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During brain development, proper neuronal migration and morphogenesis is critical for the 

establishment of functional neuronal circuits. I have identified that srGAP2 negatively 

regulates neuronal migration and induces both neurite outgrowth and branching through the 

ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those 

induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in non-

neuronal cells, forced expression of proteins that promote filopodia decrease the rate of cell 

migration and the persistence of leading edge protrusions. srGAP2 knockdown reduces 

leading process branching and increases the rate of neuronal migration in vivo. 

Overexpression of srGAP2 or its F-BAR domain has the opposite effects, increasing leading 

process branching and dynamics and blocking migration. Finally, expression of a truncated 

form of the F-BAR domain that localizes to the membrane but fails to elicit filopodia-like 

membrane protrusions does not inhibit neuronal migration. This work highlights the 

functional importance of proteins directly regulating membrane deformation for proper 

neuronal migration and morphogenesis. 
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Overview of Cortical Development 

The microcircuit underlying the function of the cerebral cortex is composed of two 

main neuronal sub-populations. The first, GABAergic interneurons are born in the medial 

ganglionic eminence (MGE) and migrate tangentially to the neocortex where they will 

provide inhibition to neuronal circuits (Fig. 1.1). The second, glutamatergic neurons are born 

in the ventricular zone (VZ) of the neocortex and migrate radially to the cortical plate (CP) 

where they will terminally differentiate displaying the proper dendritic morphology and 

extending axons to the proper locations (Fig. 1.1 ). These neurons will act as the excitatory 

neurons of the cortex. Defects in the ratio of excitatory to inhibitory neurons, results in 

severe developmental neuropathologies including from schizophrenia (Di Cristo, 2007) and 

epilepsy (Guerrini and Marini, 2006). As a result much work has been focused on identifying 

the genes that regulate the migration and differentiation of these two neuronal sub-

populations during the development of the cerebral cortex. 

 In order to understand the consequences of impairment of the proper ratio of 

excitatory to inhibitory neurons in the cortex, one must first appreciate the manner in which 

the neocortex develops. The neocortex is a layered structure: neurons sharing a given 

function including axonal projection patterns, dendritic morphology, electrophysiological 

properties, etc... are grouped in separate layers. Between E10 and E11, the mouse 

neocortex consists of two layers, the ventricular zone (VZ) where progenitors undergo 

divisions and the preplate (PP) composed of the first postmitotic neurons present in the 

mammalian cortex (Fig. 1.2 ). At approximately E12, neurons migrate out of the VZ and split 

the PP into two layers (the marginal zone (MZ) and subplate (SP)) and thereby form the 

cortical plate (CP).  The MZ contains a key population of neurons called Cajal-Retzius cells 

which secrete Reelin, a 
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Figure 1.1: Overview of mammalian cortical developm ent.  A) Coronal view of developing 

telencephalon. The cerebral cortex is comprised of two neuronal subtypes: GABAergic interneurons 

(green) which are born in the ventricular zone (VZ) of the medial ganglionic eminence (MGE), migrate 

tangentially to the neocortex. Glutamtergic neurons (red) are born in the VZ of the neocortex and 

migrate radialy to their final destination in the cortical plate. B) More detailed view of radial migration. 

Glutamatergic neurons arise from asymmetrically dividing radial glial cells (yellow) in the VZ. The 

neurons then migrate to the subventricular zone where they undergo a phase in which they produce 

multiple neurites. Once the neurons polarize, they form a single leading process, attach to the radial 

glia and migrate by nucleokinesis to the cortical plate where they elaborate their dendrite and project 

their axon to the proper target. 
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large secreted glycoprotein playing a key role in cortical layer formation.  These early 

postmitotic pyramidal neurons that form the immature CP constitute the future layer 6. This 

will be the deepest cortical layer. These cells migrate primarily via somal translocation 

whereby, their leading process remains attached to the basal membrane at the pial surface 

while its soma translocates from the VZ to the CP. The next wave of neurons born at E13 

will generate layer 5 will then migrate from the VZ using radial glial progenitors as a 

substrate for migration. These layer 5 neurons will migrate passed the neurons that make up 

the CP and this process of the newest born neurons bypassing their predecessors will 

continue until about E18 (Fig. 1.2 ). This results in an “inside-out” development of the cortex 

where the youngest neurons constitute the most superficial layers and the oldest neurons 

constitute the deepest layers in the cortex. In the adult, this results in six cortical layers 

where layer 1 cells are most superficial and layer 6 cells are the deepest. Clearly, the 

cellular and molecular mechanisms controlling the precise timing of cell cycle exit, initiation 

of migration and proper translocation of neurons to the individual cortical layer are critical for 

the proper functional maturation of the cerebral cortex. 

 While somal translocation is thought to be the predominent mode of migration before 

E14 (Gupta et al., 2002), radial migration underlies the majority of layer formation during 

cortical development (E14-18; (Gupta et al., 2003)). Radial glial cells act as neuronal 

progenitors giving rise to neurons in the ventricular zone. Once the neuron exits the cell 

cycle, it migrates to the sub-ventricular zone (SVZ) where it undergoes a short multipolar 

phase, extending dynamic neurites in multiple directions (Noctor et al., 2004) before 

polarizing by forming a single leading process. The neurons then attach to and migrate 

along radial glia processes towards the CP using leading process attachment to pull the cell 

soma forward. This process is known as nucleokinesis. Once they reach the CP, radially 

migrating neurons detach from the radial glial scaffold and elaborate their apical and basal 
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dendrites. As one might expect much work has outlined the signaling pathways and 

molecules that control radial migration.  
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Figure 1.2. Overview of cortical lamination.   During early cortical development (E11) the cortex 

consists of two layers: the ventricular zone and the preplate that was made by somally translocating 

post mitotic neurons. At E13, the preplate is split by a second wave of post-mitotic neurons resulting 

in the formation of the subplate and the marginal zone.  These cells establish the cortical plate. From 

E14-E18 cells migrate through radial migration bypassing their predecessors as they migrate to the 

cortical plate resulting in the oldest born neurons being deep in the cortex and the newest born 

neurons being located superficially. This type of laminaiton is referred to as “inside out” development 

and results in the layer formation seen in the adult. (adapted from (Gupta et al., 2002)) 
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Reelin regulates both glia independent and dependen t forms of neuronal 

migration in the cortex 

Reelin is an extracellular cue secreted by Cajal-Retzius cells resident in the marginal zone 

of the cortex (Curran and D'Arcangelo, 1998). Reeler mutant mice, show defective cortical 

lamination due to a mutation in the reelin gene (D'Arcangelo et al., 1995). Specifically these 

mice develop an inverted cortex, due to defective preplate splitting, resulting in the formation 

of the cortical plate beneath the neurons of the subplate and the appearance of an inverted 

cortex (Curran and D'Arcangelo, 1998). Interestingly, 2 additional mouse and rat lines with 

two spontaneously occurring mutations in mDAB1 (scrambler and yotari) share this 

phenotype with the Reeler mice (Sheldon et al., 1997) suggesting that reelin and Dab1 may 

act in the same pathway. In addition, the observation that loss of the very low density 

lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) also shared this 

phenotype of no preplate splitting allowed for the identification of the reelin signaling 

pathway (Trommsdorff et al., 1999). Indeed, reelin binds to VLDLR and ApoER2 

(Hiesberger et al., 1999) and this binding leads to tyrosine phosphorylation of mDAB1 by 

Src-family kinases (Benhayon et al., 2003). Taken together, this inability to split the preplate 

suggested that there is a defect in the ability of early somally translocating neurons to 

migrate. It should be noted however, that reelin signaling does not only affect somally 

translocating neurons. Reelin signaling also seems to affect radial glia-mediated neuronal 

migration since ectopic expression of reelin in the ventricular zone rescued the preplate 

splitting defect of the Reeler mouse but continued to present abnormal layer formation 

(Magdaleno et al., 2002). This suggested that reelin signaling could regulate radial migration 

independent of its function in preplate splitting. This data was later supported by work from 

Chris Walsh’s lab demonstrating that acute reduction of Dab1 by RNA interference 

increased the cell distance from the marginal zone suggesting an impairment of migration 
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(Olson et al., 2006).  

 

CDK5 and radial migration 

Cyclin dependent kinase 5 (CDK5) was shown to have no role in cell cycle 

progression, compatible with its expression and activity in postmitotic neurons (Lew et al., 

1994). The activity of CDK5 is regulated by its coactivator p35 (Tsai et al., 1994), which is 

also highly expressed in postmitotic neurons but not neuronal progenitors (Chae et al., 

1997; Tsai et al., 1994). Loss of p35 or CDK5 causes severe defects in neuronal migration 

and ultimately cortical lamination (Chae et al., 1997; Gilmore et al., 1998). The major defect 

here appears to be impairment of radial migration following preplate splitting, so that the 

newly born neurons cannot bypass their predecessors resulting in an inverted cortex with 

proper preplate splitting (Chae et al., 1997; Gilmore et al., 1998; Gupta et al., 2002). This is 

interesting since prior to preplate splitting neurons translocate by somal translocation 

whereas, post preplate splitting, neurons migrate primarily by nucleokinesis, suggesting that 

CDK5 primarily regulated radial glia-dependent migration. As a result, many subsequent 

studies have aimed to identify molecular substrates downstream of CDK5 that mediate 

these effects. In the subsequent sections I will discuss the molecules that regulate radial 

migration and describe those that are regulated by CDK5.  

 

Rho family GTPases and radial migration 

 The role of Rho family GTPases in non-neuronal cell types has been studied 

extensively (Raftopoulou and Hall, 2004). Rho family GTPases are known to regulate a 

myriad of processes from cell polarity and migration to membrane trafficking and 

transcription. However, much less is known about the exact functions of Rho-GTPases 
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during neurodevelopment. As a result many recent studies have sought to understand the 

role of Rho-GTPases during development of the cortex.  

 RhoA is thought to primarily play role in cell contraction at the rear (Ridley et al., 

2003). GTP bound RhoA activates rho-kinase, which leads to increase myosin light chain 

phosphorylation and finally increased myosin contractility (Ridley et al., 2003). This activity is 

thought to propel the cell rear forward during the migration cycle (Ridley et al., 2003). It 

appears that this RhoA pathway may be conserved in neurons (Ge et al., 2006; Hand et al., 

2005; Heng et al., 2008). Hand et al. recently demonstrated that Neurogenin 2 (Ngn2), a 

bHLH proneural transcription factor, specificies the radial migration properties of cortical 

neurons. Mutation of tyrosine 241 of ngn2 to phenylalanine impaired migration and cells 

showed a defect in nuclear translocation. Interestingly, this defect could be partially rescued 

by dominant negative RhoA, suggesting the importance of RhoA activity in radial migration 

(Hand et al., 2005). Further work expanded on these observations by demonstrating that the 

rho effector, rho-kinase (ROCK) is required for radial migration (Nguyen et al., 2006a). 

Finally, it was recently shown that myosinII activity was required for forward nuclear 

movement during radial migration, since treatment with myosin inhibitor, blebbistatin 

inhibited nuclear movement (Tsai et al., 2007). These data suggest that the RhoA-ROCK-

MyosinII pathway may be at work in radial migration. 

 While RhoA is thought to regulate contraction at the cell rear, Rac1 and Cdc42 are 

thought to act primarily by regulating actin dynamics at the leading edges of migrating cells 

(Ridley et al., 2003). Cdc42 in particular, has been shown to act both at the leading edge 

during migration, but also at the establishment of polarity before initiation of migration 

(Raftopoulou and Hall, 2004). Indeed, the ability of cdc42 to regulate cell polarity  is also 

conserved during cortical development. Before radial migration occurs neurons are 

produced through both asymmetrical and symmetrical cell divisions (Nguyen et al., 2006b) 
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and the ability for these cells to divide is dependent upon the polarized localization of 

specific proteins (Costa et al., 2008). It turns out, that proper regulation of cdc42 is required 

for this polarization. Specifically, two groups indepently demonstrated that loss of cdc42 

disrupted cell division and the localization of β-catenin and atypical protein kinase C (aPKC), 

two other proteins that are essential for neuronal polarity (Cappello et al., 2006; Chen et al., 

2006). Because cdc42 conditional deletion reported in these studies were obtained through 

Cre-mediated recombination in neuronal progenitors, it is difficult to distinguish the function 

of cdc42 in cell migration from its function in cell division. However, recent work suggests 

that cdc42 may be directly involved in radial migration. Konno et al. recently showed using 

dominant-negative approaches that phosphoinositide 3 kinase (PI3K) activation was 

required for radial migration (Konno et al., 2005). Moreover, they showed that dominant 

negative cdc42 impaired radial migration after PI3K activation suggesting that cdc42 

activation may be required for this activity.  

 Rac1 has also been implicated in regulating radial migration. Inhibition of Rac1 

downstream of both PI3K and c-jun N-terminal kinase (JNK) blocked radial migration 

(Kawauchi et al., 2003; Konno et al., 2005). Moreover, the Rac GEF, P-Rex1 was also 

shown to be involved in radial migration (Yoshizawa et al., 2005). In addition, rac1/cdc42 

effector p21 activated kinase (PAK)-1 was recently shown to be involved in radial migration. 

Expression of consituitively active form of PAK-1 severely impaired radial migration and 

reduction of PAK-1 had similar effects (Causeret et al., 2008).  

 While, RhoA, Rac1, and Cdc42 are the most commonly studied Rho-GTPases, it 

was recently shown that Rnd2 plays an important function in radial migration (Heng et al., 

2008). Specifically, knockdown of Rnd2 transiently reduced radial migration and expression 

of low levels of Rnd2 was sufficient to significantly rescue the migration defect observed in 

the conditional Ngn2 knockout cortex (Heng et al., 2008).  
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 Taken together these data highlight the potential importance of Rho family GTPase 

regulation in radial migration. However, much of this data comes from genetic studies and 

the use of constituitively active and dominant negative approaches. While these techniques 

provide useful information, they lack the resolution and specificity needed to truly analyze 

the specific role of these proteins in real time and with subcellular resolution. Future 

experiments should determine in real-time the subcellular activation of Rho family proteins 

using biosensors during neuronal migration. Moreover, shRNA studies would allow the study 

of cell autonomous effects of these proteins. Finally, we have developed tools to study the 

effects of gene manipulation specifically on neurons (Guerrier et al., submitted and (Heng et 

al., 2008)) that would allow one to bypass the effects of these proteins on cell division in 

order to observe the phenotypic consequences on radial migration. 

 

Microtubule dynamics and microtubule associated pro teins and their roles in 

radial migration 

  Microtubules play a key role in radial migration. This is due to the organization of 

microtubules which form a “cage” around the nucleus on one end of the microtubule 

organizing center (MTOC) and extend from the MTOC to the extreme end of the leading 

process (Fig. 3 ) and (Lambert de Rouvroit and Goffinet, 2001; Tsai and Gleeson, 2005). As 

a result, many groups have sought to identify proteins that regulate microtubule dynamics 

and as well as MTOC organization during radial migration. One such protein is 

lissencephally-1 or Lis-1. As the name suggests, loss of Lis-1 causes type 1 lissencephaly 

leading to a disorganization of the cortical layers during development as well as a 

lissencephalic (smooth, absence of gyrification) cortex (Guerrini and Marini, 2006).  shRNA 

mediated reduction of Lis-1 has helped explain the lamination defect seen in patients with 

type-1 lissencephaly (Tanaka et al., 2004a; Tsai et al., 2005). Loss of Lis-1 affects cortical 
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development including cell division (Tsai et al., 2005). However, there were also significant 

effects on the ability of immature neurons to undergo transition from multipolar to bipolar 

(Tsai et al., 2005). Moreover, Lis-1 reduction led to impaired migration due to the inability of 

the cell soma to translocate (Tanaka et al., 2004a; Tsai et al., 2007; Tsai et al., 2005). 

Interestingly, the leading process of these cells continued to grow suggesting that Lis1 may 

be required to couple somal translocation with leading process growth. Indeed, a 

subsequent study demonstrated that Lis-1 knockdown impaired the movement of the 

centrosome, which could explain why the nucleus does not move forward when Lis-1 levels 

are reduced (Tanaka et al., 2004a). So how might Lis-1, a microtubule binding protein 

regulates the movement of the nucleus? Lis-1 associates with the minus end directed motor 

protein, dynein. The interaction between dynein and Lis1 is mediated by a protein called 

Nudel. Interestingly, Nudel function is highly conserved since it is critical for the proper 

migration of fungi (Tsai and Gleeson, 2005). Moreover, loss of 14-3-3 epsilon, which 

regulates Nudel localization, causes lissencephaly similarly to lis1 and the compound 

mutant (Lis1/14-3-3 double knockout) is more severe than the single knockout, again 

suggesting the functional importance of this pathway for neuronal migration (Toyo-oka et al., 

2003). It was shown that like reduction of Lis1, reduction of dynein also impaired 

centrosome movement (Tanaka et al., 2004a; Tsai et al., 2007). It was demonstrated that 

dynein localized to the swelling present in front of the nucleus that forms prior to nuclear 

translocation and colocalized with centrosome. These data suggested that Lis1 may 

regulate forward movement of the nucleus by regulating dynein localization to the 

centrosome. Interestingly, it was shown that CDK5 can phophorylate Nudel (Niethammer et 

al., 2000) and that 14-3-3 epsilon could bind to phosphorylated Nudel to properly localize 

with Lis1 and dynein (Toyo-oka et al., 2003), thus providing one mechanism by which CDK5 

could regulate radial migration. 
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Figure 1.3.  Nucleokinesis.  Neuronal migration in the cortex is mediated by the centrosome’s ability 

to connect microtubules to both the nucleus and leading process. As a result, leading process 

extension and adhesion leads to the centrosome being pulled forward. Motor proteins at that interact 

with microtubules at the centrosome can then pull the nucleus forward. Adapted from (Tsai and 

Gleeson, 2005) 
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Doublecortin (DCX), another microtubule associated protein, was identified as 

mutated in a form of X-linked lissencephally (des Portes et al., 1998; Gleeson et al., 1998). 

Its name comes from the fact that a sub-population of neurons accumulate in the white 

matter (band heterotopia) resulting in ‘two gray matters’ or “double cortex” (Guerrini and 

Marini, 2006). Like Lis1, shRNA studies revealed that reduction of DCX lead to a bona fide 

defect in radial migration (Bai et al., 2003). How does DCX regulate migration? DCX was 

shown to stabilize microtubules in vitro (Horesh et al., 1999) and to associate with 

microtubules in neurons (Francis et al., 1999; Gleeson et al., 1999). Its ability to associate 

with microtubules is phosphorylation dependent (Tanaka et al., 2004b). Interestingly, CDK5 

was shown to phosphorylate DCX, and mutation of this phosphorylation site (serine 297) 

reduced interaction between DCX and microtubules. Moreover phosphorylated DCX 

localization to the microtubule cage around the nucleus in cortical neurons (Tanaka et al., 

2004b) suggesting that DCX may act to regulate microtubule pulling of the nucleus forward. 

Moreover it was shown that DCX can interact with Lis1 biochemically (Caspi et al., 2000) 

and DCX expression can rescue the migration defect caused by lis1 reduction in cerebellar 

granule neurons (Tanaka et al., 2004a). More specifically DCX expression rescued the 

dissociation of centrosome/nucleus coupling caused by Lis1 and dynein reduction 

suggesting that DCX could facilitate their association with the cage around the nucleus and 

thereby regulate nucleokinesis and neuronal migration (Tanaka et al., 2004a). These data 

provide a mechanism whereby Lis1 couples with DCX to regulate nucleokinesis. 

 

Regulators of actin dynamics and radial migration  

 As one might expect, the regulation of actin polymerization is required for proper 

cortical development. Mutation of the actin bundling protein, filamin A, results in 

periventricular heterotopia (Fox et al., 1998). This appears to be due to a migration defect 
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that causes accumulation of neurons in the ventricular zone (Fox et al., 1998). Filamins are 

thought to act as actin bundling proteins and allow the association of F-actin with plasma 

membrane (Stossel et al., 2001). Careful studies in migrating cortical neurons have begun to 

determine exactly how filamins might regulate migration during cortical development. First, 

the actin binding activity of filamin A is required for its ability to regulate radial migration 

(Nagano et al., 2004). Interestingly, these cells displayed a round shape with no leading 

process extending from the cell body suggesting that f-actin bundling and stabilization may 

be required for proper leading process formation (Nagano et al., 2004). In addition, time-

lapse analyisis of neurons expressing this actin binding deficient mutant of filamin a, showed 

that indeed leading processes were produced however they were extremely dynamic and 

cells never transitioned to a bipolar state (Nagano et al., 2004). Since impairment of filamin 

A activity inhibited leading process formation, it was plausible to think that increased filamin 

A may cause more efficient leading process formation. Cortical neurons seem to tightly 

regulate the levels of filamin A present in the cells since it was found that Filamin A 

expression levels in cortical neurons was tightly regulated by the protein FILIP (Filamin A 

interacting protein) (Nagano et al., 2002). FILIP expression was shown to decrease Filamin 

A levels in cells and expression of FILIP siRNA or overexpression Filamin A lead to 

increased radially oriented leading processes (Nagano et al., 2004). Moreover, time-lapse of 

FILIP siRNA treated neurons showed increased transition from multipolar to bipolar state 

suggesting that increased filamin A promotes a radially oriented leading process. In addition 

to filamin A, the actin severing protein, cofilin, was recently shown to be required for radial 

migration (Bellenchi et al., 2007). The genetic deletion of cofilin resulted in cortical 

laminaiton defects (Bellenchi et al., 2007). These defects were due to effects both on cell 

division and migration. Moreover, Kawauchi et al, showed that expression of dominant 

negative cofilin resulted in impaired radial migration (Kawauchi et al., 2006). 
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 Finally, Ena/Vasp proteins have recently been shown to regulate cortical 

development. Deletion of Ena/Vasp proteins inhibited neurite initiation in cortical neurons. In 

addition, these mutants demonstrated thicker cortical layers where Ena/Vasp null cells 

migrated past wild type neurons, suggesting that migration is enhanced in these cells 

(Kwiatkowski et al., 2007). This is consistent with the role of Ena/Vasp proteins in fibroblast 

migration since reduction of Ena/Vasp actiivty in fibroblast results in increase leading edge 

persistence and an increase rate of cell migration (Bear et al., 2000; Bear et al., 2002). 

Taken together, these data suggest an important role for the regulation of actin dynamics in 

migrating neurons, however there is much work needed to understand exactly how the 

dynamics are regulated and the specific role that actin is playing in radial migration.  

Membrane deforming proteins and their potential rol e in neuronal migration 

Recently, in addition to the well-established role of the cytoskeleton in producing 

forces to generate plasma membrane protrusions and invaginations, many membrane-

associated proteins have also been shown to directly sculpt and deform biological 

membranes.  It is now generally accepted that there are many different forms of membrane 

remodeling controlled by specialized families of proteins which regulate a vast array of 

important biological processes such as (1) endomembrane trafficking, exocytosis and 

membrane fusion as well as (2) plasma membrane deformation including membrane 

protrusions(lamelipodia and filopodia dynamics) and membrane invaginations (endocytosis, 

macropinocytosis, etc…) (Fig. 1.4E-F ; reviewed in (Doherty and McMahon, 2008)). 
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Figure 1.4. Mammalian BAR superfamily of membrane-d eforming proteins. (A) Diagram 

adapated from (Doherty and McMahon, 2008) showing the different protein families involved in direct 

or indirect membrane deformation. The red square show the BAR-superfamily. (B-D) Domain 

structure of all members of the BAR/N-BAR (B), F-BAR (C) and I-BAR (D) subfamilies of proteins. (E) 

Ribbon-diagram representation of the crystallized dimers of these subfamilies (from left to right the F-

BAR domain of FCHo2, the BAR domain of Amphiphysin and I-BAR domain of IRSp53 (Scita et al., 

2008). The amino acid residues shown in blue correspond to the lysine (K) or arginine (R) which are 

positively charged residues that confer binding to negatively charged phophlipids at the plasma 

membrane. Note that they are located in the concave side of F-BAR and BAR examples, but on their 

convex side of the I-BAR example. This is thought to be the main structural basis of the membrane 

tubulation and invagination (endocytic sites) for F-BAR and BAR/N-BAR domains as well as 
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membrane protrusion and filopodia formation for I-BAR domains (F). Note that several other predicted 

F-BAR containing proteins (including PSTPIP1-2 and GAS7) are potent inducers of filopodia 

formation in various cell lines (stars in C-F;) (Chitu et al., 2005; Chitu and Stanley, 2007; She et al., 

2002)}.  Panels in B is adapted from (Itoh and De Camilli, 2006) and panels in E-D-F are modified 

from (Scita et al., 2008). 
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These proteins generate membrane curvature through insertion of hydrophobic or 

amphiphatic motifs into the membrane to induce bilayer asymmetry and through the 

formation of membrane-bound protein scaffolds with intrinsic curvature (Itoh and De Camilli, 

2006). I will now review the current knowledge on one of the protein superfamiles, the BAR 

domain-containing proteins. 

 

BAR domain superfamily: regulators of membrane curv ature involved in 

membrane invagination and membrane protrusion 

• The BAR (Bin, Amphiphysin, Rvs) domain superfamily is a large family (>30) of 

proteins playing central roles in membrane remodeling in all eukaryotes (Fig. 1.4B ). 

Mutations in genes encoding BAR domain proteins have been linked to several diseases 

(Billuart et al., 1998; Endris et al., 2002), and inactivation of these proteins in cells and 

animals is often characterized by severe phenotypes resulting from altered membrane 

dynamics (reviewed in (Itoh and De Camilli, 2006; Scita et al., 2008)). Based on 

structural features and phylogenetic relationships, the BAR domains can be divided into 

distinct subfamilies (Frost et al., 2007). The canonical BAR domain is a dimeric module, 

where three kinked antiparallel α-helices of each monomer form a banana-shaped 

dimeric 6-helix bundle (Peter et al., 2004). BAR domains interact with cellular 

membranes through their concave surface, which typically contains charged amino 

acids. A subset of BAR domains (N-BARs) also contain an N-terminal amphiphatic helix 

that folds upon membrane interaction and penetrates into the bilayer. In a number of 

proteins, the BAR domain is also functionally linked to other membrane-binding motifs 

such as PH or PX domains  (Itoh and De Camilli, 2006). Thus, although the curved 

shape of BAR domains appears to be critical for membrane tubulation, in many cases 

the membrane curvature- sensing/generation activity is enhanced by additional lipid-
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binding motifs (Itoh and De Camilli, 2006). 

• F-BAR domains (Fig. 1.4C ) were originally identified as a FER-CIP4 homology 

(FCH) domain in the N-terminal region of many actin-regulating proteins. Subsequent 

studies by Pietro DeCamilli’s group and others revealed (1) most FCH-containing 

proteins contain a coiled-coil (CC) region at variable distance from the C-terminal end of 

the FCH domain and (2) overall secondary structure homology between [FCH+CC] and 

BAR domains and demonstrated that the combination of FCH+CC domains or F-BAR 

(FCH and BAR) domains tubulate membranes in vitro and in vivo like BAR domains (Itoh 

et al., 2005; Tsujita et al., 2006). The structure of F-BAR domain differs from the 

canonical BAR domain by containing five α-helices per monomer. Importantly, being 

more elongated and gently curved (Fig. 2E), F-BAR domains induce larger-diameter 

membrane tubules in comparison to BAR domains (Henne et al., 2007; Shimada et al., 

2007). A recent cryo-EM study demonstrated that F-BAR domains self-assemble into a 

helical coat around the membrane tubules, providing evidence that these domains use a 

combination of scaffolding and cooperative assembly to induce membrane curvature 

(Frost et al., 2008).  

• The I-BAR domain (Fig. 1.4D ), which is also known as IM (IRSp53/MIM 

homology) domain, was first identified as an F-actin crosslinking domain at the N-

terminal region of mammalian IRSp53 and missing-in-metastasis (MIM) proteins 

(reviewed in (Mattila and Lappalainen, 2008; Scita et al., 2008)). However, subsequent 

studies suggested that I-BAR/IM domains do not significantly crosslink actin filaments 

under physiological conditions and revealed that the domain displays structural 

homology to BAR domains. I-BAR/IM monomer consists of three α−helices that dimerize 

into an antiparallel structure, which resembles a zeppelin or inverse BAR (I-BAR) 

domain shape. Biochemical studies demonstrated that I-BAR domains of MIM and 
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IRSp53 directly bind and deform membranes into tubules in vitro. However, in contrast to 

the concave-shaped lipid-binding interface of BAR and F-BAR domains, the positively 

charged lipid-binding surface of I-BAR domains displays a convex geometry. This 

provided a possible structural explanation for why I-BAR domains induce membrane 

protrusions rather than invaginations when expressed in cells. However, direct evidence 

for this ‘‘inverse mechanism’’ has not been demonstrated yet. Furthermore, possible 

differences in the membrane deformation properties within the I-BAR domain family are 

likely. 

 

What is the evidence that membrane-deforming proteins may be involved in neuronal 

migration? Interestingly, FBP17, a F-BAR containing protein regulates neurite branching 

downstream of Rnd2 activation (Heng et al., 2008). In addition, a screen for downstream 

transcriptional targets of Ngn2 identified slit-robo GAP2  (srGAP2) as a potential 

downstream transcriptional target of Ngn2 (Mattar et al., 2004). srGAP2 belongs to the 

srGAP family of Rho GTPase activating proteins identified by Yi Rao’s group as cytoplasmic 

interactors of the Robo receptor using a yeast-two-hybrid approach (Wong et al., 2001).  

Analysis of the domain organization of the srGAP family showed that srGAPs possess an N-

terminal F-BAR domain, a RhoGAP domain and a C-terminal SH3 domain. srGAP1-3 

expression is enriched in the developing CNS where they show partially overlapping 

patterns of expression (Fig. 1.5). Interestingly, in the embryonic cortex, srGAP1 is not 

detected whereas srGAP2 and 3 are expressed in progenitors and post-mitotic regions. The 

SH3 domains of srGAPs were shown to associate with mouse formin 1 (Chan et al., 1996). 

The SH3 domain of srGAP2 and srGAP3 have been shown to interact with WASP and 

WAVE respectively (Chan et al., 1996; Linkermann et al., 2009; Soderling et al., 2002) 

placing these molecules in an ideal position to act at the interface between the plasma 
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membrane and the actin cytoskeleton. Finally, recent work has implicated this family in the 

regulation of cell migration since srGAP3 was recently shown to regulate cell migration in 

cancer cells (Simpson et al., 2008). However the role of this family of proteins in the 

regulation of radial migration remains poorly understood. As a result, the focus of this thesis 

is to determine the function of srGAP2 during cortical development and specifically to 

determine its effects on radial migration. 

 
Figure 1.5. Pattern of expression of srGAP1-3 in th e developing telencephalon.  In situ 

hybridization on sagittal sections of E14.5 mouse embryos showing the mRNA expression of srGAP1 

(A), srGAP2 (B) and srGAP3 (C). Rostral is left, dorsal is up. Note that srGAP1 is not expressed at 

detectable level in the cortex (star in A) whereas both srGAP2 and srGAP3 are expressed at higher 

levels in the cortex (arrowheads in B-C).
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INTRODUCTION 
 
During brain development, neural progenitor proliferation, neuronal migration and 

differentiation require considerable changes in cell shape involving coordinated cytoskeletal 

and membrane remodeling (Ayala et al., 2007; Luo, 2002). In particular, during mammalian 

cortical development, neurons born through asymmetric division of radial glial progenitors 

have to migrate over long distances to reach their final destination in the cortical plate where 

they will undergo terminal differentiation, which includes axonal and dendritic growth as well 

as synapse formation. The cellular mechanisms by which cortical neurons migrate involve 

the coordinated extension and adhesion of the leading process (LP) along radial glial 

processes with the forward translocation of the nucleus (Ayala et al., 2007; Lambert de 

Rouvroit and Goffinet, 2001; Tsai and Gleeson, 2005). These events are currently thought to 

primarily depend on centrosome and microtubule dynamics involving the function of proteins 

such as Lis1, Doublecortin, and Nudel among others (Niethammer et al., 2000; Reiner et al., 

1995; Tanaka et al., 2004b; Tsai et al., 2005). However, recent genetic studies have 

identified molecules that regulate leading process morphology and as a consequence, cell 

migration. Specifically, deletion of cyclin dependent kinase 5 (CDK5) (Ohshima et al., 2007) 

or its activator p35 (Gupta et al., 2003) resulted in an increase in LP branching and impaired 

migration. These studies demonstrate a functional link between LP morphology and proper 

neuronal migration. 

 The basis of neurite initiation, outgrowth and branching is rooted in the ability of the 

cytoskeleton to undergo dynamic changes (Luo, 2002). The actin cytoskeleton, in particular, 

has been shown to regulate axon and dendritic outgrowth and branching (Luo, 2002). While 

several different actin structures contribute to these activities, bundled, filamentous actin 

present in filopodia seem to be particularly important for neurite morphogenesis (Gupton 

and Gertler, 2007; Mattila and Lappalainen, 2008). Filopodia have been shown to play a role 
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in growth cone morphology (Burnette et al., 2007; Gallo and Letourneau, 2004) and neurite 

outgrowth (Luo, 2002) and branching (Dent et al., 2004; Gallo and Letourneau, 1998). In 

addition, recent evidence suggests that filopodia formation is required for neurite initiation 

(Dent et al., 2007; Kwiatkowski et al., 2007). Downregulation of the actin anti-cappers, 

ENA/VASP proteins, which are potent inducers of filopodia using either functional 

interference or a genetic approach, resulted in loss of filopodia and failed neurite initiation. 

Interestingly, loss of ENA/VASP proteins also resulted in defects in cortical lamination 

(Kwiatkowski et al., 2007) suggesting a complex functional relationship between filopodia 

formation, neurite initiation and neuronal migration. However, at this point, the molecular 

mechanisms underlying the function of filopodia dynamics in neurite initiation and branching 

during neuronal migration are still poorly understood. 

 Classically, filopodia formation is thought to be dependent on mechanisms that 

regulate actin polymerization at the barbed end of actin filaments and proteins that act to 

bundle branched actin in order to form parallel bundles (Gupton and Gertler, 2007). 

However, recent work has demonstrated that proteins that act on lipids at the plasma 

membrane seem to play a role in filopodia formation as well (Gupton and Gertler, 2007). 

LPR1, a lipid phosphatase related protein, was shown to induce filopodia independent of 

many of the classical filopodia pathways including ENA/VASP proteins and Cdc42 and its 

effectors (Sigal et al., 2007). In addition, IRSp53, a protein known to bind to and deform 

phospholipids membrane has also been shown to induce filopodia formation independent of 

its ability to bundle F-actin (Mattila et al., 2007). These and other recent results strongly 

suggest that changes in cell shape including filopodia dynamics or membrane invagination 

and endocytosis require the function of membrane binding proteins that couple membrane 

deformation and F-actin dynamics. However, the functions of proteins that deform 

membranes in the form of protrusions in vivo, remain poorly understood.  
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Here we identify slit-robo GTPase Activating Protein (srGAP2) as a potent inducer of 

filopodia in neurons and an important regulator of neuronal migration and morphogenesis. 

srGAP2 is expressed throughout the cortex during and after radial migration (Mattar et al., 

2004; Yao et al., 2008). It contains three functional domains: a predicted FCH-

Bin/Amphiphysin/Rvs domain (F-BAR domain), Rho GTPase accelerating/activating (GAP) 

domain, and a Src Homology 3 (SH3) domain. Crystal structures of the F-BAR domains of 

FBP17, CIP4, and FCHo2 demonstrated that these domains are elongated homodimers 

characterized by a shallow curvature formed by the anti-parallel interaction of two alpha-

helical coiled coils (Henne et al., 2007; Shimada et al., 2007). In addition to sharing the 

general fold and quaternary organization of the BAR domain superfamily as a whole, these 

domains were found to share functional properties with ‘classical’ BAR domains, most 

notably the ability to bind and deform membranes in vitro and in living cells (Frost et al., 

2008; Kakimoto et al., 2006; Shimada et al., 2007). However, to date, the in vivo functions of 

F-BAR domain-containing proteins, including the srGAPs, have not been assessed.  

RhoGAP domains inactivate Rho family GTPases by increasing their relatively slow 

intrinsic rate of GTP hydrolysis. RhoGAP containing proteins are known to regulate cell 

polarity, morphology, and migration in many cell types (Billuart et al., 1998; Moon and 

Zheng, 2003; Ng et al., 2002). Finally, SH3 domains are polyproline-biding motifs mediating 

protein-protein interactions. Interestingly, the SH3 domain of the related proteins, srGAP1 

and srGAP3, have been shown to interact with the Robo1 receptor, a known axon guidance 

receptor (Li et al., 2006; Wong et al., 2001), and the WAVE-1 complex, an actin-

polymerizing complex (Soderling et al., 2002). In addition the SH3 domain of srGAP2 was 

shown to interact with N-WASP (Linkermann et al., 2009) placing the srGAP family of 

proteins in an ideal position to regulate neurite outgrowth.  
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 Here we show that srGAP2’s ability to regulate neuronal migration and morphology 

requires the unexpected ability of its N-terminal F-BAR containing domain to induce 

filopodia-like membrane protrusions resembling those induced by the I-BAR domains of 

IRSp53 and MIM. Interestingly, the RhoGAP and SH3 domains also participate in srGAP2’s 

regulation of neuronal migration. Taken together, these results highlight the functional 

importance of proteins directly regulating membrane deformation for proper neuronal 

migration and morphogenesis. 

 

RESULTS 

 

Expression of srGAP2 in the Developing Cortex 

To begin our study of the role of srGAP2 in cortical development, we first examined 

its pattern of expression. srGAP2 mRNA is expressed throughout the developing cortex and 

is found both in proliferative zones (ventricular and subventricular zones, VZ and SVZ 

respectively) at E13 and E15 and in postmitotic regions (cortical plate, CP) at E15 and P1 

(Fig. 2.1A). In order to determine the pattern of srGAP2 protein expression, we obtained a 

polyclonal antibody raised against the C-terminus of srGAP2 (Fig. 2.1B-C; (Yao et al., 2008). 

srGAP2 protein is expressed throughout cortical development culminating at postnatal day 1 

(P1) corresponding to the peak of neuronal migration in the cortex. Its expression is 

maintained at P15 and reduced, but still present, in adult cortex (Fig. 2.1C).  

srGAP2 expression pattern was examined by immunofluorescent staining showing 

that it is ubiquitously expressed in the cortical wall (Fig. 2.1D ) being found both in Nestin-

positive neuronal progenitors in the VZ (Fig. 1H-J ) and MAP2-positive post-mitotic neurons 

in the CP (Fig. 2.1E-G ). Finally, we determined the subcellular localization of endogenous 

srGAP2 in acutely dissociated E15 cortical neurons. SrGAP2 localizes to the extreme 
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periphery of immature cortical neurons (Fig. 2.1K-M  arrows) and was often localized to F-

actin-rich filopodia-like protrusions (arrowhead in Fig. 2.1K-M  and Fig. 2.1N-P ).  
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Figure 2.1. srGAP2 is expressed in neuronal progeni tors and post-mitotic neurons and 

localizes to sites of membrane protrusion.  

(A) In situ hybridization for srGAP2 in developing cortex at embryonic day (E)13 and E15 and 

postnatal day (P)1. srGAP2 mRNA is expressed within the ventricular and subventricular zones 

where neuronal progenitors are dividing and initiating migration respectively at E13 and E15. It is also 
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found in the cortical plate (CP) at E15 and P1 where neurons differentiate and form axon and 

dendrites. (B) Domain organization of srGAP2 which contains an F-BAR domain, a RhoGAP and a 

SH3 domain from N- to C-terminal ends (1-1045 aa, predicted MW 118kDa). The black bar indicates 

the localization of the antigen (A2, aa 873-890) used to affinity purify the srGAP2-specific polyclonal 

antibody to the C-terminal end of srGAP2 (Yao et al., 2008). (C) Western blot for srGAP2 protein 

levels during cortical development. Cortical lysate where obtained at the indicated time points (E15, 

P1, P15 and Adult) and proteins separated by SDS-PAGE followed by immunoblotting with A2-rabbit 

polyclonal antibody recognizing srGAP2 protein. Blotting against actin is used to verify equal protein 

loading. (D-J) Immunofluorescence staining of srGAP2 protein expression on fixed coronal sections 

of E15 mouse cortex. srGAP2 protein colocalizes (arrowheads) with MAP2 (postmitotic neuron 

marker) in the CP (D-F) and also colocalizes with Nestin (arrowheads) (neuronal precursor marker) in 

the VZ (G-I). (K-P) Immunofluorescence staining of srGAP2 protein in early dissociated cortical 

neuron cultures (E15+ 24 hours in vitro –hiv). srGAP2 protein is found close to the plasma membrane 

of immature cortical neurons (arrow in K-M) and to F-actin-rich filopodia (stained with Alexa546-

phalloidin; arrowheads in K-M and N-P). 
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Full-length srGAP2 and its F-BAR Domain Induce Filo podia Formation 

Over-expression of F-BAR domain-containing proteins such as FBP17 or CIP4 have 

been shown to cause membrane invagination and tubulation in cell lines (Itoh et al., 2005; 

Tsujita et al., 2006). To determine if srGAP2 and its predicted F-BAR domain had similar 

properties, we expressed srGAP2 in COS7 cells. Surprisingly, expression of srGAP2 did not 

induce any membrane invaginations but instead, induced filopodia formation (Fig. 2.2D-F, 

2.2P). This effect requires its F-BAR domain since deletion of the F-BAR domain 

(srGAP2• ∆F-BAR-EGFP) resulted in normal COS7 cells morphology (Fig. 2.2G-I, 2.2P).  

Interestingly, expression of the F-BAR domain of srGAP2 did not inhibit endocytosis, 

assessed using Alexa546-Transferrin uptake assay (Fig. 2.3), as do the F-BAR domains of 

FBP17 and CIP4 (Itoh et al., 2005). Furthermore, expression of the isolated F-BAR domain 

fused to EGFP induced filopodia formation just as full-length srGAP2 (Fig. 2.2J-K, 2.2P ). Of 

note, the F-BAR domain is a very potent membrane-targeting motif (Fig. 2.2J ). These data 

suggest that the F-BAR domain of srGAP2 is necessary and sufficient for membrane 

localization and the induction of filopodia-like membrane protrusions.  

In order to distinguish the membrane targeting function of the F-BAR domain from its 

membrane deformation activity, we identified a small truncation of the C-terminal 49 amino-

acids of the F-BAR domain (corresponding to two short alpha-helices in the C-terminal part 

of the F-BAR domain) that we called F-BAR⊗∆49  (Fig. 2.4A ). Expression of F-BAR⊗∆49-EGFP 

in COS7 cells results in membrane targeting but fails to elicit filopodia formation in COS7 

cells (Fig. 2.2M-O, 2.2P ). We do not know the structural basis for the inability of this 

truncation to elicit filopodia formation but it may be due to an effect on oligomer formation 

since it is thought that the c-terminal end of F-BAR domains are required for this activity. 

Interestingly, these 49 amino acids reside in α6-8 (Fig. 2.4A ) within the srGAP family that is 

C-terminal to the minimal, predicted F-BAR domain (amino acids 1-358, Fig. 2.4B ) 
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suggesting that the F-BAR domain of srGAP2 may contain additional sequences. Indeed, 

we were unable to obtain stable protein expression of the minimal F-BAR domain. 

Furthermore, as shown for other F-BAR domains (Frost et al., 2008; Itoh et al., 2005; 

Kakimoto et al., 2006; Shimada et al., 2007), srGAP2 forms a stable dimer in solution as 

assessed by light scattering assays (Fig. 2.4C ) and deletion of the FCH domain (green box 

Fig. 2.4A ) which represents a significant portion of the dimerization interface, destroys the 

ability of srGAP2 to induce filopodia formation in COS7 cells (data not shown). Altogether, 

these data suggest that all 8 alpha helices are likely to be required for formation of the 

functional F-BAR domain of srGAP2. 
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Figure 2.2. SrGAP2 induces filopodia formation in a  F-BAR-dependent manner in COS7 cells. 

(A-C) COS7 cell expressing EGFP counter stained with phalloidin for F-actin (red).  

(D-F) COS7 cell expressing srGAP2-EGFP fusion protein for F-actin-rich filopodia (arrowheads in D-

F). 
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(G-I) Expression of srGAP2∆∆F-BAR-EGFP fusion protein does not promote filopodia formation.  

(J-L) Expression of the F-BAR-EGFP fusion protein is sufficient to promote filopodia formation in 

COS7 cells. Note the significant increase in membrane targeting extreme periphery of the cell (J-L) 

and induces the formation of long actin rich protrusions (J-L) like full-length srGAP2. Thus expression 

of the F-BAR domain of srGAP2 is sufficient to induce filopodia. Moreover this activity is not simply 

dependent on localization to the plasma membrane since expression F-BAR∆∆49-EGFP (M-O), which 

localized nicely to the plasma membrane, did not cause a significant increase in filopodia.  

(P) Quantification of the effects described in A-O. (EGFP, n=41 cells; srGAP2-EGFP, n=52 cells; 

srGAP2∆∆F-BAR-EGFP, n=21 cells; F-BAR-EGFP, n=21 cells; F-BAR∆∆49-EGFP, n= 15 cells. Cells were 

taken from 3 independent experiments and analyzed using Mann-Whitney Test * p<0.05; ** p<.001; 

*** p<0.001. Green color indicates comparison to EGFP and blue color indicates comparison to 

srGAP2-EGFP and orange indicated comparison to F-BAR-EGFP) 
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Figure 2.3. Expression of the F-BAR domain of srGAP 2 in COS7 cells does not inhibit 

endocytosis. 

(A-D) COS7 cells expressing the F-BAR-EGFP fusion protein were incubated with Alexa 647-

conjugated transferrin then fixed and permeabilized and stained with Alexa546-phalloidin to label F-

actin (B). This transferrin-uptake assay reveals no significant difference in the level of endocytosis 

between F-BAR-EGFP-expressing cells (white arrowheads in D) and untransfected cells (blue 

arrowheads in D).  

(E-H) COS7 cells expressing DynaminK44A-EGFP (dominant negative) were used as a positive control 

for inhibition of endocytosis as these cells were unable to endocytose transferrin (white arrowheads in 

H).  
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Figure 2.4. SrGAP2 is an F-BAR domain containing pr otein.  

(A) Sequence alignment of the srGAP family from various species. Residues labeled in white on black 

background are identical. Red residues represent groups of conserved amino acids. SrGAP2-specific 

insertion is boxed in red. Predicted alpha-helices are depicted as red bars (secondary structure 

prediction was obtained using hhpred (Soding et al., 2005) (http://toolkit.tuebingen.mpg.de/hhpred) 

and Bioinfobank metaserver (http://meta.bioinfo.pl). The F-BAR domain is defined by the alpha 

helices 2-4. However, three additional alpha-helices are predicted C-terminal of the ‘minimal’ F-BAR 

domain and precede the GAP domain.  

(B) Structural alignment of mouse srGAP2 with representative mouse F-BAR domains was performed 

using PromalS3D (Pei et al., 2008) (http://prodata.swmed.edu/promals3d/promals3d.php) and 

hhpred. Residues colored white on black background are identical between sequences. Red residues 

represent conserved groups of amino acids. Red stars depict amino acids shown to reside at the 

dimer interface. Green boxes represent FCH domain as defined by SMART (/smart.embl-
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heidelberg.de/). Purple boxes represent predicted coiled coil. Red box identifies srGAP-specific 

insertion.  

(C) Top panel: purified full-length srGAP2 protein (aa 1-786 containing F-BAR, GAP and SH3 

domains) (300 g) was loaded onto a Superose 6 column and separated by size exclusion 

chromatography. Lower panel: expanded view of the light scattering curve (red) in brackets, with the 

predicted molar mass depicted in cyan. The molecular weight of srGAP2 in solution was determined 

to be 175.8 kDa by fitting the molar mass curve to a linear function using Astra software. 
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The F-BAR domain of srGAP2 deforms membrane like an  I-BAR domain 

The ability of srGAP2 or its F-BAR domain to induce filopodia in COS7 cells is 

reminiscent of the activity of the structurally related, Inverse (I)-BAR domain-containing 

proteins such as IRSp53 and Missing-in-Metastasis (MIM) (Mattila and Lappalainen, 2008; 

Mattila et al., 2007; Saarikangas et al., 2009; Scita et al., 2008). The filopodia induced by I-

BAR domains are dependent upon their ability to interact with and to deform the membrane 

(Mattila et al., 2007). Interestingly, F-actin depolymerization prevents the dynamics and 

formation of new filopodia but does not affect the maintenance of pre-existing filopodia 

induced by the I-BAR domains of IRSp53 or MIM (Mattila et al., 2007). We tested if this 

property of I-BAR proteins is shared by srGAP2 and its F-BAR domain. Untreated COS7 

cells expressing the F-BAR domain of srGAP2 developed F-actin rich filopodia (Fig. 2.5A-

C). While COS7 cells treated with cytochalasin-D were depleted of F-actin, this treatment 

had no effect on membrane localization of the F-BAR domain or on the maintenance of 

filopodia-like protrusions (Fig. 2.5D-F ).  

We next wanted to determine if the dynamics of the filopodia induced by srGAP2 

were dependent on F-actin. F-BAR-induced filopodia were highly dynamic in COS7 cells 

protruding and retracting within less than a minute (Fig. 2.5H-2K , and Movie S1 ). In 

contrast, F-BAR-induced filopodia formed prior to cytochalasin-D treatment were totally 

resistant to F-actin depolymerization (Fig. 2.5L-O, and Movie S2 ). These data suggest that 

the F-BAR domain of srGAP2 functions as an I-BAR domain in living cells, by inducing 

filopodia that require F-actin for their dynamics but is independent of F-actin for their 

structural maintenance. 

In order to directly test the membrane deformation properties of the F-BAR domain of 

srGAP2, we incubated purified F-BAR domain with preformed liposomes. As visualized by  
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negative stain transmission electron microscopy (TEM), this did not result in liposome 

outward tubulation as has been reported for other F-BAR domains (see control experiment 

using F-BAR domain of FBP17 added to an intact, preformed liposome Fig. 2.6 ). Rather, the 

F-BAR domain of srGAP2 induced an inward dimpling or “scalloping” of the liposome 

surface (Fig. 2.5P-Q ), which is reminiscent of the activity of I-BAR domains in the same 

conditions (Suetsugu et al., 2006), suggesting that F-BAR domain of srGAP2 can induce 

“inverse” membrane tubulation.  

This suggested the possibility that if the purified F-BAR domain of srGAP2 could be 

exposed to the inside surface of liposomes, then protrusive tubules would form (Fig. 2.5R). 

To test this hypothesis, mixtures of the F-BAR domain with intact, large unilamellar vesicles 

(LUVs) were briefly sonicated (5sec) which presumably resulted in transient pore formation 

in liposomes and introduction of the recombinant F-BAR inside LUVs. Following a wash, 

liposomes were fixed, negatively stained and imaged using TEM. As predicted by the I-BAR 

model, this resulted in numerous long tubular extensions emerging from LUVs (Fig. 2.5S ). 

Consistent with the dimensions of tubules induced by other members of the F-BAR and I-

BAR families (Frost et al., 2008; Mattila et al., 2007), the srGAP2 F-BAR-induced tubules 

were 83 nm +/- 15 nm (average +/- SD, n=38) in diameter when imaged after variable 

degrees of “flattening” in negative stain conditions. Importantly, at higher magnification, the 

tubules observed by negative staining electron microscopy after sonication do no have an 

obvious protein coat surrounding the liposomes (Fig. 2.5S ). This is in contrast with tubules 

observed by other F-BAR and BAR domains that are known to coat the outer surface of the 

tubule as shown in Fig. 2.6  (Frost et al., 2008; Shimada et al., 2007). Together, these 

results suggest that unlike previously characterized F-BAR domains, the F-BAR domain of 

srGAP2 induces tubular extensions, not invaginations, of the membrane and is therefore a 

potent inducer of filopodia-like membrane protrusions comparable to the recently 
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characterized I-BAR domain-containing proteins MIM and IRSp53 (Mattila et al., 2007; 

Suetsugu et al., 2006). 

 

Figure 2.5. F-BAR induced filopodia required F-acti n for their dynamic formation but not for 

their structural maintenance. 
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(A-C) COS7 cell expressing the F-BAR-EGFP fusion protein not treated with cytochalasin D (control). 

Note the cortical localization of the F-BAR domain and the numerous F-actin-rich filopodia (phalloidin 

in B and C). 

(D-F) COS7 cell expressing the F-BAR-EGFP fusion protein incubated with 400µM cytochalasin D for 

30 minutes. Note that the complete loss of F-actin (phalloidin; E) had no effect on the localization of 

the F-BAR domain or on the structure of the F-BAR mediated protrusions.  

(H-K) Time series showing the dynamics of F-BAR-EGFP-induced filopodia in COS7 cells. Time 0, 5, 

and 10 minutes are pseudo-colored in red, green, and blue respectively. Note there is little 

colocalization of filopodia at the cell periphery (K). This is in stark contrast to COS7 cells expressing 

F-BAR-EGFP treated with cytochalasin- D (30 minutes) (L-O) where the protrusions remain static and 

do not grow or retract for the same period of time shown in control cells.    

(P) Schema depicting tubulation assay in Q. 

(Q) F-BAR domain of srGAP2 added to preformed liposomes. Note the inward dimpling or 

“scalloping” of the liposome surface. (R) schema depicting tubulation assay in (S) where F-BAR 

domain of srGAP2 was added to liposomes after extrusion. This results in a fraction of the F-BAR 

domain resident inside the liposome. Note the formation of tubule protrusion from the liposome. 

(S) High magnification of liposome/F-BAR mixture after sonication. Note the absence of striations or 

an obvious protein coat on the lipid tubule, a hallmark of canonical F-BAR tubulation. These tubules 

are 83 nm +/- 15 nm (average +/- SD, N=38) after being partially flattened by the negative staining 

procedure. 
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Figure 2.6. Control FBP17 F-BAR tubulates liposome.  

A) F-BAR domain of FBP17 incubated with preformed liposomes. 
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srGAP2 regulates neurite formation and branching th rough the ability of its F-

BAR domain to form filopodia 

The effects of srGAP2 on COS7 cells and liposomes as well as its localization to the 

cell periphery in dissociated cortical neurons prompted us to ask if srGAP2 is required for 

proper neuronal morphology. Therefore we first tested the function of srGAP2 in neuronal 

morphogenesis by designing short-hairpin interfering RNA (shRNA) in order to acutely 

knockdown srGAP2 expression (Fig. 2.7A ). We found that srGAP2 knockdown in E15 

cortical neurons led to a significant decrease in both axonal (Fig. 2.7C-D and 2.7F ) and 

dendritic branching after 5 div (Fig. 2.7G-H and 2.7J ). Both of these effects were rescued by 

co-transfection of an untargetable version of srGAP2 (Fig. 2.7E and 2.7I; 2.7F and 2.7J ) 

demonstrating that this is not an off-target effect. The fact that srGAP2 knockdown reduced 

branching in cortical neurons, a process previously shown to require filopodia formation 

(Dent et al., 2004), suggest that srGAP2 may promote neurite branching through its ability to 

induce filopodia in neurons. 

In order to determine if srGAP2 promoted filopodia formation and neurite initiation and 

branching through its F-BAR domain, we performed structure/function analysis using 

electroporation of E15 cortical progenitors with various srGAP2 constructs followed by 

dissociation, which induces rapid differentiation. First, we restricted our analysis to Stage 1 

neurons (Dotti et al., 1988), which corresponds to the time point when immature neurons 

produce a significant number of filopodia-like protrusions (Dent et al., 2007; Kwiatkowski et 

al., 2007). Our analysis confirmed our previous results in COS7 cells, showing that 

expression of full-length srGAP2 induced a significant increase in filopodia-like protrusions 

in Stage 1 cortical neurons compared to control EGFP (Fig. 2.8A-B and 2.8F ). This effect 

requires the F-BAR domain since deletion of the F-BAR domain (srGAP2∆F-BAR) significantly 

reduced the ability of srGAP2 to induce filopodia in Stage 1 neurons (Fig. 2.8C and 2.8F ). 
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As in COS7 cells, expression of the F-BAR domain alone potently induced filopodia 

formation (Fig. 2.8D and 2.8F ). Again, the effect of the F-BAR domain requires its 

membrane deformation properties and not simply its membrane targeting property since 

expression of F-BAR∆49 does not induce filopodia in Stage 1 cortical neurons (Fig. 2.8E and 

2.8F) and instead induces large lamellipodia (arrowhead in Fig. 2.8E ). These data suggest 

that srGAP2, through its F-BAR domain, induces filopodia in primary cortical neurons. 

We then analyzed Stage 2 neurons defined by the presence of short neurites prior 

the polarized emergence of a single axon (Dotti et al., 1988) in order to test if srGAP2 and 

its F-BAR domain were sufficient to promote the transition between filopodia-like membrane 

protrusions and elongating neurites.  As shown in Figure 2.8G-K , both full-length srGAP2 

and the F-BAR domain significantly increased the total number of primary neurites emerging 

from the cell body as well as the number of primary branches per neurite (Fig. 2.8L ). 

Expression of srGAP2∆F-BAR as well as F-BAR∆49 fail to increase primary neurite number and 

neurite branching compared to control EGFP (Fig. 2.8G and 2.8K and 2.8L ) showing that (i) 

the F-BAR domain is sufficient to increase neurite initiation and branching and (ii) that the 

membrane deformation properties of the F-BAR domain are required for srGAP2’s ability to 

induce neurite initiation and branching.  



47 

 

Figure 2.7. Knockdown of srGAP2 in cortical neurons  reduces axonal and dendritic branching. 

(A) Western blot probed with ant-GFP and anti-actin antibodies from COS7 cells co-transfected with 

either control shRNA plus srGAP2-EGFP (lane 1), srGAP2 shRNA plus srGAP2-EGFP (Dha2, lane 2) 

or (Dha5, lane3) (B) Western blot probed with anti-GFP and anti-actin antibodies from COS7 cells co-

transfected with either control shRNA plus srGAP2-EGFP (lane 1), srGAP2 shRNA plus srGAP2-

EGFP (lane 2), a mutated form of srGAP2*-EGFP (resistant to srGAP2 shRNA) plus control shRNA 

(lane 3), or srGAP2*-EGFP plus srGAP2 shRNA (lane 4). srGAP2 shRNA significantly knocks down 

srGAP2 expression compared to control shRNA which can be rescued by expression of srGAP2*-

EGFP (compare lanes 3 and 4). 

(C-E, G-I) E15 dissociated cortical neurons were cultured for 4 days after ex vivo electroporation with 

control shRNA, srGAP2 shRNA, or srGAP2 shRNA + srGAP2*-EGFP. Control shRNA transfected 
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neurons display frequent primary branches from the axon (arrowheads in B) and the primary dendrite 

(arrowheads in F). Both effects were markedly reduced in srGAP2 shRNA transfected neurons (D 

and H) and rescued by co-transfection of srGAP2 shRNA with srGAP2*-EGFP (E and I). 

(F) Quantification of the number of branches from the longest neurite (axon) as shown in C-E. 

(J) Quantification of the number of primary dendritic branches as shown in G-I. (ctl shRNA, n=42 

cells; srGAP2 shRNA, n=95 cells; srGAP2*-EGFP + srGAP2 shRNA, n=39 cells. Cells were taken 

from 3 independent experiments and analyzed using Mann-Whitney Test p<.05 = , p<.01=**, 

p<.001=***). 
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Figure 2.8. srGAP2 promotes filopodia formation and  neurite outgrowth in an F-BAR 

dependent manner. 

(A-E) Stage 1 cortical neurons expressing various srGAP2 constructs. All cells are stained with β-III 

tubulin to indicate that it is a neuron and phalloidin to visualize F-actin. 

Control stage 1 neurons (EGFP (A)) normally display filopodia at cell periphery. However expression 

of srGAP2-EGFP (B, white arrow) significantly increased the number of filopodia. This effect required 
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the F-BAR domain since srGAP2∆F-BAR-EGFP (C) expressing cells displayed filopodia at control levels 

whereas expression of F-BAR-EGFP (D) displayed a significant number of filopodia. This was not 

simply sue to the F-BARs ability to localize to the membrane (D) since F-BAR∆49 (E) localized nicely 

to the plasma membrane but did not cause an increase in the number of filopodia. 

(F) Quantification of filopodia per micron in all conditions. Note srGAP2 and F-BAR are potent 

inducers of filopodia formation while srGAP2∆F-BAR and F-BAR∆49 are not. (EGFP n= 20 cells; srGAP2-

EGFP n= 21 cells; srGAP2∆F-BAR-EGFP n= 20 cells; F-BAR-EGFP n= 20 cells; F-BAR∆49-EGFP n= 20 

cells. Cells were taken from 3 independent experiments and analyzed using Mann-Whitney Test * 

p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to EGFP and blue color indicates 

comparison to srGAP2-EGFP) 

(G-K) Stage 2 cortical neurons expressing various srGAP2 constructs. All cells are stained with β-III 

tubulin to indicate that it is a neuron and phalloidin to visualize F-actin. EGFP (G) expressing neurons 

and stage 2 display several neurites (white arrows) and some branching. Expression of srGAP2 (H) 

caused a significant increase in both neurite formation  (white arrows) and branching (white 

arrowheads). Similar to stage 1, expression of the F-BAR domain alone (J) also increased neurite 

formation  (white arrows) and branching (white arrowheads), while deletion of the F-BAR domain in 

full length srGAP2 (I) or expression of F-BAR∆49 (K) did not increase primary neurite number or 

branching.  

(L) Quantification of neurite number per cell in all conditions and primary branch number per neurite. 

Note srGAP2 and F-BAR are potent inducers of neurite outgrowth while srGAP2∆F-BAR and F-BAR∆49 

are not. (EGFP n= 21 cells; srGAP2-EGFP n= 23 cells; srGAP2∆F-BAR-EGFP n= 23 cells; F-BAR-

EGFP n= 20 cells; F-BAR∆49-EGFP n= 20 cells. Cells were taken from 3 independent experiments 

and analyzed using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001. Green color indicates 

comparison to EGFP and blue color indicates comparison to srGAP2-EGFP) 
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Reduction of srGAP2 expression promotes neuronal mi gration 

 To determine more generally the function of srGAP2 during cortical development, we 

introduced our shRNA constructs directed against srGAP2 (Dha2 and Dha5; Fig. 2.7A ) into 

radial glial progenitors at E15 using ex vivo electroporation coupled with organotypic slice 

culture (Hand et al., 2005). This assay represents a powerful tool to test the role of specific 

genes in neuronal migration and differentiation. Interestingly, after 3 days in culture, at a 

time point when only few control-shRNA electroporated neurons have migrated (Fig. 2.9A  

and 2.9C-D), slices expressing srGAP2 shRNA showed a significant increase in the 

percentage of neurons that have reached the dense cortical plate (dCP) and a 

corresponding decreased percentage of neurons in the intermediate zone (IZ) (Fig. 2.9B, 

and 2.9C-D) suggesting that reduction of srGAP2 expression promoted radial migration.  

We next wanted to directly determine if srGAP2 knockdown increased neuronal 

migration by regulating the rate of neuronal translocation. To do this we used time-lapse 

confocal microscopy to visualize neurons coexpressing nuclear-(n) EGFP (to ease cell 

tracking) and control (Fig. 2.9E-H and Movie S3 ) or srGAP2 shRNA (Fig. 2.9E-L and 

Movie S4 ) in slice culture. We observed that srGAP2 shRNA expressing neurons migrated 

approximately 23% faster than those expressing control shRNA (Fig. 2.9M ) suggesting that 

reduction of srGAP2 increased cell speed. 

Excessive LP branching in migrating cortical neurons can have strong inhibitory 

effects on neuronal migration (Gupta et al., 2003; Ohshima et al., 2007). As a result we 

wanted to determine if knockdown of srGAP2 reduced LP branching. Indeed, high 

magnification reconstruction of the morphology of control shRNA or srGAP2 knockdown 

neurons in layers 5/6 co-transfected with cytoplasmic EGFP, showed that their LP was 

significantly less complex, less branched when compared to control migrating neurons (Fig. 
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2.9N-P). Control neurons displayed approximately twice as many LP branches compared to 

srGAP2 shRNA-expressing neurons (Fig. 2.9P). These data strongly suggest that srGAP2 

may negatively regulate the rate of radial migration by regulating LP branching and 

dynamics.  

 



53 

Figure 2.9. Knockdown of srGAP2 promotes neuronal m igration and reduces leading process 

branching. 

(A) E15 cortical slices cultured for 3 days after electroporation with EGFP + control shRNA. Slices 

were stained with anti-Nestin antibody revealing radial glial scaffold and Draq5 to illustrate 

cytoarchitecture. Note that neurons have just begun to migrate but have yet to reach the cortical 

plate. 

(B) E15 cortical slices cultured for 3 days after electroporation with EGFP + Dha2 (B, top panel) or 

Dha5 (B lower panel). Slices were stained with anti-Nestin antibody revealing radial glial scaffold and 

Draq5 to illustrate cytoarchitecture. Note that knockdown of srGAP2 using either Dha2 or Dha5 

shRNA decreased the number of migrating neurons found in the IZ and compared to CP at 3div 

compared to control. 

(E-L) E15 cortical slices cultured for 2 days ex vivo after electroporation with Nuclear EGFP (3NLS) 

along with control shRNA (E-H) or srGAP2 shRNA (I-L) were imaged using time-lapse confocal 

microscopy. Neurons transfected with srGAP2 shRNA undergo faster translocation within 4 hrs (I-L 

and no colocalization in L) than control shRNA-transfected neurons.  

(M) Quantification of effects of srGAP2 knockdown on cell speed. SrGAP2 knockdown cells migrated 

approximately 23% faster (6.91 microns/h compared to 5.59microns/h) compared to control shRNA-

transfected neurons. (ctl shRNA, n=95 cells; srGAP2 shRNA n=84 cells. Cells were taken from 3 

independent experiments and analyzed using Mann-Whitney Test p<.05 = * , p<.01=**, p<.001=***). 

(N) High magnification images of control shRNA (left panel) or srGAP2 shRNA (right panel) 

expressing neurons from layers 5/6. Note the branched morphology of the leading process of control 

shRNA expressing neurons (red arrowheads pointing to leading process tips) whereas srGAP2 

shRNA expressing neurons displayed a much simpler, unbranched morphology (green arrowhead 

pointing to single leading process tip). This type of morphology could lead to more rapid cell 

migration. 

(O) Computer-based reconstruction of representative quantified control and srGAP2 shRNA 

expressing neurons demonstrating the leading process branching effect. 

(P) Quantification of the average leading process branch number in control or srGAP2 shRNA 

expressing neurons. (ctl shRNA, n=19 cells; srGAP2 shRNA n=17 cells. Cells were taken from 3 

independent experiments and analyzed using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001). 

Note the difference in the overall distribution of the box plot for each condition. 
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The F-BAR domain is necessary and sufficient for sr GAP2-mediated inhibition 

of radial migration 

 Since reduction of srGAP2 expression enhanced migration and reduced LP 

branching, we hypothesized that over-expression of srGAP2 or its F-BAR domain should be 

sufficient to block migration by increasing filopodia formation and LP dynamics. Indeed, 

overexpression of srGAP2 severely inhibited radial migration compared to control EGFP-

expressing slices electroporated at E15 and cultured for 5 div (Fig. 2.10E-H ). We first 

quantified the extent of migration by determining the average number of neurons per unit 

surface area in the CP, where pyramidal neurons complete migration and in the IZ, where 

they initiate migration (see Fig. 2.11  for definition of the cytoarchitecture of the slices at 

5div). This CP/IZ ratio (Fig. 2.10U ) is significantly decreased by srGAP2 overexpression 

(Fig. 2.10E-H ) when compared to control EGFP expressing neurons (Fig. 2.10A-D ) 

demonstrating that srGAP2 overexpression reduces neuronal migration. 

 We next wanted to test if the F-BAR domain was involved in the effect of 

srGAP2 on neuronal migration. Expression of srGAP2∆F-BAR does not significantly reduce the 

CP/IZ ratio compared to EGFP control (Fig. 2.10I-L, 6U ) and is significantly different from 

the ratio measured by srGAP2 overexpression (Fig. 2.10U ) suggesting that the F-BAR 

domain is required for srGAP2’s ability to inhibit migration. Moreover, expression of the F-

BAR domain alone was sufficient to reduce neuronal migration to the same extent than 

srGAP2 while expression of F-BAR∆49 had no effect on the ability of neurons to migrate (Fig. 

2.10M-P and Fig. 2.10Q-T and 2.10U ) suggesting that the ability of the F-BAR domain to 

induce filopodia is required for the ability of srGAP2 to inhibit neuronal migration.  
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Figure 2.10. SrGAP2 mediated inhibition of migratio n requires F-BAR mediated membrane 

deformation. 

(A-T) E15 cortical slices cultured for 5 days after electroporation with various srGAP2 constructs and 

mRFP. Slices were stained with Draq5 in order to demonstrate cytoarchitecture. While EGFP 

expressing neurons efficiently migrated from the IZ to CP (A-D), srGAP2-EGFP expressing neurons 
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did not (E-H), showing decreased neurons in the CP and increased neurons in the IZ. This affect was 

abrogated by removing the F-BAR domain (I-L). Interestingly, expression of the F-BAR domain alone 

had similar effect as srGAP2 (M-P) while expression of F-BARD49 had no effect on migration (Q-T) 

suggesting that the membrane deformation ability of the F-BAR domain is important for this effect. 

(U) Quantification of CP/IZ ratio. (EGFP n= 13 slices; srGAP2-EGFP n= 14 slices; srGAP2∆F-BAR-

EGFP n= 8 slices; F-BAR-EGFP n= 10 slices; F-BAR∆49-EGFP n= 6 slice Slices were taken from 4 

different experiments and analyzed using Mann-Whitney Test *  p<0.05; ** p<.001; *** p<0.001. 

Green color indicates comparison to EGFP and blue color indicates comparison to srGAP2-EGFP). 

(V) Quantification of percentage of cells with multipolar morphology in EGFP, srGAP2, or F-BAR 

transfected slices. Multipolar cells were defined as cells possessing > 3 processes. (EGFP n= 66 

cells; srGAP2-EGFP n= 42 cells; F-BAR-EGFP n= 57 cells. Cells were taken from 3 different 

experiments and analyzed using Fisher’s exact test * p<0.05; ** p<.001; *** p<0.001. Green color 

indicates comparison to EGFP and blue color indicates comparison to srGAP2-EGFP). 

(W-Y) Time series E15 cortical slices cultured for 3 days after electroporation with EGFP, srGAP2-

EGFP, or F-BAR-EGFP. EGFP expressing neurons displayed a unipolar morphology (green 

arrowhead pointing at single leading process) and the cell body translocated a significant distance 

within 5 hours (green arrows (W)). In contrast, srGAP2-EGFP or F-BAR-EGFP expressing neurons 

displayed multiple leading processes (red arrowheads (X and Y)) and did not translocate their cell 

body (red arrows (X and Y)). This is likely due to the fact that no stable leading process is established 

(multiple arrowheads in X and Y). Finally notice the high degree of membrane dynamics occurring at 

the cells body (X green arrowhead) further demonstrating the ability of srGAP2 to facilitate membrane 

protrusions. 

(Z) Quantification of leading process branching from cells expressing EGFP, srGAP2-EGFP, or F-

BAR-EGFP in layer 5/6. (EGFP n= 17 cells; srGAP2-EGFP n= 21 cells; F-BAR-EGFP n= 9 cells. 

Cells were taken from 3 different experiments and average branch number was analyzed using 

Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to EGFP and 

blue color indicates comparison to srGAP2-EGFP) 
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srGAP2 inhibits migration by increasing leading pro cess dynamics and 

branching  

 The accumulation of neurons expressing srGAP2 or its F-BAR domain in the IZ 

suggested that the neurons might be partially blocked in the multipolar to unipolar transition 

(Noctor et al., 2004). Indeed quantification of the percentage of multipolar cells (cells 

displaying > 3 neurites) in the IZ in slices electroporated srGAP2 or the F-BAR domain 

revealed a significant increase in the percentage of neurons with multiple processes 

emerging from the cell body compared to control slices expressing EGFP only (Fig. 2.10V ). 

This is consistent with the ability of srGAP2 to induce filopodia and neurite 

initiation/branching in dissociated neurons (see Fig. 2.8 ). 

To investigate the dynamic changes of neuronal morphology during migration, we 

used time-lapse confocal microscopy in our electroporated slice culture assay. Control 

neurons engaging radial migration in the IZ, form a stable LP upon initiating radial migration 

(green arrowheads in Fig. 2.10W and Movie S5 ) and undergo efficient cell body 

translocation (green arrows in Fig. 2.10W and Movie S5 ). In contrast, neurons 

overexpressing srGAP2 or the F-BAR domain alone, do not undergo cell body translocation 

(red arrows in Fig. 2.10X and 2.10Y and Movies S6 and S7 ), and instead of forming a 

single, stable LP, they form multiple processes that are highly dynamic and unstable (red 

arrowheads in Fig. 2.10X and 2.10Y and Movies S6 and S7 ). Moreover, the plasma 

membrane of these cells appears highly dynamic showing large, transient protrusions 

(green arrowheads in Fig. 2.10X ). While many neurons accumulate in the IZ, some neurons 

did manage to translocate into layers 5/6 (Fig 2.10E-H and 2.10M-P ). To determine the 

consequence of srGAP2 expression on these neurons we obtained high magnification 

images of their leading processes. Interestingly, expression of srGAP2 or its F-BAR domain 

caused significant increased in LP branching compared to EGFP control (Fig 2.10Z and 
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Fig. 2.11E-G ). This data is consistent with our previous result showing that srGAP2 

knockdown reduced LP branching and that srGAP2 or F-BAR overexpression increased 

filopodia formation, neurite initiation and branching in dissociated neuronal culture. Taken 

together these data suggest that srGAP2 increases neurite initiation and branching through 

the ability of its F-BAR domain to induce filopodia, which in turn negatively regulates 

neuronal migration. 

 Finally, to ensure that the reduction in the number of migrating neurons was not due 

to an indirect effect of srGAP2 on progenitor proliferation and/or cell cycle exit, we designed 

a vector allowing us to express srGAP2 in early post-mitotic neurons using the 2.2kB 

NeuroD promoter (Fig. 2.12A ). NeuroD is a bHLH transcription factor and a direct 

transcriptional target of Ngn2 (Hand et al., 2005; Heng et al., 2008) thereby inducing cDNA 

expression in intermediate progenitors and early post-mitotic neurons in the SVZ and IZ 

(Fig. 2.13E-H ) but not by Nestin+ radial glial progenitors in the VZ as obtained by our 

regular chicken β-actin promoter (Fig. 2.13A-D ). Furthermore, the level of protein 

expression in neurons obtained with this promoter is much lower than using the chicken β-

actin promoter (data not shown; (Heng et al., 2008)). Expression of srGAP2 using this 

NeuroD promoter significantly reduced the number of cells reaching the cortical plate 

compared to control EGFP (Fig. 2.12B-I and 2.12J ). These data reinforce the fact that 

srGAP2 acts as a negative regulator of neuronal migration in the cortex.  
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Figure 2.11. srGAP2 increases leading process branc hing in F-BAR dependent manner. 

(A-D) E15 cortical slices cultured for 5 days after electroporation with EGFP and slices were stained 

with CTIP2 (layer 5/6 marker) and Draq 5 in order to demonstrate cytoarchitecture. 

(E-J) Representative images of neurons in layer 5/6 after electroporation with srGAP2 constructs 

containing an F-BAR domain. EGFP (E) expressing neurons displayed a slightly branched 

morphology. Expression of srGAP2 (F) caused a marked increase in leading process branching, as 
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did expression of F-BAR-EGFP (G) and srGAP2R527L-EGFP (H) expressing neurons. Interestingly, 

srGAP2W765A-EGFP (SH3 domain mutant) expressing neurons did not show a significantly branched 

leading process despite having an F-BAR domain. However deletion of the c-terminus (srGAP2∆C-term-

EGFP) including the SH3 domain restored the branching activity (J). 
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Figure 2.12. Expression of srGAP2 in post mitotic n eurons inhibits radial migration. 

(A) In situ hybridization of NeuroD mRNA in the developing neocortex of an E15 mouse embryo. 

NeuroD mRNA is expressed at the SVZ/IZ border but not in the VZ. Schematic representation of the 

construct used to express EGFP-fusion proteins under the control of the 2.2kB promoter region of 

NeuroD, which drives cDNA expression exclusively in post-mitotic neurons. 

(B-I) E15 cortical slice cultured for 5 days after transfection with pNeuroD-EGFP or pNeuroD-srGAP2-

EGFP. EGFP expressing neurons migrate nicely to the cortical plate (B-E). In contrast, srGAP2-
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EGFP expressing neurons migrate poorly to the cortical plate (F-I). Slices were stained with anti-

nestin to reveal the radial glial scaffold and Draq5 to illustrate the cytoarchitecture. 

(K-L) Quantification of B-G showing that a greater proportion of neurons reach the cortical plate in 

control (EGFP transfected) conditions than in srGAP2 transfected neurons (note decrease proportion 

of cells in CP and increase proportion in IZ  (denoted by arrows) when compared to control). (EGFP 

n= 7 slices and srGAP2 n= 5 slice).  

Statistical significance: Mann-Whitney test, * p<0.05; ** p<.001; *** p<0.001. 
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Figure 2.13: NeuroD drives expression gene expressi on in post mitotic neurons. 

(A-D) E15 cortices were electroporated chicken- β-actin driven Venus construct sliced and cultured 

for 24 hrs. After 24 hrs venus positive cells were also positive for anti-nestin (radial glia marker, green 

arrow heads in A, red arrow heads in B and white arrow heads in D). Also note the long radial glial 

like morphology of cells. 

(F-H) In contrast NeuroD drive EGFP showed no radial glial like morphology and no localization with 

anti-nestin, supporting the idea that the NeuroD promoter drives expression in postmitotic neurons. 
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srGAP2 partially requires its RhoGAP and SH3 domain s to inhibit migration 

We next wanted to determine the contributions of the RhoGAP and SH3 domains to 

srGAP2 function in neuronal migration and morphogenesis. In order to determine the 

substrate specificity of the GAP domain of srGAP2, we first purified its GAP domain as a 

GST-fusion (Fig. 2.14A ). We then performed fluorescence-based GTP hydrolysis assays 

(Fig. 2.14B ; (Shutes and Der, 2006)).  The GAP domain of srGAP2 increased the rate of 

GTP hydrolysis on Rac1, but had no effect on RhoA or Cdc42 (Fig. 2.14B ) or RhoG (data 

not shown). In addition, full-length srGAP2 strongly interacted with activated Rac1 

(Rac1Q61L) but only weakly interacted with activated Cdc42Q61L (Fig. 2.14C ) and activated 

RhoAQ63L (data not shown). These two independent approaches demonstrate that the GAP 

domain of srGAP2 is specific for Rac1 but not Cdc42 or RhoA. 

 

Figure 2.14. The RhoGAP domain of srGAP2 is specifi c for Rac1. 

(A) GST-purification of the wild-type GAP and GAPR527L forms of the RhoGAP domain of srGAP2. 

Coumassie-stained gel showing the yield recombinant proteins obtained before and after induction 

(lanes 1-2 and 5-6) in bacteria as well as before and after glutathione-elution of GST-GAP (lanes 3-4) 

and GST-GAPR527L (lanes 7-8). The boxed areas correspond to the purified recombinant proteins 

used for the subsequent GTP hydrolysis assays in panel B-C. 
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(B) Fluorescent-based GTP hydrolysis assay as a function of time (seconds) for 2µM purified Rac1, 

Cdc42, RhoA in the presence or absence of 100nM of the recombinant GAP-domain of srGAP2. Note 

that the GAP domain of srGAP2 only accelerates the rate of GTP hydrolysis of Rac1 but not Cdc42 or 

RhoA. 

(C) Same as B expect that 2µΜ purified Rac1 is incubated alone or in the presence of 100nM of 

recombinant wild-type GAP domain or GAPR527L. Note that this point mutation abolishes the 

accelerating effect of the GAP domain on Rac1 GTP hydrolysis.  

(D) GST pulldown of srGAP2-EGFP from COS7 cells using constitutively active forms of Rac1 

(Rac1Q61L) or Cdc42 (Cdc42Q61L). GST-RacQ61L pulls down significantly higher amounts of srGAP2 

compared to GST-Cdc42Q61L confirming that this is a Rac1-specific GAP. 
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 To determine the contribution of the Rac1-GAP domain on srGAP2’s ability to 

regulate neuronal morphogenesis and migration, we engineered a catalytically-inactive form 

of srGAP2 (srGAP2R527L). Indeed this mutant was unable to accelerate GTP hydrolysis of 

Rac1 (Fig. 2.14D ). Expression of the ‘GAP-dead’, srGAP2R527L was as potent as srGAP2 at 

inducing filopodia-like membrane protrusions in Stage 1 cortical neurons (compare Fig. 

2.15B and 2.15C; quantified in 2.15F) and at promoting primary neurite initiation (Fig. 2.15H 

and 2.15I; quantified in 2.15L). While, this mutant was competent to induce an increase 

neurite outgrowth, there were significantly fewer (2-fold) srGAP2R527L expressing neurons at 

stage 2 when compared to srGAP2 (Fig. 2.16). In addition, srGAP2R527L displays a reduced 

ability to induce neurite branching when compared to srGAP2 (Fig. 2.15L ), suggesting that 

the Rac1-GAP activity of srGAP2 may be required for some aspects of neurite dynamics 

such as neurite branching. 

 We next wanted to determine the contribution of the Rac1-GAP activity of srGAP2 in 

its ability to inhibit neuronal migration. Expression of srGAP2R527L in E15 cortical progenitors 

followed by 5 days in slice culture significantly inhibits migration compared to control EGFP 

(Fig. 2.17A-D and 2.17I-L and 2.17U ) although not as potently as full-length srGAP2 over-

expression (Fig. 2.17E-H and 2.17U ) suggesting that the Rac1-GAP activity of srGAP2 

contributes to its ability to inhibit migration. In addition, similarly to srGAP2, expression of 

srGAP2R527L increased the percentage of multipolar cells in the IZ (Fig. 2.17V ) and 

increased LP branching of radially migrating neurons in layer 5/6 (Fig. 2.17X and 2.11H ). 

These data suggest that the Rac1-GAP activity may act to modulate protrusion formation 

induced by the F-BAR domain of srGAP2, but is not absolutely required since expression of 

the F-BAR domain is sufficient to form protrusions and inhibit migration. 

Finally, to test the contribution of the SH3 domain, we engineered a mutant to a 

conserved tryptophan residue (srGAP2W765A), which was shown to be required for the ability 



67 

of the SH3 domains of srGAP1 to bind to Robo1 and for the SH3 domain of srGAP3 to bind 

to WAVE-1 (Li et al., 2006; Soderling et al., 2002). Expression of srGAP2W765A, unlike the 

expression of full-length srGAP2 or its F-BAR domain, did not efficiently induce filopodia-like 

membrane protrusions in Stage 1 cortical neurons (Fig. 2.15D  and 2.15F), and had a 

significantly decreased ability to induce primary neurite branching compared to full-length 

srGAP2 (Fig. 2.15J  and 2.15L). Like srGAP2R527L, expression of srGAP2W765A increased 

primary neurite initiation, however showed a significantly reduced percentage (2 fold) of 

neurons transitioning from Stage 1 to Stage 2 compared to srGAP2 (Fig. 2.16 ) suggesting 

that full-length (i.e. all domains functionally intact) srGAP2 is required for the transition from 

stage 1 to stage 2 i.e. for transition between filopodia-like protrusions to elongating neurites. 

Interestingly, using our slice migration assay, expression of srGAP2W765A had no 

effect on cortical neuron migration (Fig. 2.17M-P and 2.17U), although there was a slight 

increase in cells with multipolar morphology in the IZ compared to EGFP (Fig. 2.17V ). The 

lack of effect of srGAP2W765A over-expression on the CP/IZ ration prompted us to use time-

lapse microscopy to observe LP dynamics in radially migrating neurons. This analysis 

revealed that migrating neurons expressing srGAP2W765A did not display increased leading 

process branching and dynamics but instead had a single, stable leading processes (red 

arrowheads Fig. 2.17W and Movie S8 ) and translocated efficiently (green arrowheads Fig. 

2.17W and Movie S8 ) which is strikingly different from neurons overexpressing full-length 

srGAP2 (Fig. 2.17X). Moreover analysis of neurons in layer 5/6 showed no significant 

increase in LP branching as demonstrated with other constructs containing an F-BAR 

domain (Fig. 2.10 and Fig. 2.17X and Fig. 2.11 ). 

The fact that srGAP2W765A showed weak filopodia formation compared to full-length 

srGAP2 and no increase in neurite branching suggested that the F-BAR domain function in 

srGAP2W765A might be inhibited. By analogy to the molecular mechanisms controlling the 
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activation of other Rho-GAP and Rho-GEF proteins (Eberth et al., 2009; Mitin et al., 2007; 

Yohe et al., 2007), we hypothesized that srGAP2 might normally be in an inactive, auto-

inhibited conformation through structural interaction between the N-terminal F-BAR domain 

and of the C-terminal region (including the SH3 domain) (see model in Fig. 2.18A ) that is 

released upon binding of protein interactors to its SH3 domain.  

To test this model, we designed a C-terminal deletion of srGAP2 (srGAP2∆C-term), 

which deletes the entire C-terminal portion starting from the SH3 domain to the C-terminal 

end of the protein leaving only the F-BAR and Rac1-GAP domains. Indeed, expression of 

srGAP2∆C-term very potently induced filopodia formation in stage 1 neurons (Fig. 2.15E and 

2.15F) and neurite outgrowth and branching in Stage 2 neurons (Fig. 2.15K-L ). Finally we 

tested the effects of this mutant on neuronal migration. In sharp contrast to srGAP2W765A, 

expression of srGAP2∆C-term potently inhibited migration (Fig. 2.17Q-T and 2.17U ) resulting 

in increased multipolar cells in the IZ (Fig. 2.17V ). Finally, analysis of the morphology of 

neurons translocating through layer 5/6 shows that expression of srGAP2∆C-term increased LP 

branching similarly to other F-BAR containing constructs but unlike srGAP2W765A (Fig. 2.17X 

and Fig. 2.11J ). These data suggest that the ability of the F-BAR domain to promote 

membrane protrusions in the form of filopodia and neurite branches may be regulated by the 

C-terminal domain of srGAP2, and release from this auto-inhibition might require binding of 

protein interactors to the SH3 domain during neuronal migration and morphogenesis. 
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Figure 2.15. The GAP and SH3 domains participate in  srGAP2’s ability to promote filopodia 

formation in neurons. 

(A-E) Stage 1 cortical neurons expressing various srGAP2 constructs. All cells are stained with β-III 

tubulin to indicate that it is a neuron and phalloidin to visualize F-actin. 
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Control stage 1 neurons (EGFP (A)) normally display filopodia at cell periphery. However expression 

of srGAP2-EGFP (B) significantly increased the number of filopodia. Mutation of the GAP domain 

(srGAP2R527L-EGFP (B)) did not appear to affect the ability of srGAP2 to make filopodia but did 

appear to increase lamellapodia formation. The SH3 domain mutant (srGAP2W765A-EGFP (D)) 

completely abrogated srGAPs ability to induce filopodia formation while deletion of the c-terminus (E) 

(including the SH3 domain, srGAP2∆C-term-EGFP) was able to induce filopodia. 

(F) Quantification of A-E. (EGFP n= 20 cells; srGAP2-EGFP n= 21 cells; srGAP2R527L-EGFP n= 21 

cells; srGAP2W765A-EGFP n= 21 cells; srGAP2∆C-term-EGFP n=20 cells. Cells were taken from 3 

different experiments and analyzed using Mann-Whitney Test *  p<0.05; ** p<.001; *** p<0.001. 

Green color indicates comparison to EGFP and blue color indicates comparison to srGAP2-EGFP) 

(G-K) Stage 2 cortical neurons expressing various srGAP2 constructs. All cells are stained with β-III 

tubulin to indicate that it is a neuron and phalloidin to visualize F-actin. 

As shown previously expression of srGAP2 (H) caused increase neurites initiation and branching 

compared to EGFP (G) expressing neurons at stage 2. Expression of srGAP2R527L-EGFP (I); 

srGAP2W765A-EGFP (J); and srGAP2∆C-term -EGFP (K) all caused increased neurite initiation. While, 

srGAP2∆C-term -EGFP expression caused significant increases in neurite branching (K), srGAP2W765A-

EGFP expression (I) had no effect. Expression of srGAP2R527L-EGFP did cause an increase in neurite 

branching, but not as significant as srGAP2. 

(L) Quantification of G-K. (EGFP n= 20 cells; srGAP2-EGFP n= 21 cells; srGAP2R527L-EGFP n= 22 

cells; srGAP2W765A-EGFP n= 21 cells; srGAP2∆C-term-EGFP n=23 cells. Cells were taken from 3 

independent experiments and analyzed using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001.) 
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Figure 2.16. srGAP2 expressing cells accumulate in Stage 2 

Analysis of the percentage of cells that accumulate at stage 2 after transfection of various 

srGAP2 constructs 
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Figure 2.17. The GAP and SH3 domains participate in  srGAP2’s ability to inhibit migration. 

(A-T) E15 cortical slices cultured for 5 days after electroporation with various srGAP2 constructs and 

mRFP. Slices were stained with Draq5 in order to demonstrate cytoarchitecture. As shown previously 

srGAP2 expressing neurons migrate very poorly to the cortical plate (E-H) 

Impairment of the GAP activity of srGAP2 (srGAP2R527L) inhibits migration albeit not to the degree of 

full-length srGAP2 (I-L). Moreover, mutation of the SH3 domain (srGAP2W765A) (M-P) had no effect on 

the ability of neurons to migrate, in that it does not inhibit migration like full-length srGAP2. However, 

expression of the c-terminal deletion of srGAP2 (srGAP2∆C-term-EGFP) does impair migration (Q-T). 

(U) Quantification of effects displayed in A-L. (EGFP, n= 13 slices; srGAP2-EGFP n= 14 slices; 

srGAP2R527L-EGFP n= 11 slices; srGAP2W765A-EGFP n= 8 slices; srGAP2∆C-term-EGFP n= 6 slices. 
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Slices were taken from 4 independent experiments and analyzed using Mann-Whitney Test p<.05 =* , 

p<.01=**, p<.001=***. Green color indicates comparison to EGFP and blue color indicates 

comparison to srGAP2-EGFP). 

(V) Quantification of percentage of cells with multipolar morphology in EGFP, srGAP2, or F-BAR 

transfected slices. Multipolar cells were defined as cells possessing > 3 processes. (EGFP n= 66 

cells; srGAP2-EGFP n= 42 cells; srGAP2R527L-EGFP n= 47 cells; srGAP2W765A-EGFP n= 52 cells; 

srGAP2∆C-term -EGFP n= 50 cells. Cells were taken from 3 independent experiments and analyzed 

using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to 

EGFP and blue color indicates comparison to srGAP2-EGFP). 

(W) Time-series of E15 cortical slices cultured for 3 days after electroporation with srGAP2W765A-

EGFP. These neurons showed a unipolar morphology with a single unbranched leading process (red 

arrowhead) and translocated very efficiently (green arrowhead).  

(X) Quantification of leading process branching from cells expressing EGFP, srGAP2-EGFP, 

srGAP2R527L-EGFP, srGAP2W765A-EGFP, or srGAP2∆C-term -EGFP in layer 5/6. (EGFP n= 17 cells; 

srGAP2-EGFP n= 21 cells; srGAP2R527L-EGFP n= 18 cells; srGAP2W765A-EGFP n= 26 cells; 

srGAP2∆C-term-EGFP n= 18 cells. Cells were taken from 3 independent experiments and analyzed 

using Mann-Whitney Test * p<0.05; ** p<.001; *** p<0.001. Green color indicates comparison to 

EGFP and blue color indicates comparison to srGAP2-EGFP) 
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Figure 2.18. Model for srGAP2 regulated membrane pr otrusion in neuronal migration. 

(A) Hypothetical Model for srGAP2 mediated membrane protrusions. When ligand binds receptor at 

the plasma membrane of migrating neuron, srGAP2 is recruited to this site through interactions 

between the receptor and the SH3 domain. Binding of the SH3 domain releases inhibition of srGAP2 

exposing F-BAR and GAP domains. The F-BAR then interacts with negatively charged phospholipids 

at the plasma membrane, where it begins to induce curvature. Meanwhile the GAP domain reduces 
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active Rac1 locally at this site resulting in either Cdc42 activation leading to Wasp activation or RhoA 

activation leading mDIA2 activation. Either pathway results in F-actin polymerization, which fills in the 

tubes generated by F-BAR activation. In addition, interactions between SH3 domain with other 

regulators of actin polymerization, such as WAVE-1 or N-WASP may also participate in this process. 

(B) Summary of srGAP2 effects on radial migration during cortical development. Normally neurons 

migrate radially to CP with a slightly branched leading processes. When there is too much srGAP2, 

leading process outgrowth is dynamic and unstable. In addition the cells grow many neurites and 

neurite branching is increased resulting in an inhibition of migration. Finally, if srGAP2 levels are low, 

leading process branching is decreased and which may produce a more persistent leading process 

and neurons migrate.



 

 

 

 

 

 

Chapter 3:  Discussion 
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Summary of results 

In this study, we provide loss-of-function, gain-of-function as well as structure-

function analysis demonstrating that srGAP2 is a novel, negative regulator of neuronal 

migration and a positive regulator of neurite initiation and branching through the ability of its 

F-BAR domain to induce filopodia-like membrane protrusions. We find that reduction of 

srGAP2 expression leads to a decrease in LP complexity in migrating neurons and 

increased rate of neuronal migration. Overexpression of srGAP2 had the opposite effects 

increasing LP dynamics and complexity and inhibiting radial migration. Finally, we show that 

these effects are largely mediated by the ability of the F-BAR domain to cause filopodia-like 

membrane protrusions. Taken together, my thesis work demonstrates for the first time the 

function of an F-BAR domain-containing protein in cell migration and morphogenesis in vivo 

and more generally this work highlights the functional importance of proteins directly 

regulating membrane deformation during brain development. 

 

srGAP2 is a novel F-BAR domain-containing protein 

It is well-established that cytoskeletal dynamics produce forces to generate plasma 

membrane protrusions and invaginations, however recent evidence suggest that many 

membrane-associated proteins directly sculpt and deform biological membranes (Doherty 

and McMahon, 2008).  Here we report that srGAP2 regulates neuronal migration as well as 

neurite initiation and branching through the ability of its F-BAR domain to deform 

membranes and form filopodia-like membrane protrusions. This is a surprising finding since 

F-BAR domains have been mostly characterized for their ability to induce membrane 

invaginations (Frost et al., 2008; Habermann, 2004; Henne et al., 2007; Itoh and De Camilli, 

2006; Peter et al., 2004; Shimada et al., 2007). How might we explain the ability of srGAP2’s 

F-BAR domain to induce filopodia protrusion rather than membrane invagination/inward 
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tubulations? F-BAR domains are composed of a series of alpha-helices forming a strong 

dimerization motif, which allow the homodimers to adopt a quaternary ‘banana-like’ 

structure. Positively charged amino acids resident on the concave surface of the homodimer 

can interact with negatively charged phospholipids at the plasma membrane. 

Oligomerization and the inherent, concave curvature of the molecule are thought to regulate 

membrane curvature and induce membrane tubules of a fixed diameter in vitro and in vivo 

(Frost et al., 2008; Henne et al., 2007; Peter et al., 2004; Shimada et al., 2007). Therefore, 

one possibility for how srGAP2’s F-BAR domain may cause filopodia-like protrusions is by 

having a different curvature as well as a different surface distribution of positively charged 

residues than canonical F-BAR domains. Indeed, the structurally related I-BAR domain 

present in proteins such as IRSp53 or MIM, form stable dimers and has the ability to deform 

lipid membranes just as F-BAR domains (Mattila et al., 2007; Saarikangas et al., 2009). 

However, the I-BAR homodimers form less curved, straighter structures instead of the 

typical curved ‘banana-shaped’ homodimers present in BAR, N-BAR and F-BAR domains 

(Scita et al., 2008). Interestingly, I-BAR domains are very potent inducers of filopodia (Lim et 

al., 2008; Mattila et al., 2007; Saarikangas et al., 2009; Suetsugu et al., 2006) and it is 

thought that this is due to the inherent curvature of the I-BAR homodimer. We hypothesize 

that the dimer formed by the F-BAR domain of srGAP2 displays a general quaternary 

structure and charge distribution comparable to I-BAR domains. While this can only be 

proven by structural information, we provide several lines of evidence supporting an I-BAR 

like behavior: (1) we show that like I-BAR induced filopodia, those induced by the F-BAR 

domain of srGAP2 are resistant to F-actin depolymerization, (2) we show that unlike other F-

BAR domains of FPB17 and CIP4, over-expression of the F-BAR domain of srGAP2 does 

not inhibit endocytosis, (3) we show that the F-BAR domain of srGAP2 induces similar 

liposome deformations compared to IRSp53 (Suetsugu et al., 2006), (4) finally, we show 
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that exposure of the F-BAR to the inner surface of liposomes resulted in protrusive tubes 

which would be expected if it were behaving like an I-BAR. 

How could srGAP2 achieve this alternative membrane curvature i.e. membrane 

protrusion instead of membrane invagination? The F-BAR domain of srGAP2 appears to be 

larger than canonical F-BAR domains (Fig. 2.18 ). In order to achieve stable expression we 

had to express a large portion of the c-terminal extension that goes beyond the region of 

highest structural homology to ‘classical’ F-BAR domain of FBP17 or CIP4 (approx. aa 1-

350; Itoh et al. 2005), which adds an additional 150 amino acids which are predicted to 

contain 3 alpha helices (Fig. 2.18). This additional sequence could have significant 

structural consequences on protein folding and therefore on the type of curvature induced 

by the F-BAR domain. 

Recently, it was shown that the PX-BAR of Sorting Nexin 9 domain could adopt 

different curvatures compared to the full length molecule suggesting that additional 

sequences could indeed affect the size of membrane tubules (Wang et al., 2008). In order to 

determine exactly how srGAP2’s F-BAR domain induces membrane curvature, future 

studies will have to focus on characterizing the structure of this F-BAR domain with atomic 

resolution. Ideally, we would like to crystallize both full-length srGAP2 and its F-BAR domain 

alone. In the short-term, we might gather some useful information by using small angle x-ray 

scattering (SAXS) to elucidate differences in the conformation of the F-BAR domain and full-

length protein in solution (see for example (Wang et al., 2008)). 

 Interestingly, the F-BAR domain of srGAP2 is not the only F-BAR-containing protein 

inducing filopodia formation. Gas7 and PSTPIP2 (MAYP) have also been predicted to 

contain a F-BAR domain (combination of a FCH domain and a coiled-coil domain) and have 

been shown to induce filopodia (Chitu et al., 2005; She et al., 2002). Both proteins have also 

been shown to associate with F-actin suggesting that part of srGAP2’s effects could be due 
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to F-actin binding/bundling. However, these proteins and more importantly their predicted F-

BAR domains have not been directly tested for their ability to deform membranes.  

 Our data and data cited above suggest that F-BAR domains could be functionally 

diverse and that this functional diversity regarding the type of membrane deformation 

properties they display might be due to small structural differences. As described previously, 

the F-BAR domain of srGAP2 is larger than the canonical F-BAR domains. We found that 

the additional 150 amino acids of srGAP2 are predicted to form three distinct alpha helices 

(α6-8). The structural alignments of this region demonstrate homology to F-actin binding 

proteins including Talin and myosin, suggesting that srGAP2 may indeed contain an actin-

binding site. Future experiments using structure function analysis to determine the role of 

these additional structures will help us to understand how the F-BAR domain induces 

filopodia in cells. 

 While I-BAR’s have been shown to induce filopodia for sometime, there is no 

mechanism as to how filopodia induced by I-BARs or the F-BAR domain of srGAP2. One 

intriguing possibility may be the effect of small, local membrane curvature on the barbed end 

of F-actin. The dendritic nucleation model suggests that actin filament barbed ends are 

juxaoposed to the plasma membrane (Pollard and Borisy, 2003). Through Brownian motion 

the filaments detach from the membrane exposing their barbed ends (presumably losing 

capping protein as well). This exposes the barbed end and actin monomer might be added 

facilitating actin polymerization. I propose that the role of I-BARs and F-BARs like srGAP2 

might be to create space in between F-actin and the plasma membrane through their ability 

to deform membranes. This should result in a net increase in free barbed ends and should 

result in actin polymerizaiton. Moreover, these proteins could then bundle F-actin (I-BARs 

and the F-BAR, MAYP are thought to have bundling activity (Aspenstrom et al., 2006; Scita 

et al., 2008)) and simultaneously bind the membrane as the protrusion forms. It will be 
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interesting to see if local changes in membrane curvature are sufficient to induce actin 

polymerization. Of course, many F-BAR and I-BAR containing proteins contain SH3 

domains that have been shown to interact with WASP and WAVE-1, regulators of Arp2/3 

and formins (Chan et al., 1996; Linkermann et al., 2009; Soderling et al., 2002), so not only 

could they bundle and facilitate actin polymerization through the increase of free barbed 

ends, but in the case of formins, they could recruit proteins that facilitate this. 

 

The role of srGAP2 during cortical development 

 Neurite outgrowth is key property of developing neurons since it is required for the 

formation of the leading process that guides migrating neurons to their proper location as 

well for the morphogenesis of dendrites and axons that determine brain circuitry. We 

demonstrate here that srGAP2 is a novel promoter of neurite initiation and branching and 

that this property plays a negative role in the regulation of neuronal migration. This activity 

seems to be dependent on the ability of the F-BAR domain to induce filopodia-like 

membrane protrusions. It is well established that filopodia promote neurite outgrowth and it 

was recently shown that filopodia were required for neurite initiation in cortical neurons 

(Dent et al., 2007). However, knockdown of srGAP2 did not affect neurite initiation but 

reduced both axon and dendrite branching, processes known to require filopodia formation. 

The absence of an effect of srGAP2 knockdown on neurite initiation is likely due to the 

presence of many other proteins involved in filopodia formation; I-BAR-containing proteins 

such as IRSp53 or ABBA (Mattila et al., 2007; Saarikangas et al., 2008) or other classes of 

proteins that promote filopodia formation and neurite initiation through distinct mechanisms 

such as the ENA/VASP proteins. It was recently shown that MENA/Evl/VASP proteins are 

required for neurite initiation in cortical neurons (Dent et al., 2007; Kwiatkowski et al., 2007). 
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These proteins are still present in our assays and therefore could support filopodia formation 

in the absence of srGAP2. In support of this idea, Dent et al. demonstrated that while 

MENA/Evl/VASP triple knockout neurons plated on poly-L-lysine were unable to form 

neurites, plating on laminin or expression of other inducers of filopodia (such as formins) 

could support neurite formation even in the absence of ENA/VASP proteins (Dent et al., 

2007). This suggests that neurons possess several alternative pathways for filopodia 

formation and neurite initiation. We have recently obtained gene trapped mouse for srGAP2 

in which b-gal fusion has been knocked into intron 2, disrupting the srGAP2 gene. This 

genetic loss of function of srGAP2 may allow us to observe early defects in polarity caused 

by this disruption. The lack of a phenotype on neurite intitiation after srGAP2 may also be 

due to compensation by other srGAPs. SrGAP3 in particular, is expressed in the ventricular 

zone at E15 just as srGAP2. Moreover, srGAP3 was first identified as a Rac1 GAP and its 

down regulation has been shown to increase cell migration. It will be interesting to observe 

the effects of knockdown of both srGAP2 and srGAP3 to see if this sufficient to block neurite 

initiation. 

 The ability of srGAP2 to promote neurite initiation and branching appears to also be 

important for its regulation of migration (Fig. 2.18B ). Knockdown of srGAP2 increased the 

percentage of migrating neurons as well as the overall rate of migration and significantly 

reduced leading process complexity and branching (Fig. 2.18B ). This could potentially 

explain the increase in the rate of cell migration since it has been shown in fibroblast, 

reduction of ENA/VASP proteins activity (i.e. proteins that promote filopodia formation) 

increased lamellipodia persistence and increased cell speed (Bear et al., 2000; Bear et al., 

2002). In addition, it was recently shown that loss of ENA/VASP proteins in cortical neurons 

lead to more superficial laminar position, which could be an effect of increased migration 

(Goh et al., 2002; Kwiatkowski et al., 2007). Therefore decreased branching in srGAP2 
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knockdown neurons may support increased leading process persistence and increased 

migration. Finally, in recent work, Simpson et. al, used an siRNA screen to identify genes 

that regulate cancer cell migration (Simpson et al., 2008). Interestingly, downregulation of 

the srGAP2 homolog, srGAP3 was also associated with an increased rate of cell migration 

suggesting that negative regulation of cell migration may be a conserved function of the 

srGAP family. 

 Conversely, we show that expression of srGAP2 strongly inhibited migration by 

producing excessive neurite protrusions. Importantly, these effects are mediated by the 

membrane deformation properties of the F-BAR domain since expression of F-BAR49, 

which can target to the membrane but cannot induce filopodia-like membrane protrusions 

had no effect on cell migration or leading process branching. Excessive leading process 

branching has previously been associated with defects in neuronal migration. Loss of p35, 

the activator of CDK5, was shown to induce significant LP branching leading to impaired 

migration (Gupta et al., 2003). The authors interpreted this impairment of migration as an 

effect of leading process branching causing radial glia-independent migration. While we 

have not observed any change in the interaction between migrating neurons and the radial 

glia scaffold (data not shown), it would be interesting to test for any functional interactions 

between the CDK5 pathway and srGAP2. In addition these studies may highlight a role for 

leading process branching in regulating the timing in which cortical neurons reach their 

proper cortical layer. It appears that the timing of migration is important for proper radial 

migration since reduction of FILIP, which regulates the level of Filamin protein expession, 

caused increase in radially oriented processes. This suggests that Filamin levels are kept 

low until migration needs to be initiated (Nagano et al., 2004).  

 



83 

Regulation of srGAP2: GAP and SH3 domains 

The BAR superfamily of proteins are involved in a wide range of functions and this 

diversity arises from the different functional domains associated with BAR-like domain (Itoh 

and De Camilli, 2006). srGAP2 is an F-BAR domain containing protein that contains a GAP 

domain as well as an SH3 domain. We demonstrate that srGAP2 is a Rac1-specific GAP 

and much recent work has highlighted the importance of Rac1 regulation in neuronal 

development (Govek et al., 2005). Mutation of the Rac1/Cdc42 GEF, ARHGEF6 (also called 

Cool-2, α-pix) results in X-linked mental retardation suggesting the importance of properly 

regulating Rac1 activity during neuronal development (Kutsche et al., 2000). Interestingly, 

the BAR domain containing protein oligophrenin-1 as well as the F-BAR containing protein 

srGAP3 (also called MEntal retardation GAP or MEGAP), are both Rac1-GAPs and have 

been involved in severe forms of mental retardation (Billuart et al., 1998; Endris et al., 2002; 

Govek et al., 2004).  

Not surprisingly, Rac1 has also been implicated in regulating radial migration. Inhibition 

of Rac1 downstream of both phosphoinositide 3 kinase (PI3K) and c-jun N-terminal kinase 

(JNK) blocked radial migration (Kawauchi et al., 2003; Konno et al., 2005). Moreover, the 

Rac GEF, P-Rex1 was also shown to be involved in radial migration (Yoshizawa et al., 

2005). These data suggests the importance of small GTPase signaling, particularly Rac1, in 

fine-tuning radial migration. Surprisingly, the GAP activity seemed to be largely dispensable 

for srGAP2’s ability to promote filopodia formation and neurite outgrowth. The fact that 

protrusions remain even in when there is no GAP activity does not suggest that the GAP 

activity is not involved in protrusion formation but rather suggests that the presence of the F-

BAR domain is sufficient to induce protrusions. The GAP domain may not be required for 

filopodia-like protrusion formation but may help modify the environment for this to occur. 

Indeed, recent work has demonstrated that Rac1 down regulation increased filopodia 
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formation in neuronal growth cones (Rajnicek et al., 2006). Therefore the GAP domain of 

srGAP2 could participate in filopodia formation in two ways: (1) local inactivation of Rac1 

could result increased Cdc42 activity. Cdc42 could in turn activate pathways that promote 

bundled F-actin which are required for filopodia formation (Raftopoulou and Hall, 2004); (2) 

Alternatively, Rac1 inactivation could lead to increased activation of RhoA (since Rac1 

activation has been shown to inactivate RhoA (Nimnual et al., 2003; Rajnicek et al., 2006), 

which in turn could lead to the activation of the formin, mDia2. mDia2 could then lead to 

actin nucleation. In either case the Rac GAP activity would result in growth of bundled F-

actin that is funneled into membrane protrusions deformed by the F-BAR domain (Fig. 

2.18A). This could be an important modulatory mechanism for regulating F-BAR mediated 

protrusion. Since Rac1 activation is known to be required for proper radial migration and 

neurite outgrowth (Causeret et al., 2008; Govek et al., 2005; Kawauchi et al., 2003; 

Yoshizawa et al., 2005), one way Rac1 might regulate neuronal migration and neurite 

outgrowth might be to regulate how efficiently srGAP2 promotes filopodia formation. 

One striking feature of F-BAR domain-containing proteins is that a significant number 

also possess SH3 domains (Itoh and De Camilli, 2006). These SH3 domains bind a myriad 

of effectors from regulators of endocytosis (Itoh and De Camilli, 2006) and regulators of the 

actin cytoskeleton (Aspenstrom et al., 2006; Chitu and Stanley, 2007) to cell surface 

receptors (Wong et al., 2001). The SH3 domain of srGAP2 has been shown to bind the 

Robo1 receptor (Wong et al., 2001) and has also been shown to bind N-WASP (Linkermann 

et al., 2009), but the functional relevance of these interactions has yet to be determined. We 

show that abrogating the effector binding property of the SH3 domain severely reduces the 

ability of srGAP2 to induce membrane protrusions and inhibit migration. In fact, of the 

constructs that contain an F-BAR domain, it is the only one that did not promote protrusions 

(Fig. 2.11E-J ). This suggested the possibility that srGAP2 is auto-inhibited as resting state 
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and in this conformation the F-BAR domain might be inhibited. Indeed, deletion of the C-

terminal end of srGAP2 (including the SH3 domain) restored the ability of F-BAR domain to 

promote filopodia-like protrusions, neurite initiation and branching and to inhibit neuronal 

migration, supporting the idea that the F-BAR domain of srGAP2 may be inhibited by the C-

terminal domain of srGAP2. It was recently shown that the BAR domain containing proteins 

GRAF and oligophrenin-1 existed in an auto-inhibited state (Eberth et al., 2009) suggesting 

that other BAR domain-containing proteins may share a similar mechanism of activation. We 

propose that srGAP2 exists in an autoinhibited state where the c-terminus of srGAP2 

interacts with the N-terminal F-BAR domain. This interaction could be mediated by 2 

patches negatively-charged residues that flank the SH3 domain (data not shown), which 

would allow the c-terminus to interact with positively charged residues in the F-BAR domain. 

The inhibition could then be released by effector binding to the SH3 domain exposing the F-

BAR and GAP domains to facilitate membrane protrusion (Fig. 2.18A ). Future experiments 

will test this model and determine the type of structural and functional interactions 

underlying the cooperativity between the three main functional domains of srGAP2 and how 

these interactions influence srGAP2 function during neuronal migration and morphogenesis. 

 

Future Directions  

This thesis presents the novel observation that srGAP2 regulates neuronal migration 

and morphogenesis through the ability of its F-BAR domain to cause membrane protrusions. 

Several of these findings presented in this study will be interesting to pursue:  

1- The ability of the F-BAR domain to induce filopodia. Future studies will be aimed 

at determining the crystal structure of srGAP2 and identifying the molecular 
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mechanisms underlying its ability to induce filopodia including the potential 

interaction of the F-BAR domain with actin.  

2- srGAP2 regulates filopodia formation and neurite initiation/branching in cortical 

neurons. We would like to explore the signaling pathways that mediate neurite 

initiation/branching upstream of srGAP2. 

3- srGAP2 as a regulator of radial migration in the cortex. Determining the signaling 

pathways that regulate srGAP2 activity may prove very useful to understand how 

radial migration is regulated. Recently, Semaphorin 3A was shown to act as a 

chemoattractive cue for radial migration (Chen et al., 2008) it would be 

interesting to see if this pathway may act to modulate srGAP2 activity during 

radial migration.  

srGAP2 may be regulated by autoinhibition. We would like to test this model by mutational 

analysis to residues flanking the SH3 domain. This model is intriguing in part because the 

SH3 domains of the srGAP family have been shown to associate with regulators of the actin 

cytoskeleton such as WAVE-1 and N-WASP, suggesting that srGAP2 activity could be 

regulated by molecules that ultimately cooperate with the F-BAR domain to mediate 

membrane protrusion. 

 



 

 

 

 

 

 

Chapter 4: General Methods 
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MATERIAL AND METHODS 

Animals 

Mice were used according to a protocol approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of North Carolina-Chapel Hill and in accordance with 

NIH guidelines. Time-pregnant females were maintained in a 12 hr light/dark cycle and 

obtained by overnight breeding with males of the same strain. Noon following breeding is 

considered as E0.5. 

 

Histochemistry and In situ hybridization 

In situ hybridization was done as previously described (Mattar et al., 2004) 

 

Dissociated cortical neuron culture 

Cultured neurons and brain sections were stained as described previously (Ghosh and 

Polleux 2002). The following antibodies were used chicken anti-GFP (Upstate), mouse anti-

Tuj1 (β-III tubulin) (Sigma), mouse anti-nestin (BD Bioscience), mouse anti-MAP2 (a/b 

isoforms) Clone AP20 (Sigma), rabbit anti-srGAP2 (Gift of Gong Ju, Shanghai JiaoTong 

University), and F-actin was labeled using alexa-546 phalloidin (Sigma). All images were 

captured using a LEICA TCS SL confocal microscope. For staining of endogenous srGAP2 

in acutely dissociated neurons, cells were fixed in 4% paraformaldehyde for 30 minutes. The 

cells were then washed with PBS three times. They were then permeabilized with .05% 

triton-x 100 for 20 minutes and washed again in PBS. They were then incubated in blocking 

buffer (5% bovine serum albumin (BSA) in PBS) for 30 minutes and incubated with srGAP2-

A2 antibody (1:200 in .2% BSA in PBS) overnight. For F-actin staining, phalloidin was added 

at 1:200. Cells were subsequently washed in .2% BSA in PBS and the appropriate alexa-
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conjugated secondary antibodies (Molecular Probes) were used at 1:2000 in .2% BSA in 

PBS for 30 minutes. Cells were then washed and slides were mounted. 

 

Sequence Alignments 

Sequence alignments for srGAPs were obtained using MUSCLE (Edgar, 2004). Human 

srGAP2 (gi|48427907|sp|O75044.2) Mouse srGAP2 (image:BC030547), Human srGAP1 

(NP_065813.1), Mouse srGAP1 (NP_001074506.1), Human srGAP3 (NP_055665.1), 

Mouse srGAP3 (NP_536696.4), Xenopus srGAP (NP_001087899.1), C.elegans 

(NP_502179.1). Secondary structure was obtained for srGAP2 using hhpred (Soding et al., 

2005) (http://toolkit.tuebingen.mpg.de/hhpred), Bioinfobank Metaserver 

(http://meta.bioinfo.pl) and PromaS3D (Pei et al., 2008) 

(http://prodata.swmed.edu/promals3d/promals3d.php). Structural alignments srGAP2 and F-

BAR domains were obtained using hhpred (Soding et al., 2005) Bioinfobank Metaserver and 

PromalS3D (Pei et al., 2008). Mouse FBP17 (NP_062279.1), Mouse Syndapin1 

(CAQ52060.1), Mouse FCHO2 (NP_766179.1), Mouse PSTPIP2 (CAJ18516.1), Mouse Fer 

(AAB18988.1) 

 

Constructs 

All constructs were cloned into pCIG2 vector (Hand et al., 2005), which contains a (cDNA)-

IRES-EGFP under the control of a CMV-enhancer/chicken-β-actin promoter. srGAP2 

(IMAGE clone# BC030457) was first mutagenized using Quickchange (Stratagene) to repair 

a point mutation at position 596 to avoid premature stop in transcription. srGAP2 was then 

subcloned into pEGFP-N1 (Clontech). The entire srGAP2-EGFP cassette was then 

subcloned into pCIG2 replacing the IRES-EGFP resulting in pCIG2::srGAP2-EGFP. srGAP2 

was also cloned into pNeuroD-EGFP vector. All subsequent constructs were cloned 
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similarly. F-BAR (aa1-501), srGAP2⊗δF-BAR (aa502-1045), srGAP2R527L, srGAP2W765A, 

srGAP2⊗δC-term, and srGAP2* (dha5 shRNA resistant, base pairs mutation T898C, A900G, 

and C904T) were generated by mutagenesis using Quickchange (Stratagene). F-BAR⊗δ49 

was generated by fusing amino acids (1-452) of human srGAP2 (accession number 

NM_015326) to the c-terminus of clone BC112927. This clone is a partial human duplication 

of the F-BAR of srGAP2 present in Chromosome 1p12 and encoding only the first nine 

exons (out of twenty-two in the original full length human srGAP2 (Sassa and Polleux, 

unpublished results). The first nine exons present in the 1p12 duplication encode for the F-

BAR with the last 49 amino acids of the C-terminus are deleted, hence the name F-BAR⊗δ49 

due to a splicing defect (Sassa and Polleux, unpublished results). This splicing defect also 

results in the addition of seven additional amino acids to the deleted C-terminus that are not 

normally present in the F-BAR of srGAP2, as they arise from intronic sequence. 

 

COS7 cell culture, transfections, staining and filo podia measurements  

COS7 cells were cultured in DMEM + 10%FBS 2mM L-glutamine and 

penicillin/streptomycin. For transfections, cells were plated in 6 well dishes and 

lipofectamine 2000 (4microL) was mixed with 2micrograms of DNA in Opti-mem and added 

to cells for 3hrs. After 3hrs, serum-free media was replaces with DMEM + 10%FBS and cells 

were cultured for 24hrs. After 24hrs, cells were trypsanized and replated on poly-l-lysine 

coated coverslips and cultured for an additional 24hrs. Cells were then fixed using 4% 

paraformaldehyde. Cells were then washed 3 times in PBS, then blocked/permeablized in 

.3% triton-X 100 in PBS + 5% BSA (PBS-T) for 20 minutes. Cells were then incubated with 

alexa-546 phalloidin (1:200) in PBS-T overnight. Finally, cells were then washed 3 times in 

PBS-T and mounted. 
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To determine filopodia number, cells were imaged using LEICA TCS SL confocal 

microscope, 63x/1.4NA oil immersion objective. 2x zoomed images were taken of 

representative cells from each construct. Images were then imported to NIH ImageJ. Using 

the segmented line tool, a perimeter was drawn around the cells. The presence of filopodia 

was determined by counting the number of consecutive pixels on the line drawn around the 

cell perimeter and normalized by dividing the total number of filopodia by the cell perimeter 

(filopodia/microns).  

For cytochalasin-D treatments, COS7 cells were transfected with F-BAR-EGFP and 

cultured for 48hrs. Cells were then treated with  cytochalasin D for 30 minutes. To 

observe the presence of F-actin, cells were fixed and stained with phalloidin. To observe 

dynamics, control, untreated cells were imaged for 10 minutes (picture taken every 10 

seconds) and cytochalasin-D treated cells were imaged for 27 minutes (picture taken every 

minute). 

For transferring uptake assay, COS7 cells were serum starved for one hour at 4 

degrees in the presence of alexa-647 transferrin. Cells were then warmed to 37 

degrees to allow uptake of transferrin and fixed and treated as described above.   

 

Protein purification  

srGAP2 (amino acids 1-785) and the F-BAR (amino acids 22-501) were cloned into pLIC 

vectors and expressed in Escherichia coli BL21 (DE3) cells. Proteins were then purified on a 

Ni2+ affinity column. Proteins were further purified by cation exchange chromatography, 

using a Source S column, and concentrated in 20 mM Tris buffer, pH 8, 150 mM NaCl, 1 

mM DTT and 5% glycerol. GAP (amino acids 502-676) and GAPR527L domain of srGAP2 was 

cloned into pGex-4T3 (Amersham). Recombinant GST-fusion proteins were then purified 

using glutathione sepharose and resuspended in 20 mM Tris buffer, pH 8, 150 mM NaCl, 1 
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mM DTT and 5% glycerol. 

 

In vitro GAP assay 

In vitro fluorescent-based GAP assay was performed as described previously (Shutes and Der, 2006). 

 

Liposome Preparation 

Folch Fraction I Brain Lipid Extract from bovine brain (B1502) in chloroform was obtained 

from Sigma-Aldrich (St. Louis, MO) and used without further purification. 10 mg of total lipid 

were added to a glass vial and dried at room temperature under streaming argon while 

vortexing in order to form a thin lipid film around the tube surface. The lipids were re-

dissolved in absolute hexane, dried under argon again while vortexing, and then 

dessicated in vacuo for >2 hours to remove the last traces of chloroform. The 

dried lipid film was then pre-hydrated at RT with water-saturated N2 for 2 minutes 

until the film became transparent. Buffer (50mM KCl/10mM/HEPES/1mM DTT, pH 7.4) was 

added to the hydrated lipid film to a final lipid concentration of 2 mg/ml. The vial 

was sealed under argon and incubated at RT for 2 h, and then gently rocked overnight 

to disperse the lipids into solution. 

 

Liposome tubulation assays 

The liposomes described above were first subjected to 10 cycles of freeze-thaw, and then 

used immediately or stored in aliquots at -80° C. The  liposomes were then equilibrated at 

RT for 1 hour before adding protein (either FBP17 F-BAR domain or srGAP2 F-BAR) at a 

lipid-to-protein ratio of 2:1 mass/mass and final concentrations of 0.2 mg/ml (lipid) and 0.1 

mg/ml (protein). The tubulation reaction incubated for 30 minutes at RT before negative 

staining, as described below. In order to introduce the recombinant purified F-BAR into the 
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liposomes, 250 µl of the tubulation reaction subjected to 5 seconds of bath sonication at RT, 

immediately after adding protein.  Following sonication, the sample allowed to incubate for 

another 30 minutes before negative staining, as described below.  

 

Electron Microscopy  

Continuous carbon-coated Cu-grids were glow discharged in room air according to standard 

protocols. 4µL of sample were added and allowed to sit for ~10 seconds before being 

blotted onto filter paper. The grid surface was then immediately stained with freshly 

prepared (<15 minutes) 0.8% uranyl formate. Images were acquired using a Philips Tecnai 

F12 microscope operating at 120 kV using nominal magnifications of 29-50kx, and defocus 

values of –15,000 to –22,000 Å. Images were recorded on a Gatan 1K CCD. Image 

analysis, including tubule diameter measurements, were performed with NIH ImageJ. 

 

shRNA design and validation 

shRNA sequences were obtained from Dharmacon Dha2 Sense (5’- GAT CCA ATG GAC 

TAC TCT CGA AAC TTC AAG AGA GTT TCG AGA GTA GTC CAT TTC TTT TTT GGA 

AA-3’) Dha2 Anti-sense (AGC TTT TCC AAA AAA GAA ATG GAC TAC TCT CGA AAC TCT 

CTT GAA GTT TCG AGA GTA GTC CAT TG) and Dha5 Sense (5’- GAT CCG CTA TCT 

GCT GAA TTA AAT CTT CAA GAG AGA TTT AAT TCA GCA GAT AGG ATT TTT TGG 

AAA-3’) Dha5 Anti-sense (AGC TTT TCC AAA AAA TCC TAT CTG CTG AAT TAA ATC 

TCT CTT GAA GAT TTA ATT CAG CAG ATA GCG). These constructs were cloned into 

psilencer 2.1 (ambion). These shRNA were subsequently cotransfected with srGAP2-EGFP 

into COS7 cells ((shRNA 1.5µg) and srGAP2-EGFP (.5µg)). Lysates were collected 48hrs. 

After transfection and level of knockdown was determined by western blot using rabbit -

GFP (Molecular Probes) 
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Ex Vivo Cortical Electroporation and Primary Cultur es  

Mouse cortical progenitors were electroporated ex vivo at embryonic day (E) E15 as 

described (Hand et al., 2005). Briefly, cDNA constructs in overexpression experiments 

(2µg/µl) were injected into the lateral ventricle of each embryo and electroporated using an 

ECM 830 electroporator (BTX) with four 100 ms pulses separated by 100 ms intervals at 20 

V. Following electroporation, cerebral cortices were dissected and enzymatically dissociated 

as described previously (Polleux and Ghosh, 2002) 1.25x10
5 
cells were plated onto glass 

coverslips coated with poly-L-lysine and laminin and cultured in serum-free media (Basal 

Medium Eagle containing both B27 and N2 supplements, L-Glutamine and 

Penicillin/Streptomycin) and fixed in 4% paraformaldehyde for immunohistochemistry. For 

shRNA rescue experiments in dissociation a mixture (shRNA 1.5µg/µl) and srGAP2-EGFP* 

(0.5µg/µl) was injected into lateral ventricle. For slice cultures, embryonic brains were 

electroporated and dissected as described above. The brains were then embedded in 3% 

low temperature gelling agarose and 250 µm-thick vibratome sections were cut using a 

LEICA VT1000S vibratome and placed on poly-L-lysine/laminin coated transwell inserts and 

cultured organotypically using an air interface protocol (Polleux and Ghosh, 2002). ShRNA 

expressing sections were cultured for 3 days in vitro and cDNA expressing sections were 

cultured for 5 days in vitro. 

 

Time Lapse confocal microscopy of cortical sections  

Using a Leica TCS-SL confocal microscope (mounted on a DM-IRE2 inverted microscope 

stand) and equipped with a X-Y motorized Märzhäuser stage, time-lapse confocal 

microscopy was performed by imaging multiple Z-stacks at different positions on a given set 

of electroporated slices (using X-Y motorized stage) at a specific frequency for each 
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experiment. Slices were cultured on confocal inserts (Millipore) and imaged using a long 

distance 20x/0.4 NA objective. For shRNA expressing sections, pictures were taken 

repetitively at a frequency of 1 picture every 12 minutes for 4hrs. In the case of srGAP2 

over-expression experiments, sections were imaged every 16 minutes for a maximum of 

10hrs 24 minutes. Slight drifts of the slices were corrected using an image registration tool 

developed in ImageJ (Turboregand Stackreg- P. Thévenaz- Univ. Lausanne). 

 

Quantification of neuron migration and neurite bran ching. 

For shRNA treated slices, the extent of cell migration was analyzed as described previously 

(Hand et al., 2005). In cDNA expressing sections, migration was assayed in 3 different 

ways: (1) high magnification pictures were taken of the cortical plate and IZ and we 

quantified the ratio of cells/m2 CP/ cells/µm2 in the IZ. (2) For branching measurements, 

high magnification images were obtained of neurons migrating in layer 5/6 in various 

conditions. Number of branches protruding from the leading process were then counted. (3) 

We measured the percentage of cells in the IZ (defined by Draq5 staining) with >3 neurites 

over the total number of GFP+ in the IZ to determine the percentage of cells that did not 

migrate because they could not make a single leading process (i.e. multipolar). For cell 

speed measurements in shRNA treated slices, nuclei position was tracked manually during 

each frame using NIH ImageJ. Cell speed was calculated using Microsoft Excel and speed 

was reported in icron/hr.  Neurite branching was quantified using NIH ImageJ. 
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