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ABSTRACT 
 

Jennifer A. Sealey-Voyksner: Investigation of Immunogenic Gluten Peptides: 
Identification Using Enzymatic Tagging and HPLC-MSn;  

Analysis and Quantification Using HPLC-MS/MS 
(Under the direction of Dr. James W. Jorgenson) 

 

 The goal of my research was to provide some insight into a widely 

appreciated but poorly understood relationship between cereal grain proteins and 

human health. My research objectives were: (1) to identify and characterize 

inflammatory, physiologically relevant, wheat gluten peptides and (2) to develop a 

unique analytical methodology to screen commercially available food and consumer 

products for the quantitative detection of these peptides. 

 Gluten proteins comprise a very large protein family found in cereal grain 

seeds. This large protein family consists of hundreds of proteins ranging in size from 

about 30 kDa into the millions of KDa. Today’s nomenclature refers to “gluten” as the 

water-insoluble seed storage proteins found in the Triticeae tribe of the grass 

(Gramineae) family that includes wheat, rye and barley. Some gluten proteins 

associated with grains in the Triticeae tribe (specifically: wheat, rye and barley), 

have been implicated in various autoimmune diseases, food allergies, intolerances 

and are important factors in several inflammatory diseases. 

 Many analytical techniques have been used to study gluten proteins and 

peptides. Unambiguous identification and structural characterization of such 
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peptides is a necessary step toward an eventual understanding of their chemical 

biology. Liquid chromatography-mass spectrometry (LC-MS) is an extremely 

powerful tool for such analyses.  

 Results of my research are presented here, in the following chapters of this 

thesis report. Data presented supports the development of a novel and effective 

analytical methodology, using enzymatic/chemical labeling chemistry and 

HPLC/MSn; to identify and characterize seven physiologically relevant wheat gluten 

peptides. A sensitive and specific assay was then developed for the quantitative 

detection of these peptides via direct in-vitro proteolytic digestion and HPLC-MS/MS. 

This versatile methodology allows both processed and native foods, as well as 

consumer products, to be analyzed for the presence of wheat gluten. Continued 

efforts in this area will pave the way for eventual commercial application, as a 

service to both the celiac community and the food industry, by providing an accurate 

and economic means to generate much needed data for researchers developing 

treatments for patients with gluten sensitivities and manufacturers producing and 

labeling products that are safe. 
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CHAPTER 1 
 

Introduction to Gluten and Celiac Disease 
 
___________________________________________________________________ 
 
 
1.1 What is gluten? 
 
 “Gluten” is a term that collectively refers to an enormous family of complex 

heterogeneous storage proteins found in the endosperm of cereal grain seeds. As 

their description suggests, these proteins have no apparent function other than the 

storing of nitrogen, sulphur and carbon in the developing endosperm in order to 

support the needs of the growing seedling [1]. Storage proteins make up 

approximately 50% of the total proteins in mature cereal grains. Although cereal 

grains only contain about 10% protein, they are a most important crop, ultimately 

providing much of the daily nutritional requirement of protein needed by humans and 

livestock worldwide. Apart from their nutritional value, the functional properties of 

cereal seed proteins permit them to serve an important role in food manufacturing 

and processing [2, 3]. 

 Gluten is considered to be one of the most complex families of proteins found 

in nature. There are hundreds of proteins in this family, ranging in size from about 30 

kDa into the millions of kDa [1, 3]. Since the late1700’s, this sub-family of cereal 

grain proteins has been studied extensively and several theories have been 

successfully applied to further subdivide and classify the proteins in this family into 
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smaller sub-groups [4 - 6] according to their characteristics, amino acid sequences, 

locations within the grain, solubility and relationship within other grains. One of the 

first classification systems was developed by Osborne, who, because of his 

pioneering research, went on to earn the distinction of being the “father of plant 

protein chemistry”, in the mid 1850s. He divided gluten proteins into four groups, 

based on their solubility in various solvents (Figure 1.1). The albumins are soluble in 

water, globulins in dilute salt solutions, prolamins in alcohol and glutelins in dilute 

acid or base solutions [6]. Amazingly, this early classification scheme is still used 

today; and over the last hundred and fifty years, the nomenclature has evolved to 

today’s definition of “gluten”, which is generally used to describe the water-insoluble 

seed storage proteins found in the Triticeae tribe of the grass (Gramineae) family. 

Figure 1.2 delineates the taxonomy of some of the common dietary cereal grains 

found in the grass family. The relationship between four subfamilies, selected tribes 

and common names for the grains are shown in this figure [7].  

 A different classification scheme, developed by Shewry and Tatham [1, 3], 

devised a way to describe some gluten proteins of the Triticeae tribe (wheat, barley 

and rye). Here, the prolamins and glutelins could be grouped together, based on 

their amino acid composition according to the following three classifications: (1) 

sulphur-poor, (2) sulphur-rich and (3) high molecular weight (HMW) proteins. Such a 

scheme, representative of the prolamins and glutelins of wheat (i. e. gliadins and 

glutenins), is shown in Figure 1.3. The basis of the sulphur-containing fractions was 

the ability to group the proteins according to the presence of the amino acids 

cysteine and methionine. 
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 A sticky, rubbery ball of “gluten” is what would remain if one washed a sample 

of wheat, barley or rye flour in the kitchen sink. The compositions of the hundreds of 

proteins that make up this sticky gluten dough ball determine the unique combination 

of strength and elasticity needed to ensure a properly baked food product. Although 

all of these proteins differ in amino acid composition, they are all characterized by a 

high % of proline (P) and glutamine (G) residues and a small % of methionine (M) 

and cysteine (C) residues. Gluten proteins from all grains are both monomeric 

(prolamins) and polymeric (glutelins) in structure. Cysteines are responsible for 

linking the monomeric protein units together via intermolecular disulphide bonds. 

These polymeric aggregated molecules, with molecular weights that can span into 

the millions of KDa, hold important functionalities in the quality of dough during the 

baking process [8]. 

 In terms of solubility, the majority of gluten proteins can be generally 

classified into two solubility-based subgroups: (1) the aqueous alcohol-soluble 

prolamins and (2) the alcohol-insoluble glutelins (i.e. “gliadins” and “glutenins” - in 

wheat). The monomeric gliadins can be further sub-divided into α-, ß-, γ- and ω- 

gliadins; whereas the polymeric glutelins can be further sub-divided into low 

molecular weight (LMW) and high molecular weight (HMW) subunits. In the wheat 

kernel, the monomeric gliadins and polymeric glutenins are found in the relative ratio 

65:35 and form the majority of the storage protein in wheat. Similar groups of 

proteins are found in barley and rye, corn and oat grains. Extensive research 

involving the functionality of wheat proteins in relation to baking quality, has 

determined that it is the gliadin proteins that are responsible for viscosity and 
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extensibility, while the glutenins determine elasticity. Interestingly, the functionalities 

of the gliadins and glutenins their relationship to each other can be thought of as 

somewhat analogous to a multi-component epoxy glue system [8]. 

 In recent years, there have been many excellent and informative studies 

conducted, which have focused on characterizing the various classes of gluten 

proteins [9 - 11]. As more information has become available about the composition 

and structure of the many types of proteins, new insights into their functionality have 

become clearer. Although complete amino acid sequences have been determined 

for representatives from the prolamin and glutelin sub-groups of wheat, barley and 

rye, gaps still exist in the knowledge base for the structure, composition and 

functionality of all members of this enormous protein family.  

 
1.1.1 Wheat gluten protein nomenclature and composition 
 
 Wheat gliadins are monomers and most have been found to be alcohol 

soluble. Early attempts to study the gliadins led to their classification into four sub-

groups (α-, ß-, γ- and ω-), based on their mobility in gel electrophoresis. Further 

investigations have re-grouped the α- and ß-gliadins together because they are 

structurally very similar. The α/ß- and γ-gliadins are lower in molecular weight (30 to 

60 kDA) than the ω-gliadins (up to 75 kDa). They contain repetitive sequences of 11 

(for α/ß) and 7 (for γ) amino acids in the N-terminal domain and have homologous, 

non-repetitive C-terminal domains along with the presence of 6 - 8 cysteines which 

form intra-chain cross-links. Other domains are present in these proteins that are 

made up of long repetitive sequences of individual glutamines and sequences high 

in proline and glutamine. Repetitive sequences 8-10 amino acids, consisting of high 
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percentages of proline and glutamine make up the majority of the ω-gliadins. These 

proteins are the minor component of the gliadins. They contain the highest % of 

proline and glutamine and lowest % of sulphur containing amino acids. Secondary 

structural information about α-, ß-, γ- and ω-gliadins describe the N-terminal domain 

for each as consisting mainly of ß-turns; whereas the C-terminal domain is 

characterized as consisting of ß-sheets and α-helices.  

 Wheat glutenins are polymeric; they are aggregates of the alcohol-soluble 

monomeric gliadins linked together by inter-chain disulphide bonds. As such, 

glutenins are considered to be insoluble in aqueous alcohol. However, should their 

inter-chain disulphide bonds be reduced, the resulting monomeric subunits do 

become soluble in aqueous alcohol The low molecular weight gluten subunits (LMW-

GS) constitute about 20% of the total wheat gluten protein, while the high molecular 

weight gluten subunits (HMW-GS) fraction represents about 10%. The LMW-GS 

have domains similar in amino acid composition to α-, ß- and γ-gliadins. The N-

terminal domain is characterized by short repetitive sequences high in proline and 

glutamine, while the C-terminal domain has cysteines, which form the inter-chain 

disulphide bonds. The HMW wheat glutenins consist of 3-5 subunits, each of which 

contains 3 structural domains. The N- and C- terminal domains are both non-

repetitive and contain charged residues and cysteines. The middle domain contains 

repetitive sequences of 4-6 amino acids. Limited information is available about the 

secondary structure of the HMW-GS, but what is known is that the middle domain 

consists of ß-reverse turns which are predicted to overlap, thus forming a spiral. The 
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N- and C- terminal domains are thought to contain α-helices that contribute to these 

domains’ globular structures. 

 An important network of covalent bonds consisting of inter- and intra-chain 

disulphide bonds between and within gluten proteins, are a common structural 

feature of this vast and heterogeneous family of proteins. In addition, non-covalent 

bonds, such as hydrogen, ionic and hydrophobic bonds are also prevalent structural 

features. These types of bonds are responsible for the various functionalities of 

gluten proteins in manufacturing processes. It has been determined that it is the 

HMW-GS proteins that are the most influential in determining the properties of 

dough. One especially large wheat polymer, the “glutenin macropolymer”, is well 

known on account of its substantial contribution to the strength and volume of baked 

bread [3, 8, 12 and 13].  

 Prolamin and glutelin proteins from wheat, barley and rye are all basically 

similar in structure, but do have considerable differences in their detailed structures. 

Comparisons of the various domains from all three groups of proteins indicate that 

they have a common evolutionary origin. It has been speculated that because select 

regions of Triticeae proteins are also found in other groups of proteins (i. e. oats, 

rice, sunflower, corn and castor bean), that perhaps these other proteins shared a 

limited evolutionary link with those of the Triticeae tribe [3, 13].  

 
1.2 Link between gluten and human disease 
 
 Dietary gluten, from wheat, barley and rye grains has been identified as a 

principle trigger of a variety of immune diseases, including food allergies and 

intolerances [14, 15 and 16]. Some of the more common are listed as follows: 
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anemia, rheumatoid arthritis, carcinoma of the oropharynx, esophagus and small 

bowel, celiac disease; dermatitis herpetiformis, diabetes (Type 1), Down syndrome; 

enteropathy-associated T-cell lymphoma; IBS - irritable bowel syndrome, kidney 

disease, liver disease, Sjogrens syndrome, thyroid disease (autoimmune), ulcerative 

jejunoileitis etc. [17]. Gluten intolerance has recently been considered a factor 

associated with various neurological symptoms, such as, depression, migraine, 

headaches and learning disorders, such as, autistic spectrum of disorders and 

attention deficit disorders [16]. 

 
1.3 Celiac disease 
 
 Celiac (or Coeliac) disease (CD), also known as Celiac Sprue (CS), is a 

complex autoimmune disorder of the small intestine. Interaction between several 

factors, including gluten, can result in an autoimmune response which is best 

characterized by small-intestinal injury with severe structural damage to the villi 

lining of the small intestine, adversely affecting one’s ability to absorb nutrients [17, 

18]. Results from the inadequate absorption of nutrients from digested food in the 

alimentary canal, especially by the small intestine, can manifest themselves in a 

wide spectrum of serious problems involving various bodily systems, including the 

nervous system, the heart, teeth and bones. Current knowledge about the 

pathogeneses of CD implicates environmental, genetic and immunological factors. In 

those who are genetically predisposed, exposure to gluten proteins, from wheat, 

barley and rye, can trigger both adaptive and innate immune responses (Figure 1.4). 

Although all cereal grains contain prolamin and glutelin proteins, the amino acid 

sequences of these types of proteins in each grain are different. Only those from 
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wheat, barley and rye have been identified as the trigger of the immune response 

that affects the intestinal lining of those genetically susceptible to CD. Symptoms of 

CD vary greatly between patients. Symptoms may be severe, limited or even absent. 

Prolonged exposure to even modest quantities of dietary gluten results in severe 

damage to the small intestine and may ultimately result in death if left untreated [19].  

 Current epidemiological research reports that CD affects ~1% of the world’s 

population [20]. Due to the wide variation in clinical manifestations of the disease, 

many people affected by CD have trouble receiving proper diagnosis; many remain 

undiagnosed. Reports have indicated that CD is now becoming widely recognized in 

North and South America, Europe, Africa, Australia and India. Prevalence of CD in 

Asia has arisen recently, due to the incorporation of wheat into the diet of the more 

affluent Asian citizens.  

 
1.3.1 The genetic factor  
 
 CD will not develop in an individual unless they have inherited the necessary 

genetic factors that are part of the immunological response to gluten. Two of the 

most important genetic factors have been identified as human leukocyte antigen 

(HLA) DQ2 and DQ8 genes. People carrying these genes have been found to carry 

the highest risk factor for developing CD [21].  

 The major histocompatability complex (MHC) is a large gene region found on 

the short arm of chromosome six (Figure 1.5). Genes in this family have an 

important role in the immune system of vertebrates. The MHC is divided into 

regions: I, II and III. HLA genes are a large (4Mb) part of the MHC class II family. 
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The HLA region contains numerous immune and non-immune system related genes. 

The HLA-DQ locus is where known CD-related genes are located.  

 Because the involvement of these HLA genes in the susceptibility to CD has 

been so clearly proven, HLA-typing has been established as a successful diagnostic 

tool in instances where it is necessary to exclude the disease as a potential cause of 

sickness. Although carrying one or both of these HLA-DQ2 or DQ8 genes is 

necessary for the development of CD, they are not the only genetic factors involved. 

Approximately 30% of American citizens carry these genes, but only 1% will develop 

the disease. Other genetic factors must also be considered, such as those that 

influence the innate and adaptive immune system and physical condition of the 

intestinal mucosal barrier [22].  

 
1.3.2 The gluten factor 
 
 The later stages of digestion of dietary foods in the alimentary tract occur 

within the villi lining on the outside surface of small intestinal cells. The purpose of 

these fingerlike structures (villi) is to increase (by several hundred times), the 

surface area of the intestinal cells, in order to maximize the ability of the cells to 

absorb nutrients. By the time food reaches the villi in the small intestine, it has been 

metabolized down to a mixture of the basic fundamental units of disaccharides, 

single amino acids, di- and tri-peptides, fatty acids, and monoglycerides. These 

components are either efficiently absorbed by the villi and passed on, or eliminated. 

Villus capillaries collect amino acids and simple sugars and pass them on into the 

blood stream; whereas villus lacteals collect triglycerides, cholesterol and 

amphipathic proteins and direct them to the rest of the body through the lymphatic 
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fluid. Figure 1.6 depicts the alimentary tract and the location of the villi which are 

damaged by the immune reaction to dietary gluten.  

 Gluten proteins contain an unusually high percentage of the amino acids 

proline and glutamine. The substituted and conformationally constrained amide bond 

of proline residues renders them considerably more resistant towards normal 

breakdown by proteolytic gastric, pancreatic and brush border membrane digestive 

processes [23, 24]. Over time, an increase in concentration of relatively stable small 

peptides (~4-50 amino acids in length) results in the small intestine. The immune 

response to these incompletely metabolized gluten peptides promotes an 

inflammatory reaction in the small intestine. This response is characteristically 

mediated by two different immune mechanisms, the adaptive and the innate 

mechanism [20]. This response is currently, the best characterized toxicological 

effect of gluten in patients with CD is this intestinal inflammation and enteropathy. 

Other toxicological effects of exposure to gluten have also been described [15, 25 

and 26]. Of note, a small group of four and five amino acid residue peptides have 

been identified that result from the enzymatic digestion of dietary wheat gluten. 

Termed the “gluten exorphins (GEs)”, this family of opioid-like peptides, closely 

resembles enkephalins in structure and has been found to be able to penetrate 

abnormally permeable intestinal membranes (a condition analogous to that which 

occurs in people with CD). Once allowed to enter the blood plasma and finally reach 

the central nervous system, these GEs have been found to affect behavior by 

modulating neurotransmission functions.  
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1.3.3 The immunological factor  
 
 Under normal physiological conditions, passage of larger molecules across 

the intestinal epithelial barrier is prevented by intercellular tight junctions that keep 

the cells close together. In those individuals who are susceptible to CD, however, 

interaction between physiologically relevant undigested immunogenic gluten 

peptides and intestinal cells appears to trigger disassembly of these tight junctions 

and allows the intestinal wall to become permeable [27, 28]. The mechanism 

responsible for the regulation of the permeability of these intracellular tight junctions 

is not well understood. However, research in this area has identified a protein 

(zonulin) whose function appears to be to somehow mediate the regulation of 

intracellular permeability [29]. Zonulin has been found to be overexpressed in those 

with CD [30] and recent work has finally been able to characterize its biochemical 

nature [31]. 

 Once the intestinal epithelial layer has become permeable to larger molecules 

(i. e. gluten peptides), these immunogenic gluten peptides proceed diffuse into the 

lamina propia of the intestinal villi and are allowed to trigger two distinct 

immunological pathways (innate and adaptive), resulting in the characteristic tissue 

damage and villous atrophy. These symptoms are those most commonly presented 

by the majority of those afflicted with CD. 

 The immune system generally acts to protect its host organism by using a 

layered defense of increasing specificity. The first layer of defense is simply a 

physical barrier to prevent pathogens (agents that cause disease or illness to its 

host) from entering the host organism. Should a pathogen break though this first 
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layer of defense, the innate immune system mediates an immediate, but non-

specific response to the pathogen. If the pathogen escapes the innate response, the 

adaptive immune system adapts the organism’s response accordingly, in order to 

remove the pathogen [32].  

 The body can act through both of these two mechanisms, in response to the 

presence of gluten peptides. Although only a small number of gluten peptides that 

can activate the immune system in this fashion have been identified to date, the list 

is increasing on an ongoing basis. A list of selected known immunogenic gluten 

epitope sequences is shown in Table 1.1 [33, 34]. The core 9-mer region of the 

gluten peptide-HLA binding register is listed, along with the associated HLA element 

that has been identified that binds to it. It is important to note that peptide sequences 

from both gliadin and glutenin proteins have been identified as immunogenic. 

1.3.3.1 Adaptive immune response to gluten 
 
 Under certain conditions, peptides belonging to one group of structurally 

similar gluten peptides are allowed to enter the abnormally permeable layer of the 

villi’s epithelium. A brief description of the adaptive immune response to these gluten 

peptides involves a complex which is formed between dendritic cells (antigen 

presenting cells [APCs] - in the intestines), the HLA DQ2/8 proteins and gluten 

peptides. This complex is then presented to and subsequently binds to T-helper 

cells. The T-cells then becomes activated and direct the release of various pro-

inflammatory cytokines and anti-bodies resulting in eventual tissue damage. 
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1.3.3.2 Innate immune response to gluten 
 
 Another group of structurally similar gluten peptides, different than those 

involved in the T-cell mediated adaptive response, can activate an innate immune 

response in the intestinal epithelium. The mechanism of this innate immune 

response appears to be quite complicated and much less understood.  

 An overview to this mechanism likens its progression to a kind of stress 

response elicited by the epithelium. In this instance, undigested gluten peptides 

interact with the epithelium directly. This initial cell damage results in the release of 

interleukin-15 (IL-15), which in turn leads to the production of interferon gamma (IFN 

γ). Intraepithelial lymphocytes (IETLs) become activated and become cytotoxic, 

expressing NKG2D (a natural-killer-cell marker) receptors. Mucosal damage results 

as cells that express the major-histocompatability-complex class I chain-related A 

(MIC-A) antigen on their surface are then targeted, bind to the NKG2D receptor and 

are then killed. MIC-A is a protein that is produced due to some kind of stress [35]. 

 
1.3.4 Other environmental factors 
 
 Exposure to gluten is considered to be the most important environmental 

factor involved with the pathogenesis of CD. However, according to recent research 

findings, there are several other environmental factors that could contribute to 

increasing the risk for developing CD [20]. The accessibility of breast milk appears to 

offer some protection to infants who are genetically predisposed to CD, either by 

protecting them completely from developing the disease, or in delaying its onset [36, 

37]. It is known that children who are not breastfed or who are given gluten too early 

in life are more at risk to develop the disease [38].  
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 Another interesting factor that has provided evidence for increasing the risk 

for the onset of CD is the type and rate of incidence of certain gastrointestinal 

infections that occur at a young age [39]. 

 
1.4 Motivation for measuring gluten 
 
 Although information about the pathogenesis of CD is increasing, there is 

currently no cure for the disease, no representative animal model from which to 

study the immune response mechanisms and little hope of changing the 

immunogenic nature of all Triticeae grains through bioengineering. Therefore, the 

only effective therapy available for people with CD is a strict, lifelong adherence to a 

gluten-free diet. However, maintaining a true gluten-free existence is actually quite 

difficult, expensive and fraught with accidental exposure to gluten, which can result 

in incomplete recovery and/or relapse from recovery. Several non-dietary 

therapeutic approaches have recently been proposed, which attempt to address 

occurrences of inadvertent ingestion of small amounts of gluten [40 - 42]. 

Notwithstanding, it is in the best interests of those who suffer with CD to provide a 

means of preventing accidental exposure to gluten. 

 The best word to describe the presence of gluten in our environment is to say 

that it is ubiquitous. It is used extensively, throughout the world in a variety of 

manufacturing arenas [43]. In food manufacturing, it is used as a flavor enhancer, 

thickener, fortification ingredient, filler, whitener etc. Gluten is also used in the 

manufacturing of personal care products, nutritional supplements and drug products. 

Fortunately, for those with CD or other forms of gluten sensitivities, the presence of 

gluten in a product is usually noted by its inclusion in the ingredient list on product 
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packaging (albeit referenced by a variety of names). Unfortunately, there also exist 

many hidden sources of gluten as a consequence of unlabeled ingredients and from 

cross-contamination in manufacturing processes and equipment cleaning. 

Therefore, people with CD are destined to a life of label-reading to ensure that 

products they use are safe for personal use and consumption. Several groups of 

researchers are working to establish if there actually exists a “safe” quantity of gluten 

that is safe for people with gluten sensitivities to ingest on a daily basis [44, 45]. But 

in the meantime, a gluten content of “zero“ is desired. Unfortunately, based on how 

prevalent gluten is in the environment, this “zero” tolerance is not realistic. 

 From the perspectives of patient disease management, manufacturing quality 

control and worldwide consistency in product labeling, there poses an obvious need 

to be able to accurately determine that commercially available foods and consumer 

products are gluten-free and label them as such. However, the subject of product 

labeling and gluten-free certification is a controversial one because there is no 

concise definition of “gluten-free” that is currently accepted worldwide. 

 
1.5 Methods of gluten measurement 
 
 Increased interest, awareness and research surrounding gluten-related 

illnesses (such as CD) over the last two decades have resulted in a wealth of new 

information. New data ultimately provides health care professionals the means to be 

able to determine proper diagnoses for patients that present with and without gluten-

related symptoms. With respect to CD, there is a growing understanding of the 

pathogenesis of the disease, new methods for screening patients and novel 
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methodologies for studying gluten proteins and screening gluten-containing foods 

and products.  

 Nonetheless, the analysis, characterization and quantification of cereal grain 

gluten peptides and proteins are complicated. Protein composition, profile and 

natural sequence fluctuations of grains are in a constant state of flux, due to 

variances in cultivars, areas grown, climate and the emergence of genetic 

engineering. Gluten protein composition can also change during various processing 

stages of manufacturing. Several well-established analytical techniques, such as 

SDS-PAGE, capillary electrophoreses, PCR, RP-HPLC and mass spectrometry, 

have all been used quite successfully, to study cereal grain proteins [46 - 48]. Mass 

spectrometry has recently become involved in both genomic and proteomic areas of 

gluten analysis [49]. MS-based methods have focused mainly on applications 

involving the qualitative detection and characterization of gluten proteins, through 

the use of MALDI-TOF-MS [50, 51] and HPLC-MS based methods [26, 52]. 

Research in the area of assessing the total gluten content and detecting gluten 

contamination in food has been traditionally done using immunochemical methods 

[15, 45, 53 - 55]. In fact, the only current commercially available methods for 

determining the presence of gluten in foods are the immunological antibody-based 

ELISA methods. Thus, immunochemistry is the only analytical technique that is 

currently being endorsed by both the FDA and the Codex Alimentarius, for gluten 

detection in commercially available foods and consumer products. 
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1.5.1 Measurement of gluten using HPLC-MS 
 
 To date, the analytical capabilities of HPLC-MS have found limited application 

in the area of quantitative detection of trace levels of physiologically relevant gluten 

peptides in complex matrices. My research was directed toward this end, by the 

proposed identification of some immunostimulatory gluten peptides, then evaluating 

commercially available food and consumer products for their presence by 

quantitative detection using HPLC-MS. It should be emphasized that this work did 

not focus on determining the total gluten content in samples, nor the fingerprinting of 

samples for a gliadin / glutenin profile, nor the identification of which gluten proteins 

were present in samples. My work did endeavor to develop a means to 

comprehensively, selectively and accurately screen complex samples in order to 

provide evidence of the presence of trace levels of immunogenic gluten. 

 High performance liquid chromatography (HPLC), atmospheric pressure 

electrospray ionization (ESI)-ion trap mass spectrometry (ITMS) and triple 

quadrupole mass spectrometry (QQQ-MS) are powerful analytical techniques. Their 

application to the area of proteomics in order to enable peptide and protein 

identification, as well as precise quantitative analysis, has been well documented [56 

- 59].  

 Hundreds of gluten peptides are generated by the in-vivo gastric/pancreatic 

enzymatic digestion of wheat gluten. In order to study these peptides, a similar 

digestion process could be performed in an in-vitro fashion. An HPLC separation of 

the resulting mixture of peptides would offer a first degree of specificity needed to 

study the components of such a complex mixture. ESI-MS detection offers a second 
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degree of specificity, by providing the ability to detect some specific mass-to-charge 

(m/z) ions that represent the molecular weights of these gluten peptides. Multiple 

stages of mass spectrometry (MSn, where n=number of stages) offer even more 

degrees of specificity, based on the ability to detect product ions generated from the 

collision-induced dissociation (CID) of certain chosen parent ions. This provides the 

means to gather the essential information needed to determine the partial or even 

the complete primary amino acid sequence, thus the identity, of some gluten 

peptides. 

 There are several configurations of commercially available instruments that 

can offer multiple stages of mass spectrometry and are based on combinations of 

quadrupoles, ion traps, time of flight and magnetic/electric sector mass analyzers. 

Two of the most common instrument configurations for conducting MSn experiments 

are the ion trap and triple quadruplole mass spectrometers. These two instrument 

configurations in combination with HPLC were used in this research and are briefly 

described as follows. 

 
1.5.1.1 Ion trap mass spectrometer 
 
 A schematic of the Agilent Technologies ion trap mass spectrometer is shown 

in Figure 1.7. The HPLC effluent is nebulized and charged in the atmospheric 

pressure electrospray chamber, thus producing charged droplets. These droplets 

eject ions which are sampled through the capillary and then directed through a 

series of skimmers, octopole and lenses directly into the trap, while the neutral gas 

molecules are pumped away. The ability to generate MS and MSn spectra using the 
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ion trap is based upon computer control of voltages on the ring electrode and 

voltages and frequencies on the two end caps of the trap.  

 An ideal application of ion trap mass spectrometry is the structural elucidation 

of unknown compounds, such as immunogenic gluten peptides. The advantage of 

using this instrument in this type of application stems from the ability of the trap to 

accumulate all the ions from the sample being analyzed, simultaneously. This 

enhances the duty cycle of the ions being studied, as compared to the duty cycle of 

a scanning mass analyzer, such as a quadrupole. This translates into good full scan 

sensitivity, which is necessary for identifying and studying unknowns. Another useful 

feature of the ion trap system is its ability to perform a data dependent acquisition. 

Thus, MSn spectra can be acquired in addition to full scan spectra, therefore 

providing much more information which is useful for the identification of unknown 

compounds.  

1.5.1.2 Triple quadrupole mass spectrometer 
 
 A schematic of the Agilent Technologies triple quadrupole mass spectrometer 

is shown in Figure 1.8. The process of generating ions in the electrospray ionization 

chamber of this instrument is identical to that of the ion trap system, however, the 

triple quadrupole system transmits the ions directly into a first stage quadrupole 

mass analyzer rather than a trap analyzer. In this first quadrupole, desired target 

ions are selected and transported into the next stage of the system, a collision cell. 

This hexapole collision cell breaks apart the target ions into characteristic product 

ions and transports them into the final quadrupole analyzer. Here, the product ions 

are isolated and then directed into the detector assembly.  
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 Triple quadrupole mass spectrometry is ideally suited for the application of 

quantitative detection of target compounds. Therefore, once the identity of an 

immunogenic gluten peptide has been determined, this analytical system is well 

suited to determine its presence and concentration in a food sample. 

 
1.6 Overview of this thesis report 
 
 The goal of this research was to provide some insight into a widely 

appreciated but poorly understood relationship between cereal grain proteins and 

human health. The research objectives were: (1) to identify and characterize 

potential immunogenic wheat gluten peptides and (2) to develop an analytical 

methodology using HPLC-MS for use in screening commercially available food and 

consumer products for the quantitative detection of trace quantities of these 

peptides. The following five chapters (Chapters 2, 3, 4, 5 and 6) describe the journey 

I undertook in an endeavor to successfully achieve these two objectives.  

 
1.6.1 Chapter 2 
 
 This chapter describes initial efforts toward the identification of immunogenic 

gluten peptides. A procedure was developed that was designed to simulate the in-

vivo enzymatic digestive process, which could be performed in an in-vitro fashion. 

This procedure succeeded in its attempt to release similar types of gluten peptides 

from proteolyzed wheat gluten proteins that are released in-vivo. Data presented 

supports the proof of the principle of this concept and provides an interesting first 

impression of into the challenges of the analysis of food proteins by HPLC-MS. 
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1.6.2 Chapter 3 
 
 Hundreds of gluten peptides are released via a proteolytic digestion. This 

chapter describes a strategy that was developed which attempted to discriminate 

between those that are immunogenic and those that are not. The strategy focused 

on certain aspects of how the body itself determines which peptides it considers as 

“antigens” and how it targets them during the autoimmune responses to gluten. 

Following this strategy, a methodology was developed that subsequently allowed 

several potentially physiologically relevant immunogenic gluten peptides to be 

identified in proteolyzed wheat flour. Data presented describes how these peptides 

were identified, how their structures were determined and how they came to be 

considered physiologically relevant to celiac disease.  

 
1.6.3 Chapter 4 
 
 The ability to be able to detect and quantify trace levels of dietary gluten in 

commercially available food and consumer products is important, because of the 

established link between exposure to gluten and human health. This chapter 

describes how the seven physiologically relevant immunogenic peptides identified in 

this research could be used effectively as markers for gluten toxicity in food. An 

analytical method was developed for the quantitative detection of the seven selected 

immunogenic wheat gluten peptides in such products, using HPLC-MS/MS. 

Experimental results describe how this method can accurately, sensitively and 

reproducibly detect and quantify trace levels of the immunogenic peptides that have 

been identified by this research. 
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1.6.4 Chapter 5 
 

 This chapter describes two practical applications of this developed 

methodology. The first application describes how the methodology was utilized in the 

evaluation of the quality of commonly available consumer foods and products. The 

data presented demonstrate how this method can detect trace levels of 

immunogenic gluten in products that have been labeled gluten free, as a result of 

possible contamination during the manufacturing process. This is essential 

knowledge for patients who suffer from various forms of gluten sensitivities and need 

to maintain a gluten-free existence. Currently, there is no concise, universally 

accepted definition of “gluten-free”, with respect to the gluten content of 

manufactured foods and products that become available for consumption by the 

general population. Various agencies around the world, including the United States, 

have proposed their own definitions, which affect how products are manufactured 

and labeled and how their quality is determined. The work described in this thesis 

report has attempted to address this subject area by providing a means to 

quantitatively determine the presence of immunogenic wheat gluten in a complex 

food matrix. 

 A second practical application of the developed methodology describes how it 

was utilized as a tool in the assessment of the proteolytic capabilities of a new orally-

based enzyme. This type of oral enzyme therapy is designed to address instances of 

unavoidable everyday exposure to small amounts of gluten. The function of an oral 

enzyme of this type is primarily to target the immunogenic gluten peptides that resist 

gastric and pancreatic digestion and subsequently break them up into smaller, more 
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digestible fragments, thus preventing the characteristic inflammatory damage to the 

tissues of the small intestine. The data presented demonstrate that this method has 

the capacity to be used as a tool in research, to further our knowledge about gluten-

related diseases and to aid in the development of methods that aim to treat them. 

 
1.6.5 Chapter 6 
 

 The last chapter of this report provides a brief synopsis of all of the research 

presented in the context of this project. It reviews the goals and objectives of the 

research and summarizes the significance of the results obtained from the work. 

Some insight is also offered with respect to possible future directions for the 

continuation of this work and its contribution to the subject area in general. 
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Table 1.1 
 

Selected known DQ2/DQ8-restricted immunogenic gluten epitopes 
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Figure 1.1 
 

A classification of gluten proteins based on solubility 
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Figure 1.2 
 

Taxonomy of some common dietary cereal grains 
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Figure 1.3 
 

A classification of wheat gluten proteins based on amino acid composition 
 

(adapted from Shewry [3] ) 
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Figure 1.4 
 

Factors involved in celiac disease (CD) 
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Figure 1.5 
 

Overview of the HLA gene region of the MHC 
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Figure 1.6 
 

Alimentary tract 
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Figure 1.7 
 

Agilent Technologies 1100 Series HPLC-MSD Ion Trap Mass Spectrometer 
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CHAPTER 2 
 

Use of In-Vitro Enzymatic Digestion and Metal Ion 
 

Attachment to Selectively Study and Identify Potent ial 
 

Immunogenic Gluten Peptides using HPLC-MS n 
 
___________________________________________________________________ 
 
 
2.1 Introduction 
 
 During the human in-vivo digestion process, dietary gluten proteins from 

wheat, barley and rye cereal grains are broken down into very small peptides and 

individual amino acid residues, which are taken up into the alimentary tract or 

subsequently allowed to pass through the intestines. Those with celiac disease (CD) 

cannot do this efficiently and some small (~4-40 amino acid residue) peptides, rich in 

proline and glutamine, resist the normal proteolytic breakdown by gastric and 

duodenal enzymes and remain in the small intestine. Over time, these peptides can 

trigger an inflammatory response which subsequently can result in intestinal tissue 

damage, characteristic of celiac disease. One such wheat gluten peptide is a 33mer 

(LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF), termed “αG-33”. This 33mer 

has recently been identified as the physiological form of immunodominant antigens, 

thus suggesting it is a potent trigger of the inflammatory response to gluten proteins 

[1] in those with CD. Amino acid sequences of other related peptides in wheat, 

barley and rye are theorized to be similar in size and in amino acid composition.  
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2.1.1 In-vitro enzymatic digestion of gluten proteins 
 
 These wheat, barley and rye gluten peptides, that have been proposed as 

immunogenic gluten peptides, have been found to possess the following 

characteristics or elements that are associated with the CD immune response: (1) 

contain multiple proline (P) and glutamine (Q) residues, (2) are targets for the tissue 

transglutaminase 2 (TG2) enzyme within the epithelial layer of the intestinal wall, (3) 

contain certain consensus sequences (i. e. Q-x-P or PQPQLPY) that involve specific 

Q residues, targeted by the TG2 enzyme and (4) originate only from wheat, barley 

and rye cereal grain gluten proteins [2]. 

 In theory, it should be possible to simulate, in an in-vitro fashion, the 

approximate physiological conditions which take place in the gut using the main 

human digestive enzymes, in order to generate a mixture of gluten peptides similar 

in nature to those that are produced in-vivo. Store bought wheat gluten could be 

used as an ideal test matrix, because it contains the highest concentration of gluten 

proteins, relative to native wheat, barley and rye flours. HPLC-MSn could be used to 

study the digested products and potentially isolate and characterize those that may 

be immunogenic for CD. 

 A strategy for immunogenic peptide identification would initially involve 

evaluation of the HPLC-MS data from the enzymatically proteolyzed wheat gluten to 

isolate those peptides with sufficient MS response so as to generate adequate 

MS/MS spectra. This would allow protein database searching to take place. 

Submission of any MS/MS spectra obtained in this manner to the MASCOT or other 

relevant protein database could ascertain a possible sequence of the peptide and 
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whether is gluten-related or not. Manual interpretation of the MSn spectra would also 

need to be done to confirm any results offered by this type of database search. Once 

potential sequences were postulated for these peptides, confirmation of the 

presence of known immunogenic epitope sequences within would offer relevant 

evidence that the peptides are in fact immunogenic. Some known immunogenic 

gluten epitope sequences are listed in Table 1.1. Next, any potential target peptide 

sequences identified in this manner would then have to be verified, through further 

database searching, to confirm that they are unique to wheat and not present in any 

grains deemed acceptable (such as corn or rice) for consumption by people with 

gluten sensitivities. Therefore, this process would establish that proper physiological 

conditions had been met for an in-vitro digestion and that an appropriate procedure 

to identify physiologically relevant immunogenic gluten peptides was proven 

successful. 

 
2.1.2 Metal ion attachment 
 
 One method that can offer improvements in the sensitivity and the quality of 

structural information obtained for a compound during analysis by HPLC-MS 

involves the formation of metal ion adducts with the compound in solution. 

Introducing such complexes into a mass spectrometer can offer these improvements 

using collision-induced decomposition (CID) during the MS/MS experiment. Metal 

ion adducts have been successfully used to achieve both of these improvements in 

performance with compounds, such as carbohydrates [3] nucleotides [4] and 

phospholipids [5]. There has been some research published which involved specific 

metal attachment to proline [6], the differentiation of isomeric di-peptides through the 
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formation of copper complexes [7] and C-terminal peptide sequencing of alkali 

cationized peptides up to 10 residues in length [8]. Also, it has been shown that the 

formation of 5 member rings by low energy CID of peptides (using ion trap mass 

spectrometry) can offer opportunities for specific metal ion attachment and unique 

CID product ions [9]. The choice of the correct metal ion (i. e. size) can serve to 

bridge these ring structures and offer unique peptide fragmentation information.  

 Therefore, it was theorized that this technique could be applied successfully 

in order to achieve improved specificity in gluten peptide analysis, which would 

ultimately aid in the identification and characterization of immunogenic peptides. 

Since it has been determined that immunogenic gluten peptides contain high 

concentrations of proline and glutamine, the proposed experiment would involve the 

infusion of solutions of a variety of metal acetate salts and selected synthetic 

peptides into an ion trap mass spectrometer and monitor the MS responses. 

Evaluation of the data from this type of experiment would determine if there are any 

metals that show a unique affinity for proline-containing peptides. Further 

experiments using on-line HPLC-ion trap MS/MS, with metal ion addition conducted 

via post column addition would provide a means to obtain structural information of 

gluten peptides. 

 
2.2 Experimental 
 
2.2.1 Materials and reagents 
 
2.2.1.1 Expression and purification of recombinant prolyl endopeptidase 
 
 Prolyl endopeptidase (PEP) was expressed from Flavobacterium 

meningosepticum was expressed by fed-batch fermentation. Colleagues at Stanford 
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University, CA, USA have succeeded in isolating the PEP at high specific activity 

and purity and have provided the methodology under a standard Materials Transfer 

Agreement to the Celiac Sprue Research Foundation, CA, USA. Dr. Chaitan Khosla, 

of Stanford University, provided the PEP for use with this research project. 

 
2.2.1.2 Isolation of brush border membrane enzymes 
 
 Colleagues at Stanford University, CA, USA isolated and purified brush 

border membrane enzymes (aminopeptidase N and dipeptidyl peptidase IV) from 

Sprague-Dawley rat brush border membrane cells. In brief, a section of rat jejunum 

was surgically removed and the mucosa scraped off. The mucosa was homogenized 

and processed to a final resulting pellet which was re-suspended in PBS at a pH 7.1.  

 
2.2.1.3 Chemicals and samples 
 
 Pepsin, trypsin, chymotrypsin, carboxypeptidase A, elastase, KHNaPO4, 

NaOH and various metal acetates were obtained from Sigma-Aldrich (St. Louis, MO, 

USA). HPLC-grade acetonitrile and HCl were obtained from Fischer Scientific. Water 

was obtained from an in-house Milli-Q water purification system (Millipore, Billerica, 

MA, USA). Wheat gluten was obtained from a local specialty food store (Chapel Hill, 

NC, USA). Synthetic gluten peptides were supplied by Dr. Chaitan Khosla, 

Chemistry Department, Stanford University, CA, USA. 

 
2.2.2 Enzymatic digestion of wheat gluten flour 
 
2.2.2.1 Treatment with gastric and pancreatic enzymes 
 
 Wheat gluten flour was treated with pepsin, trypsin, chymotrypsin, elastase 

and carboxypeptidase A (PTCECA) according to the following protocol: 300 mg of 
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wheat gluten was added to 10 mL of water with the addition of HCl to achieve a 

stable suspension at pH 2. Pepsin (Pepsin NF powder, 1:10000, 6.0 mg) was mixed 

into the gluten suspension and the gluten-pepsin mixture incubated and gently 

shaken at 38°C for 120 min. Following this pepsin trea tment, 35 mg of Na2HPO4 was 

added and the pH adjusted to 6.5 by addition of 0.1 M NaOH. Trypsin (1 mL @ 1 

mg/mL), chymotrypsin (1 ml @ 1 mg/mL), elastase (0.2 mL @ 1 mg/mL) and 

carboxypeptidase A (0.2 mL @ 1 mg/mL) were then added sequentially and each 

mixture was incubated and gently shaken at 38°C for 120  min. Following each 

treatment, the digested gluten suspension was heated to 95°C for 10  minutes and 

then allowed to cool to room temperature before the next treatment began. 

 Aliquots from each of the above proteolytic treatments were retained for 

analysis directly by HPLC-MS. The remainder of the digested mixture was treated 

with prolyl endopeptidase (PEP) and/or rat brush border membrane (BBM) enzymes 

and then analyzed by HPLC-MS.  

 
2.2.2.2 Treatment with prolyl endopeptidase (PEP) 
 
 A portion of the wheat gluten extract that had been digested with all PTCECA 

enzymes was then treated with purified PEP after adjusting the pH to 6.5. The PEP 

was added at ratios of 30, 300 and 500 mU/mg digested gluten and then incubated 

at 38°C for various reaction times ranging from 0 to 2 40 min. Following each PEP 

treatment, the reaction mixtures were heated to 95°C for 10 minutes and then 

allowed to cool to room temperature. 
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2.2.2.3 Treatment with brush border membrane enzymes (BBM) 
 
 BBM enzymes were then added to both PTCECA and PTCEC+PEP treated 

wheat gluten extracts at a ratio of 130 mU/mg digested gluten. These mixtures were 

also incubated at 38°C for various reaction times rangin g from 0 to 240 min. 

Following each BBM treatment, the reaction mixture was heated to 95°C for 10  

minutes and then allowed to cool to room temperature. 

 
2.2.2.4 Sample preparation for HPLC-MS analysis 
 
 The final extracts from all proteolysis experiments were divided into 1 mL 

aliquots and centrifuged. The supernatants were evaporated to dryness and 

reconstituted in 95% / 5% acetonitrile (ACN) / H20 + 0.025% trifluoroacetic acid 

(TFA), ready for HPLC-MS analysis. 

 
2.2.3 HPLC-MSn analysis 
 
2.2.3.1 Enzymatic digestion analysis 
 
 All HPLC-MS analyses were performed on an Agilent 1100 HPLC-ion trap 

mass spectrometer, operated in atmospheric pressure positive electrospray 

ionization (ESI) mode. The RP-HPLC separation was performed by injecting 1-5 µL 

onto a C18 RP 0.32 x 150 mm column with 3.5 µm particles. Flow rates of 6 - 20 

µL/min were used along with gradient elution programming using 0-95% ACN + 

0.025 % TFA over 10 - 60 minutes.  

 The ion trap was optimized for mass transmission over the mass range 300-

2200 Da using a standard Agilent tune compound. Under “auto-MSn ” operation, both 

full scan and MSn spectra were acquired in order to obtain as much information as 
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possible to be able to identify the peptides in the sample. MSn  mass spectra were 

acquired from the most intense m/z ion signals within the selected “inclusion” mass 

range, provided the signal was above the specified intensity threshold. In order to 

avoid missing ions that resulted from chromatographic co-elution, “active exclusion” 

was used. This feature permitted the acquisition of auto-MSn mass spectra from 

sequentially lower ion intensities (those that were still in the inclusion mass range 

and above the intensity threshold specified). After each LC peak (~ 5-8 s wide) the 

active exclusion feature was reset and the most intense ion was again selected; the 

process was continuously repeated. Identification of peptides in the extracts of 

proteolyzed wheat gluten was found to be possible predominantly using auto MS2 

mass spectra. Additional stages of tandem MS (i. e. MS3) were used to achieve 

further sequence information of a detected peptide in order to further increase the 

probability of identification. 

 Some key operational parameters needed to be adjusted to maximize MS 

response. These included: the operation under data dependent auto-MS/MS mode, 

MS3, and collision induced dissociation (CID) conditions using 35% of the parent 

mass using a fragmentor ramp of 0.3 to 2V in 30ms.  

 

2.2.3.2 Metal ion analysis 
 
 Initial evaluation involved infusing various solutions of metal acetate salts into 

the mass spectrometer using a syringe pump, along with selected synthetic peptide 

solutions. These experiments allowed the optimization of the choice of metal and its 

respective molar concentration ratio (metal to peptide). Further experiments with on-
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line HPLC-MS/MS analysis using metal ions were achieved using post column 

addition of the metal ion solutions on the Agilent ion trap system. 

 
2.3 Results and Discussion 
 
2.3.1 In-Vitro enzymatic digestion of wheat gluten 
 
 As an initial attempt at isolating and identifying the undigested gluten peptides 

that are implicated as triggers of gluten related diseases, it was theorized that a 

normal human in-vivo enzymatic digestion of food could be simulated in an in-vitro 

fashion. This would produce a mixture of peptides from digested food similar to that 

found in the gut of patients with celiac disease. Store bought wheat gluten flour was 

used and was digested using the major human gastric and pancreatic digestive 

enzymes (pepsin, trypsin, chymotrypsin, elastase and carboxypeptidase A). Normal 

in-vivo physiological conditions (i. e. ionic concentrations, pH, temperature, digestion 

time) were simulated as closely as possible. In addition, recombinant prolyl 

endopeptidase (PEP) and rat brush border membrane enzymes (BBM) were 

employed in order to identify any proline-containing peptides that resulted from 

further proteolysis.  

 All extracts of proteolyzed gluten were analyzed using RP-HPLC with UV and 

ion trap-MSn detection. The resulting chromatograms were complicated and difficult 

to interpret because there were so many peaks present. A representative LC-MS 

total ion chromatogram (TIC) of wheat gluten flour proteolyzed with PTCECA is 

shown in Figure 2.1. Such complicated LC chromatograms and MS spectra were not 

unexpected due to the known complexity of the initial gluten matrix. However, over 

the 60 minute analytical time scale, it was difficult to monitor individual peaks 
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because most peaks represented mixtures of co-eluting peptides. Overall, it was 

noted from data from the pepsin proteolysis that no significant differences in the 

patterns of gluten peptides were observed over the entire course of treatment. The 

trypsin and chymotrypsin digestion experiments, however, did result in the 

observation of a shift of LC peaks towards shorter retention times, indicating the 

peptides had been digested into smaller peptides. Some further shifts toward even 

shorter retention times were observed from the data from the treatment with elastase 

and carboxypeptidase A, but not nearly as much as was observed following the 

trypsin/chymotrypsin treatment. Upon addition of prolyl endopeptidase (PEP), even 

shorter retention time LC peaks appeared, along with the reduction and complete 

disappearance of some peptides. The profile of these peaks represents P-containing 

peptides. This is illustrated in Figures 2.2(A) and (B). The LC-MS total ion 

chromatogram shows the degradation of one particular peak, (labeled with an arrow, 

in Figure 2.2(A)), from a large peak to a much smaller peak (Figure 2.2(B)) after the 

PEP was added. As expected, data from proteolyzed extracts that had been treated 

with PEP and the BBM enzymes showed that the only remaining peaks eluted 

quickly, presumably representing very small gluten peptides. 

 “PQ” sequences are present in every known immunogenic epitope (Table 

1.1). An interesting means by which to identify the peptides that contained “PQ” 

sequences was to conduct a neutral loss scan. The neutral loss experiment involved 

performing CID and identifying the molecular weights of peptides that have lost PQ. 

It was theorized that this type of MS scan could simplify this enzymatic digestion 

data and make it easier to detect new potentially immunogenic PQ-containing target 
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peptides. Figures 2.3(A) and (B) show results from a representative neutral loss 

scan for “PQ” in proteolyzed wheat gluten flour. The peak labeled with an arrow in 

Figure 2.3(A) has totally disappeared after treatment with PEP, indicating it is a PQ-

containing peptide that resisted complete proteolysis until the treatment with PEP. 

This indicated that this peptide may be physiologically relevant. This technique was 

able to identify some peptides that appeared to contain PQ sequences, but the 

sensitivity was quite low. In addition, it appeared to only identify those peptides 

where the PQ sequence was at the C-terminal end of the peptide. 

 Upon further evaluation of the data from these experiments the feasibility of 

this in-vitro enzymatic digestion approach towards the identification of immunogenic 

peptides from wheat gluten was proven in two ways. First, upon screening extracted 

ion chromatograms (EICs) from the data from proteolyzed wheat gluten for the 

presence of known immunogenic epitopes and peptides, the major immunodominant 

gluten peptide (αG-33) was discovered to be present. This is illustrated in Figure 2.4. 

The LC-MS total ion chromatogram in Figure 2.4(A) shows the various peptides that 

were released via the proteolysis procedure. The peak which is labeled at the 

retention time of approximately 33 minutes corresponds to the 33mer peptide. Figure 

2.4(B) shows the full scan MS spectrum of this peak, where the triply charged ion at 

m/z 1304.6 Da, the [M+4H]4+ ion at m/z 978.9 Da and the [M+5H]5+ ion at m/z 783.1 

Da are all observed. Figure 2.4(C) shows the MS/MS spectrum of the most 

abundant ion, the [M+3H]+3 ion at m/z 1304.8 Da. This MS/MS spectrum was sent to 

the MASCOT protein database which correctly identified the peptide as the 33mer, 

an α-gliadin peptide from wheat with the correct sequence.  
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 Further evidence that this enzymatic digestion approach can successfully 

identify potentially immunostimulatory gluten peptides is shown in Figure 2.5. Figure 

2.5(A) shows the LC-MS total ion current chromatogram of various digestion 

products from wheat gluten that had undergone PTCECA digestion. One particular 

peak at a retention time of approximately 18 min. was shown to degrade upon 

treatment with PEP. Figure 2.5(B) shows full scan MS data for this peak at 18.3 

minutes. Further evaluation of data in this full scan spectrum shows that several 

singly charged ions and one doubly charged ion can be seen with some intensity. 

The ion at m/z 980.5, corresponding to a [M+2H]+2 ion, was selected by auto MS/MS 

which  produced a product ion spectrum, shown in Figure 2.5(C). This MS/MS data 

was submitted to the Mascot protein database for an identity search. The top hit 

from this search is shown in Figure 2.5(D) and the report indicates that the peptide is 

a wheat α−gliadin with the proposed sequence LQPQNPSQQQPQEQVPL, which 

does contain short known immunogenic epitopes. 

 
2.3.2 Metal ion affinity for proline 
 
2.3.2.1 Determining metal affinity for proline 
 
 Metal ion acetate solutions were prepared from all compounds listed in Table 

2.1. The objectives of these experiments were to compare MS/MS-CID spectra and 

sequence information from any metal adduct-gluten peptide complexes that formed, 

in order to determine if any metals showed an affinity for proline and/or glutamine 

residues. In addition, it would be useful to determine if there exists any metal affinity 

specifically for immunogenic peptides. 
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 Solutions of 1:1 molar ratios of metal to proline were first evaluated by direct 

infusion into the ion trap mass spectrometer, in order to determine which metals 

would form a complex with proline. The affinity of a metal to proline was measured 

by the intensity of the MS signal of any adduct(s) that formed between proline and 

the particular metal. Figure 2.6 shows an example of how Ni complexes to proline. In 

the case of Ni, two adducts form; a nickel-acetate adduct and a nickel-proline 

adduct. In addition, it is interesting to note that since nickel has five naturally 

occurring isotopes (the two largest being 58Ni (68%) and 60Ni (26%)), the spectra of 

Ni complexes do show extra peaks corresponding to these isotopic contributions. In 

general, several types of adducts were observed in the MS spectra of metals with 

proline (P). They include: [P+H]+, [P+metal]+, [2P+metal]+ and [P+acetate+metal]+. 

Each metal was not observed to form all of these adducts with proline. Under the 

conditions of these experiments, the results summarized in Figure 2.7, show that Cu, 

Mn, Co, Ni and Zn appeared to have the best affinity for proline. An interesting 

observation from these results notes that sodium (Na) also showed a high affinity for 

proline. However, in mass spectrometric analyses, sodium is an unwanted species 

because it has a high affinity for just about anything that is able to form adducts. 

Therefore, it would not be a good choice for use in this instance, where specificity for 

only proline-containing peptides is required. 

 A comparison of the metal affinity for a proline-containing peptide versus a 

non proline-containing peptide evaluated the αG-33 (33mer) and a myoglobin 

peptide (KGHHEAELKAL) respectively. The 33mer was used here because of its 

known immunogenicity. Similar results were obtained in the previous experiment, 



 51

where metals Mn, Zn, Ni and Fe demonstrated a significant affinity for the 33mer, as 

compared to the myoglobin peptide which contained no prolines (Figure 2.8). Further 

evidence why alkali metals (i. e. Na and K) were not chosen for further study is the 

apparent lack of specificity shown by the attachment of potassium (K) to the proline-

containing peptide and the non proline-containing peptide. Similar results are again 

shown for a cocktail of various synthetic proline and glutamine containing peptides 

(Figure 2.9). 

 Optimization of various instrumental parameters and experimental conditions, 

such as the MS fragmentor voltage, molar ratio (metal to peptide), pH and post 

column flow rate, endeavored to maximize the intensity of the MS signal for each 

peptide-metal complex. This was accomplished using flow injection analysis (FIA) of 

various peptide solutions concomitant with the direct infusion of the various metal 

solutions. Figure 2.10 and Figure 2.11 illustrate results from the pH and post column 

flow rate optimization experiments. The pH was found to be an interesting condition 

to evaluate. Figure 2.10 shows that 33mer-zinc adduct formation was observed to be 

very low at a high pH (9). The reason for this is likely because peptides become 

anionic at high pH and can form an ion-pair with any metal cations present. This 

results in an overall lack of selectivity and sensitivity because the resulting 

complexes would be neutral, or exist at a low enough charge state whereby the 

mass exceeds the upper end of the operational range of the mass spectrometer (as 

would be the case for singly charged peptide complexes >2200 m/z). At a low pH, 

peptides become protonated, which increases the likelihood that binding with a 

particular metal cation would be much more selective. Therefore, adduct formation 
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under these circumstances would likely be determined by the actual affinity of the 

metal for the specific amino acid composition of the peptide. 

 Flow rate optimization, as shown in Figure 2.11, was the means by which the 

metal to peptide molar ratio was evaluated. The metal solutions were introduced via 

post column addition and adjusting the flow rate changed the actual amount of metal 

available to bind to the peptide. The concentration of metal in relation to that of the 

peptide was found to be important in the formation of adducts. As the flow rate 

increased it was generally observed that adduct formation also increased. However, 

as the relative concentration became very high (i. e. 560µL/hr or 80:1 molar ratio), 

multiple metal attachments became prevalent. Too many metal ions led to the 

condition were non-selective binding prevailed in solution. In addition, a very high 

flow rate resulted in a significant dilution of the peptide solution. For the 33mer and 

zinc, an acceptable compromise was achieved with a flow rate of 280 µL/hour, which 

corresponded to a metal to peptide molar ratio of 40 to 1. 

 
2.3.2.2 Sequence information about gluten peptides using metal ion-adducts 
 
 Sequence information (primary amino acid structure) about a peptide or 

protein can be obtained by performing collision-induced dissociation (CID)-MS/MS 

experiments. When the parent ion of a compound fragments during CID, the product 

ions that result are representative pieces of that parent compound itself. If the 

compound studied is a peptide, common fragmentation patterns exist that produce 

product ions that can be considered characteristic parts of the peptide. These can be 

pieced back together to determine the original structure of the parent peptide. Figure 

2.12 illustrates some common fragmentation patterns for peptides that undergo CID 
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in an ion trap or tandem mass spectrometer. Fragment ions occur in pairs, such as 

a/x type ions, b/y type ions, or c/z type ions. In positive atmospheric pressure 

electrospray ionization (ESI) mode, the peptide fragment detected depends on the 

location of the basic sites within the peptide, because these are the sites that will 

carry the positive charges. In low energy CID conditions, such as those that occur in 

an ion trap or tandem mass spectrometer, the types of fragment ions that are more 

commonly detected are the b/y type ions.  

 As an initial attempt to investigate the type of structural information that could 

be obtained from CID-MS/MS of peptides complexed with metal ions, a simple small 

synthetic hexapeptide (YSGFd3-LT (689 m/z)) peptide was chosen which did not 

contain any proline residues. Solutions of various metal ions (such as copper and 

silver acetates), were combined with the hexapeptide at near equal molar ratios, in 

order to observe any significant differences in their respective CID-MS/MS spectra. It 

was observed that MS/MS product ions could be obtained from each of the [M+H]+, 

[M+Cu]+ and [M+Ag]+ parent ion complexes. The b and y type fragment ions for each 

complex are shown in Figure 2.13(A)-(C) respectively. Figure 2.13(A) shows the 

sequence ions generated from MS/MS of the [M+H]+ ion at m/z 690. This MS/MS 

spectrum shows a y5 ion at m/z 526, a weak y4 at m/z 439, a b5 ion at m/z 677 and 

a b4 ion at m/z 561. The formation of copper and silver complexes greatly enhanced 

the sensitivity and number of the b type fragment ions detected, as seen in Figures 

2.13(B) and (C). The addition of copper (Figure 2.13(B)) formed an [M+Cu]+ ion at 

m/z 751. The MS/MS spectrum shows the loss of copper at m/z 689 and b5 and b4 

fragments at m/z 632 and m/z 516 respectively. The addition of silver (Figure 
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2.13(C)) formed an [M+Ag]+ ion at m/z 796. The MS/MS spectrum of that ion 

predominately showed the b5, b4 and b3 peptide product ions at m/z 677, 561 and 

414 respectively. In addition, the a5, a4, and a3 product ions (cleavage across the 

C-(C=O) versus the (C=O)-N bond) produced an ion series at m/z 649, 533 and 386 

respectively. Clearly, the addition of metals like silver and copper can provide 

complementary structural information which can aid in identifying C-terminal 

sequences in some peptides (through the determination of b-type ions) to the more 

traditional type of information provided from proton type CID-MS/MS spectra.  

 Sequence information from the [M+3H]3+ proton CID-MS/MS spectrum of the 

33mer was compared with that from the 33mer-Ni adduct spectrum (Figure 2.14). 

Again, it was observed that the fragment ions were all of the b-type. Therefore, an 

interesting observation using these metal-adducts to provide information needed to 

determine sequence information from the CID-MS/MS analysis of peptides, is that 

most fragment ions appeared only to be of the b-type. This allows sequence 

information about the C-terminal portion of the peptide to be determined. Another 

interesting observation is that the fragmentation appears to cleave the peptide only 

at N-terminal proline sites.  

 Finally, target peptide 1 (proposed sequence LQPQNPSQQQPQEQVPL), 

that was identified as a potential immunostimulatory peptide in the enzymatic 

digestion experiment, was complexed with various metals in order to investigate 

whether similar structural information could be obtained. Results using Zn are shown 

in Figure 2.15. The results again show that some interesting C-terminal sequence 

information becomes available, whereby the fragments that were observed were b-
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type ions and were again formed by breaking peptide bonds on the N-terminal side 

of the C-terminal prolines. 

 
2.4 Conclusions 
 
 It appears to be feasible to proteolyze wheat gluten in an in-vitro fashion, 

under similar conditions to those which take place in-vivo. Under the conditions used 

in these experiments, wheat gluten proteins were proteolyzed until relatively small 

peptides remained. These peptides appeared to be resistant to further enzymatic 

degradation. Some of these remaining peptides were seen to degrade upon 

treatment with a recombinant prolyl endopeptidase, which would infer that they may 

be of the type of peptides that are immunostimulatory in people with gluten 

sensitivities. Data analysis from these experiments was difficult owing to the 

complexity of the chromatograms. However, one such peptide was identified by 

obtaining satisfactory MS/MS data and searching existing protein databases. The 

proposed sequence was confirmed by manual interpretation as 

LQPQNPSQQQPQEQVPL.  

 It was observed from experiments with metal ion-adducts, that proline did 

show an affinity for the following metals: Cu, Mn, Co, Ni, Zn and Ag. Using post 

column addition of metal acetate solutions, the formation of metal-peptide 

complexes was optimized at pH 1.5 (with 0.025 % TFA) and at a molar ratio of > 4:1 

(metal to peptide). Some metals, such as: Zn, Mn, Fe, and Ni showed a higher 

affinity for proline containing peptides than non–proline containing peptides. 

Collision- induced dissociation (CID)-MS/MS of the metal-adducts favored 

fragmentation to b-type product ions at the N-terminal side of C-terminal proline 
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linkages. MS/MS of non-proline containing peptides also appeared to favor 

fragmentation to b-type ions. The sequence information gathered from the CID 

experiments was different from that obtained by proton MS/MS spectra, thus 

providing a complementary set of sequence information. 

 Based on these initial results, it was expected that with further research, this 

HPLC-MS/MS protocol could lead to the identification of more peptide sequences. 

However, an important observation noted was that there was no obvious indication 

as to whether any of the peptides identified in this manner would be, in fact, 

immunogenic in nature. An alternate strategy for the identification of peptides that 

are immunogenic would have to be devised. 
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Table 2.1 
 

Metal ion solutions used for P/Q affinity experiments 
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Figure 2.9 
 

Metal ion affinity for various peptides containing P and Q 
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Figure 2.10 
 

Effect of pH on peptide (33mer)-Zn adduct formation 
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Figure 2.12 
 

Common peptide fragmentation patterns under CID-MS/MS conditions 
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CHAPTER 3 
 

Identification of Immunogenic Wheat Gluten Peptides  Based 
 

on Enzymatic Tagging and HPLC-UV-Fluorescence and-M Sn 
 
___________________________________________________________________ 
 
 
3.1 Introduction 

3.1.1 A new strategy 
 
 The hypothesis that immunogenic wheat gluten peptides could be identified 

solely through in-vitro enzymatic digestion of wheat gluten flour followed by HPLC-

MS detection proved somewhat successful, because some peptides that were 

identified in this manner did appear to be stable to further proteolysis. It was 

observed that some of these peptides only degraded further upon treatment with a 

prolyl endopeptidase (PEP), which inferred that they may belong to the class of 

peptides that mediate T-cell related inflammatory reactions in those with celiac 

disease and other gluten sensitivities. A well studied and known potent 

immunostimulatory 33mer (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) [1], 

was one of the peptides identified from the proteolysis of wheat gluten flour in this 

manner. This provided evidence that the physiological conditions used for in-vitro 

procedure were appropriate and that the procedure itself was successful in its ability 

to release such peptides. One new potentially immunogenic peptide, a 17mer with 

the proposed sequence LQPQNPSQQQPQEQVPL, was also identified from these 
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experiments. However, further efforts toward additional peptide identification were 

not pursued due to the complexity of the resulting MS spectra, which made structural 

interpretation difficult.  

 The use of metal ion attachment provided some interesting observations 

about the structures of gluten peptides that resisted proteolytic digestion and how 

they respond during collision-induced decomposition (CID) in an ion trap mass 

spectrometer. Fragmentation of metal ion peptide adducts appeared to only produce 

b-type ions, which were produced by breaking the peptide bond on the N-terminal 

side of any proline residues present. This type of fragmentation allowed sequence 

information about the C-terminal end of the peptide to be interpreted. The more 

prolines there were in the peptide, the more b-type ion fragments there were in the 

MS/MS spectra. However, the bigger the peptide, the more complicated the spectra 

were to interpret. 

 From the experimental data obtained, it was discovered that hundreds of 

gluten peptides were released during enzymatic digestion and those with prolines, 

that formed complexes with the metals, were not necessarily immunogenic. From 

this information, there was no way to really determine which, if any, of these 

peptides would actually be immunostimulatory in-vivo. The only method that 

determines direct gluten immunogenicity towards a specific gluten peptide sequence 

utilizes the in-vitro stimulation of T-cells, as measured by a [3H]-thymidine 

incorporation assay [2]. This expensive and labor intensive assay relies solely on 

biopsy derived T-cell lines or clones from patients with celiac disease (CD). Thus, in 
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order to proceed with the identification of immunogenic gluten peptides, it was 

determined that it would not be feasible to continue with this particular strategy. 

 Therefore, another strategy was devised, whereby the focus shifted to the 

mechanism of the autoimmune reaction to gluten and what occurs in-vivo during the 

adaptive type immune response. It was theorized that by understanding how the 

body itself determines which gluten peptides are “toxic” might provide an insight into 

how they might be identified in-vitro. The new strategy for the identification of 

immunogenic gluten peptides focused on what was known about the relationship 

between certain types of gluten peptides and a tissue transglutaminase enzyme. It 

has been determined that they have a unique association together in the adaptive 

autoimmune response mechanism of CD and this has important connotations for the 

pathogenesis of the disease [3 - 5].  

 
3.1.2 Molecular basis for the adaptive immune response in celiac disease 
 
 Celiac disease (CD) is a result of a deficiency in the immune system that 

occurs in those who are genetically predisposed. In general, a human immune 

system protects its host with a layered defense of increasing specificity. Normally, if 

a pathogen makes it though the initial layer of defense, an innate (non-specific) 

response is activated. Another layer of protection (adaptive immune response) is 

activated should antigen-specific recognition be required. It is known that both innate 

and adaptive immune responses are involved in celiac disease, although the 

mechanism of each is not fully understood [6]. Notwithstanding, the specific “non-

self” antigens that are targeted during both immune responses in CD are known to 

be a group of structurally similar cereal grain gluten peptides.  
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 The genetic predisposition for celiac disease is based on the inheritance of a 

configuration of human leukocyte antigen (HLA) genes, namely genes in the HLA-

DQ locus [4]. The function of these major histocompatability complex (MHC) HLA-

DQ genes is to encode antigen presenting proteins onto the surface of immune 

system cells. These proteins display peptide fragments, from the cell itself and/or 

fragments of invading microorganisms, to T-helper cells (white blood cells) by 

binding them to a unique CD4 receptor on the surface of the T-cell. This T-cell 

complex then has the capacity to kill or co-ordinate the killing of pathogens or 

infected/malfunctioning cells [6].  

 It has been determined that the configuration of alpha and beta HLA- DQ 

chains inherited, directly influences the risk of developing CD. More specifically, it is 

the HLA-DQ2/DQ8 genes that have been identified as those responsible for 

selectively binding certain types of small gluten peptides and presenting them to 

CD4+ T-cells. These T-cells are involved in further mediation of the autoimmune 

process. Current knowledge in this area has identified four haplotypes (a kind of 

well-defined genotype) that can be considered risk factors associated with the 

development of CD (Table 3.1) [6, 7]. The first and last haplotypes are considered 

sufficient to carry significant risk in the development of the disease. These are the 

DQA1*0501 & DQB1*0201 alleles (that encode DQ2) and the DQA1*0301 & 

DQB1*0302 alleles (that encode DQ8). 

 An overview of what is known about the adaptive immune response is 

illustrated in Figure 3.1 [8]. Known immunogenic gluten peptides have a specific 

structure which makes them attractive to bind to both the DQ molecules and T-cells. 
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These peptides can resist proteolysis in the gut and make their way inside the 

epithelial layer of the villi that line the inside of the intestinal wall. Meanwhile, inside 

the epithelial layer, antigen presenting cells (dendritic cells in the intestines) bind 

HLA DQ2/8 proteins to their surfaces. These bound proteins then selectively bind to 

the gluten peptides. A key step in the immune mechanism is noted here, whereby 

the only way that these gluten peptides can bind, is if they have been selectively 

modified first. This post-translational modification step is mediated by a tissue 

transglutaminase enzyme (TG2), present in the lamina propria of the intestinal 

epithelium. It has been determined that the purpose of this post-translational 

modification appears to be to increase the attractiveness of the gluten peptide for 

both the DQ molecules and the CD4+ T-cells. This APC-DQ-modified gluten peptide 

complex is now presented to the T-helper cells, which then bind via their CD4 

receptors. This CD4 receptor is a special kind of receptor that specifically recognizes 

the DQ2/8 in the complex. The T-cell, now bound to the complex, becomes 

activated, divides and causes B-cells, which recognize gluten, to then divide. These 

cells subsequently produce various pro-inflammatory cytokines and anti-bodies to 

both TG2 and gluten. Destruction of the intestinal villi and other tissue damage is the 

end result of this complex adaptive immune response to gluten [3, 8]. 

 
3.1.3 TG2 catalyzed post-translational modification of wheat gluten peptides 
 
 Type 2 tissue transglutaminase (TG2) is one of a group of transglutaminase 

enzymes found in most living systems. Currently, there have been eight 

transglutaminase isoenzymes identified in mammals. Tissue transglutaminase 

enzymes have been studied since the 1950s [9, 10], with their involvement 
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documented with a number of disease states, autoimmune conditions, cancer and 

cellular processes [11]. Under normal physiological conditions, transglutaminase 

enzymes are inactive, but under disrupted physiological conditions and in the 

presence of high (mM) concentrations of Ca2+, they can become activated. Once 

these enzymes become activated, they can catalyze reactions that can result in the 

post-translational modification of proteins/peptides. Acyl-transfer mechanisms, 

involving specific glutamine (Q) residues (as acyl donors) and primary amines (as 

acyl acceptors), generate deamidated and/or cross-linked products [12 - 14]. De-

regulation of normal TG2 functions have been well documented with respect to a 

number of human diseases, such as neurodegeneration, neoplastic diseases, skin 

and tissue fibrosis related diseases, as well as autoimmune diseases such as CD.  

 TG2 is expressed on the surfaces of most cells and exists ubiquitously in an 

inactive state [15]. In the case of CD, the TG2 enzyme and Ca2+ are both found in 

high concentrations inside cells of the small intestine. It is not fully understood why 

this is the case nor where and how the interaction of the peptides and TG2 takes 

place. It is known, however, that the enzyme selectively modifies the gluten peptides 

by creating negatively charged sites which have been found to be required in order 

to allow peptide binding to the DQ molecules [13, 16] to occur. 

 TG2 is a 686 amino acid, 80 kDa cysteine protease and catalyzes the 

modification that occurs to the gluten peptides. This modification involves the 

creation of negatively charged sites by targeting specific glutamine (G) residues 

within the peptide and changing them into glutamic acid (E) residues. Normally 

found in the inactive state, TG2 becomes activated under such conditions that 
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require an unusually high concentration of Ca2+ is present. Once activated, TG2 

catalyzes deamidations and transamidations involving these glutamines via a 

charge-relay mechanism in its catalytic triad (cysteine277 – histidine335 – 

asparagine358). Transient thioester intermediates are formed with specific gluten 

peptidyl glutamines or lysines [17, 18]. This catalytic activity is exhibited toward γ-

carboxamide groups of glutamine residues and ε-amino groups of lysines, which 

result in either an inter- or intra-chain iso-peptide bond [19]. 

 Known immunogenic gluten proteins contain high percentages of the amino 

acids glutamine (G) and proline (P) and low percentages of negatively charged 

residues. Because these peptides are rich in glutamine, it permits them to be 

susceptible to these deamidation or transamidation reactions. As previously stated, 

in order to for these peptides to become bound to the groove on the HLA-DQ 

molecules, it has been determined that they must first be chemically modified by 

imparting negatively charged sites [20]. TG2 fulfills this role, by targeting specific 

glutamine residues and converting them into glutamic acid (E) residues [16, 21]. 

TG2 is actually thought to catalyze two competing pH dependent reactions, both 

resulting in villous atrophy [22]: (1) transamidation; where the TG2 cross-links gliadin 

peptides to itself or to other gliadin peptides, thus forming TG2-gliadin-gliadin 

peptide complexes; and (2) deamidation; where specific glutamine residues are 

converted to glutamic acid (E) residues with the release of NH3.  Both deamidation 

and transamidation reactions are known to occur, but the deamidation reaction 

appears to be favored under conditions of decreasing pH.  
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 The association of TG2 with the binding of gluten peptides to DQ2 and T-cells 

appears to be very important in the mechanism of the adaptive autoimmune reaction 

in CD. The determination of the structures of peptides that become deamidated by 

TG2, could prove to be a useful means of identification of those peptides responsible 

for the inflammatory processes that occur in those sensitive to gluten. Therefore, I 

chose to simulate the in-vivo deamidation mechanism by an in-vitro approach. An in-

vitro mechanism could investigate the type of peptides that are targeted by TG2, as 

well as how and where they are modified. Assuming that this process could take 

place in a similar fashion to the in-vivo mechanism, this could allow the structures of 

such physiologically relevant peptides to be identified.  

 
3.1.4 Identification of deamidated wheat gluten peptides by HPLC-MS 
 
 Each time a deamidation occurs, a glutamine residue is converted into a 

glutamic acid residue. Therefore, the corresponding molecular weight of the peptide 

should increase by 1 Da. These small m/z increases of 1 Da per deamidation site (Q 

→ E), as well as the relative assumed small changes in reversed phase LC 

retention times, could be monitored by HPLC-MS. It has already been determined in 

Chapter 2 that hundreds of peptides are generated in the gastric/pancreatic in-vitro 

digestion of wheat flour proteins. The objective would entail the identification of 

those specific peptides that show slightly altered retention times and molecular 

weights upon interaction with TG2. Subsequent structural information could then be 

obtained through further MS experiments. It has been determined that the size of the 

peptides that are targeted by TG2 and that ultimately become bound to the DQ 

molecules are at least nine to fourteen amino acids in length [4, 17]. Therefore, it 
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was decided to use an ion trap mass spectrometer to attempt to identify them. 

Through the use of a low resolution mass analyzer, such as an ion trap, peptides 

less than thirty amino acids in length can usually be sequenced completely. 

Limitations to this technique should be noted with relevance to the size of the 

analyte being studied. The larger the peptide is, the more difficult it becomes to 

retrieve enough information in order to permit complete sequencing. Fragments that 

are produced from the collision-induced dissociation (CID) of larger peptides can 

have a number of charged sites and it becomes increasingly more difficult to 

determine the charge state of such product ions using a low resolution mass 

analyzer.  

 Ion trap-MS offers two main advantages over other MS instrumental 

configurations in the qualitative identification of unknown peptides, such as those in 

a peptide digest. The ion trap has the power to obtain better full scan sensitivity and 

specificity, through the ability to perform MSn (n=number of stages of tandem MS). 

One key factor that contributes to an increased level of sensitivity in full scan mode, 

involves the duty cycle (% of time the ions are sampled and stored in the trap 

relative to the total MS scan cycle) of the ion trap instrument. The duty cycle in an 

ion trap is significantly higher (i. e. ~40%), as compared with the low (i. e. ~0.1%) 

duty cycle offered by a scanning (non-storage) quadrupole-MS instrument. In 

addition to the ability to spend a longer time sampling ions, the MSn capability of an 

ion trap aids significantly in the identification of unknown components by offering 

greater specificity than just the single m/z value of the parent peptide. Additional 

stages of tandem MS, (i. e. MS3), can also be used to obtain more sequence 
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information about a peptide, which can further improve the ability to achieve 

complete sequence determination. 

 
3.2 Experimental 
 
3.2.1 In-vitro TG2 catalyzed deamidation and transamidation 
 
3.2.1.1 Chemicals and reagents 
 
 Recombinant human tissue transglutaminase 2 was cloned and purified at the 

Stanford Protein and Nucleic Acid Facility, Stanford University, Stanford, CA, USA. 

MOPS solution, CaCl2, dithiothreitol (DTT), HPLC-grade acetonitrile, tris and HCl 

were obtained from Fischer Scientific. Water was obtained from an in-house Milli-Q 

water purification system (Millipore, Billerica, MA, USA). Putrescine, KHNaPO4 and 

NaOH were obtained from Sigma-Aldrich (St. Louis, MO, USA). Alexa Fluor 405 

cadaverine, dansyl cadaverine and tetramethylrhodamine cadaverine were all 

obtained from Molecular Probes, a Division of Invitrogen Detection Technologies, 

Carlsbad, CA, USA.  

 

3.2.1.2 Peptide standards and samples 
 
 Synthetic peptides (PFPQPQLPYPQ, QLQPRPQPQLPY, 

FLQPQQPFPQQPQQPYPQQPQQPFPQ, PF(PQPQLPY)3PQPQP, 

PQPQLPYPQPQLPY, Ac-PQPELPYPQPQLPY, LGPGQSKVIG-CONH2, 

PFPQPQQQF, PQPELPYPQPELPY, (PQPQLPY)3, (PQPELPY)3, 

PF(PQPELPY)3PQPQ, PQPQPPP, PQQPQQPY, PFSQQQQPV, 

SQPQQQFPQPQQPQ, LQLQPF(PQPQLPY)3PQPQPF and KGHHEAELKAL were 

all synthesized and purified at the Stanford Protein and Nucleic Acid Facility and 
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verified to be >90% pure by HPLC-MS. These were all supplied by Dr. Chaitan 

Khosla, Chemistry Department, Stanford University, CA, USA.  

 Stone ground whole grain corn flour, vital wheat gluten flour, stone ground 

whole wheat flour (brand 1), whole wheat flour (brand 2), were all obtained at a local 

supermarket (Raleigh, NC, USA).  

 
3.2.1.3 In-vitro TG2 catalyzed deamidation procedure 
 
 Stock solutions of various synthetic peptides (1 mM, in water) were mixed 

with DTT (1mM) and MOPS solution (5x200mM MOPS + 5mM CaCl 2) and 

maintained at pH approximately 7.5. To this mixture, TG2 solution (1 µM in 

phosphate) was added and the mixture incubated at 38˚C for various time points 

from 1 minute to 120 minutes. The reaction was terminated by freezing the mixture 

in dry ice. 

 
3.2.1.4 In-vitro TG2 catalyzed transamidation and chemical tagging procedure 
 
 Stock solutions of various synthetic peptides (1 mM in water) were mixed with 

DTT (1mM), MOPS solution (5x200mM MOPS + 5mM CaCl 2) and chemical tag 

solution (µM) and maintained at pH approximately 7.5. To this mixture, add TG2 

solution (µM in phosphate) and incubate at 38˚C for various time points from 1 

minute to 120 minutes. The reaction was terminated by freezing the mixture in dry 

ice. 
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3.2.2 In-vitro proteolytic digestion of cereal grains 
 
3.2.2.1 Chemicals and reagents 
 
 Pepsin, trypsin, chymotrypsin, carboxypeptidase A, elastase, KHNaPO4 and 

NaOH were obtained from Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade 

acetonitrile and HCl were obtained from Fischer Scientific. Water was obtained from 

an in-house Milli-Q water purification system (Millipore, Billerica, MA, USA). Human 

recombinant dipeptidyl peptidase IV (DPPIV) was obtained from ProSpec, Rehovot, 

Israel.  

 
3.2.2.2 Samples 
 
 Stone ground whole grain corn flour, vital wheat gluten flour, stone ground 

whole wheat flour (brand 1), whole wheat flour (brand 2), rye flour, barley flour, stone 

ground whole grain soy and oat flour were all obtained at a local supermarket 

(Raleigh, NC, USA).  

 
3.2.2.3 In-vitro proteolytic digestion procedure 
 
 Samples of native cereal grains were proteolyzed with pepsin, trypsin, 

chymotrypsin, elastase and carboxypeptidase A (PTCECA) according to the 

following protocol:  

 30 mg of homogenized grain sample was dissolved into 1mL pepsin solution 

(0.01M HCl adjusted to pH 2), to establish a 1:100 pepsin to protein ratio; heat (at 

38˚C) and gently shake for 2 hours. To each sample, add 50 µL of a 50 mM 

phosphate buffer and 35 µL of a 0.1 M NaOH solution, to establish the pH between 

7-7.5. To each sample, add 25 µL of a 1:100 trypsin/chymotrypsin to protein solution 
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(in 50 mM phosphate). Heat (at 38˚C) and shake for 2 hours. Heat to 95˚C for 15 

minutes and cool back down to room temperature. To each sample, add 20 µL of a 

1:500 elastase solution (in 50 mM Tris); adjust pH to 7.5 with HCl; heat (at 38˚C) and 

shake for 2 hours. Heat to 95˚C for 15 minutes and cool back down to room 

temperature. To each sample, add 25 µL of a 1:100 carboxypeptidase A solution (in 

50 mM phosphate); heat (at 38˚C) and shake for 2 hours. Heat to 95˚C for 15 

minutes and cool back down to room temperature. Spin down samples and aliquot 

200 µL of the supernatant for HPLC-MS analysis. 

 
3.2.3 Synthetic immunogenic peptide standards 
 
 Synthetic standards of peptides (LQPQNPSQQQPQEQVPL, 

PQQSGQGVSQSQQQSQQQ, TQQPQQPFPQQPQQPFPQ, FPLQPQQSF, 

VPVPQLQPQNPSQQQPQEQVPL, RPQQPYPQPQPQY, 

QPQQPFPQTQQPQQPFPQ, PQQQFPQTQQPQQPFPQP, QPQQPLPQPQQPF 

and PQQSPF) were synthesized (Thermo Electron, Ulm, Germany) and were 

analyzed using HPLC-MALDI-TOF mass spectrometry in order to determine exact 

molecular weights and purity (>90% pure).  

 
3.2.4 HPLC-ESI-MS instrumentation and analytical conditions  
 
 HPLC-MS analyses were performed on an Agilent 1100 HPLC-ion trap mass 

spectrometer, operated in atmospheric pressure positive electrospray ionization 

(ESI) mode. RP-HPLC separations were performed by injecting 1-20 µL onto a C18 

RP 0.32 x 150 mm column with 3.5 µm particles or Zorbax SB-C18 column (0.5 x 

150mm using 3.5 µm particles) or a Zorbax Bonus SB-C18 column (2.1 x 33mm 
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using 1.5 µm particles). Flow rates of 20 to 250 uL/min were used, along with a 

gradient elution program of 0-95% ACN + 0.025 % TFA over 10 - 60 minutes.  

 The ion trap was optimized for mass transmission over the mass range of 

300-2200 Da using the standard Agilent tune compound. Under “auto MS2 “ 

operation, both full scan and MS/MS spectra were acquired, in order to obtain as 

much information as possible to be able to identify the peptides in the sample. The 

MS2 mass spectra were usually acquired from the most intense m/z ion signal within 

the mass range scanned, as long as its response was above the intensity threshold 

selected. In order to avoid missing ions from co-eluting peptides, active exclusion 

was used. This permitted the acquisition of auto MS2 mass spectra from sequentially 

lower ion intensities (that are within the inclusion mass range and above the intensity 

threshold). After each LC peak (~ 5-8 seconds in width) the active exclusion was 

reset and the most intense ion again selected; this process was repeated. The auto 

MS2 mass spectra, obtained from analysis of these PTCECA gluten extracts were 

used for the identification of possible immunogenic peptides. Additional stages of 

tandem MS (i. e. MS3) were used to achieve further sequence information on a 

detected peptide in order to further increase the probability of its sequence 

determination. 

 Some key MS operational parameters needed to be adjusted in order to 

maximize response. These included: the operation under data dependent auto-

MS/MS mode, MS3, and collision-induced dissociation (CID) conditions using a 30% 

cutoff (ring electrode voltage) of the parent mass, with an end cap ramp of 0.3 to 2V 

in 30ms. 
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3.3 Results and Discussion 
 
3.3.1 TG2 catalyzed deamidation 
 
 In order to investigate what types of peptides are targeted by TG2 and how 

they are modified, the in-vivo deamidation mechanism was replicated as closely as 

possible via an in-vitro procedure. The theoretical deamidation mechanism is shown 

in Figure 3.2. Various small synthetic peptides (listed in section 3.2.1.2), based on 9-

33 amino acid sequences were evaluated as targets for the TG2 enzyme. These 

peptides were chosen as test peptides because they known to exist within wheat α-

gliadins. The deamidation reactions were carried out according to the procedure 

described in section 3.2.1.3. Reaction conditions were chosen in an attempt to 

reproduce physiological conditions (physiological pH, mM [Ca2+], concentration of 

peptide (mM) and TG2 (µM)). The reaction products were analyzed by LC-MS. 

 Each glutamine (Q) residue that was deamidated (thus converting the residue 

into a glutamic acid (E) with a gain in OH and a loss of a NH2), the corresponding 

molecular weight of the peptide was seen to increase by 1 Da. Small m/z increases, 

as well as slightly longer reverse phase LC retention times, were observed for some 

peptides. However, the chromatograms of the digested deamidated products were 

complex, because each deamidation produced an additional LC peak. A simple 

example illustrating this is shown in Figure 3.3, which represents an LC-MS 

extracted ion chromatogram (EIC) of the products of the TG2 catalyzed deamidation 

reaction of an 11mer (PFPQPQLPYPQ). This peptide contains three glutamines. 

With each successive deamidation, another peak was observed. After a reaction 

time of 30 minutes, all three glutamines had been converted into glutamic acids. It 
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can be seen that the single sharp peak at a retention time of 9 minutes, 

corresponding to the starting material (undeamidated 11mer), had spread out to 

become a blob consisting of 4 peaks (corresponding to the undeamidated 11mer 

and 3 more peaks for each deamidated product). 

 As the size of the test peptides increased (the largest peptide evaluated was 

a 33mer), there were often more that five or six products all contained in one broad 

bumpy peak. In addition, small changes in mass (2 or 3 Da) that arose from select 

deamidations that corresponded to ions with charged states of +2, +3 or higher, 

were difficult to resolve using a low resolution ion trap mass spectrometer. 

 Overall, results from these experiments showed that the in-vitro deamidation 

reaction worked, but the yield of products was very low. Also, specificity of the TG2 

to certain glutamines was not observed. This is contrary to literature, which reports 

that specific glutamines that are contained in certain consensus sequences (i. e. Q-

x-P or PQPQLPY) are those targeted by the TG2 [16, 23, 24]. This raised the 

concern that perhaps the correct physiological reaction conditions had not been 

achieved. Lastly, the sensitivity needed to properly sequence the peptides using the 

acquired MS/MS spectra was found to be insufficient. Therefore, it was concluded 

that the reaction with TG2 to produce selective deamidation was not selective 

enough to provide the means to pick out which of the peptides from the hundreds of 

peptides present in proteolyzed wheat gluten were immunogenic. 

 
3.3.2 TG2 catalyzed transamidation with chemical tagging 
 
 In order to improve the selectivity of the deamidated products using HPLC-

MS detection, the conditions of the deamidation reaction needed to be optimized. 
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Also, it was hypothesized that if the specific glutamines that are targeted by the TG2 

enzyme could somehow be chemically labeled, this may allow for easier 

identification. Therefore, the next experiments endeavored to couple the TG2 

deamidation reaction with a chemical labeling step. The hypothesis here was that 

the TG2 enzyme would still attack the same specific Q residues present in 

immunogenic peptides, but instead of being deamidated (Q → E), the targeted 

glutamines would be transamidated. This would produce peptides with specific Q’s 

tagged with a chemical functionality that would offer a higher degree of selectivity 

and/or sensitivity needed for their identification by LC-MS. Figure 3.4 illustrates the 

proposed reaction scheme for this TG2 catalyzed transamidation + chemical tagging 

experiment. After forming a thioester bond with the TG2 enzyme in the intermediate 

complex, an acyl group (from the glutamine acyl donor) is then transferred to the 

acyl acceptor amine (chemical tag), which forms an amide bond. 

 The optimal chemical tag used in the chemical labeling step would be one 

which would possess a UV/fluorescent chromophore that would allow monitoring of 

an unusual λabsorbance or λemission not normally used in peptide analysis. In addition the 

chemical tag would contain a functionality that would increase MS sensitivity (i. e. 

amines or pre-charged ions). To this end, four compounds were evaluated as 

chemical tags: putrescine, monodansyl cadaverine (MDC), tetramethyl rhodamine 

cadaverine (RhC) and Alexa Fluor 405 cadaverine. Structures and properties of 

each of these four compounds are listed in Figure 3.5. HPLC-MS analysis of 

peptides is generally performed in positive ESI mode. It was proposed to evaluate 

one compound as a chemical tag that would allow the tagged products to be 
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detected in negative ESI mode. The idea to use negative ESI was that this might 

provide a superior format in order to simplify the way the tagged peptides are 

presented. Figure 3.6 shows the proposed reaction scheme using monodansyl 

cadaverine (MDC) as the chemical tag. MDC has a MW 335 Da, λabsorbance = 335nm 

and λemission. = 526nm. The NH2 group of the specific Q residue in the peptide is 

targeted by the TG2 enzyme and an intermediate complex forms between the Q, the 

TG2 active site and the MDC. A stable covalent bond forms between the terminal 

C=O of the Q residue and the aliphatic part of the MDC probe, releasing NH3. The 

product peptide is now tagged with an amine functionality that also has 

UV/fluorescent specificity. 

 Synthetic wheat gluten peptides were used again as target peptides. Most 

experiments focused on two peptides, an 11mer [PFPQPQLPYPQ, MW 1310.7 Da] 

and a 28mer [PF(PQPQLPY)3PQPQP, MW 3279.7 Da], because these peptides 

were close to the minimum and maximum molecular weights of the expected 

immunogenic peptides that would be released from proteolyzed wheat. The reaction 

was carried out as indicated in section 3.2.1.4. Initial experiments used the 11mer 

(PFPQPQLPYPQ) as the target peptide. This 11mer contained a known T-cell 

stimulatory epitope (PQPQLPY). Putrescine was chosen as a chemical tag because 

it is a primary amine and should improve electrospray positive ion MS sensitivity 

under acid conditions. Results indicated that the proposed reaction scheme did 

produce one tagged product [PFPQP(Q-putrescine)LPYPQ], which eluted just prior 

to the untagged 11mer. However, the yield of this product was less than 5% and its 

MS intensity was not as high as expected. Therefore, the low yield of the reaction 
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product coupled with the labor intensive procedure that would be involved to screen 

the hundreds of peptides present in proteolyzed wheat for the mass addition of 

putrescine, made this tag a poor choice for further evaluation. Figure 3.7 shows the 

products of the TG2 transamidation and chemical tagging experiment of the 11mer 

with putrescine. Figure 3.7(A) shows the products from the TG2 deamidation, where 

all three glutamines have been converted to glutamic acids (each showing a loss of 

1 NH2). Figure 3.7(C) shows the full scan MS spectrum of the most intense singly 

deamidated product at retention time 18.8 min. Figure 3.7(B) shows the three tagged 

products, where each of the glutamines that had been targeted and deamidated by 

TG2 has now been tagged with a putrescine. Figure 3.7(D) shows the full scan MS 

spectrum of most intense singly tagged product at retention time 17.6 min. 

 The next set of experiments evaluated tags that had a unique UV or 

fluorescence signature, with the idea that these tagged products would be much 

easier to identify than those tagged with putrescine. In addition, there would be 

minimal UV background at 330nm (for MDC) and 557nm (for RhC) detected in 

proteolyzed wheat samples. Figures 3.8(A) and (B) show the LC/UV chromatograms 

for a 9mer, 11mer and 28mer [PFPQPQLPYPQ, m/z 1310.7 Da; PFPQPQQQF, m/z 

1115.5 Da and PF(PQPQLPY)3PQPQP, m/z 3279.7 Da], using the RhC and MDC 

tags respectively. As expected, the RhC tagged products were about 20 times more 

sensitive, owing to the higher molar absorptivity coefficient of RhC. It is interesting to 

note, that based on the three peaks detected for the 28mer, it appears that it 

received multiple tags, because of the distance between each of the three peaks. 

Compounds with multiple deamidations elute more closely together. Looking at the 
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structure of the 28mer, it can be seen that there are 8 glutamines present. 

Interestingly, it appears that only 3 of the possible 8 glutamines have been targeted 

by TG2. Literature [16, 23, 24] reports that glutamines in the conserved sequences 

QxP or Qxx (where x could be F, Y, W, M, L, I or V) have been known to be those 

that are specifically targeted by the TG2 enzyme in known immunogenic peptides. 

Future work involving the specificity of TG2 will attempt to determine if the 

glutamines targeted by TG2 in these experiments were the same as those contained 

in such consensus sequences.  

 Mass spectra of some of the products from the untagged 11mer as well as 

those tagged with MDC and RhC, are displayed in Figures 3.9 and 3.10. In each 

case, only one tag appeared to have been added to the 11mer, even though the 

compound contained 3 glutamines and had been deamidated twice. Figures 3.9(A) 

and 3.10(A) show the LC-MS extracted ion chromatograms (EICs) of these 11mer 

products, while Figures 3.9(B) and 3.10(B) show the full scan mass spectra of the 

most intense singly tagged MDC and RhC products, respectively. Similar spectra for 

the 28mer, did show multiple additions of the tags along with multiple deamidations. 

Figures 3.11(A) and 3.12(A) show the LC-MS EICs for these MDC and RhC 

products. In each case, three broad peaks can be seen, corresponding to the 

addition of 1, 2 and 3 tags. Presumably, the same glutamines were tagged in each 

case. Future work will investigate this further. The peaks appeared wide because 

each peak contained individual peaks that represented 3-5 deamidated species in 

addition to the tagged species. Figures 3.11(B) and 3.12(B) show full scan MS 

spectra of each of these three broad peaks representing the compound with one, 
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two and three tags. A myoglobin peptide (KGHHEAELKAL m/z 1257.7 Da), used as 

a control (no Q in its sequence), showed no tagged products indicating the reaction 

was in fact specific for Q-containing peptides.  

 Clearly, results from these experiments demonstrated that the chemical 

tagging approach could work to identify potentially immunogenic gluten peptides. 

The best UV/fluorescent specificity and MS sensitivity responses were achieved in 

positive ion ESI mode with MDC and RhC. A fourth compound (Alexa Fluor 405 

cadaverine) was also evaluated, but did not succeed in producing tagged peptides 

for use with negative ion ESI mode.  

 
3.3.3 TG2 catalyzed transamidation and chemical tagging of grain samples 
 
 The TG2 transamidation and chemical tagging experiments showed that 

synthetic celiac active peptides could be tagged in-vitro in a similar fashion to that 

which occurs in-vivo. In order to study complex real whole grain gluten samples, a 

similar approach was taken to evaluate wheat gluten flour. 

 The wheat gluten was first digested with gastric and pancreatic enzymes, 

according to the procedure outlined in section 3.2.2.3. Proteolyzed extracts were 

then reacted with TG2 and either MDC or RhC. Both untagged and tagged product 

peptides were analyzed by LC/UV-MS. The goal was to end up with unique tagged 

peptide products which would be identified as potential immunogenic physiologically 

relevant peptides. Figure 3.13(A) shows a representative LC-MS total ion 

chromatogram (TIC) of proteolyzed untagged wheat gluten peptides and (B) displays 

an LC/UV chromatogram @ 330nm, showing peptides that had been tagged with 

MDC. It was expected that there would be a large number of peptides resulting from 
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the proteolytic digestion, however, it was not expected that so many tagged products 

would be produced from the TG2 catalyzed transamidation and tagging reaction. 

Based on these observations, three questions arose which would have to be 

addressed in future experiments: (1) Does a lack of specificity of TG2 result in so 

many tagged products?; (2) Are there really this many immunogenic gluten peptides 

present in wheat and are there as many present in other grains? and (3) Are the in-

vitro reaction conditions representative of the in-vivo adaptive immune reaction 

conditions? 

 Further experiments attempted to address these questions and evaluated 

other immunogenic grain flours (barley and rye), non-immunogenic grain flours (corn 

and soy) and oats (as a controversial grain [25, 26]), using the same in-vitro reaction 

scheme. Soy is technically not a grain, but a legume. It was used as a control in this 

experiment to verify that few, if any, tagged products would be produced. The 28mer 

synthetic peptide was spiked into all grain samples in order to verify that tagged 

products could be seen, thus confirming that the reaction was successful. Figure 

3.14 shows representative LC-MS TICs for all grains. This figure only shows the 

latter portion of the chromatographic analysis, where most of the tagged peptides 

eluted. The highlighted area to the right of the figure (retention time ~ 60 – 73 min.) 

shows where the tagged 28mer products eluted. The y-axis (MS intensity) of each 

TIC was normalized to full scale relative to the 28mer products. From evaluating 

each TIC, it was observed that wheat clearly produced the most tagged peptide 

products. In fact, there were so many peaks present that the tagged 28mer products 

were not even able to be identified. Barley, rye and oats also produced many tagged 
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peptide products, while soy and corn produced the fewest. These TICs also show 

other reaction products, so it is difficult to assess how many of the peaks might 

correspond to actual tagged immunogenic grain peptides.  

 In contrast, Figure 3.15 shows representative LC/UV chromatograms of the 

RhC-tagged peptides from each grain. Again, 28mer tagged peptide products can 

easily be identified in all but the wheat flour sample. Each grain chromatogram 

appears to have several common peaks, probably due to other reaction products. 

These peaks appear at the approximate retentions times: 31, 40, 47, 48.5, 49, 51, 

56 and 57 minutes, respectively. However, it can be observed that, apart from the 

common reaction products, soy and corn appear to have very few tagged products, 

while the chromatograms representing oats, rye and barley show many peaks. 

Wheat clearly contains the most tagged peptide products. 

 Two of the concerns that had been posed earlier in this section have now 

been addressed. It can be concluded from these observations that it does appear 

that other grains (barley, rye and perhaps oats) do produce tagged peptide products, 

with wheat clearly producing the most. The specificity of the TG2 enzyme has not 

been fully determined by these experiments, but it is generally apparent upon 

comparison of the amount of tagged peptides from corn and soy, that they do not 

produce anywhere near as many tagged peptide products as barley, rye and wheat. 

Therefore, there must be some level of specificity being maintained by TG2, under 

these in-vitro reaction conditions. Searching the NCBI protein database, it was 

determined that corn and soy proteins also have many glutamines and prolines, but 

peptides from these proteins did not appear to become tagged with RhC.  
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 Further experiments were performed in order to evaluate the in-vitro reaction 

conditions. Various whole grains were used as samples in the MDC and RhC 

tagging reaction. Soy was used as a control. In particular, the amount of TG2 

relative to the amount of grain, the length of time that TG2 is allowed to react with 

the proteolyzed peptides, pH, variations in the yield of tagged peptides with the type 

of TG2 (i. e. human versus guinea pig) as well as tagged peptide response in the 

various grains were all investigated in order to better define the specificity of TG2 in-

vitro. The most noteworthy observation from these experiments was that for a 30 mg 

sample of proteolyzed grain, approximately 5 µM TG2 with mM [Ca2+] and 1-2 mM 

RhC (MDC) were found to be sufficient to produce the desired tagged products. It 

was observed that excess RhC (MDC) started to appear after approximately 15 

minutes of reaction time. That would infer that the reaction had become quenched 

and that there were no more immunogenic peptides left in the sample to tag. Data to 

support this observation is shown in Figure 3.16. A large peak at a retention time of 

20 minutes can be seen in the LC-MS TICs of corn, soy, oats, rye and barley. 

Interestingly, two different brands of wheat were analyzed and an excess of the RhC 

chemical tag was not observed in either case. The time point (15 minutes) where the 

transamidation reaction appeared to be quenched is within the range of what 

literature reports as the approximate time (10-30min) for symptoms of gastric stress 

to begin to appear in an individual reacting to the ingestion of immunogenic gluten. 

Notwithstanding, it should be noted that in-vivo digestion of food varies from person 

to person and with how much and what type of grain proteins are ingested. Further 

investigation along these lines is outside the scope of this research project.  
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 Therefore, it was sufficient to assume that under these general conditions, it 

is feasible to release and identify some potentially immunogenic wheat gluten 

peptides. Data from re-analysis of wheat and corn with MDC are displayed in Figure 

3.17(A) and (B) respectively. The large peak at a retention time of 22 min. indicates 

the excess of unreacted MDC that had not been observed under the conditions used 

in previous analyses. Perhaps these optimized conditions were better suited to allow 

only the immunogenic peptides to become tagged.  

 
3.3.4 Determination of potential immunogenic peptide molecular weights and 
         sequences.  
 
 Data from the analyses of different sources of wheat flour and gluten were 

then examined in detail, in order to attempt to determine which UV and/or MS peaks 

corresponded to potential immunogenic wheat peptides and to determine their 

molecular weights and structures. The process began by focusing on the most 

intensely responding UV peaks, resulting from the proteolysis and TG2 

transamidation and RhC (MDC) tagging of wheat gluten. These are shown in Figure 

3.18, where (A) represents RhC-tagged wheat peptides and (B) represents the 

corresponding MDC-tagged wheat peptides. The sixteen most intensely responding 

peaks are numbered. These were the peaks that were chosen in order to try to 

identify the corresponding peptides. Figure 3.18(B) shows two peaks that have 

multiple entries [i. e. 6(1, 2) and 8(1, 2)]. These represent LC/UV peaks 6 and 8 that 

each consist of two co-eluting peptides. In Figure 3.18(A), it can be seen that these 

four peptides do not co-elute. The differences in retention characteristics between 

these peptides may be a result of the fact that they are tagged with different 
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numbers of MDCs or RhCs attached to that particular them that result in their co-

elution / or separation. The synthetic 28mer peptide [PF(PQPQLPY)3PQPQP] was 

spiked into all samples as a control to ensure that the reaction was successfully 

producing tagged products. Peaks corresponding to various tagged products of the 

28mer were identified and are labeled in Figure 3.18(A) and (B). 

 In order to successfully identify potential immunogenic peptides, a 

complicated data analysis process was developed that required peaks from both the 

LC/UV chromatograms and MS/MS spectra (corresponding to both untagged and 

tagged peptides) to be interpreted manually, as well as through database search 

algorithms. A summary of the progression of this process is shown in a flowchart 

format in Figure 3.19. Data from the analysis of untagged proteolyzed wheat, MDC 

and RhC-tagged peptides and from the analysis of other grains were all used in 

order to confirm the presence/absence of each proposed peptide sequences in 

immunogenic and non-immunogenic grains.  

 Each of the 16 peaks was investigated individually. This process is described 

in detail, as follows, for the identification of the sequence of the peptide that 

corresponded to the LC/UV peak #3. This peak is depicted at a retention time of 

35.5 minutes in Figure 3.18(B). The initial step in the identification process was to 

obtain MS and MS/MS (if possible) spectra of the MDC-tagged peptide. For peak #3, 

these are shown in Figure 3.20. Figure 3.20(A) shows the LC/UV chromatogram 

acquired @ 330nm, where peak # 3 is shown at a retention time of 35.5 minutes; (B) 

an EIC showing that there is an ion at m/z 759 which corresponds to this UV peak; 

(C) full scan MS of the UV peak at 35.5 min., showing a base peak at m/z 759.3 and 
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another very small peak at m/z. 1139 and (D) the MS/MS spectra of the m/z 759.3 

ion. The two ions at m/z 759.3 and 1139 correspond to [M+2H]2+ and [M+3H]+3 ions. 

Based on these two ions, the mass of the MDC-tagged parent ion should be 2275 

Da. From previous work with synthetic immunogenic peptides (33 residues or less), 

a compound of this MW would likely have 1, 2 or 3 MDC tags. The MW of one MDC 

is 317 Da. Since the number of MDC tags for this compound is not known, the 

theoretical molecular weights of the various ions corresponding to the untagged 

version of this peptide can be postulated as follows: 

• [M+H]+ of m/z 1959; [M+2H]+2 of m/z 980 (corresponding to the peptide 

tagged with 1 MDC) 

• [M+H]+ of m/z 1642; [M+2H]+2  of m/z 821.5 (corresponding to the peptide 

tagged with 2 MDCs) 

• [M+H]+ of m/z 1325; [M+2H]+2 of m/z 663 (corresponding to the peptide 

tagged with 3 MDCs) 

 The next step involved mining the LC-MS data from the proteolyzed wheat 

samples (no tags) for one or more of these ions. Figure 3.21 shows three extracted 

ion chromatograms from the LC-MS data of the untagged proteolyzed wheat 

samples that would represent [M+2H]+2 ions of a peptide tagged with one (A), two 

(B) and three (C) MDCs. The top trace (A) shows a peak at m/z 980, which 

corresponds to the +2 charge state for a peptide tagged with 1 MDC. Interestingly, in 

addition to the LC-MS data of proteolyzed wheat showing a peptide of molecular 

weight 980 Da ([M+2H]+2), a peak was also observed at slightly higher m/z (in the 

mass range m/z 980-982) in the LC-MS data from proteolyzed wheat that had also 
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been treated with TG2 (resulting only in deamidated peptide products), which looked 

a bit broader and increased slightly in retention time (Figure 3.22). This suggests 

that a deamidated version of the peptide of MW 980 (RT 23.3 min,) eluted at 

retention time 23.5min.  

 Additional verification of the molecular weight of this unknown peptide was 

achieved by repeating the above process using the RhC data. This involved 

obtaining MS and MS/MS (if possible) spectra of the corresponding RhC-tagged 

peptide represented by peak #3 in Figure 3.18(A). Figure 3.23 shows results from 

RhC data that is analogous to what is depicted in Figure 3.20. Figure 3.23(A) 

displays an EIC showing that there was an ion detected at m/z 819, corresponding 

to the UV peak at a retention time of 36.6 minutes; (B) displays the full scan MS of 

this UV peak, showing a base peak at m/z 819.5 and another peak at m/z. 1228.4; 

(C) displays the MS/MS spectra of the m/z 819.5 ion. The two molecular ions at m/z 

819.5 and 1228.4 correspond to [M+3H]+3 and [M+2H]+2 ions, respectively. Based on 

these two ions, the mass of the RhC-tagged parent ion should be 2456 Da. An 

untagged proteolyzed wheat peptide of molecular weight 1958 with one RhC would 

have a molecular weight of 2456 Da. Under positive electrospray ionization 

conditions, a peptide of that MW would most likely exhibit a +2 and /or a + 3 ion at 

m/z 1228 and 819 respectively, as seen in Figure 3.23. In addition, a small peak was 

observed at a retention time of 54.5 minutes. The MW of this peak corresponded to 

the addition of two RhC tags to this peptide. 

 Next, it was verified that this peptide is not found in corn (a non-immunogenic 

grain). This was accomplished by the digestion of corn flour in a similar fashion to 
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that done with wheat and comparing the results. Figures 3.24, 3.25 and 3.26 show 

the extracted ion current chromatograms of the [M+3H]+3 ion at m/z 759 in corn and 

wheat (representing the peptide with one MDC tag); the [M+2H]+2 ion at m/z 980 in 

corn and wheat (representing the peptide with no tag); and the [M+3H]+3 ion at m/z 

819 in corn and wheat (representing the peptide with one RhC tag), respectively. 

These figures demonstrate that this peptide is indeed unique to wheat and would be 

an excellent candidate to be considered as an immunogenic target peptide. 

 The final step was to sequence this candidate peptide. The MS and MS/MS 

spectra were first sent to the Mascot MS/MS ion search program (Matrix Science) to 

retrieve any possible known sequences that corresponded to this peptide in wheat. 

The search conditions specified the taxonomy searched to be Viridiplantae (green 

plants). Other parameters of note specified that the data came from an ion trap mass 

spectrometer; the peptide could have deamidations and no enzymatic cleavages. 

This allowed the program to search each protein for a subset (peptide) that best 

matched the data file entered. Figure 3.27(A) shows results from the Mascot protein 

database search for the identity of the peptide corresponding to UV peak #3, 

indicating the sequence that was the top hit belongs to an alpha/beta gliadin. Figure 

3.27(B) and (C) show the MS and MS/MS mass spectra of the peptide along with the 

proposed primary sequence ions. The postulated sequence for this peptide is 

LQPQNPSQQQPQEQVPL and it was definitely considered as a candidate for 

synthesis, which would serve as final confirmation of the peptide’s identity. 

 A summary of all the information about each of the 16 most intensely 

responding LC/UV peaks (corresponding to those denoted in Figure 3.18), is shown 
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in Table 3.2. Ten peptides from this list (sequences in bold) appeared to fit all the 

criteria to be considered potentially immunogenic. These peptides were 

subsequently synthesized in order to confirm their proposed sequences and MS 

responses.  

 Some problems were encountered with the data interpretation within this 

phase of the research. These problems involved reduced efficiency of the separation 

of the proteolyzed and tagged peptide mixture. It was found that improved LC 

separation of these peptides was required because the existing LC separations, 

such as the one shown in Figure 3.28, were not sufficient to adequately resolve all 

the eluting components. This made data analysis and interpretation quite difficult. 

MS analysis also revealed that most LC peaks were found to be composed of 

several co-eluting components. Figure 3.28 illustrates the type of data complexity 

that was encountered in the determination of the identity of peptide 4 

(RPQQPYPQPQPQY), which corresponded to one of the compounds that eluted 

within UV peak 15 in the LC/UV chromatogram of the MDC-tagged peptides [see 

Figure 3.18(B)]. Part (A) of Figure 3.28 shows peak 15, which eluted at 

approximately 62 minutes. Part (B) shows the EIC of one compound at a m/z 912.4, 

which corresponded to a [M+3H]+3 ion from a compound of MW 2914 Da. Part (C) 

shows the EIC of another compound at a m/z 858.7, which corresponded to a 

[M+4H]+4 ion from a compound of MW 3426 Da. Part (D) shows the full scan MS 

spectrum of all the ions that were found under the first half of this UV peak (61.7 to 

62.0 minutes). The ions in green correspond to the compound shown in (B), while 

those in red belong to the compound shown in (C). The two triply charge ions shown 
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in black belong to other compounds that co-elute under this UV peak (MW 3873 and 

MW 4246).  

 On occasion, it was not apparent which of these components were the 

peptides that were tagged and which were not tagged. The presence of untagged 

compounds reduced the ultimate usefulness of the proposed approach because they 

hindered the identification of the tagged peptides. Co-eluting compounds can reduce 

the MS signal of the tagged peptides due to electrospray ion suppression as well as 

by reduced ion trap accumulation times. This reduction in MS signal reduced the 

ability to detect the tagged peptides and resulted in less intense MS/MS spectra, 

making sequencing difficult and database searching inefficient.  

 The process of determining the peptide molecular weight in PTCECA 

proteolyzed wheat gluten, as compared to the corresponding peptides tagged with 

MDC or RhC, did not always result in a molecular weight that matched. It was 

discovered that when several tags were present in a compound, the tagged peptide 

molecular weight could increase to the high 2000’s and ultimately up to 3500 Da. 

The electrospray ionization mass spectrum of these tagged peptides consisted of +3 

or greater charged states and resulted in an average molecular weight determination 

for that peptide, since the isotopic peaks for that peptide could not be resolved on 

the ion trap. However, the monoisotopic mass was usually eventually determined, 

because the PTCECA digested gluten peptides usually produced +1 or +2 ions, 

whereby the capabilities of an trap could resolve these isotopes. This could result in 

a 1-3 Da mass discrepancy when comparing average molecular weight to 

monoisotopic molecular weight. Additionally, the chemical tagging process which 
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utilized the catalytic power of the TG2 enzyme, often resulted in several deamidated 

sites. These additional sites were found to be present as well as those that were 

involved in tagging with the MDC or RHC. This resulted in small increases in 

molecular weight of the tagged peptides, which were passed onto the postulated 

molecular weights of the peptides in the proteolyzed gluten. To account for this 

complexity when searching for peptides in proteolyzed gluten, EICs covered a 2-4 

m/z mass range (versus a usual single m/z). If multiple peaks were found initially, 

work focused on the peak with greatest abundance first, then moved through all 

available ions down to the peaks with lower abundance. 

 
3.3.5 Confirmation of proposed target peptide identity 
 
 Synthetic standards were prepared of the ten target gluten peptides [(1) 

LQPQNPSQQQPQEQVPL, (2) TQQPQQPFPQQPQQPFPQ, (3) 

VPVPQLQPQNPSQQQPQEQVPL, (4) RPQQPYPQPQPQY, (5) 

QPQQPFPQTQQPQQPFPQ, (6) PQQSPF, (7) QPQQPLPQPQQPF, (8) 

PQQQFPQTQQPQQPFPQP, (9) PQQSGQGVSQSQQQSQQQ and (10) 

FPLQPQQSF] identified by the enzymatic proteolysis and chemical tagging 

experiments. This was done in order to both confirm the identity of each peptide and 

its LC-MS response. The peptides were synthesized (Thermo Electron, Ulm, 

Germany) and then analyzed using HPLC-MALDI-TOF mass spectrometry in order 

to determine their exact molecular weights and purity (>90% pure). MALDI-TOF 

spectra, representing the purity of two of the synthetic peptides 

(VPVPQLQPQNPSQQQPQEQVPL and RPQQPYPQPQPQY), are shown in Figures 

3.29 and 3.30.  
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 These ten synthetically prepared peptides along with proteolyzed wheat 

gluten samples previously analyzed, were analyzed by HPLC-MS/MS according to 

the same conditions that have been used to analyze all proteolyzed wheat gluten 

peptides thus far. Data from the analyses of the synthetic peptides were compared 

to that for the corresponding peptides produced via the in-vitro proteolysis 

procedure. Positive identification of the sequence composition for each potential 

peptide was based on: (1) LC retention time, (2) full scan MS spectrum (showing the 

same multiply charged ions in the same ratio) and (3) the MS/MS CID spectra 

(showing ions from at least two parent to product transitions, resulting in the same 

ion ratios), respectively.  

 Based on these analyses, sequences for 7 of the 10 proposed potentially 

immunogenic wheat gluten peptides were confirmed. These are listed in Figure 

3.31(A). Part (B) shows an LC-MS/MS multiple reaction monitoring (MRM) 

chromatogram, where the most intense of two parent to product transitions 

monitored for each of the peptides 1-10 is displayed from the analysis of a solvent 

standard (top) and from the analysis of a proteolyzed wheat sample (bottom). Note 

that the sequences of peptides 1-6 were confirmed. It was discovered that the 

postulated sequences for peptides 8, 9 and 10 did not match those of the 

synthetically prepared peptides. Peptide 7 (QPQQPLPQPQQPF) was found to have 

been synthesized incorrectly, as QPQQPLPQPQQFF. It was re-synthesized 

correctly, as QPQQPLPQPQQPF, and this sequence was subsequently confirmed 

as a target peptide. The sequence for peptide 8 (PQQQFPQTQQPQQPFPQP) was 

found to be incorrect. The fact that it co-eluted with three other peptides (2, 5, and 7) 
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may have contributed to this misidentification of the sequence. Peptide 9 

(PQQSGQGVSQSQQQSQQQ) did not chromatograph well. It was not well retained 

and eluted with the solvent front. No further work was directed to this peptide in lieu 

of the others that were successfully identified. 

 The peptide identification process was difficult and was definitely not fool 

proof. There were instances where MDC- and RhC-tagged peptides indicated a 

particular molecular weight that should be observed in PTCECA gluten. It was later 

discovered that the peak chosen that matched those molecular weights was found to 

be incorrect. For example, peptide 10 (MW 1091 Da), an example of a very 

abundant peptide, proved to be a gluten related peptide based upon the Mascot 

database search. The proposed sequence was FPLQPQQSF. However, only five of 

the nine amino acids could successfully be sequenced, based upon the MS/MS 

spectra. A complete sequence was not obtained because the low mass information 

was lost as a result of the cutoff value used for the CID process (ions below 30% of 

the parent ion were not detected). When the synthetic standard of peptide 10 was 

analyzed, it did not match the retention time of its corresponding peak in proteolyzed 

gluten. Upon additional investigation a very weak (5-10% relative intensity) peak, 22 

Da lower was detected, indicating the original peak at m/z 1092 was a sodium 

adduct. Looking for the corrected molecular weight (1068.7 Da) with 1-3 MDC or 

RhC tags resulted in no significant peaks detected. Then a question was raised 

about whether the RhC- and MDC-tagged peak also contained sodium. Additional 

work will be required to address the situation with this peptide, in order to attempt to 

sequence the sodium adduct and determine if sodium adducts are observed in the 
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MDC or RhC mass spectra. This was an unusual observation because no other 

sodium adducts were observed with the other peptides. Since this peak was in the 

lower end of UV absorbance in the MDC chromatogram, no further work was 

directed to this peptide in lieu of the others that were successfully identified. 

 Figures 3.32 - 3.38 represent the LC-MS full scan mass spectra and LC-

MS/MS CID product ion mass spectra for each of the peptides 1 though 7. The 

MS/MS fragmentation frequently observed was a result of cleavage at the N-terminal 

side of prolines, thus forming b-type product ions. The most intense b-type ions 

appeared to favor cleavage on the N-terminal side of “QP” sequences. The y-type 

product ions also favored cleavage at the N-terminal side of P, with the charge 

remaining on the P-containing product ion. Other weaker product ions (both b- and 

y-type) were observed for cleavage between Qs. These peptides can now be used 

as markers for wheat gluten content in the analysis of food products. It was 

proposed to use these peptides as target analytes and develop an LC-MS/MS assay 

which could be used to detect and quantify the presence of any of these peptides. 

This would essentially represent the presence of wheat, if any were detected in a 

sample of a food product.  

 Comparing the sequences of these seven peptides with those from several 

known immunogenic gluten epitopes, previously identified by various other 

researchers [7, 27], it is important to note that all seven peptides were found to 

contain partial sequences also found in many of these established DQ-restricted 

immunostimulatory T-cell epitopes. Some examples of these common epitopes are 

PYPQPQ, QPFPQQP, SQQQP, FPQQP, PQQSPF, PQQPQQP, RPQQPYPQ, 
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QQPQQPFPQ and QTQQPQQPFPQ. Therefore, each of these seven peptides can 

effectively be considered immunogenic. It has been reported that there is a high 

variability in the consistency and frequency of TG2 recognition of specific glutamine 

residues between T-cell lines investigated to date [28]. Similar sites are targeted, but 

these sites are not always targeted in every patient’s T-cells. Further interpretation 

and sequencing information may provide a better insight into the specificity of TG2 

in-vitro (i. e. which Q residues in these seven peptides are preferentially tagged by 

the TG2 enzyme). This will be discussed in section 3.3.7. 

 
3.3.6 Confirmation of peptides released by direct in-vitro enzymatic digestion 
         and HPLC-MS analysis of wheat flour 
 
 Although the seven peptides had already been proven to be released from 

wheat flour (previous experiments), it was felt that re-analysis was required in order 

to confirm that the peptides were present in various different brands of commercially 

available wheat flour and wheat gluten. Different brands of grain product may consist 

of different varieties of wheat. Corn flour was also analyzed again in order to verify 

the absence of the peptides. The in-vitro proteolytic digestion procedure worked 

successfully and reproducibly, releasing all seven of the target peptides in the 

samples where wheat protein was present. As was found in previous analyses, all 

seven peptides were found to be present in wheat gluten and wheat flour, but were 

not found to be present in corn flour. 

 Another experiment tested the ability of the seven peptides to resist further 

proteolytic digestion. A cocktail of all seven standards were digested with pepsin, 

trypsin, chymotrypsin, elastase, carboxypeptidase A (PTCECA) according to same 
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protocol that has been used throughout these experiments. A further treatment of 

human brush border membrane (BBM) enzyme DPPIV was carried out in order to 

further assess any degree of degradation that occurred. Figure 3.39 shows LC-

MS/MS MRM chromatograms for peptides 1-7 in: (A) 10 ng/mg solvent standard 

before proteolysis and (B) after being digested with the enzymes for 30 minutes. 

Interestingly, the peptides did not show much degradation. One of the characteristics 

of known immunogenic peptides is that they tend to remain intact after their 

respective proteins have been digested down to basic amino acids, di- and tri-

peptides. From Figure 3.39(B), it is observed that peptides 2, 4 and 6 did slightly 

degrade, however, none of the peptides showed any significant (>20%) degradation. 

This observation bodes well to support the theory that these seven peptides are in 

fact immunogenic. 

 
3.3.7 Further investigation involving the specificity of TG2 
 
 Following the successful identification of seven immunogenic gluten peptides, 

questions remained with respect to the level of specificity that TG2 shows when 

exposed to these peptides. Knowing the variability in the consistency and frequency 

of TG2 recognition of specific glutamine residues between T-cell lines, it was 

interesting to investigate the underlying relationship between TG2 and the glutamine 

residues within the context of this research project. Detailed specificity studies on 

TG2 and its ability to target certain glutamines in certain consensus sequences [16, 

22 and 29], report that the reaction is somewhat specific for certain sequences, but 

not uniquely specific. Specificity also has been shown to vary between individuals. 

One short sequence, (Q-x-P in epitopes such as PQPQLPY) has been reported to 
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have shown preferential specificity by the TG2 enzyme for the indicated Q residue 

contained in some T-cell stimulatory epitopes, but these were not chosen 

exclusively. 

 Experiments attempted to determine the location of the MDC and RhC tags 

within the identified seven peptides in order to obtain a better understanding of the 

selective process that TG2 followed under the experimental conditions of this 

research. Initial experiments demonstrated that the TG2 catalyzed transamidation 

reaction did show a level of specificity for certain glutamines contained in known 

immunogenic epitopes of various synthetic peptides. Figure 3.40 shows RhC-tagged 

products for several of these reference peptides. The extracted ion chromatograms 

for all peptides except the non Q-containing myoglobin peptide (bottom) showed 

RhC-tagged and deamidated products. It is interesting to note that the two glutamic 

acid (E) residues contained in the myoglobin peptide did not become tagged. Yet, 

this experiment does not pinpoint the exact site or amino acid sequences that were 

deamidated and/or tagged in the Q containing peptides. These reference peptides, 

as well as the peptides identified form this research, contained more Q’s than were 

tagged. Typically only 1-3 Q’s were tagged in the peptides (<33 amino acids in 

length) studied here.  

 These MDC- and RhC-tagged peptides were then sequenced, in order to 

attempt to determine the site of tagging in each, and if these sites were consistent 

within other peptides. Figures 3.41 and 3.42 each show the full scan mass spectra 

and MS/MS mass spectra for the 9mer (PFPQPQQQF) peptide tagged with one 

MDC or RhC tag respectively. Based upon the sequencing information provided 
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from the MS/MS mass spectra, it can be seen that although this peptide has 3 

glutamine residues, in both cases the same site became tagged. This site was 

identified as the Q shown in bold PFPQPQQQF. There appeared to be no difference 

in the specificity when the reaction was carried out with the MDC or RhC tag. 

 Figures 3.43 and 3.44 each show the full scan mass spectra and MS/MS 

mass spectra for the 11mer (PFPQPQLPYPQ) peptide tagged with one MDC or 

RhC tag. There are also 3 glutamine residues in this peptide and again the same 

site was tagged in each case. The site that was tagged was identified as the Q 

shown in bold PFPQPQLPYPQ. Allowing the reaction to continue long enough (over 

2 hours), results in all three Q’s eventually becoming tagged (Figure 3.43). However, 

a large preference for the middle Q is clearly indicated.  

 A larger 28mer peptide was also studied, because it is near the upper end of 

the mass range (MW 3282 Da) typical of known immunogenic wheat gluten 

peptides. Even though the sequence of this 28mer contains 8 glutamines 

[PF(PQPQLPY)3PQPQP], it only appeared to yield 3 tagged products corresponding 

to the addition of 1, 2 and 3 tags. Figures 3.45 - 3.47 show the MS/MS mass spectra 

for the sequencing of the 28mer with 1, 2 and 3 RhC tags, respectively. The 28mer 

sequence contains three PQPQLPY epitopes. Each successive RhC tag attached to 

the same Q, (PQPQLPY). The first RhC tag conjugated to the middle PQPQLPY 

sequence, the second tag to the C-terminal epitope and the third to the N-terminal 

epitope. 

 The 7 peptides identified in sections 3.3.4 and confirmed in section 3.3.5 were 

also investigated further in order to determine their site(s) of tagging. Figure 3.48 
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shows the sequencing of peptide 6 (PQQSPF) tagged with RhC. Upon evaluation of 

the MS/MS spectra in Figure 3.48(C), it was determined that the Q in bold was the 

site that was tagged in peptide 6 (PQQSPF). Figure 3.49 shows: (A) EIC from 

proteolyzed wheat flour, that represents [M+3H]+3 ion for peptide 2 with 2 MDCs 

(MW 2786); (B) full scan mass spectrum for peptide 2 (TQQPQQPFPQQPQQPFPQ) 

tagged with 2 MDC tags and (C) MS/MS product ion spectrum of the [M+2MDC]+3 

ion of m/z 929.9. The sequencing revealed that the two Q’s in bold were tagged sites 

(TQQPQQPFPQQPQQPFPQ). Figure 3.50(A) shows the full scan mass spectrum 

for peptide 3 at a retention time of 55 minutes, in an LC/UV chromatogram of 

proteolyzed wheat gluten. The sequence information, as seen in part (B), indicated 

the Q’s in bold (VPVPQLQPQNPSQQQPQEQVPL) were those that were tagged 

with the MDCs. 

 Table 3.3 summarizes the findings about the specificity of TG2. Sites targeted 

by TG2 are shown in bold. It appeared that the reaction conditions and perhaps 

lower steric hindrance for the MDC relative to RhC, favored more MDCs binding to 

the peptides relative to RhCs. However, despite the fact that more MDC s tended to 

bind than RhCs, those sites where both where found to bind, were identical in each 

peptide. 

 Literature has reported that the position of prolines and glutamine residues 

within gluten peptides is important for determining whether the peptide will be a good 

substrate for DQ binding [12, 16 and 29]. In fact, a recent study [29] has compiled a 

list of characteristic binding patterns from known immunogenic DQ-restricted 

peptides. Figure 3.51 displays these common binding signatures for DQ2 and DQ8 
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and also shows that several of the seven peptides identified in this research share 

many of these DQ-binding characteristics. This provides further evidence to suggest 

that they would be good candidates to bind to DQ molecules. 

 Upon further review of the sites tagged with RhC / MDC, several common 7 

amino acid motifs could be recognized. Table 3.4 lists these common motifs and the 

peptides that contain them. Two interesting observations can be made. First, the 

most common site observed that was targeted for chemical tagging was “P1 x1 P Q 

Q P2 x2 “, where P1 is usually a proline, but can be a glutamine. P2 can be a proline 

or a glutamine and can be an E when P1 is a Q. x1 can be a Q or F and x2 can be a 

Q, F, Y or V. Second, the other common sequence which was observed was “P3 Q P 

Q Z1“, where P3 can be an L or absent; Z1 can be the tri-peptide PLY, NPS or QPL. 

 Strong tagged product responses were also observed from peptides with no 

Q-x-P sequences, such as QPQ, QQx and QQQ. It is believed that these consensus 

sequences have yet to be reported in literature. Additional experiments comparing 

human and guinea pig TG2 were conducted under the same reaction conditions to 

determine if an animal TG2 model could be adapted to study this human immune 

mechanism. Results were not as successful using the guinea pig TG2 because the 

guinea pig TG2 did not show the same level of specificity.  

 
3.4 Conclusions 
 
 Previous work with recombinant gliadin proteins, by various researchers, has 

led to the discovery of two highly inflammatory, physiologically relevant, multivalent 

33- and 26-residue gluten oligopeptides [1, 24]. In turn, those peptides have proven 

to be useful markers of gluten toxicity and they continue to be involved in on-going 
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studies by a number of other researchers. Motivated by those findings, I wished to 

identify additional physiologically relevant gluten peptides that could be used as 

markers in complex foods. The ability to determine the presence/absence of such 

peptides with high sensitivity and specificity in complex foods would provide an 

overall indication of the toxicity of the product to those with gluten sensitivities. 

 To this end I endeavored to study native cereal grains, using an innovative 

approach involving chemical tagging of wheat gluten peptides with tissue 

transglutaminase 2. This approach used LC-ESI-ion trap-MSn  to identify and 

characterize several potential immunogenic peptides. Complete sequences and 

sites of TG2 deamidation for 7 wheat gluten peptides were successfully determined 

using this novel enzymatic digestion/chemical tagging methodology. Confirmation of 

the identity of each of the peptides was determined by comparing structure and 

molecular weight with synthetically prepared peptides. HPLC-MS analysis as well as 

protein database searches confirmed that these peptides were all present in wheat 

and not present in non-immunogenic grains (i. e. corn and rice). Figure 3.52 shows 

results from one protein database search where the sequence corresponding to 

peptide 1 was found in three different species of wheat and in different classes of 

wheat gluten proteins. Interestingly, this sequence for peptide 1 is conserved in each 

case (residues 28 - 44). These 7 peptides were detected by LC-MS/MS with better 

sensitivity than the αG-33 (immunodominant wheat gluten 33mer peptide), which 

may have implications for future applications of this work to analyze food for possible 

immunogenic wheat gluten contamination. 
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 In order to be able to perform quantitative detection of trace quantities of 

these peptides in native and processed food, an analytical method would now have 

to be developed that would provide the best possible sensitivity, accuracy and 

specificity. In order to attain these requirements, the existing HPLC-ion trap MS 

method will be transferred to a triple quadrupole mass spectrometer, which has the 

capabilities to provide better accuracy and sensitivity than an ion trap, when 

quantitative detection is required.  
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DRB1*04-DQB1*0302-DQA1-0301DR4-DQ80303030104

DRB1*11/12-DQB1*0301-DQA1*0505DR5/DQ70301050511/12

DRB1*07-DQB1*0202-DQA1*0201DR7-DQ20202020107

DRB1*03-DQB1*0201-DQA1*0501DR3-DQ20201050103

celiac heterodimerserological haplotypeDQB1DQA1DRB1

DRB1*04-DQB1*0302-DQA1-0301DR4-DQ80303030104

DRB1*11/12-DQB1*0301-DQA1*0505DR5/DQ70301050511/12

DRB1*07-DQB1*0202-DQA1*0201DR7-DQ20202020107

DRB1*03-DQB1*0201-DQA1*0501DR3-DQ20201050103

celiac heterodimerserological haplotypeDQB1DQA1DRB1

 
 
 
 
 
 

Table 3.1 
 

HLA haplotypes for the development of CD 
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Table 3.4 
 

Amino acid sequences that show sites of TG2 deamidation and  
tagging with MDC and RhC 

 
 
 

Amino acid sequence Peptides with this sequence *

IQPQQPA 9 mer
PQPQQQF PFP
PQPQPLY 11 mer, 28 mer
PFPQQPQ 26 mer, peptide 2
QQPQQPF 26 mer, peptide 2 and 5
LQPQQPF 26 mer
QQPQQPF peptide 5
LQPQNPS peptide 1 and 3
QQPQEQV peptide 1 and 3
PQPQPQY peptide 4
RPQQPYP peptide 4
PQPQQPF peptide 7
QPQQPLP peptide7

Note:

* refer to Table 3.3 for complete sequences

Q (in bold) are those targeted by TG2 and tagged by MDC and RhC
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Figure 3.1 
 

Overview of the adaptive immune reaction mechanism in celiac disease 
 

(adapted from Mowat [8]) 
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Figure 3.19 
 

Summary of the data analysis process developed for the identification of potentially 
immunogenic wheat gluten peptides 
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Figure 3.29 
 

MALDI-TOF spectra of synthetic peptide 3 (VPVPQLQPQNPSQQQPQEQVPL) 
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Figure 3.30 
 

MALDI-TOF spectra for synthetic peptide 4 (RPQQPYPQPQPQY) 
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Figure 3.31 
 

Confirmation of identity of potentially immunogenic wheat gluten peptides 
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peptide 1: LQPQNPSQQQPQEQVPL

preferred binding characteristics:

prolines @  P1, 3, 5 and 8

glutamines @  P1, 4, 6, 7 and 9

glutamic acids @ P1, 4 and 9

1 2 3 4 5 6 7 8 9

peptide 2: TQQPQQPFPQQPQQPFPQ

peptide 5: QPQQPFPQTQQPQQPFPQ
QPQQPFPQTQQPQQPFPQ

peptide 4: RPQQPYPQPQPQY

1 2 3 4 5 6 7 8 9

peptide 1: LQPQNPSQQQPQEQVPL

preferred binding characteristics:

prolines @  P1, 3, 5 and 8

glutamines @  P1, 4, 6, 7 and 9

glutamic acids @ P1, 4 and 9

1 2 3 4 5 6 7 8 9

peptide 2: TQQPQQPFPQQPQQPFPQ

peptide 5: QPQQPFPQTQQPQQPFPQ
QPQQPFPQTQQPQQPFPQ

peptide 4: RPQQPYPQPQPQY

1 2 3 4 5 6 7 8 9

 
 
 
 
 
 

Figure 3.51 
 

Relationship between the specificity of TG2 and the preferred binding register of  
the core 9-residue immunogenic epitope sequence to DQ2/8 

 
(adapted from [29]) 
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Figure 3.52 
 

Database search of the Triticeae tribe for peptide 1 (LQPQNPSQQQPQEQVPL) 
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CHAPTER 4 

Development of an HPLC-MS/MS Assay for the Quantita tive 

Detection of Novel Immunogenic Gluten Peptides  

 
 
4.1 Introduction 
 
 The ability to be able to detect and quantify trace levels of dietary gluten from 

wheat, barley and rye in commercially available food and consumer products is 

important because of the established relationship between exposure to gluten and 

human health. Dietary gluten is a principal trigger of a variety of immune diseases 

including food allergies and intolerances. An analytical method that has the 

capability to detect and quantify trace levels of gluten, as accurately and sensitively 

as possible, is clearly needed in order to address worldwide product safety issues. 

 For the purposes of gluten-free labeling and certification, there currently 

exists some controversy surrounding the type of analytical methods (and their 

respective gluten standards used), considered acceptable to determine and quantify 

the amount of gluten present in food and consumer products. Several organizations 

(such as the FDA, the Codex Alimentarius Commission (a joint committee with 

delegates from both the Food and Agriculture Organization of the United Nations 

[FAO-UN] and the World Health Organization [WHO]) and the Association of 

Analytical Communities (AOAC)) all endorse different methods [1, 2]. These 
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methods are variations of an antibody-based enzyme-linked immunosorbent assay 

(ELISA), which is based on a specific monoclonal antibody(s) that cross-reacts with 

a specific sequence in a gluten prolamin protein. In the USA, the FDA (Food and 

Drug Association) supports all ELISA methodologies, but currently has a mandate to 

establish the best analytical method possible, in its revised food allergen labeling 

proposal [3]. 

 The “ω-gliadin ELISA” assay is one method that is officially endorsed by the 

AOAC. This is a sandwich assay that is based on monoclonal antibodies to ω-gliadin 

[4]. Sandwich assays require two epitopes (antibody binding sites). Should only one 

epitope exist in the sample, then that gluten protein would not be positively identified 

by this method. One advantage to using this method for establishing wheat gluten 

content in a sample is that the ω-gliadin fraction of wheat gliadin does not denature 

when heated. Other gluten fractions of wheat do denature when heated. Therefore, 

this method can be used to assess the content of wheat ω-gliadins (along with a 

small number of similar types of proteins found in rye and barley) in foods that are 

native (uncooked) and in foods that have been heated (due to cooking or 

processing). This method cannot be used to quantify hydrolyzed gluten proteins in 

foods. Partially hydrolyzed gluten is found in many food products that contain 

components that originate from wheat starch hydrolysates.  

 Another method endorsed for gluten determination is the “R5 ELISA”. This is 

also a sandwich ELISA assay and is based on the R5 monoclonal antibody to the 

pentapeptide “QQPFP” epitope and other similar epitopes that are found in all 

wheat, barley and rye prolamin proteins. Because QQPFP is found in all three 
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grains, this assay detects more gluten proteins than its counterpart (ω-gliadin 

ELISA). This QQPFP epitope has also been found to be resistant to heat. Therefore, 

one advantage to this assay is that it can detect more of the gluten content present 

in heated and uncooked foods than the ω-gliadin ELISA assay. This method cannot 

be used to quantify glutelin proteins (the polymeric fraction of gluten proteins) or 

hydrolyzed proteins.  

 Overall, applications of both of these two ELISA assays have proven 

successful in gluten analysis, but each has its limitations (as noted in the previous 

paragraphs). Therefore, in order to ensure product safety, it is imperative to know 

which ELISA method to use in each analytical application [5, 6 and 7]. Variations of 

both endorsed ELISA methods are under development (as described in the work by 

Sousa [8] and Dekking [9]) in order to compensate for these limitations and provide 

a more comprehensive assay. It is important to note, however, that it is practically 

impossible to provide a complete representation of gluten in food products due the 

complexity and heterogeneity of the proteins. The immunogenicity of gluten in a 

product varies also, depending on the variety and source of the grains that were 

used as ingredients and the procedures that were used for product processing. 

Notwithstanding, many gluten peptide sequences have been found to be 

homologous within one species of grain and others across several species. For 

example, certain sequences of wheat α-gliadins can also be found in barley and rye. 

Although these ELISA assays do recognize some specific sequences, such as 

“QQPFP”, which are present in various types of wheat gluten proteins, they may not 

be present in other celiac-active grains (barley and/or rye). In other words, these 
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ELISA assays are not comprehensive; nor to they yield specific information on the 

presence of the actual disease-causing peptides, those which are actually released 

by digestive processes in the gut.  

 Several researchers have presented work focused on gluten protein and 

peptide quantification using mass spectrometric methods. HPLC-MS has been 

applied successfully in the quantification of gluten exorphin peptides in biological 

fluids [10, 11]. Although this group of five small peptides studied here are in fact 

gluten peptides, they are of a different type than the immunostimulatory peptides 

that are involved in the pathogeneses of the destruction of intestinal tissue in celiac 

disease. Quantitative analysis of gluten proteins using mass spectrometry has also 

been done using HPLC-MS [12] and MALDI-TOF-MS [13, 14 and 15]. These 

methods rely on the visualization of gluten proteins in food by observation of 

characteristic patterns of wheat gliadins and glutenins and do not focus on the 

physiologically relevant peptides, discussed in this research. 

 Although these methods have proven to be valuable in the characterization of 

gluten and in the assessment of total gluten content, each has limited application in 

trace gluten analysis in food. Small amounts of gluten can easily find their way into 

food and consumer products from cross contamination in ingredient handling, by 

improper transporting or processing equipment maintenance procedures, from 

hidden or unlabeled ingredients in a product, or possibly, by the incomplete removal 

of gluten during processing. By establishing the presence of any of these gluten 

peptides in a product, it would affirm that the product is unsafe for use by those with 

gluten sensitivities. Because prolonged exposure to even the smallest amounts of 
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gluten can result in severe damage to the small intestine, there exists a clear need 

to implement a methodology that can establish the basic presence or absence of 

gluten as accurately and sensitively as possible.  

 

4.1.1 Quantitative LC-MS/MS assay development 
 
 HPLC-MS has been used successfully to study trace contamination of a 

variety of analytes in food [16 - 20]. Therefore, it is quite feasible that such a method 

could be developed to target trace levels of immunogenic gluten proteins and 

peptides in food. My initial efforts to this end utilized an enzymatic/chemical labeling 

approach which afforded the identification of seven physiologically relevant 

immunogenic gluten peptides. Verification of the structure of these seven peptides 

was followed by the experimental determination of their presence / absence in native 

celiac active and other grains (Chapter 3). The ability to detect and ultimately 

quantify trace levels of any of these immunogenic gluten peptides in complex native 

and processed food samples, would provide an excellent means to render products 

free from gluten.  

 Utilizing the excellent analytical capabilities of HPLC-QQQ-MS, a method was 

developed and optimized in order to provide the best possible accuracy, and 

sensitivity for the quantitative detection of trace levels of the seven immunogenic 

wheat gluten peptides.  

 
4.1.2 HPLC-MS for gluten quantification 
 
 To achieve the best sensitivity, accuracy and specificity possible in the 

quantitative detection of the seven gluten peptides, the HPLC-ion trap-MS method 
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(developed in Chapter 3) was transferred to the HPLC-triple quadrupole (QQQ) 

mass spectrometry system. This system was better able to meet the requirements 

for trace quantitative detection.  

 The established technology of HPLC-QQQ-MS/MS is well suited for the 

comprehensive task of detection and quantification of immunogenic gluten related 

peptides in complex matrices. The anticipated sensitivity for LC-MS operation in 

such peptide analysis was expected to permit the detection and quantification well 

below the parts per million (ppm) level, corresponding to detection limits reported for 

the most sensitive ELISA methods currently available [5, 21].  

 Tandem mass spectrometry, as performed on a scanning instrument such as 

a triple quadrupole mass spectrometer (QQQ-MS) operated under multiple reaction 

monitoring (MRM) conditions, provides better accuracy and sensitivity for the 

quantitative detection of target or unknown peptides, than if performed on an ion 

trap. Under MRM conditions, there is less dependence on space charge issues that 

occur within an ion trap (i. e. matrix ions that fill up the trap) that result in fluctuation 

and/or decreased target analyte ion signal and/or reduced quantitative accuracy. 

 Limitations to the applicability of this tandem mass spectrometric technique 

become important to consider, however, once the size of the target peptides 

increase much above 3000 m/z (assuming singly charged ions). The level of 

achievable fragmentation and overall sensitivity of collision-induced dissociation 

(CID) detection decreases, due to the reduced capability of internal energy transfer 

in gas phase collisions (as noted by the center of mass collision theory [22]). 

Electrospray ionization offers the ability to create multiply charged parent ions, which 



 182

typically result in CID product ions ranging in mass 500-1500 m/z. This allows 

sequencing information to become available for peptides of MW greater than 3000. 

However, a caveat exists in this situation, because the charge states of product ions 

resulting from CID of multiply charged (z>2) parent ions are sometimes difficult to 

determine without some prior knowledge of their sequence. This creates challenges 

in analyzing the data obtained for large peptides. 

 
4.2 Experimental 
 
4.2.1 Materials and Reagents 
 
4.2.1.1 Chemicals 
 
 Pepsin, trypsin, chymotrypsin, KHNaPO4 and NaOH were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade acetonitrile, dithiothreitol (DTT), 

ethanol, isopropanol, tris-(hydroxymethyl) aminomethane and HCl were obtained 

from Fischer Scientific. Water was obtained from an in-house Milli-Q water 

purification system (Millipore, Billerica, MA, USA). 

 
4.2.1.2 Peptide standards 
 
 Synthetic standards of peptides (LQPQNPSQQQPQEQVPL, 

PQQSGQGVSQSQQQSQQQ, TQQPQQPFPQQPQQPFPQ, FPLQPQQSF, 

VPVPQLQPQNPSQQQPQEQVPL, RPQQPYPQPQPQY, 

QPQQPFPQTQQPQQPFPQ, PQQQFPQTQQPQQPFPQP, QPQQPLPQPQQPF 

and PQQSPF were obtained from Thermo Electron, Ulm, Germany and were 

analyzed using HPLC-MALDI-TOF mass spectrometry in order to determine their 

exact molecular weights and purity (>90% pure).  
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4.2.1.3 Calibration and quality control standards, procedure and analytical blanks 
 
 Calibration standards were prepared as cocktails of 6 and 7 of the 

synthetically prepared target peptides [(1) LQPQNPSQQQPQEQVPL, (2) 

TQQPQQPFPQQPQQPFPQ, (3) VPVPQLQPQNPSQQQPQEQVPL, (4) 

RPQQPYPQPQPQY, (5) QPQQPFPQTQQPQQPFPQ, (6) PQQSPF and (7) 

QPQQPLPQPQQPF]. Standards were prepared using appropriate aliquots taken 

from individual stock peptide solutions of each peptide, prepared in 80% / 20% water 

/ acetonitrile. Calibration standard concentration levels were as follows: (0.1, 0.3, 1, 

3, 10, 30, 100 and 300) pg/µL and (1, 3, 10, 30 and 100) ng/µL. This corresponded 

to a range of about 3 ppb to 100 ppm (or ng/mg).  

 Two types of quality control standards were prepared. The first type was 

prepared by spiking stock peptide solutions at concentration levels that matched the 

solvent calibration standards into aliquots of corn flour that had already been 

enzymatically digested. The second type of quality control standard was prepared by 

spiking the stock peptide solutions at concentration levels that matched the solvent 

calibration standards into aliquots of water that had also been enzymatically treated. 

 Two types of procedure blanks were prepared. The first type used corn flour 

as a representative gluten-free matrix and was enzymatically digested with no target 

peptides spiked in. The second type of procedure blank used water as the matrix 

and was also enzymatically treated with no target peptide spiked in.  

 Analytical blanks consisted of aliquots of the HPLC mobile phase A (95% 

water / 5% acetonitrile (ACN) + 0.025% trifluoroacetic acid (TFA)). 
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4.2.1.4 Samples 
 
 Stone ground whole grain corn flour, vital wheat gluten flour, stone ground 

whole wheat flour (brand 1) and whole wheat flour (brand 2) were obtained from a 

local supermarket (Raleigh, NC, USA).  

 
4.2.2 In-vitro proteolytic digestion procedure 
 
 Samples of native cereal grains were proteolyzed with pepsin, trypsin, 

chymotrypsin (PTC) according to the following protocol: 

 30 mg of homogenized sample was dissolved into 1mL pepsin solution 

(0.01M HCl adjusted to pH 2), to establish a 1:100 pepsin to protein ratio; heat (at 

38˚C) and shake for 2 hours. To each sample, add 50 µL of a 50 mM phosphate 

buffer and 35 µL of a 0.1 M NaOH solution, to establish the pH between 7-7.5. To 

each sample, add 25 µL of a 1:100 trypsin / chymotrypsin to protein solution (in 50 

mM phosphate). Heat (at 38˚C) and gently shake for 30 minutes. For each sample, 

take 200 µL of the supernatant and add 200 µL of Mobile phase A (95% water / 5% 

acetonitrile (ACN) + 0.025% trifluoroacetic acid (TFA)). Spin down all samples and 

aliquot 200 µL for HPLC-MS/MS analysis. 

 
4.2.3 Instrumentation and analysis conditions  
 
4.2.3.1 Assay development 
 
 HPLC-ESI-QQQ-MS/MS was used in the development of this quantitative 

method for the analysis of the 7 target peptides. High performance liquid 

chromatography (HPLC) was performed using an Agilent 1200 Rapid Resolution LC 

system (Agilent Technologies, Santa Clara, CA, USA). The HPLC was coupled to an 
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Agilent 6410 QQQ mass spectrometer (Agilent Technologies, Santa Clara, CA, 

USA), operated in positive atmospheric pressure electrospray ionization (AP-ESI) 

mode.  

 
4.2.3.2 Optimized assay  
 
 The assay was performed on the same HPLC was coupled to the Agilent 

6410 QQQ mass spectrometer, operated in positive atmospheric pressure 

electrospray ionization mode. Mass calibration of the mass spectrometer was 

conducted according to the manufacturer’s documented procedures, using the 

Agilent tune compound. Daily mass calibration checks were performed in order to 

assure instrument response was accurate and consistent. Sample analyses were 

performed in multiple reaction monitoring mode (MRM) employing time programming 

to obtain maximum possible sensitivity and specificity for each peptide. 

 The atmospheric pressure ionization (API) source was operated at a capillary 

voltage of 3800 V (half moon electrode in the API chamber), using a nitrogen drying 

gas at a flow rate of 9.5 L/minute and heated to 350˚C. The nebulizer was operated 

at 45 PSI. The fragmentation voltage (capillary exit voltage) used for all target 

peptides was 150V, except for peptide 6, whereby 120V was used. Each parent to 

product transition was monitored for 100 ms, except for time segment 5, whereby 

each transition was monitored for 50 ms. Table 4.1 lists the seven target peptide 

sequences, their respective monoisotopic molecular weights, time program 

segments, parent to product ion transitions and respective collision energies that 

were used for the analyses.  
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 Typically, 20 µL of sample was injected into the HPLC-MS system. For ultra-

trace level analyses, a sample volume of 100 µL was used. Sample aliquots were 

injected onto a C18 reversed phase Ascentis Express (Sigma-Aldrich/Supelco) 

chromatography column of dimensions 2.1 mm i.d. X 150 mm with 2.7 µm 

superficially-porous silica particles. For the separation of peptides, a gradient of 0-

22% B over 35 minutes, followed by 22-60% B over 10 minutes was used at 25 ˚C 

and a flow rate of 300 µL/minute. Mobile phase A was 95% water / 5% acetonitrile 

(ACN) + 0.025% trifluoroacetic acid (TFA). Mobile phase B was 5% water / 95% 

acetonitrile (ACN) + 0.025% trifluoroacetic acid (TFA).  

 
4.3 Results and Discussion 
 

4.3.1 In-vitro proteolytic digestion 

 Prior to analysis by HPLC-MS, wheat gluten samples were treated with 

various proteases in-vitro, using conditions and enzymes that model the gastric and 

duodenal protein digestion in humans. This enzymatic digestion procedure was 

designed to release some or all of the seven target peptides from a gluten-

containing sample. This procedure had been developed and tested using a variety of 

other native gluten-containing and gluten-free grain samples and found to work 

successfully and reproducibly, thus releasing the target peptides when gluten 

proteins were present in the grain (Chapter 3).  

 In brief the procedure was as follows: 30 mg samples of native grains were 

treated with pepsin, trypsin, chymotrypsin, elastase and carboxypeptidase A 

(PTCECA) according to the following protocol. 30 mg of homogenized sample was 
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dissolved into 1mL pepsin solution (0.01M HCl adjusted to pH 2), to establish a 

1:100 pepsin to protein ratio; heat (at 38˚C) and shake for 2 hours. To each sample, 

add 50 µL of a 50 mM phosphate buffer and 35 µL of a 0.1 M NaOH solution, to 

establish the pH between 7-7.5. To each sample, add 25 µL of a 1:100 

trypsin/chymotrypsin to protein solution (in 50 mM phosphate); heat (at 38˚C) and 

shake for 2 hours. Heat to 95˚C for 15 minutes and cool back down to room 

temperature. To each sample, add 20 µL of a 1:500 elastase solution (in 50 mM 

Tris); adjust pH to 7.5 with HCl; heat (at 38˚C) and shake for 2 hours. Heat to 95˚C 

for 15 minutes and cool back down to room temperature. To each sample, add 25 µL 

of a 1:100 carboxypeptidase A solution (in 50 mM phosphate); heat (at 38˚C) and 

shake for 2 hours. Heat to 95˚C for 15 minutes and cool back down to room 

temperature. Spin down samples and aliquot 200 µL of the supernatant for HPLC-

MS analysis. 

 It was found that this digestion procedure took approximately 10 to 11 hours 

to complete and was very labor intensive. A procedure was desired that was more 

streamlined, efficient and cost effective. Therefore, in an effort to reduce the time 

involved and to maximize the yield of the gluten peptides produced, each step of the 

procedure was re-evaluated. A variety of conditions and analytical parameters were 

explored as to their effect on the yield of the peptides. HPLC-ESI-QQQ MS/MS 

detection was used in all experiments.  
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4.3.1.1 Evaluation of alternative cocktails of digestive (gastric and pancreatic) 
   enzymes  
 
 The enzymes used for the working in-vitro digestion procedure were pepsin, 

trypsin, chymotrypsin, elastase and carboxypeptidase A (PTCECA). The procedure 

was re-evaluated using various combinations of these enzymes to determine if all 

enzymes were actually required in order to release the target gluten peptides. Figure 

4.1 displays the differences in yield of target peptides 1-7 from the digestion of 

wheat flour using enzyme cocktails: (A) all five enzymes (pepsin, trypsin, 

chymotrypsin, elastase and carboxypeptidase A), (B) all but carboxypeptidase A 

(pepsin, trypsin, chymotrypsin, elastase) and (C) only pepsin, trypsin and 

chymotrypsin. From these experiments, it was determined that pepsin, trypsin and 

chymotrypsin were essentially all that were required to produce a reasonable yield of 

the 7 target peptides. The absence of pepsin, trypsin or chymotrypsin resulted in the 

absence of the target peptides. Removing the steps in the procedure which utilized 

elastase and carboxypeptidase A would then efficiently reduce the sample 

preparation time by several hours.  

 
4.3.1.2 Evaluation of proteolytic digestion (reaction) times 
 
 The amount of time that each enzyme is allowed to participate in the digestion 

of food corresponds directly to the amount of proteolyzed products that result. The 

existing procedure used a time period of 2 hours, which represented an estimate of 

the approximate amount of time that it would take to digest an average meal. In 

actuality, it is difficult to deduce the exact time that each enzyme spends working in-

vivo, therefore an estimated time of 2 hours was used. In an effort to investigate how 
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long it took to produce the highest yield of the seven target gluten peptides, a series 

of in-vitro experiments were performed that monitored peptide formation during a 

digest of wheat reacting with pepsin, trypsin and chymotrypsin. These experiments 

were designed to hold the digestion time for pepsin constant at four different time 

periods, while varying the amount of time that trypsin and chymotrypsin were 

allowed to react.  

 Figure 4.2 illustrates results obtained by this set of experiments. The graph 

was normalized to the longest digestion time of 120 minutes for pepsin and 120 

minutes for trypsin and chymotrypsin. Figure 4.2(A) shows the yield of the peptides 

with the reaction time for pepsin set to 15 minutes, while trypsin and chymotrypsin 

reaction times range from 15, 30, 60 to 120 minutes. Parts (B), (C) and (D) of this 

figure show how the yield of peptides changes while holding the pepsin reaction time 

constant at 30, 60 and 120 minutes respectively, and again, varying the trypsin and 

chymotrypsin reaction times. The results shown represent peptides 1, 2, 3, 4 and 6. 

From these results it was concluded that the highest yield of peptides was obtained 

with a pepsin reaction time of 2 hours and a trypsin / chymotrypsin reaction time of 

30 minutes. 

 
4.3.1.3 Evaluation of various protein to enzyme ratios 
 
 The ratio of protein to enzyme also affects the yield of proteolyzed products. 

Wheat was proteolyzed with pepsin, trypsin and chymotrypsin at protein to enzyme 

ratios 20:1, 100:1 and 500:1 and allowed to digest over the following four time 

periods: (1) pepsin 30 minutes + trypsin and chymotrypsin 30 minutes, (2) pepsin 30 

minutes + trypsin and chymotrypsin 120 minutes, (3) pepsin 120 minutes + trypsin 
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and chymotrypsin 30 minutes and (4) pepsin 120 minutes + trypsin and 

chymotrypsin 120 minutes.  

 Figure 4.3 shows how the formation of peptides 1, 2, 3, 4 and 6 varies with 

digestion time and protein to enzyme ratio. From these results it appeared that the 

protein to enzyme ratio that formed the highest peptide yield was 100 to 1. 

 
4.3.1.4 Evaluation of various procedures to quench proteolytic activity 
 
 One mechanism that is commonly used to terminate an enzyme’s activity is to 

heat the reaction mixture in order to destroy the enzyme. It was postulated that this 

mechanism may also alter or hydrolyze some of the target peptides. Consequently, 

three alternative procedures to quench enzymatic reactivity were investigated: (1) 

addition of a solution of 50% water / 50% acetonitrile (ACN), (2) addition of HPLC 

mobile phase A (95% water / 5% ACN + 0.025% trifluoroacetic acid (TFA)) and (3) 

chill on ice for 30 minutes.  

 Figure 4.4 shows what happens to the yield of peptides after incorporating 

each of these quenching mechanisms into the procedure. Clearly, the highest yield 

of all peptides is seen from the experiment which utilized the addition of HPLC 

mobile phase A to quench the enzymatic reaction. 

 
4.3.1.5 Evaluation of the need for an alcohol pre-extraction procedure 
 
 The inclusion of an aqueous alcohol (50% ethanol) pre-extraction step is 

commonly reported in literature where ELISA methodologies are utilized in the 

analysis of wheat gluten [7, 23]. Its purpose is to pre-extract the alcohol soluble 
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monomeric gliadin proteins from the remaining mix of the other proteins in the 

sample, thus improving the detection capabilities of the assay.  

 Therefore, to compare the efficiency of the direct proteolysis approach with 

this alternate methodology (which employs the aqueous alcohol pre-extraction step), 

the yield of peptides from the proteolysis of wheat gluten with PTC was compared. 

Figure 4.5 shows that the yield of peptides 3, 4 and 6 is actually higher without the 

alcohol pre-extraction step, while the yield of peptides 1 and 2 has actually more 

than doubled using with the alcohol pre-extraction. Based on the similarities in 

structure of all seven target peptides, an explanation for this was not forthcoming.  

 Repeating the experiment with wheat flour (versus wheat gluten), the 

opposite results were obtained for peptides 1 and 2. Figure 4.6 compares data from 

the digestion of wheat flour with pepsin, trypsin and chymotrypsin (PTC): (1) directly 

(no alcohol extraction), (2) after an alcohol (60% ethanol) pre-extraction without 

reducing agent (DTT), (3) after an alcohol (60% ethanol) pre-extraction with DTT, (4) 

after an alcohol (50% ethanol) pre-extraction without DTT and (5) after an alcohol 

(50% isopropanol) pre-extraction with DTT. 

 Interestingly, even using isopropanol (recent literature recommends this [21]) 

and with the addition of a reducing agent DTT (used to reduce disulphide bonds thus 

allowing polymeric glutenin subunits to become soluble in alcohol), the yield was still 

higher without the alcohol pre-extraction step. A possible explanation for this may be 

the contribution of target peptides that have formed from the direct digestion of the 

alcohol-insoluble polymeric glutenin proteins. These would not be extracted by the 

alcohol pre-extraction step. It has only recently been determined that glutenin 
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proteins are also immunostimulatory [24]. Glutenin proteins basically consist of 

multiple units of monomeric gliadins held together by an extensive network of cross-

linked disulphide bridges [25]. The traditional understanding that gliadins and 

glutenins could be cleanly fractionated from each other using an aqueous alcohol 

extraction, based on their solubility characteristics, has given way to the more recent 

observations that some glutenin subunits are in fact alcohol soluble and some 

gliadins are actually alcohol insoluble [24, 25 and 26]. Therefore, the currently 

endorsed ELISA methodologies could conceivably miss detecting many gluten 

proteins because their alcohol extraction step did not extract them from the sample. 

Even with the addition of a reducing agent, designed to catch the alcohol soluble 

glutenin monomers, this method does not yield as many peptides as the direct 

proteolysis approach. 

 
4.3.1.6 Improving detection limits  
 
 Efforts to improve the overall sensitivity of this assay involved experiments 

that evaluated the pre-concentration of samples, prior to HPLC-MS analysis. 

Following the completed proteolysis procedure, the supernatant was removed, taken 

down to dryness and reconstituted to a smaller volume with an appropriate solvent. 

Various solvents and solutions were evaluated, but results showed very little 

increase in the final yield of peptides. It appeared that significant losses in peptide 

yield occurred during the various stages of this pre-concentration procedure.  

 Further experiments involved increasing the sampling size of the initial wheat 

sample from 30 mg up to 300 mg. The enzyme concentrations were increased 

accordingly, in order to maintain the 100 to 1 (protein to enzyme) ratio. Results from 
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these experiments are shown in Figure 4.7. In theory, increasing the sample size ten 

times should have increased the yield of peptides by 10. However, losses in peptide 

yield from incomplete proteolysis, sample handling and an increased number of 

sample dry down/reconstitution steps needed in this procedure outweighed the 

benefits of using such a large sample size. 

 An increase in the amount of sample injected (from 10 µL to 100 µL) into the 

HPLC-MS did allow for a significant increase in sensitivity, which would be helpful for 

samples requiring ultra-trace component analysis.  

 
4.3.1.7 Final optimized in-vitro digestion procedure 
 
 Upon evaluation of the aforementioned parameters and conditions, the best 

conditions from each were combined into a final condensed procedure, which is as 

follows: 

 30 mg of homogenized sample was dissolved into 1mL pepsin solution 

(0.01M HCl adjusted to pH 2) to establish a 1:100 pepsin to protein ratio; heat (at 

38˚C) and gently shake for 2 hours. To each sample, add 50 µL of a 50 mM 

phosphate buffer and 35 µL of a 0.1 M NaOH solution, keeping the pH between 7-

7.5. To each sample, add 25 µL of a 1:100 trypsin + chymotrypsin to protein solution 

(in 50 mM phosphate); heat (at 38˚C) and shake for 30 minutes. To quench the 

enzymatic reaction, take 200 µL of the supernatant and add 200 µL of Mobile phase 

A (95% water / 5% acetonitrile (ACN) + 0.025% trifluoroacetic acid (TFA)). Spin 

down samples and aliquot 200 µL for HP LC-MS/MS analysis. 
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4.3.2 High resolution chromatographic separation of proteolyzed wheat gluten 
         peptides 
 
 The separation of proteolyzed wheat gluten peptides by HPLC resulted in 

complicated chromatograms, representing hundreds peptides. Previous 

experimental results (Chapter 3) showed that further optimization was required in 

order to provide better resolution of these eluting peptide components. Therefore, in 

order to achieve adequate separation and resolution of the seven target peptides 

from other peptides as well as other digest components, a variety of 

chromatographic columns, stationary phases, particles and pore sizes were 

evaluated.  

 The HPLC conditions and column chosen for a particular analysis should be 

done so as to provide adequate specificity and sensitivity for that analysis. For this 

type of HPLC-MS/MS analysis, chromatography conditions needed to be chosen to 

reduce the complexity of the sample entering the MS. This was necessary to reduce 

matrix ion suppression and interferences from common product ions that could 

hinder the specificity or sensitivity achieved by MS/MS. To that extent, a short 1-10 

minute HPLC separation, typical of a quantitative analysis of one target analyte, 

would in no way be sufficient to reduce the number of co-eluting components that 

could interfere with the peptide analyses. Therefore, it was observed that HPLC 

separation times of approximately 60 minutes were needed, in order to minimize 

these matrix effects.  

 The choice of chromatographic column also plays a major role in the 

specificity and sensitivity for the analysis. Improving the separation of the 

components reduces the number of co-eluting components that can suppress 
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ionization or interfere in the MS/MS analysis. Improved resolution also results in 

sharper, more concentrated peaks, which would result in a better response in a 

concentration detector, such as UV and electrospray ionization mass spectrometry. 

Various columns and particle chemistries were evaluated. They consisted of the 

following: (1) SB C18 column of dimensions 2.1 x 50 mm using 1.8 µm porous 

particles, (2) Poroshell C18 column of dimensions 2.1 x 75 mm using 5-7 µm coated 

particles and 300A pores, (3) SB C18 column of dimensions 2.1 x 30 mm using 1.8 

µm porous particles and (4) Asecntis Express C18 column of dimensions 2.1 x 150 

mm using 2.7 µm superficially porous particles (1.7 µm particle core with a 0.5 µm 

porous layer and a C18 coating). 

 The column packed with the superficially porous fused core particles 

appeared to result in the best performance. The peaks were noticeably sharper than 

those seen with the smaller 1.8 µm particles. This improved chromatographic 

performance using these particles could be a result of the nature of the particles in 

this column and/or the increased length of this column. By placing a solid core at the 

center of the particle, the potential diffusion path length for the peptides through the 

0.5 µm porous layer was shortened considerably, compared to that in a totally 

porous particle. This shorter diffusion path should reduce dispersion from resistance 

to mass transfer, thus reducing peak broadening. This type of particle, although 

larger in overall size, should theoretically, generate similar efficiency to a smaller 

totally porous particle without generating high backpressures. It was observed that 

the backpressures from this column were lower, as compared with those observed 

with the other columns evaluated.  
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 For this application of gluten peptide analysis, the 2.7 µm superficially-porous 

silica particles in the Ascentis Express C18 column provided much better 

chromatographic peak shape and resolution for the separation of the seven target 

peptides.  

 
4.3.3 Mass spectrometric detection of the seven target gluten peptides 
 
 Various mass spectrometric conditions and parameters were optimized in 

order to achieve the best possible sensitivity and specificity for the seven target 

peptides. In order to set up a quantitative analytical procedure for target analytes, 

the MS system first needed to be optimized for each analyte. Most instrument 

parameters were mass dependent and were optimized using a tuning mix (provided 

by the instrument manufacturer), in order to obtain the best possible ion 

transmission yet maintain mass resolution. This was initially done via an auto-tune 

function, which is available on the Agilent 6410 triple quadrupole system. Following 

the auto-tune, a fine tune was performed manually, in order to tweek any settings 

deemed necessary to improve the signal. Two key MS instrument parameters, 

however, were compound dependent, requiring individual optimization for each 

peptide. These parameters were fragmentor voltage and collision energy.  

 
4.3.3.1 Fragmentor optimization 
 
 The “fragmentor” is the term Agilent Technologies uses to describe the 

variable voltage at the capillary exit in the electrospray interface (Figure 4.8). The 

capillary samples the ions formed by electrospray ionization (ESI) in the atmospheric 

chamber and brings them to the first stage of pumping in the mass spectrometer. 
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The potential drop between the capillary exit and first skimmer aids in the focusing 

and transmission of the ions through the skimmer region. In this region, the pressure 

is in the mtorr range. As such, the mean free path of the ions becomes long enough 

to allow them to gain kinetic energy. As collisions occur between ions in this region, 

the internal energy of the ions can increase and this can result in fragmentation 

(sometimes termed “up front CID”). This type of fragmentation is not desired in this 

particular type of assay, because it could reduce the molecular ion precursors 

specifically chosen for each peptide in the MS/MS process. Therefore, this 

fragmentation voltage is compound dependent as the bond strengths of the atoms in 

the compound and the transfer of kinetic to internal energy in a compound are 

dependent on the structure and molecular weight of each peptide.  

 In order to optimize the fragmentor voltage setting for each of peptides, flow 

injection analysis (FIA) was performed on each peptide individually. With each 

injection of a peptide standard, the fragmentor voltage was incremented by 30-40 

volts. Figure 4.9 shows the full scan MS data for peptide 3, with the fragmentor 

voltage optimized to 150V. Figure 4.10 illustrates how the voltage setting of 150V 

would maximize both the [M+2H]2+ (m/z 1240.9) and [M+3H]+3 (m/z 827.6) precursor 

ions for peptide 3.  

 
4.3.3.2 Collision energy optimization 
 
 Analogous to the fragmentation voltage, the collision energy (CE) voltage is 

also compound dependent. CE depends on the bond strength, molecular weight of 

the compound and the pathway in which the ion is formed (i. e. directly from the 

parent ion or through a series of sequential intermediates). The collision energy 
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needs to be optimized in order determine the optimal voltage to produce the most 

intense characteristic product ions that will be monitored for each peptide in the 

MS/MS analysis. The collision cell is actually a hexapole in the Agilent 6410 QQQ 

mass spectrometer. It has nitrogen introduced into it, which serves as the collision 

gas used to transfer kinetic energy into internal energy. The voltage on the collision 

cell sets the kinetic energy for the ion. However, unlike the fragmentor voltage, 

which is chosen to maximize the precursor ion intensity, the CE voltage is chosen to 

produce the most abundant product ions from the chosen precursor ion.  

 The CE optimization was also performed by FIA, whereby the CE voltage was 

incremented by 5 volts with each subsequent injection of peptide standard. Figure 

4.11 shows the MS/MS spectra of all products ions formed from (A) the parent ion at 

m/z 1240.9 ([M+2H]+2) and from (B) the parent ion at m/z 827.5 ([M+3H]+3) from 

peptide 3, with the collision energies optimized to 30V and 15V respectively. The 

product ions chosen for the optimization are highlighted by the blue arrows. The 

voltages 30V and 15V were chosen as the optimal voltages based on the best 

intensity for these product ions, as shown in Figures 4.12 and 4.13. 

 
4.3.3.3 Mass spectrometric mode of operation 
 
 A time-programmed multiple reaction monitoring (MRM) MS acquisition profile 

was developed. Time programming was used to maximize the MS-response and 

achieve the best sensitivity possible, through use of multiple segments based on the 

LC retention times of the peptides. Each segment was set so as only to monitor the 

MRM transitions for the target peptides that eluted during that particular time 

segment. Each segment monitored one peptide, except segment 5, whereby three 
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peptides (2, 5 and 7) were monitored. Dividing the chromatogram into segments 

allowed for longer dwell times to monitor the target ions, compared to the monitoring 

of all ions (14 ions) over the entire course of the analysis. It was observed that the 

longer dwell time improved the signal/noise ratio for the measurement of MS 

response by 2-3 times. 

 The MRM transitions were chosen to be both specific to the target peptide 

sequence and for sensitivity. All peptides except peptide 6 used the doubly charged 

parent ion ([M+2H]+2) as the precursor ion for the MRM experiment. Peptide 6 being 

of low molecular weight (702 Da), only formed a singly charged ion ([M+H]+). 

Product ions from each peptide were chosen based on sensitivity and specificity of 

the respective “b-” or “y-” type fragments that formed. The choice of ions was not 

always the most intensely responding fragments, but those that did not interfere with 

signals from other peptides or matrix components that were present in that particular 

time segment. Peptides 2 and 5 proved to be challenging, since they are isomers 

and were not well chromatographically resolved. They were resolved by MS/MS, 

however, since the product ions chosen for these peptides were different in MW and 

were specific for their respective sequences. It appeared the product ions for these 

two peptides favored cleavage between the amino acids F (phenylalanine) and P 

(proline), resulting in a “b8” fragment ion at m/z 956.6 for peptide 5 and a “b6” ion at 

m/z 726.3 for peptide 2. Figures 4.14 – 4.20 represent peptides 1 through 7, 

showing their respective HPLC-MS-MS product ion mass spectra, sequences of the 

product ions, types of fragment ions and quantification/confirmation parent to 

product transition ions for each. 
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 An interesting observation was noted for parent to product MRM transitions 

where the product ion was at a higher m/z value than the precursor ion. In these 

instances it was observed that noise in the spectra was significantly reduced. This 

has important connotations when performing trace component analysis, such as 

contamination in food, where the target product ions are low in intensity. This 

condition happened to be applicable for MRM transitions for three of the seven 

target peptides. The m/z of the singly charged confirming product ion for peptides 1, 

2 and 4 was above that of the doubly charged precursor ion. While the MS-intensity 

of these product ions was lower than that of other product ions (those whose m/z 

were below the precursor m/z), the level of noise for these transitions was seen to 

be 5-7 times lower. Therefore, the signal to noise (S/N) ratio was ultimately higher, 

which allowed better sensitivity. This indicated a real advantage in choosing product 

ions above the multiply charged precursor ion, whenever possible. An example of 

this situation is illustrated in the Figure 4.21, where the EIC of the confirming ion 

transition for peptide 4 (m/z 814.3 - 1221.8) shows basically no noise as compared 

with the level of noise that is seen in the quantification ion transition (m/z 814.3 – 

407.2). 

 A representative time programmed MS/MS-extracted ion chromatogram (EIC) 

of a cocktail of all seven synthetic wheat gluten peptide calibration standards [(1) 

LQPQNPSQQQPQEQVPL, (2) TQQPQQPFPQQPQQPFPQ, (3) 

VPVPQLQPQNPSQQQPQEQVPL, (4) RPQQPYPQPQPQY, (5) 

QPQQPFPQTQQPQQPFPQ, (6) PQQSPF and (7) QPQQPLPQPQQPF] at a 

concentration 3 ng/mg, is shown in Figure 4.22. Figure 4.22(A) shows the primary 
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MRM parent to product transitions for each peptide. These are the most intensely 

MS-responding ions and were chosen as the transitions used for quantification 

purposes. The secondary MRM transitions are shown in Figure 4.22(B). These are 

the confirmation transition ions used for positive identification of the presence of the 

peptides in samples. Table 4.1 summarizes the target peptide sequences, the 

established time program segments, parent and product ion transitions and 

respective collision energies used for all analyses.  

 
4.3.4 HPLC-MS/MS method performance 
 
 The overall performance of this HPLC-MS/MS assay was evaluated 

according to a variety of parameters, commonly used to assess the capabilities of 

such an assay and verify that it can meet the requirements deemed necessary to be 

used efficiently for the purposes of quantitative detection of target compounds in real 

samples. 

 
4.3.4.1 Linearity, sensitivity, accuracy and precision 
 
 Linearity and sensitivity of the assay is demonstrated from data obtained from 

the evaluation of calibration data. Table 4.2 summarizes data from a representative 

regression analysis, from an analysis performed using a corn flour matrix (proven 

free of any gluten peptides) spiked with a standard cocktail of peptides 1-7. The 

respective limits of detection (LOD) and quantification (LOQ), correlation coefficient 

(R2), as well as residuals for each peptide are all shown. These data demonstrate 

that this assay can quantify select immunogenic wheat gluten peptides over a range 

of about 10 to 1000 pg/mg of food. This corresponds to being able to measure the 
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peptides over a range of about 10 – 1000 ppb (parts per billion) in food. Detection 

and quantification at higher levels was also done, using a second calibration curve, 

covering a range from 1 ng/mg to 100 ng/mg (ppm). Representative calibration 

curves for peptides 1-6 over this range are shown in Figure 4.23. 

 
4.3.4.2 Specificity 
 
 Specificity of the assay is demonstrated by monitoring two different MRM MS 

transitions for each of the seven target peptides (refer to Table 4.1).The most 

intense MS-responding ions constituted the primary MRM transition, which was used 

for quantification purposes. The less intense ions constituted the secondary MRM 

transition, which were used for confirmation purposes. 

 
4.3.4.3 Spike recovery 
 
 Spike recovery experiments were conducted to test the assay’s absolute 

ability to detect the seven peptides, free from interferences, when spiked in both an 

analyte-free and analyte-containing matrix (i. e. corn versus wheat). Two spike 

recovery experiments were performed, whereby a standard cocktail of peptides 1-7 

was spiked: (1) into corn flour matrix at two levels: (a) representing 0.06 ng/mg 

peptide in food and (b) representing 30 ng/mg peptide in food; and (2) into wheat 

flour matrix representing 60 ng/mg peptide in food. Figure 4.24 shows representative 

MS/MS-extracted ion chromatograms of: (A) a 60 ppb solvent standard cocktail of 

peptides 1-7, (B) an analytical blank and (C) a 60 ppb standard cocktail of peptides 

1-7 spiked into corn flour. A calibration curve was prepared for each peptide which 

bracketed the concentration of peptide spiked into each matrix (proteolyzed corn and 
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wheat). The areas of each of the peptide peaks in the spiked samples were 

measured and the corresponding quantity of that peptide in the samples was 

determined using the respective calibration curve. The calculated results of these 

recovery experiments are tabulated in Table 4.3. Percent (%) accuracy was 

calculated as [(measured value/theoretical value) x 100]. The “measured value” 

refers to the peak area of each peptide measured in matrix and the “theoretical 

value” refers to the corresponding peak area measured in the solvent standard. 

These data show that the range of accuracy of detection of the 0.06 ng/mg and 30 

ng/mg standards spiked into corn were 69-104% and 92-108% respectively. The 

lower level (0.06 ng/mg) spike represented a level near the LOQ of the assay. This 

concentration is equivalent to about 60 ppb. The 30 ng/mg level represents a higher 

level, perhaps more representative of wheat contamination that could be 

encountered in food. An even higher concentration (60 ng/mg) was required to 

determine spike recovery in proteolyzed wheat, due to the presence of native wheat 

gluten peptides in the matrix. Recovery from wheat was based on subtracting 

endogenous peptide levels from a wheat sample that had not been spiked. The peak 

area for each peptide in the spiked wheat sample was determined by subtracting the 

corresponding background from the blank wheat sample.  

 
4.3.4.4 Matrix effects and robustness 
 
 Examination of procedure blanks and analytical blanks showed no matrix 

effects or carryover. Solvent standards, quality controls and procedure blanks were 

all found to be stable for well over eight months, kept at 0˚C.  
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 The use of isotopically labeled internal standards was considered, but not 

implemented, because of cost and also because the results from the qualification 

experiments demonstrated the method to be acceptable. Furthermore, because a 

target analyte extraction step was not required and because isotopically labeled 

standards could not be used to gage the formation of the target peptides from the 

direct enzymatic digestion, their incorporation would only serve as an injection 

standard, of sorts. Actually, an injection standard is not needed either, considering 

that the injection to injection precision, demonstrated over the course of these 

experiments, was found to be more that adequate (<12% overall). 

 These experiments were carried out over the course of many months. Over 

this timeframe normal variations in laboratory conditions (such as temperature, 

mobile phase preparation, age and status of the chromatography columns used) 

caused retention times of the peptides and segment times in the MS-time 

programmed acquisition to shift around slightly. This was not seen as a problem 

because the peptides were always analyzed in combination with standards and 

quality controls, thus allowing the proper retention times to be verified on a run to run 

basis. 

 
4.3.4.5 Analysis of wheat and corn flours for the seven target gluten peptides 
 
 An overall demonstration of the performance of the optimized HPLC-MS/MS 

method involved the analyses of samples of native wheat and corn flour, for the 

quantitative determination of the seven physiologically relevant gluten peptides. 

Confirmation of the presence (in wheat) and absence (in corn) of peptides 1 and 5 

are shown in Figures 4.25 and Figure 4.26, respectively.  
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 Figures 4.27 shows representative MS/MS-extracted ion chromatograms 

(EICs) of proteolyzed native wheat and corn flours evaluated by this HPLC-ESI-

MS/MS assay in order to confirm the presence of all seven target peptides in wheat 

flour and their absence in corn flour. Traces shown include (A) a solvent standard of 

the seven target peptides at a concentration of 20 ng/mg, (B) corn flour and (C) 

wheat flour. The concentration of the standard (20 ng/mg) is representative of the 

proposed FDA and Codex Alimentarius guideline of 20 ppm total gluten. This is 

considered an acceptable quantity of gluten in any product tested. The intensity of 

peptide 7 was found to be quite low in native wheat flour. Therefore, it may not be 

practical to use this particular peptide as a marker peptide for the presence of trace 

amounts of gluten in food samples. The concentration of each of these seven 

immunogenic peptides was calculated to be: (1) 239, (2) 237, (3) 255, (4) 42.5, (5) 

246, (6) 13.5 and (7) 1.98 ng/mg in wheat flour. Relating these concentrations of 

individual gluten peptides to a total gluten content value is difficult, if not impossible, 

because this assay is not designed to do that. The purpose of this assay is to detect 

the presence of any of these seven peptides, which would infer that immunogenic 

wheat gluten is present in the product tested, thus rendering that the product would 

not be safe for consumption by anyone with a type of gluten sensitivity. The ability to 

quantify the peptides down to the low ppb level offers the unique capability for ultra-

trace detection of wheat gluten in products that may be contaminated with gluten.  
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4.4 Conclusions 
 
 A sensitive, specific and accurate analytical LC-MS/MS method has been 

developed for the quantitative detection of seven uniquely identified immunogenic 

wheat gluten marker peptides in foods. 

 Experimental results from the analysis of native cereal grains has proven that 

this method can accurately, sensitively and reproducibly quantify seven 

immunogenic wheat gluten peptides over the range 10 pg/mg to 100 ng/mg. The 

final stage of development for this methodology will be to test its usefulness in a 

practical application. Analysis of common commercially available food and consumer 

products will be described next, in Chapter 5. 
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Peptide # Sequence %Accuracy %Accuracy %Accuracy
in corn in corn in wheat

(0.06 pg/mg) (30 pg/mg) (60 pg/mg)

1 LQPQNPSQQQPQEQVPL 96.2 92.8 99.4

2 TQQPQQPFPQQPQQPFPQ 85.6 95.8 94.1

3  VPVPQLQPQNPSQQQPQEQVPL   103.5 97.1 97.4

4 RPQQPYPQPQPQY 90.4 92.3 97.5

5 QPQQPFPQTQQPQQPFPQ 90.1 99.1 96.8

6 PQQSPF 68.7 108.3 102.2

7 QPQQPLPQPQQPF 95.6 97.8 96.1

Ave. 90.0 97.6 97.6
Rel. Std. Dev (%) 11.0 5.3 2.6  

 
 
 
 

Table 4.3 
 

Spike recovery 
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Figure 4.5 
 

50% ethanol pre-extraction versus direct proteolysis of wheat gluten 
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Figure 4.8 
 

Ion transport region of the electrospray ionization interface 
 
 



 218

 
 

+2
+3

V
P

V
P

Q
LQ

P
Q

N
P

S
Q

Q
Q

P
Q

E
Q

V
P

L

+2
+3

V
P

V
P

Q
LQ

P
Q

N
P

S
Q

Q
Q

P
Q

E
Q

V
P

L

 
 

F
ig

ur
e 

4.
9 

 
F

ul
l s

ca
n 

M
S

 s
pe

ct
ra

 o
f t

ar
ge

t p
ep

tid
e 

3 
at

 a
 fr

ag
m

en
to

r 
se

tti
ng

 o
f 1

50
V

 



 219

 
 
 
 

[M
+2

H
]+

2
io

n
at

 m
/z

12
40

.9

[M
+3

H
]+

3
io

n 
at

 m
/z

82
7.

6

V
ol

ta
ge

 (
v)

 
50

   
   

   
   

   
80

   
   

  
12

0 
   

   
  

   
 1

50
   

   
   

   
18

0 
   

   
   

  2
20

   
   

   
   

25
0

[M
+2

H
]+

2
io

n
at

 m
/z

12
40

.9

[M
+3

H
]+

3
io

n 
at

 m
/z

82
7.

6

V
ol

ta
ge

 (
v)

 
50

   
   

   
   

   
80

   
   

  
12

0 
   

   
  

   
 1

50
   

   
   

   
18

0 
   

   
   

  2
20

   
   

   
   

25
0

 
 
 

F
ig

ur
e 

4.
10

 
 

F
ra

gm
en

to
r 

op
tim

iz
at

io
n 

of
 tw

o 
pr

ec
ur

so
r 

io
ns

 fo
r 

pe
pt

id
e 

3 



 220

 
 
 

P
ro

du
ct

 io
ns

 fr
om

 th
e 

pa
re

nt
 io

n 
[M

+2
H

]
+2

at
 m

/z
12

40
.9

 a
t C

E
 3

0V

P
ro

du
ct

 io
ns

 fr
om

 th
e 

pa
re

nt
 io

n 
[M

+3
H

]
+3

at
 m

/z
82

7.
5 

at
 C

E
 1

5V

[M
+

2H
]+

2

[M
+

3H
]+

3

A B

P
ro

du
ct

 io
ns

 fr
om

 th
e 

pa
re

nt
 io

n 
[M

+2
H

]
+2

at
 m

/z
12

40
.9

 a
t C

E
 3

0V

P
ro

du
ct

 io
ns

 fr
om

 th
e 

pa
re

nt
 io

n 
[M

+3
H

]
+3

at
 m

/z
82

7.
5 

at
 C

E
 1

5V

[M
+

2H
]+

2

[M
+

3H
]+

3

A B

 
 
 

F
ig

ur
e 

4.
11

 
 

C
ol

lis
io

n 
en

er
gy

 o
pt

im
iz

at
io

n 
of

 th
e 

pr
od

uc
t i

on
s 

fr
om

 p
ep

tid
e 

3 
 



 221

 
 
 
 

m
/z

 1
12

6.
9

m
/z

 7
62

.7

m
/z

 5
82

.0

C
ol

lis
io

n 
vo

lta
ge

:  
0 

   
   

 5
   

   
  1

0 
   

  1
5 

  
   

20
   

   
25

30
35

   
   

40
   

   
50

   
   

 6
0

m
/z

 1
12

6.
9

m
/z

 7
62

.7

m
/z

 5
82

.0

C
ol

lis
io

n 
vo

lta
ge

:  
0 

   
   

 5
   

   
  1

0 
   

  1
5 

  
   

20
   

   
25

30
35

   
   

40
   

   
50

   
   

 6
0

 
 
 

F
ig

ur
e 

4.
12

 
 

C
ol

lis
io

n 
en

er
gy

 o
pt

im
iz

at
io

n 
of

 3
 p

ro
du

ct
 io

ns
 fr

om
 th

e 
pr

ec
ur

so
r 

[M
+

2H
]+

2  (
m

/z
 1

24
0.

9)
 io

n 
of

 p
ep

tid
e 

3 



 222

 
 
 
 

m
/z

 1
12

6.
7

m
/z

 5
82

.0

m
/z

 2
29

.0

C
ol

lis
io

n 
vo

lta
ge

:  
 0

   
   

 5
   

   
  1

0 
   

 
15

 
20

   
  2

5 
   

  3
0 

   
 3

5 
   

  4
0 

   
 5

0 
   

  6
0

m
/z

 1
12

6.
7

m
/z

 5
82

.0

m
/z

 2
29

.0

C
ol

lis
io

n 
vo

lta
ge

:  
 0

   
   

 5
   

   
  1

0 
   

 
15

 
20

   
  2

5 
   

  3
0 

   
 3

5 
   

  4
0 

   
 5

0 
   

  6
0

 
 
 

F
ig

ur
e 

4.
13

 
 

C
ol

lis
io

n 
en

er
gy

 o
pt

im
iz

at
io

n 
of

 th
e 

3 
pr

od
uc

t i
on

s 
fr

om
 th

e 
pr

ec
ur

so
r 

[M
+

3H
]+

3  (
m

/z
 8

27
.5

) 
io

n 
of

 p
ep

tid
e 

3 



 223

 
 

4
x
1
0

01234

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
(4
.2
7
3
-4
.4
2
0
 m
in
, 
1
9
 s
c
a
n
s
) 
(9
8
0
.7
 -
>
 *
*)
 p
e
p
ti
d
e
 1
 c
e
o
p
t 
9
8
0
.d
 

2
2
9
.2

8
6
6
.5

7
4
6
.0

5
8
2
.3

1
1
5
0
.7

[M
+2

H
]+2

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

b1
0

y7

y1
3+

2
b5

y2
b1

5
+2

b2

LQ
P

Q
N

P
S

Q
Q

Q
 P

Q
E

Q
V

 P
L

b1
0

b1
5+

2

4
x
1
0

01234

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
(4
.2
7
3
-4
.4
2
0
 m
in
, 
1
9
 s
c
a
n
s
) 
(9
8
0
.7
 -
>
 *
*)
 p
e
p
ti
d
e
 1
 c
e
o
p
t 
9
8
0
.d
 

2
2
9
.2

8
6
6
.5

7
4
6
.0

5
8
2
.3

1
1
5
0
.7

4
x
1
0

01234

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
(4
.2
7
3
-4
.4
2
0
 m
in
, 
1
9
 s
c
a
n
s
) 
(9
8
0
.7
 -
>
 *
*)
 p
e
p
ti
d
e
 1
 c
e
o
p
t 
9
8
0
.d
 

2
2
9
.2

8
6
6
.5

7
4
6
.0

5
8
2
.3

1
1
5
0
.7

[M
+2

H
]+2

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

b1
0

y7

y1
3+

2
b5

y2
b1

5
+2

b2

LQ
P

Q
N

P
S

Q
Q

Q
 P

Q
E

Q
V

 P
L

b1
0

b1
5+

2

 
 

F
ig

ur
e 

4.
14

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
2H

]+
2  p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

1 



 224

 
 

4
x
1
0

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.2
9
7
-4
.3
8
8
 m
in
, 
1
2
 s
c
a
n
s
) 
(1
0
7
6
.0
 -
>
 *
*)
 p
e
p
ti
d
e
 3
 c
e
o
p
t 
 1
0
7
6
.d
 

2
4
4
.2

1
0
7
6
.2

4
8
8
.3

9
5
6
.6

7
1
1
.6

8
4
1
.6

3
5
8
.2

1
1
9
5
.8

5
9
8
.4

T
Q

Q
P

Q
Q

P
F

  P
Q

Q
P

Q
Q

P
F

P
Q

 
b8

y1
0

[M
+2

H
]+

2
Q

ua
nt

 io
n

C
on

fir
m

in
g 

io
n

b1
0

b6
y7

y4

y2

b3

b8
y1

0

y1
0+

2

4
x
1
0

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.2
9
7
-4
.3
8
8
 m
in
, 
1
2
 s
c
a
n
s
) 
(1
0
7
6
.0
 -
>
 *
*)
 p
e
p
ti
d
e
 3
 c
e
o
p
t 
 1
0
7
6
.d
 

2
4
4
.2

1
0
7
6
.2

4
8
8
.3

9
5
6
.6

7
1
1
.6

8
4
1
.6

3
5
8
.2

1
1
9
5
.8

5
9
8
.4

4
x
1
0

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.2
9
7
-4
.3
8
8
 m
in
, 
1
2
 s
c
a
n
s
) 
(1
0
7
6
.0
 -
>
 *
*)
 p
e
p
ti
d
e
 3
 c
e
o
p
t 
 1
0
7
6
.d
 

2
4
4
.2

1
0
7
6
.2

4
8
8
.3

9
5
6
.6

7
1
1
.6

8
4
1
.6

3
5
8
.2

1
1
9
5
.8

5
9
8
.4

T
Q

Q
P

Q
Q

P
F

  P
Q

Q
P

Q
Q

P
F

P
Q

 
b8

y1
0

[M
+2

H
]+

2
Q

ua
nt

 io
n

C
on

fir
m

in
g 

io
n

b1
0

b6
y7

y4

y2

b3

b8
y1

0

y1
0+

2

 
 
 

F
ig

ur
e 

4.
15

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
2H

]+
2  p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

2 



 225

 
 

4
x
1
0 0

0
.51

1
.52

2
.5

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.9
1
4
-5
.0
5
3
 m
in
, 
1
8
 s
c
a
n
s
) 
(1
2
4
0
.9
 -
>
 *
*)
 p
e
p
ti
d
e
 5
  
c
e
o
p
t 
 1
2
4
1
.d
 

1
1
2
6
.7

7
6
2
.4

[M
+2

H
]+

2

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

y2

b7

y3

b2
0

+2

y5
b9

V
P

V
P

Q
LQ

  P
Q

N
P

S
Q

Q
Q

P
Q

E
Q

V
  P

L 
 

b2
0+

2
b7

4
x
1
0 0

0
.51

1
.52

2
.5

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.9
1
4
-5
.0
5
3
 m
in
, 
1
8
 s
c
a
n
s
) 
(1
2
4
0
.9
 -
>
 *
*)
 p
e
p
ti
d
e
 5
  
c
e
o
p
t 
 1
2
4
1
.d
 

1
1
2
6
.7

7
6
2
.4

4
x
1
0 0

0
.51

1
.52

2
.5

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.9
1
4
-5
.0
5
3
 m
in
, 
1
8
 s
c
a
n
s
) 
(1
2
4
0
.9
 -
>
 *
*)
 p
e
p
ti
d
e
 5
  
c
e
o
p
t 
 1
2
4
1
.d
 

1
1
2
6
.7

7
6
2
.4

[M
+2

H
]+

2

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

y2

b7

y3

b2
0

+2

y5
b9

V
P

V
P

Q
LQ

  P
Q

N
P

S
Q

Q
Q

P
Q

E
Q

V
  P

L 
 

b2
0+

2
b7

 
 
 

F
ig

ur
e 

4.
16

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
2H

]+
2  p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

3 



 226

 
 

4
x
1
0 0

0
.51

1
.52

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.1
9
9
-4
.3
0
5
 m
in
, 
1
4
 s
c
a
n
s
) 
(8
1
4
.6
 -
>
 *
*)
 p
e
p
ti
d
e
 6
  
c
e
o
p
t 
 8
1
4
.d
 

4
0
7
.3

2
2
6
.1

8
1
4
.5

1
2
2
1
.8

9
9
6
.7

6
3
3
.3

1
1
5
.3

[M
+2

H
]+

2
Q

ua
nt

 io
n

C
on

fir
m

in
g 

io
n

b1
0

b6
y5

y3
P

Q
+

b8

R
P

Q
Q

P
Y

P
Q

P
Q

  P
Q

Y
b1

0y3

4
x
1
0 0

0
.51

1
.52

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.1
9
9
-4
.3
0
5
 m
in
, 
1
4
 s
c
a
n
s
) 
(8
1
4
.6
 -
>
 *
*)
 p
e
p
ti
d
e
 6
  
c
e
o
p
t 
 8
1
4
.d
 

4
0
7
.3

2
2
6
.1

8
1
4
.5

1
2
2
1
.8

9
9
6
.7

6
3
3
.3

1
1
5
.3

4
x
1
0 0

0
.51

1
.52

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.1
9
9
-4
.3
0
5
 m
in
, 
1
4
 s
c
a
n
s
) 
(8
1
4
.6
 -
>
 *
*)
 p
e
p
ti
d
e
 6
  
c
e
o
p
t 
 8
1
4
.d
 

4
0
7
.3

2
2
6
.1

8
1
4
.5

1
2
2
1
.8

9
9
6
.7

6
3
3
.3

1
1
5
.3

[M
+2

H
]+

2
Q

ua
nt

 io
n

C
on

fir
m

in
g 

io
n

b1
0

b6
y5

y3
P

Q
+

b8

R
P

Q
Q

P
Y

P
Q

P
Q

  P
Q

Y
b1

0y3

 
 
 

F
ig

ur
e 

4.
17

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
2H

]+
2  p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

4 



 227

 
 

3
x
1
0 012345

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.2
4
8
-4
.4
2
8
 m
in
, 
2
3
 s
c
a
n
s
) 
(1
0
7
5
.8
 -
>
 *
*)
 p
e
p
ti
d
e
 7
  
c
e
o
p
t 
 1
0
7
5
.d
 

2
4
3
.9

4
8
8
.4

1
0
7
5
.8

1
3
0
8
.8

8
4
2
.9

7
2
6
.3

Q
P

Q
Q

P
F

  P
Q

T
Q

Q
P

Q
Q

P
F

  P
Q

  
b6

y2

[M
+2

H
]+

2

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

b1
1

b6

y7

y4

y2

b8
y1

2
b9

3
x
1
0 012345

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.2
4
8
-4
.4
2
8
 m
in
, 
2
3
 s
c
a
n
s
) 
(1
0
7
5
.8
 -
>
 *
*)
 p
e
p
ti
d
e
 7
  
c
e
o
p
t 
 1
0
7
5
.d
 

2
4
3
.9

4
8
8
.4

1
0
7
5
.8

1
3
0
8
.8

8
4
2
.9

7
2
6
.3

3
x
1
0 012345

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0
1
0
0
0
1
1
0
0
1
2
0
0
1
3
0
0
1
4
0
0
1
5
0
0
1
6
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.2
4
8
-4
.4
2
8
 m
in
, 
2
3
 s
c
a
n
s
) 
(1
0
7
5
.8
 -
>
 *
*)
 p
e
p
ti
d
e
 7
  
c
e
o
p
t 
 1
0
7
5
.d
 

2
4
3
.9

4
8
8
.4

1
0
7
5
.8

1
3
0
8
.8

8
4
2
.9

7
2
6
.3

Q
P

Q
Q

P
F

  P
Q

T
Q

Q
P

Q
Q

P
F

  P
Q

  
b6

y2

[M
+2

H
]+

2

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

b1
1

b6

y7

y4

y2

b8
y1

2
b9

 
 
 

F
ig

ur
e 

4.
18

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
2H

]+
2  p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

5 



 228

 
 

2
x
1
0

0

0
.51

1
.52

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.8
4
0
-4
.9
6
3
 m
in
, 
1
6
 s
c
a
n
s
) 
(7
0
3
.4
 -
>
 *
*)
 p
e
p
ti
d
e
 1
0
 c
e
o
p
t 
 7
0
3
.d
 

2
2
6
.2

4
4
1
.4

3
5
4
.3

7
0
3
.5

1
9
8
.2

1
1
5
.1

3
2
6
.2

P
Q

Q
S

  P
F

  
b4y2

[M
+H

]+

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

b4

y4

y2
b2

b3

b5

2
x
1
0

0

0
.51

1
.52

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.8
4
0
-4
.9
6
3
 m
in
, 
1
6
 s
c
a
n
s
) 
(7
0
3
.4
 -
>
 *
*)
 p
e
p
ti
d
e
 1
0
 c
e
o
p
t 
 7
0
3
.d
 

2
2
6
.2

4
4
1
.4

3
5
4
.3

7
0
3
.5

1
9
8
.2

1
1
5
.1

3
2
6
.2

2
x
1
0

0

0
.51

1
.52

C
o
u
n
ts
 v
s
. 
M
a
s
s
-t
o
-C
h
a
rg
e
 (
m
/z
)

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

+
 P
ro
d
u
c
t 
Io
n
 (
4
.8
4
0
-4
.9
6
3
 m
in
, 
1
6
 s
c
a
n
s
) 
(7
0
3
.4
 -
>
 *
*)
 p
e
p
ti
d
e
 1
0
 c
e
o
p
t 
 7
0
3
.d
 

2
2
6
.2

4
4
1
.4

3
5
4
.3

7
0
3
.5

1
9
8
.2

1
1
5
.1

3
2
6
.2

P
Q

Q
S

  P
F

  
b4y2

[M
+H

]+

Q
ua

nt
 io

n
C

on
fir

m
in

g 
io

n

b4

y4

y2
b2

b3

b5

 
 
 

F
ig

ur
e 

4.
19

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
H

]+
 p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

6 



 229

 
 

[M
+2

H
]+

2
Q

ua
nt

 io
n

C
on

fir
m

in
g 

io
n

b1
1

b1
0

y9

b8

y7
b6

y5

b4
y3

b3

y2

b2

y1

Q
P

Q
Q

P
LP

Q
  P

Q
Q

  P
F

b8

y2

[M
+2

H
]+

2
Q

ua
nt

 io
n

C
on

fir
m

in
g 

io
n

b1
1

b1
0

y9

b8

y7
b6

y5

b4
y3

b3

y2

b2

y1

Q
P

Q
Q

P
LP

Q
  P

Q
Q

  P
F

b8

y2

 
 
 

F
ig

ur
e 

4.
20

 
 

LC
-M

S
/M

S
 p

ro
du

ct
 io

n 
m

as
s 

sp
ec

tr
um

 g
en

er
at

ed
 fr

om
 th

e 
[M

+
2H

]+
2  p

re
cu

rs
or

 io
n 

fo
r 

pe
pt

id
e 

7 



 230

 
 
 
 
 
 

qu
an

tif
ic

at
io

n 
tr

an
si

tio
n 

(m
/z

81
4.

3-
40

7.
2)

 fo
r 

pe
pt

id
e 

4

co
nf

irm
at

io
n 

tr
an

si
tio

n 
(m

/z
81

4.
3-

12
21

.8
) 

fo
r 

pe
pt

id
e 

4

R
et

en
tio

n 
tim

e 
fo

r 
pe

pt
id

e 
4

M
S

/M
S

 M
R

M
 E

IC
 fo

r 
a 

pr
od

uc
t i

on
 b

el
ow

 th
e 

m
/z

 o
f t

h
e 

pa
re

nt
 io

n

M
S

/M
S

 M
R

M
 E

IC
 fo

r 
a 

pr
od

uc
t i

on
 a

bo
ve

 th
e 

m
/z

 o
f t

h
e 

pa
re

nt
 io

nco
rn

co
rn

qu
an

tif
ic

at
io

n 
tr

an
si

tio
n 

(m
/z

81
4.

3-
40

7.
2)

 fo
r 

pe
pt

id
e 

4

co
nf

irm
at

io
n 

tr
an

si
tio

n 
(m

/z
81

4.
3-

12
21

.8
) 

fo
r 

pe
pt

id
e 

4

R
et

en
tio

n 
tim

e 
fo

r 
pe

pt
id

e 
4

M
S

/M
S

 M
R

M
 E

IC
 fo

r 
a 

pr
od

uc
t i

on
 b

el
ow

 th
e 

m
/z

 o
f t

h
e 

pa
re

nt
 io

n

M
S

/M
S

 M
R

M
 E

IC
 fo

r 
a 

pr
od

uc
t i

on
 a

bo
ve

 th
e 

m
/z

 o
f t

h
e 

pa
re

nt
 io

nco
rn

co
rn

 
 
 

F
ig

ur
e 

4.
21

 
 

R
ed

uc
in

g 
ch

em
ic

al
 n

oi
se

 in
 H

P
LC

-M
S

/M
S

 a
na

ly
se

s 



 231

 
 
 
 
 

A

B

2

6

4 1
7 3

5

6

4 1 5 2

7

3

quantification MRM 
transitions  

confirmation MRM 
transitions  

LC-MS/MS EIC of a solvent standard cocktail of pept ides 1-7 at 3 ng/mg  

A

B

2

6

4 1
7 3

5

6

4 1 5 2

7

3

quantification MRM 
transitions  

confirmation MRM 
transitions  

LC-MS/MS EIC of a solvent standard cocktail of pept ides 1-7 at 3 ng/mg  

 
 
 
 
 

Figure 4.22 
 

Time programmed multiple reaction monitoring acquisition profile 
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Figure 4.25 
 

Confirmation of the presence of peptide 1 (LQPQNPSQQQPQEQVPL) 
 in wheat 
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Figure 4.26 
 

Confirmation of the presence of peptide 5 (VPVPQLQPQNPSQQQPQEQVPL) 
in wheat 
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CHAPTER 5 

Practical Applications of the HPLC-MS/MS Assay for the 

Quantitative Determination of the Presence of Immun ogenic Gluten 

Peptides.  

___________________________________________________________________ 

 
5.1 Introduction  
 
5.1.1 Current guidelines for measuring gluten in food and consumer products 
 
 Currently there is no concise, universally accepted definition of “gluten-free” 

[1 - 3]. The United States Food and Drug Administration (FDA) proposed a definition 

for this term, which was posted in the Federal Register on January 3, 2007. The final 

form of the definition was expected to have been published in August, 2008; but it 

still remains in a draft format [4].  

 Conversely, the Codex Alimentarius Commission (a joint committee with 

delegates from both the Food and Agriculture Organization of the United Nations 

[FAO-UN] and the World Health Organization [WHO]) has revised its “Standard for 

Foods for Special Dietary Use for Persons Intolerant to Gluten”, in July 2008 [5]. 

This Codex definition is now considered to be the operational standard for the 

amount of gluten allowed in a commercially produced food product and as such, 

these products would be considered “gluten-free” for the purposes of international 

trade. In short, the guideline states that for a product to be labeled “gluten-free”, it 
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must not contain more than 20 ppm (parts per million) of wheat, barley or rye gluten. 

This correlates to about 1 mg of total gluten (prolamins and glutelins) in 50 g of food 

product.  

 From the perspective of a patient who suffers with any kind of gluten 

sensitivity, such as celiac disease, a “safe” level of exposure to gluten has not yet 

been established [6, 7]. Therefore, the only means to maintain a healthful existence 

is to carefully limit the exposure to gluten as effectively as possible. This requirement 

entails a detailed review of all product packaging and ingredient labels, in order to 

determine if any ingredient is present that may contain gluten, or if the product was 

manufactured in a facility that also manufactures products that contain wheat, barley 

or rye cereal grains. From other perspectives, such as those responsible for 

manufacturing processes, quality control and product labeling, there poses an 

obvious concern as to the means to ensure that products are analytically proven to 

be free of gluten, as sensitively and accurately as possible.  

 The work described in this thesis report has attempted to address this subject 

area by the development of an analytical methodology whose function is to 

determine the presence of immunogenic wheat gluten in a complex food matrix. Two 

practical examples of the application of this methodology are described in this 

chapter. (1) One practical application of the methodology involved its utilization in 

the evaluation of the quality of commonly available consumer foods and products. 

(2) A second application involved the assessment of the capabilities of a new 

therapeutic strategy under development, which attempts to address the challenges 
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faced from the continuous daily exposure to trace levels of gluten, in the 

management of celiac disease. 

 
5.1.2 HPLC-MS/MS analysis of food and consumer products 
 
 The HPLC-MS/MS assay that has been developed and optimized is capable 

of detecting and quantifying select physiologically relevant wheat gluten peptides in 

complex food samples. Experimental results from the analysis of several varieties of 

commonly found native dietary grains have demonstrated that this method can 

successfully detect and quantify these peptides over the range 10 pg/mg -100 ng/mg 

of grain sample. The concluding stage of this work assessed the usefulness of this 

methodology in a practical application to evaluate the composition of common 

commercially available (native and processed) food and consumer products.  

 This HPLC-MS/MS method can be considered a sensitive and 

comprehensive alternative to the commonly used immunological antibody-based 

ELISA, which at best, is able to quantify gluten proteins down to the low ppm (part 

per million) level in specific applications [8]. Various ELISA assays have been 

successfully applied to the analysis of gluten, but do not have the capabilities to 

effectively determine if food products have inadvertently been contaminated with 

trace levels of gluten. Therefore, the ability to do this would give merit to this HPLC-

MS method as a means of providing a much needed means of ensuring food safety. 

 
5.1.3 Assessment of the effectiveness of an orally based combination enzyme  
         therapy 
 
 Unless a facility is totally committed to manufacturing only gluten-free 

products, cross contamination can easily occur from improper handling of gluten-
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containing ingredients or careless transporting or processing equipment 

maintenance procedures. Such instances could easily allow small amounts of gluten 

to erroneously become part of the finished product. Unfortunately, a strict gluten-free 

lifestyle can easily become disrupted by this type of lingering exposure to gluten, 

resulting in ongoing tissue damage and failure to completely heal. 

 One strategy to address the issue of how to surmount the effects of a 

continuous and unavoidable exposure to gluten involves the development of an oral 

enzyme that can detoxify small amounts of gluten in the gut before it has the chance 

to mediate the inflammatory response. This orally based therapy consists of a 

combination of food-grade proteases and has been under development in recent 

years by several researchers [9 - 12]. The design of this enzyme therapy is based on 

targeting the small proteolytically resistant proline and glutamine rich gluten peptides 

that seem to persist in the gut and are responsible for triggering the immune reaction 

in the body. The goal is to target these peptides and digest them into smaller 

fragments that can then go on to be completely proteolyzed by the other gastric and 

pancreatic proteases present in the gut. Although research toward the identification 

of T-cell stimulatory peptides from gluten is on-going, it may never be possible to 

completely characterize all physiologically relevant gluten peptides in every species 

of dietary grain. Therefore, an oral enzyme that has the ability to target and aid with 

the digestion of any such peptides that share a typical representative structure would 

greatly enhance the quality of life of anyone who suffers from T-cell mediated 

inflammatory reactions to gluten. 
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 Two products that are currently commercially available consist of 

combinations of common food grade glutamine and proline specific endopeptidases. 

Both products contain a proprietary blend of dipeptidyl peptidase IV (DPPIV) and 

other proteases that are designed to work together with pepsin at the gastric stage 

of digestion. HPLC-MS/MS was used to evaluate the proteolytic capability of these 

two gluten detoxifying protease cocktails as compared with one general digestive 

enzyme cocktail, specifically with regard to their effect on degrading the seven 

immunogenic peptides identified in this research project.  

 
5.2 Experimental 
 
5.2.1 Materials and Reagents 
 
5.2.1.1 Chemicals 
 
 Pepsin, trypsin, chymotrypsin, KHNaPO4 and NaOH were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). HPLC-grade acetonitrile and HCl were 

obtained from Fischer Scientific. Water was obtained from an in-house Milli-Q water 

purification system (Millipore, Billerica, MA, USA).  

 
5.2.1.2 Peptide standards 
 
 Synthetic standards of peptides (LQPQNPSQQQPQEQVPL, 

TQQPQQPFPQQPQQPFPQ, VPVPQLQPQNPSQQQPQEQVPL, 

RPQQPYPQPQPQY, QPQQPFPQTQQPQQPFPQ, QPQQPLPQPQQPF and 

PQQSPF) were synthesized (Thermo Electron, Ulm, Germany) and were analyzed 

using HPLC-MALDI-TOF mass spectrometry in order to determine their exact 

molecular weights and purity (>90% pure).  
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5.2.1.3 Calibration and quality control standards, procedure and analytical blanks 
 
 Calibration standards were prepared as various cocktails of the synthetically 

prepared target peptides [(1) LQPQNPSQQQPQEQVPL, (2) 

TQQPQQPFPQQPQQPFPQ, (3) VPVPQLQPQNPSQQQPQEQVPL, (4) 

RPQQPYPQPQPQY, (5) QPQQPFPQTQQPQQPFPQ, (6) PQQSPF and (7) 

QPQQPLPQPQQPF] as well as the αG-33 peptide 

(LQLQPFPQPQLPYPQPQLPYPQPQLPQPQPQPF). Standards were prepared 

using appropriate aliquots taken from stock peptide solutions, prepared in 80%/20% 

water/acetonitrile, over the range 10 pg/mg - 100 ng/mg.  

 Two types of quality control standards were prepared: (1) the first type was 

prepared by spiking the peptide stock peptide solutions into aliquots of corn flour that 

had already been enzymatically digested with pepsin, trypsin and chymotrypsin (per 

the procedure outlined in section 5.2.2.1), at concentration levels that matched the 

solvent calibration standards; (2) the second type was prepared by spiking the stock 

peptide solutions into aliquots of water that had also been enzymatically treated, at 

concentration levels that matched the solvent calibration standards. 

 Two types of procedure blanks were also prepared: (1) the first type used 

corn flour as a representative gluten-free matrix and was systematically 

enzymatically digested; (2) the second type used water as the matrix and was also 

enzymatically treated.  

 Analytical blanks consisted of aliquots of the HPLC mobile phase A (95% 

water / 5% acetonitrile (ACN) + 0.025% trifluoroacetic acid (TFA)). 
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5.2.1.4 Samples 
 
 Quinoa flour, stone ground whole grain corn flour, stone ground whole grain 

soy flour, vital wheat gluten flour, stone ground whole wheat flour (brand 1), whole 

wheat flour (brand 2), rye flour, barley flour, rice flour, oat flour, powdered ice tea 

mix, pasta, orzo, cheerios, hot sauce, bread, goldfish crackers, white vinegar, 

toothpaste, body lotion and body wash were all obtained at a local supermarket 

(Raleigh, NC, USA). Beer, gin, vodka, rum, red and white wine were obtained from a 

local specialty store (Durham, NC, USA). Gluten-free items (beer, rice, potato pasta, 

rice pasta, quinoa pasta, soy pasta, bread, pretzels, protein bar, quinoa cereal, rice 

seasoning mix, pad thai seasoning mix and crackers), as well as the two brands of 

glutenase enzymes (glutenase x and glutenase y) and one general digestive 

enzyme (GDE) product were obtained from a local specialty store (Chapel Hill, NC, 

USA).  

 
5.2.2 Sample preparation 
 
5.2.2.1 In-vitro proteolytic digestion procedure 
 
 Prior to analysis by HPLC-MS, samples were proteolyticallly digested in-vitro, 

using the optimized conditions determined in Chapter 4. This procedure was 

designed to release some or all of the seven target peptides, should gluten from 

wheat, be present in the sample.  

 In brief, 30 mg of homogenized sample was dissolved into 1 mL pepsin 

solution (0.01M HCl adjusted to pH 2), to establish a 1:100 pepsin to protein ratio; 

heat (at 38˚C) and shake for 2 hours. To each sample, add 50 µL of a 50 mM 

phosphate buffer and 35 µL of a 0.1 M NaOH solution, allowing the pH to rise above 
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6 and keeping it between 7 – 7.5. To each sample, add 25 µL of a 1:100 trypsin / 

chymotrypsin to protein solution (in 50 mM phosphate); heat (at 38˚C) and shake for 

30 minutes. From each sample, take 200 µL of the supernatant and add 200 µL of 

Mobile phase A (95% water / 5% acetonitrile (ACN) + 0.025% trifluoroacetic acid 

(TFA)). Spin down all samples and aliquot 200 µL for HPLC-MS/MS analysis. 

 
5.2.2.2 In-vitro oral enzyme cocktail digestion procedure 
 
 Prior to analysis by HPLC-MS, food samples were proteolytically digested in-

vitro, using the following procedure.  

 30 mg of homogenized sample was dissolved into 1 mL pepsin solution 

(0.01M HCl adjusted to pH 2), to establish a 1:100 pepsin to protein ratio and a 1:10 

solution of glutenase (x or y) to protein or digestive enzyme to protein solution (in 50 

mM phosphate); heat (at 38˚C) and shake for 2 hours. To each sample, add 50 µL of 

a 50 mM phosphate buffer and 35 µL of a 0.1 M NaOH solution, allowing the pH to 

rise above 6, then keeping the pH between 7 – 7.5. To each sample, add 25 µL of a 

1:100 trypsin / chymotrypsin to protein solution (in 50 mM phosphate); heat (at 38˚C) 

and shake for 30 minutes. From each sample, take 200 µL of the supernatant and 

add 200 µL of Mobile phase A (95% water / 5% acetonitrile (ACN) + 0.025% 

trifluoroacetic acid (TFA)). Spin down all samples and aliquot 200 µL for LC-MS 

analysis. 

 
5.2.3 HPLC-ESI-MS Instrumentation and analytical conditions  
 
 HPLC-ESI-MS/MS was used to both detect and quantify each of the 7 target 

peptides. High performance liquid chromatography (HPLC) was performed using an 
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Agilent 1200 Rapid Resolution LC system (Agilent Technologies, Santa Clara, CA, 

USA). The HPLC was coupled to an Agilent 6410 QQQ mass spectrometer (Agilent 

Technologies, Santa Clara, CA, USA), operated in positive atmospheric pressure 

electrospray ionization (AP-ESI) mode. Mass calibration of the mass spectrometer 

was conducted using the Agilent tune compound, according to the manufacturer’s 

documented procedures. Daily mass calibration checks were performed in order to 

assure that instrument response was accurate and consistent. Sample analyses 

were performed in multiple reaction monitoring mode (MRM) using time 

programming to obtain maximum possible sensitivity for each compound. 

 The atmospheric pressure ionization (API) source was operated at a capillary 

voltage of 3800 V (half moon electrode in the API chamber), with the nitrogen drying 

gas flow rate of 9.5 L/minute and temperature heated to 350˚C. The nebulizer was 

operated at 45 PSI. The fragmentation voltage (capillary exit voltage) was 150V, 

except for peptide 6, which was 120V. Each transition was monitored for 100ms, 

except for time segment 5, whereby each transition was monitored for 50ms. Table 

5.1 lists the seven target peptide sequences, their respective time program 

segments, parent and product ion transitions and respective collision energies used 

for the analyses.  

 Typically, 20 µL of sample was injected into the LC-MS system. For ultra-

trace level analyses, a sample volume of 100 µL was used. Sample aliquots were 

injected onto a C18 reversed-phase Ascentis Express (Sigma-Aldrich/Supelco) 

column of dimensions 2.1 mm i.d. X 150 mm packed with 2.7 µm superficially-

porous silica particles. The gradient used for separation was 0-22% B over 35 
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minutes, then 22-60% B over 10 minutes at 25 ˚C, with a flow rate of 300 µL/minute. 

Mobile phase A was 95% water / 5% acetonitrile (ACN) + 0.025% trifluoroacetic acid 

(TFA). Mobile phase B was 5% water / 95% acetonitrile (ACN) + 0.025% 

trifluoroacetic acid (TFA).  

 
5.3 Results and Discussion 
 
5.3.1 HPLC-MS/MS analysis of food and consumer products 
 
 The HPLC-MS/MS assay, developed over the course of this research project, 

was used to both detect and quantify the seven immunogenic marker gluten 

peptides in a variety of commercially available food and consumer products. 

Products were manufactured in various countries around the world. Some products 

contained gluten, others were naturally gluten-free or labeled as “gluten-free”. The 

detection of any of the seven peptides was intended to represent a positive 

indication of the presence of wheat gluten in the product. 

 Following the completion of the in-vivo digestion procedure (section 5.2.2.1), 

HPLC-MS/MS analysis was performed on all sample extracts. Confirmation of the 

presence of the target peptides in the samples was based on the following criteria, 

adapted from existing FDA guidelines on qualitative target compound identification: 

(1) target compound retention time (within 2% of the representative calibration 

standard); (2) detection of all MRM product ions (all MRM parent to product 

transitions must be seen); (3) MS/MS parent to product ion ratios (within 30% of 

those in the representative calibration standard) and (4) absence of target peptides 

in all procedure blanks and analytical blanks. 
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 Figures 5.1, 5.2, 5.3 and 5.4 show representative HPLC-MS/MS extracted ion 

chromatograms (EICs) of the target peptides that were detected in various food 

products. Tables 5.2(A) – 5.2(D) present the quantitative results from all analyses. 

Interestingly, no particular peptide profile was noted in any of the samples. All seven 

peptides were detected in native wheat and rye flours. Peptides 1, 3, 4, 6 and 7 were 

also detected in native barley flour. Oat and rice flour was shown to contain very low 

levels of two of the peptides. This could be a result of gluten contamination that 

occurred during the milling of the grains because most manufacturers handle many 

different types of grains. Oats has not been completely ruled out as a celiac active 

grain. As expected, all of the wheat containing processed foods contained various 

concentrations of all seven peptides. Interestingly, the powdered ice tea mix 

contained four of the seven peptides. None of the seven target peptides were 

detected in most of the gluten-free products, with the exception of one brand of 

gluten-free pasta and a pad thai seasoning mix. Potato vodka, rum and wine did not 

contain any of the peptides. As expected, beer was found to contain five of the 

seven peptides. Distilled products, such as gin are thought to be free of gluten, 

owing to the nature of the distillation process. However, this study found gin to 

contain a very low level of peptide 3. Vinegar and products that contain vinegar are 

expected to contain gluten, unless the vinegar has been distilled. The vinegar 

analyzed in this study was not distilled and did show the presence of four of the 

peptides. Hot sauce was found to contain a very low level of peptide 1. The label 

listed vinegar as an ingredient, but did not list the vinegar as “distilled”. The only 

consumer product that was found to contain any of the peptides was the body wash. 
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 Several peptides were found to have concentrations that were above the 

upper limit of the calibration range (100 ng/mg). These samples were diluted and re-

analyzed to ensure that their results were within the calibration range. 

 This novel analytical methodology is a combination enzymatic digestion-LC-

MS procedure that was developed specifically to determine if wheat gluten is 

present, by releasing, detecting and quantifying any of seven immunogenic wheat 

gluten peptides. In the samples analyzed in these experiments, the exact variety(s) 

of wheat in each sample is unknown. Therefore, from these data it can be concluded 

that the presence of any of these peptides would render the product unsafe for use 

by people with gluten sensitivities. The data shown demonstrates that this assay can 

accurately detect and quantify immunogenic wheat gluten peptides, in a variety of 

food and consumer products, down to the low ppb (part per billion) level. In 

comparison, ELISA methods (currently endorsed by the FDA and Codex for the 

quantification of trace levels of wheat gluten), can at best and with limited 

applications, quantify down to the low ppm range [8, 13 and 14]. Results from a 

recent review of current literature in this area indicate that this LC-MS assay may 

possibly be the most comprehensive, sensitive and versatile assay currently 

available for the detection and quantification of trace amounts of wheat gluten. Given 

that the Codex standard for gluten content in a food product is 20 ppm (or 1 mg/50g 

food), this assay can confirm the presence of wheat gluten well below this, down to 

0.5 µg/50g (corresponding to about 10 ppb) of food. 

 A unique ability of this novel methodology, allows for the detection of wheat 

peptides that originate from both monomeric gliadins and the polymeric glutenins, 
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because the sample is digested directly prior to LC-MS analysis. This type of 

proteoysis does not need any additional sample preparation step and occurs in a 

similar fashion as it would be in-vivo. This is a major advantage over any of the 

existing ELISA methodologies. ELISA methods use an alcohol pre-extraction step in 

order to separate the alcohol soluble monomeric prolamins [14, 15], then detect 

them using immunochemistry. Intact glutenins are polymeric proteins and do not 

dissolve in aqueous alcohol. Neither do hydrolyzed nor denatured gluten proteins 

that come about from heat processing. This is one of the limitations encountered 

with some ELISA methods and can lead to inaccurate quantitative results and 

incorrect calculated total gluten content in food [1, 8 and13].  

 The ability to detect any of the seven immunogenic wheat peptides provides 

an indication of the presence of wheat gluten (from gliadins and/or glutenins). 

Exposure to any product that contains unexpected or unlabeled gluten contributes to 

prolonged inflammatory tissue damage. The results presented here demonstrate 

that these seven target peptides can also be found in other grains (rye and barley), 

which are also implicated in the pathogenesis of T-cell inflammatory disease.

 Figure 5.5 shows LC-MS/MS-extracted ion chromatograms of various gluten 

containing and gluten-free native grain flours, to illustrate the presence/absence of 

the target peptides in immunogenic and non-immunogenic grains. Traces shown 

include: (A) a solvent standard of the seven target peptides, (B) corn flour, (C) rice 

flour, (D) wheat flour and (E) wheat gluten. Database searches were also conducted 

using the National Center for Biotechnology Information (NCBI) protein database to 

confirm that each of the target peptide sequences were present in wheat proteins 
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and absent from corn and rice proteins. The presence of peptide 4 in rice may be 

due to contamination. 

 Figure 5.6 shows LC-MS/MS extracted ion chromatograms of peptide 7 in 

native wheat gluten as well as wheat, rye and barley flours. Interestingly, the 

response for peptide 7 is the smallest in wheat gluten and wheat flour, but the 

largest in barley and rye flours.  

 By examining Figure 5.7, it can be seen from the LC-MS/MS extracted ion 

chromatogram of a popular powered ice tea mix (manufactured in the USA), that 

trace levels of wheat gluten peptides 1, 3, 4 and 6 are present. The last peak seen in 

the trace was identified as the αG-33 (33mer) peptide. This 33mer is one of the most 

potent T-cell stimulatory peptides identified to date [16]. “Wheat gluten” (or gluten 

referenced by any number of alternate names) is absent from the ingredient list for 

this product. Fortunately, this is an example of how this HPLC-MS assay can detect 

instances of hidden or unlabeled gluten in a food product.  

 An example of a potentially contaminated food product is shown in Figure 5.8. 

Figure 5.8(A) – (C) are LC-MS/MS-extracted ion chromatograms of various pasta 

products: (A) wheat-containing pasta; (B) and (C) are two different brands of gluten-

free pasta. The upper trace in Figure 5.8(B) shows the primary MRM parent to 

product ions, used for quantification. By examining the quantification ions that are 

present in the top trace, it appears that a trace level of peptide 4, along with a very 

small detected peak corresponding to peptide 3, can be seen in the gluten-free 

pasta (brand 2; manufactured in Italy). By looking at the lower part of figure 5.8(B), it 

can be seen that the confirming ion for peptide 4 is present, but is absent for peptide 
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3. Therefore, a positive identification of peptide 3 in this product cannot be made. 

This product is labeled “gluten-free”, however, its package also displays a disclaimer 

that the product was manufactured in a facility that also manufactures products 

containing wheat. The gluten-free pasta, shown in Figure 5.8(C) shows no hint of 

any wheat gluten contamination. As noted from this product’s package labeling, this 

product was manufactured in a facility dedicated only to gluten-free processing.  

 Exposure to the deleterious nature of gluten is not just limited to ingestion. 

Products such as lotions and toothpaste can also facilitate progression of disease. 

Figure 5.9 shows the profile of peptides detected in a dermatologist recommended 

daily moisturizing body wash. Peptides 1, 3, 4 and 6 can all be seen clearly, with a 

small contribution from peptides 2 and 5. Although hydrolyzed wheat protein is listed 

as an ingredient, this example is one where exposure to wheat may not be obvious.  

 These examples provide much needed evidence as to how important it is to 

ascertain the presence of trace levels of gluten in commercially available food and 

consumer products. From the consumer’s point of view, it is not always evident that 

gluten is present in products. Therefore, this LC-MS assay provides evidence that it 

could be potentially unhealthy for a person with celiac disease, or any other form of 

gluten sensitivity, to be exposed to some products even though they are labeled 

“gluten-free”. From a manufacturing perspective, the capabilities of this LC-MS 

assay provide an effective tool to ensure food safety and permit compliance with 

worldwide food labeling guidelines.  

 
 
 
 



 255

5.3.2 Comparison of the proteolytic abilities of glutenase and digestive 
         enzymes by HPLC-MS/MS 
 
 The evaluation of the proteolytic abilities of two commercially available oral 

gluten-based protease products (glutenase x and glutenase y) and one general 

digestive enzyme (GDE) cocktail, was conducted with emphasis toward the 

digestion and detoxification of gluten peptides 1-7 present in various food samples.  

 Initial investigation evaluated the effectiveness of the proteolysis of the seven 

gluten peptides at three protein to enzyme ratios (10:1, 100:1 and 500:1). A wheat 

flour sample was digested following the protocol outlined section 5.2.2.2. The 

glutenase enzymes and general digestive enzymes were added at the same time as 

pepsin, in order to simulate gastric digestion. To simulate duodenal digestion, the 

pancreatic enzymes (trypsin and chymotrypsin) were added accordingly. Total 

digestion time involving the glutenases (and GDE) and pepsin was 2 hours, with an 

additional 30 minutes for digestion with trypsin + chymotrypsin. Data from these 

experiments determined that a protein to enzyme ration of 10 to 1 provided the best 

conditions for maximum possible detoxification of the seven peptides.  

 Three experiments were performed which evaluated three types of samples: 

(1) solvent standard (20 ng/mg) of peptides 1-7, (2) 100% wheat and (3) 1% wheat 

in corn. Samples (1) - (3) were all digested per the procedure detailed in above. The 

glutenases are designed to be the most effective where trace levels of gluten are 

present, which was theoretically represented by sample (3). Following the in-vivo 

digestion procedure (using a protein to enzyme ratio of 10:1), HPLC-MS/MS analysis 

was performed on all samples to evaluate which peptides resisted proteolysis. 
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 Figures 5.10, 5.11 and 5.12 show representative LC-MS/MS EICs of the 

effect each enzyme cocktail had on peptides 1-7. Figure 5.10 displays results from 

the digested solvent standard containing peptides 1-7 as well as the αG-33 peptide. 

Figure 5.11 shows what happened when peptides 1-7, found naturally in a PTC 

digested native wheat flour sample, were proteolyzed and Figure 5.12 presents the 

remaining peptides 1-7 found in a sample of digested 1% wheat in corn, 

respectively. Table 5.3 summarizes the quantification results of the peptides that 

remain after these three digestion experiments. The values shown represent the 

percentage (+/- <15%) of each of the seven peptides that remain following treatment 

with pepsin, trypsin and chymotrypsin (controls for each experiment), glutenase x, 

general digestive enzyme (GDE) and glutenase y. 

 Several interesting observations can be made from these results. In general, 

the glutenases appeared to be more effective at degrading the seven peptides than 

the general digestive enzyme. With respect to the specific proteolytic abilities of 

glutenase x versus glutenase y, it appeared that brand y was more effective than 

brand x, under these experimental conditions. Looking more closely at the results of 

each of the experiments, the more concentrated levels of the seven peptides, as 

found in the solvent standard, were proteolyzed by the GDE by approximately 40 to 

70%, with the exception of peptides 4 and 6, where <10% remain. The concentration 

of peptides found in the 100% wheat and 1% wheat samples were significantly lower 

than in the solvent standard and both showed almost complete digestion of peptides 

4 and 6 by the GDE, while the other peptides remained pretty much intact. In all 

three cases, very small amounts of peptide remained following treatment with the 
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glutenases. The peptides that were released from the digestion of the 1% wheat in 

corn sample were digested the most. Therefore, it appears that the glutenase 

products do what they are designed to do, which is to effectively digest trace levels 

of gluten, as would be found in products contaminated with gluten. 

 Based on what current literature reports, potent T-cell stimulatory peptides 

are characteristically proteolytically resistant [9, 16, 17 and 18]. Therefore, from 

these data, one could conclude that peptides 1-7 do show resistance to further 

degradation. Peptides 4 and 6 do show moderate degradation and therefore, may 

not be highly immunostimulatory. Interestingly, the peptide that has been reported as 

the immunodominant (most potent) T-cell stimulatory peptide [11, 16], the αG-33 

(33mer), was also almost totally digested by the GDE and completely digested by 

the glutenases. This 33mer peptide was spiked into the solvent standard along with 

peptides 1-7 in order to compare its resistance to digestion. The presence of the 

native 33mer was detected in wheat using this HPLC-MS assay; however, it was 

detected at very low levels as compared to the other seven immunostimulatory 

peptides. 

 

5.4 Conclusions 
 
 Two practical examples of the application of this methodology are described 

in this chapter. (1) One practical application of the methodology involved its 

utilization in the evaluation of the quality of commonly available consumer foods and 

products. (2) A second application involved the assessment of the capabilities of a 

new therapeutic strategy under development, which attempts to address the 
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challenges faced from the continuous daily exposure to trace levels of gluten, in the 

management of celiac disease. 

 High performance liquid chromatography-mass spectrometry is a powerful 

analytical technique for use in the analysis of food proteins. The goal of this research 

was to identify a subset of potentially immunogenic wheat gluten peptides and 

develop an analytical methodology for their quantitative detection in complex 

samples. This novel analytical methodology is a combination enzymatic digestion-

LC-MS procedure that was developed specifically to determine if wheat gluten is 

present, by releasing, detecting and quantifying any of seven immunogenic wheat 

gluten peptides in food (native or processed). The data shown demonstrate that this 

assay can detect and quantify these immunogenic gluten peptides, in a variety of 

grains, food and consumer products, down to approximately 0.5 µg/50g 

(corresponding to about 10 ppb) of product. 
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Figure 5.1  
  

Target peptides 1-7 detected in gluten-containing food 
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Figure 5.2   
 

Target peptides 1-7 detected in gluten-containing food 
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Figure 5.3 

 
Target peptides 1-7 detected in gluten-free food 

 
 

6

4

1 5 2

3

A

B

C

D

gluten free 
beer

gluten free bread

Quality 
Control

0.3 ng/mg

gluten free 
seasoning mix

LC-MS/MS EIC
6

4

1 5 2

3

A

B

C

D

gluten free 
beer

gluten free bread

Quality 
Control

0.3 ng/mg

gluten free 
seasoning mix

LC-MS/MS EIC

 
 
 



 268

 
 

Figure 5.4 
 

Target peptides 1-7 detected in gluten-containing liquids 
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Figure 5.5  
 

Target peptides 1-7 detected in native grains 
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Figure 5.6 
 

Peptide 7 in wheat gluten and native flours 
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Figure 5.7 
 

Gluten peptides found in a powdered ice tea mix 
 

 
 
 
 

6
4 1

3

33mer
LC-MS/MS EIC

6
4 1

3

33mer
LC-MS/MS EIC

 
 
 
 
 
 
 



 272

 
 

Figure 5.8 
 

Gluten peptides 1-7 detected in wheat-containing and gluten-free pasta 
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Figure 5.9  
 

Gluten peptides 1-7 detected in a body wash product 
 

 
 
 
 

5+2

6

4

1

3

LC-MS/MS EIC

5+2

6

4

1

3

LC-MS/MS EIC

 
 
 
 



 274

 
 

Figure 5.10  
 

Effects of glutenase and digestive enzymes on a solvent standard 
cocktail of peptides 1-7 + αG-33   
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Figure 5.11 

  
Effects of glutenase and digestive enzymes on peptides 1-7 and αG-33 

 in 100% wheat 
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Figure 5.12 
 

Effects of glutenase and digestive enzymes on peptides 1-7 in  
1% wheat spiked into corn 
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CHAPTER 6 
 

Future Research and Directions 
 
___________________________________________________________________ 
 
 
6.1 Summary and final conclusions 
 

 This research focused on the study of cereal grain proteins, specifically those 

in the large gluten protein sub-family. Dietary gluten is a staple for people all over 

the world. However, dietary gluten is also a trigger of a variety of immune diseases, 

food intolerances and allergies. One such autoimmune disorder is celiac disease. 

Those who have the genetic predisposition can develop the disease, whereby 

exposure to proteins of the Triticeae tribe of the Gramineae (grass) family (including 

wheat, barley and rye) triggers both innate and adaptive immune responses. For 

those who must limit or exclude exposure to dietary gluten, it is essential to know if 

trace levels of gluten are present in commercially available food and consumer 

products. Because gluten is not always listed on a product label, or may be listed 

under an unfamiliar name, or may be present as a component due to contamination 

during processing, it is not always evident that gluten is present.  

 The objectives of this research were: (1) to identify and characterize potential 

immunogenic wheat gluten peptides and (2) to develop an analytical methodology 

using HPLC-MS for use in screening commercially available food and consumer 
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products for the quantitative detection of trace quantities of the wheat gluten 

peptides identified. 

 Initial efforts toward the identification of immunogenic wheat gluten peptides 

utilized an in-vitro procedure that was designed to simulate the in-vivo enzymatic 

digestive process. Gluten peptides, known to be immunogenic, resist complete 

proteolysis in-vivo and have sequences consisting of less than 40 amino acids, of 

which many are proline and glutamine. The in-vitro proteolysis procedure succeeded 

in its attempt to release gluten peptides from proteolyzed wheat gluten proteins. 

Many appeared to resist further proteolysis, thus providing the first proof of the 

principle of the concept. One such peptide was identified as a 17mer with the 

sequence LQPQNPSQQQPQEQVPL.  

 Experiments involving metal ion adducts to proline were employed in order to 

aid in the identification of the peptides released by proteolysis. Several metals did 

show an affinity for proline and sequence information was obtained about the C-

terminal end of some of the peptides released. However, hundreds of gluten 

peptides were released via proteolytic digestion, and this type of affinity was not 

sufficient to provide enough specificity to make immunogenic peptide identification 

possible. 

 An alternate strategy was then developed which attempted to discriminate 

between those peptides that are immunogenic and those that are not. The strategy 

focused on certain aspects of how the body itself determines which peptides it 

considers as “antigens” and how it targets them during the autoimmune responses 

to gluten. A novel methodology was developed that involved the chemical tagging of 
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physiologically relevant wheat gluten peptides using recombinant human tissue 

transglutaminase 2. This approach used HPLC-ESI ion trap MSn to identify and 

characterize seven previously unreported physically relevant immunogenic gluten 

peptides in proteolyzed wheat flour (LQPQNPSQQQPQEQVPL, 

TQQPQQPFPQQPQQPFPQ, VPVPQLQPQNPSQQQPQEQVPL, 

RPQQPYPQPQPQY, QPQQPFPQTQQPQQPFPQ, QPQQPLPQPQQPF and 

PQQSPF).  

 An analytical method was then developed for the quantitative detection of 

trace levels of the seven identified immunogenic gluten peptides using HPLC-

MS/MS. Experimental results defined the capabilities of the method with respect to 

the levels of accuracy, sensitivity and specificity of detection of the peptides possible 

in a complex food matrix. In order to test the effectiveness of the developed assay, it 

was used in the evaluation of the quality of commonly available consumer foods and 

products. The data presented demonstrate how this method can detect trace levels 

of immunogenic gluten in products down to low ppb level. This is believed to be the 

most sensitive and comprehensive assay available for the trace detection of 

immunogenic gluten peptides in food and consumer products.  

 Another practical application of the developed methodology provides 

evidence as to how it could be utilized in medical research, in order to further our 

knowledge about gluten-related diseases and to aid in the development of methods 

that aim to treat them. The assay was used successfully in the assessment of the 

proteolytic capabilities of a new orally based food enzyme cocktail. This type of oral 
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enzyme therapy is designed to address instances of unavoidable everyday exposure 

to small amounts of gluten.  

 Overall, it was observed that under these experimental conditions, the seven 

physically relevant peptides identified do resist general gastric and pancreatic 

digestion. They all contain known immunostimulatory epitopes and they are all 

targets for the TG2 enzyme, which collectively, would infer that they belong in the 

class of gluten peptides that participate in the pathogenesis of the T-cell mediated 

inflammatory mechanism. The analysis, characterization and quantification of cereal 

grain gluten peptides and proteins are all complicated processes. However, the 

methodology developed through this research has the capabilities to successfully 

screen a wide variety of complex samples and report the presence of trace levels of 

gluten down the low ppb level. 

 

6.2 Objectives for future research 
 
 This methodology is a refreshing new approach, complimentary to the 

traditional immunochemical methods currently endorsed for the detection of gluten in 

food. This unique non-immunochemistry based methodology will be able to 

contribute to future research capabilities toward development of drugs and therapies 

targeted at the destruction of immunogenic peptides in vivo and the detection of 

such peptides in food and consumer products for gluten-free labeling and 

certification purposes. 

 Future efforts with respect to this research will continue and will focus on 

three objectives: (1) continued efforts in method development of the HPLC-MS 
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assay for screening food and consumer products will be directed toward a 

commercial application, as a service to both the celiac community and the food 

industry, by providing an accurate and economic means to generate much needed 

data for researchers developing treatments for patients with gluten sensitivities and 

manufacturers producing and labeling products that are safe; (2) future work will also 

continue to attempt to identify additional immunogenic wheat peptides (from both 

gliadins and glutelins) and study rye and barley grains in similar detail. Interest lies in 

the identification of peptides common to all grains and as well as peptides unique to 

individual grains, in order to form an even more comprehensive list of marker 

peptides for use with the HPLC-MS/MS assay; (3) investigation of the in-vivo 

response of the various peptide sequences identified will provide interesting 

information as to the relative level of cytotoxicity of these peptide sequences (i. e. 

which peptides are the most immunogenic). To date, no results from such a study 

have been published. Comparing results of activity with human TG2 and T-cell 

stimulatory studies of peptide sequences from different grains will also provide 

information about the relative immunogenicity between grains and between patients. 

 


