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ABSTRACT 

Daniel Hunter Best:  Liver Regeneration by Small Hepatocyte-like Progenitor Cells 
After Hepatotoxic and Necrotic Injury in Fischer 344 Rats 

(Under the direction of William B. Coleman) 
 

Liver regeneration after surgical partial hepatectomy (PH) in animals exposed to the 

mito-inhibitory agent retrorsine is completed through the outgrowth and expansion of small 

hepatocyte-like progenitor cells (SHPCs).  Although the SHPC-mediated regenerative 

response has been well characterized in the retrorsine/PH model of liver injury, the role that 

these cells play in other forms of liver injury has not been investigated.  The experimental 

objectives of the current studies were: (i) to characterize SHPC responses in hepatotoxic and 

necrotic models of liver injury, (ii) to determine the progenitor cell of origin of SHPCs, and 

(iii) to identify factors involved in the activation of SHPCs after liver injury. SHPCs are not 

observed after PH in retrorsine-exposed rats treated with the mito-inhibitory agent 2-

acetamidofluorene, but are observed after PH in retrorsine-exposed rats treated with the 

biliary toxin 4,4’-diaminodiphenylmethane.  Together, these observations suggest strongly 

that oval cells do not represent progenitor cells of SHPCs, but that SHPCs represent another 

liver progenitor cell population that resides in the hepatic parenchyma and responds to 

certain forms of liver injury.  In addition, these investigations found that SHPCs respond to 

restore liver mass and structure when retrorsine-exposed rats are treated with the pericentral 

necrotizing agent carbon tetrachloride.  This observation shows that SHPCs are capable of 

regenerating liver damaged by surgical resection as well as chemically-induced necrotic 
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injury.  Finally, these studies establish that treatment of retrorsine-exposed rats with the 

cytokine inhibitor dexamethasone blocks SHPC proliferation after PH and that this blockade 

can be overcome by administration of recombinant IL6 protein.  These observations suggest 

that SHPCs are activated for proliferation in a cytokine-dependent manner similar to other 

regenerative cell populations in liver (mature hepatocytes, oval cells), and that IL6 may 

function as the master regulatory molecule for activation of progenitor cell responses after 

liver injury.   Together, these investigations provide evidence that a hierarchy of cellular 

responses exists in the mammalian liver in which the form of regenerative response occurring 

after liver injury reflects (i) the type of liver injury, and (ii) the progenitor cell populations 

that are capable of proliferating. 
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I.  INTRODUCTION 

THE BIOLOGY OF NORMAL LIVER 

The mammalian liver is the largest visceral organ of the body, accounting for 2-5% of 

the body weight of adults (1) and is one of the most functionally diverse organ systems (2).  

The liver has several important functions that are essential for organismal homeostasis, 

including catabolic, metabolic, and absorptive functions (1, 2).  For example, the liver is 

involved in the synthesis of body fat, amino acids, plasma proteins that aid in blood clotting 

(i.e. prothrombin, fibrinogen), growth factors that aid in development, and bile that plays a 

crucial role in intestinal digestion (2-4).  Likewise, the liver is important for storage of 

several important vitamins and minerals (i.e. iron), as well as glycogen synthesis and 

gluconeogenesis (2, 3).  Finally, the liver is important for detoxification of various 

substances, including drugs, alcohol, and ammonia (2, 3).  Over 75% of the cellular mass of 

the normal liver is composed of mature (fully differentiated) hepatocytes and biliary 

epithelial cells,  and these cells perform the majority of liver functions (1).  In addition, the 

liver contains several other cell types, including sinusoidal endothelial cells and kupffer cells.  

Although these cells make up a relatively small percentage of the cellular mass of the liver, 

they are important in active transport of nutrients, regulation of blood pressure, waste 

removal, production of cytokines, and many other biological activities (1). 
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Structurally, the liver is organized into millions of functional units termed hepatic 

lobules (1, 3, 4).  The hepatic lobule is roughly hexagonal in shape and is composed of 

hepatocytes arranged in plates that surround a central vein, with the portal vein, bile duct, and 

the hepatic artery grouped together as a triad and located at the corners of the hexagonal 

structure (FIGURE 1.1) (3).  This structural arrangement facilitates interaction of hepatocytes 

with the blood as it moves through the liver.  Nutrient-rich blood from the gastrointestinal 

tract enters the liver via the portal circulation.  This blood mixes with oxygen-rich blood 

from the hepatic artery and then percolates through the sinusoids in direct contact with the 

hepatocyte cell surface.  Intimate contact between the hepatocytes and blood is essential to 

the various absorptive, metabolic, protective, and synthetic functions of the liver (3).   

NORMAL LIVER REGENERATION 

Mature (fully differentiated) hepatocytes of the liver are metabolically active, but are 

mitotically quiescent, and only enter the cell cycle when liver function is impaired by 

hepatotoxic injury or tissue mass is lost to surgical resection (5).    Still, the liver is an 

extremely resilient organ and possesses an enormous capability to regenerate tissue mass and 

functional capacity following liver injury (5-9).  In an otherwise normal liver, loss of tissue 

mass results in the activation and proliferation of quiescent mature hepatocytes present in the 

remaining liver tissue, leading to restoration of liver mass and function (7).  Liver 

regeneration after surgical partial hepatectomy (PH) has been extensively studied (10).  In 

this model, approximately 67% (two-thirds) of the liver is surgically removed resulting in a 

strong priming stimulus for the residual hepatocytes (10).  After injury, hepatocytes are 

primed for cell division through an increase in the levels of cytokines (namely IL6 and TNF- 
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FIGURE 1.1.  Structural features of the adult mammalian liver.  The adult mammalian 
liver is organized into lobules that are defined by the presence of a central vein (A,B) at 
the center and portal triads (C,D) in the periphery. Long black arrows indicate the central 
vein, long white arrows indicate the portal vein, short black arrows indicate the bile duct, 
and short white arrows indicate the hepatic artery. Original objective lens magnification 
10x for panels (A,C) and 20x for panels (B,D).   
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α) in the serum (9, 11-14).  Once primed, these hepatocytes rapidly enter the cell cycle and 

restore the lost tissue mass over a period of approximately one week through multiple rounds 

of cell proliferation (5-9).  The term regeneration, as it is commonly applied to liver, is a 

misnomer.  The resected lobes of the liver are not replaced.  Rather the residual liver tissue 

expands to restore the proper liver/body weight ratio through compensatory hyperplasia (6, 7, 

9, 15).  During this process the typical hepatocyte divides approximately 1.7 times (16).  

However, this is not the limit of hepatocyte replication potential as these cells are capable of 

dividing upwards of one hundred times (17).  Thus, mature (fully differentiated) hepatocytes 

represent the primary response to liver deficit and secondary (reserve) progenitor cell 

populations (such as oval cells) do not respond when hepatocytes are capable of proliferating 

(18).   

EXPERIMENTAL MODELS OF HEPATOCELLULAR INJURY 

In several models of hepatocellular injury mature hepatocytes are incapable of 

proliferating due to exposure to mito-inhibitory agents such as 2-acetamidofluorene (2-AAF) 

(FIGURE 1.2) or retrorsine (FIGURE 1.3).  Under these circumstances, the liver is regenerated 

through the outgrowth and expansion of reserve (stem-like) progenitor cell populations, such 

as oval cells or small hepatocyte-like progenitor cells (SHPCs) (19).  In order for these 

reserve progenitor cell populations to be activated two important criteria must be met:  (i) 

injury to liver that results in a growth stimulus, and (ii) blockade of mature hepatocyte 

proliferation (20).     

Over the last 50 years several experimental models have been developed to study the 

cellular responses of the adult mammalian liver to various forms of injury (20).  These  
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FIGURE 1.2. The chemical structure 2-AAF.  2-AAF (N-hydroxy-2-acetamidofluorene, 
CAS #53-95-2) is a DNA alkylating agent with mito-inhibitory effects on mature 
hepatocytes.   
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FIGURE 1.3.  The chemical structure of retrorsine.  Retrorsine (12, 18-
dihydroxysenecionan – 11, 16-dione; β-Longilobine, CAS #480-54-6) is a naturally 
occurring pyrrolizine alkaloid. 
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models include both carcinogenic (such as 2-AAF, DIPIN) and non-carcinogenic (such as 

galactosamine) mechanisms of injury and many are known to elicit responses from specific 

liver progenitor cell populations (15, 19, 21).  This introduction will focus on injury models 

that result in the activation of reserve progenitor cells (i.e. oval cells, SHPCs). 

The Azo-dye Model of Hepatocellular Injury 

The azo-dye model of liver injury was first introduced by Inaoka et al. in 1967 (22) 

and has been primarily used as a model to study oval cell mediated response to injury and 

hepatocarcinogenesis (20, 23).  In this model rats are fed a diet containing the carcinogenic 

azo-dye 3’-methyl-4-dimethylaminoazobenzene (3’-Me-DAB).  Treatment with this toxin 

results in DNA adduct formation in the mature hepatocytes of rat liver (24, 25).  These 

adducts impair DNA replication and cell division by mature hepatocytes, preventing these 

cells from contributing to liver repair in any significant manner (22, 23).  As a result, oval 

cells are observed shortly after the onset of carcinogenesis in this model (23).  Oval cells 

appear approximately 1 week following treatment with 3’-Me-DAB, proliferate for a period 

of weeks, and ultimately replace the damaged hepatocytes and restore liver structure 10 

weeks after the initial treatment (20, 23).   

The Choline-deficient Diet Model of Hepatocellular Injury 

The choline-deficient diet has been used for quite some time to induce a strong oval 

cell proliferative response (26).  In the basic version of this model animals are fed a choline 

deficient diet supplemented with 0.05-0.1% (in  rats) or 0.15% (in mice) ethionine for 2-3 

weeks (21, 26, 27).  This treatment results in fatty infiltration (steatosis), cell necrosis, and 

marked oval cell proliferation (26).  Oval cells are observed in large numbers approximately 
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4 weeks after initiation of choline-deficient diet with a return to the normal structure of the 

liver around 10 weeks post-initiation (26).  However, additional studies have been performed 

using a modified version of this model whereby animals are fed the choline-deficient diet that 

also contains the mito-inhibitory agent 2-AAF (28, 29).  In this model oval cells are observed 

within a few days after the onset of the experimental period and restore the structure of liver 

in a more rapid fashion than that observed in animals treated with a choline-deficient diet in 

the absence of 2-AAF (20, 26, 28, 29).       

The (Modified) Solt-Farber Model of Hepatocellular Injury 

The original Solt-Farber model of liver injury was used to study the early stages of 

chemical carcinogenesis by combining an initiating agent [diethylnitrosamine (DEN)], with a 

hepatocyte growth inhibiting agent (such as 2-AAF), followed by growth stimulus (such as 

surgical PH) (30).  This model was later modified to exclude the initiating agent in order to 

study the contributions of various cell types to liver regeneration (31).  The modified Solt-

Farber model (also known as the 2-AAF model of liver injury) has since become one of the 

most commonly studied models of hepatocellular injury.  In this model hepatocyte 

proliferation is blocked by 2-AAF treatment for 7 days (31, 32).  Following this treatment 

period cell division is stimulated through surgical PH, followed by 4 additional days of 2-

AAF treatment (31, 32).  Hepatocytes do not divide in this model as 2-AAF treatment results 

in DNA adduct formation that prevents proper cell division (33).  Instead, mature 

hepatocytes either undergo apoptosis or remain in a growth arrested state in the liver 

parenchyma (34).  Liver injury in animals treated with 2-AAF results in massive oval cell 

proliferation that begins within 2-3 days following PH, peaks about one week later, and 

restores liver mass and structure by 16-days post-PH (20, 31, 32).  It is important to note that 
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it was through the use of the modified Solt-Farber model of liver injury in combination with 

BrdU administration that investigators were able to directly demonstrate that a precursor-

product relationship exists among oval cells and hepatocytes (31, 35, 36).       

The D-galactosamine Model of Hepatocellular Injury 

D-galactosamine (GaIN) is a non-carcinogenic agent capable of causing substantial 

necrosis of the liver parenchyma and specifically targets mature hepatocytes (37, 38).  In this 

model, animals are given a single injection of GaIN that results in massive necrosis of the 

liver parenchyma and delayed onset of proliferation in surviving mature hepatocytes (37, 38).  

As a result of delayed hepatocyte proliferation, oval cells proliferate in large numbers in this 

model.  These cells appear approximately 24 hours after GaIN administration and continue to 

proliferate even after residual basophilic hepatocytes begin to proliferate (around 72 hours 

after GaIN administration) until liver structure is restored around 10 days after GaIN 

treatment (20, 37, 38).  However, in addition to the proliferation of mature (basophilic) 

hepatocytes and oval cells, a third cell population of phenotypically ‘small’ hepatocytes are 

observed in the livers of GaIN-treated animals.  These cells are observed approximately 5 

days after GaIN administration and eventually differentiate into mature hepatocytes (37).  It 

is likely that these cells represent an intermediate cell type representing the differentiating 

progeny of oval cells as they transition into mature hepatocytes.  However, it is possible that 

these small hepatocytes are a distinct progenitor cell population, similar or identical to the 

SHPCs observed in the regenerating liver of retrorsine-exposed rats (39).       

The DIPIN Model of Hepatocellular Injury 
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DIPIN (1,4-bis[N,N’-di(ethylene)-phosphamide]-piperazine) is an alkylating agent 

that results in the irreversible crosslink of DNA in mature hepatocytes of the mouse liver 

(40).  In this model of liver injury, animals are treated with a single dose of DIPIN combined 

with surgical partial hepatectomy (40).  Mature hepatocytes are damaged by DIPIN resulting 

in necrosis and apoptosis, and liver mass is restored through the outgrowth and expansion of 

oval cells (20, 40).  Oval cells appear in the livers of these animals approximately 1 week 

after PH and continue proliferating for the weeks following (20, 40).  In this model the 

replacement of the damaged liver parenchyma is not completed until greater than 4 months 

after the initial injury (20, 40).    

The Retrorsine Model of Hepatocellular Injury   

Retrorsine is a mito-inhibitory pyrrolizidine alkaloid that is damaging to mature 

hepatocytes (39, 41, 42).  In this model, animals are treated with two doses of retrorsine and 

then subsequently subjected to surgical PH (39).  When retrorsine-exposed hepatocytes are 

stimulated to proliferate they become megalocytes and subsequently undergo apoptosis (39, 

41, 43, 44).  Oval cells are never observed in this model and mature hepatocytes are 

incapable of dividing (39).  As a result, the liver mass of retrorsine-exposed rats is 

regenerated through the outgrowth and expansion of SHPCs (39).  These cells emerge as 

small clusters  1-3 days after PH, proliferate to lobule size by 14-days post-PH, and 

differentiate into mature hepatocytes by 30-days post-PH resulting in normalization of  liver 

mass and structure (39). 

PROGENITOR CELLS IN LIVER REGENERATION 
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 In the past, the presence of a stem cell population in the adult liver has been the topic 

of debate.  The controversy surrounding liver stem cells was largely due to the lack of 

cellular turnover in the liver like that observed in other organs that are known to contain a 

classic stem-cell-fed lineage system (i.e. colon, bone marrow) (45-47).  The presence of a 

liver stem cell was further questioned because mature hepatocytes are capable of restoring 

lost tissue mass after surgical resection or injury, making an undifferentiated progenitor cell 

appear unnecessary.  However, mounting evidence over the past several years has led to the 

acceptance of the presence of cell population(s) with stem-like properties in the livers of 

adult rodents (48).  These cells include (i) propagable multipotential stem-like cells (such as 

WB-F344, RLE-13, and others derived from liver epithelial cells) capable of differentiating 

into cells of both hepatic and extrahepatic tissues (20), (ii) bipotential stem-like cells (such as 

oval cells) capable of differentiating into mature hepatocytes and biliary epithelia (6, 15), and 

(iii) unipotential stem-like cells (such as SHPCs) capable of differentiating into mature 

hepatocytes (48).   

Oval Cells 

Oval cells, so called because histologically these cells appear with a large ovoid 

nuclei (FIGURE 1.4), were first identified in animals exposed to carcinogenic azo-dyes (22), 

but have since been observed in animals treated with the mito-inhibitory agent 2-AAF (28, 

49), D-galactosamine (37), fed a choline-deficient diet (26), treated with DIPIN (40), and 

have been observed in animals exposed to the necrotic agents allyl alcohol and carbon 

tetrachloride (FIGURE 1.5) in combination with other toxins (50).  Although there is some 

degree of variation among the oval cell responses observed in these models of liver injury, 

the general course of events in oval cell mediated liver regeneration is the same.  Shortly 
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FIGURE 1.4.  Oval cells, small hepatocyte-like progenitor cells, and hepatic megalocytes.  
(A,B,C) Oval cells (indicated with white arrows) appear histologically with scant 
cytoplasm and large ovoid nuclei.  (D,E) Small hepatocyte-like progenitor cells (indicated 
by long black arrows) are histologically similar to mature hepatocytes but are much 
smaller.  (F) SHPCs are easily identified due to their contrasting size with the surround 
hepatocyte megalocytes (giant cells, indicated by short black arrows).  Original objective 
lens magnification: 10x (A,D), 20x (B,E,F), and 40x (C).    
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FIGURE 1.5.  The chemical structure of carbon tetrachloride.  Carbon tetrachloride (CCl4, 
CAS #56-23-5) is a liquid compound that is highly toxic to several mammalian tissues 
including liver where it causes the targeted necrosis of the centrilobular zone of the 
parenchyma. 

 

 



 18

 

 

 

 

 

 

 

 

 

C

Cl

Cl

ClCl C

Cl

Cl

ClCl

Carbon Tetrachloride



 19

after liver injury oval cells are primed for proliferation through an increase in serum cytokine 

(IL6, TNF-α) levels, emerge from the periportal regions of the liver parenchyma, and expand 

into the centrilobular parenchyma (15, 21, 51-53).  After several days of continued 

proliferation these cells begin to differentiate into immature hepatocytes that ultimately 

mature and replace the damaged parenchyma (15).  This process has been most extensively 

studied in animals treated with 2-AAF.  Several investigators performed elegant studies 

characterizing the time course for liver regeneration after PH in 2-AAF-treated rats (28, 31, 

35, 54-57) and many of these studies demonstrated that a precursor/product relationship 

exists among oval cells and hepatocytes in animals treated with 2-AAF (31, 35).  Using the 

2-AAF model investigators have phenotypically characterized oval cells over the course of 

regeneration.  When oval cells first appear they are positive for various cytokeratins (i.e. 

cytokeratin 19) (21) and α-fetoprotein (AFP) (58, 59), a known marker for less differentiated 

cell types as well as additional markers of biliary cells (connexin 43 and α6 integrin) (56).  

However, when these cells differentiate into immature hepatocytes they stop expressing these 

markers and initiate expression of hepatocyte specific markers (α1 integrin, connexin 32, 

HNF4) (56).  The tissue niche of the progenitors of oval cells has long been suggested to 

reside in the portal triad in close association with the biliary epithelium.  Recently, a group of 

investigators demonstrated that the destruction of bile ducts with the toxin 4,4’-

diaminodiphenylmethane (FIGURE 1.6) results in a complete blockade of oval cell 

proliferation (60).  This observation forms the basis for the conclusion that oval cells 

originate in the bile ducts (perhaps from a biliary epithelial cell population?) of the liver.   

Small Hepatocyte-like Progenitor Cells 
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Small hepatocyte-like progenitor cells, named for their histological appearance 

(FIGURE 1.4), have only been observed after liver injury in animals that have been exposed 

to the pyrrolizidine alkaloid retrorsine (39, 61, 62).  Retrorsine is a naturally occurring mito-

inhibitory agent that results in a long-lasting DNA crosslinks in the hepatocytes of the 

mammalian liver (39, 41).  As a result of these crosslinks mature hepatocytes stimulated to 

divide by surgical resection or exposure to  necrotic agents are incapable of dividing properly 

and instead undergo megalocytosis (39, 41).  The liver of retrorsine-exposed rats is 

regenerated through the outgrowth and expansion of SHPCs (39).  The time course for 

SHPC-mediated liver regeneration after PH in retrorsine-exposed animals has been described 

in great detail in studies by Gordon et al.  (39).  In this model SHPCs emerge approximately 

3-days after PH and continue to proliferate and expand to reach lobule size by 14-days post-

PH (39).  During this period of SHPC expansion the hepatocytic megalocytes undergo 

apoptosis (63).  Because of this apoptosis the liver weights of retrorsine-exposed animals 

remain low through 14-days post-PH even though there is a high level of cellular 

regeneration occurring (39).  It is not until 21 days after PH that an increase in liver weight is 

observed and shortly thereafter (30-days post-PH) regeneration is completed (39).  The 

timing and kinetics of the SHPC-mediated regenerative response is clearly different from that 

observed in liver regeneration mediated by mature hepatocytes or oval cells (19).  Although 

SHPCs are histologically similar to mature hepatocytes, they are phenotypically less mature 

and express markers of oval cells/fetal hepatoblasts (OC.2, OC.5) and mature hepatocytes 

(albumin, transferrin) (39).  Taken together these data suggest that the SHPCs are a distinct 

population of liver progenitor cells capable of regenerating the liver when the proliferation of 

mature hepatocytes is blocked.  However, the origin of the SHPCs remains unknown (19). 
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POTENTIAL ORIGINS OF THE SMALL HEPATOCYTE-LIKE PROGENITOR CELLS 

The cellular origins of SHPCs is the subject of debate and some investigators have 

suggested that SHPCs and oval cells might represent the same (or closely related) population 

of cells (6).  There are many potential sources for SHPCs in the adult liver (FIGURE 1.7).  

Several recent studies have attempted to address the cellular origins of SHPCs.  These studies 

produced extremely varied results.  Avril et al. employed a retroviral-based model to 

genetically label mature hepatocytes with the β-galactosidase gene in retrorsine-exposed 

Sprague-Dawley rats before PH to determine the contribution of mature hepatocytes to the 

formation of SHPC clusters in this model of liver injury (61).  This study showed that a 

significant number of SHPC clusters express β-galactosidase and based upon this evidence 

concluded that mature hepatocytes are the source of SHPCs (61).  However, this study failed 

to rule out the potential contributions of other cell types.  For example, the investigators 

never specify the percentage of biliary epithelial cells and other extrahepatic cells that were 

labeled with β-galactosidase gene using this retroviral-based method (19).  Therefore, it is 

impossible to determine if oval cells or some other cell type contributed to the formation of 

SHPC clusters in these animals (19).  A more recent study by Vig et al. used a hepatitis B 

surface antigen (HBsAg-tg) mouse model of chronic liver injury to study the origins of the 

SHPCs (62). This study used three dimensional mapping techniques to demonstrate that 

livers of retrorsine-exposed HBsAg-tg mice exhibit SHPC proliferation, and that these 

clusters were both surrounded and infiltrated by proliferating oval cells (62).    However, the 

investigators note that not all of the SHPCs observed are positive for oval cell markers and 

conclude that other cell types may possibly contribute to the formation of these cell clusters 

(62).  The original model of retrorsine-induced liver injury is based upon acute injury and  
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FIGURE 1.6.  The chemical structure of DAPM.  DAPM (diamino diphenylmethane or 
methylene dianiline, CAS #101-77-9) is a is an aromatic diamine that results in the 
targeted destruction of the bile ducts of rat liver with no significant effect on hepatocytes. 
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FIGURE 1.7.  Potential origins of the small hepatocyte-like progenitor cells.  It is well 
established that oval cells are derived from a periportal stem cell population.  However, 
the origin of SHPCs is not known and several cell populations could potentially be the 
progenitor cell giving rise to these cells.  These potential progenitor cell populations 
include a non-hepatocytic retrorsine-resistant cells located in the liver parenchyma, a 
population of retrorsine-resistant mature hepatocytes, or oval cells.  (Adapted from 
Coleman et al. (19)). 
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regeneration in rats (39).  Thus, it is difficult to determine if the cell clusters observed in the 

chronic HBsAg-tg mouse model are the same cell type (i.e. SHPCs) observed in 

retrorsine/PH (RP) rats. Moreover, it is known that oval cells differentiate into 

phenotypically ‘small’ hepatocytes before becoming mature hepatocytes (56).  Thus, it is 

possible that the cells observed in this model are not SHPCs, but new hepatocyte progeny of 

proliferating oval cells.  Combined, these published studies leave several unanswered 

questions about the origins of the SHPCs.  Are the SHPCs derived from a population of 

retrorsine-resistant hepatocytes?  Are these cells the progeny of oval cells?  Do these cells 

represent an independent reserve progenitor cell population? 

GOALS OF THIS DISSERTATION  

Although it is well established that SHPCs emerge, proliferate, and regenerate the 

liver in the retrorsine/PH model, the origin of the SHPCs and the role that these cells play in 

the repair of tissue mass in other models of liver injury has not been investigated.  The 

overall goal of this dissertation is to further our understanding of the contributions of SHPCs 

in the regeneration of the adult mammalian liver.  The specific goals of the current study are 

to (i) to characterize the SHPC responses in both hepatotoxic and necrotic models of liver 

injury, (ii) to determine the progenitor cell of origin of the SHPC, and (iii) to determine the 

factors involved in the activation of SHPCs for proliferation after liver injury.  The studies 

performed in this dissertation directly investigate the possibility that oval cells are the 

progenitor cell of origin of the SHPCs.  Additionally, these studies address the possibility 

that the progenitor cell of origin of SHPCs are localized to a specific region of the liver 
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parenchyma.  Finally, these studies investigate the possibility that cytokines (such as IL6, 

TNF-α) are involved in the priming of SHPCs for proliferation after injury.    



II.  EXPERIMENTAL PROCEDURES 

ANIMALS 

Male Fischer 344 German-strain DPPIV-deficient rats were used in all studies.  Rats 

were either bred in-house or purchased from Charles River Laboratories (Wilmington, MA) 

and maintained in the AAALAC accredited animal facilities of the University of North 

Carolina at Chapel Hill.  Animals were kept on a 12 hour light/dark schedule and were given 

water and chow ad libitum.  All animals subjected to surgical manipulation were anesthetized 

using a cocktail of ketamine (60 mg/kg) and xylazine (5 mg/kg), and were given butorphanol 

(2.1 mg/kg) as a post-operative analgesic.  Additionally, an intraperitoneal injection of 3 cc 

phosphate buffered saline (PBS) solution (1.54 mM KH2PO4, 155.17 mM NaCl, 2.71 mM 

NaH2PO4-7H2O; pH 7.2) was administered post-operatively to increase survivability among 

surgically manipulated animals.  All studies involving animals were conducted in accordance 

with federal and state guidelines put forth by the NIH and the Institutional Animal Care and 

Use Committee of the University of North Carolina at Chapel Hill. 

EXPERIMENTAL GROUPS AND TREATMENT 

Administration of Retrorsine 
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Retrorsine (12,18-dihydroxysenecionan-11,16-dione; β-Longilobine) was purchased 

from Sigma Chemical Company (St. Louis, MO).  Male 6-week-old littermate Fischer 344 

rats included in the retrorsine-treated + partial hepatectomy (RP) (n=27) and retrorsine only 

(Ret. Only) (n=15) groups received two intraperitoneal injections of retrorsine (30 mg/kg) at 

ages 6 and 8 weeks.  Animals in the control (no treatment) + partial hepatectomy (CP) group 

were not treated.  Partial hepatectomy was performed when rats reached 13 weeks of age, 

essentially as originally described (10).  The retrorsine working solution was prepared by 

adding the solid to distilled water at a concentration of 10 mg/ml and then titrated to pH 2.5 

using 1N HCl to dissolve the powder.  The retrorsine solution was neutralized using 1N 

NaOH and brought to a final concentration of 6 mg/ml retrorsine using distilled water.  The 

working solution was used immediately following preparation.  All animals included in the 

RP and retrorsine only groups, and select animals in the CP group included in these studies 

were originally treated and surgically manipulated for studies by Gordon et al. (39).   

Administration of 2-acetamidofluorene 

N-2-acetamidofluorene (2-AAF) was administered using slow-release pellets 

obtained from Innovative Research Inc. (Sarasota, FL) (13, 50, 59, 60).  At the outset of the 

experiment, male littermate Fischer 344 rats were randomized into retrorsine treatment 

(n=46) and control (n=113) groups.  The animals were then further divided into the following 

groups: (i) 2-acetamidofluorene treatment + PH (2-AAF/PH), (ii) 2-acetamidofluorene 

treatment + retrorsine treatment + partial hepatectomy (2-AAF/RP), (iii) 2-acetamidofluorene 

treatment only (2-AAF only), (iv) placebo treatment + partial hepatectomy (Placebo/PH), 

(vii) placebo treatment only (placebo only).  In addition, animals in these groups were 

compared to RP rats (n=27) from previously reported studies (39).  Retrorsine-treated 
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animals received two doses of retrorsine (30 mg/kg) at ages 6 and 8 weeks, as described 

above.  Four weeks following the second retrorsine treatment (at twelve weeks of age), all 

animals were implanted with either a 50 mg 21-day controlled release 2-AAF (Catalog # A-

102) or a placebo pellet (Catalog # C-111).  The experimental pellets deliver a daily dose of 

approximately 10 mg/kg 2-AAF.  Placebo pellets are comprised of cholesterols, lactose, 

celluloses, phosphates, and stearates.  These pellets are identical to the 2-AAF pellets in 

composition, but exclude the active compound.  Animals in groups receiving surgical 

manipulation were subjected to PH one week following pellet implantation (at 13 weeks of 

age), essentially as originally described (10).  Due to significant mortality in the 2-AAF/PH 

and 2-AAF/RP groups, only 130 (70%) rats survived the experimental protocol and these rats 

are included in the results presented.  Animals were euthanized and liver tissue was harvested 

from all animal groups at 3, 7, 10, 14, and 21 days post-PH (n=3-7 animals per time point, 

except for 21 day time point in 2-AAF/RP and 2-AAF groups which suffered high rates of 

mortality, where n=2).  FIGURE 2.1 illustrates the treatment timeline for each group in this 

study. 

Administration of 4,4’-diaminodiphenylmethane  

4,4’-diaminodiphenylmethane (DAPM) was purchased from Sigma Chemical 

Company (St. Louis, MO) and prepared by dissolving in dimethylsulfoxide (DMSO) at a 

concentration of 50 mg/ml, as previously described (64).  At the outset of the experiment, 

rats were randomized into retrorsine treatment (n=45) and control (n=91) groups.  

Subsequently, animals were further divided into the following groups: (i) DAPM treatment + 

retrorsine treatment + partial hepatectomy (DAPM/RP), (ii) 4,4’-diaminodiphenylmethane 

treatment + partial hepatectomy (DAPM/PH), (iii) 4,4’-diaminodiphenylmethane treatment  
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FIGURE 2.1.  Experimental design timeline for 2-AAF study.  A timeline indicating the age 
of animals (weeks) at the various times of treatment in this study is provided.  R indicates 
the time points for retrorsine injection (30 mg/kg each).  2-AAF indicates the time of 
insertion of a 21 day time-release 2-acetamidofluorene pellet (50 mg).  Placebo indicates 
insertion of 21 day time-release placebo pellet (50 mg).  (A) Retrorsine treatment + Partial 
Hepatectomy (RP).   (B) Retrorsine treatment only (Retrorsine Only).  (C) 2-AAF 
treatment + Partial Hepatectomy (2-AAF/PH).  (D) 2-AAF treatment + Retrorsine 
treatment + Partial Hepatectomy (2-AAF/RP).  (E) 2-AAF treatment only (2-AAF only). 
(F) Placebo treatment + Partial Hepatectomy (Placebo/PH).  (G) Placebo treatment only 
(Placebo only). 
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only (DAPM only), (iv) dimethylsulfoxide (vehicle) treatment + partial hepatectomy 

(DMSO/PH), and (v) dimethylsulfoxide (vehicle) treatment only (DMSO only).  In addition, 

animals in these groups were compared to RP rats (n=27) from previously reported studies 

(39).  Retrorsine-treated animals received two doses of retrorsine (30 mg/kg) at ages 6 and 8 

weeks, as described above.  At 13 weeks of age, animals were injected with either DAPM or 

DMSO (vehicle) and PH was performed 24 hours later, essentially as originally described 

(10).  Animals in the DAPM only and DMSO only groups were not surgically manipulated.  

The treatment protocol was well tolerated.  A total of 108 (79%) rats survived the 

experimental protocol and these rats are included in the results presented.  Animals were 

euthanized and liver tissue was harvested at 3, 7, 10, 14, 21, and 30 days post-PH (n=3-6 

animals per time point).  FIGURE 2.2 illustrates the treatment timeline for each group in this 

study. 

Administration of Carbon Tetrachloride 

Carbon Tetrachloride (CCl4) was purchased from Sigma Chemical Company (St. 

Louis, MO) and prepared by diluting the solution with corn oil (1:1 vol/vol) resulting in a 

final concentration of 797 mg/mL, as previously described (50).  At the outset of the 

experiment animals were divided into retrorsine treatment (n=53) and control (n=48) groups.  

Subsequently, animals were further divided into the following groups: (i) retrorsine treatment 

+ carbon tetrachloride treatment (Ret/CCl4), (ii) carbon tetrachloride treatment only (CCl4 

only), or (iii) corn oil (vehicle) treatment only (Corn oil only).  Retrorsine-treated animals 

received two doses of retrorsine (30 mg/kg) at ages 6 and 8 weeks, as described above.  At 13 

weeks of age the animals were injected with a single dose of either CCl4 (1500 mg/kg or 1.88 

ml/kg) or corn oil (vehicle) (1.88 ml/kg).   Due to significant mortality in the Ret/CCl4 and  
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FIGURE 2.2.  Experimental design timeline for DAPM study.  A timeline indicating the 
age of animals (weeks) at the various times of treatment is given.  R indicates the times of 
retrorsine injection (30 mg/kg each).  DAPM indicates the time of 4, 4-
diaminodiphenylmethane injection (50 mg/kg).  DMSO indicates the time of dimethyl 
sulfoxide injection (1 ml/kg).  (A) Retrorsine + Partial Hepatectomy (RP) (B) DAPM 
treatment + Partial Hepatectomy (DAPM/PH).  (C)  DAPM treatment + Retrorsine 
treatment + Partial Hepatectomy (DAPM/RP).  (D) DMSO + Partial Hepatectomy 
(DMSO/PH).  (E) DAPM treatment only (DAPM only).  (F) DMSO treatment only 
(DMSO Only). 
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CCl4 groups, only 45 (45%) rats survived the experimental protocol and these rats are 

included in the results presented.   Animals were euthanized and liver tissue was harvested at 

3, 7, 14, 21, and 30 days post-injection (n=3 animals per time point).  FIGURE 2.3 illustrates 

the treatment timeline for each group in this study. 

Administration of Dexamethasone   

Dexamethasone (DEX) (9α-Fluoro-16α-methyl-11β, 17α, 21-trihydroxy-1,4-

prenadiene-3,20-dione) was purchased from Sigma Chemical Company (St. Louis, MO).  A 

working solution of DEX was prepared by dissolving the solid in a small volume of 100% 

ethanol and then bringing the solution to a final concentration of 0.6 mg/ml using distilled 

water.  The working solution was used immediately after preparation. At the outset of the 

experiment, rats were randomized into retrorsine treatment (n=82) and control (n=70) groups.  

In addition, these animals were compared to RP animals (n=27) and CP animals (n=13) from 

previously reported studies (39).  Animals in retrorsine treatment group were treated with 

retrorsine (30 mg/kg) at 6 and 8 weeks of age, as described above.  Five weeks following the 

second retrorsine treatment, retrorsine-exposed and age-matched control rats were further 

randomized into the following groups: (i) no treatment + partial hepatectomy (CP), (ii) 

multiple dexamethasone treatments + retrorsine treatment (MDR), (iii) dexamethasone 

treatment + retrorsine treatment + partial hepatectomy (DRP), (iv) multiple dexamethasone 

treatments + partial hepatectomy (MDCP), (v) multiple dexamethasone treatments + 

retrorsine treatment + partial hepatectomy (MDRP), (vi) multiple dexamethasone treatments 

+ retrorsine treatment + partial hepatectomy + interleukin-6 treatment (MDRP/IL6).  

Animals receiving surgical manipulation were subjected to PH essentially as originally 

described (10).  DEX-treated animals in both the retrorsine and control groups were either  



 37

FIGURE 2.3. Experimental design timeline for CCl4 study.  Schematic at the top of the 
figure is a timeline indicating the age of animals (weeks) at the various times of treatment 
in this study.  R indicates the times of retrorsine injection (30 mg/kg each).  CCl4 indicates 
the time of carbon tetrachloride injection (1500 mg/kg).  (A) Retrorsine treatment + 
Carbon Tetrachloride treatment (Ret/CCl4).  (B)  Carbon Tetrachloride only (CCl4 only).  
(C) Corn Oil (Vehicle) only (corn oil only). 
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given a single (intraperitoneal) dose of DEX (2 mg/kg) at the time of PH or multiple (n=5) 

DEX treatments (2 mg/kg each) at 24h and 1h before PH and 1, 2, and 3 days post-PH.  Due 

to significant mortality in the MDRP and MDCP groups, only 101 (66%) rats survived the 

experimental protocol and these rats are included in the results presented.  Blood samples 

were collected from the abdominal aorta of select animals in the CP, MDCP, MDRP groups 

at 1, 12, and 48 hours after PH (n=3 for each time point and group except MDRP 24 and 48 

hour time points where n=4) and incubated at room temperature for 2 hours to allow 

coagulation to occur.  Coagulated blood samples were centrifuged at 1000 x g for 20 minutes 

to pellet red blood cells and platelets.  Following centrifugation, serum was collected and 

stored at -20°C.  Serum IL6 levels were quantified by the enzyme-linked immunosorbent 

assay (ELISA) at ELISA Tech (Aurora, CO).  Samples were analyzed in triplicate using the 

rat IL6 DuoSet ELISA development kit and Quantitkine® Rat IL6 Immunoassay Kit (R & D 

Systems, Minneapolis, MN).  An IL6 standard curve was generated using samples of known 

concentration ranging from 40 to 5000 pg/mL.  This curve was used to calculate the 

concentration of IL6 in experimental serum samples.  Liver tissues were harvested from 

surviving rats at 7, 14, 21, and 30 days after PH (n=3-7 per time-point) or at the equivalent 

time points for control animals.   FIGURE 2.4 illustrates the treatment timeline for each group 

in this study. 

Administration of Interleukin-6 

Rat interleukin-6 (IL6) recombinant protein was purchased from R&D Systems.  IL6 

was provided as a 0.586 mg/mL stock solution.  The IL6 working solution was prepared by 

diluting the stock solution with a PBS solution (1.54 mM KH2PO4, 155.17 mM NaCl, 2.71 

mM NaH2PO4-7H2O; pH 7.2) to yield a concentration of 100 μg/ml.  The working solution  
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FIGURE 2.4.  Experimental design timeline for DEX study.  Schematic at the top of the 
figure is a timeline indicating the age of animals (weeks) at the various times of treatment 
in this study.  R indicates the times of retrorsine administration (30 mg/kg each).  DEX 
with a horizontal arrow indicates multiple (n=5) DEX treatments (2 mg/kg each), whereas 
DEX with a vertical arrow indicates a single 2 mg/kg dose of DEX (see methods).  (A) 
Control (no retrorsine) + partial hepatectomy (CP).  (B) Retrorsine treatment + partial 
hepatectomy (RP).  (C) Multiple dexamethasone treatments + retrorsine (designated 
MDR).  (D) Dexamethosone + retrorsine + partial hepatectomy (DRP).  (E) Control (no 
retrorsine) + multiple dexamethasone treatments + partial hepatectomy (MDCP).  (F) 
Multiple dexamethasone treatments + retrorsine + partial hepatectomy (MDRP).  (G) 
Multiple dexamethasone treatments + retrorsine + partial hepatectomy + IL6 
(MDRP/IL6).   
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was used immediately after preparation.  Animals receiving IL6 were injected with 10 μg of 

protein in the tail vein. 

Administration of Bromodexoyuridine 

BrdU (5-bromo-2’-dexoyuridine) was purchased from Sigma Chemical Company (St. 

Louis, MO).  BrdU-treated animals received a single intraperitoneal dose of BrdU (100 

mg/kg) at 6-days post-PH.  The BrdU working solution was prepared by dissolving the solid 

in PBS (1.54 mM KH2PO4, 155.17 mM NaCl, 2.71 mM NaH2PO4-7H2O; pH 7.2) at 33.3 

mg/mL.  This solution was heated using hot tap water and vortexed vigorously to dissolve the 

solid.  The working solution was administered immediately following preparation.   

TISSUE HARVEST AND PREPARATION 

Liver tissue was harvested at various time points following PH or CCl4 exposure.  

Animals were anesthetized using a cocktail containing ketamine (60 mg/kg) and xylazine (5 

mg/kg) and liver tissues were resected.  Euthanasia of the animals resulted from 

exsanguination secondary to removal of the liver.  Animal weights and liver tissue weights 

were recorded for each animal at the time of PH (or treatment) and at necropsy.  Liver tissues 

were fixed in 10% neutral buffered formalin.  Formalin-fixed liver tissue was sent to Histo-

Scientific Research Laboratories (Mt. Jackson, VA) for routine paraffin embedding and 

sectioning.  Five μm sections were cut and H&E stained slides and unstained slides prepared.  

In addition, sections for immunohistochemical analysis were prepared from selected tissue 

samples.   
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IMMUNOHISTOCHEMICAL ANALYSIS 

Colorimetric immunoperoxidase analysis was carried out on paraffin-embedded tissue 

sections using standard procedures. Liver tissues were deparaffinized in xylene, dehydrated 

through a gradient of ethanol solutions, and rehydrated in PBS (1.54 mM KH2PO4, 155.17 

mM NaCl, 2.71 mM NaH2PO4-7H2O; pH 7.2).  Endogenous peroxidase activity was 

quenched by incubation in a 0.3% H202 solution (in 100% methanol) for 10 minutes.  

Antigen retrieval was achieved by placing the tissues in a heated 10 mM citrate buffer 

(DakoCytomation, Carpinteria, CA) and steaming for 30 minutes.  Non-specific antibody 

binding was blocked using a serum-free protein block (DakoCytomation).  Primary 

antibodies were diluted in antibody diluent with background reducing components 

(DakoCytomation).  Detection of primary antibodies was accomplished using the 

DakoCytomation Labelled Streptavidin-Biotin2, Horseradish Peroxidase (LSAB2®, HRP) 

system (DakoCytomation).  Detection of the secondary antibodies was accomplished with a 

peroxidase substrate containing diaminobenzidine (DakoCytomation).  Tissue sections were 

counterstained with Mayer’s hematoxylin (Sigma Chemical Company).  Primary antibodies 

were purchased from Santa Cruz Biotech (Santa Cruz, CA), Abcam (Cambridge, MA), or 

DakoCytomation.  Mouse anti-rat BrdU antibody (Abcam, Catalog #ab9557-500) and mouse 

anti-human cytokeratin 19 antibody (DakoCytomation, Catalog #M0772) were used at a 

dilution of 1:25. Goat anti-rat α-fetoprotein antibody (Santa Cruz Biotech, Catalog #sc-8108) 

was used at a dilution of 1:100. 

MORPHOMETRIC ANALYSIS 
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Morphometric analysis was performed by digitally scanning H&E stained slides using 

an Aperio Scanscope T2 Virtual Microscope System (Vista, CA) at a resolution of 0.4667 

μm/pixel.  Images were analyzed using Aperio Imagescope v6.25 software.  SHPC clusters 

were identified in the H&E sections based upon cell morphology and arrangement.  Using 

the various tools provided by the Imagescope v6.25 software, SHPC clusters were 

enumerated and measured (area).  All data obtained using Imagescope v6.25 was normalized 

to the cross sectional area of the tissue section, measured using Image J v1.36 software 

(National Institutes of Health, Bethesda, MD).   

STATISTICAL ANALYSIS 

All statistical analyses reported were performed using either Kaleidograph v4.0 

software (Synergy Software, Reading, PA) or Graphpad Prism v4.03 (GraphPad Software, 

San Diego, CA).  Determination of significance in quantitative data was accomplished using 

the Student’s two-tailed t-test for unpaired data with unequal variance.  Statistical 

significance of survival curve data was determined by the Kaplan-Meier log-rank test. 

 

 

 

 

 



III.  RESULTS 

LIVER REGENERATION AFTER PH IN 2-AAF-TREATED RETRORSINE-EXPOSED RATS 

Rationale 

The 2-AAF/PH model of liver injury is commonly used to study the role of oval cells 

in liver regeneration.  In this model, the mito-inhibitory effects of 2-AAF inhibit mature 

hepatocytes from dividing in response to proliferative stimulus (such as PH), and the liver is 

regenerated through the emergence and proliferation of oval cells (6, 15).  Oval cells appear 

1-3-days post-PH, proliferate extensively, and then differentiate into new hepatocyte clusters 

between 7 and 14-days after PH, depending on the dose of 2-AAF administered (56).  Oval 

cell-derived new hepatocyte clusters are histologically similar to SHPCs, leading some 

investigators to suggest that there may be a precursor-product relationship between oval cells 

and SHPCs (6, 19, 62).  We investigated this possibility by combining the retrorsine/PH 

model of liver injury and regeneration with exposure to the mito-inhibitory agent 2-AAF.  

Given that liver regeneration after PH in rats exposed to 2-AAF occurs through the 

outgrowth and expansion of oval cells, it can be inferred that oval cells are resistant to the 

mito-inhibitory effects of 2-AAF. Likewise, SHPCs are resistant to the mito-inhibitory 

effects of retrorsine.  However, based on the differences in cytochrome P450s that are 

required for the metabolism of retrorsine and 2-AAF (65, 66), it is plausible that retrorsine-

resistant SHPCs may be susceptible to 2-AAF poisoning.  Determination that SHPCs are 



 46

sensitive to 2-AAF poisoning would provide significant new evidence that oval cells do not 

represent progenitor cells for SHPCs.     

Regenerative responses after PH in rats exposed to retrorsine alone and retrorsine in 
combination with 2-AAF.   

At 3-days following PH, RP animals have liver weights and liver/body weight ratios 

comparable to that observed in 2-AAF/PH animals (P>0.05 for RP versus 2-AAF/PH) 

(FIGURE 3.1B-C).  RP animals have low liver weights and liver/body weight ratios through 

14-days post-PH, and then show a moderate increase in liver weight at 21-days post-PH 

(FIGURE 3.1B-C). Animals in the 2-AAF/RP group have liver weights that are not 

significantly different (P>0.05) from those observed in RP animals for the first 14-days post-

PH (FIGURE 3.1B).  The lack of increasing liver weights among these animals during the 

first 14-days post-PH does not reflect a lack of regenerative activity.  Rather, retrorsine-

injured hepatocytes undergo megalocytosis following PH, and then apoptosis as new cells are 

generated in response to liver deficit (39).  Animals in the 2-AAF/RP group show a dramatic 

increase in liver weight between 14 and 21-days post-PH and have liver weights that are 

indistinguishable from placebo/PH control animals at 21-days post-PH (P>0.05 for 2-

AAF/RP versus placebo/PH) (FIGURE 3.1B).   In contrast, 2-AAF/PH animals have low liver 

weights through 7-days post-PH, with a moderate increase in liver size at 10-days post-PH, 

and becoming indistinguishable (P>0.05 for 2-AAF/PH versus placebo/PH) from control 

(placebo/PH) by 14-days post-PH (FIGURE 3.1B).   Likewise, 2-AAF/PH animals 

demonstrate an increase in liver/body weight ratio by 14-days post-PH and attain a control 

liver/body weight ratio by 21-days post-PH (P>0.05 for 2-AAF/PH versus placebo/PH) 

(FIGURE 3.1C).  Together, these results suggest that the timing and kinetics of liver  
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FIGURE 3.1.  Treatment with 2-AAF blocks the SHPC regenerative response but not liver 
regeneration in retrorsine-exposed rats.  The effects of 2-AAF treatment on (A) average 
body weight, (B) average liver weight, and (C) average liver/body weight ratios are 
shown.  Each bar represents the mean calculated from all surviving animals in the various 
experimental groups (± SEM, n=3-7 per time point for all groups, except for 21 day 2-
AAF/RP and 2-AAF/PH where n=2).  The asterisks denote statistically significant 
differences (P<0.05) in liver weight (B) or liver/body weight ratios (C) for the designated 
comparisons.  NS denotes no significant difference (P>0.05) for the designated 
comparison. 
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regeneration after PH in retrorsine-exposed animals treated with 2-AAF is similar to that 

observed in 2-AAF/PH animals. 

Analysis of H&E stained liver sections showed that the nature of the regenerative 

responses observed in RP and 2-AAF/RP animals differ significantly.  Liver tissue harvested 

from RP animals at 3-days post-PH contain emerging SHPC clusters and modest numbers of 

oval cells (FIGURE 3.2A).  At this same time point post-PH, oval cells begin to appear in 

large numbers in animals treated with 2-AAF, but SHPCs are not observed (FIGURE 3.2B-

C).  By 7-days post-PH, livers from RP animals show a robust SHPC response with 

numerous proliferating cell clusters and very little oval cell proliferation (FIGURE 3.2E).  In 

contrast, livers harvested at this time point from 2-AAF/RP and 2-AAF/PH rats exhibit 

marked proliferation of oval cells, but SHPCs are not observed (FIGURE 3.2F-G).  At 10-

days post-PH, RP animals exhibit large numbers of proliferating SHPC clusters (FIGURE 

3.2I), while SHPCs are not observed in livers harvested from 2-AAF/RP (FIGURE 3.2J) and 

2-AAF/PH animals (FIGURE 3.2K).  At 14-days post-PH a population of phenotypically 

‘small’ hepatocytes appear in the 2-AAF/RP and 2-AAF/PH animals (FIGURE 3.2N-O).  

These hepatocytes are found in close proximity to proliferating oval cells suggesting that 

these cells are the differentiated progeny (i.e. new hepatocytes) of oval cells (FIGURE 3.2N-

O).  Livers from RP animals at this time-point did not contain significant numbers of oval 

cells, but contained large numbers of expanding SHPC clusters (FIGURE 3.2M).  Neither 

SHPC clusters nor oval cells are observed at any time point after PH in placebo-treated 

animals (FIGURE 3.2D, H, L, and P). Likewise, SHPC clusters and oval cells are not 

observed in 2-AAF only, placebo only, and retrorsine only animals that were not surgically 

manipulated (FIGURE 3.3) (39).  The differences between progenitor cell responses observed  
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FIGURE 3.2.  SHPCs do not respond to liver deficit in retrorsine-exposed animals treated 
with 2-AAF. Livers from animals receiving retrorsine treatment and PH contain expanding 
SHPC clusters at (A) 3-days, (E) 7-days, (I) 10-days, and (M) 14-days post-PH.  In 
contrast, livers from animals receiving both retrorsine and 2-AAF contain large numbers 
of oval cells at (B) 3-days, (F) 7-days, and (J) 10-days post-PH, and new hepatocyte 
formation is observed at (N) 14-days post-PH.  Likewise, livers from animals receiving 
only 2-AAF contain  large numbers of proliferating oval cells at (C) 3-days, (G) 7-days, or 
(K) 10-days post-PH, and formation of some new hepatocyte clusters can be observed (O) 
14 days after PH.  Animals receiving placebo treatment do not exhibit oval cells or SHPC 
clusters at (D) 3-days, (H) 7-days, (L) 10-days, or (P) 14-days post-PH.  Short white 
arrows indicate SHPC clusters, long black arrows indicate oval cells, and short black 
arrows indicate new hepatocyte clusters.  (Original objective lens magnification 10x). 
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FIGURE 3.3.  Cellular responses in 2-AAF control groups.  SHPCs are never observed at 
any time after implantation of 2-AAF (A-D) or placebo (E-H) pellets.  (Original objective 
lens magnification 10x). 
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during liver regeneration in RP and 2-AAF/RP animals suggest that although the SHPCs (and 

their progenitors) are resistant to the mito-inhibitory effects of retrorsine, they may be 

susceptible to 2-AAF poisoning. 

Immunohistochemical analysis of 2-AAF-treated retrorsine-exposed rat liver. 

Immunostaining of the oval cell and biliary tract marker cytokeratin 19 (ck19) clearly 

labeled proliferating oval cells (along with biliary epithelia) in 2-AAF/PH and 2-AAF/RP 

rats at 7-days post-PH (FIGURE 3.4A, C).  At 14-days post-PH in 2-AAF/PH animals, ck19-

positive oval cells surround new hepatocyte clusters (FIGURE 3.4B).  The new hepatocytes 

were weakly positive for ck19 (FIGURE 3.4B).  This observation suggests that the new 

hepatocytes represent the progeny of proliferating/differentiating oval cells, as observed by 

others (56).  Likewise, ck19-positive oval cells surround new hepatocyte clusters in livers of 

2-AAF/RP animals at 14-days post-PH (FIGURE 3.4D).  In contrast, ck19 immunostaining of 

livers from RP animals at 7 days and 14-days post-PH decorated the modest oval cell 

response, but failed to reveal ck19-positive oval cells in close proximity to SHPC clusters 

(FIGURE 3.4E-F).  Rather ck19 immunostaining exclusively labeled biliary tracts in these 

animals (FIGURE 3.4E-F).   These results provide additional evidence that the oval cell 

response in RP rats is modest and that identifiable oval cells do not obviously feed into 

SHPC clusters. 

BrdU labeling demonstrates that new hepatocyte clusters observed in 2-AAF-treated animals 
are the progeny of oval cells. 

To investigate the potential lineage relationship between oval cells and hepatocytes 

observed in 2-AAF-exposed animals, BrdU (100 mg/kg i.p.) was administered to 2-AAF/RP  
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FIGURE 3.4.  Immunostaining with oval cell marker cytokeratin 19.  Cytokeratin 19 

(ck19) staining in 2-AAF/PH animals at (A) 7-days post-PH labels biliary epithelial cells 

and oval cells. and (B) 14-days post-PH labels biliary epithelial cells, oval cells and new 

hepatocyte clusters.  Likewise, ck19 immunostaining in 2-AAF/RP animals at (C) 7-days 

and (D) 14-days post-PH labels biliary epithelial cells and oval cells surrounding new 

hepatocyte clusters.  Ck19 immunostaining in RP animals at (E) 7-days and (F) 14-days 

post-PH only labels biliary tracts in these animals. White arrows indicate ck19 positive 

biliary tracts, black arrows indicate new hepatocyte clusters. (Original objective lens 

magnification 10x). 
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FIGURE 3.5. Bromodeoxyuridine labeling demonstrates a precursor-product relationship 
between oval cells and new hepatocyte clusters in 2-AAF-treated animals.  Treatment with 
BrdU at 6-days post-PH specifically labels oval cells in liver tissue collected at 7-days 
post-PH from 2-AAF treated animals: (A) 2-AAF/PH and (C) 2-AAF/RP.  By 14-days 
post-PH in animals, BrdU-positive oval cells give rise to new hepatocytes clusters (B).  A 
similar result is seen at 14-days post-PH in 2-AAF/RP rats (D).  Colon taken from a 
BrdU-treated rats serves as a positive control (E) and colon taken from an untreated rat 
(no BrdU) serves as a negative control (F).  (Original objective lens magnification 10x). 
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and 2-AAF/PH rats 6-days after PH.  As previously described (31, 36, 57), treatment with 

BrdU 6-days post-PH exclusively labels oval cells in animals receiving 2-AAF before PH 

(FIGURE 3.5A, C).  At 14-days post-PH, BrdU-positive cells are observed in 100% of the 

newly formed hepatocyte clusters in 2-AAF/PH (FIGURE 3.5B) and 2-AAF/RP animals 

(FIGURE 3.5D).  These results demonstrate that new hepatocyte clusters observed in 2-

AAF/PH and 2-AAF/RP animals are the progeny of proliferating/differentiating oval cells. 

Treatment with 2-AAF after PH blocks SHPC cluster expansion. 

 To directly address the possibility that SHPCs are susceptible to the mito-inhibitory 

effects of 2-AAF poisoning, rats were treated with the standard RP protocol followed by the 

addition of 2-AAF after the initiation of SHPC proliferation (FIGURE 3.6).  One week 

following PH, rats were treated with either a placebo (n=5) or a 2-AAF (n=6) controlled time 

release pellet and livers were collected 7 days later (14-days post-PH).  Morphometric 

analysis of H&E stained tissue from these animals demonstrated that SHPC clusters in 

animals receiving 2-AAF ceased to expand after administration of 2-AAF, suggesting that 

the proliferation of SHPC was inhibited by 2-AAF exposure (FIGURE 3.6D and TABLE 3.1).  

The size of SHPC clusters observed in RP + 2-AAF animals at 14-days post-PH were 

indistinguishable (P>0.05) from those observed in RP animals at 7-days post-PH (FIGURE 

3.6D and TABLE 3.1).  In contrast, SHPC clusters in RP + placebo animals expand reflecting 

the continued proliferation of SHPCs, and by 14-days post-PH are approximately two-fold 

larger than those observed in RP + 2-AAF animals (TABLE 3.1 and FIGURE 3.6E).  There 

were no differences (P>0.05 for RP versus RP + placebo at 14-days post-PH) in the size of 

SHPC clusters observed in RP animals receiving placebo pellets and RP animals (in the 

absence of placebo) at 14-days post-PH (TABLE 3.1).  These data directly demonstrate that  
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FIGURE 3.6.  Treatment with 2-AAF after PH in retrorsine-exposed rats blocks SHPC 
expansion.  A timeline indicating the age of animals (weeks) at the various times of 
treatment in this study is provided.  R indicates the time points for retrorsine injection (30 
mg/kg each).  2-AAF indicates the time of insertion of a 21 day time-release 2-
acetamidofluorene pellet (50 mg).  Placebo indicates insertion of 21 day time-release 
placebo pellet (50 mg).  (A) Retrorsine + parital hepatectomy + 2-AAF treatment 7-days 
post-PH (RP + 2-AAF). (B) Retrorsine + partial hepatectomy + placebo treatment 7-days 
post-PH (RP + Placebo).   H&E stained liver harvested from at 14-days post-PH from (D) 
RP + 2-AAF animals exhibit SHPC clusters comparable in size to those observed in (C) 
RP animals at 7-days post-PH.  However, livers taken from (E) RP + Placebo animals at 
14-days post-PH exhibit SHPC clusters comparable to (F) RP animals at 14-days post-PH.  
Arrows indicate SHPC clusters.  (Original objected lens magnification 10x). 
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SHPCs are susceptible to 2-AAF poisoning and suggest that SHPCs are not the progeny of 2-

AAF resistant oval cells. 

LIVER REGENERATION AFTER PH IN DAPM-TREATED RETRORSINE-EXPOSED RATS 

Rationale 

A precursor-product relationship between oval cells and SHPCs has been suggested 

by several investigators (6, 62).  Oval cells are resistant to the mito-inhibitory effects of 2-

AAF poisoning, whereas retrorsine-resistant SHPCs are susceptible to this toxin, providing 

strong evidence that SHPCs are not the progeny of oval cells.  To further investigate the 

possibility that oval cells are progenitors of SHPCs, F344 rats were treated with retrorsine 

and DAPM, a biliary toxin, 24 hours prior to PH.  Oval cells reside in the bile ducts of the 

liver (40, 60, 67).  Thus, it is possible to eliminate the oval cell-mediated regenerative 

response by destroying the bile ducts of the liver using a biliary specific toxin.  Several 

investigators have shown that DAPM treatment leads to the targeted destruction of the bile 

ducts of F344 rats (60, 64).   Therefore, the appearance of SHPCs in the livers of retrorsine-

exposed rats treated with DAPM after PH would provide strong evidence that these cells are 

not derived from oval cells.       

DAPM treatment produces bile duct injury in retrorsine-exposed rats. 

Treatment of rats with a singe dose of DAPM results in the targeted destruction of 

bile ducts (FIGURE 3.7), as previously reported (60, 64).  The destruction of bile duct 

structures is rapid, with evidence of severe bile duct damage by 24-hours after DAPM 

treatment (FIGURES 3.7A, 3.8A).  DAPM-induced bile duct damage persists through 3-days  



 64

FIGURE 3.7. DAPM selectively destroys bile ducts in rats.  DAPM causes the selective 
destruction of bile ducts by 24 hours after administration in control rats that receive 
DAPM only (A,E), DAPM/PH (B,F), and DAPM/RP (C,G).  Bile duct injury is not 
observed in animals receiving (D,H) DMSO (vehicle) only.  (Original objective lens 
magnification 20x for panels (A-D), 40x for panels (E-H)). 
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FIGURE 3.8.  Time-course for recovery of bile ducts following DAPM-induced injury.  (A) 
At 24 hours after DAPM administration, bile ducts are severely damaged in the livers of 
DAPM only rats.  (B) By 3-days after DAPM administration, immune cells are recruited 
to regions of cellular necrosis.  (C) At 7-days post-DAPM, bile duct structure is restored 
and appears normal.  Bile duct damage is not observed in DMSO-treated control animals 
at (D) 24 hours, (E) 3 days, and (F) 7-days post-DMSO administration.  Arrows indicate 
damaged bile ducts.  (Original objective lens magnification 20x). 
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post-injection (FIGURE 3.8B) before recovery of biliary cell types was observed.  For several 

days following DAPM administration (in DAPM only animals), remnants of bile duct 

structures can be observed in damaged portal tracts (FIGURE 3.8A-B), and immune cells 

recruited in areas of injury populate the necrotic lesions (FIGURE 3.8B).  Morphologically 

normal bile duct structures can be observed in portal tracts 7-days after DAPM injection in 

DAPM only treated animals (FIGURE 3.8C).  In DAPM/PH animals, DAPM-induced bile 

ductular damage occurs rapidly, with evidence of bile duct injury at 24-hours post-injection 

(FIGURE 3.7).  However, recovery of biliary epithelial cells and bile duct structures is 

achieved over a shorter time course compared to DAPM only animals.  In DAPM/PH rats, 

restoration of morphologically normal bile duct structures is observed by 3-days post-PH, 

corresponding to 4-days post-DAPM administration (FIGURE 3.9K).  Likewise, in 

DAPM/RP rats bile duct damage is noted at 24-hours after DAPM administration (FIGURE 

3.7), evidence of bile duct repair is observed at 3-days post-PH (4-days post-DAPM 

treatment), and normalization of bile duct structure is observed by 7-days post-PH (FIGURE 

3.9A-B).  No bile duct injury is observed in DMSO-treated control animals at any time point 

after injection (FIGURE 3.8D-F).  Similarly, retrorsine treatment alone (in the absence of 

DAPM) does not produce notable bile duct injury (39).     

Liver regeneration after partial hepatectomy in retrorsine-exposed rats following DAPM 
treatment.  

At 3-days post-PH, animals in all groups exhibit similar body weights, liver weights, 

and liver/body weight ratios (FIGURE 3.10).  These similarities persist through 7-days post-

PH among animals in the RP and DAPM/RP treatment groups.  At 7-days post-PH, these 

animals have liver weights (P=0.561 for RP versus DAPM/RP) and liver/body weight ratios  
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FIGURE 3.9.  Destruction of bile ducts by DAPM does not block the SHPC regenerative 
response in retrorsine-exposed rats.  Livers from DAPM/RP rats contain SHPCs at (A) 3-
days post-PH.  These clusters expand through (B) 7-days, (C) 10-days, (D) 14-days, and 
(E) 30-days post-PH.  This response is indistinguishable from that observed in the livers 
of RP animals at (F) 3-days, (G) 7-days, (H) 10-days, (I) 14-days, and (J) 30-days post-
PH.  SHPC clusters are never observed in DAPM/PH (K-O) or DMSO/PH (P-T) control 
animals at any time point after PH.  Arrows indicate SHPC clusters. (Original objective 
lens magnification 10x). 
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FIGURE 3.10.  DAPM treatment does not block liver regeneration in retrorsine-exposed 
rats.  The effects of DAPM treatment on (A) average body weight, (B) average liver 
weight, and (C) average liver/body weight ratios are shown.  Each bar represents mean 
calculated from all surviving animals in the various experimental groups (± SEM, n=3-10 
per time point for all groups).  Asterisks denote significant differences (P<0.05) in 
DAPM/RP and RP weights and liver/body weight ratios.  NS denotes no significant 
difference in DAPM/RP and RP weights and liver/body weight ratios. 
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(P=0.275 for RP versus DAPM/RP) that are not significantly different from one another.  

However, control (DMSO/PH and DAPM/PH) animals have significantly increased (P<0.05) 

liver weights and liver/body weight ratios compared to RP and DAPM/RP animals at this 

time point (FIGURE 3.10B-C), reflecting a robust regenerative response in these animals.  

This trend continues through 10 and 14-days post-PH (FIGURE 3.10B-C).  Liver regeneration 

in DMSO/PH and DAPM/PH animals is mediated by proliferation of mature hepatocytes and 

is completed over a short period of time.  However, at 10 and 14-days post-PH the liver 

weights and liver/body weight ratios for DAPM/RP and RP rats are lower than those 

observed in control animals (FIGURE 3.10B-C).  The low liver weights are not due to a lack 

of cellular regeneration, but reflect loss of tissue mass related to apoptosis of retrorsine-

injured hepatocytes (megalocytes) in retrorsine-exposed liver (63).  By 21-days post-PH, an 

increase in the liver weights of retrorsine-exposed animals is observed (FIGURE 3.10B).  At 

this time point, animals in the DAPM/RP group have liver weights comparable to that 

observed in RP rats (P=0.453 NS), but have liver/body weight ratios that are significantly 

(P=0.032) lower than that observed in RP rats (FIGURE 3.10C).  This difference in liver/body 

weight ratio between RP and DAPM/RP animals is due to the higher average body weight 

observed in DAPM/RP animals (versus RP animals), while the liver weights observed in 

these two treatment groups are indistinguishable at this time point (FIGURE 3.10).  Control 

animals at 21-days post-PH have significantly higher (P<0.05) body weights, liver weights, 

and liver/body weight ratios than those observed in the retrorsine-treated animals (FIGURE 

3.10).  At the end of the 30-day post-PH time period, animals in the RP and DAPM/RP 

groups have significantly (P<0.05) lower liver weights and liver/body weight ratios than 
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those observed in DAPM/PH and DMSO/PH control groups, suggesting that regeneration is 

not complete and may be ongoing in these retrorsine-exposed animals (FIGURE 3.10B-C).             

Examination of H&E stained liver tissue harvested from DAPM/RP rats reveals a 

SHPC-mediated regenerative response similar to that observed in RP rats (FIGURE 3.9).  

Livers harvested from RP animals contain SHPC clusters that are easily recognized by 3-

days post-PH (FIGURE 3.9F).  These cell clusters expand through 7 and 10-days post-PH, 

reach lobule size by 14-days post-PH, and eventually replace the injured hepatocytes and 

restore the liver mass (FIGURE 3.9G-J).  Similarly, SHPC clusters are seen in liver tissues 

harvested from DAPM/RP animals at 3-days post-PH (FIGURE 3.9A).  These cell clusters 

expand through 7-days and 10-days post-PH (FIGURE 3.9B-C) and reach lobule size by 14-

days post-PH (FIGURE 3.9D).  Moreover, SHPC clusters in the livers of DAPM/RP rats 

ultimately replace damaged hepatocytes resulting in the normalization of the liver 

parenchyma by 30-days post-PH (FIGURE 3.9E).  Thus, the cellular regenerative response 

observed in DAPM/RP animals is indistinguishable from that seen in RP animals.  Oval cells 

are never observed after PH in DAPM/RP rats, reflecting the effectiveness of the DAPM 

treatment.  Likewise, SHPC clusters are never observed in DAPM/PH, DMSO/PH, DAPM 

only, and DMSO only control rats (FIGURES 3.7 AND 3.9).  In addition, SHPCs are not 

observed in animals treated with retrorsine only in the absence of PH or after PH in control 

animals that do not receive retrorsine (39). Together, these observations suggest that liver 

regeneration in DAPM/RP rats is mediated by an oval cell-independent SHPC response and 

is histologically identical to that observed in RP rats. 

Immunostaining of oval cell/biliary tract marker cytokeratin 19 in DAPM-treated retrorsine-
exposed rats. 
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Oval cells originate from cells located in the portal tracts (possibly biliary epithelial 

cells) and expansively proliferate in several models of liver injury and regeneration (6, 15, 

20, 60).  DAPM-induced destruction of bile ducts effectively eliminates the oval cell reaction 

after PH in these models of liver injury secondary to bile duct injury (60).  In the current 

study, oval cells were never observed in H&E stained liver sections of DAPM-treated 

animals (FIGURE 3.9).  To verify the absence of an oval cell response following DAPM 

treatment in experimental rats, tissues from DAPM/RP animals were immunostained for 

ck19.  At 3 and 7-days post-PH, residual (DAPM-damaged) biliary tracts are decorated by 

antibodies to ck19 in DAPM/RP animals, but proliferating oval cells are not observed 

(FIGURE 3.11A-B).  In contrast, liver harvested from a rat that was treated with 2-AAF 

shows a robust ck19-positive oval cell response following PH, as reported by others (68-70).  

At 7-days post-PH in 2-AAF-treated animals, oval cells are clearly present in H&E stained 

liver tissue (FIGURE 3.11C).  Ck19 immunostaining of liver tissue from these animals clearly 

labels proliferating oval cells (FIGURE 3.11D).  Together, these results demonstrate that oval 

cells are not present after PH in DAPM-treated retrorsine-exposed animals, suggesting 

strongly that oval cells are not the source of the SHPCs.    

Morphometric analysis of SHPC clusters in DAPM/RP rats. 

To determine if the magnitude of SHPC responses observed in DAPM/RP and RP 

rats are similar, morphometric analyses on H&E stained liver sections from these animals at 

7 and 14-days post-PH were performed.  At 7-days post-PH there is no significant difference 

in the number (P=0.359) or size (P=0.286) of the SHPCs clusters observed in DAPM/RP and 

RP animals (TABLE 3.2).   Likewise, at 14-days post-PH there is no significant difference in 

the number (P=0.122) or size (P=0.268) of SHPC clusters observed in RP and DAPM/RP  
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FIGURE 3.11.  Immunostaining for cytokeratin 19 suggests a lack of oval cell activation in 
DAPM treated animals.  Immunostaining of cytokeratin 19 (ck19) in DAPM/RP animals 
at 3-days post-PH (A) labels bile duct remnants. At 7-days post-PH (B), ck19 
immunostaining labels the recovered/normalized biliary tissue and portal tracts.  No ck19-
postive oval cells are observed in the liver parenchyma at either of these time points 
(A,B).  In contrast, liver tissue harvested from a 2-AAF/PH rat at 7-days post-PH contain 
large numbers of oval cells in (H&E stained section, C), and these oval cells are clearly 
decorated by ck19 (D).  (Original objective lens magnification 10x). 
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animals (TABLE 3.2).  These data are consistent with the suggestion that the SHPC-mediated 

regenerative responses observed in RP rats and DAPM/RP rats are indistinguishable. 

LIVER REGENERATION AFTER CCL4 TREATMENT IN RETRORSINE-EXPOSED RATS 

Rationale 

The results of our studies strongly suggest that SHPCs are not derived from oval cells 

or any other biliary cell type and that the stem cell niche may not be restricted to the 

periportal aspect of the hepatic lobule.   In fact, Gordon et al. observed that emerging SHPC 

clusters arise in all three zones of the hepatic lobule (39).  These observations combine to 

suggest that SHPCs may represent a parenchymal stem-like cell with distribution to all three 

zones of the liver lobule.  To begin to address this possibility, we treated retrorsine-exposed 

rats with the necrotizing agent CCl4.  In rats, administration of CCl4 results in the targeted 

destruction of pericentral and centrilobular hepatocytes (50). Therefore, if the SHPCs (or 

their progenitors) are localized or restricted to the pericentral or centrilobular zones of the 

parenchyma then the SHPC-mediated regenerative response will be diminished or blocked 

after CCl4 treatment in retrorsine-exposed rats.           

Effects of carbon tetrachloride treatment on liver in retrorsine-exposed rats. 

As reported previously (71), CCl4 administration produced significant liver damage in 

the form of pericentral necrosis, but loss of liver tissue mass was not observed.  Liver tissue 

harvested 24-hours after CCl4 injection contains significant necrosis of the liver parenchyma 

with loss of approximately 59 ± 2% of hepatocytes (FIGURE 3.11).  This extent of liver injury 

is observed in 100% of animals exposed to CCl4.  CCl4-mediated injury was highly specific  
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FIGURE 3.12.  Effects of carbon tetrachloride treatment on rat liver.  H&E stained liver 
tissue harvested 24-hours post-CCl4 shows that approximately 60% of the parenchyma has 
undergone necrosis and that the CCl4-induced damage is specific to the pericentral zone of 
the liver (A,B).  Necrotic tissue is easily observed surrounding the central vein (C), while 
the area around the portal triad remains intact (D).  Pericentral hepatocytes exhibit damage 
and loss of structural integrity (E).  In contrast, periportal hepatocytes appear normal (D).  
Original objective lens magnification: 4x (A,B), 10x (C,D), and 20x (E,F). 
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FIGURE 3.13.  Liver regeneration after carbon tetrachloride treatment in retrorsine-
exposed rats.  The effects of CCl4 treatment on (A) average body weight, (B) average liver 
weight, and (C) average liver/body weight ratios are shown.  Each bar represents mean 
calculated from all surviving animals in the various experimental groups (± SEM, n=3 per 
time point).  Asterisks denote statistically significant differences (P<0.05) among groups 
compared.  NS denotes no statistically significant differences observed. 
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to pericentral and centrilobular hepatocytes, with virtually no damage to hepatocytes in the 

periportal zone (FIGURE 3.11).  However, necrosis is never observed in animals treated with 

corn oil (vehicle) only (FIGURE 3.12), nor is it observed in animals receiving retrorsine only 

(39).   

Regenerative responses to carbon tetrachloride treatment in retrorsine-exposed rat liver. 

Ret/CCl4 animals have body weights, liver weights, and liver/body weight ratios that 

are similar (P>0.05) to those observed in CCl4 and corn oil only (control) rats at all time 

points after injection with the exception of the 14-day post-CCl4 time point when significant 

differences are observed among groups in body weight and liver/body weight ratios (FIGURE 

3.13).  Analysis of liver tissue from Ret/CCl4 rats reveals that the regenerative response in 

these animals is similar to that observed after PH in RP rats (39).  At 3-days after CCl4 

injection, SHPC clusters are found in retrorsine-exposed rats (FIGURE 3.13A), continue to 

expand through 7-days and 14-days post-CCl4 (FIGURE 3.13B-C), and have begun to 

differentiate into mature hepatocytes by 30-days post-CCl4 (FIGURE 3.13E).    In RP rats, 

SHPCs emerge by 3-days post-PH (Figure 3.8F), expand through 7-days and 10-days post-

PH, reach lobule size by 14-days post-PH, and eventually replace the injured hepatocytes and 

restore the liver mass by 30-days post-PH (FIGURE 3.8G-J).  Thus, the SHPC responses are 

nearly identical in Ret/CCl4 and RP rats, suggesting that the cellular reaction to liver injury is 

mediated by the same cells.  SHPCs are never observed at any time point after injection in 

CCl4 only (FIGURE 3.13E-H), nor are they observed at any time after injection in animals 

receiving vehicle (corn oil) only (FIGURE 3.13I-L) or in rats that were treated with retrorsine 

only (39).  These results suggest that SHPCs can respond to various forms of injury in 

retrorsine-exposed rats, involving both necrosis and surgical resection.        
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FIGURE 3.14.  Destruction of the centrilobular zone of the liver by carbon tetrachloride 
does not block the SHPC regenerative response in retrorsine-exposed rats.  SHPCs appear 
in Ret/CCl4 rat liver at (A) 3-days post-CCl4, continue to expand through (B) 7-days and 
(C) 14-days post-CCl4, with completion restoration of parenchymal structure by (D) 30-
days post-CCl4.  (E-H) SHPCs are never observed at any time point after injection in CCl4 
only rats.  Likewise, SHPCs are never observed in vehicle (corn oil) only rats (I-L).  
Arrows indicate SHPC clusters.  (Original objective lens magnification 10x). 
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FIGURE 3.15.  Immunohistochemical analysis of carbon tetrachloride-treated retrorsine-
exposed rat liver.  Cytokeratin 19 immunostaining labels few parenchymal cells but 
strongly labels the biliary tracts at (A) 3-days post-CCl4.  Decoration of the biliary tracts 
continues through (B) 7 days and (C) 14-days post-CCl4.  α-fetoprotein immunostaining 
labels SHPCs at all time points but also decorates injured hepatocytes and megalocytes, 
(D-F).  (Original objective lens magnification 10x). 
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Immunohistochemical analysis of carbon tetrachloride-treated retrorsine-exposed rat liver. 

Previously it has been demonstrated that oval cells do not respond in significant 

numbers to surgical resection of the liver in retrorsine-exposed rats (39).  In order to 

determine the magnitude of oval cell response to necrotic injury in retrorsine-exposed rats, 

liver tissue harvested at various times after CCl4 injection was immunostained for the oval 

cell marker ck19.  Significant numbers of ck19-postive cells are never observed in the 

parenchyma of Ret/CCl4 rats at any time point after CCl4 injection (FIGURE 3.14A-C).  At 3-

days post-CCl4, ck19-positive cells and biliary tracts are observed, but ck19-positive cells are 

never seen proximal to SHPC clusters (FIGURE 3.14A).  By 7-days and 14-days post-CCl4 

only the biliary tracts stain positive in Ret/CCl4 animals (FIGURE 3.14B-C).  These 

observations suggest that oval cells do not significantly contribute to liver regeneration after 

CCl4 exposure in retrorsine-exposed rats.     

In RP rats, SHPCs express α-fetoprotein (AFP) until 20+ days after PH (72).   In 

order to determine if SHPCs observed in Ret/CCl4 rats exhibit similar phenotypic patterns as 

those observed in RP rats, liver tissues from Ret/CCl4 rats at 3, 7, and 14-days post-injection 

were immunostained for AFP.  SHPCs observed in Ret/CCl4 rats were positive for AFP at 

these time points (FIGURE 3.14D-F).  However, hepatocytes (hepatocytic megalocytes) also 

exhibit AFP-positive staining in these animals (FIGURE 3.14D-F).  Expression of AFP by 

retrorsine-injured megalocytes may reflect the nature of the CCl4 injury in these animals, 

consistent with previous findings in animals treated with CCl4 (73).   

Morphometric analysis of the small hepatocyte-like progenitor cell response in carbon 
tetrachloride-treated retrorsine-exposed rats. 
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To directly compare the magnitude of SHPC-mediated regenerative responses 

observed in Ret/CCl4 rats with that of RP animals, morphometric analysis was performed on 

SHPC clusters observed in these animals.  This analysis shows that the number of SHPC 

clusters in the livers of Ret/CCl4 rats at 7-days post-CCl4 is not significantly (P>0.05) 

different from the number of SHPC clusters observed in RP rats at this same time point 

(TABLE 3.3).  However, the size of SHPC clusters observed in Ret/CCl4 rats at 7-days post-

CCl4 are 40% larger than those observed in RP rats (TABLE 3.3).  There is no significant 

difference (P>0.05) in the average number of cells present in the SHPC clusters of Ret/CCl4 

and RP rats (150 ± 10 in Ret/CCl4 versus 142 ± 9 in RP).   Thus, differences in the size of 

these clusters are due to variation in the size of the SHPCs composing these clusters.  

Morphologically, the SHPCs found in the livers of Ret/CCl4 rats are highly vacuolated 

(FIGURE 3.12).  This feature of the cells is also observed in RP rats, but is much more 

pronounced in Ret/CCl4 animals (FIGURE 3.12).  These results demonstrate that the SHPC-

mediated regenerative response is not dampened by destruction of the pericentral region of 

the liver parenchyma, suggesting that the progenitor cells that give rise to SHPCs are not 

restricted the this zone of the liver. 

CYTOKINE-DEPENDENT PRIMING OF SMALL HEPATOCYTE-LIKE PROGENITOR CELLS 

Rationale 

Cytokines (such as IL6, TNF-α) play an important role in the priming (activation) of 

both hepatocytes and oval cells for proliferation after liver injury or surgical resection (12, 

21).  However, the role that cytokines play in the activation of SHPCs has not been 

investigated.  Therefore, we examined the possibility that cytokines are required for the 
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activation of SHPCs after injury by treating retrorsine-exposed rats with either a single dose 

or multiple doses (n=5) of the cytokine inhibitor dexamethasone (DEX).  Other investigators 

established that DEX inhibits TNF-α and IL6 production in rat liver by interfering with the 

transcription of their respective genes (52, 74, 75).  DEX has been used to block the 

activation of mature hepatocytes and oval cells after PH in the livers of F344 rats (52).  Thus, 

if cytokine-priming is required for activation of the SHPC-mediated regenerative response, 

then treatment of retrorsine-exposed rats with DEX prior to PH should impair emergence and 

proliferation of SHPCs.          

A single dexamethasone treatment dampens the small hepatocyte-like progenitor cell 
response after partial hepatectomy in retrorsine-exposed rats. 

DRP (dexamethasone/retrorsine/PH) rats tolerate the experimental treatment protocol 

with minimal treatment-related mortality (90% surviving to 7 days).  Following PH, DRP 

animals demonstrate weight gain comparable to that observed in RP and CP rats (FIGURE 

3.16A).  The livers of CP rats rapidly recover tissue mass after PH, with complete 

regeneration by 14-days post-PH (FIGURE 3.16B).  RP rats also completely regenerate their 

livers after PH, but with a more protracted course.  The liver weights of RP rats do not 

significantly increase during the first 14-days post-PH, but a progressive enlargement of liver 

size occurs from 14 to 30-days post-PH, with full restoration of liver mass by 30-days post-

PH (FIGURE 3.16B). CP rats rapidly restore normal liver/body weight ratios after PH (by 7 

days), indicative of the robust regenerative activity in the livers of these animals (FIGURE 

3.16C).  The restoration of normal liver/body weight ratio in RP rats occurs with a timing 

that reflects restoration of liver mass, with completion of this process by 30-days post-PH 

(FIGURE 3.16C).  In contrast, there is no appreciable gain of liver weight during the first 21- 
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FIGURE 3.16.  A single DEX treatment delays liver regeneration in retrorsine-exposed 
rats.  The effects of a single DEX dose on (A) average body weight, (B) average liver 
weight, and (C) average liver/body weight ratios are shown.  All DRP animals received a 
single dose (2 mg/kg) of DEX 1 hour prior to PH.  RP and CP animals did not receive 
DEX treatment.  Each bar represents the mean calculated from all surviving animals (n=3-
5) in the various experimental groups (± SEM).  NS denotes no significant difference in 
DRP and RP weights.  
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days post-PH among DRP rats, but an increase in liver weight is observed by 30-days post-

PH (FIGURE 3.16B).  This observation suggests that a single dose of DEX dampens SHPC-

mediated liver regeneration in retrorsine-treated rats.  DRP rats do not achieve a normal 

liver/body weight ratio during the first 30-days after PH, but this measurement improves 

during the experimental period, consistent with an impaired regenerative response in these 

animals (FIGURE 3.16C). 

SHPCs are found among megalocytic hepatocytes at 7-days post-PH in DRP rats 

(FIGURE 3.17E), but these regenerative SHPC clusters are 60% smaller (average cluster size 

of 1.92 ± 0.44 x 104 μm2, n=62, P<0.0001 for RP versus DRP at 7-days post-PH) than those 

observed in RP rats at this time point (FIGURE 3.17 AND TABLE 3.4).  During the subsequent 

time period (14 and 21-days post-PH), the SHPC clusters expand and eventually occupy 

approximately 50% of the liver parenchyma by 30-days post-PH.  This observation is 

consistent with the partial normalization of liver/body weight ratios in these animals over this 

period of time.  In comparison, liver tissue from RP rats (in the absence of DEX treatment) 

contain clusters of SHPCs at 7-days post-PH that progressively and rapidly expand from 14 

to 21-days post-PH, eventually repopulating nearly the entire liver parenchyma by 30-days 

post-PH (FIGURE 3.17).  In DRP and RP rats, oval cell proliferation is minimal and limited 

to the periportal regions (39).  In addition, SHPC clusters are never observed in CP animals 

(39). 

Multiple dexamethasone treatments block the production of IL6 after partial hepatectomy. 

To determine IL6 levels after PH, ELISA was performed on serum samples collected 

from CP, MDCP (multiple dexamethasone/control/PH), and MDRP (multiple 

dexamethasone/retrorsine/PH) animals at 1, 12, and 48-hours post-PH.  Rats in the CP group  
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FIGURE 3.17.  A single DEX treatment dampens the SHPC response after PH in 
retrorsine- exposed rats.  H&E stained liver sections from retrorsine-exposed rats at (A) 
7-days, (B) 14-days, (C) 21-days, and (D) 30-days post-PH are shown.  Liver tissue from 
retrorsine-exposed rats treated with a single dose of DEX (1 hour prior to PH) at (E) 7-
days, (F) 14-days, (G) 21-days, and (H) 30-days post-PH are shown.  Arrows indicate 
SHPC clusters.  (Original objective lens magnification 10x).    
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FIGURE 3.18.  Multiple DEX treatment effectively blocks the production of IL6 in 
retrorsine-exposed rats. ELISA analysis demonstrates that multiple (n=5) DEX treatments 
results in the consistent blockade of IL6 production at 1, 12, and 48 hours after PH in both 
retrorsine-exposed and control rats.   However, a consistent increase in IL6 levels is 
observed after PH in control animals that do not receive DEX treatment.  Each bar 
represents the mean serum IL6 levels (pg/ml) calculated from of serum samples taken 
from (n=3-4) animals in the various experimental groups (± SEM).  Large asterisk denotes 
presence of data but value too low to be visualized in graph (lowest value observable in 
graph 41 pg/ml).  Small asterisks denote a statistically significant difference (P<0.05) 
among compared groups.  NS denotes no statistically significant difference observed in 
compared values.  
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show a steady increase in IL6 levels over time after PH, reaching 8835 ± 299 pg/ml of IL6 at 

48 hours after PH (FIGURE 3.18).  In contrast, negligible levels of IL6 were detected in 

MDCP and MDRP (P<0.05 at 12 and 24 hours for CP versus MDRP and MDCP) rats 

throughout the first 48-hours post-PH (FIGURE 3.18).    These data demonstrate that multiple 

DEX treatments effectively block the production of IL6 after PH.  

Multiple dexamethasone treatments block the emergence and expansion of small hepatocyte-
like progenitor cells after partial hepatectomy in retrorsine-exposed rats. 

MDRP rats do not respond well to the experimental protocol, exhibiting signs of 

physical stress (lethargy, diarrhea) and high levels of post-operative mortality for the first 7-

days following PH (22% surviving to 7 days) (FIGURE 3.19).  In addition, MDRP rats fail to 

gain weight during the course of 30-days post-PH (FIGURE 3.20A), and there is no 

significant increase in liver mass in MDRP rats during the 30-day post-PH experimental 

period (FIGURE 3.20B).  In contrast, a slight recovery of liver weight is observed at 7-days 

post-PH in MDCP rats.  These livers continue to increase in size through 14-days post-PH 

and are indistinguishable (P=0.167 for MDCP versus CP) from CP livers by the end of the 

experimental interval (FIGURES 3.16B AND 3.20B).  Similarly, the liver/body weight ratios of 

MDCP rats are consistently higher than those observed in MDRP (P<0.0001 for MDRP 

versus MDCP at 30-days post-PH) animals and reach CP levels by 30-days post-PH 

(FIGURES 3.16C AND 3.20C).  MDRP rats fail to reach CP liver/body weight ratios within 

the 30-days post-PH (FIGURES 3.16C AND 3.20C), suggesting that the DEX-mediated 

blockade of IL6 significantly impairs liver regeneration by SHPCs in retrorsine-treated rats. 

At 7-days after PH the livers of MDRP animals are characterized by megalocytic 

hepatocytes, rare small clusters of SHPCs, and sparse oval cells (FIGURE 3.21 AND TABLE  
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FIGURE 3.19.  Administration of IL6 improves survival of MDRP rats.    Retrorsine-
exposed animals (n=9 at initiation of study) given multiple doses of DEX (blue line) 
exhibit high levels of mortality, whereas rats receiving a single intravenous dose (10 μg) 
of IL6 (red line) show increased survival (n=15 at initiation of study).  Results presented 
are derived from a single 24 animal group receiving treatment concurrently, but are 
representative of trends observed throughout the study.  (P=0.0057 by log-rank test).  
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3.4).  The SHPC clusters expand in size modestly (32%) during the interval from 7-days to 

14-days post-PH (FIGURE 3.21 AND TABLE 3.4).  Liver sections from MDRP animals that 

survive to 30-days post-PH contain SHPC clusters that are larger (average cluster size 7.1 x 

104 ± 7.3 x 103 μm2 at 30-days post-PH, P<0.0001 for MDRP 30-days post-PH versus MDRP 

14-days post-PH) than those observed at earlier time points, suggesting that some SHPC 

proliferation has occurred resulting in partial liver regeneration (FIGURE 3.21).  SHPC 

clusters in RP animals expand to completely regenerate the liver parenchyma by the end of 

the 30-day experimental period.  Liver sections taken from CP, MDR (multiple 

dexamethasone/retrorsine), and MDCP animals do not exhibit SHPC clusters at any time 

during the experimental period (FIGURE 3.21P-T).    

At all time points examined, multiple DEX treatments suppressed SHPC emergence 

and expansion.  At 7-days post-PH, RP animals contain 10-fold more SHPC clusters than 

MDRP rats (80 ± 11 SHPC clusters/liver section versus 8 ± 3 SHPC clusters/liver section) 

(TABLE 3.4).  The average number of SHPC clusters remains constant in RP animals at 14-

days post-PH (79 ± 8 SHPC clusters/liver section), but the size of these clusters has nearly 

doubled.  In contrast, MDRP animals show a marginal increase in the number (18 ± 6 SHPC 

clusters/liver section) and size of SHPC clusters at 14-days post-PH (TABLE 3.4).  At all time 

points analyzed MDRP animals contain the lowest average numbers of SHPC clusters.  In 

addition, SHPC clusters observed in RP animals are substantially larger than those observed 

in MDRP animals at both 7 and 14-days post-PH (2.2-fold and 2.6-fold larger, respectively) 

(TABLE 3.4).   

IL6 administration rescues the SHPC regenerative response in retrorsine-exposed rats 
receiving multiple dexamethasone treatments.   
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MDRP/IL6 (multiple dexamethasone/retrorsine/PH/IL6) animals exhibit improved 

tolerance of the experimental protocol (73% surviving to seven days post-PH) compared to 

MDRP animals that do not receive IL6 (FIGURE 3.19).  Throughout the course of 30-days 

post-PH, the MDRP/IL6 rats consistently gain weight in manner comparable to that observed 

in CP and RP rats (FIGURES 3.16A AND 3.20A).  MDRP/IL6 animals also demonstrate 

increased liver mass and liver/body weight ratios, similar to those observed in RP animals 

(FIGURES 3.16B-C AND 3.20B-C).   Administration of IL6 to MDRP rats results in 

restoration of a robust SHPC response, suggesting that exogenous IL6 administration 

overcomes the DEX-mediated blockade of SHPC activation and expansion.  The magnitude 

of the SHPC response in MDRP/IL6 animals is comparable to that observed in RP animals 

(FIGURE 3.21).  SHPC clusters emerge by day 7 and expand over time, reaching lobule size 

by 14-days post-PH.  These expanding SHPC clusters merge to occupy the majority of the 

liver parenchyma by the end of the 30-day experimental period suggesting that regeneration 

of the liver in these animals is nearing completion.  

The number of SHPC clusters present in MDRP/IL6 livers is not significantly 

different than the number found in MDRP animals at 7-days post-PH, and the size of the 

SHPC clusters is not significantly different between MDRP and MDRP/IL6 animals (TABLE 

3.4). However, by 14-days post-PH the number of SHPC clusters present in MDRP/IL6 

animals is 2.7-fold higher than that observed in MDRP animals (TABLE 3.4).   Furthermore, 

there is a 300% increase in SHPC cluster size between 7 and 14-days post-PH in MDRP/IL6 

and these clusters are only 18% smaller than those contained in RP animals at this time point 

suggesting that the regenerative responses observed in these two experimental groups is 

indistinguishable (TABLE 3.4).   In contrast, there is no significant increase in SHPC cluster  
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FIGURE 3.20.  Multiple DEX treatments block liver regeneration in retrorsine-exposed 
rats.   The effects of multiple doses of DEX on (A) average body weight, (B) average liver 
weight, and (C) average liver/body weight ratios are shown.  All MDR (no PH), MDRP, 
MDRP/IL6, and MDCP animals received 5 doses of DEX (2 mg/kg each) at 1 day and 1 
hour prior to PH, and then 1, 2, and 3 days after PH.  Each bar represents the mean 
calculated from all surviving animals (n=3-6) in the various experimental groups (± 
SEM).  Asterisks denotes significant differences in MDRP and MDRP/IL6 weights.  NS 
denotes no significant difference in MDRP and MDRP/IL6 weights.   
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FIGURE 3.21.  IL6 administration restores the SHPC response to liver deficit in MDRP 
rats. H&E stained liver sections from retrorsine-exposed animals at (A,B) 7-days, (C,D) 
14-days, and (E) 30-days post-PH. H&E stained liver tissue from MDRP animals at (F,G) 
7-days, (H,I) 14-days, and (J) 30-days post-PH.  Liver tissue from MDRP/IL6 animals at 
7-days (K,L), 14-days (M,N), and 30-days post-PH (O).  Liver tissue from MDCP animals 
at 7-days (P), 14-days (Q), and 30-days post-PH (R).  Liver tissue from MDR animals at 
7-days (S) and 14-days (T) after DEX treatment.  Arrows indicate SHPC clusters.  
(Original objective lens magnification 10x). 
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size in MDRP animals during the 7 to 14-day post-PH interval and the SHPC clusters are 

significantly smaller than those in RP rats at 14-days post-PH suggesting that in the absence 

of cytokine priming SHPC-mediated liver regeneration does not occur (TABLE 3.4).          



IV.  DISCUSSION 

PYRROLIZIDINE ALKALOIDS  

Pyrrolizidine alkaloids (PAs) are a family of naturally occurring toxins that are found 

worldwide in over 6000 plants of the three families, Boraginaceae, Compositae, and 

Legumionsae (76-78).  PAs exert toxic effects on a variety of organ systems including the 

liver, blood vessels, pancreas, lungs, brain, kidneys, gastrointestinal tract, and bone marrow 

(77, 79, 80).  However, toxicity varies dramatically among the 660 known PAs (76-79) and 

only a few PAs (i.e. lasiocarpine, retrorsine) have been used with any frequency in models of 

liver injury (39, 42, 44, 72, 81-84).  The toxic effects of PAs are chronic and have been 

observed in the livers of animals more than one year after a single dose of PA (44).  In the 

liver these effects include (but are not limited to) blockade of the cell cycle through DNA 

cross-linking and adduct formation, megalocytosis of hepatocytes, fibrosis, cirrhosis, as well 

as others (39, 41-44, 77, 79, 80, 82, 85-87).  When treated with a PA and stimulated to 

proliferate, mature hepatocytes are incapable of dividing and instead undergo megalocytosis 

and subsequently apoptosis (39, 41, 77, 80-82).  Thus, PAs are commonly employed in liver 

injury models as a means to block hepatocyte division, facilitating investigation of liver 

regeneration after injury by transplanted cells (hepatocytes and others) or other progenitor 

cell types (39, 62, 64, 81, 82).    
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PYRROLIZIDINE ALKALOIDS IN EXPERIMENTAL MODELS OF LIVER INJURY 

One of the earliest studies to use a PA in a liver injury model was performed by 

Laconi et al. (82).  In this investigation, F344 rats were exposed to the PA lasiocarpine in 

order to study the effects of transplanted mature hepatocytes on the development of chronic 

lesions in these animals (82).  This study provided a strong framework for subsequent studies 

by the same group.  Laconi et al. employed a similar liver injury model using the PA 

retrorsine to block hepatocyte proliferation to study the participation of transplanted 

hepatocytes in liver regeneration (81).  In this model, F344 rats exposed to retrorsine were 

capable of regenerating their livers after PH if transplanted with an adequate number of 

normal hepatocytes (81).  Since the publication of this study several investigators have used 

the retrorsine model of hepatocellular injury to study liver regeneration (39, 61, 62, 64).  

Perhaps the most significant finding of these studies was the discovery of the small 

hepatocyte-like progenitor cell by Gordon et al. (39).  In this study Gordon et al. treated 

F344 rats with two doses of retrorsine and then stimulated hepatocyte proliferation through 

surgical PH (39).  These investigators noted that the liver mass of these animals normalized 

by 30-days after PH, despite the absence of transplanted (exogenous) hepatocytes (39).  This 

observation suggested that liver regeneration was not completely blocked by retrorsine 

treatment (39).  However, histological examination of liver tissue from these retrorsine-

exposed animals revealed the presence of clusters of proliferative cells beginning 1-3 days 

after PH (39).  The cells contained in these clusters were histologically very similar to mature 

hepatocytes but were approximately one-third the size of mature hepatocytes.  Based upon 

their morphologic characteristics, these cells were designated small hepatocyte-like 

progenitor cells (39).  The SHPC clusters expanded through the subsequent interval, reaching 
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lobule size by 14-days after PH and ultimately differentiated into mature hepatocytes by 30-

days after PH (39).  Gordon et al. described the characteristics of SHPCs to include traits 

associated with mature hepatocytes, fetal hepatoblasts, and oval cells, suggesting that these 

cells may represent a distinct liver progenitor cell population (39).  Subsequent studies by the 

same group bolstered this supposition by demonstrating that these cells are phenotypically 

less mature than fully differentiated mature hepatocytes and express cell markers in patterns 

not observed in any other known liver progenitor cell type (72).  In addition, these studies 

demonstrated that SHPCs lack expression of CYP proteins that are induced by retrorsine 

(and/or required for its metabolism) providing a plausible mechanism for the retrorsine-

resistance observed in these cells (72).  The data from the studies performed by Gordon et al. 

combine to provide significant evidence that the SHPCs represent a distinct liver progenitor 

cell population.  However, these investigators did not rule out the possibility that SHPCs are 

derived from a population of retrorsine-resistant mature hepatocytes or biliary epithelial cells 

(such as oval cells) (39, 72).  To date the cellular origin of the SHPCs remains unknown.  It 

is interesting to speculate that Laconi et al. did not observe SHPCs in the original retrorsine-

based studies because their model provided the damaged liver with a primary cell population 

(transplanted hepatocytes) capable of restoring the lost tissue mass (81).  In this environment, 

the hepatocyte-mediated cellular response would discourage the outgrowth of reserve 

(secondary) progenitor cells. 

POTENTIAL SOURCES OF SHPCS 

There are several potential sources of the SHPCs (FIGURE 1.6) (19).  SHPCs may 

represent a transitional intermediate of proliferating/differentiating oval cells (19, 62).   
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FIGURE 4.1.  Liver progenitor cell responses after hepatotoxic injury in the presence of 
Retrorsine/2-AAF.  (A) In the normal liver the replacement of tissue mass lost to surgical 
resection or necrosis is accomplished through the proliferation and expansion of mature 
(fully differentiated) hepatocytes.  Under these conditions reserve progenitor cell 
populations may be activated, but are never observed.  (B) However, when the 
mitoinhibitory agent 2-AAF is used the proliferation of mature hepatocytes is blocked,  
and reserve progenitor cell populations (i.e. oval cells or SHPCs) are activated to restore 
the tissue mass.  In the Retrorsine/2-AAF model, SHPCs are susceptible to 2-AAF 
poisoning and the liver mass is replaced through the proliferation and expansion of oval 
cells.            
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However, if SHPCs are the progeny of oval cells, the cellular mechanism for liver 

regeneration is distinct from that observed in most oval cell models of liver injury and 

regeneration.  SHPCs may represent a population of retrorsine-resistant hepatocytes present 

in the liver parenchyma (61).  This suggestion is consistent with the observation that SHPC 

clusters emerge in all three zones of the liver in RP rats (39).  Alternatively, SHPCs may be a 

distinct progenitor cell population present in the liver parenchyma that is histologically 

indistinguishable from mature hepatocytes, but phenotypically less mature (19).    

Oval cells as the progenitor of SHPCs 

Over the past several years several investigators suggested that oval cells and SHPCs 

represent the same (or a closely related) cell populations (6).  This idea was recently 

bolstered by studies performed in retrorsine-exposed mice (62).  In this study Vig et al. 

utilized the hepatitis B surface antigen (HBsAg-tg) mouse model of chronic liver injury to 

investigate the contributions of various cell types to liver cell replacement.  Using 3-

dimensional mapping techniques, these investigators were are able to track oval cells 

streaming directly into AFP-positive “SHPC clusters” (62).  Based upon this observation, 

Vig et al. concluded that oval cells can give rise to SHPCs (62).  However, there are several 

significant differences between the liver injury model employed by Vig et al. and the 

retrorsine model of liver injury described by Gordon et al. (39).  For example, the work by 

Gordon et al. was performed using F344 rats and an acute method of injury (such as surgical 

PH) resulting in the rapid activation of liver progenitor cells and subsequent regeneration of 

lost tissue mass (39).  In contrast, the study by Vig et al. employed a mouse model of chronic 

liver injury where liver progenitor cells are in a continual state of proliferation (62).  Based 

on the differences in the models used in these two studies it is difficult to accurately assess 
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whether or not the regenerative responses observed in the retrorsine-treated HBsAg-tg mice 

are identical to those observed in retrorsine-exposed F344 rats.  Based on data from our 

studies and others (56, 88), it seems likely that the hepatocyte clusters observed by Vig et al. 

actually represent new hepatocyte progeny of oval cells rather than regenerative SHPCs. 

Oval cells are known to proliferate robustly after PH in animals treated with the mito-

inhibitory agent 2-AAF (6, 15, 19, 28, 49, 56).  As such, oval cells are not susceptible to 2-

AAF poisoning.  Therefore, it would be expected that if SHPCs are the progeny of oval cells 

they too would be refractory to the toxic effects of 2-AAF (at least initially).  However, data 

from our studies show that retrorsine-resistant SHPCs are susceptible to 2-AAF poisoning 

(FIGURE 4.1).  SHPCs are never observed in 2-AAF-treated retrorsine-exposed animals at 

any time after PH, but clustering of new hepatocytes is observed in these animals at 14-days 

post-PH (FIGURE 3.2).  This cellular response is identical to that observed in 2-AAF/PH 

animals (in the absence of retrorsine), suggesting that the presence of retrorsine has no effect 

on the oval cell-mediated response, but that the 2-AAF treatment blocks the outgrowth of 

SHPCs (FIGURE 3.2).  This suggestion is strengthened by results that treatment of rats with 

2-AAF 7 days after initiation of the RP protocol (at a time when SHPCs are evident) results 

in a blockade of SHPC proliferation (TABLE 3.1).  This data directly demonstrates that 

SHPCs in early regenerative clusters are susceptible to 2-AAF poisoning, strongly suggesting 

that oval cells are not the progenitor cell of origin of the SHPCs.  However, the current 

studies were performed using a high dose of 2-AAF and it has been demonstrated that oval 

cell regenerative responses vary based on the dose of 2-AAF administered (56, 89).  

Therefore it would be of some interest to study the effects of a low dose of 2-AAF on the 
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regeneration of liver in retrorsine-exposed rats as it is possible that a much lower dose of 2-

AAF may allow for some SHPC proliferation and expansion.     

Additional evidence that oval cells are not progenitors of SHPCs was generated using 

the biliary toxin DAPM (FIGURE 1.5) in conjunction with the RP protocol.  Oval cells (or 

their progenitors) reside in the periportal region of the liver and may be directly derived from 

biliary epithelial cells.  Previous studies have demonstrated that the elimination of bile ducts 

and the biliary epithelium through exposure to the biliary toxin DAPM results in the 

blockade of oval cell proliferation (60).  The DAPM-mediated inhibition of oval cell 

proliferation is observed in animals treated with toxins known to elicit an oval cell response 

(such as 2-AAF) (60).   Based on these observations, DAPM provides a powerful tool for 

investigation of the potential oval cell origins of the SHPCs.  If SHPCs are derived from oval 

cells (or some other periportal cell) then one would not expect to observe these cells in 

animals treated with DAPM.  In our studies, the destruction of the biliary epithelium and 

inhibition of oval cell proliferation by DAPM did not block the SHPC-mediated regenerative 

response in retrorsine-exposed rats (FIGURE 3.9).  The SHPC-mediated regenerative response 

observed in DAPM-treated retrorsine-exposed animals after PH was histologically 

indistinguishable from that of retrorsine-exposed animals in the absence of DAPM providing 

evidence that retrorsine-resistant SHPCs are also refractory to the effects of DAPM 

(FIGURES 3.8 AND 4.3).  Overall these results suggest that oval cells are not the progenitor 

cell of the SHPCs.    

Retrorsine-resistant mature hepatocytes as the progenitor of SHPCs 

Early characterization of the SHPCs demonstrated that these cells are phenotypically 

immature, expressing characteristics of fetal hepatoblasts and undifferentiated progenitor  
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FIGURE 4.2.  Liver progenitor cell responses after hepatotoxic injury in the presence of 
Retrorsine/DAPM.  (A) In the normal liver the replacement of tissue mass lost to surgical 
resection or necrosis is accomplished through the proliferation and expansion of mature 
(fully differentiated) hepatocytes.  Under these conditions reserve progenitor cell 
populations may be activated, but are never observed.  (B) When the mitoinhibitory agent 
retrorsine is used the proliferation of mature hepatocytes is blocked and reserve progenitor 
cell populations (i.e. oval cells or SHPCs) are activated to restore the tissue mass.  In the 
retrorsine/DAPM model, oval cells are incapable of responding because bile ducts have 
been destroyed.  As a result the liver mass is replaced through the proliferation and 
expansion of SHPCs.            
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cells (such as oval cells), suggesting that it is unlikely that these cells represent a population 

of retrorsine-resistant mature (fully differentiated) hepatocytes present in the liver 

parenchyma.    

Nevertheless, the possibility that SHPCs represent a subset of retrorsine-resistant 

mature hepatocytes was suggested by Gordon et al. (39), and  more recently Avril et al. 

published evidence that SHPCs are derived from such a population of mature hepatocytes 

(61).  Avril et al. employed a retroviral-based model to genetically label mature hepatocytes 

with the β-galactosidase gene in retrorsine-exposed Sprague-Dawley rats before PH to 

examine the contribution of genetically labeled mature hepatocytes to the formation of SHPC 

clusters (61).  The authors observed that after retroviral infection 4% of hepatocytes were 

positive for β-galactosidase at the time of PH (61).  Several weeks (26 days) later, the authors 

noted that a significant number (4.6%) of SHPC clusters were positive for β-galactosidase 

(61).  These results suggest that some of the mature hepatocytes originally labeled with β-

galactosidase were retrorsine-resistant and contributed to the formation of SHPCs in this 

model (19, 61).  However, there are potential problems with the findings of this study.  For 

example, it was not stated how many biliary cells were labeled with β-galactosidase which 

leaves open the possibility that oval cells or some other biliary epithelial cell contributed to 

the formation of SHPCs (19).  In addition, the model utilized by Avril et al. was not capable 

of addressing the possibility that a progenitor cell population present in the liver parenchyma 

could potentially be the source of the SHPCs.   

SHPCs: A distinct parenchymal progenitor cell population? 

Given the evidence suggests that SHPCs do not originate from known liver progenitor 

cell populations (mature hepatocytes or oval cells), the possibility remains that these cells 
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represent a distinct progenitor cell population, composed of cells that are histologically 

similar to mature hepatocytes but phenotypically less mature, and sited in the liver 

parenchyma.  This is based on several lines of evidence.  First, when bile ducts are destroyed 

through the use of the toxin DAPM the regenerative response from oval cells is eliminated, 

but SHPCs respond (FIGURE 3.8).  Second, data from several studies demonstrates that 

extrahepatic cell types (such as hematopoietic cells) do not significantly contribute to the 

formation of new hepatocytes (90-95), providing strong evidence that extrahepatic cells are 

not likely to be contributing substantially to SHPC cluster formation.  Finally, there is 

evidence of a population of AFP-positive cells in the normal liver parenchyma (FIGURE 4.3) 

(96).  SHPCs are AFP-positive at emergence and throughout expansion in RP rats (72).  

Thus, the AFP-positive parenchymal cells observed in normal liver may represent the 

progenitors of the SHPCs.  However, detailed studies to address this possibility have not 

been carried out.   

TISSUE NICHE OF THE SHPCS 

In the original SHPC studies by Gordon et al., SHPC clusters were found in all zones 

of the hepatic lobule: 31% of SHPC clusters arise in the periportal zone, 26% of clusters are 

localized to the pericentral zone, and the majority (43%) are found midlobular (39).  These 

observations suggest that the progenitor cell that gives rise to SHPCs may be located 

throughout the liver parenchyma, but the specific tissue niche of the SHPCs has not been 

identified.  Are the SHPCs localized to a specific zone of the liver or are they found 

throughout the entire parenchyma?  This important question can be addressed using liver 

zone-specific necrotizing agents (such as CCl4 and allyl alcohol).  In the current study we  
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FIGURE 4.3.  AFP-positive parenchymal cells in normal liver.  Panels A-B and C-D 
represent typical AFP immunostains obtained from two separate 13-week-old animals, 
respectively.  AFP-positive staining in the normal liver parenchyma was observed in 6 
separate animals.  Black arrows denote AFP-positive cells. (Original objective lens 
magnification 20x, original objective lens magnification for insets 40x). 
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have attempted to identify the potential parenchymal location of the SHPCs (or their 

progenitor) using these necrotizing agents.  In these investigations retrorsine-exposed rats 

were treated with either CCl4 or ally alcohol, necrotizing agents specific for the pericentral 

and periportal zones of the parenchyma, respectively.  It would be expected that if progenitor 

cell of origin of the SHPCs is localized to one of these zones then the targeted destruction of 

that zone would result in a dampened or blocked SHPC regenerative response.    

In our studies the destruction of the pericentral zone of the parenchyma by CCl4 did 

not result in a dampened SHPC-regenerative response in these animals (FIGURE 3.13).  In 

fact, there were no observable differences in the size or number of SHPC clusters in CCl4-

treated animals (versus retrorsine-exposed rat liver after PH) (TABLE 3.3-3.4).   These data 

suggest that the progenitor cell of the SHPCs is not restricted to this region of the 

parenchyma.  Though it has been published that treatment with the necrotic agent allyl 

alcohol results in the targeted destruction of the periportal region of the parenchyma (50, 97), 

our attempts to utilize this agent proved to be unsuccessful at the reported dose of 37 mg/kg.  

At no time after allyl alcohol injection was necrosis observed.  However, increasing the dose 

to 64 mg/kg resulted in the expected level (>60%) of necrosis (FIGURE 4.4), but also caused 

90% mortality in animals treated.  In the future, the determination of a well-tolerated yet 

effective dose of allyl alcohol will be extremely important in the determination of the niche 

of the SHPCs.               

CYTOKINE-MEDIATED ACTIVATION OF SHPCS 

The molecular mechanisms for hepatocyte activation and proliferation have been 

elucidated in some detail.  Differentiated hepatocytes are typically refractory to stimulation  
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FIGURE 4.4. The effects of allyl alcohol in F344 rat liver.  The dose of allyl alcohol 
reported in the literature to cause >60% necrosis (37 mg/kg) did not result in any 
observable damage at (A) 48 hours, (B) 3 days, or (C) 7-days post-administration of allyl 
alchol in F344 rats.  Increasing the allyl alcohol dose to 64 mg/kg produced the expected 
level of necrosis at (D-E) 24 hours post-administration.  However, this dose also resulted 
in 90% mortality of the animals treated.   
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by growth factors, and require a priming stimulus in order to proliferate in response to 

damage (98). In rats, infusion of various growth factors (including EGF, TGFα, HGF, or 

combinations of these) into the liver does not result in DNA synthesis by hepatocytes, unless 

this growth factor infusion is preceded by a priming stimulus (such as 30% PH) (98).  The 

signaling molecules responsible for hepatocyte priming have been shown to be specific 

cytokines that activate NF-κB (99), including TNF-α and IL6 (13, 14, 100-104).  Liver 

regeneration after PH is severely impaired when TNF-α signaling is eliminated using 

neutralizing antibodies in rats (13) or in TNF receptor I (TNFR-I) knockout mice (102-104).  

The downstream effector of TNF-α signaling is IL6 (103), and liver regeneration after PH is 

impaired in IL6 knockout mice (14, 105) in a manner similar to that observed in TNFR-I 

knockout mice.  In both of these models, administration of exogenous IL6 rescues the 

regenerative response (14, 105).  These observations combine to suggest that the priming and 

activation of mature hepatocytes in response to liver deficit (i.e. PH) is a cytokine-mediated 

process that specifically requires IL6 and TNF-α (14, 101, 103-105).   

Under certain pathological conditions mature hepatocytes are unable to divide in 

response to liver injury (loss of cell number), resulting in the activation of reserve (stem-like) 

progenitor cell populations which proliferate to regenerate the liver tissue (6).  Oval cells 

represent an undifferentiated progenitor cell population that is activated to proliferate in liver 

injury models that combine a proliferative stimulus (like PH) with chemical agents (like 2-

acetylaminofluorene) that inhibit the proliferation of hepatocytes (21).  The emergence of the 

oval cell population occurs approximately 36-48 hours after PH in the 2-AAF/PH model (31, 

32), in a delayed response to the lack of hepatocyte reaction to liver deficit.  Analogous to 

mature hepatocytes, the oval cell reaction requires a cytokine-mediated priming stimulus 
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(52).  Blockade of cytokine release after PH in rats treated with 2-AAF leads to inhibition of 

oval cell activation, but this inhibition can be overcome through the administration of 

exogenous IL6 (52, 53).  Thus, liver regeneration by hepatocytes and oval cells represent 

different cellular reactions to liver injury, but require similar cytokines and growth factors.  

SHPCs represent a second population of reserve progenitor cells, which proliferate after PH 

to repopulate the damaged livers of rats exposed to the pyrrolizidine alkaloid retrorsine (39). 

Though the nature of the signaling molecules and events that are responsible for the 

activation of SHPCs in this form of liver injury have not been studied in detail, results from 

the current study suggest that these cells are also activated in a cytokine-dependent manner 

(FIGURES 3.15-3.20).  Administration of the cytokine inhibitor DEX to retrorsine-injured rats 

prior to PH blocks the emergence of SHPCs in a dose-dependent manner.  A single 

administration of DEX dampens the magnitude of SHPC response, resulting in a delayed 

regenerative reaction, while multiple doses of DEX (prior to and following PH) produces a 

near complete inhibition of SHPC emergence.  These observations suggest a role for cytokine 

priming in the activation and emergence of this reserve progenitor cell population.  In fact, 

the SHPC response was restored by the administration of a single dose of recombinant IL6 

protein at the time of PH, suggesting strongly that the emergence of SHPCs after PH in 

retrorsine-injured rats requires cytokine priming, and that IL6 directly mediates this cellular 

reaction.  Thus, SHPCs represent a third population of progenitor cells that can be activated 

under specific conditions to regenerate the liver through a unique cellular reaction that is 

mediated through a common signaling pathway that specifically requires IL6. 

The molecular mechanism of IL6-mediated hepatocyte activation in normal liver 

regeneration has been extensively studied using knockout mice (9).  After PH, serum 



 130

concentrations of TNF-α increase resulting in an upregulation of NF-κB (9).  In turn NF-κB 

activates transcription of IL6 which then binds to the IL6 receptor (IL6-R) and interacts with 

gp130 resulting in the activation of the Janus kinase (JAK) ultimately priming the 

hepatocytes for proliferation (9).  JAK activates cell proliferation through either (i) the 

mitogen-activated protein kinase (MAPK) pathway, or (ii) the signal transducer and activator 

of transcription 3 (STAT3) pathway (9).  It is intriguing to speculate that this represents the 

sequence of molecular events occurring in the activation of SHPCs after PH in retrorsine-

injured liver.  However, it is impossible to directly investigate the early molecular events 

during SHPC activation due to our current inability to effectively identify these cells until 

several days after PH (39).  One attractive experimental possibility is to utilize IL6-deficient 

mice in conjunction with retrorsine injury and regeneration after PH to more precisely dissect 

the involvement of IL6 in SHPC activation.  However, mice do not display the same form of 

liver injury in response to retrorsine as that observed in rat, and SHPCs have not been 

observed in any mouse model of acute liver injury. 

HIERARCHICAL RESPONSE TO LIVER INJURY 

The mammalian liver possesses tremendous flexibility in its capacity to respond to 

injury and loss of cell numbers (function).  At least three different cell populations have been 

implicated in liver regeneration: (i) differentiated hepatocytes (in otherwise normal liver), (ii) 

SHPCs (observed in retrorsine-exposed rats), and (iii) oval cells (observed in numerous 

models of liver injury).  Given multiple sources of regenerative cells and the observed 

differences in timing of activation of these cell populations in response to liver deficit, it is 

intriguing to speculate that there is a hierarchy of cellular responses in liver regeneration and  
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FIGURE 4.5.  A proposed model of hierarchical responses to injury in rat liver. After 
injury the primary response of the liver is mediated by the (A) mature (fully 
differentiated) hepatocytes.  Reserve progenitor cell populations may be activated under 
these circumstances, but are never observed.  When mature hepatocytes are incapable of 
proliferating due to exposure to chemical agents such as (B) 2-AAF or (C) retrorsine 
reserve progenitor cell populations are activated to proliferate and restore tissue mass.  
The responding cell population is dependent on the type of damage that has occurred.  
When animals are exposed to (B) 2-AAF, the mature hepatocytes and SHPCs are 
damaged and incapable of proliferating in response to surgical resection or necrosis.  As a 
result the oval cells proliferate and replace the damaged liver tissue.  Likewise, when 
animals are exposed to (C) retrorsine, the mature hepatocytes are damaged and oval cells 
do not respond in response to liver injury.  Therefore, the liver is completely regenerated 
through the outgrowth and expansion of SHPCs.   
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that the nature of the regenerative cell population is determined by (a) the presence or 

absence of liver injury, (b) the type and extent of injury, and (c) the capacity of each cell 

population to respond (FIGURE 4.5).  In this model, activation and proliferation of mature 

hepatocytes represents the primary (preferential) cellular response, and the activation, 

emergence, and proliferation of reserve progenitor cell populations (SHPCs or oval cells) 

represent secondary cellular responses, occurring only when the primary response is blocked 

or impaired (FIGURE 4.5).  The results of the current investigation combined with previous 

studies from the literature (52, 100, 106, 107), suggest that IL6 may be a common signaling 

molecule that functions to regulate the liver’s response to injury.  There may be redundancy 

in the cellular reactions to liver injury, but a common regulatory pathway that directs the 

process of regeneration.  Thus, following a signal for liver regeneration, all possible 

progenitor cell populations may be concurrently primed for activation (IL6-mediated), but 

that the secondary reserve progenitor cell responses do not manifest unless the primary 

(hepatocyte-mediated) response fails.  However, the controlling factors in the termination of 

each of these regenerative responses are likely to vary.  For example, an increase in TGFβ 

expression is known to signal the termination of hepatocyte division but oval cells are 

refractory to increases in the expression of this protein (108, 109).   These findings provide 

strong evidence that a hierarchy does exist in progenitor cell response of the liver and that 

mechanisms regulating these responses vary appropriately.  In the future studies must be 

performed to determine the factors controlling SHPC proliferation as well as those involved 

in the control of oval cells.  A better understanding of the signals required to activate liver 

progenitor cells for proliferation may provide the key to modulating these responses in the 

clinical treatment of liver disease. 
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SUMMARY AND IMPACT 

The overall goals of this dissertation were to (i) to characterize the SHPC responses in 

both hepatotoxic and necrotic models of liver injury, (ii) to determine the progenitor cell of 

origin of the SHPC, and (iii) to determine the factors involved in the activation of SHPCs for 

proliferation after liver injury.  The results of the studies described herein demonstrate that 

SHPCs contribute to the restoration of liver mass after both hepatotoxic and necrotic methods 

of injury.  Although the current study does not definitively determine the progenitor cell of 

origin of SHPCs, the results generated provide strong evidence that these cells are not the 

progeny of other known liver progenitor cell populations, such as oval cells.  In addition, 

these studies provide significant new evidence that SHPCs are most likely derived from a 

population of cells located in the liver parenchyma that may be histologically similar to 

mature (fully differentiated) hepatocytes but phenotypically distinct.  Finally, the 

observations from this investigation strongly suggest that SHPCs are activated for 

proliferation in a cytokine-mediated manner, providing evidence that cytokines (specifically 

IL6) may represent the master regulatory molecules in the activation of progenitor cell 

responses after injury in the adult liver.  However, further analysis must be performed before 

the mechanisms governing the activation of specific liver progenitor cell populations are 

completely understood.  In addition, it is essential that future studies be conducted using the 

periportal-specific necrotic agent allyl alcohol.  Such studies will provide additional and 

important data about the specific tissue niche of the SHPCs.  Furthermore, studies should 

also be performed utilizing laser capture microdissection (LCM) to collect SHPCs for 

molecular analysis.  Although previous studies have been conducted utilizing LCM 

technology, a more detailed analysis of the changes in protein and gene expression observed 
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in the SHPCs during the regenerative interval following liver injury may provide additional 

insight into the differences between SHPCs and other known liver progenitor cells.  Finally, 

studies should be carried out to determine the molecular signals governing growth 

suppression of SHPCs.  TGFβ is an important regulator of liver regeneration by mature 

hepatocytes, providing the signal for cessation of proliferation.  In a similar manner, TGFβ 

may be involved in suppression of SHPC proliferation as liver regeneration is completed in 

retrorsine-exposed rats. Studies addressing this possibility would further our understanding 

of the mechanisms governing SHPC proliferation.     
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