezing membrane properties, such and internal and external osmolality, 

latent heat of fusion of ice, internal and external vapor pressure, leading different cell types 

to respond to cryopreservation differently and require different freezing methods. The 

cryopreservation of human hepatocytes show greatest success with a progressive freezing, 

with its slow freezing rate, following a 30 minute pre-incubation at 37ºC and could 

potentially be used in cell banking [167]. Work has been done also involving the 

cryopreservation hepatic stellate cells [182], which are an important player in the successful 

culturing of human hepatic stem cells (hHpSC). Here, both cooling rates and cryoprotectants 

were investigated and have a clear effect on the resulting viability and cell survival. It was 

found that DMSO as a cryoprotectant gave superior attachment and viability for mature 

hepatocytes. More extensive studies of freezing mature rat hepatocytes in a controlled rate 

freezer with programmed steps found better control of viability using these controlled 

freezing steps [193]. The freezing program designed for this study took into account these 

freezing steps to minimize the latent heat seen in freezing, resulting in a smooth sample 

freezing rate and better viability.  

The second key component to successful cryopreservation widely studied is the 

freezing media. Many studies standardly use the appropriate culture medium and supplement 

with cryoprotectants [181]. Bovine or calf serum and DMSO are commonly used as 

cryoprotectants, but both can initiate differentiation of early progenitor cells [175]. Serum 

cannot be used for samples intended for clinical applications, due to possible xenozoonosis 

contamination [194]. Univ of Wisc/Viaspan (UW) is designed for hypothermic tissue and 

organ storage, around +4oC, and contains high potassium, low sodium, as well as 

lactobionate, trisaccharide raffinose and mannitol, which together control swelling, osmotic 
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pressure and scavenge for radicals, as well as glutathione, adenosine, and allopurinol to 

facilitate ATP production [168]. CryoStor, similar to UW/ViaSpan, is isotonically buffered 

for low temperatures (with low sodium and higher potassium), as opposed to culture 

temperature at 37oC [195, 196]. In cultures frozen in CryoStor freezing media, improved 

viability survival with less DMSO cryoprotectant than freezing with standard culture media 

was seen [172]. Similarly, hematopoietic stem cells from cord blood had more colony 

formation units after freezing in Cryostor versus freezing with dextran40, both with 10% 

DMSO [170]. Human hepatocytes frozen with in CryoStor when engrafted in 

immunodeficient NOD-SCID mice were able to retain function and reconstitute hepatic and 

biliary lineages [171].. 

Traditional culture mediums mimic interstitial fluid around cells and are designed for 

culturing at 37oC, whereas transport buffers like UW or cryo-specific media like CryoStor 

are designed for lower temperatures. Thus, in this study we looked at freezing with our 

traditional culture medium (KM) supplemented with 10%FBS and10% DMSO, compared to 

cryo-specific CS10. As a third medium condition, we looked at CS10 medium supplemented 

with the factors added to RPMI in our traditional KM medium (CS10+SUP), as explained in 

detail in the methods. As a whole, samples in cryospecific medium fared better than those in 

culture medium. Additionally, CS10 samples did not include FBS, allowing for its 

application in clinical programs.  

As the freezing rate allowed for viability under all sample conditions tested, we 

focused on cell attachment and colony formation of the cells under the different conditions. 

The colony formation was best in cells frozen in KM or CS10 + 0.05% HA. We assume that 
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the surviving cells in KM were able to expand quickly with maintenance of this condition, 

but that more cells survived in CS10 + 0.05% HA. 

Considerable importance has been found for the several adhesion molecules known to 

be expressed by the early progenitors and needed for attachment and colony formation after 

thawing [183]. These adhesion molecules were shown to be important in the 

cryopreservation, while others showed that apoptosis can occur in cells detached from their 

matrix [197]. Therefore, it was of interest that some of the conditions tested proved 

especially effective at preserving these adhesion molecules during freezing. Cells frozen in 

this study were freshly isolated from human fetal liver resulting in cell suspensions 

comprised of ~90% hHBS and ~1-2% hHpSCs. The integrins associated with the hHpSCs 

are α6β4, whereas those associated with hHBs, are α1, α5, α6, α9, and β1 but no β4 [18, 

198]. 

We found that there was indeed a significant increase in the cell-cell adhesion CDH1 

when cultured with HA. Additionally, a co-expression of CD44 was only seen in attached 

colonies from samples frozen with a hyaluronan presence in the freezing medium. The 

integrinβ4 expression was similar in multiple freezing conditions suggesting that the hHpSCs 

are likely preserved. By contrast, there was a significant difference in the expression of 

integrinβ1 among the conditions implicating a greater sensitivity by the hHBs for 

cryopreservation; the best conditions for preserving this population was CS10 + 0.05% HA.  
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Conclusions 

In summary, cryopreservation of freshly isolated human hepatic progenitor cells in 

isotonic media, such as the CS10 cryopreservation medium, proved effective and was further 

enhanced by supplementation with small amounts of HAs (0.05 or 0.10%). The HA 

supplementation improved cell attachment and colony formation due at least in part to 

improved expression of key cell adhesion factors in the stem cells and progenitor cell 

populations. 

Further studies investigating the combination of media supplements known to be 

essential in the culturing of hepatic stem cells, in combination with hyaluronan supplements 

may increase viability and attachment. This study provides successful methods in primary 

hepatic progenitor cell cryopreservation, and should be implemented for more efficient 

banking methods in both research and potential therapy applications.



CHAPTER V 

Maintenance of Human Hepatic Stem Cell Phenotype in Three Dimensional 

Hyaluronan Cultures  

Rachael Turner, Eliane Wauthier, William Turner, and Lola M. Reid 

 

Abstract 

A strategy important to the future of liver regeneration therapies is the culturing in 

three-dimensional (3-D) environment, and the cells and matrix materials found within the 

stem cell niche are ideal combinations for tissue engineering applications. An ideal culturing 

method involves the use of human hepatic stem cells (hHpSCs) with expansion and 

differentiation potential to accommodate the numbers of cells required for these therapies. 

Hyaluronans (HA), naturally occurring glycosaminoglycans with non-immunogenic effects, 

are a logical scaffold for 3D cultures for both grafts and bioartificial organs. In this study, 

hepatic stem cells (hHpCs), were cultured and embedded in hyaluronan matrix combinations. 

Cell aggregates formed within the HA hydrogels, remained viable, and demonstrated a stable 

phenotype for hepatic stem cells after 3 weeks of culturing. The phenotype consisted of 

stable co-expression of EpCAM, NCAM, and albumin, and showed hepatic function through 

albumin and transferrin production and urea synthesis. Hyaluronans, combined with collagen 

III and laminin, maintain hepatic function and stem cell characteristics, proving to be a 

suitable three-dimensional scaffoldings for hHpSCs. 
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Introduction 

Living tissue undergoes constant remodeling, and dissociated cells tend to reform 

their native structures under appropriate environmental conditions. Normal epithelial cells 

within solid tissues are anchorage dependent and require an extracellular matrix under three 

dimensional (3-D) structure conditions to guide normal physiological processes and 

regeneration [140]. In vitro, normal epithelial cells do not survive for long and do not 

function properly unless co-cultured with the appropriate mesenchymal cell partners [194, 

195]. To escape the need for co-cultures, one must utilize the paracrine signals from that 

epithelial-mesenchymal relationship; the signals are comprised of specific extracellular 

matrix components and soluble signals. If the signals are not defined, then one can use 

“conditioned medium” produced by interactions between the particular epithelial and 

mesenchymal cells to yield a partial effect. [184, 196, 197].  

Extracellular matrix is known to regulate the cell’s morphology, growth and cellular 

gene expression. Achieving similar tissue-specific chemistries may be achieved ex vivo by 

using purified extracellular matrix components. Many of these are available commercially, 

and when used under conditions in which cell-shape changes and porosity are enabled, are 

conducive to cell behavior mimicking that in vivo [34]. 

More specifically, hepatic development is induced in a step-wise, lineage-dependent 

process involving coordinate maturation of the epithelial and mesenchymal cells. The 

maturational process is accompanied by lineage-dependent paracrine signals [27]. Thus, there 

is now recognition that the epithelial-mesenchymal relationship is lineage dependent. In the 

case of liver, hepatic stem cells (HpSCs), the first lineage stage within the liver acini, are 

partnered with angioblasts [17]. These give rise stepwise to descendents of the two, with the 
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fates of the cells defined by the paracrine signaling that changes throughout differentiation of 

the partners. The HpSCs mature into hepatoblasts (HBs) partnered with hepatic stellate cell 

and endothelial cell precursors and then either into hepatocytes partnered with endothelia or 

into biliary epithelia partnered with stellate cells and then stroma. By defining the paracrine 

signaling between the partners at each stage, one can define conditions that will sustain the 

cells at that lineage stage and yield cells that behave functionally at an appropriate stage. 

Human hepatic stem cells (hHpSCs) are multipotent cells located within the ductal 

plates of fetal and neonatal livers, or the canals of Hering in pediatric and adult livers. These 

cells range from 7-9 μm in diameter, have high nucleus to cytoplasmic ratio, and are 

extremely tolerant of ischemia as indicated by the fact that they can be found in livers of 

cadavers up to 167 hours (~7 days) after systolic death [22]. They form colonies with a 

morphology similar to that of embryonic stem (ES) cells in that they form tight clusters of 

cells, each one enveloped by angioblasts, and with hepatic stellate cell precursors located 

adjacent to the perimeter of the colony. The cells are capable of differentiation to mature 

hepatocytic and biliary epithelial cells both in culture and in vivo [17, 198]. They constitute 

~0.5-2% of the parenchyma of livers of all age donors. The hHpSCs are SOX 17+, HES1+, 

cytokeratins 8/18/19+, CD133/1++ (prominin), Indian and Sonic Hedgehog+++, E-

cadherin++, claudin 3+, N-CAM+++, albumin +/- and express telomerase mRNA as well as 

have telomerase protein in the nuclei [12, 17, 18, 27, 38]. These cells show low or no type I 

MHC antigens, are completely negative for all forms of P450s, ICAM-1, α-fetoprotein (AFP) 

for mesenchymal cell markers (CD146, desmin, α-smooth muscle actin), endothelial cell 

markers (VEGFr, Von Willebrand Factor, CD31), and hemopoietic cell markers (CD14, 

CD34, CD38, CD45, CD90, and glycophorin A). 
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The hepatoblasts (hHBs) are the immediate descendents of the hHpSCs, are the 

liver’s transit amplifying cells, and located adjacent to the niche. They are larger (10-12 μm) 

with higher amounts of cytoplasm, are found in vivo throughout the parenchyma in fetal and 

neonatal livers, and are tethered to the ends of the canals of Hering in pediatric and adult 

livers [196, 199]. With age, these cells decline in numbers to <0.01% of the parenchymal 

cells in postnatal livers but are also shown to expand during regenerative processes. The 

hHBs have an antigenic profile overlapping with but also distinct from that of the hHpSCs. 

They are CK8/18/19++, Ecadherin++, CD133+, have sonic and Indian Hedgehog expression, 

have telomerase mRNA and protein within the nucleus (and higher telomerase activity levels 

than hHpSCs), and are negative for claudin 3, NCAM, and all the mesenchymal, endothelial 

and hemopoietic cell markers. They differ from hHpSCs by having higher expression of 

albumin++ and de novo synthesis of MHC antigens, α-fetoprotein++ (AFP), and fetal forms 

of P450s (e.g. P450A7). 

The matrix chemistry associated with the parenchymal cells within the sinusoids is 

present in the Space of Disse, the area located between the parenchyma and the endothelia or 

hepatic stellate cells and their descendents, myofibroblasts. In addition to a change in cell 

maturity within the different zones of the liver, a parallel change in matrix chemistries is also 

observed. The matrix chemistry periportally in zone 1 is similar to that found in fetal livers 

and consists of type III and type IV collagens, hyaluronans, laminin, and forms of 

chondroitin sulfate proteoglycans with low sulfation. It transitions to a different matrix 

chemistry in the pericentral zone 3, containing types I, III, IV and XVIII collagens, plasma 

fibronectin, and unique forms of heparin proteoglycans [200-203]. 
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More specifically, the matrix chemistry in the liver’s stem cell niches, the canals of 

Hering, has been characterized partially and found to comprise hyaluronans, laminin forms 

that bind to α6 β4 integrin (presumably laminin 5), type III collagen and unique forms of 

minimally sulfated chondroitin sulfate proteoglycans (CS-PGs). In the region adjacent to the 

niche and occupied by hHBs, one finds type IV collagen, forms of laminin binding to αβ1 

integrins, sulfated forms of CS-PGs and low levels of heparan sulfate proteoglycans (HS-

PGs). Type I collagen and more sulfated forms of proteoglycans occur with the appearance 

of the committed progenitors and later lineage stages of parenchymal cells.  

The microenvironment of the stem cell niche minimizes the availability of matrix-

bound growth factors and cytokines. As cells emerge from the niche, the adjacent matrix 

chemistry associated with the hHBs, the liver’s transit amplifying cells, allows for the 

continuous presence of growth factors stabilized by binding to the proteoglycans. It is 

assumed that the proteoglycan/growth factor complexes are critical in dictating lineage 

restriction of the cells toward adult fates and in promoting the differentiation of cells.  

Attention is focused on hyaluronan acid, or hyaluronans (HA), a key component in 

the extracellular matrix chemistry within the liver stem cell niche, found in extracellular 

matrix, on the cell surface and inside the cell [204]. HA is part of the glycosaminoglycan 

(GAG) family, and is composed of a disaccharide unit linked with a Beta 1-4, Beta 1-3 bonds 

between glucosamine and glucuronic acid structures. HAs are present in greater quantities at 

times of cellular expansion/proliferation such as embryogenesis, wound repair, and organ 

regeneration [205-210]. As a scaffolding component, HA has been linked to neural crest cell 

migration, cardiac development and prostate duct formation. Rapidly dividing epithelial cells 

show an increased binding activity to HA, and it is possible that transformation from 
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epithelial to mesenchymal morphologies take place via interactions mediated by HA binding. 

HA is most abundant in soft connective tissue, but is present in all tissues and body fluids 

[211, 212]. It has a natural water carrying capacity. It is anionic and bears a negative charge, 

attracting the positively charged hydrogen of water molecules. It is also thought to be 

conducive to migration [213]. The bifunctionality of the HA within the body suggests that 

removal and synthesis can be equally important in both morphogenesis and tissue 

homeostasis. The highest levels of HA are found within mesenchymal tissues, despite the 

fact that most cells are capable of synthesizing HA. Some have shown that HA is prominent 

in early liver injury models. Hepatic stellate cells produce HA in primary cultures and in liver 

injury. Their production of HA increases in parallel with expression of CD44. In addition, 

there is evidence of inhibitory effects of HA including the inhibition of cellular 

differentiation, and levels of HA in the blood have been correlated to hepatic regeneration 

[214]. 

In order to determine the mechanism by which HA influences tissue growth within 

the extracellular matrix, it becomes important to study the method of attachment of cells. 

Two forms of hyaluronan receptors have been found; CD44 found on the hepatic hHpSCs 

and LYVE-1 found on the angioblasts [215-217]. In addition, many integrins have been 

found in the ductal plate and associated with the hepatic hHpSCs, including α2, α3, α6, 

and β4, but no α1 or β1. Integrins associated with hHBs are α1, α5, α6, α9, and β1 but no 

β4. With the maturation towards hepatocytes there is a disappearance of integrin receptors 

that bind to laminin. In maturation towards biliary, there is an association with a 

maintenance of laminin-binding integrin receptors [218]. HA binds proteins in the ECM, 

on the cell surface and in the cytosol. Two cell-surface hyaluronan receptors, CD44 and 
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RHAMM, have a direct role for hyaluronans in regulating cell motility, invasion and 

proliferation. Most importantly, CD44, a cell surface protein, mediates cellular attachment 

of the liver cell progenitors to HA components of the ECM. 

Currently, HAs are already being used clinically and are readily available and FDA 

approved. Hyaluronic acid is conserved across all species and is biocompatible, eliciting no 

inflammatory, immunologic or toxic response [219] . Immuno-neutrality and high water 

saturation combined with its ability to be easily modified, make it a great building block for 

biomaterials and use in tissue engineering therapies.  

Essential in developing alternative therapies is understanding and utilizing the 

relationships between the epithelium and mesenchyme, as well as the signaling molecules 

and cellular matrix by making use of subpopulations of human liver cells with extraordinary 

expansion potential: human hepatic hHpSCs and their immediate descendents, hHBs, and 

committed progenitors. Extensive research has been done also on identifying the matrix 

materials found within the stem cell niche. The combination of the cells and matrix materials 

found within the stem cell niche makes them ideal for tissue engineering applications. In this 

study, we show that human hepatic hHpSCs can be cultured and expanded in hyaluronan 

hydrogels, with the combination of appropriate matrix components and companion cells 

found in the liver stem cell niche. By culturing the HpSCs embedded in matrix materials 

native to the stem cell niches, cells are exposed to sufficient signals needed for expansion and 

differentiation of liver tissue, forming tissue-like materials that may be further used in tissue 

engineering therapies. Results show that hHpSCs cultured in hyaluronan hydrogels combined 

with collagen III and laminin maintain hepatic function and further express stem cell 

characteristics. 
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Materials and Methods 

Liver Sourcing and Processing.  

Fetal liver tissues were provided by an accredited agency (Advanced Biological 

Resources, San Francisco, CA) from fetuses between 16-20 weeks gestational age obtained 

by elective pregnancy terminations. The research protocol was reviewed and approved by the 

Institutional Review Board for Human Research Studies at the University of North Carolina 

at Chapel Hill. Suspensions of fetal human liver cells were prepared as described previously 

[18, 225]. All processing and cell enrichment procedures were conducted in a cell wash 

buffer composed of a basal medium (RPMI 1640) supplemented with 0.1% BSA (BSA 

Fraction V; Sigma-Aldrich), insulin and iron-saturated transferrin (both at 5 ug/ml; Sigma-

Aldrich), trace elements (300 pM selenious acid and 50 pM ZnSO4), and antibiotics (AAS; 

Invitrogen). Liver tissue was subdivided into 3-ml fragments (total volume ranged from 2 – 

12 ml) for digestion in 25 ml of cell wash buffer containing type IV collagenase and 

deoxyribonuclease (both at 6 mg per ml; Sigma- Aldrich) at 32°C with frequent agitation for 

15 – 20 min. This resulted in a homogeneous suspension of cell aggregates that were passed 

through a 40-gauge mesh and spun at 1,200 RPM for 5 min before resuspension in cell wash 

solution. Erythrocytes were eliminated by either slow-speed centrifugation or by treating 

suspensions with anti-human red blood cell antibodies (1:5,000 dilution; Rockland) for 15 

min, followed by LowTox Guinea Pig complement (1:3,000 dilution; Cedarlane Labs) for 10 

min, both at  37°C. Estimated cell viability by Trypan blue exclusion was routinely >95% 

[33, 189, 226]. 
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Hepatic Stem Cell Culture Conditions.  

For all cultures, Kubota’s medium, specially designed for the expansion of hepatic 

progenitors, was used. KM was developed originally for rodent hepatoblasts [227] and 

subsequently found effective for hHpSCs and hHBs [25, 37, 189, 226]. KM consists of any 

basal medium, here being RPMI 1640 (Gibco /Invitrogen, Carlsbad, CA) with no copper, low 

calcium below 0.5 mM (here being 0.3 mM), trace elements (zinc--10-12M and selenium—

10-9M), insulin (5 μg/ml), transferrin/fe (5 μg/ml), high density lipoprotein (10 μg/ml) and a 

mixture of free fatty acids bound to bovine serum albumin. Detailed methods for its 

preparation are given in a methods review [33]. 

The suspensions of fetal human liver cell mix, highly enriched for hepatoblasts, were 

suspended into Kubota’s Medium, and the cell mix was plated at ~300,000 cells per 100mm2 

round culture dish (78.5cm2 surface area). The low cell concentration allows plenty of empty 

room around stem cells for colony growth, and reduces/slows down the chance for non-

parenchymal cells from forming fast growing confluent groups that can take over the 

cultures. The low cell concentration also prevents mature hepatocytes from forming 

confluent groups and having the necessary signals to remain in culture. This is complemented 

by the media conditions that are non-permissive for mature hepatocytes. Cells are plated with 

10% fetal bovine serum (FBS) for 20-24 hrs to facilitate attachment. Afterwards cell media is 

changed every 4-6 days with serum-free HK media. 

Typical plates have single cells and small clusters of cell that adhere after the initial 

24hrs. Colonies begin to appear after 1-2 weeks. Non-parenchymal cells, found to be a mix 

of hepatic stellate cell and endothelial cell precursors, also continue to grow on the plate, 
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sometimes around the borders of colonies as they grow forming a smooth supporting edge, or 

sometime forming large confluent tight areas that colonies grow on top of. 

 

HA matrix Preparation.  

All hyaluronan materials are commercially available from Glycosan Biosciences (Salt 

Lake City, Utah --now Biotime, Alameda, CA), and consist of thiol-modified carboxymethyl 

HA (or CMHA-S), a chemically modified HA derivative with disulfide bridges for cross-

linking. The cross-linking is initiated by a PEGDA crosslinker, enabling the hydrogels to be 

formed in the desired container [219, 223-226]. The level of crosslinking activity and 

stiffness of the hydrogel can be regulated by the amount of PEGDA added. The hydrogel 

substrata were constructed by dissolving dry reagents in KM to give a 2.0% solution 

(weight/volume) for the HA gels and the PEGDA crosslinker is dissolved in KM to give a 

4.0% weight/volume solution. Samples were then allowed to incubate in a 37o C water bath 

and allowed to completely dissolve. Collagen III and laminin samples are available from 

Sigma (St. Louis, MO) and were used at a concentration of 1.0mg/ml. A ratio of 1:4 is 

applied to blend the crosslinker and hydrogels. At the end of the experiment, hydrogels were 

dissolved easily using dithiothreitol reducing agents with hyaluronidase without damaging 

the cellular component. 

 

Cell matrix culture conditions.  

Cells were isolated from cultured human fetal liver samples as described in the 

general methods. After three weeks in culture, stem cell colonies, approximating 3-5,000 
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cells/colony, were picked and put into suspension. Cell suspensions of 200,000 cells were 

then combined with matrix mix. PEGDA crosslinker added, and the cell matrix material 

immediately added to wells in a 4 well chamber slide. Once the gel sets, an equal amount of 

media, spiked with 0.03mM NH4, was added to the top of the well. Cultures were then 

maintained for a period of 21 days, with media changes every 48hrs. The culture media was 

saved for analyses. Multiple runs were performed with different liver samples to ensure 

consistency. 

 

Viability Assay 

Viability was assessed in cultures using Molecular Probes Calcein AM live cell 

viability kit (Molecular Probes, Eugene Oregon). Membrane-permeant calcein AM was 

cleaved by esterases in live cells to yield cytoplasmic green fluorescence.  

 

Histology and Sectioning  

Samples of hHpSC-seeded HA hydrogels were fixed overnight with 4% buffered 

paraformaldehyde. Fixed samples were embedded in HistoGel™ specimen medium, with the 

resulting construct transferred into a cryomold and embedded in Tissue-Tek OCT compound 

(Sakura Finetechnical, Tokyo, Japan) for flash freezing. Samples were submitted to the 

Histology Research Core Facility at UNC Chapel Hill for serial cryosectioning at 15 µm 

section thickness. Thinner sections were not feasible due to the nature of the hydrogel 

handling properties. Frozen sections were stored at -80°C until staining, at which time they 
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were stabilized to room temperature before PBS washing at the beginning of 

immunochemistry protocols. 

 

Immunohistochemistry 

Sections were first washed with PBS, bordered using a PAP-PEN, and blocked for 

using PBS + 0.1% Triton + 10% goat serum. Primary antibodies were applied and allowed to 

incubate, followed by another wash and the application of secondary (Alexa Fluor) 

antibodies. Once tagged, a mounting media containing DAPI was applied and slides are 

imaged using confocal fluorescent microscopy. For a list of primary and secondary controls, 

please see Table 6. Positive control cell lines are also listed in Table 6, and samples stained 

with only secondary antibodies were used as negative controls. 

Table 6: Antibodies and respective positive control cell lines used for immunohistochemistry. 

Marker Description Manufacturer 
(Cat. No.) 

Source 
(Isotype/Emission) 

Stock 
Concentration Titer 

Positive  
(Cell 
Line) 

EPCAM 
(human) 

Epithelial 
cell 

adhesion 
molecule 

Lab 
Vision/Neomark

ers 
(MS-181-P1) 

mouse anti-human 
(IgG1) 

200 µg/ml 1:500 Hep3B 

NCAM 
(human) 

Neural 
cell 

adhesion 
molecule 

BD 
Pharmingen™ 

(559043) 

mouse anti-human 
(IgG2B) 1 mg/ml 1:500 SK-N-

SH 

IgG2B 
(mouse) 

Alexa 
Fluor® 488 

Invitrogen™ 
Molecular Probes® 

(A21141) 

goat anti-mouse (488 
nm) 

2 mg/ml 1:800 N/A IgG1 
(mouse) 

Alexa 
Fluor® 568 

Invitrogen™ 
Molecular Probes® 

(A21124) 

goat anti-mouse (568 
nm) 

 

Confocal Microscopy 

Histological sections of hHpSC-seeded HA hydrogels stained and tagged with 

secondary antibody fluoroprobes were identified using laser confocal microscopy. Negative 



87 

controls were used to normalize backgrounds and eliminate image acquisition noise. 

Microscopy was performed at the Michael Hooker Microscopy Facility and UNC-CH. 

Equipment consisted of a Leica SP2 Laser Scanning Confocal Microscope equipped with a 

Hg/Xe arc lamp for epi-illumination, excitation lasers at wavelengths of 350/364 nm (UV), 

488/476/488/514nm (Blue Ar laser), 561 nm (Green Solid State diode pump laser) and 633 

nm (Red HeNe laser, visible red), acousto-optical beam splitters (AOBS) and tunable filters 

(AOTF), photo-multipliers tube (PMT) light detectors with spectral discrimination and a 

high-precision galvanometer z-axis positioning stage. LCS Software was used for image 

acquisition and processing.  

 

Analysis of secreted protein production 

Concentration levels of secreted albumin, transferrin, and urea in culture media were 

measured to determine hepatic functions of hHpSC in the different hydrogel formulations 

during 1 week of culture. Media supernatant was collected daily after 48-hour incubation 

starting on day 2 post-seeding and stored frozen at -20°C until analyzed. Albumin production 

was measured by ELISA using human albumin ELISA quantitation sets with respect to 

human reference serum standards from the quantitation set manufacturer (Bethyl 

Laboratories, Montgomery, TX) in terms of horseradish peroxidase (HRP) -conjugated 

fluoroprobe levels (detection antibody against albumin) by colorimetric absorbance at 450 

nm. Urea production was analyzed using blood urea nitrogen colorimetric reagents with 

respect to reference standards from the reagent manufacturer (Bio-Quant Diagnostics, San 

Diego, CA) by colorimetric absorbance at 630 nm. All assays were measured individually 



88 

with a cytofluor Spectramax 250 multi-well plate reader (Molecular Devices, Sunnyvale, 

CA). 

 

Quantitative Real Time PCR (qRT-PCR).  

Gene-specific primer sequences for quantitative gene expression analysis of 

differentiation markers [17, 33, 189, 190] were designed and validated for PCR doubling 

efficiency and priming specificity using cDNA templates assembled from Total RNA of 

relevant cell lines (listed in Table 6) positively expressing each gene of interest and extracted 

with the RNeasy Mini Plus kit (QIAGEN). Quantitative Real Time PCR (qRT-PCR) 

measurements were performed with an Applied Biosystems® 7500 Real-Time PCR System 

available in the Functional Genomics Core Facility at UNC Chapel Hill. Primers used can be 

found in Table 7 All measurements of relative expression were normalized with respect to 

GAPDH by the absolute quantification method described elsewhere [191, 192]. 

Table 7: Primer sequences used for quantitative RT-PCR. 

Gene Description NCBI Ref. 
Seq. 

Primer Sequence (5’ → 3’) 

Forward Reverse 

GAPD
H 

Glycerine aldehyde-
3-phosphate 
dehydrogenase 

NM_002046.3 AAGGTGAAGGTCGGAGTCA
A AATGAAGGGGTCATTGATGG 

AFP α-fetoprotein NM_001134.1 CCATGAAGTGGGTGGAATCA
A TCTGCAGTACATTGGTAAGAATCCA 

EPCA
M 

Epithelial cell 
adhesion molecule NM_002354.1 GACTTTTGCCGCAGCTCAGG

AAG 
GCCAGCTTTGAGCAAATGACAGTATTT
TG 

NCAM Neural cell 
adhesion molecule NM_000615.5 GCGACCATCCACCTCAAAGT CTCCGGAGGCTTCACAGGTA 

 

Results 
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Human hepatic stem cells remain viable and maintain phenotype for weeks in HA 

hydrogels.  

hHpSCs were sustained in HA hydrogel conditions for 3 weeks in static cultures with 

KM, replaced and collected every 48hrs. Figure 12 shows cells within HA gels at 3 weeks. 

The cells are viable as indicated by staining with Calcein AM (green). 

 
Figure 12: hHpSCs in HA hydrogels at 21 days in culture. Green Calcein AM fluorescence shows viable 
cells. 

 

After 3 weeks of culture, cells were analyzed for genetic expression. Levels of 

mRNA expression (Figure 13) were normalized to GAPDH. All measurements are expressed 

as fold changes compared to initial hepatic stem cell colonies prior to three-dimensional 

culture in hyaluronan hydrogels. In both experimental hyaluronan culture conditions (HA and 

HA+collagen III+laminin), there is a significant increase in EpCAM (7.72±1.42, 9.04±1.82) 

and Albumin (5.57±0.73, 4.84±0.84) when compared to initial colony expression. There was 

also a significant decrease in the hepatoblast differentiating marker AFP in both conditions 

(0.55±0.11, 0.17±0.03). In addition, the HA+CIII+Lam condition showed a significant 

decrease in AFP expression when compared to the basic HA culture.  
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In addition to genetic expression analysis, 3D cultures were fixed and prepared for 

immunohistochemical staining, and confocal microscopy imaging was used to determine 

how specific differentiation markers were distributed within the cultures. For both 

hyaluronan cultures, there was colocalization of EpCAM and NCAM (Figure 14). In 

hydrogel cultures supplemented with additional CIII and Laminin, the EpCAM signal was 

shown to be stronger than those with hyaluronans alone. This is consistent with the previous 

findings regarding mRNA expression levels in these 3-D culture conditions. 

 

 

Figure 13: Gene expression of hepatic stem cell phenotype markers. Expression levels are normalized to 
GAPDH expression, and fold changes are normalized to initial expression in colonies. * denotes p<0.05% 
significance between experimental condition and initial colony expression. ** denotes p<0.05% significance 
between experimental condition and initial colony expression as well as significant expression between the two 
experimental conditions. 
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Figure 14: expression of EpCAM and NCAM in three-dimensional HA colony sections. 

 

Functional Assays of Hepatic Metabolism for hHpSCs seeded in hydrogels.  

Immunosorbent assays were conducted on media samples collected during culture to 

determine absolute concentrations of secretory proteins that define hepatic function (Figure 

15). Albumin, Transferrin, and Urea concentrations were normalized per cell. Throughout 

cultures, hHpSCs in both hydrogel compositions secreted albumin and transferrin at 

increasing concentrations, while urea synthesis equilibrated to comparable levels in all 

hydrogel conditions. 
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Figure 15: functional assays of hepatic function over time. A) albumin, B) Transferrin, and C) Urea in three-
dimensional hyaluronan culture over time for levels are normalized per cell. 
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Discussion 

Human hepatoblasts (hHBs) seeded into the HA hydrogels were found to retain their 

viability and their ability to divide for weeks, more than 3 times longer than those on plastic. 

Although other culture conditions are permissive for survival of the hHpSCs (e.g. culture 

plastic, angioblast feeders, type III collagen, uncrosslinked HAs), hyaluronans have been the 

only culture condition identified that facilitate survival, proliferation and maintenance of 

hHBs. The hHBss do survive on STO embryonic stromal feeder cells but go essentially into 

growth arrest and undergo differentiation towards more mature fates [232]. 

EpCAM is a common marker of hHpSCs and hHBs at both gene and protein 

expression levels. It is characteristically found throughout the hHpSCs but restricted to the 

plasma membrane in hHBs [33, 189, 226]. This data shows increased overall expression of 

EpCAM beyond established levels for hHpSC colonies on plastic plates. This may be 

attributed both to the matrix chemistry as well as the 3D structure condition.  

In culture, AFP is not expressed in hHpSCs at all, but is characteristic of hHBs and 

gradually fades with maturation to committed progenitors and later lineage stages [17, 184, 

185, 228]. The significant decrease in AFP expression in both hyaluronan conditions can be 

interpreted either that the cells remain as hHpSCs or that they mature to later lineage stages 

at which AFP is not expressed. The maintenance of NCAM, a marker of stem cells, but not 

mature cells, implicates that the former interpretation is correct. This suggests that the matrix 

chemistry has an influence in maintaining the hHpSC phenotype, as cultures supplemented 

with collagen III and laminin in addition to the 3D hyaluronan structure saw decreased AFP 

expression. The albumin expression seen in both hyaluronan conditions reflect an increased 

function of hHpSCs in a 3-D environment. 
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The rigidity of HyStem hydrogels can easily be adjusted, and depending on the 

application, the stiffness can have an impact on the phenotype, growth and differentiation of 

the stem cells or progenitors in cultures [75, 234, 235]. For these studies, the standard 

recommended formulation of HyStem hydrogels was used and kept constant throughout the 

study. Previously reported in Lozoya et al [235], the hepatic progenitor phenotype is 

conserved at a rigidity below 200Pa. The hyaluronan composition used in this study was 

recorded to be 25Pa, well below levels for induced mechanical differentiation.  

These hyaluronans are also biocompatible and biodegradable [224, 236]. This was 

observed in the cultures. After approximately 1 week in culture, it was apparent that cells 

began breaking down the hyaluronans, and some material was lost in the media changes, 

including a loss of cells. This is apparent in the serum protein analyses, where a decrease in 

albumin and is shown after a week; as the total number of cells is decreased due to the loss of 

material during media change, so does the level of produced albumin. This biodegradation is 

extremely beneficial in future in vivo investigations in which hydrogels will provide an 

important initial structure and microenvironment for transplanted cells, but it is also expected 

that cells will eventually replace the scaffolding used for the transplantation with matrix 

components appropriate for integration into the host tissue to promote regeneration.  

In response to the limitations observed with traditional liver transplants for liver 

failure, efforts by numerous investigators are ongoing to develop alternative liver cell-based 

therapies [237]. Co-culturing and injecting with a cell suspension allows for solidification in 

situ that can fill any cavity space. The use of hyaluronic acid as a material for injectable 

material for tissue engineering proves to be promising due to its long-lasting effect while 

maintaining biocompatibility [238, 239]. Cross-linking methods also maintain the material 
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biocompatibility, and its presence in extensive areas of regenerative or immature tissue areas 

make it a very attractive injectable material. 

Hyaluronan hydrogels, in combination with a serum-free medium tailored for hepatic 

progenitors (KM medium), have proven suitable three-dimensional scaffoldings for human 

hepatic progenitors, particularly for hHpSCs if uncrosslinked, and for hepatoblasts, with 

cross-linking to specific rigidity conditions that are permissive. They maintain the cells as 

hHBs in terms of viability and phenotypic stability through prolonged culture periods, and 

with minimal lineage restriction towards either biliary or hepatocytic fates. 



 

CHAPTER VI 

Location determination of transplanted hepatic progenitors using Positron Emission 

Tomography (PET) and Luminescent Imaging 

Rachael A Turner, Randall McClelland, Jim Bowsher, Elaine Wauthier, Lisa Samuleson, 

David Gerber, Edward Shu, and Lola M Reid 

 

Abstract 

Limitations with current cell transplant methods have indicated a need for more 

efficient grafting methods in the newly developed methods for regenerative medicine. In this 

study, we use two methods, radiolabeled positron emission tomography (PET) imaging and 

bioluminescent optical imaging, to look at cell localization post-transplant in murine models. 

Results show that better engraftment and localization is seen when cells are grafted to the 

target tissue using an injectible biomaterial in liver cell therapies.  
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Background 

Acute liver failure caused by metabolic errors, viral hepatitis, and drug-induced and 

toxin-induced liver diseases are often lethal to patients if not treated quickly. Currently, the 

only available treatment for these patients is orthotopic liver transplantation. However, these 

transplants are expensive and extremely invasive. Together with the increasing number of 

impending transplants and the limited availability of donor livers, a need for alternative 

therapeutic strategies is presented.  

Current research focus has been on the use of cell transplantation as an alternative 

therapy, or as a bridge towards transplantation. Cells are isolated from donor tissue not 

usable for whole organ transplants. The goal of regenerative medicine is to restore tissue 

function by transplanting exogenous cells. One of the hurdles in using the cells is 

establishing methods for transplanting the stem cells or progenitors back into the hosts. 

Results from these clinical trials have been encouraging, but the promise is compromised by 

the lack of growth observed of transplanted mature cells, their high immunogenicity 

(necessitating immuno-suppression), and the need to use freshly isolated cells [235]. Typical 

injections are by way of portal vein cannulation or into ectopic sites like the red pulp of the 

spleen. The cells distribute to many tissues, not just the target tissue, and often lead to emboli 

that translocate into secondary vascular beds such as those in the lungs [236-239]. 

The development of grafting technologies, where transplanted cells are delivered as 

an aggregate on or in scaffolds that can be localized to the diseased tissue, should be 

promising technologies that promote necessary proliferation and engraftment. The cells to be 

transplanted need to be delivered as an aggregate or on or in scaffolds that can be patched 

onto/into the tissue.  
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Availability of stem cell populations from solid human organs, such as liver, for use 

in clinical programs in cell therapies has made necessary the development of non-invasive 

cell labeling and tracking methods to monitor medical treatments. These therapies require 

stem cells to expand in order to replace diseased tissues in support of failing organs. The 

goals of the current study are to identify effective conditions for optimal hepatic stem cell 

expansion and localization, and to develop marking methods of the stem cells for detection 

and monitoring after in vivo transplantation. We have investigated both PET and optical 

luminescence imaging to localize cells during cell transplantation and cell grafting. Both 

techniques include the infection of donor cells with a virus expressing a specific imaging tag 

prior to transplantation.  

 

Results and Discussion 

 PET studies were done by first developing a lentiviral vector expressing thymidine 

kinase, with a CB promoter. For transplantation in vivo, cells (1.5x106 labeled cells) were 

injected into the liver via the speen. To provide an imaging signal, a radiolabeled probe 

[(18)fluoro-3-hydroxymethylbutyl) guanine ([(18)F]FHBG) was exploited to provide 

evidence of cells marked with Thymidine Kinase (TK). As FBHG enters the cell, it is 

cleaved by TK and trapped inside the cytoplasm – inducing PET signals of accumulated 

FHBG. The probe is injected into animals 3 hours prior to imaging, allowing for excess 

FBHG not cleaved by TK producing cells to circulate the body and collect in the kidneys and 

bladder. Results, seen in Figure 16, show that after 22 and 85 days, cell signal is not only 

present in the liver, but also present in the lung, spleen, and kidney tissue. Thus, the cells 

engrafted partially into the liver but dispersed also to multiple ectopic sites, and those cells at 
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ectopic sites did not die, as reported (or assumed) by many to occur, but survived for months 

within those ectopic tissues. 

 

Figure 16: PET imaging of FHBG concentration activity in murine hosts injected via vascular route with 
human hepatic stem cells infected with TK. Positive signal is seen in liver, spleen, lungs, and kidney at 22 
and 85 days post-injection. 

 

An alternative imaging method was also employed using a bioluminescent marker. To 

test efficiency of cell localization using grafting strategies, cells were first infected with a 

bioluminescent marker. After cell isolation, hepatic progenitor cells were infected for 4 hrs at 

37ºC with a luciferase-expressing adenoviral vector at 50POI (Vector Biolabs, Philadelphia, 

PA). Mouse hepatic progenitor cells were isolated from a host C57/BL6 mouse. Mice were 

anesthetized and survival surgery was performed, opening the abdomen and slowly injecting 

1.5x106 cells directly into the liver lobe, via cell suspension or grafted using Hystem 

Hyaluronans (Glycosan) crosslinked with Poly (Ethylene Glycol)-Diacrylate (PEG-DA). 

Grafting materials selected for the graft should elicit the appropriate growth and 
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differentiation responses required for successful cell transplantation [245]. For imaging, mice 

were injected subcutaneously with luciferin, 10-30 minutes prior. Luciferin was oxidized in 

the presence of the cells infected with luciferase, producing oxyluciferin and energy in the 

form of light. Using an IVIS Kinetic optical imager, the bioluminescent signal was detected 

with the CCD camera and localized within the mice.  

In animals where cells were injected without grafting, cells were found both in the 

liver and lung at 24 hrs. At 72hrs, cell signal greatly decreased, leaving only a weak signal in 

the liver. However, when cells were grafted using hyaluronans, cells were localized to the 

liver, and remained viable and continued to produce a luminescent signal even after 2 weeks 

(Figure 17). 
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Figure 17: Transplantation of cells in murine livers . Injected cell suspension at a) 24 hrs and b) 72 hrs. c) 
control- no cells. Injectable cell graft at d) 24 hrs, e) 72 hrs, and f) 2 weeks post-transplantation. 

 

Both methods used for imaging have their advantages in detecting and localizing cells 

in transplantation studies. PET imaging methods, using a radiolabeled probe, allows for 

extremely specific and detailed imaging of cells. Bioluminescent imaging does not allow for 

the same detail seen in PET imaging, but does allow for serial imaging in vivo.  

As shown in both PET and Bioluminescent imaging studies, it was shown that cells 

injected without grafting methods were not localized only to the target liver tissue but were 
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present throughout the body. Moreover, the cells in ectopic sites survived for months. Not 

only does this lead to inefficient therapies, it raises the concern of what the cells at the 

ectopic sites might do and whether they might lead to pathologic conditions. Grafting with 

appropriate materials can optimize engraftment of transplanted cells in a tissue, prevent 

dispersal of the cells to ectopic sites, enhance the ability of the cells to integrate within the 

tissue as rapidly as possible, and should be applied to future tissue engineering and 

transplantation therapies.  

 

Methods 

Media and Solutions.  

Kubota’s Medium was designed originally for rodent hepatoblasts [246] and then found 

effective for human hepatic stem cells (hHpSCs) and human hepatoblasts (hHBs) [18] , for 

human biliary tree stem cells (Wang et al, submitted), and for human fetal pancreatic 

progenitors (Y.F. Wang and L.M. Reid, manuscript in preparation). It consists of any basal 

medium (here being RPMI 1640) with no copper, low calcium (0.3 mM), 10-9 M Selenium, 

0.1% serum albumin, 4.5 mM nicotinamide, 0.1 nM zinc sulfate heptahydrate (from 

Specpure, Johnson Matthew Chemicals, Royston, England), 10-8 M hydrocortisone, 5 µg/ml 

transferrin/Fe, 5 µg/ml insulin, 10 µg/ml high density lipoprotein, and a mixture of free fatty 

acids that are added bound to purified human serum albumin. All media were sterile-filtered 

(0.22-μm filter) and kept in the dark at 4°C before use. 
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Human fetal liver processing 

Fetal liver tissues were provided by an accredited agency (Advanced Biological 

Resources, San Francisco, CA) from fetuses between 16-20 weeks gestational age obtained 

by elective pregnancy terminations. The research protocol was reviewed and approved by the 

Institutional Review Board for Human Research Studies at the University of North Carolina 

at Chapel Hill. Suspensions of fetal human liver cells were prepared as described previously 

[18, 225]. Briefly, processing was conducted in RPMI 1640 supplemented with 0.1% bovine 

serum albumin, 1nM selenium and antibiotics. Enzymatic processing buffer contained 

300U/ml type IV collagenase and 0.3 mg/ml deoxyribonuclease at 32ºC with frequent 

agitation for 15-20 min. Enriched suspensions were pressed through a 75 gauge mesh and 

spun at 1200 RPM for 5min before resuspension. Estimated cell viability by trypan blue 

exclusion was routinely higher than 95%.  

 

Mouse liver processing 

Liver cells were isolated using a modification of the 2-stage liver perfusion technique 

described by Seglen and employing the use of perfusion of calcium-free buffer containing 

EGTA to flush the liver and then Liberase TL (Roche) perfusion for 8 minutes to disassociate 

cells [247]. The murine hepatic progenitors, mHPCs, were separated from mature 

hepatocytes using gravity separation and centrifugation. Full details of the isolation and 

characterization of the mHPCs have been previously described [248] 
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Lentiviral construct and transfection 

The infection with the lentiviral vector (Figure 18) was performed in cell suspensions 

after liver processing. Polybrene was added for 5 to 10 min before the infection. This 

positively charged molecule reacts with the negative charges of the sialic acid residues on 

glycans at the cellular membrane and diminishes the repulsive forces that block anchorage of 

viruses at the cell surface. Cells were placed in buffer (cell wash or hormonally defined 

medium, HDM) in an Eppendorf tube, spun for 5min at 1,200 rpm, and the supernatant was 

discarded. The cells were resuspended with HDM by gentle swirling. Polybrene was added at 

2 ug/ml (final concentration) and the cells were allowed to sit at room temperature for 5 to 10 

min. The virus was add (~100 ul/ 2 X 106cells) to the cells with polybrene and again allowed 

to sit first at room temperature for 1 hour and then on ice for 3 hours. At the end of the 

incubation, fresh medium was added and spun to eliminate free viral particles in the 

supernatant. The cells were plated at 100,000 cells/well of 6 well plates in HDM+10% fetal 

bovine serum (FBS). After 6-12 hours, the medium was changed to serum-free HDM and 

monitored for fluorescence. The ratios used were: NB1: 2x106 cells/ 100ul HDM/polybrene 

(2ug/ml final)/100ul viral prep . 
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Figure 18: Lentiviral vector used to express thymidine kinase in implanted cells. 

 

Mice. 

C57 Bl 6 SCID/nod mice were purchased from Jackson Laboratories (Bar Harbor, 

Maine) and were housed in a barrier facility on the campus of the University of North 

Carolina-Chapel Hill. C57/black6 mice were bred in-house. Animals received care according 

to the Division of Laboratory Animal Medicine, UNC-CH guidelines, ones approved by 

AALAC.  

 

In vivo Engraftment 

Human hepatic stem cell engraftment: C57BL/6 SCID/nod mice were purchased 

from Jackson Laboratories (Bar Harbor, Maine) and used at ~5 weeks of age. Mice were 

anesthetized with Ketamine-HCl (Vedco Inc, St. Joseph, Mo) and Xylazine-HCl (ProLab 

LTD., St. Joseph, Mo) and injected intrasplenically with 8 x 105 cells. The spleen was 
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exteriorized through a small left flank incision (5 – 10 mm), and 70 µl of cell suspension was 

injected slowly into it using a 26-gauge needle on a Hamilton syringe. The spleen was 

returned to the abdominal cavity and the incision site was closed. Murine Hepatic 

progenitor cell engraftment: C57/bl6 mice (4-16 weeks) were anesthetized using ketamine 

(90-120mg/kg, Bioniche Pharma, Lake Forrest IL), and xylazine (10mg/kg, Akorn, Decatur, 

IL). Survival surgery was performed, opening the abdomen and slowly injecting material into 

the front liver lobe. The incision site was closed and animals were given 01.mg/kg 

buprenorphine (Reckitt Benckiser Pharmaceuticals, Richmond,VA) every 12 hrs for 48 hrs.  

 

IVIS optical Imaging  

Low-light imaging was performed using an IVIS Kinetic Imaging System consisting 

of a cooled integrating CCD camera mounted on a light-tight specimen chamber, and 

controlled by computer. Bioluminescent output was acquired in complete darkness, and the 

data represented as pseudocolor images indicating light intensity superimposed over the 

grayscale reference images. Using Living Image analysis software (v 4.0, Xenogen 

Corporation), light output from specified regions of interest (ROI) was quantified as the total 

flux, or total number of photons emitted per second. Prior to imaging, animals are injected IP 

with Redi-inject Luciferin K salt (Calper) at 150mg/kg and were anesthetized using 2% 

isoflourine while imaging. 10-15 mins after luciferin injection, imaging data were collected 

with 3min exposure times. Animal protocols were all approved by animal care and use. 
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Statistical analysis  

Experiments were repeated at least 3 times with duplicate or triplicate samples for 

each condition. Data from representative experiments are presented. Similar trends were seen 

in multiple trials.  



 

CHAPTER VII 

In Vivo Grafting of Human Hepatic Progenitors into Immunocompromised Murine 

Hosts 

Rachael Turner, Elaine Wauthier, David Gerber, and Lola M Reid 

 

Abstract 

Patients with severe liver disease can undergo liver failure, remedied by liver 

transplantation. Alternative therapies include the transplant of donor cell suspensions with 

hopes of restoring liver functions in the recipient. Current methods of cell transplantation are 

performed via vascular routes that yield inefficient engraftment, distribution of cells to non-

target sites, and emboli formation. This study investigates alternative methods focused on 

grafting technologies in which stem/progenitor cells are embedded in a complex of 

hyaluronans mixed with other extracellular matrix components, hormones and soluble 

signals, and then grafted into the tissue, localizing the cells to the target organ. The chemistry 

of the graft materials and the choice of specific cell populations used were designed to mimic 

the stem cell niche, increasing the success of the transplant to survive, expand and regenerate 

tissue. Therapies were compared to traditional cell suspension treatments in athymic nude 

mouse models. It was found that grafting methods improved engraftment of hHpSCs into the 

livers of the hosts, minimizing their loss to other tissues. In vivo luminescent imaging of 

luciferin-expressing transplanted cells showed that cells grafted into the liver using 
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hyaluronan hydrogels remained in the liver tissue, whereas cells injected via suspension 

dispersed throughout the liver and to ectopic sites. Human albumin in the serum showed 

increased production in injury models due to the feedback signaling in the liver, as well as an 

increase in production from grafted cells. Histology staining of human albumin showed large 

masses of transplanted cells when grafted in the host liver, as opposed to smaller single cell 

groups using cell suspension. Grafting of hepatic stem cells in hyaluronan hydrogels 

localized cells specifically to the target liver tissue, providing an efficient method for cell 

transplantation for use in liver regeneration. 
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Introduction 

Patients with severe liver disease can undergo liver failure, remedied in extreme cases 

by orthotopic liver transplantation (OLT). Due to the high cost of transplant treatment, lack 

of availability of healthy liver donors, and highly expensive liver transplantation treatment, 

many alternative therapies are being investigated and include the transplantation of donor cell 

suspensions, with hopes of restoring liver functions in the recipient patients [135, 244]. 

Hepatocyte transplantation is emerging as alternative bridge support until a healthy donor is 

arranged [245, 246] However, mature hepatocytes have short-term survival and lack the 

proliferation capacity of progenitor cells both in vitro and in vivo. The trials of liver cell 

therapies to date have made use of mature liver cells and with clinical improvements in 

patients but with significant problems due to inefficient engraftment (only 20-30% of 

transplanted cells), distribution of most cells to ectopic sites, emboli formation, 

immunological rejection, and transient effects of transplanted cells.  

Human hepatic stem cells (hHpSCs) are multipotent stem cells located within ductal 

plates of fetal livers and the canals of Hering of adult livers [19]. The hHpSCs range in size 

from 7-10 μm in diameter and have a high nucleus to cytoplasmic ratio [18]. They are 

tolerant of ischemia, and, surprisingly, can be found as viable cells in cadaveric livers for up 

to 6 days after asystolic death [22, 24]. The hHpSCs form colonies in culture capable of self-

replication [25] and of differentiation to mature cells in culture and in vivo [18, 111]. They 

constitute ~0.5-2% of the parenchyma of livers of all donor ages [18]. Their known antigenic 

profile comprises epithelial cell adhesion molecule (EpCAM), neural cell adhesion molecule 

(NCAM), cytokeratins (CK) 8/18/19, hedgehog proteins (Sonic and Indian), claudin 3, weak 

(if any) expression of albumin or MHC antigens, and no expression of α-fetoprotein (AFP), 
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intercellular adhesion molecule (ICAM-1), P450s, markers for hemopoietic cells (e.g. CD34, 

38, 45, 90, or glycophorin), endothelial cells (e.g. VEGFr, CD31, von Willebrand factor) or 

mesenchymal cells (e.g. CD146, desmin, vitamin A, CD105) [12, 18, 30, 31]. The hHpSCs 

have pumps such as MDR1 that eliminate xenobiotics. In addition, they express telomerase 

mRNA and have telomerase protein entirely localized within the nucleus. The hHpSCs are 

readily isolated by immunoselection for cells doubly positive for [EpCAM + NCAM+] from 

livers of all donor ages. They expand ex vivo if in a serum-free medium, Kubota’s Medium, 

designed for endodermal progenitor cell populations [247]. If transplanted into 

immunocompromised hosts, they yield mature liver tissue. Distinct culture conditions can be 

used to drive them selectively towards either mature hepatocytes or cholangiocytes [26].  

The lineages of maturing cells within the liver are associated with specific 

microenvironments of extracellular matrix and soluble signals constituting paracrine signals 

[248]. The matrix chemistry found in stem cell niches is similar to that found in embryos and 

includes type III and IV collagens, hyaluronans, and laminins [26]. This matrix/soluble signal 

combination is optimal for survival and expansion of the isolated hepatic stem/progenitors.  

The potential of purified human hepatic stem cells (hHpSCs) for differentiation was 

previously tested in vivo using scid/NOD mice, and within 48 hours of inoculation, the 

transplanted EpCAM+ cells formed liver-like tissue structures that persisted for weeks, but 

that would expand dramatically if the animals were treated with carbon tetrachloride, CCL4, 

to induce liver injury and, thereby, reduce or eliminate the feedback loop signal(s) [249].   

Transplantation of hHpSCs into a portal vein results in less than 5% remaining in the 

liver, but if via the hepatic artery, results in up to 40% of the cells engrafting [250]. The 

clinical trials with EpCAM+ cells from fetal livers (both hHpSCs and hepatoblasts, hHBs) 
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have revealed no evidence of emboli formation and no need for immunosuppression, and 

provided increased function in all transplanted patients [250]. The cells that distribute 

ectopically have now been found to survive for months (as described in chapter IV) and are 

able to form liver tissue in some ectopic sites such as lymph nodes [251]. These findings 

indicate that ectopic distribution of transplanted cells is a serious concern clinically.  

This study investigates alternative methods focused on grafting technologies in which 

stem/progenitor cells are embedded in a complex of hyaluronans mixed with other 

extracellular matrix components and with hormones and soluble signals, and then grafted 

onto or into the tissue, localizing the therapies to the target organ. The chemistry of the graft 

materials and the choice of specific cell populations used are designed to mimic the stem cell 

niche, increasing the success of the transplant to survive, expand and regenerate tissue. 

Therapies were compared to traditional cell suspension treatments in athymic nude mouse 

models. It was found that grafting methods improved engraftment of hHpSCs into the livers 

of the hosts, minimizing their loss to other tissues. Histology staining of human albumin 

showed large masses of transplanted cells when grafted in the host liver, as well as an 

increase in serum albumin production, as opposed to smaller single cell groups using cell 

suspension. 

 

Methods 

Liver Sourcing and Processing 

Fetal liver tissues were provided by an accredited agency (Advanced Biological 

Resources, San Francisco, CA) from fetuses between 16-20 weeks gestational age obtained 
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by elective pregnancy terminations. The research protocol was reviewed and approved by the 

Institutional Review Board for Human Research Studies at the University of North Carolina 

at Chapel Hill. Suspensions of fetal human liver cells were prepared as described previously 

[18, 220]. All processing and cell enrichment procedures were conducted in a cell wash 

buffer composed of a basal medium (RPMI 1640) supplemented with 0.1% BSA (BSA 

Fraction V; Sigma-Aldrich), insulin and iron-saturated transferrin (both at 5 ug/ml; Sigma-

Aldrich), trace elements (300 pM selenious acid and 50 pM ZnSO4), and antibiotics (AAS; 

Invitrogen). Liver tissue was subdivided into 3-ml fragments (total volume ranged from 2 – 

12 ml) for digestion in 25 ml of cell wash buffer containing type IV collagenase and 

deoxyribonuclease (both at 6 mg per ml; Sigma- Aldrich) at 32°C with frequent agitation for 

15–20 min. This resulted in a homogeneous suspension of cell aggregates that were passed 

through a 40-gauge mesh and spun at 1,200 RPM for 5 min before resuspension in cell wash 

solution. Erythrocytes were eliminated by either slow-speed centrifugation or by treating 

suspensions with anti-human red blood cell antibodies (1:5,000 dilution; Rockland) for 15 

min, followed by LowTox Guinea Pig complement (1:3,000 dilution; Cedarlane Labs) for 10 

min, both at 37°C. Estimated cell viability by Trypan blue exclusion was routinely >95% [33, 

184, 221]. 

 

Hepatic Stem Cell Culture Conditions 

For all cultures, Kubota’s Medium (KM), specially designed for the expansion of 

hepatic progenitors, was used. KM was developed originally for rodent hepatoblasts [222] 

and subsequently found effective for hHpSCs and hHBs [25, 37, 184, 221], for biliary tree 

stem/progenitors (Cardinale/Wang et al, submitted) and for pancreas (Wang et al, manuscript 
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in preparation). KM consists of any basal medium, here being RPMI 1640 (Gibco 

/Invitrogen, Carlsbad, CA) with no copper, low calcium below 0.5 mM (here being 0.3 mM), 

trace elements (zinc--10-12M and selenium—10-9M), insulin (5 μg/ml), transferrin/fe (5 

μg/ml), high density lipoprotein (10 μg/ml) and a mixture of free fatty acids bound to bovine 

serum albumin. Detailed methods for its preparation are given in a methods review [33]. 

 

HA matrix Preparation 

All hylauronan materials are commercially available from Glycosan Biosciences (Salt 

Lake City, Utah)[now part of Biotime, Alameda, CA], and consist of thiol-modified 

carboxymethyl HA (or CMHA-S), a chemically modified HA derivative with disulfide 

bridges for cross-linking. The cross-linking to form a gel is initiated by a PEGDA 

crosslinker, enabling the hydrogels to be formed in the desired container [219, 223-226]. The 

level of crosslinking activity and stiffness of the hydrogel can be regulated by the amount of 

PEGDA added. The hydrogel substrata was constructed by dissolving dry reagents in KM to 

give a 2.0% solution (weight/volume) for the HA gels and the PEGDA crosslinker was 

dissolved in KM to give a 4.0% weight/volume solution. Samples were then allowed to 

incubate in a 37o C water bath and allowed to completely dissolve. Collagen III and laminin 

samples were obtained from Sigma (St. Louis, MO) and were used at a concentration of 

1.0mg/ml. A ratio of 1:4 was applied to blend the crosslinker and hydrogels. At the end of the 

experiment, hydrogels were dissolved easily using dithiothreitol reducing agents with 

hyaluronidase without damaging the cells. 
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Mice. 

Athymic nude, male mice, aged 8-12weeks, were bred in house bred in-house at the 

UNC Animal Care Facility. Animals received care according to the Division of Laboratory 

Animal Medicine, UNC-CH guidelines, ones approved by AALAC.  All animal 

protocols were approved by IACUC with regard to animal care and use.  

 

In vivo engraftment 

After cell isolation, freshly isolated hepatic progenitor cells were infected for 4 hrs at 

37oC with a luciferase-expressing adenoviral vector at 50 POI (Vector Biolabs, Philadelphia, 

PA). Mice (8-12 weeks) were anesthetized using ketamine (90-120mg/kg, Bioniche Pharma, 

Lake Forrest IL), and xylazine (10mg/kg, Akorn, Decatur, IL). Survival surgery was 

performed, opening the abdomen and slowly injecting 1.5x106 cells directly into the liver 

lobe, via cell suspension or grafted using HyStem Hyaluronans (Glycosan, Alameda, CA) 

crosslinked with Poly (Ethylene Glycol)-Diacrylate (PEG-DA) intrahepatically into the front 

liver lobe. The incision site was closed, and animals were given 01.mg/kg buprenorphine 

(Reckitt Benckiser Pharmaceuticals, Richmond,VA) every 12 hrs for 48 hrs. Past studies 

[184] have indicated that giving the mice the cells first and then establishing liver failure 

results in survival of all the transplanted mice. For liver injury models, a one-time dose of 

carbon tetrachloride (CCL4, Sigma-Aldrich, St Louis, MO) was administered IP at 0.6 ul/g.  

 



116 

Optical Imaging 

Low-light imaging was performed using an IVIS Lumina Imaging System that 

consists of a cooled integrating CCD camera mounted on a light-tight specimen chamber, and 

controlled by computer. Bioluminescent output was then acquired in complete darkness, and 

the data are represented as pseudocolor images indicating light intensity superimposed over 

the grayscale reference images. Using Living Image analysis software (v 4.0, Xenogen 

Corporation), light output from specified regions of interest (ROI) is quantified as the total 

flux, or total number of photons emitted per second. Prior to imaging, animals were injected 

IP with Redi-inject Luciferin K salt (calper) at 150mg/kg and were anesthetized using 2% 

isoflourine while imaging. At 10-15 mins after luciferin injection, imaging data was collected 

with 3 min exposure times.  

 

Analysis of secreted protein production 

Concentration levels of secreted human albumin in mouse serum at day 7 was 

assessed to determine the function of the transplanted human hepatic progenitor cells. 

Albumin production was measured by ELISA using human albumin ELISA quantitation sets 

with respect to human reference serum standards from the manufacturer (Bethyl 

Laboratories, Montgomery, TX) in terms of horseradish peroxidase (HRP) -conjugated 

fluoroprobe levels (detection antibody against albumin) by colorimetric absorbance at 450 

nm. Assays were measured individually with a cytofluor Spectramax 250 multi-well plate 

reader (Molecular Devices, Sunnyvale, CA). 
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Histology 

At day 7, tissue samples were removed from mice and fixed 2 days in 4% PFA and 

stored in 70% Ethanol. Samples were submitted to the CGIBD Histology Core Laboratory at 

UNC Chapel Hill for paraffin imbedding and serial sectioning at 5 µm section thickness. 

Staining was performed by the Histology Research Core Facility at UNC Chapel Hill. 

Sections were deparaffinized with xylene and rehydrated with decreasing alcohol series. 

Quenching of endogenous peroxidase activity was performed by first incubating in 

H2O2/H2O and then blocking with goat serum. The primary antibody for human albumin 

anti-rabbit (Abcam, Ab2406) was diluted at 1:1000. Biotinylated goat anti-rabbit secondary 

antibody solution was then applied at 1:500 dilution, followed by VECTASTAIN Elite ABC 

Reagent at 1:500 (pk6100, Vector Laboratories, Burlingame, CA). Sections were analyzed 

using an Olympus IX70 Inverted Fluorescence Microscope equipped with a Hg/Xe arc lamp 

for epi-illumination and an Olympus DP72 Digital Camera controlled with cellSens™ 

Digital Imaging Software for image acquisition. 

 

Results 

To test efficiency of cell localization using grafting strategies, optical imaging was 

used to detect the bioluminescent signal produced from Luciferin-infected cells localized 

within the mice. Figure 19 shows the total flux detected in animals at sites where cells were 

injected with and without grafting methods. In both healthy and injury models, there was no 

significant difference between the signal produced by grafted cells versus suspension cells. 

However, there was a considerable difference in the consistency of cells located within the 

abdomen of grafted models, as the standard error in suspended cells is much greater. The 
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location of luminescent-producing cells can be seen in Figure 20. Cells grafted to the liver 

using hyaluronans were specifically localized to the injected liver tissue. Cells that were 

injected intrahepatically via suspension were observed as spread throughout the abdomen.  

 

 

Figure 19: Total flux signal captured by luciferin expressing transplanted cells grafted with hyaluronans 
versus injected as a cell suspension in healthy and CCl4 induced liver injury models. Flux readings are 
normalized to control animals receiving no cell transplant.  
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Figure 20: in vivo real time imaging of luminescent signal produced by luciferin-producing cells both 
grafted with hyaluronans versus injected as a cell suspension. 
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At day 7, blood sampling was taken, and tissues were removed and fixed for 

histology. Human albumin was measured in the murine blood samples, and can be seen in 

Figure 21. A slight increase in serum albumin was seen in the injury model versus healthy 

model. Grafting methods also showed an increase when compared to the results from cell 

suspensions. However, neither of these trends were shown to be significant. 

Tissue histology at day 7 in CCl4 treated mice can be seen in Figure 23. Tissue was 

stained for human albumin, marking transplanted cells brown in the host tissue. Cells 

transplanted via grafting methods using HA are in panels A-D. Here, cells were grouped and 

maintained large cell masses of transplanted cells within the host cells. Cells transplanted via 

cell suspension (panels E-H), resulted in small aggregates dispersed throughout the liver. 

Staining controls given in Figure 22. 

 

Figure 21: Serum human albumin at day 7 post-transplantation in grafted versus cell suspension in both 
healthy and CCl4 liver injury models. 
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Figure 22: Controls for Histology of Human Transplanted Cells. A) and B) Control- no transplant. C) 
positive human fetal liver for human albumin and D) human fetal liver, no primary antibody staining.  
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Figure 23: Histology of Human Transplanted Cells. Transplanted human hepatic progenitor cells stain 
positive for human albumin. Day 7 post-transplant. A-D) Grafting using Hyaluronan Hydrogels. E-H) Cell 
suspension.  
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Discussion 

In vivo imaging data shows that cells transplanted with and without grafting 

techniques produced similar signal intensities, meaning that the same number of cells 

remained within the animals. However, unlike the grafting therapies where cells remained 

located within the liver tissue, cell suspensions were dispersed throughout the body. This is 

similar to other findings, where cells injected into ectopic sites like the spleen lead both to 

engraftment within the liver but always also spread into secondary vascular beds such as 

those in the lungs [252, 253], and have also been found to form liver tissue in ectopic sites 

such as lymph nodes [251]. This is a serious concern clinically, and these grafting methods 

that localize therapies have shown to be a possible solution.  

The use of biocompatible matrix materials in cell therapies is not a new concept. 

Matrix components are the primary determinants of attachment, survival, differentiative 

responses, cytoskeletal organization, and stabilization of requisite cell surface receptors that 

prime the cells for responses to specific extracellular signals [33, 141-143]. The selection of 

matrix components is guided by gradients in vivo,that change from the stem cell 

compartment to the late lineage stage cells. The matrix chemistry changes with maturational 

stages, with host age, and with disease states [150]. Therefore, graft biomaterials should 

mimic the matrix chemistry of the particular lineage stages desired for the graft. The use of 

hylauronans as an injectable material for tissue engineering is promising due to its long-

lasting effect while maintaining biocompatibility [233] and ability to minimize patient 

discomfort, lower risk of infection, scar formation, and overall cost [254]. Co-culturing and 

injecting with a cell suspension allows for solidification in situ that can fill any cavity space. 

Cross-linking methods also maintain the material biocompatibility, and its presence in 
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extensive areas of regenerative or immature tissue areas make it a very attractive injectable 

material.  

Grafting of cells using injectable biomaterials has been shown to be successful for 

therapies other than the form of liver injury discussed here. Studies involving in situ 

engineered tissue, including studies of injectable Matrigel with embryonic stem cells [255, 

256] and fibrin with skeletal myoblasts [257, 258] have shown restoration of cardiac function 

and geometry after cardiac injury. Injectable materials solidify in vivo and retain the 

geometry of the injured tissue In all of these studies, these materials have not only been 

shown to provide a microenvironment for the cells post-injection, but also may specifically 

influence the microenvironment to prevent disease progression and induce increased 

regeneration within the tissue.  

The grafting methods presented in this study showed that cells remain localized to the 

liver tissue after injection. In vivo luminescent imaging looked at the luminescent signal 

produced within the abdominal region of interest. A large signal was measured in both 

suspension and grafting methods (Figure 19), showing that cells are in fact present within 

the animal in both cases. Since the animals are immunocompromised, it is not surprising that 

all cells are present. However, images (Figure 20) better explain the exact location of the 

cells. While a signal is produced by both transplanted methods, it is clear that the cells are 

specifically localized to the liver lobe in grafting but not when injected via a vascular route.  

Additionally, the small standard error of total flux produced in grafting (compared to the 

large error seen in cell suspension) shows the consistent transplantation of cells within the 

tissue. Histology of host tissue at day 7 further exemplifies the consistent localization of 

transplanted hepatic stem cells if via a grafting strategy. In HA grafts, cells form large 
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masses of cells, remaining localized to the liver tissue where injected. The opposite is seen in 

cell suspension injections, where cells that manage to stay within the liver tissue are present 

only in smaller, more dispersed groups. The combination of in vivo imaging and tissue 

histology gives a macro and micro image of transplanted cell location within the animals, and 

wholly supports the need for grafting methods as strategies for cell transplant therapies.  

Liver injury is necessary in promoting liver cell growth. Selective loss of pericentral 

cells with toxic injury results in muting of the feedback loop signaling and secondarily 

activates rapid cell division of early lineage stage cells [23, 120]. In response, periportal cells 

undergo rapid hyperplastic growth (complete cell division) followed by differentiation. These 

phenomena, the classic “oval cell response” in rodents and the “ductular reactions” seen in 

human massive hepatic necrosis (e.g. acetaminophen toxicity, acute hepatotropic viral 

infection), have long been recognized to involve extensive expansion of the stem/progenitor 

cell populations [23]. Carbon tetrachloride exposure results in loss of late lineage stage cells, 

eliciting chronic regenerative responses. As seen in the production of human serum albumin, 

an increased amount of albumin is produced in the injury model mice.   

This study investigated alternative methods focused on grafting technologies in which 

stem/progenitor cells are embedded in a complex of hyaluronans mixed with other 

extracellular matrix components and with hormones and soluble signals, and then grafted 

onto or into the tissue, localizing the therapies to the target organ. Graft conditions can also 

be modified to have factors to improve vascularization, expansion and/or differentiation. The 

chemistry of the graft materials and the choice of specific cell populations used are designed 

to mimic the stem cell niche, increasing the success of the transplant to survive, expand and 

regenerate tissue. 



 

CHAPTER VIII 

Conclusions 

Conclusions 

This body of work addresses key problems associated with liver regeneration using 

tissue engineering themes. By utilizing the proliferative capacity of the stem cell population, 

along with its associated matrix, grafting methods were developed by embedding the cells 

into a microenvironment that mimics the liver’s stem cell niche. This combination of ECM 

with the cells was proven successful in cryopreservation techniques, ex vivo culture, and in 

vivo grafting methods. The techniques developed as part of this dissertation have improved 

current alternative methods available for the treatment of liver failure, and can easily be 

translated and applied.  

The supply of human hepatic cells is often limited and dependent on the availability 

of liver tissues from resections and rejected organs from organ donation programs. The first 

aim of this dissertation was to improve the methods for cryopreservation and long term 

storage of cells, vital in facilitating full use of the cells and thereby optimizing this scarce 

resource. Freshly isolated human hepatic progenitor cells were isolated from fetal liver tissue 

and cryopreserved in either KM culture medium or CS10 cryopreservation medium, and 

utilized with or without small amounts of hyaluronans (0.05 or 0.10%). Samples were frozen 

using a controlled rate freezing program. Post-thaw cell viability, attachment, and colony 

growth were measured. Gene and protein expression of Integrin β1, Integrin β4, E-Cadherin, 
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and CD-44 were evaluated by qRT-PCR and immunohistochemistry analysis. Results 

showed that cells thawed with CS10 isotonic medium supplemented with small amounts of 

HA (0.05 or 0.10%) improved cell attachment and colony formation due at least in part to 

improved expression of key cell adhesion factors in the stem cells and progenitor cell 

populations. CS10 medium, supplemented with KM supplements, also showed improved 

attachment when compared to other medium conditions without gel. Future studies may 

include this medium combination with the addition of hyaluronans, a freezing condition not 

previously considered. This study provides successful methods in primary hepatic progenitor 

cell cryopreservation, and should be implemented to freezing methods for more efficient 

banking methods in both research and potential therapy applications. 

The second development that has importance in liver cell therapies is a method of 

culturing hHpSCs and hHBs in a three-dimensional (3-D) environment. It was hypothesized 

that hyaluronan hydrogels, present in all stem cell niches including those for liver, would be 

a successful base material for maintaining the hepatic stem cell phenotype. In this study, cell 

aggregates formed within the HA hydrogels, remained viable, and demonstrated a stable 

phenotype for hepatic stem cells for at least 3 weeks of culturing. The phenotype consisted of 

stable co-expression of EpCAM, NCAM, and albumin, and with maintenance of hepatic 

function through albumin and transferrin production and urea synthesis. Hyaluronans, 

combined with collagen III and laminin, maintained hepatic function and further expressed 

stem cell characteristics, proving to be a suitable three-dimensional scaffolding for hHpSCs.  

The last aim investigated in this study was the use of injectable hyaluronan grafts as a 

method of cell transplantation in vivo. Current methods for cell therapies introduce donor 

cells into hosts via suspension either directly into tissue or via a vascular route, resulting in 
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inefficient engraftment of cells in the appropriate location, engraftment of cells at sites other 

than the liver (e.g. lung), as well as emboli formation. It was hypothesized that grafting 

methods, combining cells within an appropriate matrix and hormonal environment to provide 

an optimal starting environment for survival, expansion and vascularization. The chemistry 

of the graft materials and the choice of specific cell populations used was a result of the 

previous aim, and was designed to mimic the stem cell niche, increasing the success of the 

cell survival, expansion, and regeneration of tissue. In vivo luminescent imaging of luciferin-

expressing transplanted cells showed that cells grafted into the liver using hyaluronan 

hydrogels remained in the liver tissue, while cells injected via suspension dispersed 

throughout the liver. Histology data further supported these findings, where HA grafts 

facilitated the formation of large masses of cells, remaining localized to the liver tissue where 

injected. The opposite was seen in cell suspension injections, where cells were present only 

in smaller, less localized groups. Human albumin in the serum showed increased production 

in injury models due to the feedback signaling in the liver, as well as an increase in 

production from grafted cells. These studies support the need for grafting methods within cell 

transplant therapies; grafting technologies developed are preclinical, but expected to be 

rapidly translatable to therapeutic uses.  

 

Recommendations for Future Research 

This research explored two key areas to improve liver therapies; the cell sourcing and 

the grafting of cell therapies. Further studies in cryopreservation involve investigating the 

combination of media supplements known to be essential in the culturing of hepatic stem 

cells with CS10 freezing medium, in combination with hyaluronan supplements. This 
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condition was not previously investigated and may increase viability and attachment. 

However, the study still provided successful methods in primary hepatic progenitor cell 

cryopreservation, and these conditions should be implemented to freezing methods for more 

efficient banking in both research and potential therapy applications. 

Moving forward, a final and logical step would be the grafting of cryopreserved cells. 

Stem cells intended for liver therapies can be frozen at the time of isolation. Cells can be 

banked until needed, then thawed and immediately used in grafting programs.  

An additional method of grafting initially discussed in chapter III was the 

development of patch grafts. Here; grafting can be done external to the tissue, rather than 

directly injected. A native or synthetic biomaterial can be adhered to the liver surface, then 

the injectable hyrodgel grafting material can be implanted in the pocket made by the patch. 

Collaborations have been made with Dr. David Kaplan at Tufts University (Boston, MA) and 

the Tissue Engineering Research Center. Together with members of the center, we have 

designed and constructed porous patches made of biocompatible silk [264, 265]. The patches 

are 500 um pore size around 95~99% porosity, with a non-porous outside surface. The 

hollow “hat” patch is 6.5mm in diameter, with a 2-3mm ridge border for adhering to the 

tissue (Figure 24). This external patch would allow for larger volumes of cells, and does not 

injure the tissue like intrahepatic injections, allowing for broader therapeutic applications. 
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Figure 24: electrospun silk patch for external patch grafting. 

 

Lastly, the obvious and more long-term goals are the translation to clinically relevant 

therapies. All materials used in this dissertation were chosen for their ease and transition to 

clinical therapies. The use of cryo-cell banking is an important part in the sourcing of 

adequate cell numbers for human cell therapies. The rapid translation to therapeutic uses in 

patients will benefit by providing an alternative treatment to transplants that may regenerate 

lost tissue. 
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