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ABSTRACT 
LINDSAY JORDAN DISTEFANO: The Effects of a Pediatric ACL Injury Prevention 

Program 
(Under the direction of Darin A. Padua) 

 

Implementing an ACL injury prevention program to athletes prior to the ages of 

highest injury risk may result in reduced ACL injury rates and osteoarthritis development. 

There is limited knowledge regarding whether this age group can modify lower extremity 

biomechanics, balance ability, and performance after completing an injury prevention 

program or if age-specific training is required. The purpose of this investigation was to 

compare the effects of a traditional and a pediatric-specific ACL injury prevention program 

on lower extremity biomechanics, balance ability, and jump performance. A total of 65 

youth soccer athletes (Males: n=38, mass=34.2±5.4 kg, height=143.1±6.3 cm, age=10±1 

years; Females: n=27, mass=33.8±5.4 kg, height=141.0±6.6 cm) volunteered to participate. 

Teams were cluster-randomized to either a pediatric or traditional injury prevention 

program, or a control group. Teams performed their respective program as part of their 

normal warm-up routine. Balance ability, vertical jump performance, and lower extremity 

biomechanics during anticipated and unanticipated sidestep cutting tasks were assessed 

before and after an intervention period. Change scores were calculated from the two testing 

sessions. The pediatric program (Change Mean±SD: Anticipated: 7.73±10.71°; 

Unanticipated: 7.98±11.93°) reduced the amount of tibial external rotation at initial ground 

contact during the anticipated (F(2,62)=3.79, p=0.03) and the unanticipated (F(2,62)=6.92, 
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p=0.002) tasks compared to the control group (Anticipated: -0.35±7.76°;Unanticipated: -

3.06±6.18°) after the intervention period. Anterior-posterior time-to-stabilization decreased 

after the traditional program (Change Mean±SD=-0.92±0.49) compared to the control 

group (-0.49±0.59) (F(2,60)=6.34, p=0.003). The traditional program increased vertical jump 

height (1.70±2.80) compared to the control group (0.20±0.20)(F(2,61)=3.45, p=0.04). Youth 

athletes can improve dynamic balance ability and vertical jump height after completing an 

injury prevention program with specific exercises targeting balance and vertical jumps. The 

injury prevention program designed specifically for a preadolescent population modified 

lower extremity biomechanics, which suggests athletes under 12 years of age can change 

potential neuromuscular risk factors for injury with specialized training.  
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CHAPTER 1 
 

INTRODUCTION 

1.1 The Problem of ACL Injuries 

Over three million youth are currently registered to take part in organized soccer 

within the United States and participation grows by approximately 20% every year.(1) 

Unfortunately, increasing levels of sport participation means that more youth are vulnerable 

to sport injury. Injuries in youth sports, such as soccer, can be especially problematic because 

they can decrease children’s future involvement in physical activity, which may result in 

poor long-term health.(2) Nearly 40% of the 6.8 million annual injuries attributed to sport 

and recreation occur to the lower extremity, with 50% of these injuries being sprains or 

strains.(3) A common lower extremity sports injury is a sprain or tear of the anterior cruciate 

ligament (ACL), which occurs approximately 200,000 times in the United States each year 

with an associated cost of over $3 billion.(4, 5) 

ACL injuries are not only associated with high financial costs, but also with short and 

long-term disability. Osteoarthritis is a common condition that limits daily functioning,(6) 

and the onset of osteoarthritis at an early age may result in life-long disability.(7) Lohmander 

et al. (2004) indicated that 80% of female soccer players with an ACL injury showed 

radiographic signs of osteoarthritis development, and over 50% of these players developed 

radiographic osteoarthritis in the involved knee only 12 years after surgery, regardless of 

treatment.(7) These consequences demonstrate the immediate need for effective ACL injury 

prevention, especially in young athletes. 
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1.2 Current State of ACL Injury Prevention  

The majority of ACL injuries occur due to a “non-contact” mechanism with no direct 

contact made between the individual and another player or object.(4, 8) A non-contact ACL 

injury usually occurs while an individual is trying to rapidly decelerate during a landing or 

cutting maneuver.(9-13) Risk factors for a non-contact ACL injury appear to be multifaceted 

and include a variety of environmental, anatomical, hormonal, and neuromuscular 

characteristics.(14) Neuromuscular risk factors are a primary area of focus for ACL injury 

prevention programs because they can be modified through intervention in contrast with the 

other types of risk factors. These neuromuscular risk factors include balance,(15) lower 

extremity muscle strength,(16-20) and movement patterns during athletic maneuvers.(21-23) 

Landing or cutting with limited knee flexion can result in excessive anterior tibial shear force 

from the quadriceps muscle, which can damage the ACL.(22-28) Combined excessive lower 

extremity rotation and knee valgus also place the ACL at a high risk for injury.(29, 30) 

Modifying these risk factors is emphasized in most ACL injury prevention programs and 

may have great potential for reducing ACL injury rates.  

  Neuromuscular ACL injury prevention programs focus on minimizing ACL loading 

by trying to increase knee flexion and decrease knee valgus, tibial rotation, and anterior tibial 

shear force during events associated with non-contact ACL injury. There is moderate 

evidence that supports the use of neuromuscular ACL injury prevention programs to change 

potential risk factors(31-40) and reduce ACL injury rates.(19, 40-45) Observing injury rates 

is critical for determining if ACL injury prevention is possible, but it is also necessary to 

understand how these programs work by evaluating potential neuromuscular risk factor 

improvement. Neuromuscular training programs have successfully modified movement 
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patterns by increasing knee flexion angles,(33, 35, 46) altering hip adduction and rotation 

angles, and decreasing vertical ground reaction forces.(32, 36, 37, 39, 46-51) ACL injury 

prevention programs have also been shown to improve balance, muscle activity, and strength 

in both high school and college athletes.(32, 33, 37, 52-55)  

 There are limitations with the previous ACL injury prevention program 

investigations. First, all of the previous studies evaluating the effects of an ACL injury 

prevention program have compared lower extremity kinematics and kinetics during a landing 

task. While ACL injuries commonly occur during a landing, this mechanism of injury only 

accounts for a small percentage of ACL injuries in soccer.(56, 57) The more common 

mechanism of injury in soccer appears to be due to cutting or changing direction.(58) Cowley 

et al.(59) demonstrated greater amounts of knee valgus in soccer players during a cutting task 

compared to a drop vertical jump. A second limitation is that while information about how 

individuals move during an anticipated cutting task is beneficial, it does not replicate what 

actually occurs during sport and most likely during an injury.(60-62) Injuries often occur 

when an individual is knocked off balance or has to make a sharp change of direction.(58) 

Therefore, evaluating the changes occurring in lower extremity kinematics and kinetics using 

an unanticipated cutting task, may enhance our ability to understand the potential that an 

ACL injury prevention program has to reduce injury risk in soccer. 

 Females are 1.4-4.6 times more likely to sustain an ACL injury compared to males in 

similar sports.(4) Several studies have observed sex differences in lower extremity 

kinematics and kinetics during an anticipated sidestep cutting task, which may provide some 

explanation for the discrepancy in injury rates.(17, 63-65) These findings support the use of a 

sidestep cutting task to evaluate differences in movement patterns between populations, 
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however, the majority of these studies and previously discussed work that studied landing 

patterns evaluate tasks that are anticipated, or planned. As a result of these conclusions, 

several studies have included unanticipated cutting tasks into their laboratory testing 

protocols. The general consensus is that unanticipated tasks result in greater amounts of 

neuromuscular risk factors for injury, such as increased knee joint loading, decreased initial 

knee flexion, increased knee flexion and valgus moments, and increased amounts of knee 

valgus compared with anticipated movements.(60-62, 66) 

 The most common way to incorporate unanticipated cutting tasks into a laboratory 

based testing protocol is to use a light timing system.(60, 62, 65, 66) This requires asking 

participants to run toward a force plate, and trigger the light system, which causes an arrow 

or a light to be displayed informing the participant to move in a specific direction. This 

method does cause reactive movements, but the task is still not realistic to a game 

scenario.(61) A common maneuver in sports, such as soccer, is to evade or mark an 

opponent. McLean et al.(61) addressed this limitation by using a stationary skeleton to 

simulate the presence of a “defensive opponent” while the participants performed the cutting 

task. The authors concluded that the presence of a simulated opponent resulted in increases in 

medial ground reaction forces, hip flexion, hip abduction, knee flexion, and knee valgus 

compared with the sidestep cutting condition with no opponent present. This study was 

progress in the ability to make laboratory based testing more realistic, however, the 

“defensive opponent” was stationary and predictable. Using a live model as the opponent to 

cause the participants to decide which direction to move is a logical progression for 

simulating real game and injury scenarios. 
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 Secondly, nearly all of the research investigating the effects of ACL injury prevention 

training on neuromuscular factors has been performed in high school and college athletes. 

There is only one study that has tried to modify neuromuscular risk factors in children under 

12 years old with an injury prevention program and failed to see positive changes.(38) Thus, 

it is not clear if the ACL injury prevention training guidelines used in a high school or 

college population will have a positive effect in a pediatric population. 

1.3 Potential for ACL Injury Prevention in Pediatric Athletes 

ACL injuries are most common among individuals between the ages of 16-18 years 

old, but the frequency of ACL injury increases steadily starting in 11 and 12 year olds.(67) 

Reducing risk factors for ACL injury before children reach the ages at greatest risk for injury 

may enhance the potential for reducing injuries. Furthermore, while injuries are relatively 

uncommon at young ages under 12 years old compared with the later years of adolescence, 

but an ACL injury in this population presents a complicated dilemma for health care 

professionals because these individuals are skeletally immature. There are mixed opinions on 

the best treatment choice in this population because conservative treatment may cause further 

joint damage and decreased physical activity levels.(68, 69) The other option is surgical 

treatment, but this treatment is technically difficult and may result in iatrogenic growth 

disturbances due to physeal damage.(68, 70, 71) These findings present further rationale for 

preventing ACL injuries, especially in a young population.   

Previous research demonstrates potential neuromuscular risk factors for ACL injury 

exist in children as young as 10 years old, but few studies have thoroughly evaluated these 

factors in this population or between sexes.(72-74) These neuromuscular risk factors are 

usually evaluated during landing or cutting tasks because these movements are associated 
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with ACL injury. Interestingly, several neuromuscular injury risk factors, such as limited 

sagittal plane motion, lateral leg movements, and toeing-out during landing and cutting tasks 

are also considered developmental difficulties during the acquisition of fundamental motor 

skills.(75, 76) Typically, it is assumed that children will attain mastery of fundamental motor 

skills, such as landing and cutting, by late childhood (10-12 years old).(75, 76) Late 

childhood is considered to be a critical period for fundamental motor skill refinement and 

motor development,(75-77) as children do not master complex motor skills until they reach 

approximately 10-12 years old.(78) At this age, growth is fairly steady and gradual, resulting 

in an ideal environment for children to develop coordination and neuromuscular skill.(79) 

Unfortunately, many children still do not attain mastery of fundamental motor skills, and this 

failure may be because of common public assumptions that motor skill learning is automatic, 

and that teaching of these skills is not necessary.(75, 76) If children in this age group do not 

receive proper motor skill instruction and practice, they may be inhibited from acquiring 

these skills later in life, leading to reduced participation in sports and other forms of physical 

activity.(79) Therefore, late childhood may be an ideal time to improve motor skills and 

correct neuromuscular risk factors for injury.  

While it appears intervening with children at a young age is critical, there is a gap in 

knowledge on whether this age group will respond to an ACL injury prevention program. 

Prapavessis et al.(51) demonstrated some promise with targeting this age group by using 

simple verbal instructions during landing, and found success with reducing landing forces. 

However, Grandstrand et al(38). is the only study to evaluate neuromuscular risk factor 

alterations following a multifaceted injury prevention program in children (ages 9 to 11 years 

old). This study utilized an intervention program that was based on previous research 
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performed in high school/college aged individuals and reported no improvements following 

the training program. The authors concluded the inability to modify neuromuscular factors 

may have been influenced by the fact that the pediatric athletes were unable to perform 

several of the exercises. These conclusions indicate that traditional injury prevention 

programs may not be suitable for young children.  

There are several reasons to suggest young prepubescent individuals may require 

specialized training programs in order to modify injury risk factors. While this population is 

able to achieve strength gains, the mechanism for these gains is different than adults, and is 

most likely due to neural adaptations rather than muscle hypertrophy.(80, 81) Therefore, 

children have a reduced need for challenging strengthening programs with heavy resistance.  

Instead, resistance training programs utilizing high repetitions and low weight have been 

encouraged.(82) Young or physically immature individuals are at a greater risk for overuse 

injury compared to older individuals, and this may also need to be a consideration within an 

injury prevention program.(83, 84) This risk may be due to inexperience, decreased overall 

fitness level, incomplete physes, or because muscle strength and soft tissue growth appear to 

occur after bone growth.(83-86) Recovery time for children is essential to avoid these 

overuse injuries, so reduced frequency of a training program is recommended.(84, 86)   

While feedback and instruction are frequently components of ACL injury prevention 

programs, it appears young pre-pubertal children may require more feedback and instruction 

than their older peers.  Young children have been shown to require more continuous 

feedback and utilize different forms of attention compared with their older counterparts when 

learning a task.(87, 88) Task difficulty should match the cognitive ability of the learner when 

the learner is acquiring a new skill, which is especially true for children.(89) Wulf and Shea 
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(2002) recommended that difficult tasks should be separated into basic components when 

taught to children.(90)  

Recommendations for pediatric anaerobic and aerobic training programs have been 

made, but no research has investigated whether a pediatric ACL injury prevention program 

should be designed to address the differences between adults and children in strength, 

physical, and motor development, as well as motor learning.(86) Based on these differences, 

it appears that ACL injury prevention programs for children should be implemented with 

lower frequency, higher repetitions, basic progressions, more instruction and feedback 

opportunities, and encourage mature performance of basic fundamental motor skills, such as 

landing from a jump. Addressing differences between children and adults may enhance the 

ability to change neuromuscular risk factors and prevent ACL injuries in a young population. 

1.4 Limitations of Previous ACL Injury Prevention Programs 

The majority of ACL injury prevention programs have been studied in college or high 

school female athletes. While injury is most common in this population, there is reason to 

believe males should also be studied. Females are more likely to injure their ACL and 

demonstrate greater movement and strength injury risk factors compared with their male 

counterparts.(4) However, males account for a higher absolute number of ACL injuries, but 

are rarely evaluated with ACL injury prevention programs. Failing to include males in ACL 

injury prevention programs may preclude an overall reduction in ACL injury rates, as little 

information is known about how this population may respond to a program. Both sexes need 

to be incorporated into injury prevention programs in order to prevent ACL injuries on a 

large scale.  
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The conclusions of previous investigations on ACL injury prevention programs are 

further limited by the paucity of randomized controlled trials and insufficient explanation of 

compliance monitoring, injury definitions, and program execution. In addition, many of these 

studies utilized programs that require an extensive amount of time to complete.(32, 35, 55, 

56) Injury prevention programs need to be easily and efficiently adopted by the general 

population and not constrained by time, cost, or manpower in order for them to be 

effective.(91) These findings suggest that the outcomes of ACL injury prevention programs 

may be enhanced if the programs are evaluated in randomized controlled trials, efficiently 

implemented to both males and females, as well as to individuals before they reach the age 

associated with the highest injury risk.  Therefore, the purpose of the proposed study is to 

evaluate whether pediatric (9-10 year old) soccer players are able to change potential 

neuromuscular injury risk factors after completing an injury prevention program and to 

compare changes between a pediatric ACL injury prevention program and a traditional 

program.  

1.5 Research Questions 

RQ1. Are there significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or a control nine week ACL injury prevention program 

in the following biomechanical variables during an anticipated sidestep cutting task? 

a. At initial ground contact: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
b. Peak during first 40% of stance phase: 
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i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
vii. Anterior tibial shear force 

viii. Knee extension moment 
ix. Knee valgus moment 
x. Tibial rotation moment 

RQ2. Are there significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or a control nine week ACL injury prevention program 

in the following biomechanical variables during an unanticipated sidestep cutting task? 

a. At initial ground contact: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
b. Peak during first 40% of stance phase: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
vii. Anterior tibial shear force 

viii. Knee extension moment 
ix. Knee valgus moment 
x. Tibial rotation moment 

RQ3. Are there significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or a control nine week ACL injury prevention program 
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in the following biomechanical variables during a false cue unanticipated sidestep cutting 

task? 

a. At initial ground contact: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
b. Peak during first 40% of stance phase: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
vii. Anterior tibial shear force 

viii. Knee extension moment 
ix. Knee valgus moment 
x. Tibial rotation moment 

RQ4. Are there significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or control nine week ACL injury prevention program in 

the following performance variables? 

a. Dynamic anteroposterior balance as measured through a time to stabilization test 
b. Dynamic mediolateral balance as measured through a time to stabilization test 
c. Power as measured during a maximal vertical jump test 
d. Maximal vertical jump height  

 
RQ5. Are there significant differences present between male and female pediatric soccer 

players before or after completing a pediatric, traditional, or control nine week ACL injury 

prevention program as measured by the following variables? 

a. Biomechanical variables during anticipated sidestep cutting task 
b. Biomechanical variables during unanticipated sidestep cutting task 
c. Biomechanical variables during a false cue unanticipated sidestep cutting task 
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d. Dynamic balance as measured through a time to stabilization test 
e. Power as measured during a maximal vertical jump test 
f. Maximal vertical jump height  

 
1.6 Research Hypotheses 

RH1. There will be significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or a control nine week ACL injury prevention program 

in the following biomechanical variables during an anticipated sidestep cutting task. 

a. Players who complete the pediatric program will demonstrate the following 

differences compared to participants who complete either the traditional or control 

programs at initial ground contact: 

i. Increased knee flexion angle 
ii. Decreased knee valgus angle 

iii. Decreased tibial rotation angle 
iv. Increased hip flexion angle 
v. Decreased hip adduction angle 

vi. Decreased hip rotation angle 
 

b. Players who complete the pediatric program will demonstrate the following peak 

differences during the first 40% of the stance phase compared to participants who 

complete either the traditional or control programs. 

i. Increased knee flexion angle 
ii. Decreased knee valgus angle 

iii. Decreased tibial rotation angle 
iv. Increased hip flexion angle 
v. Decreased hip adduction angle 

vi. Decreased hip rotation angle 
vii. Decreased anterior tibial shear force 

viii. Decreased knee extension moment 
ix. Decreased knee valgus moment 
x. Decreased tibial rotation moment 
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RH2. There will be significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or a control nine week ACL injury prevention program 

in the following biomechanical variables during an unanticipated sidestep cutting task. 

a. Players who complete the pediatric program will demonstrate the following 

differences compared to participants who complete either the traditional or control 

programs at initial ground contact: 

i. Increased knee flexion angle 
ii. Decreased knee valgus angle 

iii. Decreased tibial rotation angle 
iv. Increased hip flexion angle 
v. Decreased hip adduction angle 

vi. Decreased hip rotation angle 
 

b. Players who complete the pediatric program will demonstrate the following peak 

differences during the first 40% of the stance phase compared to participants who 

complete either the traditional or control programs. 

i. Increased knee flexion angle 
ii. Decreased knee valgus angle 

iii. Decreased tibial rotation angle 
iv. Increased hip flexion angle 
v. Decreased hip adduction angle 

vi. Decreased hip rotation angle 
vii. Decreased anterior tibial shear force 

viii. Decreased knee extension moment 
ix. Decreased knee valgus moment 
x. Decreased tibial rotation moment 

RH3. There will be significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or a control nine week ACL injury prevention program 

in the following biomechanical variables during a false cue unanticipated sidestep cutting 

task. 
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a. Players who complete the pediatric program will demonstrate the following 

differences compared to participants who complete either the traditional or control 

programs at initial ground contact: 

i. Increased knee flexion angle 
ii. Decreased knee valgus angle 

iii. Decreased tibial rotation angle 
iv. Increased hip flexion angle 
v. Decreased hip adduction angle 

vi. Decreased hip rotation angle 
 

b. Players who complete the pediatric program will demonstrate the following peak 

differences during the first 40% of the stance phase compared to participants who 

complete either the traditional or control programs. 

i. Increased knee flexion angle 
ii. Decreased knee valgus angle 

iii. Decreased tibial rotation angle 
iv. Increased hip flexion angle 
v. Decreased hip adduction angle 

vi. Decreased hip rotation angle 
vii. Decreased anterior tibial shear force 

viii. Decreased knee extension moment 
ix. Decreased knee valgus moment 
x. Decreased tibial rotation moment 

RH4. There will be significant differences between pediatric soccer players before and after 

completing a pediatric, a traditional, or control nine week ACL injury prevention program in 

the following performance variables? 

a. Participants who complete the pediatric program will demonstrate greater 

dynamic anteroposterior balance as measured through a time to stabilization test 

than participants who complete either the traditional or control programs. 
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b. Participants who complete the pediatric program will demonstrate greater 

dynamic mediolateral balance as measured through a time to stabilization test 

than participants who complete either the traditional or control programs. 

c. Participants who complete the pediatric program will demonstrate greater 

improvements in power as measured during a maximal vertical jump test than 

participants who complete either the traditional or control programs. 

d. Participants who complete the pediatric program will demonstrate greater 

improvements in maximal vertical jump height as measured during a maximal 

vertical jump test than participants who complete either the traditional or control 

programs. 

RH5. There will not be significant differences present between male and female pediatric 

soccer players before and after completing the pediatric, traditional, or control nine week 

ACL injury prevention program in the following variables. 

a. Biomechanical variables during anticipated sidestep cutting task 

b. Biomechanical variables during unanticipated sidestep cutting task 

c. Biomechanical variables during a false cue unanticipated sidestep cutting task 

d. Dynamic balance as measured through a time to stabilization test 

e. Power as measured during a maximal vertical jump test 

f. Maximal vertical jump height  

1.7 Operational Definitions 

Pediatric: 9-10 year old child  

Initial ground contact: The instant the foot makes contact with the ground represented by 

the moment the vertical ground reaction force exceeds 10 N. 
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Toe-off: The instant the foot leaves the ground represented by the moment the vertical 

ground reaction force drops below 10 N. 

Stance phase: The time period between initial ground contact and toe-off. 

Limb dominance: The lower extremity limb used to kick a ball for maximal distance. 

Anticipated sidestep cutting task: Participants begin standing on a 30 cm high box, a 

distance of half of their body height away from the force plate, and jump forward off the box 

with both legs toward the force plate. Participants land with their dominant foot in the center 

of the force plate and make a 50-70 degree change of direction toward his/her non-dominant 

side and run 2-3 m.  

Unanticipated sidestep cutting task: A model is 3m away from the far end of the force 

plate (relative to the participant), facing the participant, and jumps from a 30 cm high box 

and lands on their dominant leg. Immediately upon landing, the model cuts either towards 

his/her left or right at a 50-70 degree angle. Participants begin standing on a 30 cm high box, 

a distance of half of their body height away from the force plate, and jump forward off of 

both legs towards the force plate. Participants land with their dominant foot in the center of 

the force plate and make a 50-70 degree change of direction towards the direction the model 

moved. Participants jump from the box immediately after they see the model jump and 

“chase” the model upon landing.  

False cue unanticipated sidestep cutting task: A model is 1m away from the far end of the 

force plate (relative to the participant), facing the participant, and jumps from a 30 cm high 

box and lands on his/her dominant leg. Immediately upon landing, the model shifts their 

trunk either left or right (false cue or “fake”) and then changes direction to cut at a 50-70 

degree angle. Participants begin standing on a 30 cm high box, a distance of half of their 
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body height away from the force plate, and jump forward off of both legs towards the force 

plate. Participants land with their dominant foot in the center of the force plate and make a 

50-70 degree change of direction towards the direction the model moved. Participants jump 

from the box immediately after they see the model jump and “chase” the model upon 

landing.  

Model: The same research assistant used for all testing sessions. 

Power: Vertical jump power computed using the following equation: Power (W) = 61.9 x 

jump height (cm) + 36.0 x mass (Kg) – 1822.(92)   

Maximum vertical jump height: Measured during the maximum vertical jump test and 

calculated from the time the participants are in the air. Time in the air is between toe-off and 

initial ground contact and height is calculated from: Height = 0.5(g)(t/2)2.(93)  

Maximum vertical jump test: Double leg countermovement maximal vertical jump. 

Participants begin with their hands on their hips and their feet shoulder width apart while 

standing on a force plate. An overhead goal, in the form of Vertec measuring device, is used 

to encourage maximal performance.(94) Participants jump for vertical height and try to touch 

the measuring device.  

Time to Stabilization Test: Participants stand on a 30 cm high box a distance of half of their 

body height away from the force plate. Participants jump forward from the box and land with 

their dominant foot in the center of the force plate while maintaining their hands on their hips 

and their non-dominant foot off of the ground. Participants balance on one leg as quickly as 

possible without putting their non-dominant foot down.  

Traditional ACL injury prevention program: This program is based on previously studied 

ACL injury prevention programs. 
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Pediatric ACL injury prevention program: This program is similar to the traditional 

program with the same types of exercises but includes the following differences: 

1.) More exercise variety 

2.) Reduced initial frequency of program implementation. (First phase is performed 2 

times per week; second and third phase performed 3 times per week; Traditional 

program: always 3 times per week) 

3.) First week of each phase has fewer repetitions and more time spent on technique 

instruction 

4.) More gradual progressions of exercises (Example: Squat jumps are preceded by 

proper double leg squat performance) 

5.) Dynamic flexibility exercises 

6.) Feedback cues are directed towards internal focus of attention (“Bend your knees” 

versus “Land soft as a feather”) 

Control ACL injury prevention program: Teams assigned to this program do not complete 

any assigned program, but instead perform a warm-up designated by their coach. 

Intervention period: Nine week period of time during which participants complete either 

the Pediatric, Traditional, or Control ACL injury prevention program (August – October 

2009). 

1.8 Assumptions/Limitations  

The following assumptions and limitations were made for this study: 

1. To avoid exclusion with the participants’ teammates, all participants were included in this 

study regardless of their precise pubertal status. It was assumed that all participants were pre-

pubescent. 
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2. All participants gave their best effort in performing the test protocols. 

3. All participants were honest regarding their current injury status. 

4. There were no injuries, training effects, or learning during either of the two testing 

sessions or intervention period. 

5. All participants were honest about their physical activity during the nine week intervention 

period.  

6. The data collection equipment collected accurate data during both testing sessions.  

7. All participants had no prior experience with any type of jump landing training or ACL 

injury prevention. 

1.9 Delimitations  

The following delimitations were made in this study. 

1. All participants were under ten years old as of July 1, 2009.  

2. All training sessions were supervised by at least one research assistant.  

3. All participants were from the same area soccer league. 

4. The members of seven soccer teams were recruited for this study.  

5. All kinematic and kinetic data were collected from the same motion analysis system.  

6. All power data were collected from the same force plate. 

7. All participants were free from any injury that prevented them from performing the testing 

protocol. 

8. All participants attended at least 80% of all training sessions during the intervention 

period.  

1.10 Independent Variables  

Two independent variables were used in this study. 
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1. ACL injury prevention program group 

a. Pediatric 

b. Traditional 

c. Control 

2. Sex 

a. Males 

b. Females 

1.11 Dependent Variables  

1. Lower extremity kinematic variables 
a. At initial ground contact: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
b. Peak during first 40% of stance phase: 

i. Knee flexion angle 
ii. Knee valgus angle 

iii. Tibial rotation angle 
iv. Hip flexion angle 
v. Hip adduction angle 

vi. Hip rotation angle 
2. Peak of kinetic variables during first 40% of stance phase 

a. Anterior tibial shear force 
b. Knee extension moment 
c. Knee valgus moment 
d. Tibial rotation moment 

3. Power  
4. Maximum vertical jump height 
5. Time to Stabilization 

 
1.12 Significance  

The objective of this study is to evaluate whether or not an injury prevention program 

for a specific population is effective at changing risk factors for injury. This study is unique 
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because a population-specific intervention program has not been investigated before, and the 

benefits of designing a program that addresses the individual needs of a population are 

enticing. The pediatric intervention program for youth soccer players focuses on teaching 

proper technique and promoting neuromuscular changes without overstressing their systems. 

Implementing ACL prevention programs will be easier if no differences are observed 

between the pediatric and traditional programs, as the same program can be used for all age 

populations. The results of previous work may be supported if the pediatric program is found 

to be superior to the traditional program, indicating youth athletes require specialized training 

to change potential neuromuscular risk factors. A randomized controlled design will be 

utilized for this study, which is a lacking feature in the majority of other ACL injury 

prevention literature.(40) Prevention of ACL injuries is critical because these injuries are 

common and costly for the young athletic population. Reducing risk factors in a pediatric 

population before the athletes reach the age for greatest risk for injury may enhance the 

potential for reducing injuries. This study has the ability to answer a significant missing piece 

in the ACL injury prevention literature and will help future endeavors with reducing the 

impact of this injury and promoting overall public health. 

 

 

 

 



CHAPTER 2 

REVIEW OF THE LITERATURE 

 There is a critical need to prevent ACL injuries in youth sports due to their frequency, 

financial cost, and poor long-term prognosis. Previous ACL injury prevention programs have 

focused on changing neuromuscular risk factors for injury and showed moderate success in 

reducing injuries. Although these risk factors are observed in children as young as ten years 

of age, there is a paucity of research on whether or not children in this age group are able to 

change following an ACL injury prevention program. Based on previous motor development, 

motor learning, and youth resistance training literature, it would appear children should be 

able to improve these neuromuscular risk factors but may require a specialized program 

consistent with their stage of development to obtain optimal benefits.  

The purpose of this study is to evaluate the potential for young children to modify 

neuromuscular risk factors following an ACL injury prevention program and to determine if 

a developmentally appropriate program is necessary to maximize results. This literature 

review provides the background and rationale for this study by discussing ACL injury 

prevalence, etiology, and proposed risk factors, and how this information led to the selection 

of the dependent variables. Previous work on ACL injury prevention and the limitations 

associated with these studies will also be discussed.  Motor development of children through 

puberty will be described in relation to how motor development may influence learning and 

training in pediatric soccer players. 

2.1 ACL Injury Epidemiology and Etiology 
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2.11 Youth Sport Participation and Injury 

Sports and recreational activities account for over 6.8 million injuries in the United 

States with over 4.4 million of these injuries occurring in individuals between the ages of 5-

24 years of age.(3) Injury rates as high as 91.2 per 1000 children have been reported due to 

sports,(95) with the majority of these injuries occurring as a result of growing participation in 

several youth sports, such as soccer. Currently, over 3 million children are registered to take 

part in organized youth soccer within the United States, and participation increases by 

approximately 20% every year.(1) Unfortunately, increases in participation lead to a greater 

potential for injuries.  

2.12 ACL Injury Epidemiology 

Over 1.5 million injuries occurred due to youth soccer between 1990-2003, and lower 

extremity injuries accounted for nearly 50% of these injuries.(96) Shea et al.(67) performed 

an insurance analysis from a youth soccer league and reported that 22% of all youth soccer 

league insurance claims were due to injuries to the knee alone.(67) In fact, young soccer 

players are more likely to sustain a knee injury compared to any other injury.(97) A 

prospective study of female adolescent soccer players reported similar results, as knee 

injuries accounted for 16% of all injuries sustained during an eight month period.(98) Not 

only are knee injuries common in youth soccer, but they are also severe, with approximately 

20% of them requiring surgery.(97) 

  A severe knee injury in youth sports is a rupture of the anterior cruciate ligament 

(ACL). There are an estimated 200,000 cruciate ligament injuries in the United States each 

year, with an associated cost of over $3 billion.(4, 56) The rate of ACL injury is 1.4 - 4.6 

times greater in females than males, but due to greater exposure to sports, the absolute 
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number of ACL injuries in males is greater than the absolute number in females.(9, 99-106) 

Using a national injury registry, Parkkari et al.(107) reported similar sex differences in injury 

rates for adolescents. This study also adjusted the injury rates according to the amount of 

sports participation and found this adjustment elevated injury risk ratios to 8.5 for females 

and 4.0 for males. Sex differences in ACL injury rates exist in younger age groups as well as 

older age groups.(67) However, ACL injury rates vary between these age groups, with the 

ratio of ACL injuries to total knee injuries increasing as children progress in age, resulting in 

an elevated frequency of ACL injuries around age 11 or 12 with a steady rise until age 

18.(67) 

2.13 Long-term Effects of ACL Injury 

Not only are ACL injuries in youth soccer common and a financial burden, but also 

they are detrimental to long-term health as they are associated with short and long-term 

disability. Physical activity is essential for a healthy lifestyle by decreasing the probability of 

acquiring several diseases, such as obesity, diabetes, and hypertension, while improving bone 

density(3) and overall mental and physical health.(108) Injury is a leading reason for physical 

inactivity so youth sports injuries can be especially problematic, as they can influence the 

child’s future involvement in physical activity, which may result in poor long-term health.(2) 

An example of this reduction in sport participation following injury is provided in Soderman 

et al.(109)  who reported that only 52% of female adolescent soccer players returned to the 

sport following an ACL injury and within 2-7 years after the injury, this number was down to 

22%. Almost 80% of these females linked their discontinuance directly because of symptoms 

in their injured knee.  
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Osteoarthritis is a common condition that is disabling and limits normal daily 

functioning in adults.(6) Onset of osteoarthritis at a young age may result in long-term 

disability.(7) Lohmander et al.(7) indicated that over 50% of female soccer players with an 

ACL reconstruction developed radiographic osteoarthritis in the involved knee only 12 years 

after surgery, and about 80% of these players showed radiographic signs of osteoarthritis 

development. Unfortunately, the course of treatment for an ACL sprain (i.e. 

conservative/non-surgical versus surgical reconstruction) did not influence the high 

prevalence of osteoarthritis.(7) Thus, adolescent individuals who suffer an ACL injury may 

develop osteoarthritis by the time they reach their 20’s. Sustaining one knee injury may result 

in osteoarthritis or an additional injury. Steffen et al.(98) found that a previous knee injury 

almost doubled the risk of a repeated injury in adolescent female soccer players. These 

consequences demonstrate the immediate need for effective ACL injury prevention, 

especially in young athletes. 

The consequences of an ACL injury dramatically increase when the injury occurs to 

an immature individual, such as a prepubescent soccer player. Several years ago, 

intrasubstance ACL injuries in children and adolescents were rare but now are more 

frequent.(110) There are mixed opinions about how to treat the young patient with open 

physes, whose bones are still growing.(71, 110) Traditionally, children with open physes and 

an ACL injury are treated conservatively, or non-operatively, through rehabilitation, activity 

restrictions, and protective bracing until skeletal maturity is reached and only then are the 

ACL sprains reconstructed.(110) The rationale behind this treatment is that ACL 

reconstruction may cause iatrogenic growth disturbances, such as leg length discrepancies, 

distal femoral valgus deformities, tibial recurvatum, and genu valgum, due to physeal 
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damage in skeletally immature individuals.(68, 70) Unfortunately, this course of treatment 

often produces poor outcomes, such as chronic instability, subsequent injury to the menisci 

and cartilage, and decreased physical activity levels.(68, 69) A recent study demonstrated 

that only 65% of children with an ACL injury prior to age 13 years old that were treated 

conservatively returned to their pre-injury activity level.(71) The percentage of children 

returning to sports requiring pivoting, such as soccer, decreased to 58%.(71) Recently, it has 

been suggested these preadolescent patients can undergo ACL reconstruction using 

specialized, meticulous techniques, such as transphyseal reconstructions, with low revision 

rates, excellent functional outcomes, few complications, and minimal growth 

disturbances.(68) Thus, management of ACL injuries in skeletally immature children is an 

evolving area and the difficulty this injury presents to this population provides further 

rationale for preventing ACL injuries in young individuals who are physically active. 

2.14 Summary of ACL Injury Epidemiology and Consequences 

 ACL injuries are a relatively common injury in youth sports, especially as children 

approach adolescence. Not only are these injuries common, but also they are costly in 

financial and physical terms. An ACL injury diagnosis is a prognosis for osteoarthritis within 

15 years for the majority of individuals. This consequence is devastating to a young athlete 

because injury is the primary reason people stop being physically active. If a child suffers an 

ACL injury when he/she is 12 years old, he/she will most likely have osteoarthritic changes 

or osteoarthritis in that knee by the time they are 30. In fact, that child’s probability of 

developing osteoarthritis quickly is further increased if he/she is still growing at the time of 

injury, because treating ACL injuries in immature children is a difficult prospect. The 

likelihood of that child continuing in athletics or any form of physical activity during 
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adulthood is slim, which further damages the individual’s health because of the onset of other 

diseases and conditions associated with physical inactivity. Therefore, ACL injuries need to 

be prevented in all populations, but especially in young adolescents. 

2.2 Etiology of ACL Injury 

2.21 ACL Loading Mechanisms 

Excessive anterior tibial shear force is considered the most direct mechanism of 

loading the ACL.(111, 112) As a result, discussions about ACL loading factors are usually in 

reference to how certain conditions or movements increase or decrease anterior tibial shear 

force. It is well established that limited sagittal plane movement can increase anterior tibial 

shear force through large quadriceps contractions. However, ACL strain can also be elevated 

by the addition of tibial rotation or knee valgus.(112, 113) It is during this combined loading 

state of small knee flexion angles, excessive tibial rotation, and knee valgus that researchers 

have described the ACL to be the most vulnerable for injury.(14, 114) 

Sagittal Plane ACL Loading 

Large ground reaction forces are associated with an increased risk of lower extremity 

injury and increased amounts of anterior tibial shear force.(115) The primary method the 

body attenuates these forces is through extensor and flexor moments, or sagittal plane 

motion, about the lower extremity.(116-118) Therefore, there is an inverse relationship 

between large vertical ground reaction forces and knee flexion.(36, 49) This will result in 

large forces and other issues associated with limited flexion, such as ACL strain. 

Besides influencing the forces transmitted through the joints of the lower extremity, 

knee flexion angle during movement affects ACL strain as vigorous quadriceps contractions 

at low knee flexion angles (0-30°) may generate enough anterior tibial shear force to rupture 
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the ACL.(119) At these low knee flexion angles, the quadriceps are able to place an 

excessive load on the tibia because of the increased patellar tendon tibial shaft angle, creating 

anterior tibial translation, lateral tibial translation, as well as tibial internal rotation.(119) 

High levels of posterior ground reaction force with limited knee flexion may also influence 

ACL strain by creating an external knee flexion moment. Large external knee flexion 

moments need to be counteracted by an internal knee extension moment through the 

quadriceps muscles, which results in an increased anterior tibial shear force.(112, 120) 

Other muscles also influence anterior tibial shear force and ACL strain. There are 

contrasting views regarding the influence of the gastrocnemius on ACL strain. Shermondy et 

al.(121) demonstrated that the gastrocnemius and soleus may actually have protective 

functions on the ACL by reducing anterior tibial translation. In contrast with these findings, 

Fleming et al.(122) showed the opposite by concluding that the gastrocnemius actually 

increased ACL strain especially in small amounts of knee flexion. Conclusive evidence exists 

demonstrating that the hamstring muscles are able to counteract the anterior tibial shear force 

created by the quadriceps when the knee is flexed between 15-60 degrees.(119) However, the 

hamstrings have a mechanical disadvantage when the knee is flexed less than 15 degrees, 

which provides further reason for the need to create sufficient knee flexion during 

movements associated with injury. Effective hamstring strength and activation also need to 

be present for them to resist anterior tibial translation and result in co-contraction with the 

quadriceps, which can promote joint stability and protect the ACL. 

Frontal Plane ACL Loading 

In addition to sagittal plane loading, the ACL can also be loaded through frontal plane 

motion. Knee abduction torque has been shown to increase anterior tibial translation and 
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strain on the knee ligaments.(112, 123) Hewett et al.(19) supported these findings through a 

prospective study with high school athletes and found that excessive amounts of knee valgus 

and knee abduction moments predicted ACL injury risk. In another prospective study, 

Zazulak et al. demonstrated that insufficient frontal plane control of the trunk was predictive 

of ACL injury as well.(124) 

Frontal plane stability does not rely as much on muscle control as the sagittal plane, 

but muscles can still influence motion in this plane. The quadriceps and hamstrings have 

been shown to support knee varus and valgus moments.(125) The position of knee valgus is 

related to hip adduction, hip internal rotation, knee abduction, and tibial external 

rotation.(126, 127) Therefore, muscles that control the hip may be able to restrict the amount 

of knee valgus that occurs by limiting hip internal rotation and adduction. In addition, hip 

abduction strength has been shown to be negatively correlated with knee valgus.(128) 

Transverse Plane ACL Loading 

 Transverse plane motion of the lower extremity can also influence ACL strain. 

Internal tibial rotation strains the ACL through tension and external tibial rotation causes 

impingement of the ACL on the intercondylar notch, especially at low levels of knee 

flexion.(112, 129) Li et al.(119) demonstrated that similar to the anterior tibial translation 

created in the sagittal plane, tibial rotation can be increased by the quadriceps and reduced by 

the hamstrings. Similar to controlling knee valgus, the hip musculature may be able to 

control the amount of femoral rotation present during motion, which then may influence 

tibial rotation and protect the ACL. 

2.22 Risk Factors for ACL Injury 
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Risk factors for ACL injury appear to be multifaceted including a variety of 

environmental, anatomical, hormonal, and neuromuscular characteristics.(14) Potential 

environmental risk factors include the type of surface, shoe, and the interaction between 

these two factors.(14) Anatomical characteristics include Q-angle, foot pronation, body mass 

index, ACL size, notch size, and ACL geometry. Q-angle has been implicated as a potential 

risk factor for ACL injury because of its influence on the position of knee valgus.(130) 

Excessive foot pronation can cause excessive tibial internal rotation, which can then lead to 

ACL strain. Several case control studies have produced inconclusive results on the role 

excessive foot pronation or navicular drop has on ACL injury risk.(131-134)  There is 

preliminary evidence supporting the influence of another anatomical factor, high body mass 

index (BMI) values, on ACL injury risk. Uhorchak et al.(135) demonstrated that a large BMI 

was a significant risk factor for ACL injury in a prospective study and Brown et al. (136) 

demonstrated that increased BMI was associated with a more extended lower extremity 

position during landing, which may increase the amount of anterior tibial shear force present 

at the knee. Other anatomical factors that are being considered as potential risk factors for 

ACL injury include a narrow intercondylar notch, and smaller ACL size and area. These 

factors have been shown to result in a decreased load to failure and appear to be more 

common in females, which could provide some explanation for the higher ACL injury rate in 

females compared to males.(137-140) 

Lower extremity movement patterns play a critical role in injury mechanism as they 

are known to influence anterior tibial shear force by altering the load and deformational 

forces on ligaments, meniscus/cartilage, and bone.(29, 30, 141-143) Specific movement 

patterns commonly occurring during ACL and lower extremity injury include decreased knee 
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flexion, knee valgus, and excessive leg rotation.(143, 144) These motions commonly occur 

during cutting and jumping maneuvers, and can be large enough to generate extreme loads 

within the ACL, causing spontaneous rupture of the ligament.(145) 

Approximately 70% of all ACL injuries occur due to a non-contact or indirect contact 

mechanism of injury, meaning that no direct contact from an external object or individual is 

made with the injured knee.(8) Olsen et al.(58) performed a video analysis of ACL injury 

mechanisms and concluded that the majority of these injuries occur when the individual is 

either performing a plant and cut maneuver to pass an opponent or completing a single leg 

landing. These authors also observed a consistent movement pattern with the knee in a 

slightly extended, valgus position combined with tibial rotation.(58) Olsen et al. and Boden 

et al.(8) also describe injuries occurring when the individual is in an excessively wide stance 

or the foot is not beneath the knee. This position has also been shown to result in high 

external knee valgus moments.(146) 

An overwhelming number of studies exist comparing males to females to evaluate 

whether gender differences in movement, strength, anatomical position explain the frequently 

observed gender discrepancy in ACL injury rates. Females consistently perform common 

sport maneuvers with reduced trunk, hip, and knee flexion, as well as greater hip and knee 

transverse and frontal plane motion compared to their male counterparts.(14, 16, 19, 147-

153) Females also appear to use their quadriceps muscles predominantly over their hamstring 

muscle group, leading to hypotheses that this quadriceps dominance may create excessive 

anterior tibial shear force during movements that is not overcome by the antagonistic 

muscles.(17, 154-156) In addition, females have also been shown to have decreased muscle 

stiffness around the knee joint, which may result in reduced knee joint stability during 
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movements.(150, 157-159) As a result of these findings, neuromuscular risk factors appear to 

explain a large portion of the gender discrepancy in ACL injury rates, and changing these 

factors is emphasized in most prevention programs.  

2.33 Neuromuscular Risk Factors for ACL Injury in Youth 

Only a few studies have evaluated neuromuscular risk factors in a pediatric or 

prepubescent population. The majority of the studies that have been conducted examined 

lower extremity kinematics, kinetics, or muscle activation during landing tasks. Yu et al.(73) 

compared lower extremity kinematic differences during a stop jump between 11 to 18 year 

old males and females. The results of this study indicate that females increase their potential 

neuromuscular risk factors as they age while males do not change. Specifically, females 

decreased their knee flexion at initial ground contact as they progressed in age from 11 to 18 

with large changes after age 14 and decreased their hip flexion at initial ground contact and 

maximum hip flexion after age 13 years old. In  contrast, males actually improved by 

decreasing their knee valgus at landing after age 12 years old. Interestingly, on average, 

males land initially in a slightly internally rotated hip position and finish the landing phase in 

hip internal rotation while females land initially in hip external rotation and end the loading 

phase in a small amount of hip internal rotation.  

Only one other study on young athletes observed gender differences, but only in 

participants in the pubertal stage of maturity. Quatman et al.(160) compared boys and girls 

over a one year period during which the participants transitioned from puberty to post-

puberty. Their results showed that boys significantly increased their maximum vertical jump 

and decreased their peak vertical ground reaction force during landing between these stages. 

Girls only decreased their vertical ground reaction force during the take-off portion of the 
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jump, which probably was detrimental instead of positive to their performance. Both boys 

and girls decreased their ground reaction force loading rates between pubertal stages. 

Swartz et al.(161) also demonstrated differences between prepubertal and post-

pubertal participants, however, this study used a cross-sectional design instead of a 

longitudinal analysis. These authors demonstrated that prepubescent children landed with 

increased knee valgus, decreased hip flexion at initial ground contact and at peak vertical 

ground reaction force, decreased knee flexion at peak vertical ground reaction force, 

increased peak vertical ground reaction force, and increased rate of peak vertical ground 

reaction force compared with adults. Hass et al.(72) observed similar and opposite findings 

when comparing prepubertal with postpubertal participants. This study found that while 

prepubertal participants landed with increased vertical ground reaction force and with a faster 

loading rate, post-pubertal participants landing with less knee flexion at initial ground contact 

and reduced knee extension moments. Prepubertal participants also encountered a laterally 

directed force at the knee, while a medially directed force at the knee occurred in the 

postpubertal participants. One potential difference for the findings from these two studies is a 

difference in tasks. Hass et al. utilized a single leg drop jump while Swartz et al. used a 50% 

maximum vertical jump test. In contrast with these two studies, Barber-Westin et al.(74) did 

not observe any differences between gender or age during a drop landing, but this study only 

evaluated frontal plane alignment through videography.  

The two studies evaluating muscle activation patterns during landings between 

prepubertal children and post-pubescent individuals found similar results. Croce et al.(162) 

observed higher hamstring:quadriceps co-contraction ratios in post-pubescent participants 

prior to landing, but higher ratios in prepubescent participants after landing. Russell et 
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al.(163) also found higher co-contraction ratios during the preparatory phase of landing in 

adults compared with prepubescent participants. These findings suggest landing mechanics 

change after puberty and the difference in co-contraction may indicate that pre-pubertal 

children land with less knee joint stiffness compared with their older counterparts. 

2.24 Summary of ACL Injury Etiology 

 The ultimate cause of ACL injury appears to be multifaceted, involving poor 

movements in all three planes of motion. Limited trunk, hip, and knee flexion with excessive 

knee valgus and rotation can result in the perfect storm for injury. These findings have been 

supported by cadaveric, laboratory, and video observations of ACL loading. Females 

demonstrate a greater risk for ACL injury in sports such as soccer, and have also been shown 

to move differently than males. Sex comparisons of potential neuromuscular risk factors 

provide further support for the belief that the cause of ACL injury is multifaceted as females 

consistently perform sport maneuvers with small amounts of sagittal plane motion and 

excessive frontal and transverse plane motion. Unfortunately, the same sex differences exist 

in children as young as eleven years old of age. Studies that have compared young children 

to adults conclude there are differences in movement patterns between these age groups. 

Further research needs to be conducted to evaluate younger age groups prior to puberty as 

they are the age group where injury prevention is critical. 

2.3 Prevention of ACL Injury 

ACL injury prevention programs provide the potential to reduce injuries, and 

preliminary results of these programs are promising. An extensive array of possible exercises 

have been used in these programs and can be organized into the type of activity required, 

such as plyometric, strength or resistance, flexibility, balance or proprioceptive, and agility 
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exercises. Augmented feedback, or instruction, is often incorporated in injury prevention 

programs as well. Not only is there a variety of exercises included in these programs, but 

programs also require different durations of training or are targeted to various populations or 

sexes.  

Previous literature also differs based on what the studies evaluated as the outcome. 

Some studies report injury incidence results while others observe alterations in potential 

neuromuscular risk factors. The investigations using injury incidence as a dependent variable 

can define their injury incidence from any injury, any lower extremity injury, or an ACL 

injury. These studies all provide beneficial information about the success and potential for 

reducing sport-related injury, especially ACL injuries.  

2.31 Effect of Prevention Programs on Overall Injury Rates  

Over the past decade, there have been several large studies conducted that evaluate 

the use of an injury prevention program to reduce general injury in a healthy, active 

population. Five of these investigations demonstrated successful injury reduction following 

the completion of their respective program,(44, 45, 56, 164, 165) but three studies did not 

observe any decrease in injury rates.(166-168) It is difficult to determine the exact reason to 

explain why some programs are successful while others are not, because all differ in their 

target population, program type, duration, injury definition, and compliance monitoring 

ability.  

All five successful studies implemented their injury prevention program to an 

adolescent, or high school, population.(44, 45, 56, 164, 165)  Two of the three unsuccessful 

studies used adult participants.(167, 168) Adult participants may not be able to alter their 

neuromuscular characteristics sufficiently to result in injury prevention. The observation that 
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the majority (5/6) of the studies using an adolescent population were successful in reducing 

injury rates is crucial since the frequency of sport-related injuries, especially ACL injuries, 

appears to increase during puberty or adolescence.(4, 67) Not only does it make sense to 

intervene with this age group, but it also appears that this age group has a better ability to 

respond to the program compared with their older counterparts. These findings also suggest 

that different age groups may have different needs to address with injury prevention 

programs. 

Emery et al.(166) (2007) was the only study that did not observe an injury reduction 

with an adolescent population, however, the authors reported a decrease in acute injuries 

following the program. There are two reasons that may explain this finding. This study was 

the only investigation examining overall injury incidence with solely basketball athletes and 

one of three studies to utilize participant compliance self-reports with the intervention 

program. Soderman et al.(168) used self-reports and similarly did not find improvements in 

injury rates. Compliance self-reports in an adolescent population may be limited as it is 

unknown how often the participants truly complied or how reliable this population is with 

self-reports.   

Duration of the injury prevention program does not appear to be a critical variable 

when designing a program according to this group of articles. Hewett et al.(56) was the only 

study to implement their program for just six weeks, but their program did require ninety 

minutes a day, three days per week. All seven of the other studies had participants perform 

the program throughout the length of the season, which varied from about four to nine 

months.(44, 45, 164-168) Performing a program for six weeks is enticing, but ninety minutes 

per day may be difficult to achieve for most people. Unfortunately, no research exists that 
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evaluates the potential for a program to reduce injuries and requires less time per day for only 

six weeks.  Four studies did conduct their programs for a shorter amount of time per day for 

the first several weeks of the program, but the participants still performed a maintenance 

phase, consisting of once a week, for the remainder of the season.(44, 164, 167, 168)  

Not only does program duration appear to not impact the injury incidence results, but 

the type of activities included in an injury prevention program also does not appear to be a 

key factor. The studies that include flexibility, agility, and plyometric exercises, as well as 

the inclusion of specific technique instruction appear to have split outcomes in terms of 

reducing overall injury rates. Strength training exercises may be crucial as four of the five 

successful programs and none of the failed programs included these activities. However, both 

Herman et al.(169) and Hewett et al.(170) indicated strength training alone was not vital. It is 

possible that a combination of strengthening exercises and another mode of exercise may be 

critical. Balance may also be a necessary component for injury prevention programs. The 

only successful injury outcome study that did not incorporate balance training was Hewett et 

al.(56) (1999), whose results are questionable because there was an uneven distribution of 

types of athletes between their training and control groups. This study observed a significant 

reduction in injuries in the trained group compared with the control group. However, 

volleyball has been shown to have a lower incidence of injury compared with soccer and 

basketball(171, 172) and over twice as many volleyball players and half as many soccer 

players were in the training group as in the untrained group. This discrepancy may have 

influenced the lower injury rates observed in the trained group.  

From examining all of the studies that evaluated injury incidence following an injury 

prevention program, it appears that the population used is the main factor that influences the 
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outcome. In order to effectively reduce injury rates based on these results, injury prevention 

programs should be provided to an adolescent population and should incorporate at least 

balance and strength training activities. Future research should evaluate whether or not 

duration of the program implementation can influence results.  

2.32 Effect of Prevention Programs on ACL Injury Rates 

Assessing the ability to decrease ACL injury incidence through the use of an injury 

prevention program is critical to prevent the long-term consequences associated with this 

injury.  Unfortunately, only five studies have attempted this objective over the past twelve 

years.(41-43, 173, 174) Similar to the studies evaluating the incidence of all injuries, these 

reports vary according to the type of exercises included in the program, the target population, 

and the duration of the activities.  

Pfeiffer et al.(174) was the only study included in this group to not observe 

reductions in ACL injury rates following the completion of an injury prevention program. 

This study was also the only one to implement the program in a group of athletes from 

various sports, such as soccer, volleyball, and basketball. The other four studies focused 

exclusively on either soccer (41, 42, 173) or handball athletes.(43) Whether or not this 

discrepancy is the reason for the unfavorable results is unknown, but it is not the only 

difference between these studies.  

Pfeiffer et al.(174) was also the only investigation to evaluate only non-contact ACL 

injuries. All ACL injuries have detrimental consequences, but it is feasible to think that non-

contact injuries may be the only type of injury that can be prevented through a 

neuromuscular injury prevention program without changing game rules or equipment. More 
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studies should discriminate between contact and non-contact injuries in order to truly 

understand whether these injury prevention programs are working.  

The final difference between Pfeiffer et al. and the other four studies observing ACL 

injury incidence rates is that Pfeiffer et al. is the only program that did not incorporate either  

balance or strength exercises. As discussed previously. with the studies evaluating overall 

injury incidence, it appears these two types of activities may be influential to a program’s 

outcome. Future research needs to evaluate this possibility further in order to fully 

understand whether a specific type of exercise is critical for success or perhaps including 

only one exercise from all of the major types of exercises would be beneficial.  

Program duration does not appear to be a factor in determining the outcomes of these 

studies, as all five utilized a similar duration of 15-20 minutes per day for a few days per 

week. Heidt et al.(173) was the only study to limit the program to seven weeks and not the 

length of the season. The specific target population also does not seem to influence the 

outcome, as half of the studies used adult participants(41, 43) while the other half 

implemented the injury prevention program to high school athletes.(42, 173, 174) One 

potential issue about the target population utilized in these studies is that all five only used 

one gender with 4/5 studies including only females in their program.(42, 43, 173, 174) Even 

though females have a greater risk for injury compared with males in soccer and basketball, 

most non-contact ACL injuries occur in males.(4) Therefore, future research should include 

both genders in the study design in order to truly evaluate the effectiveness of these programs 

for reducing ACL injury rates on a population basis.   

Randomization of study groups is an apparent limitation in the majority of these 

studies.(41-43, 174) Without random assignment, it is difficult to accurately assume that 
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changes due to a program were actually because of the program and not because of 

differences in group membership. Heidt et al.(173) was the only study to report random 

assignment, but some question remains because only 14% of this study’s population were 

“randomly assigned” to the intervention group. Unfortunately, the only study to potentially 

utilize true random assignment was not even able to perform statistical analysis on the ACL 

injury rates due to a small sample size.(173) Therefore, random assignment needs to be 

incorporated in future investigations. 

The majority of studies using ACL injury incidence as an outcome measure found 

reduced rates due to the ACL injury prevention program. One limitation with this group of 

studies is that only one of them evaluated the injury rate change in non-contact ACL injuries 

specifically. Non-contact or indirect contact injuries are the target injury to prevent with 

neuromuscular training programs, and these specific rates need to be compared. Similar to 

the studies evaluating overall injury rates, based on the results of this group of studies it 

appears balance and strengthening exercises are vital components of a multifaceted injury 

prevention program. Recommendations for future studies include the need for random 

assignment, evaluate specific types of ACL injuries, and include both male and females into 

study designs. 

2.33 Effect of Prevention Programs on Potential Risk Factors for Injury 

There are a plethora of studies that attempt to modify potential neuromuscular risk 

factors associated with ACL injury. Therefore, we decided to perform a systematic review of 

the literature to access the most relevant studies to evaluate the current state of this research. 

First, we performed an electronic literature search of the PubMed database, maintained by 
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the National Library of Medicine, for articles matching our criteria between January 1987 

and December 2007.  

A total of 230 articles were selected and their titles and abstracts were reviewed to 

determine if they matched our selection criteria. The selection criteria required the studies to 

be in English and evaluate the effects of an exercise training program incorporating either 

flexibility, balance, agility, strength, plyometric, or instructional exercises to modify 

potential neuromuscular risk factors for lower extremity injury. Eight articles were selected 

and we utilized PubMed’s “Related Articles” link from these articles to select five additional 

studies. Finally, we reviewed the reference lists from the thirteen selected articles for any 

additional studies that met our criteria and selected a final six articles giving us a total of 19 

articles to review.  

The articles selected studied the effects of different types of injury prevention 

programs on potential ACL injury neuromuscular risk factors, such as kinematic and kinetic 

variables, muscle strength and activity, and balance. Healthy, physically active participants 

completed the injury prevention programs in all of the studies. The implementation of the 

programs varied with regard to duration, supervision, type of exercise training, and target 

population. All of these factors will be discussed in relation to the outcomes of these 

programs.  

Kinematic Variables   

Kinematic variables, such as trunk, hip, and knee joint angles, during landing and 

cutting maneuvers are often targeted with injury prevention programs because they are 

considered to be risk factors for ACL and other injuries.(31-39) Seven out of nine studies that 

evaluated changes in kinematics successfully modified lower extremity kinematics after the 
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completion of their injury prevention program.(31, 33-37, 39)  Hewett et al.(32) and 

Grandstrand et al.(38) did not observe changes in kinematic variables, specifically lower 

extremity sagittal and frontal plane angles, respectively.(32, 38)  

Hewett et al.(32) had high school female volleyball players complete an intensive two 

hours per day, three days per week, six week comprehensive program including flexibility, 

strengthening, and plyometric exercises with an emphasis on proper technique.(32) While the 

authors report positive changes in muscle strength and landing forces, they did not observe 

improvements in hip, knee, and ankle flexion angles following the completion of the 

program. This study had significant limitations which may explain why these variables were 

not affected. Only 11 participants completed the program, and observations were made 

between their pre-test and post-test, with the only control group being a male comparison 

group of participants. With their small sample size and lack of a true control group, it is 

difficult to consider this study as a true representation of the ability of injury prevention 

programs to change lower extremity kinematics.  

Grandstrand et al.(38) implemented a multifaceted injury prevention program in 

eleven 9-11 year-old soccer players with 9 players serving as a control group. No changes in 

knee separation distances, or medial knee displacement, or vertical jump height were 

observed after program completion. The authors hypothesized that the program was possibly 

too complex for their young participants and present examples of how some exercises were 

not able to be completed. For example, the Russian Hamstring exercise was too difficult for 

many of the children to perform. The authors concluded a specialized program for this age 

group may be required. In addition, no mention of randomization was mentioned. These 

limitations may explain why no improvements were seen with kinematic variables.  
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The programs that were successful with modifying kinematic variables vary with type 

of program implemented, the duration of the program, and the target population. Two studies 

observed increases in knee flexion motion during landing following a one-time augmented 

feedback session.(31, 36) Other studies demonstrated similar results following an injury 

prevention program consisting of flexibility, strengthening, agility, balance, and plyometric 

exercises.(33, 35, 46)  Pollard et al.(39) observed improvements in both frontal and 

transverse plane hip motions following a multifaceted injury prevention program, but did not 

see changes at the knee joint or in hip flexion angles. No control group was used in this 

study, however, so it is possible the changes observed happened simply due to continued 

participation in sport.  

Myer et al.(34) not only observed improvements in sagittal plane motion, but also 

decreases in hip adduction and ankle eversion angles at landing and decreases in knee 

abduction angles due to an injury prevention program utilizing several types of exercise 

training. Noyes et al.(37) also used a similar injury prevention program and demonstrated 

frontal plane kinematic improvements.  

Kinetic Variables 

The goal of reducing landing forces is a very common and feasible goal among injury 

prevention programs.  All seven studies included in this review that aimed to achieve this 

objective were successful.(32, 36, 47-51) Despite the limitations previously noted with 

Hewett et al.(32), the authors did report a reduction in landing forces, as well as knee frontal 

plane moments. The other study to evaluate a reduction in landing forces after an exercise 

training intervention was Irmischer et al.(47) Both of these studies utilized only female 

participants so it is still unknown whether or not the results will be similar in male athletes. 
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Besides landing forces, three studies demonstrated that torques about the knee and hip can 

also decrease following the completion of an injury prevention program.(33-35)  

Five articles demonstrated that an extensive, multifaceted exercise training program is 

not necessary to change kinetic variables.(36, 48-51) All five of these studies utilized a type 

of augmented feedback during a single testing session and found positive results with 

minimal study limitations. Onate et al.(36) demonstrated that showing participants a video of 

themselves landing, as well as an expert model landing, can decrease landing forces 

immediately and a week later. Onate et al.(49) also observed landing force reduction after 

participants were educated about proper landing through videotape and verbal instructions. 

McNair et al.(48) observed similar changes after providing participants with simple 

instructions to bend their knees during the landing or use the sound of the landing to guide 

their technique. Slightly contrary to McNair et al., Prapavessis et al.(50) demonstrated that 

participants who received instruction about how to land on the balls of their feet, bend their 

knees, and lower their heels to the ground were more effective with reducing landing forces 

than participants who were told to rely on the sound during landing to change their style. 

Children as young as eight years old were able to follow the same instruction and reduce 

their landing forces, however, their adjustment did not remain three months later.(51)  

Strength Variables 

Neuromuscular training programs have been shown to increase muscle activity and 

strength in both high school and college athletes.(32, 33, 37, 52, 53) These five programs 

were all implemented with varying durations, therefore, program duration does not appear to 

affect the ability to improve strength or muscle activity. Specifically, three studies 

demonstrated increases in hamstring peak torque or the hamstring/quadriceps ratio, which is 
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important because of the hamstring’s role in protecting the ACL.(37, 53, 56)Lephart et 

al.(33) (2005) did not observe hamstring strength improvements, but rather increases in 

quadriceps strength and  increases in medial hamstring peak reactivity during movement. 

This study also increased gluteus medius activity, which may assist with controlling lower 

extremity frontal plane movement.  Only plyometric training was involved with the Chimera 

et al.(52) intervention and improvements were only seen with preparatory adductor activity 

and abductor/adductor coactivation, which may also be beneficial for frontal plane control. In 

contrast, Cowling et al.(31) attempted to elicit greater hamstring muscle activity prior to 

landing by providing participants with instructions to “fire their hamstrings” but did not 

succeed.  

Balance 

Only two studies(54, 55) from this review included balance as an outcome variable 

despite the fact that three other studies(33-35) utilized balance in their training program. Both 

Holm et al.(54) and Paterno et al.(55) found improvements in balance and stability following 

completion of their program, but their designs were different. Holm et al. studied the effects 

of their program, which consisted of balance, agility, and technique instruction exercises, 

using adult handball athletes over an entire season. In contrast, Paterno et al. used high 

school athletes with an intervention program focused on strengthening, balance, plyometric, 

and technique instruction over a shorter period of time, but more intense training sessions.  

These comparisons suggest that any kind of balance training may result in balance 

improvements.  

2.34 Summary of ACL Injury Prevention 
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The findings of previous ACL injury prevention programs appear promising with 

successful reduction of injuries and neuromuscular risk factors in the majority of the studies. 

An interesting observation of all of the previously studied programs is the differences 

between them. Despite varying the exact injury prevention program according to exercise 

types, duration, or targeted population, the results were very similar. These findings suggest 

that in order for an injury prevention program to be effective, they key factor is that the 

program is multifaceted incorporating some flexibility, agility, plyometric, strengthening, 

and balance exercises. Based on the potential for large scale implementation, the program 

should require approximately 10-20 minutes to complete, can be performed in a group, such 

as a team, and should be implemented for at least 6 weeks.  

 Previous work is definitely limited in regard to the lack of randomization and the 

study populations. Only one study utilized male subject and no studies had both sexes 

participate. Although ACL injury rates are higher in females, ACL injuries and 

neuromuscular risk factors for injury still occur in males, so ACL injury prevention is still a 

concern for the male population. Also, the majority of studies use high school or college-

aged subjects. While injury risk is the highest in these age groups, ACL injury prevention 

should still be an issue for adults and especially children.  

 Preliminary work suggests that age groups do not respond similarly to ACL injury 

prevention programs. Based on the differences in findings between the studies that evaluated 

overall injury incidence, the majority of studies with unsuccessful conclusions used adult 

subjects compared to high school aged subjects. This suggests that adult subjects may require 

specialized training. The same conclusion can be made for young subjects, as Grandstrand et 

al.(38) is the only study to our knowledge to implement an ACL injury prevention program 
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to children under twelve years old. The program utilized is very similar to the programs used 

in older age groups and consists of dynamic flexibility, strengthening, agility, and plyometric 

exercises. However, no improvements were observed in lower extremity kinematics and 

kinetics. The authors do suggest a reason for these findings by describing how the children 

were unable to perform several of the exercises correctly due to the difficulty of the exercise. 

These findings agree with preliminary research recently presented demonstrating that 

younger subjects do not respond as well to injury prevention programs as their older 

counterparts. Sigward et al.(175) and DiStefano et al.(176) both observed improvements in 

landing kinematics and kinetics after high school aged subjects completed an ACL injury 

prevention program. However, the younger subjects in both of these studies, who were in 

middle school, did not obtain the same changes. Therefore, these findings appear to present a 

need for future research with this young population to determine if these children can 

respond to an injury prevention program and/or if they require an age or developmentally 

appropriate program.  

 Balance and strength are frequently incorporated into multifaceted ACL injury 

prevention programs, however, they are rarely assessed as outcome variables. Simple 

measures of strength and balance are available, so there is little reason to not include them in 

future assessments. Evaluating these changes will assist with program design, and if strength 

or performance variables do improve through injury prevention programs, implementation 

will be assisted, as well as more parents and coaches will be inclined to use the programs. 

2.4 Pediatric Considerations in ACL Prevention Programs 

2.41 Physical Development and Injury 
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Proper classification of a participant population is critical when comparisons are 

made between populations, conditions, or injury prevention programs.  Every research study 

published includes participant demographic data presenting participants’ ages; however, 

there are many definitions of “age” that can be used to describe an individual. These terms 

consist of chronological age, skeletal age, dental age, sexual age, morphological age, and 

biological age. Chronological age refers to the time evolved since birth and is most 

commonly used in society. Morphological age is based on comparing an individual’s height 

and weight to normative standards.(76) Biological age represents an individual’s progress 

toward maturity, is minimally related to chronological age, and can be determined by 

measures of morphological age, skeletal age, dental age, or sexual age.(76)  

The pubescent growth spurt that accompanies the onset of adolescence, also known as 

the “adolescent growth spurt”, is the most intense period of biological change with the 

exception of prenatal growth.(75, 76) In males, this growth spurt usually occurs around age 

11 and concludes by 17 or 18 years of age, while females are commonly two years ahead of 

the male schedule. (76) Besides measuring the actual growth attained during the growth 

spurt, the velocity of growth is also of interest because the age when peak velocity of height 

change occurs is an indicator of maturity.(177) This peak height velocity usually occurs in 

males around age 13 and in females around age 11.(177) Skeletal, sexual, and somatic 

maturity are all interrelated.(177) Therefore, it is feasible that acquiring information about 

skeletal maturity through past growth measures may provide some evidence of an 

individual’s biological age. 

Prior to adolescence, the brain is maturing as well as the physical body 

characteristics. The brain undergoes pruning where infrequent connections are eliminated 
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around ten years old. (75) Also around this age, the glucose levels in the brain and the rapid 

increases in myelin in the cerebral commissures decline.(75) Visual perceptual mechanisms, 

visual acuity, figure-ground perception, depth perception, and visual-motor coordination 

become fully mature around ten to twelve years of age.(76) Kinesthetic memory, visual-

kinesthetic integration, visual-auditory integration, auditory skills, directional awareness, and 

spatial awareness are more characteristics associated with motor development that mature 

around the onset of adolescence.(75) These factors support the notion that the time to 

implement injury prevention programs may be just before or during the time when the brain 

is maturing. 

 Prior to puberty, males and females do not differ greatly in their body size. After the 

onset of adolescence, however, great differences are observed.(76) Not only are there 

differences in actual body size, but body composition also changes. Females tend to develop 

more adipose tissue while males gain more muscular tissue.(75, 79, 177) These changes are 

due to the changes in hormone levels corresponding with sexual maturity. Adult men have 

approximately ten times the amount of testosterone present in their body compared with 

children and adult females.(75) These gender differences may potentially explain the gender 

discrepancies in neuromuscular risk factors and injury rates during and after puberty. 

2.42 Resistance Training Considerations 

 The rapid changes that occur during the pubertal stages provide rationale for youth 

physical training. During the adolescent growth spurt, bone growth usually occurs faster than 

muscle and tendon growth, resulting in decreased levels of joint flexibility.(76) Therefore, 

flexibility training may be beneficial during this time period to resist declines in flexibility. 

In addition to assisting flexibility, exercise prior to adolescence may also be the most 
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effective time period to assist with bone development.(76) Unfortunately, the amount of 

vigorous physical activity declines during these life stages, with only 25% of children 

participating in any form of school physical education. (75)  

Muscle strength is an important factor in the ability to properly perform common 

movement patterns.(177) Historically, it was believed that children should not perform 

resistance training because of potential injury risk and the fact that they do not have 

androgens in their circulation inhibiting them from attaining strength gains.(80, 178) 

However, Malina et al.(178) presented a review on youth resistance training and concluded 

that resistance training two to three days per week does increase muscle strength during 

childhood and early adolescents and these improvements are lost with detraining. While 

postpubertal males experience strength gains due to hypertrophy, the strength gains of 

prepubescent children after training are due to improved neural adaptations instead.(80, 81) 

Resistance training has been shown to improve stimulation of the central nervous system 

greater than what would occur with normal maturation.(76) 

Faigenbaum et al.(82, 179-182) have performed several studies to determine the best 

resistance training program design for children. In 1999, their results indicated that one set of 

13-15 repetitions produced greater strengthening effects compared with one set of 6-8 

repetitions in children between the ages of 6-12 years old.(180) This study was followed-up 

with a more recent study by Faigenbaum et al. where one set of 15-20 repetitions were 

compared with 6-10 repetitions in 8-12 year old children.(82) The results of this study 

supported the previous research that a high repetition load is more effective for producing 

greater strength gains than a low repetition sequence in children. Flexibility was also 

increased in the high repetition group relative to the control group. 
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Traditionally, static stretching was recommended as a warm-up activity and to 

improve flexibility. A recent study suggests that dynamic flexibility through a dynamic 

warm-up may be more beneficial in children.(183) Faigenbaum et al.(183) performed a 

within-participant design using 60 11-year old children as participants to compare a static 

flexibility warm-up, a dynamic flexibility warm-up, and a dynamic flexibility plus 

plyometric training warm-up on power, speed, and agility. The static flexibility warm-up 

consisted of six stretches for the hip adductor muscles, hamstrings, quadriceps, hip flexors, 

and calf muscles. The dynamic warm-up included the following exercises: high knee walk, 

straight leg march, hand walk, lunge walk, backward lunge, high-knee skip, lateral shuffle, 

back pedal, heel-ups, and high knee run. The static warm-up actually caused a reduction in 

vertical jump, long jump, and shuttle run performance. The authors concluded that a dynamic 

flexibility warm-up is more beneficial for children than the traditional static stretching warm-

up.(183)  

Young physically immature individuals are at greater risk to overuse injury compared 

to older individuals, and this may need to be a consideration within an injury prevention 

program. This risk may be due to inexperience, decreased overall fitness level, incomplete 

physes, or because muscle strength and soft tissue growth appear to occur after bone 

growth.(83-86) Recovery time for children following exercise is essential to avoid these 

overuse injuries, so reduced frequency of a training program is recommended.(84, 86)  The 

American Academy of pediatrics, in 2001 and revised in 2008, stated that children should 

perform strength, endurance, flexibility, and agility exercises with no load 2-3 times per 

week.(184) Faigenbaum et al.(182) supported this recommendation by demonstrating that 
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two days a week of resistance training is sufficient for strength and motor changes. These 

findings have important implications for program design in children. 

2.43 Motor Development Theories 

 Theories regarding motor development have evolved over the past sixty years. Some 

of these theories include the environmental theory, the phase-stage theory of development, 

the developmental task theory, the information processing model, and the dynamic systems 

theory. There are some common themes, such as the notion that development is interrelated 

between the environment through social and cultural influences and biology, or genetics. 

Several themes, such as the environmental theory, phase-stage theory of development, and 

the developmental task theory, view development as rigid sequential steps that must be 

followed for proper development.(76) Following and accomplishing these tasks will 

influence future success or failure.(76) These theories are considered rigid with individual 

independent components, so more recent research has focused on the information processing 

and the dynamic systems theories instead.  

The information processing theory became known in the 1970’s when computers 

were gaining popularity.(75) The information processing model relies on sensory input, 

integration, motor interpretation, movement activation, and feedback. This feedback can 

include knowledge of results or performance, and will influence the next steps of 

movement.(75, 76) Programming is also a vital component to this model and is defined as 

cognitive processing that creates a cognitive expression or motor program, requires attention 

and awareness, and the program is stored in the memory for future use.(75) A motor program 

has been defined as a memory representation of actions necessary for generating specific 

movement patterns.(75) The schema theory is similar to the information processing theory 



 
 

53

but progresses the motor program concept by describing motor programs not as strict 

guidelines, but as general concepts and relationships to direct movement from previous 

experiences and calls it a generalized motor program.(75) The generalized motor program 

prevents capacity issues that may occur with the information processing model, which would 

require a specific motor program for every task. The generalized motor program, instead, 

enables similar tasks to be controlled by one program with different speed, duration, and 

force parameters.(185) 

A further progression of the information processing theory is the dynamic systems 

theory, which is based on the idea that the body is made of several individual self-organizing 

systems that interact in complex ways depending on the movement required and the available 

resources or constraints.(75, 76) Constraints can be factors that either facilitate or restrict 

development and can be from the individual, the task, or the environment.(75) Examples of 

individual or organismic constraints are height, weight, motivation, level of practice, degrees 

of freedom. Gravity, temperature, and social influences are examples of environmental 

constraints, while task constraints include goals and rules. The dynamic systems theory 

allows variable motor performance based on the constraints, which is a critical aspect of skill 

acquisition.(185) Altering these constraints leads to preferred patterns of movement that 

usually are the most efficient interactions of the subsystems. Development based on the 

dynamic systems theory is a discontinuous process illustrated by phase shifts, which are 

evident by discontinuous movements during previously continuous tasks. Therefore, a person 

who is just learning a task or changing a task may show excessive variability. These phase 

shifts result in old movements being replaced by new patterns of movement.(75, 76) 

2.44 Motor Development Prior to Adolescence 
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Motor development is the process of continuous motor behavior change throughout life, 

and is linked to cognitive and perceptual development.(76) There are many terms associated 

with motor development, and these have been operationally defined by Gallahue in 2006:(76) 

“Motor behavior: change in motor learning, motor control, and motor development 

brought about by the interaction of learning and biological processes.(76) 

Motor control: underlying neural and physical changes in the performance of isolated 

tasks(76) 

Motor pattern: common underlying biological and mechanical processes(76) 

Motor skill: common underlying process of gaining control in voluntary movement of 

the body, limbs, and/or head (also called task or action)(76) 

Movement pattern: organized series of related movements(76)” 

Motor development is affected by the interplay of movement tasks, the individual, and the 

environment.(75, 76)  

In order for proper motor development to occur throughout life, several authors have 

discussed the need for developing acceptable levels of proficiency and efficiency of 

movements during various activities.(75-77) The term “fundamental motor skill” is 

frequently used to describe common motor activities that are the underlying framework for 

basic movements and complex sport and movement skills.44, 46 Examples of these 

fundamental motor skills include walking, running, jumping, hopping, skipping, catching, 

and throwing. Physical and cognitive maturation are important for the development of these 

skills, but the environment via practice opportunities and social encouragement also 

influence whether or not these skills are effectively developed. (76) As fundamental skills are 

attained, they are gradually combined and progressed to become more advanced sport 
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skills.(76) Sometimes children have difficulty acquiring these skills and these problems may 

differ between individuals, but are usually due to incomplete modeling of movements of 

other individuals, initial success with an incorrect movement, lack of motivation, 

inappropriate or scarce learning opportunities, or problems with sensorimotor 

integration.(76) 

Motor development is related to age, but it is not dependent on age, and often 

individuals have their own timetable for movement skill acquisition.(76) Critical, or optimal, 

periods for attaining motor skills are present during infancy, prepuberty, and puberty.(77) 

Early childhood, between the ages of 2-7 years of age, is considered the time for fundamental 

and gross motor skill development.(75) Later childhood, between the ages of 8-12, is 

important for fundamental motor skill refinement and the progression of fine motor 

skills.(75, 76) Generally, motor development specialists believe children are capable of being 

at the mature stage of most fundamental motor skills by age 5 or 6 years old. (75, 76) The 

mastery of complex motor skills does not usually occur until approximately 10-12 years old, 

when growth is fairly steady, gradually resulting in an ideal environment to develop 

coordination and neuromuscular skill.(78, 79)  

Motor skill development is intense during prepuberty and this progression declines 

during further stages of puberty.(77) Before puberty, males and females appear similar in 

most motor skill abilities. Females tend to be better with hopping, skipping, balancing, and 

flexibility while males are stronger with running, jumping, and throwing skills.(75) These 

differences are intensified after puberty and the adolescent growth spurt, and males are 

usually more proficient at most motor skills than females.(75) 
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Despite general expectations of fundamental skill mastery by age seven, many 

authors have noted a low prevalence of skill mastery in children as old as 15, or even a 

failure to succeed the elementary stages of many movements.(75, 76) Gallahue(76) noted this 

failure in skill development may be because many people believe children will automatically 

learn these fundamental skills and do not need to be taught. One reason for these findings is a 

decline in the quantity and quality of school physical education.  

Acquisition and development of fundamental motor skills needs to be an important 

objective of society, because possessing these skills leads to improved physical activity 

levels and increased participation in games and sports.(75, 76) A failure to reach competency 

in a variety of the fundamental motor skills will cause limited proficiencies of sport specific 

skills.(76) Team sport participation peaks around age 11,(75) which is a key period for 

refinement of fundamental motor skills. Children need to have sufficient exposure to 

practice, instruction, and encouragement to help their performance of movement skills.(76) 

Involvement in sports and physical activity is critical for children to have good health, 

physical and social growth enhancement, improved motor skills, good self-esteem, reduced 

risk for obesity and other health problems, and a basis for healthy living and lifelong 

participation.(77) Youth participation in developmentally appropriate sport activities has 

been recommended to encourage future participation.(77),(76)  

 Besides leading to reduced future physical activity participation, deficiencies in 

correct fundamental motor skills after the critical development periods may be very difficult 

to change.  Altering an already learned movement requires bringing the learning back to a 

conscious, or initial, level, and restarting the process. The tendency is for children to 
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immediately revert to the original method when they are challenged and this is only reversed 

after extensive practice.(76) 

Fundamental motor skills are frequently described in three stages: immature/initial, 

immediate/elementary, and mature.(76) The following synopsis about key fundamental 

motor skills is from the Gallahue(76) and Gabbard(75) text and focuses on skill attainment 

related to ACL injury risk factors and mechanisms of injury. Some key mature 

developmental characteristics of running include the elimination of lateral leg movements 

and toeing-out.(75) Dodging, or cutting, is considered a fundamental stability movement 

requiring rapid changes in direction, good reaction time, and speed. Characteristics of the 

initial stage of learning include segmented movements, stiff motions, and minimal knee 

flexion. The mature stage involves flexed knees, slight trunk flexion (“ready position”), and 

smooth lateral direction changes. Some developmental difficulties for the dodging skill 

include an inability to shift weight, slow change of direction, excessive body lean, a rigid 

posture, and an inability to perform multiple movements in succession.(76) As mentioned 

earlier in this literature review, limited sagittal plane motion at the trunk, hip, and knees, as 

well as lateral leg movements that may influence the position of knee valgus, and toeing-out 

that may result in tibial rotation, are all implicated as neuromuscular risk factors for ACL 

injury. 

 The initial stage for a jumping from a height skill consists of one foot leading on 

takeoff, no flight phase, and excessive use of arms for balance. The elementary stage 

progresses from the initial stage by involving a two-foot takeoff with one foot lead, an 

uncontrolled flight phase, and inhibited knee and hip flexion during landing. The mature 

stage for jumping and landing includes a two-foot takeoff, controlled flight phase, 
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simultaneous foot contact with toes first, feet shoulder-width apart, and sufficient knee and 

hip flexion. Problems with this skill often include an excessive body lean, failure to land 

concurrently on both feet, landing flat-footed and limited knee flexion. The majority of these 

landing characteristics are all included in a clinical movement analysis tool, the Landing 

Error Scoring System, and are evaluated to determine if neuromuscular risk factors are 

present between individuals.(186) Balance, or stability, is considered to be a key aspect of 

learning the fundamental motor skills.(76) Therefore, it is recommended that movement 

experiences for children should require them to move in a number of different ways relative 

to their center of mass and base of support.(90) 

2.45 Motor Learning 

Motor learning is an integral part of developing and refining fundamental motor 

skills. Gallahue(76) defines motor learning as the changes involved in acquiring and refining 

movement skills through practice or past experiences and involves relatively permanent 

alterations in motor patterns. Motor learning, or skill acquisition, influences the way 

individuals interact with the environment, determine what information is critical, and time 

motor responses appropriately.(185) Learning is also considered a result of many 

components including experience, education, practice, and biological processes.(76) There 

are three phases to motor learning: acquisition phase, retention phase, and the transfer 

phase.(87) The retention and transfer phases are critical when evaluating whether or not 

actual motor learning has taken place, because motor changes are possible after instruction 

and practice, but these changes can be transient.(187) Retention of changes and the ability to 

transfer the new skill or movement to another novice skill indicates actual motor 

learning.(75, 76, 187)  
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Attention is a factor that influences whether or not learning is successful, and can be 

directed internally or externally. External attention means the individual focuses on an object 

or the effect of the action instead of on their actual movement itself, which is internal 

attention.(87) Many studies have shown that adults are more effective learners when they 

direct their attention externally.(87, 188-190) This consistent finding is believed to be 

because an internal focus of attention causes individuals to constrain their movements, which 

leads to disruptions in their automatic control processes.(188) In contrast, external focus of 

attention does not alter automatic control processes, which leads to more effective 

performances and learning.(188)  

The advantage for external focus of attention is not true for all populations. Skill may 

impact whether an individual prefers internal or external focus of attention. Perkins-Ceccato 

et al. found that less skilled golfers’ performance was enhanced when they used an internal 

focus of attention, while their more skilled counterparts preferred the opposite, an external 

focus of attention.(191) Also, Emanuel et al. studied the effects of focus of attention between 

adults and children in learning a dart throwing task. Participants were randomly assigned to 

either an internal or external focus group where the internal focus group received instructions 

about appropriate shoulder, arm, and finger movement and the external focus group were told 

about the target aim, the position of the darts, and the course the dart should take. The results 

indicated that adults in the external focus group performed better on the task immediately 

(acquisition phase) than the adults in the internal focus group, which supports previous 

literature. Performance during the acquisition phase was not affected by group assignment 

for the children. However, children who were in the internal focus group performed much 

better one day after the acquisition phase on a transfer task, where the participants threw a 
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dart further than during the acquisition phase compared to the external focus group. The 

authors hypothesized that children may be considered more novel learners than adults, 

providing some rationale for the findings of preferred internal focus of attention. It has been 

previously hypothesized that children may not be detrimentally affected by internal focus of 

attention because their implicit learning is not mature compared with adults. Weiss et al. 

(1993) stressed the importance of showing enthusiasm, making eye-contact, and describing 

the key points of a skill concisely and with repeated demonstrations to maintain children’s 

effective attention.(192)  

Many textbooks describe three stages of motor learning derived from a model created 

by Fitts in 1967.(76, 185) The first stage of learning is the cognitive stage when the learner is 

exposed to simple rules and verbal instructions to understand the movement and form a 

conscious plan for the skill. Movement during this stage is usually variable and full of errors 

as the learner experiments. The second stage is the associative stage when the learner uses 

cues and feedback from the environment to help him/her with the task. Performance of the 

movement is beginning to be improved and consistent during the associative stage. The final 

stage is the autonomous stage when the task can be performed with minimal or no conscious 

attention or effort. The performance is usually error free at this stage. 

 Gallahue(76) expanded these traditional stages and provided suggestions for 

organizing practice sessions and presenting instructions. Similar to the traditional stages, the 

first level is when the learner develops a conscious mental plan for the task, and the result is 

variable error-ridden performance. Gallahue also mentions that fatigue may occur because 

the learner is focusing on many task components and unable to determine what information is 

critical. During this level, the learner progresses through three specific stages: awareness, 
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exploratory, and discovery. The learner works to figure out how the task is performed, 

experiment with how his/her body can perform the task, and find efficient ways to complete 

the task. The instructor is recommended to provide visual demonstrations, cue the learner to 

the major aspects only with brief instructions, permit early practice, provide an opportunity 

for self-discovery of the task, and to give the learner immediate, precise, and positive 

feedback.(76)  

 The second level is an intermediate level that occurs once the learner understands the 

task but needs to practice. The two sub-stages of this level include a combination and 

application stage during which the learner uses less conscious attention to put the skills 

together and use them in an activity. The instructor is recommended to provide ample 

practice, devise progressive practice situations, organize short, fast-paced sessions with 

frequent breaks, help the learner analyze the task, help the learner focus on entire skill, and 

help him/her learn to refine and apply the task to different situations.(76) 

 The final level is the advanced, or fine-tuning, level when the learner completely 

understands the movement and tries to perform it with no conscious effort. The instructor is 

encouraged to promote intensity and enthusiasm during practice, be available for feedback, 

make practice more realistic, avoid asking the learner to analyze skill, and promote rapid 

decision making. It is also advisable for conditions to be internally paced first with the 

external environment controlled followed by externally paced activities.(76)  

 According to the motor development theories discussed above, motor learning is 

dependent on the capability of the individual, the demands of the task, and the environment 

or practice conditions. Based on this concept, additional recommendations for teaching motor 

learning have been made with regard to cueing, practice variability, and feedback. As 
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mentioned previously, visual models benefit learning, and verbal cues can enhance what the 

learner perceives from these visual images by helping to stress the important information 

from the demonstration.(193) Observational learning has been shown to be beneficial for 

children, as repeated demonstrations help them focus on the basic parts of the skill.(192) 

Initially, the instructor should try to limit inhibiting constraints and maximize affordances by 

controlling the environment and the task so the individual only is concerned with his/her 

movement. 

 Using the individual, task, environment paradigm for influencing motor learning, it is 

plausible that children’s cognitive level may inhibit them from learning some tasks if they do 

not comprehend the objective or if too much information is presented in a complex manner. 

Guadagnoli and Lee(89) discussed the idea that the task difficulty must match the cognitive 

ability of the learner. Individuals must be challenged enough to be motivated by a task, but 

too much cognitive effort may interfere with the motor learning process.(89) Wulf and 

Shea(90) also supported the idea that complex motor skills require great levels of information 

processing, especially for children, and they advised teaching one part of a task at a time. 

Blocked practice is practice that repeats the same skill in the same way, and has been shown 

to improve the effectiveness of the skill acquisition phase. However, random practice 

involves practicing the same skill in several different ways, and has been shown to lead to 

more effective retention and transfer in adults. According to a review by Wulf and Shea(90), 

there are mixed results on this practice variable for children because some believe random 

practice can be too complicated for children.(90) They suggested practices of complex skills 

may be more beneficial if they are initially taught with blocked practice followed by random 

practice upon progression of the skill.(90) 
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Delayed feedback is often recommended during motor learning to allow the learner to 

recognize their own errors and make adjustments.(194) Sullivan et al.(88) demonstrated that 

this reduced feedback frequency requires cognitive processing that children may not be able 

to perform. This study compared children and adults in their skill performance and retention 

after either constant or reduced feedback conditions. While their results support previous 

research for reduced feedback in adults, children who received constant feedback performed 

better during the retention test than children who received reduced feedback. These findings 

further support the notion that children do not learn the same way as adults and therefore, 

should not be instructed the same way.    

2.46 Summary of Pediatric Considerations  

Adolescence is a period of time associated with rapid physical and cognitive growth. 

Similar to these changes in growth, motor development is a continual process that reaches 

maturity at the beginning of adolescence. This is also the time period when ACL injury rates 

begin to increase and neuromuscular injury risk factors are present. Therefore, this may be 

the ideal time for intervening with an ACL injury prevention program. However, preliminary 

evidence suggests these young children may not respond to the program as well as their older 

counterparts. The reasons for these findings may be because the programs are not designed 

specifically for this age group.  

There are several reasons to suggest young prepubescent individuals may require 

specialized training in order to modify injury risk factors. While this population is able to 

achieve strength gains, the mechanism for these gains is different than adults, and is most 

likely due to neural adaptations rather than muscle hypertrophy.(80, 81) Therefore, children 

have a reduced need for challenging strengthening programs.  Instead, resistance training 
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programs utilizing high repetitions and low weight have been encouraged.(82) Young or 

physically immature individuals, are at a greater risk for overuse injury compared to older 

individuals and this may also need to be a consideration within an injury prevention 

program.(83, 84) This risk may be due to inexperience, decreased overall fitness level, 

incomplete physes or because muscle strength and soft tissue growth appears to occur after 

bone growth.(83-86) Recovery time for children is essential to avoid these overuse injuries, 

so reduced frequency of a training program is recommended.(84, 86)   

While feedback and instruction are frequently components of ACL injury prevention 

programs, it appears young pre-pubertal children may benefit from this type of intervention 

more than their older peers.  Young children have been shown to require more continuous 

feedback and utilize different forms of attention compared with their older counterparts when 

learning a task.(87, 88) Task difficulty should match the cognitive ability of the learner when 

the learner is acquiring a new skill, which is especially true for children.(89) Wulf and Shea 

(2002) recommended that difficult tasks should be separated into basic components when 

taught to children.(90)  

Recommendations for pediatric anaerobic and aerobic training programs have been 

made, but no one has investigated whether an ACL injury prevention program should 

account for the differences between adults and children in strength, physical, and motor 

development, as well as motor learning.(86) Based on these differences, it appears ACL 

injury prevention programs for children should be implemented with lower frequency, higher 

repetitions, basic progressions, more instruction and feedback opportunities, and encourage 

mature performance of basic fundamental motor skills, such as landing from a jump. 
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Addressing differences between children and adults may enhance the ability to change 

neuromuscular risk factors and reduce ACL injury risk in a young population. 

2.5 Review of Literature Related to Methods 

2.51 Time to Stabilization Test 

 The time to stabilization test (TTS) requires stabilization of a single-leg landing and 

was first studied by Colby et al.(147) to determine if a functional test for stability could 

reliably differentiate between injured and uninjured limbs. The authors concluded that the 

TTS was able to identify uninjured and ACL-reconstructed limbs, and recommended the use 

of the test for evaluating lower limb instability. Since this study, the TTS has been used 

frequently to distinguish differences between populations, such as patients with functionally 

unstable ankles or stable ankles(195-197) or sexes,(198) as well as between conditions of 

external ankle support.(199, 200) Stabilizing on a single leg during landing is a critical skill 

to prevent injury, as this movement has been associated with ACL injury.(58) Therefore, the 

TTS appears to be a valid and reliable measure for evaluating dynamic balance ability, and it 

makes sense to use this test to determine the potential effectiveness of an ACL injury 

prevention program. 

2.52 Choice of Tasks to Evaluate Changes in Lower Extremity Movement 

  To our knowledge, all of the previous studies evaluating the effects of an ACL injury 

prevention program have compared lower extremity kinematics and kinetics during a landing 

task. Examples of these landing tasks include a stop jump task,(201, 202) a vertical jump,(32, 

33) and a drop vertical jump.(34, 35, 38, 39, 203) While ACL injuries commonly occur 

during a landing, this mechanism of injury only accounts for a small percentage of ACL 

injuries in soccer.(56, 57) The more common mechanism of injury in soccer appears to be 
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due to changing direction.(58) Cowley et al.(59) also demonstrated greater amounts of knee 

valgus in soccer players during a cutting task compared to a drop vertical jump. Therefore, 

evaluating the changes occurring in lower extremity kinematics and kinetics during a cutting 

task instead of a landing task may enhance our ability to hypothesize the potential an ACL 

injury prevention program to reduce injures in soccer. 

 Several studies have observed gender differences in lower extremity kinematics and 

kinetics during a sidestep cutting task.(17, 63-65) These findings support the use of a sidestep 

cutting task to evaluate differences in movement patterns, however, the majority of these 

studies and previously discussed work that studied landing patterns evaluate tasks that are 

anticipated, or planned. While this information is beneficial, it does not replicate what 

actually occurs during sport and most likely during an injury.(60-62) As a result of these 

conclusions, several studies have included unanticipated cutting tasks into their laboratory 

testing protocols. The general consensus is that unanticipated tasks result in greater amounts 

of neuromuscular risk factors for injury, such as increased knee joint loading, decreased 

initial knee flexion, increased knee flexion and valgus moments, and increased amounts of 

knee valgus compared with anticipated movements.(60-62, 66) 

 The most common way to incorporate unanticipated cutting tasks into a laboratory 

based testing protocol is to use a light timing system.(60, 62, 65, 66) This involves 

participants running toward a force plate, triggering the light system, which causes an arrow 

or a light to be displayed directing the participant to move in a specific direction. This 

method does cause reactive movements, but the task is still not realistic to a game 

scenario.(61) A common maneuver in sports, such as soccer, is to evade or mark an 

opponent. McLean et al.(61) addressed this limitation by using a stationary skeleton to 
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simulate the presence of a “defensive opponent” while the participants performed the cutting 

task. The authors concluded that this opponent resulted in increases in medial ground 

reaction forces, hip flexion, hip abduction, knee flexion, and knee valgus compared with the 

sidestep cutting condition with no opponent present. This study made progress in the ability 

to make laboratory based testing more realistic, however, the “defensive opponent” was 

stationary and predictable. Using a live model as the opponent to cause the participants to 

decide which direction to move may be the next logical progression for simulating real game 

and injury scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

METHODS 

3.1 Research Design 

A cluster randomized controlled trial was used to evaluate changes in potential 

neuromuscular risk factors before and after the completion of one of three ACL injury 

prevention programs: pediatric (PED), traditional (TRAD), or control (CON).  Six teams 

were originally invited to participate in this study, and were stratified by sex, and cluster 

randomized into one of the three programs. As a result, one boys’ and one girls’ team were 

assigned to each program. The boys’ control program team had a smaller roster than 

originally anticipated so a seventh team was recruited and combined with the original boys’ 

control team to ensure sufficient sample size. The four intervention teams performed their 

respective program as part of their normal practice warm-up during a nine-week intervention 

period while teams assigned to the control programs completed a warm-up designated by 

their coaches. Players from all seven teams performed the programs but only players who 

volunteered to participate in the study attended two testing sessions, one before (August 

2008) and one after (October 2008) the completion of the programs. The dependent variables 

for this study included: lower extremity kinematics (knee flexion, knee valgus, tibial rotation, 

hip flexion, hip adduction, hip rotation) and kinetics (knee extension moment, knee valgus 

moment, tibial rotation moment, anterior tibial shear force) during an anticipated and two 

unanticipated sidestep cutting tasks, as well as power and jump height during a maximal 
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vertical jump and dynamic balance ability. All testing occurred on the dominant lower 

extremity, which is the lower extremity preferred to kick a ball for maximal distance.  

3.2 Participants 

The a-priori power analysis for the majority of the dependent variables, including the 

primary variables of interest, indicated that in order to have a power of 80%, five to twenty 

participants need to be included in each group. Therefore, seventy-two pediatric (nine and ten 

year old) soccer players (36 males, 36 females; 24 subjects per group) from seven teams were 

asked to volunteer for this study. All participants were free from any injury or illness that 

prohibits soccer activity at the time of initial testing to reduce injury potential during testing. 

During a pre-season meeting, all parents and players read and completed informed consent 

and assent forms, which were approved by the university’s Institutional Review Board. 

Participants and their parents completed a baseline questionnaire to gather information about 

the participants’ injury, growth, and sport participation history, as well as their basic 

cognitive development. During the post-test only, participants completed another 

questionnaire to gather information about participation in physical activity outside of the 

soccer association and injuries sustained during the intervention period. These were all 

important factors that were not used for inclusion or exclusion criteria but were evaluated as 

potential covariates.  

Acquiring additional information regarding the participants’ injury, growth, physical 

activity history, in addition to their state of cognitive development greatly assisted with the 

interpretation and comprehension of the results. Information regarding a participant’s injury 

history was beneficial because a prior injury strongly predicts repeated injury, and may alter 

movement patterns and the outcomes of the injury prevention programs.(160-162) 
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Differences in muscle activation and movement patterns have been observed between 

individuals in various stages of biological maturity.(75, 76) Therefore, the rationale for 

obtaining information about the participant’s growth history is that growth velocity can be 

used as an indicator of biological maturity and rapid growth spurts may also impact a child’s 

ability to learn new motor skills.(89) Sport activity history and knowledge of previous 

participation in jump training programs was also important information to gain because these 

factors may have influenced the manner in which the participants responded to the program 

and to playing soccer in general. Acquiring information about the participants’ current state 

of cognitive development was important because according to previous motor learning 

research it is important for a task’s difficulty to match the cognitive ability of the learner.(82, 

180) Therefore, participants who possess greater cognitive maturity may have responded 

more effectively to the injury prevention programs.   

3.3 Procedures 

All participants attended two identical testing sessions lasting approximately one hour in 

a sports medicine research laboratory. The second session (post-test) occurred approximately 

nine weeks after the first session (pre-test), which coincided with completion of the 

intervention period (Table 1). Previous literature on youth resistance training has successfully 

used an eight week intervention period,(201) but the addition of one week allows three 

phases of three weeks to be used in this study, and is comparable to a recent investigation by 

Herman et al.(169) who studied the effects of strength training on lower extremity 

biomechanics. All participants wore standardized shorts and shirts, as well as their own 

running shoes. The same shoes were worn for both testing sessions. Participants’ height and 

weight recorded upon arrival to the laboratory.  
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The five tasks included a maximal vertical jump test, a balance test, as well as one 

anticipated and two unanticipated sidestep cutting tasks. During the anticipated cutting task, 

participants received a verbal cue at the beginning of the task instructing them to cut toward 

their non-dominant side. The participants were not provided with a verbal cue for the 

unanticipated cutting tasks, but instead were instructed to cut toward one direction or the 

other during the task via visual feedback provided by a live model. The false cue 

unanticipated cutting task required the participants to begin cutting one direction and then 

change directions due to a preliminary “false” instruction that was immediately followed by 

an additional cue during the task. The three cutting tasks were “blocked” together, meaning 

they were always performed together in a randomized order as they all required motion 

analysis. The participants performed the vertical jump test, dynamic balance test, and the 

three blocked tasks (cutting tasks) in a counterbalanced order.  

Maximal Vertical Jump Test  

The participants performed three trials of a double leg countermovement maximal 

vertical jump test so that power and jump height could be assessed. The participants began 

with their feet shoulder width apart while standing on a force plate (Bertec Corporation, 

Columbus, OH). An overhead goal was used to encourage maximal performance.(196, 204)  

The participants were instructed to jump for maximal vertical height and try to touch the top 

of a stick, and arm motion was not restricted. They performed two practice trials, and the 

overhead target was placed slightly above the participant’s highest practice jump. Thirty 

seconds of rest were allowed between each trial. 

Dynamic Balance Test  
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 Participants performed a dynamic balance assessment called the Time to Stabilization 

Test (TTS) on their dominant limb. The TTS has been shown to be a reliable and valid 

measure of dynamic postural stability.(196, 198) The participants stood on a 30 cm high box 

placed a distance of half of their body height away from the force plate (Bertec Corporation, 

Columbus, OH). The participants jumped forward from the box using their non-dominant 

foot and landed with their dominant foot in the center of the force plate while maintaining 

their hands on their hips and their non-dominant foot off of the ground. Participants were 

instructed to balance as quickly as possible without putting their non-dominant foot down, 

and to remain in single-leg stance for 10 seconds. This protocol was modified slightly from 

previous studies using the TTS to accommodate the participants’ ability, as noted during pilot 

work. Previous studies have required participants to jump forward a distance of 70 cm and a 

height of 50% of their maximal vertical jump.(34, 42, 56, 183) The modified protocol 

standardized the jump height by requiring participants to jump down and forward a distance 

relative to their height without trying to touch a target. Trials were noted and repeated if the 

participants were unable to maintain this single-limb landing position with their hands on 

their hips, if a subsequent hop occurred after landing, or if a subject jumped vertically from 

the box instead of straight down and forward. The investigator watched the participants 

perform the jump to ensure they did not jump vertically. Three trials of the TTS were 

performed. 

Sidestep Cutting Tasks  

Pictures of the sidestep cutting tasks are provided in Figures 1-3. Participants completed 

3 repetitions of the anticipated, unanticipated, and false cue unanticipated cutting tasks, as 

well as several unanticipated cutting tasks toward the wrong direction, in a randomized order. 
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The order of these tasks was randomized using a random number generator program in a 

customized software program (MatLab version 7; MathWorks, Natick, MA). For all three 

cutting tasks, the participants began standing on a box 30 cm high placed a distance of half of 

their body height away from the force plate. The participants jumped forward off both legs 

toward the force plate, landed with their dominant foot on the force plate, performed a 50-70° 

cut, and ran 3-4m. A live model was 3 m away from the far end of the force plate (relative to 

the participants) and jumped forward off a 30-cm high box and landed on his dominant leg. 

The participants were instructed to begin their jump immediately after the model jumped and 

to follow the model, who was the same individual for all testing sessions. Following the 

model simulated a task common in the game of soccer where players are required to “mark” 

an opponent to prevent them from obtaining the ball. Trials were excluded and repeated if the 

participants did not jump immediately after the model jumped, if the participant’s entire foot 

did not make contact with the force plate, or if the participants did not perform the 

appropriate task. A digital timing system measured the time between the instant the model 

jumped and the participant jumped to ensure no more than 400 ms occurred between jumps. 

Participants had at least 20 seconds of rest between each repetition to reduce the likelihood of 

fatigue, and were given 1-2 practice trials of each task for familiarization prior to data 

collection. 

Anticipated Sidestep Cutting Task 

For the anticipated task, participants were told prior to jumping from the box which 

direction the model would move. The participants landed with their dominant foot in the 

center of the force plate, made a 50-70 degree change of direction toward their non-dominant 

side, and ran a distance of 3-4m to follow the model. Three trials of the anticipated task were 
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performed, and trials were excluded and repeated if the participants performed one of the 

errors described previously or did not perform a 50-70 degree change of direction, which was 

clearly marked on the ground using tape. 

Unanticipated Sidestep Cutting Task 

  The only difference between the anticipated and the unanticipated tasks was that the 

participants were not told which direction the model would move prior to completing their 

jump from the box. They were instructed to jump immediately after seeing the model jump 

and to cut in the same direction as the model. The model changed direction while the 

participants were in the air after jumping from the box. Three trials of the unanticipated task 

were performed with the participants cutting toward their non-dominant side and three trials 

were performed with the participants cutting toward their dominant side. Only the cuts 

toward the participant’s non-dominant side were included for data analysis. 

False Cue Unanticipated Sidestep Cutting Task 

  The false cue unanticipated cutting task was identical to the unanticipated task except 

that the model shifted his trunk either left or right while the participants were in the air and 

then changed direction to cut at a 50-70 degree angle. This caused participants to land 

prepared to cut in one direction and then have to change direction in order to follow the 

model. Three trials were collected with the participants making the final cut toward their 

non-dominant side (started toward their dominant side and changed toward their non-

dominant side) and three trials were performed in the opposite direction.  

3.4 Implementation of Injury Prevention Programs 

Following the pre-test session, the six teams were stratified by gender and randomly 

assigned to one of three injury prevention programs: pediatric (PED), traditional (TRAD), or 
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control (CON). Therefore, one male and one female team were in each program group 

(n=24). Teams assigned to either the PED or TRAD program completed the ten to fifteen 

minute program as the team’s warm-up before every practice, which was two to three times 

per week during the nine week intervention period. The principal investigator or a research 

assistant taught the players the program within one week of completing the pre-test session, 

supervised the team’s implementation of the program at every practice to provide feedback 

and technique instruction, and monitored compliance. Proper technique was continually 

stressed to all of the participants while they performed the exercises. Technique was enforced 

by telling the participants to “bend their knees, hips, and trunks”, “land softly”, “keep their 

knees over their toes”, and “their toes pointing straight ahead” during all of the exercises. 

Teams assigned to the CON program conducted their normal warm-up as decided by their 

coach. The CON teams were also supervised once a week to ensure they did not perform any 

warm-up that was similar to either of the two intervention programs. 

Traditional ACL Injury Prevention Program  

The traditional program was modified from previous ACL injury prevention programs 

that have been shown to be effective with participants in high school or college, but failed 

with a young population.(34, 38, 42, 56, 183) This program consisted of static flexibility, 

balance, strengthening, agility, and plyometric exercises on both limbs. Participants ran 

forward a distance of 10 m after completing each exercise to make it a dynamic warm-up. 

The speed of this run gradually increased as the participants progressed through the warm-up. 

All exercises were performed on both legs, and the program required approximately 10-15 

minutes to complete. Table 2 provides a description of the traditional ACL injury prevention 

program.  
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The static flexibility exercises involved stretching of the gastrocnemius, adductor, hip 

flexor, and quadriceps muscles. Participants also performed three balance exercises. The first 

balance exercise was a double limb jump with a 180 degree twist in the air followed by a 

double limb landing and stabilized hold for one second (“180° Jump”). The second balance 

exercise required participants to maintain a single limb stance with their knee slightly flexed 

as they threw a soccer ball back and forth with a teammate (“Single Limb Ball Toss”). The 

third balance exercise involved a hop forward from one limb to a single limb landing and 

balance (“Forward Hop to Balance”). 

Strengthening, agility, and plyometric exercises composed the remainder of the 

traditional ACL injury prevention program. One strengthening exercise targeted the core 

musculature (“Hip Bridge”), while the remaining two strengthening exercises focused on the 

muscles of the lower extremity, specifically the quadriceps and hamstrings (“Walking 

Lunges”, “Single Leg Squat”). The agility exercises required lateral movement (“Sideways 

Shuffle), dynamic direction changes (“Z-cuts”), and forward propulsion (“Bounding”). 

Finally, four plyometric exercises were incorporated into the traditional program. Two 

plyometric exercises required primarily either horizontal or vertical motion, coordination, 

and strength (“Broad Jump”, “Squat Jumps”) while the remaining two plyometric exercises 

focused on changing either sagittal or frontal plane directions while hopping back and forth 

over a line (“Forward Line Hops”, “Sideways Line Hops”).  

Pediatric ACL Injury Prevention Program  

The pediatric program consisted of three phases. The first phase was performed twice 

per week, and the final two phases were performed three times per week. The three 

progressive phases in the pediatric program were further delineated. The first week of each 
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phase was an introductory phase with time spent on emphasizing proper form, verbal and 

visual feedback, and scaled down repetitions of each exercise. The remaining weeks of each 

phase included the addition of one or two exercises and added movement between all 

exercises. Table 2 provides a detailed description of the pediatric ACL injury prevention 

program. All three phases required 10-15 minutes to complete. 

Similar to the traditional program, the pediatric program incorporated several of the 

exercises into a dynamic warm-up protocol. The two programs were very similar during the 

first phase by requiring participants to run at progressively increasing speeds following the 

exercise movement (Figure 1a). However, participants completing the pediatric program 

performed a “timing” run after the exercise movements instead of the speed forward run 

during the second phase. The “timing” run involved two participants finishing the exercise 

movements at the same time, run at a diagonal, and crossed in front of or behind the opposite 

player. This movement required the participants to control their body and use visual 

information about another moving player to direct their motion to avoid a collision (Figure 

1b). During the third phase, a sidestep cut was performed at the end of the diagonal run 

(Figure 1c).  

Instead of static flexibility exercises, the pediatric program consisted of dynamic 

flexibility exercises. The dynamic flexibility exercises targeted the gastrocnemius (“Walking 

Calf”, “Hand Walk”), hamstrings (“Straight Limb March/Skip”, “Walking Hamstring”, 

“Hand Walk”), quadriceps (“Walk/run Butt Kicks”, “Walking Quadriceps”), hip flexor (“Hip 

Flexor Walk”, “Twisting Hip Flexor Walk”), and gluteal (“Knee to Chest”, “Leg Cradle”) 

muscles. The pediatric program consisted of some of the same balance exercises as the 

traditional program, such as the “Single Limb Ball Toss”, the “180 Degree Jump to Balance”, 
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and the “Forward Hop to Balance”. However, the “Single Limb Ball Toss” and the “180 

Degree Jump to Balance” were each only completed during one three-week phase. The 

“Forward Hop to Balance” exercise progressed during the second and third phases to include 

movement in the frontal and transverse plane (“Sideways Hop to Balance”, “Twisting Hop 

too Balance”). Finally, the pediatric program also performed a single limb balance exercise 

while a partner pushed the other partner in different directions (“Single Limb Balance with 

Perturbations”) during the last phase. 

The pediatric program began with primarily strengthening exercises and minimal 

plyometric exercises and transitioned by gradually changing these proportions. As a result, 

the final phase included only one strengthening exercise and several plyometric exercises. 

Strengthening exercises for the pediatric program included lunges in three planes (“Forward/ 

Sideways/Transverse Lunge”), a squat progression (“Double Limb Squat”, “Single Limb 

Squat”), progressive core exercises (“Hip Bridge”, “Human Arrow”, “Side Plank”), and 

lower leg strengthening exercises (“Toe Walk”, “Double/Single Heel Raises”). The 

plyometric exercises emphasized rapid changes of direction with double to single leg 

progressions (“Forward/sideways Line Hops”), vertical jumps (“Squat Jumps”, “Tuck 

Jumps”), and consecutive jumps for distance (“Broad Jumps”). Finally, the pediatric program 

incorporated several agility exercises (“Side Shuffle”, “Z-cuts”, “High Knee Run”, 

“Skipping”, “Quick Cuts”).  

3.5 Instrumentation 

 Lower extremity kinematics and kinetics were collected using Vicon motion analysis 

system and Vicon Nexus Software (Vicon Motion Systems, Centennial, CO) during an 

anticipated and an unanticipated cutting task. Seven infrared video cameras captured 
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trajectories of reflective markers worn by the participants at a sampling rate of 150 Hz. 

Vertical ground reaction force was collected by a force plate (Model # 4060-08A, Bertec 

Corp., Columbus OH) at a sampling rate of 1,500 Hz and was synchronized with the 

kinematic data. Prior to data collection, the global axis system was established with the 

positive x-axis pointing in the direction participants ran before cutting (forward), positive z-

axis directed vertically, and the y-axis directed to the left of the participants. Segment axes 

were aligned with the global axes. Prior to the cutting tasks, passive reflective markers were 

placed on the following landmarks: right and left acromion processes, right and left anterior 

superior iliac spines, proximal sacrum (S1), right and left greater trochanters, lateral aspects 

of the right and left thighs, lateral epicondyles of the right and left knee, medial epicondyles 

of the right and left knee, lateral aspects of the right and left shanks, right and left lateral 

malleoli, right and left medial malleoli, right and left posterior calcanei, the heads of the right 

and left 5th metatarsals, and the heads of the right and left 1st metatarsals. The markers were 

affixed to the skin, clothing, and shoes with double-sided adhesive tape. Following marker 

placement, participants were asked to stand in the center of the calibration area (2.5 m high × 

2.5 m long × 1.5 m wide) with each foot on a force plate (Type 4060-08, Bertec Corporation, 

Worthington, OH), in order to collect a static calibration trial. After the calibration trial, the 

markers on the medial epicondyles and medial malleoli were removed.  

 A live model was used to signal the start of the cutting tasks and was the same individual 

for all testing sessions. A wireless timing system (Sparq XLR8 Digitial Timing System, 

Wausau, WI) measured the time between when the live model and the participant jumped 

from a box to ensure the participant was in the air when the live model changed directions. 

One timing gate was placed in front of the live model and a second timing gate was in front 
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of the participant. A maximum time of 400 ms was allowed between the trigger of the live 

model’s timing gate and the participant’s timing gate.   

 A piezoelectric non-conductive force plate (Model #4060-NC Bertec Co., Columbus, 

OH) measured ground reaction forces at a sampling rate of 1,000 Hz during the vertical jump 

test, which was used to calculate impulse, power, and vertical jump height. The same force 

plate was used during the time to stabilization test at a sampling rate of 180 Hz.(205) All data 

for the vertical jump test and TTS were collected through Motion Monitor software 

(Innovative Sports Training Inc, Chicago, IL).  

3.6 Data Reduction 

All kinematic and kinetic data were transferred into Motion Monitor Software 

(Innovative Sports Training Inc, Chicago, IL) for data processing and exported into a 

customized software program (MatLab version 7; MathWorks, Natick, MA) for data 

reduction. All kinematic data were smoothed with a Butterworth (4th order, zero phase lag) 

low-pass digital filter at 15 Hz. The vertical ground reaction force data were normalized for 

bodyweight (N) and the moment data were normalized to the product of bodyweight and 

height (N*m).  

Three dimensional coordinates were estimated from the two-dimensional trajectories of 

the reflective markers. Knee and ankle joint centers were estimated as centroids from the 

medial and lateral malleoli and epicondyles, respectively, and the hip joint center was 

estimated from the markers on the bilateral anterior superior iliac spines using the Bell 

method.(205) The three-dimensional coordinates of body landmarks determined segment 

locations and orientations of the pelvis, femur, and shank. The three-dimensional coordinates 

of the knee joint center, the ankle joint center, and the anterior tibial marker defined the tibial 
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reference frame. The three-dimensional coordinates of the knee joint center, the hip joint 

center, and the anterior thigh marker defined the thigh reference frame. Finally, the three-

dimensional coordinates of the hip joint centers and the proximal sacrum marker defined the 

pelvis reference frame. Kinematics of the shank and thigh, as well as the thigh and pelvis 

segments determined knee and hip joint angles, respectively. Joint motions were determined 

through a joint coordinate system using Euler angles.(206) The axes system established used 

a right-hand system. The following motions were positive: knee flexion/hip extension, 

adduction/varus, and internal rotation. Data were exported from the Motion Monitor software 

with the following order of rotations of Euler angles: flexion/extension (x-axis), adduction 

(varus)/abduction (valgus) (y-axis), internal/external rotation (z-axis). Using standard inverse 

dynamics, proximal anterior tibial shear force and three-dimensional hip and knee internal 

joint moments were calculated. 

Knee flexion, knee valgus, tibial rotation, hip flexion, hip adduction, and hip rotation 

angles were selected at initial ground contact during the cutting task, which was defined as 

the instant the vertical ground reaction force exceeded 10N. Peak values for these same 

angles, as well as peak anterior tibial shear force, peak knee flexor, valgus, and rotation 

moments were selected during the first 40% of the stance phase during the cutting task. The 

stance phase was defined as the time between initial ground contact and toe-off, which 

occurred when the vertical ground reaction force dropped below 10N following initial ground 

contact. The data from the three trials of each task during pre-test and post-test were 

averaged together.  

 Data from the vertical jump test and the time-to-stabilization test were exported into a 

customized software program (MatLab version 7; MathWorks, Natick, MA) for reduction. 
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The time spent in the air during the vertical jump test, which was determined as the time 

between toe-off (VGRF<10N) and initial ground contact (VGRF>10N), was used to 

calculate vertical height with the following formula (g represents constant acceleration due to 

gravity): 

Height = 0.5(g(t/2)2)(93) 

Power was computed using the following equation:  

Power (W) = 61.9 x jump height (cm) + 36.0 x mass(kg) -1822.(92) 

The three trials were averaged for all analyses. 

 The time-to-stabilization data were reduced using a method described by Ross et al.(196) 

The absolute ground reaction force ranges for both the anterior-posterior (A/P) and medial-

lateral (M/L) between the eighth and ninth seconds of single limb stance were divided by the 

participant’s body weight. These values were used to determine a mean range-of-variation 

value for each component and across all 3 trials.  Standard deviations (SDs) were also 

calculated for each component and three SDs were added to each mean range of variation. 

The A/P and M/L components of the ground reaction force were analyzed separately for each 

participant. The components were rectified and a decay curve was determined by fitting the 

data with an unbounded third-order polynomial. A horizontal line was inserted over the top 

of the data for each component, which was equal to the component’s mean range of variation 

plus three SDs. The time-to-stabilization for each component and each participant’s trial was 

the point the unbounded third-order polynomial transected the mean range of variation value. 

The average time-to-stabilization value from the three trials for each component were used 

for analyses. 

3.7 Statistical Analyses 
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Research Questions 1-4  

 Seven possible covariates were evaluated for a significant relationship with the treatment 

effects (change scores) for all dependent variables. These covariates included variables 

regarding anthropometrics (Pre-test BMI, Change in BMI between testing sessions, % 

Predicted Adult Height), demographic information (sex, age in months), memory and 

learning ability (Learning and Total scores from BVMT), and the initial value of each 

dependent variable. Change scores were calculated for all dependent variables by subtracting 

the pre-test value from the post-test value.  

 Separate analyses of covariance were conducted for each dependent variable, and 

covariates were included in the model if they had a statistically significant effect on the 

change score.  If no covariates had a significant effect on the model, separate one-way 

analyses of variance were performed. Significant group effects were evaluated with a 

Bonferroni post hoc correction. All data analyses were performed using SPSS version 16.0 

(SPSS, Inc., Chicago, IL) with an a priori alpha level of 0.05. The clustering effect due to 

team instead of individual was ignored with the analyses since the number of clusters (7) was 

too small to permit use of established statistical methods for clustered data.  

Research Questions 5 

 Separate one-way analyses of variance were conducted to evaluate differences between 

sexes during the balance and vertical jump test during both pre-test and post-test. All data 

analyses were performed using SPSS version 16.0 (SPSS, Inc., Chicago, IL) with an a priori 

alpha level of 0.05. 



CHAPTER 4 

SUMMARY OF RESULTS 

 

4.1 Introduction 

 This chapter provides a summary of the results for each research question followed 

by a brief interpretation. A more detailed interpretation of the results for research questions 

one, two, and four is presented in the two manuscripts included as appendices. Chapter five 

provides further interpretation and discussion related to research questions three and five 

since these data are not addressed in the two manuscripts. The most important findings 

from this investigation are that the pediatric ACL injury prevention program caused 

changes in transverse plane knee kinematics during the anticipated and unanticipated 

cutting tasks, but the traditional program did not result in any changes in the joint kinematic 

and kinetic variables studied. The traditional program successfully improved balance and 

vertical jump ability, however, these changes appear to be due to the specificity of the 

training program with the assessment tasks. These results are important as they demonstrate 

children less than twelve years old can modify potential neuromuscular risk factors for 

ACL injury and these changes are influenced by the type of training program. 

4.2 Overview 

 Six teams were initially invited to participate in this study because the league 

estimated 12 athletes per team. However, an additional team was included because one of 

the boys’ teams fell short of the proposed number with only 8 athletes. Therefore, the 
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original boys team that had only a small number of athletes and the seventh team were 

grouped together as one team for the cluster-randomization. The six teams were stratified 

for sex and randomized into one of three programs: pediatric, traditional or control. Sixty-

six participants from these teams volunteered to participate in this investigation. Sixty-five 

participants completed both testing sessions and attended greater than 80% of all program 

sessions. One control participant only completed the pre-test session due to scheduling 

conflicts and was removed from the analyses. No injuries were sustained during the course 

of the testing sessions and intervention period. Complete demographic information for all 

participants included in the analyses is provided in Table 1.  

4.3 Results 

4.3.1. Research Question 1 

 The first analysis evaluated differences in lower extremity biomechanics between the 

pediatric, traditional, and control programs during an anticipated sidestep cutting task. 

Means and standard deviations during the two testing sessions, change scores and measures 

of variability, as well as all statistical results are presented for the kinematic dependent 

variables at initial ground contact in Table 3, the peak of each dependent variable during the 

first 40% of the stance phase in Table 4, and the peak of each kinetic dependent variable 

during the first 40% of the stance phase in Table 5. There was a significant difference 

between groups in change scores for tibial rotation at initial ground contact (F(2,62)=3.79, 

p=0.03, η2=0.11) and peak tibial internal rotation (F(2,63)=4.96, p=0.01, η2=0.14). Post hoc 

testing revealed that the pediatric program caused participants to land with significantly less 

tibial external rotation at initial ground contact (p=0.008, Effect size=0.75)(Figure 4) and 

attain greater internal rotation during the stance phase compared to the control program 
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(p=0.005, Effect size=0.93)(Figure 5). The traditional program did not cause a significant 

change in any dependent variable during the anticipated cutting task (p>0.05). No other 

significant findings were observed for any of the kinematic and kinetic variables studied 

(p>0.05).  

Interpretation: 

 The results for research question one indicate the pediatric ACL injury prevention 

program successfully modified transverse plane knee motion during an anticipated cutting 

task. However, the traditional program did not cause participants to modify their cutting 

technique. These findings support the research hypothesis that the pediatric program would 

result in greater changes compared to the control or traditional program because it 

accounted for differences between children and adults in strength, cognitive, and motor 

development.  

 The pediatric program caused participants to land with decreased tibial external 

rotation, or less of a “toed-out” posture, which resulted in a more neutral tibial rotation 

position. Participants were encouraged throughout the pediatric program to “keep [their] 

toes straight ahead.” Therefore, it appears the young participants were able to learn a new 

strategy while performing the cutting task. This change may reduce strain on the ACL as 

tibial external rotation has been shown to cause a shearing force on the ACL.(207) Landing 

with less tibial external rotation caused greater amounts of tibial internal rotation during the 

first 40% of the stance phase as well. We believe this is representative of a shift in tibial 

rotation since tibial rotation displacement did not change dramatically between pre-test and 

post-test. Since ACL injuries appear to occur early in the stance phase, we believe the 

reduction in tibial external rotation is clinically significant. However, since excessive 
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amounts of tibial internal rotation have been associated with ACL strain,(112) it is possible 

the increase in tibial internal rotation was actually a detrimental result of the pediatric 

program. Future research should further evaluate the relationship between tibial rotation 

and ACL loading. 

Despite changes in tibial rotation, the pedatric program did not result in concurrent 

changes in other planes of motion. This is contrary to the research hypothesis that 

improvements in cutting technique would be observed in multiple planes. Failing to observe 

changes in other variables may be attributable to the nature of the assessment and the 

specificity of the training. This is the first study to evaluate changes in biomechanics after 

an injury prevention program during a cutting task that demands dynamic transverse plane 

control. Other studies have demonstrated success with modifying sagittal and frontal plane 

variables after an injury prevention program using primarily a sagittal plane task, such as a 

jump landing. The majority of the exercises in the pediatric injury prevention program were 

designed to teach proper technique during slow and controlled movements and gradually 

progress into more dynamic movements. Greater changes may have been observed with 

tasks involving only one plane of motion at a time or if the pediatric program had 

progressed further to include more training with the quick sport-specific movement of 

cutting. 

4.3.2. Research Question 2 

 The analyses for the second research question evaluated differences in lower 

extremity biomechanics between the three programs during the unanticipated sidestep 

cutting task. Means and standard deviations during the two testing sessions, change scores 

and measures of variability, as well as all statistical results are presented for the kinematic 
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dependent variables at initial ground contact in Table 6, the peak of each dependent 

variable during the first 40% of the stance phase Table 7, and the peak of each kinetic 

dependent variable during the first 40% of the stance phase in Table 8. There was a 

significant difference between groups in change scores for tibial rotation at initial ground 

contact (F(2,63)=6.92, p=0.002, η2=0.19), peak tibial internal rotation (F(2,63)=6.49, p=0.003, 

η2=0.18), and peak tibial external rotation (F(2,63)=5.73, p=0.005, η2=0.16). Post hoc testing 

demonstrated that the pediatric program resulted in less tibial external rotation at initial 

ground contact (p=0.001, Effect size=0.93)(Figure 6) and reduced the maximum tibial 

external rotation (p=0.001, Effect size=0.86)(Figure 7) during the first 40% of the stance 

phase compared to the control program.  The pediatric program also resulted in greater 

tibial internal rotation during the stance phase compared to the control program (p=0.002, 

Effect size=0.98) and the traditional program (p=0.003, Effect size=0.92)(Figure 8). The 

traditional program did not cause any significant changes in any dependent variable during 

the unanticipated sidestep cutting task (p>0.05). There were no other significant differences 

(p>0.05).  

Interpretation: 

 The results of research question one and two were very similar, which suggests the 

changes in lower extremity biomechanics from an injury prevention program persist across 

different types of cutting tasks. The pediatric ACL injury prevention program caused 

changes in the transverse plane, but the traditional program was ineffective with modifying 

lower extremity biomechanics. This agrees with the research hypothesis that a program 

designed for the pediatric population by adding more time for instruction, feedback, as well 
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as incorporating more progressions and variety would result in greater changes compared to 

a traditional injury prevention program. 

 The unanticipated cutting task was evaluated in this investigation to determine 

whether changes from an injury prevention program would transfer between various 

assessment tasks. Unanticipated cutting has been shown to increase the load on the ACL 

compared to anticipated cutting and is considered to be more realistic to a game 

scenario.(60, 208) The results were similar between anticipated and unanticipated 

conditions. The similarity across tasks may indicate an injury prevention program 

consistently results in the same changes during any type of cutting task. Another possible 

explanation for the similarity is that the cutting task itself was challenging for the youth 

participants resulting in little room for variability. Unfortunately, this is the first study to 

evaluate the effects of an injury prevention program using a cutting task, so comparisons to 

other investigations are minimal. Future research should compare changes due to an injury 

prevention program across cutting and landing tasks to enhance the understanding of the 

effects of an injury prevention program in a youth population.  

4.3.3. Research Question 3 

 The third research question was addressed by evaluating change scores in lower 

extremity biomechanics between the three programs during the false cue unanticipated 

cutting task. The false cue unanticipated cutting task was an extremely challenging task for 

the young participants. Only 18 participants were able to successfully complete the task 

during both the pre-test and the post-test. Originally, an acceptable trial during this task 

required the participant to land with only one foot on the force plate and cut in the direction 

of the live model. The false cue prevented many participants from cutting in the correct 
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direction or from landing with only one foot on the force plate. The low number of 

successful trials led to the expansion of the inclusion criteria. An acceptable trial was 

redefined as a trial where the participant performed a cut in the correct direction regardless 

of whether one or two feet landed on the force plate. The operational definition change 

permitted the inclusion of 42 participants into the analysis for this research question. Only 

the kinematic data were analyzed because the kinetic data were invalid during a double foot 

landing.  

Means and standard deviations during the two testing sessions, change scores and 

measures of variability, as well as all statistical results are presented for the kinematic 

dependent variables at initial ground contact in Table 9 and the peak of each dependent 

variable during the first 40% of the stance phase Table 10. There were no significant 

differences between groups in any dependent variable during the false cue unanticipated 

cutting task (p>0.05). 

Interpretation: 

 The false cue unanticipated cutting task was a novel assessment tool, which may have 

contributed to a lack of significant changes between programs. This task required 

participants to not only respond to a cue directing them which way to move, but also to 

quickly adjust themselves and change directions. While this action is common during 

intense sports, such as soccer, it may have been too challenging for the young participants 

in this study. As discussed previously, the majority of the training exercises required proper 

lower extremity control during relatively slow movements. It appears any improvements in 

movement technique and transverse plane control did not transfer to this novel task. Future 
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research should evaluate this task in older populations and after more training progressions 

that include unanticipated cues.  

4.3.4. Research Question 4 

The fourth set of analyses evaluated differences in dynamic balance ability and 

vertical jump performance between the three programs. Means and standard deviations 

during the two testing sessions, as well as change scores and measures of variability are 

presented for the two time-to-stabilization dependent variables and the two vertical jump 

variables in Table 11. An analysis of covariance was used to analyze change scores in 

anterior-posterior (A/P) time-to-stabilization between groups with sex and the pre-test 

anterior-posterior time-to-stabilization value as the covariates. The group mean change 

scores were adjusted for sex (1.43) and the pre-test A/P value (2.71s) and a significant 

difference between groups was detected (F(2,60)=6.34, p=0.003, η2=0.17). Post hoc testing 

demonstrated that the traditional program caused greater improvements in A/P time-to-

stabilization compared with the control program (p<0.001, Effect size=0.82)(Figure 9). 

However, the changes due to the pediatric program were not significantly different than the 

control or traditional programs (p>0.05). An analysis of variance was performed to evaluate 

differences in medial-lateral (M/L) time-to-stabilization between groups and did not detect 

any significant differences (F(2,61)=0.59, p=0.56, η2=0.02). 

An analysis of covariance was performed to evaluate changes in vertical jump height 

between programs because the pre-test vertical jump height value had a significant effect on 

the ability to improve vertical jump height. After adjusting the group change scores for the 

pre-test value (25 cm), this analysis demonstrated a significant difference between change 

scores (F(2,61)=3.45, p=0.04, η2=0.10). Post hoc testing revealed that the traditional program 
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resulted in greater improvements in vertical jump height ability compared with the control 

program (p=0.15, Effect size=0.71)(Figure 10). There were no differences between the 

pediatric program and either the control or traditional programs (p>0.05). There were no 

significant difference between groups in power using an analysis of variance (F(2,61)=2.79, 

p=0.07, η2=0.08).   

Interpretation: 

 Contrary to the research hypothesis, the traditional program caused improvements in 

anterior-posterior time-to-stabilization and maximum vertical jump height while the 

pediatric program did not result in any significant changes. These findings are most likely 

due to the specificity of the training programs. Participants in the traditional program 

performed a forward hop to balance exercise for nine consecutive weeks, which was almost 

identical to the time-to-stabilization task. Therefore, it appears training the hop to balance 

activity results in improvements in that specific task. While the pediatric program did 

perform that specific exercise, it was only performed for the first three weeks after which 

multiplanar progressions of that exercise were added. It is reasonable to hypothesize that if 

the assessment task had involved movement in the frontal or transverse plane, the pediatric 

program may have caused greater improvements compared to the traditional program.  

 The traditional program also completed maximum vertical jumps for nine consecutive 

weeks. This is in contrast to the pediatric program, which included similar types of jumps 

but only after the first few weeks were spent focusing on proper movement technique 

during less dynamic exercises. The design of the pediatric program was focused on teaching 

the participants how to move correctly, build a foundation of strength to prevent injury 

during more dynamic exercises including plyometrics. However, the specific training of the 
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traditional program appears to correlate with significant improvements in maximum vertical 

jump height and did not result in any overuse injury. In conclusion, specificity of training 

should be considered in future designs of injury prevention programs. 

4.3.5. Research Question 5 

 Differences in lower extremity biomechanics were evaluated between sexes during 

the anticipated, unanticipated, and false cue unanticipated cutting tasks both before and 

after completion of the intervention period. Complete means, measures of variability, and 

statistical results are presented in Tables 20-27. The findings across the three tasks were 

similar. Males initially made ground contact with increased hip abduction compared to 

females during the anticipated (pre-test: F(1,63)=12.46, p=0.001, Effect size=0.89; post-test: 

F(1,62)=12.57, p=0.001, Effect size=0.89) and unanticipated (pre-test: F(1,63)=13.28, p=0.01, 

Effect size=0.92) cutting tasks. Males performed the anticipated (pre-test: F(1,63)=12.02, 

p=0.001, Effect size=0.72; post-test: F(1,62)=16.38, p<0.001, Effect size=1.03) and 

unanticipated (pre-test: F(1,61)=15.54, p<0.001, effect size=0.99; post-test: F(1,61)=6.44, 

p=0.014, Effect size=0.67) cutting tasks with greater hip abduction compared to females.  

In addition to changes with hip frontal plane angle differences, knee frontal plane 

differences were observed during the unanticipated task at pre-test when females 

demonstrated greater knee valgus moments (F(1,63)=5.11, p=0.03, Effect size=0.55). 

However, the false cue unanticipated task revealed differences in peak knee valgus during 

both testing sessions (pre-test: F(1,40)=4.31, p=0.04, Effect size=0.63; post-test: F(1,40)=4.99, 

p=0.03, Effect size=0.69). Females performed the false cue unanticipated task with more 

knee valgus motion compared to males. Finally, females achieved greater knee flexion 
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during the anticipated cutting task at the post-test session compared to males (F(1,62)=4.18, 

p=0.045, Effect size=0.52).  

 Means and measures of variability for sex comparisons in the balance and vertical 

jump variables are displayed in Table 28. There were no significant differences observed 

between sexes in either anterior-posterior time-to-stabilization (F(1,62)=2.10, p=0.15, Effect 

size=0.37) or medial-lateral time-to-stabilization (F(1,62)=0.40, p=0.53, Effect size=0.12) 

during the pre-test. However, at post-test, females stabilized quicker in the anterior-

posterior direction compared to males (F(1,62)=7.40, p=0.008, Effect size=0.71). There were 

still no significant differences between sexes in the medial-lateral direction (F(1,62)=1.24, 

p=0.27, Effect size=0.30). There were significant differences between sexes observed in 

vertical jump height (pre-test: F(1,64)=9.04, p=0.004, Effect size=0.75; post-test: 

F(1,64)=10.21, p=0.002, Effect size=1.0) and power (pre-test: F(1,64)=6.34, p=0.01, Effect 

size=0.63; post-test: F(1,64)=9.50, p=0.003, Effect size=0.78). Males consistently jumped 

higher and generated more power compared to females during the maximum vertical jump 

test. 

Interpretation: 

 Females injure their ACL at a higher rate than males who compete in similar 

sports.(4) There have also been several studies that have documented sex differences in 

various possible neuromuscular risk factors for injury. However, very few studies have 

observed these sex differences in prepubertal children. Therefore, the research hypothesis 

was that no sex differences would be present in any of the dependent variables before or 

after the intervention period. The results do not support this hypothesis as sex differences 

were seen in a few lower extremity biomechanical variables, as well as in the variables 
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during the vertical jump test. Previous research demonstrates that females consistently land 

and cut with less sagittal plane motion and greater movements in the frontal and transverse 

planes compared to their male counterparts. The differences observed in this study were 

primarily in the frontal plane, so while there were differences observed, males and females 

did perform the cutting task similarly on several other variables. These findings suggest 

children under 11 years old are already beginning to display some sex differences.(170) 

 

Table 28 provides information regarding how many trials were required during each task 

between groups. A repeated measures analyses of variance evaluated these data for a 

significant group by time interaction but did not observe any significant changes (p>0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

DISCUSSION OF RESULTS 

 

5.1 Introduction 

 This chapter provides a discussion of data not included in the two manuscripts. These 

data address research questions three and five. A discussion regarding the results from 

research question three is presented first followed by the discussion for research question 

five. 

5.2 Research Question 3 

The most important finding from these results is that neither the traditional nor the 

pediatric injury prevention program successfully changed any lower extremity 

biomechanical variable during a false cue unanticipated cutting task. The task used in this 

study is a novel assessment for a cutting maneuver as it not only includes an unanticipated 

component with a live model, but also requires a second response from the participant to 

change directions twice. These findings are in contrast to the research hypothesis and 

suggest that children under 12 years old may not be able to modify their movement 

technique during a very dynamic and challenging task.  

Previous research has demonstrated that ACL injury prevention programs can modify 

lower extremity biomechanics in older populations.(32, 33, 35, 176) These conclusions are 

not supported by the current findings, and are most likely due to the nature of the task as 

well as the population used in this investigation. To our knowledge, this is the first study to 
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compare lower extremity biomechanics during a cutting task before and after an injury 

prevention program. Every other study that has examined the effect of an injury prevention 

program on lower extremity biomechanics studied the variables during a stop jump 

task,(201, 202) a vertical jump,(32, 33) or a drop vertical jump.(34, 35, 38, 39, 203)   One 

possible explanation for the differences between tasks is that cutting tasks demand greater 

transverse and frontal plane control compared to a landing task, which occurs 

predominantly in the sagittal plane. Therefore, it may be harder for individuals to change 

movement during cutting tasks. Secondly, not only was the task in this study a cutting 

movement, but it was also unanticipated and involved a second change of direction. 

Multiple studies have shown that individuals demonstrate greater potential neuromuscular 

risk factors for injury during an unanticipated cutting task compared to an anticipated 

movement. The complexity of the false cue unanticipated task may have inhibited 

participants from demonstrating any improvement in movement control. 

The two other studies that have evaluated the effects of an injury prevention program 

on lower extremity movement technique in a population under twelve years old both 

concluded this population may require specialized training. Grandstrand et al.(38) failed to 

see improvements in knee separation distances after 9-11 year olds completed an injury 

prevention program that had been previously successful with an older population. The 

authors commented that the children had difficulty performing a few of the exercises, which 

may have contributed to their results. DiStefano et al.(176) found that a population of 

soccer athletes under 13 years old could improve their landing technique, however, a high 

school aged population sustained larger improvements. Due to the results of these two 
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previous studies, the pediatric ACL injury prevention program was designed to target the 

preadolescent population specifically.  

Children develop strength(80, 81) and learn motor skills(87, 88) differently than 

adults, so the pediatric program included sequential progressions of exercises to build a 

foundation of neuromuscular control with proper technique and advance to more dynamic 

and explosive exercises. Extensive time was provided for instruction and feedback as 

continuous feedback is more effective with a youth population.(88) Anecdotally, the 

participants appeared to improve their movement technique during all of the exercises 

suggesting improvements in biomechics may have been present but not demonstrated 

during the challenging false cue unanticipated cutting task. It is possible that further 

progressions of the pediatric program to include more dynamic and unanticipated training 

may result in different results. The principle of exercise specificity states that individuals 

tend to improve tasks that they receive training for, but it is possible that some training 

effects do not transfer to other dynamic tasks. Future research should explore this theory 

further with the youth population and injury prevention programs. 

 A limitation of this study is the false cue unanticipated cutting task was more difficult 

than originally expected with the young participants. As discussed previously, many of the 

participants were unable to perform more than one or two trials successfully. The 

participants performed two other cutting tasks during the same testing session and 

consequently completed 13 cutting trials on average. This high number of repetitions 

prevented further attempts with the false cue unanticipated cutting task.  

 In conclusion, neither the pediatric nor the traditional injury prevention programs 

were able to successfully modify lower extremity kinematics during a false cue 
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unanticipated cutting task. The false cue task was very challenging for the young 

participants, which may have prevented improvements in movement technique from being 

displayed during this task. In addition, while the pediatric program was designed to 

improve movement control, the participants did not perform dynamic unanticipated 

exercises until the very last phase of the program. Therefore, future programs with this age 

group may be more effective by including additional training time with more sport-specific 

exercises. 

5.3 Research Question Five 

 The findings from this study indicate that sex differences in possible neuromuscular 

risk factors for ACL injury are present in children between the ages of 9-11 years old. 

These differences may explain why females sustain ACL injuries approximately 1.4-4.6 

times more than their male counterparts in similar sports.(4) In agreement with the current 

results, several studies have shown that females consistently perform sport related 

movements with less knee flexion and greater knee valgus, knee and hip rotation, and hip 

adduction than males.(14, 16, 19, 147-153) However, there is limited information about 

when these sex differences in lower extremity biomechanics emerge since the discrepancy 

in injury rates does not occur until puberty.(67) Therefore, the research hypothesis was that 

no sex differences would be observed in children under twelve years old, which was not 

supported by the results. 

 To our knowledge, only one study has evaluated a population under 12 years old for 

sex differences in lower extremity kinematics. Yu et al.(73) compared males and females 

between the ages of 11 and 18 for lower extremity kinematic differences during a stop jump 

task. Their results indicated that females reduce the amount of knee and hip flexion as they 
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age while males do not change. Specifically, large changes were observed after 14 years of 

age. Hamstra-Wright et al.(209) supported the theory of sex differences emerging after 

puberty by demonstrating no sex differences in hamstring and quadriceps strength, as well 

as vertical leg stiffness, in children under 10 years old. Recently, Schmitz et al.(210) found 

that males reduce dynamic knee valgus as they mature while the opposite occurs with 

females. Our findings expand this body of literature by showing that some sex differences 

do occur in what is considered to be a preadolescent population.  

 Several studies have indicated that females perform cutting tasks with different 

movement patterns compared to males. Females tend to cut with increased hip interal 

rotation,(61, 64, 211) knee valgus,(17, 65) hip adduction moments,(64) and reduced lower 

extremity sagittal plane motion.(17, 63, 64) Our results show that females consistently 

demonstrate an adducted hip position relative to males across all three cutting tasks, which 

agrees with the work of Pollard et al.(64) who reported increased hip adductor moments. 

Females also moved with greater knee valgus angles during the most difficult cutting task, 

the false cue unanticipated movement. This finding may have occurred because the task 

was very difficult to complete. McLean et al.(61) found that individuals cut with greater 

knee valgus when a defensive opponent was placed in front of them while cutting, which 

corresponds to our results. However, there were no significant differences in sagittal or 

transverse plane motion. This lack of finding may suggest sex differences are beginning to 

emerge with this age group.  

 Besides observing sex differences in lower extremity biomechanics, sex differences 

were also present in vertical jump height and power. Males consistently jumped higher and 

generated more power compared to females even at these young ages. It is well documented 
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that males and females change body composition as they encounter adolescence. Females 

develop more adipose tissue while males gain more muscular tissue. This difference in 

physical and hormonal development may explain the differences in power and performance. 

Despite these findings, no sex differences were present for the balance variables except 

after the intervention period. Unfortunately, there is limited knowledge about how sexes 

differ with respect to balance in a preadolescent population.  

A limitation of this study is we did not collect information about the participants’   

maturity status. Therefore, it is possible that part of our cohort had already begun puberty, 

which could influence the sex differences observed. Future research should further evaluate 

the potential for sex differences in lower extremity biomechanics, balance, and performance 

while accounting for maturity status. 
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Table 1. Program Comparisons 
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Table 2. Participant demographics 
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Table 3. Kinematic variables at initial ground contact during the anticipated cutting task 
(*p<0.05) 
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Table 4. Peak kinematic variables during first 40% of stance phase of anticipated cutting task 

(*p<0.05) 
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Table 5. Peak kinetic variables during first 40% of stance phase of anticipated cutting task 

(*p<0.05) 
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Table 6. Kinematic variables at initial ground contact during unanticipated cutting task 

(*p<0.05) 
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Table 7. Peak kinematic variables during first 40% of stance phase of unanticipated cutting 

task (*p<0.05) 
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Table 8. Peak kinetic variables during first 40% of stance phase during unanticipated 

cutting task (*p<0.05)
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Table 9. Kinematic variables at initial ground contact during the false cue unanticipated 

cutting task 
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Table 10. Peak kinematic variables during first 40% of stance phase during false cue 

unanticipated cutting task  
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Table 11. Time-to-Stabilization and Vertical Jump Variables (*p<0.05) 
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Table 12. Sex differences: Kinematic variables at initial ground contact during pre-test 
anticipated cutting task (*p<0.05) 
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Table 13. Sex differences: Peak kinematic variables during first 40% of stance phase during 
pre-test anticipated cutting task (*p<0.05) 
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Table 14. Sex differences: Peak kinetic variables during first 40% of stance phase during pre-
test anticipated cutting task (*p<0.05) 
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Table 15. Sex differences: Kinematic variables at initial ground contact during pre-test 
unanticipated cutting task (*p<0.05) 
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Table 16. Sex differences: Peak kinematic variables during first 40% of stance phase during 
pre-test unanticipated cutting task (*p<0.05) 
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Table 17. Sex differences: Peak kinetic variables during first 40% of stance phase during pre-
test unanticipated cutting task (*p<0.05) 
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Table 18. Sex differences: Kinematic variables at initial ground contact during pre-test false 
cue unanticipated cutting task (*p<0.05) 
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Table 19. Peak kinematic variables during first 40% of stance phase during pre-test false cue 
unanticipated cutting task (*p<0.05) 
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Table 20. Sex differences: Kinematic variables at initial ground contact during post-test 
anticipated cutting task (*p<0.05). 
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Table 21. Sex differences: Peak kinematic variables during first 40% of stance phase during 
post-test anticipated cutting task (*p<0.05) 
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Table 22. Sex differences: Peak kinetic variables during first 40% stance phase during post-
test anticipated cutting task (*p<0.05) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

124

Table 23. Sex differences: Kinematic variables at initial ground contact during post-test 
unanticipated cutting task (*p<0.05) 
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Table 24. Sex differences: Peak kinematic variables during first 40% of stance phase during 
post-test unanticipated cutting task (*p<0.05) 
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Table 25. Sex differences: Peak kinetic variables during first 40% stance phase during post-
test unanticipated cutting task (*p<0.05) 
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Table 26. Sex differences: Kinematic variables at initial ground contact during post-test false 
cue unanticipated cutting task (*p<0.05) 
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Table 27. Peak kinematic variables during first 40% of stance phase during post-test false cue 
unanticipated cutting task (*p<0.05) 
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Table 28. Sex differences: Time-to-Stabilization and Vertical Jump Variables (*p<0.05) 
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   Table 29. Trials completed between groups across time for each task
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Figure 1. Sidestep Cutting Tasks 
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Figure 2. Starting position for all cutting tasks 
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Figure 3. Participant “chasing” model 
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Figure 4. Tibial rotation at initial ground contact during anticipated cutting task (*p<0.05) 
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Figure 5. Peak tibial internal rotation during anticipated cutting task (*p<0.05) 
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Figure 6. Tibial rotation at initial ground contact during unanticipated cutting task (*p<0.05) 
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Figure 7. Peak tibial internal rotation during first 40% of stance phase during unanticipated 
cutting task (*p<0.05) 
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Figure 8. Peak tibial external rotation during first 40% of stance phase during unanticipated 
cutting task (*p<0.05) 
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Figure 9. Anterior-posterior time-to-stabilization results (*p<0.05) 
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Figure 10. Vertical jump height results (*p<0.05) 
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APPENDIX A. MANUSCRIPT I 
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Manuscript I 

The Effects of an Age-Specific ACL Injury Prevention Program on Lower 

Extremity Biomechanics in Pediatric Athletes 

(American Journal of Sports Medicine) 

ABSTRACT 

Background: Implementing an ACL injury prevention program to athletes prior to the 

age at which the greatest injury risk occurs may result in better long-term outcomes. 

There is limited knowledge regarding whether a pediatric population can modify lower 

extremity biomechanics after completing an injury prevention program or if specialized 

training is required. 

Purpose: To compare the effects of a traditional and an age-specific pediatric ACL 

injury prevention program on lower extremity biomechanics during cutting tasks in youth 

athletes. 

Study Design: Cluster-randomized controlled trial 

Methods: 65 youth soccer athletes (Males: n=38, mass=34.16±5.36 kg, 

height=143.07±6.27 cm, age=10±1 years; Females: n=27, mass=33.82±5.37 kg, 

height=141.02±6.59 cm) volunteered to participate. Teams were cluster-randomized to 

either a pediatric or traditional injury prevention program, or a control group. Teams 

performed their respective programs as part of their normal warm-up routine. Lower 

extremity biomechanics were assessed during an anticipated and an unanticipated 

sidestep cutting task before and after completion of the intervention period. 
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Results: The pediatric program reduced the amount of tibial external rotation at initial 

contact during the anticipated (F(2,62)=3.79, p=0.03; Change Mean±SD: 

pediatric=7.73±10.71°, control=-0.35±7.76°) and the unanticipated (F(2,62)=6.92, p=0.002; 

Change: pediatric=7.98±11.93°, control=-3.06±6.18°) compared to the control group 

after the intervention period. No other significant changes were observed (p>0.05). 

Conclusion: The injury prevention program designed specifically for a pediatric 

population modified transverse plane lower extremity biomechanics, which suggests 

athletes under 12 years of age can change some potential neuromuscular risk factors for 

injury with specialized training. However, the traditional injury prevention program did 

not result in any changes, which indicates injury prevention programs should be age-

specific. 

Key words: injury prevention, tibial rotation, unanticipated cutting task 
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INTRODUCTION 

Injuries to the anterior cruciate ligament (ACL) occur approximately 200,000 

times in the United States each year with an associated cost of over $3 billion annually.44, 

51 In addition to high financial costs, ACL injuries are also associated with the early 

development of osteoarthritis, which may result in life-long disability.37 Individuals 

between the ages of 16-18 years appear to be at the highest risk for ACL injuries, but the 

frequency of ACL injury increases steadily starting in 11 and 12 year old children.66 

Injuries are relatively uncommon at these young ages compared with the later years of 

adolescence, but treatment for an ACL injury in this population presents a complicated 

dilemma for health care professionals because these individuals are skeletally 

immature.34, 47, 49 Conservative treatment may cause further joint damage and decreased 

physical activity levels,47, 48 while surgical treatment is technically difficult and may 

result in iatrogenic growth disturbances.34, 47, 49 These consequences demonstrate the 

immediate need for effective ACL injury prevention, especially in young athletes. 

Previous research demonstrates children as young as 10 years old perform sport-

related movements with possible neuromuscular risk factors for ACL injury, such as 

limited knee flexion, excessive knee valgus, and large vertical ground reaction forces.10, 

25, 69 Not only are these factors present during late childhood, but late childhood is also 

considered to be a critical period for fundamental motor skill refinement and motor 

development.18, 20, 32 Growth is fairly steady and gradual during late childhood resulting 

in an ideal environment for children to develop coordination and neuromuscular skill.19 

Therefore, late childhood may be an ideal time to improve motor skills and correct 

neuromuscular risk factors for injury.  
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While it appears that intervening with children at a young age may be critical, it is 

unclear whether this age group will respond to an ACL injury prevention program. Only 

two studies have evaluated lower extremity movement patterns following an injury 

prevention program in children under 13 years old.10, 21 Grandstrand et al.21 did not 

observe any improvements in knee separation distance in 9-11 year old children who 

completed an injury prevention program. DiStefano et al.10 studied the effects of an 

injury prevention program on landing technique in two age groups of children. The older 

age group (14-17 years old) sustained greater improvements compared to the younger age 

group (10-13 years old) despite the fact that the younger age group performed the 

program for a longer period of time. Both of these investigations used an injury 

prevention program that included challenging exercises and lacked progressions, which 

caused the authors to conclude that the younger athletes may require specialized training. 

These studies suggest that injury prevention programs that have been shown to improve 

lower extremity biomechanics in high school and college age populations may not be 

successful when implemented to younger children.  

Many current ACL injury prevention programs are not progressive38, 58, 62 and 

begin with difficult plyometric and strengthening exercises.27, 53 Children respond to 

strengthening programs through neural adaptations rather than muscle hypertrophy24, 59 

and physically immature children are prone to overuse injury.16, 43 A progressive and 

gradual program will allow neural adaptations to occur without excessively loading a 

child’s body, provide variety to help keep a child attentive,33 as well as allow ample time 

for feedback and instruction. Young children learn better when difficult tasks are 

separated into basic components and when continuous feedback is provided.13, 68, 70 
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Addressing differences between children and adults may enhance the ability to change 

neuromuscular risk factors and prevent ACL injuries in a young population. 

Therefore, the purpose of this study was to evaluate the effects of an ACL injury 

prevention program designed specifically for a pediatric age group in children under 12 

years of age on lower extremity biomechanics during cutting tasks and to compare these 

changes to the effects of a traditional program. We hypothesized that the program 

designed for the pediatric population would result in greater changes in lower extremity 

biomechanics compared to the traditional program.  

METHODS AND MATERIALS 

Research Design 

We used a cluster-randomized controlled trial study design to evaluate changes in 

lower extremity biomechanics before and after the completion of one of two ACL injury 

prevention programs: pediatric (PED), traditional (TRAD), or no program at all (control 

(CON)). Six teams were initially recruited from a local soccer league. All athletes on a 

team performed their team’s respective program as part of their normal warm-up, but 

only athletes who volunteered to participate completed two testing sessions. Following 

the first testing session (pre-test), the six teams were stratified by sex and cluster-

randomized into one of the three programs resulting in one boys’ and one girls’ team for 

each program. A seventh team was additionally recruited due to a roster change with the 

boys’ control team to ensure sufficient sample size. The dependent variables included: 

lower extremity kinematics (knee flexion, knee valgus, tibial rotation, hip flexion, hip 

adduction, hip rotation) and kinetics (knee extension moment, knee valgus moment, tibial 

rotation moment, anterior tibial shear force) during an anticipated and an unanticipated 
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sidestep cutting tasks. These variables were compared between the pre-test and post-test 

sessions and between groups.  

Participants 

Sixty-five youth soccer players (Males: n=38, age= 10 ± 1 years, mass= 34.16 ± 5.36 

kg, height= 143.07 ± 6.27 cm; females: n=27, age= 10 ± 1 years, mass= 33.82 ± 5.37 kg, 

height= 141.02 ± 6.59 cm) from seven teams volunteered to participate in this study 

(Table 1). All participants were healthy and free from any injury or illness that prohibited 

soccer activity at the pre-test session. All parents and players read and completed 

informed consent and assent forms, respectively, which were approved by the 

university’s Institutional Review Board before the initial testing session.  

Instrumentation 

 Lower extremity kinematics and kinetics were collected using Vicon Nexus Software 

(Vicon Motion Systems, Centennial, CO) during an anticipated and an unanticipated 

cutting task. Seven infrared video cameras (Vicon MX-40; Vicon Motion Systems, 

Centennial, CO) captured trajectories of reflective markers worn by the participants at a 

sampling rate of 150 Hz. Ground reaction forces were collected by a force plate (Model # 

4060-08A, Bertec Corp., Columbus OH), sampled at 1500 Hz, and were synchronized 

with the kinematic data. Prior to data collection, the global axis system was established 

with the positive x-axis pointing in the direction participants ran before cutting (forward), 

positive z-axis directed vertically, and the y-axis directed to the left of the participants. 

Segment axes were aligned with the global axis. Prior to the cutting tasks, passive 

reflective markers were placed on the following landmarks: right and left acromion 
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processes, right and left anterior superior iliac spines, proximal sacrum (S1), right and left 

greater trochanters, lateral aspects of the right and left thighs, lateral epicondyles of the 

right and left knees, medial epicondyles of the right and left knees, lateral aspects of the 

right and left shanks, right and left lateral malleoli, right and left medial malleoli, right 

and left posterior calcanei, the heads of the right and left 5th metatarsals, and the heads of 

the right and left 1st metatarsals. The markers were affixed to the skin, tight-fitting 

clothing, and shoes with double-sided adhesive tape. Following marker placement, 

participants were asked to stand in the center of the calibration area (2.5 m high × 2.5 m 

long × 1.5 m wide) with each foot on a force plate (Type 4060-08, Bertec Corporation, 

Worthington, OH) in order to collect a static calibration trial. After the calibration trial, 

the markers on the medial epicondyles and medial malleoli were removed.  

 A live model was used to signal the start of the cutting tasks and was the same 

individual for all testing sessions. A wireless timing system (Sparq XLR8 Digitial Timing 

System, Wausau, WI) measured the time between when the live model and the 

participant jumped from a box to ensure the participant was in the air when the live 

model changed directions. One timing gate was placed in front of the live model and a 

second timing gate was in front of the participant. A maximum time of 400 ms was 

allowed between the trigger of the live model’s timing gate and the participant’s timing 

gate or the trial was repeated. 

Procedures 

Participants attended two identical testing sessions in a sports medicine research 

laboratory. A nine-week intervention period began one week after the first session, or 

pre-test, while the second (post-test) session occurred within one week of completing the 



 149 

intervention period. All participants wore standardized shorts and shirt, as well as their 

own running shoes, during both testing sessions. Participants’ height and weight were 

measured and recorded upon arrival to the laboratory. All testing occurred on 

participants’ dominant limbs, which was the limb preferred to kick a ball for maximal 

distance.  

Participants performed three trials of an anticipated sidestep, an unanticipated 

sidestep, and an unanticipated cross-over cutting task in a randomized order. The 

unanticipated cross-over task was only used to permit an unanticipated testing condition 

and the data from this task were not analyzed. All cutting tasks began with participants 

standing on a box 30 cm high and a distance of half of their body height away from the 

front edge of a force plate.(Figure 1) A live model was positioned 3 m from the far end of 

the force plate (relative to the participant), jumped forward off a 30cm high box, landed 

on his dominant leg, and performed a cut either to the participant’s dominant or non-

dominant side. Participants were instructed to begin their jump immediately after the 

model jumped for all three cutting tasks. Participants jumped forward off of their non-

dominant limb toward the force plate, landed with their dominant foot in the middle of a 

force plate, performed either a 60° (Range: 50-70°) sidestep (Figure 2) or cross-over cut, 

and ran 2-3m. For the unanticipated cutting tasks, the participants were instructed to cut 

in the same direction that the live model moved. The participants performed a sidestep 

cut if the live model moved towards the participants’ non-dominant side and a cross-over 

cut if the live model moved in the other direction. The advantage of using a live model to 

dictate cutting direction is that it simulates a common soccer task when players are 

required to “mark” an opponent to prevent them from obtaining the ball. The main 



 150 

difference between the anticipated and unanticipated cutting tasks is that the participants 

were not told which direction the model would move prior to completing their jump from 

the box during the unanticipated trials. The model changed direction while the participant 

was in the air after jumping from the box.  

Trials were excluded and repeated if the participant did not jump immediately after 

the model jumped (within 400ms), if the participant’s entire foot did not make contact 

with the force plate, the participant did not perform a 60° cut, or if the participant did not 

perform the appropriate task (i.e. side-step vs. cross-over cut). Adhesive tape marked the 

ground to ensure the participant performed the cut between 50-70°. Participants had at 

least 20 seconds of rest between each repetition to prevent fatigue, and were given 

practice trials of each task until the participants indicated they were comfortable with the 

task.  

Injury Prevention Program Implementation 

Teams assigned to either the pediatric or traditional programs completed the ten to 

fifteen minute program as the team’s warm-up during the nine week intervention period. 

Both programs consisted of flexibility, balance, strengthening, agility, and plyometric 

exercises. The principal investigator or a research assistant taught the players the program 

within one week of completing the pre-test session, supervised the team’s implementation 

of the program at every practice to provide feedback and technique instruction, and 

monitored compliance. Proper technique was continually stressed to all of the participants 

while they performed the exercises. Teams assigned to the control group conducted their 

normal warm-up as determined by their coach. The control group teams were supervised 



 151 

once per week to ensure that they did not perform any warm-up that was similar to either 

of the intervention programs. 

The traditional program was modified from previous ACL injury prevention 

programs and designed to be a dynamic warm-up.14, 21, 27, 38, 52 Participants performed one 

of the exercises while they moved forward a distance of 10 m. After completing the 

exercise, participants ran forward an additional 10 m. The 10 m run speed gradually 

increased as the warm-up progressed. All exercises were performed bilaterally and the 

program was completed three times per week for nine weeks. Table 2 provides a detailed 

description of the traditional ACL injury prevention program.  

The pediatric ACL injury prevention program was similar to the traditional program 

by integrating balance, flexibility, strengthening, plyometric, and agility exercises. 

However, it differed because the pediatric program used more progressive exercises, 

included more variety, taught smaller task components, provided more time for 

instruction, practice, and utilized cues designed for children’s focus of attention, and 

included repetitions and frequencies appropriate for gaining neuromuscular 

improvements in strength. In addition, the pediatric program included dynamic flexibility 

exercises instead of static flexibility exercises because dynamic flexibility exercises have 

been recommended for pre-participation warm-up activities in children.14 The pediatric 

program consisted of three progressive phases. The first phase was only performed two 

times per week while the final two phases were completed three times per week. The 

three progressive phases were further divided to allow additional time for proper 

technique and feedback during the first week of each phase. The remaining weeks of each 
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phase included small progressions of the exercises and an addition of one or two 

exercises.  

Similar to the traditional program, the pediatric program incorporated several of the 

exercises into a dynamic warm-up protocol. The two programs were very similar during 

the first phase as participants ran at progressively increasing speeds following the 

exercise movement. However, the pediatric program included a “timing” run after the 

exercise movements instead of the speed forward run during the second phase. The 

“timing” run required two participants finishing the exercise movements at the same time 

to run at a diagonal and cross in front of or behind the opposite player. This movement 

required the participants to control their body and use visual information about another 

moving player to direct their motion to avoid a collision. During the third phase, 

participants performed a sharp sidestep cut at the end of the run.  

Another difference between the pediatric and traditional programs was that the 

pediatric program began with primarily strengthening exercises and minimal plyometric 

exercises and transitioned by gradually changing these proportions. As a result, the final 

phase included only one strengthening exercise and several plyometric exercises. In 

contrast, the traditional program included the same number of strengthening and 

plyometric exercises throughout the nine week program. Table 2 provides a detailed 

description of the pediatric ACL injury prevention program.  

Data Reduction 

All kinematic and kinetic data were transferred into Motion Monitor Software 

(Innovative Sports Training Inc, Chicago, IL) for data processing and exported into a 

customized software program (MatLab version 7; MathWorks, Natick, MA) for data 
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reduction. All kinematic data were smoothed with a Butterworth (4th order, zero phase 

lag) low-pass digital filter at 15 Hz. Ground reaction forces were normalized to body 

weight (N), and moment data were normalized to the product of body weight and height 

(N*m).  

Three dimensional coordinates were estimated from the two-dimensional trajectories 

of the reflective markers. Knee and ankle joint centers were estimated as centroids from 

the medial and lateral malleoli and epicondyles, respectively, and the hip joint center was 

estimated from the markers on the bilateral anterior superior iliac spines using the Bell 

method.4 The three-dimensional coordinates of body landmarks determined segment 

locations and orientations of the pelvis, femur, and shank. The three-dimensional 

coordinates of the knee joint center, the ankle joint center, and the anterior tibial marker 

defined the tibial reference frame. The three-dimensional coordinates of the knee joint 

center, the hip joint center, and the anterior thigh marker defined the thigh reference 

frame. Finally, the three-dimensional coordinates of the hip joint centers and the proximal 

sacrum marker defined the pelvis reference frame. Kinematics of the shank and thigh, as 

well as the thigh and pelvis segments determined knee and hip joint angles, respectively. 

Joint motions were determined through a joint coordinate system using Euler angles.23 

The axis system established used a right-hand coordinate system, such that the following 

joint motions were positive: knee flexion/hip extension, adduction/varus, and internal 

rotation. Joint angles were calculated using the Motion Monitor software as Euler angles 

rotated in a flexion/extension (x-axis), adduction (varus)/abduction (valgus) (y-axis), 

internal/external rotation (z-axis) sequence. Using standard inverse dynamics, proximal 
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anterior tibial shear force and three-dimensional hip and knee internal joint moments 

were calculated. 

Knee flexion, knee valgus, tibial rotation, hip flexion, hip adduction, and hip rotation 

angles were identified at initial ground contact during the cutting task, which was defined 

as the instant the vertical ground reaction force exceeded 10N. Peak values for these 

same angles, as well as peak anterior tibial shear force, peak knee extension, valgus, and 

rotation moments were identified during the first 40% of the stance phase during the 

cutting task. The stance phase was defined as the time between initial ground contact and 

toe-off, which occurred when the vertical ground reaction force dropped below 10N 

following initial ground contact. The data from the three trials of each task during pre-test 

and post-test were averaged together.  

Statistical Analyses 

 We calculated change scores for all dependent variables by subtracting the pre-test 

value from the post-test value. We performed separate one-way analyses of variance 

(ANOVA) on the change scores for each dependent variable. We conducted independent 

t-tests and corrected the alpha level using a Bonferroni correction in the presence of a 

significant group effect. All data analyses were performed using SPSS version 16.0 

(SPSS, Inc., Chicago, IL) with an a priori alpha level of  <0 .05. 

Results 

 Every participant except one control subject completed both testing sessions. All 

participants assigned to either ACL injury prevention program attended greater than 80% 

of all program sessions. No participants sustained an injury over the course of the 

intervention period that required time lost from soccer activity. There were also no group 
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differences in height (F(2, 63) = 2.24, p = 0.12) or weight (F(2, 63) = 0.66, p = 0.52) prior to 

beginning the intervention period.  

 During the anticipated cutting task, we observed group differences in change scores 

for tibial rotation at initial ground contact (F(2, 62)=3.79, p=0.03)(Figure 1) and peak tibial 

internal rotation (F(2, 63)=4.96, p=0.01)(Figure 2). Post hoc testing revealed that the 

pediatric program caused participants to land with significantly less tibial external 

rotation at initial ground contact (p=0.008) and attain greater internal rotation during the 

stance phase compared to the control group (p=0.005). The traditional program did not 

cause a significant change in any dependent variable during the anticipated cutting task 

(p>0.05). No other significant findings were observed (p>0.05). Means, measures of 

variability, and statistical measures for each dependent variable are reported in Tables 3-

5.  

 Similar to the anticipated cutting task results, significant group differences were 

observed during the unanticipated cutting task in change scores for tibial rotation at initial 

ground contact (F(2, 63)=6.92, p=0.002, Effect size=0.19)(Figure 3) and peak tibial internal 

rotation(F(2, 63)=6.49, p=0.003, Effect size=0.18)(Figure 4).  In addition, we observed 

significant group differences for peak tibial external rotation (F(2, 63)=5.73, p=0.005, 

Effect size=0.16)(Figure 5). Post hoc testing demonstrated that the pediatric program 

caused participants to land with less tibial external rotation at initial ground contact 

(p=0.001, Effect size=0.93) and reduce the total amount of tibial external rotation 

(p=0.001, Effect size=0.86) during the first 40% of the stance phase compared to the 

control group. The pediatric program also resulted in greater tibial internal rotation 

during the stance phase compared to the control group (p=0.002, Effect size=0.98) and 
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the traditional program (p=0.003, Effect size=0.92). The traditional program did not 

significantly change any dependent variable during the unanticipated cutting task 

(p>0.05). We did not observe any other significant differences (p>0.05). Complete 

means, measures of variability, and statistical results for the dependent variables during 

the unanticipated cutting task are shown in Tables 6-8.  

Discussion 

 There is great potential for reducing ACL injury rates and improving long-term health 

by changing neuromuscular risk factors for injury prior to the ages associated with 

greatest injury risk. The most important finding from this study is that an injury 

prevention program designed for a pediatric population can successfully alter lower 

extremity kinematics during a sidestep cutting task in children under 12 years old in a 

manner suggested as being consistent with reduced ACL injury risk. However, an injury 

prevention program that was modeled after programs that have been successful with 

changing lower extremity biomechanics in older populations was not effective with 

young athletes. This finding supports our hypothesis that young athletes need age-specific 

training. To our knowledge, this is the first study to demonstrate successful intervention 

with a young age group after adjusting the program to account for differences in motor 

learning, cognitive level, and physical development between children and adults.  

The majority of ACL injuries occur due to a non-contact mechanism when no 

direct contact is made between the individual and another player or object.7, 44 A non-

contact ACL injury usually occurs while an individual is trying to rapidly decelerate 

during a landing or cutting maneuver.1, 2, 6, 46, 55 Specifically, landing or cutting with 

limited knee flexion can result in excessive anterior tibial shear force from the quadriceps 
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muscle, which can damage the ACL.5, 12, 15, 29, 36, 42, 65 The addition of excessive knee 

valgus or lower extremity rotation increases stress and places the ACL at a high risk for 

injury.3, 39 Tibial internal rotation can produce tensile strain on the ACL, while tibial 

external rotation is associated with the creation of a shearing force on the ligament 

against the intercondylar notch.17, 22 Interestingly, a “toed-out”, or externally rotated 

lower leg position, during landing and cutting tasks is also considered a developmental 

difficulty during the acquisition of fundamental motor skills.18, 20 Therefore, changing 

lower extremity biomechanics during these types of tasks is emphasized in most ACL 

injury prevention programs. 

Our results demonstrate that a pediatric injury prevention program can modify 

tibial rotation during both an anticipated and an unanticipated cutting task. The 

participants initially made ground contact with significantly less external rotation 

following completion of the pediatric injury prevention program compared to the control 

group. This indicates participants landed with their lower leg in a neutral alignment after 

completing the pediatric program compared to before the program. One of the main 

instruction points used with the pediatric program was to “keep your toes forward” 

during all of the exercises. Therefore, it appears the participants were able to change this 

movement pattern and concurrently correct the developmental deficiency of a “toed-out” 

posture.  

Participants in the pediatric program performed the cutting tasks with greater 

amounts of peak tibial internal rotation. We believe this change was due to the 

adjustment in the participants’ position at initial ground contact because the total tibial 

rotation range of motion during the task did not change drastically (Pre-test= 12.55°, 
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Post-test = 13.47°). Therefore, the pediatric program caused a shift in tibial rotation from 

external rotation to internal rotation by reducing the amount of initial tibial external 

rotation. While excessive tibial internal rotation with concurrent low levels of knee 

flexion has been shown to significantly load the ACL, an exact threshold of how much 

internal rotation is detrimental has not been determined. Future research should further 

evaluate the role of tibial rotation in ACL loading mechanisms. 

In 1999, Ireland30 coined the phrase “position of no return” to illustrate the 

alignment of the lower extremity prior to a non-contact ACL injury. This position 

consists of hip adduction, hip internal rotation, limited knee flexion, knee valgus, and 

tibial external rotation. Not only did we observe a decrease in the amount of knee, or 

tibial, external rotation, but also a simultaneous reduction in the amount of hip internal 

rotation. Both the pediatric and traditional programs resulted in 40-60% less hip internal 

rotation at initial ground contact and throughout the early stance phase during both tasks. 

Although these changes were not statistically significant, we believe the medium effect 

sizes in combination with separating confidence intervals demonstrates this reduction 

may be clinically meaningful. Therefore, these findings of reduced tibial external rotation 

and hip internal rotation suggest the pediatric program decreased the “position of no 

return”. 

Despite a recent surge in the amount of studies attempting to modify lower 

extremity biomechanics with an ACL injury prevention program, only two previous 

studies have examined lower extremity transverse plane motion. Chappell et al.8 is the 

only study that evaluated tibial rotation after the completion of an injury prevention 

program, but did not report any significant changes. This conclusion disagrees with the 
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current results, but there are several differences between the two studies that provide a 

possible explanation for the discrepancy in findings. Elite college female athletes 

participated in the study by Chappell et al., which is a different population than the 

current study, and tibial rotation was assessed during a stop jump task versus a cutting 

task. The stop jump task primarily involves movement in the sagittal plane, while a 

cutting task demands transverse plane control. Despite also using a different task than the 

current study, Pollard et al.62 reported a decrease in hip internal rotation during a drop 

landing after high school female soccer athletes completed an injury prevention program, 

which agrees with our findings. Even though Pollard et al. used a different population and 

assessment technique, the combination of their results and our current findings suggest 

integrated injury prevention programs can modify hip internal rotation.  

Excessive anterior tibial shear force is considered the most direct mechanism for 

loading the ACL.40, 41 Unfortunately, only one previous study has studied the effects of an 

ACL injury prevention program on anterior tibial shear force and failed to see any 

significant changes during a stop jump task.26 Although we did not observe a statistically 

significant improvement, the pediatric program appeared to decrease anterior tibial shear 

force by nearly 15% bodyweight, which accounts for a 35% reduction with a moderate 

effect size. Due to the strong relationship between anterior tibial shear force and ACL 

strain and the paucity of previous research examining this variable after an injury 

prevention program, we believe this finding is clinically meaningful and important. 

Future research should further examine the relationship between anterior tibial shear 

force and transverse plane motion. 
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There are several studies that have reported improvements in other lower 

extremity biomechanical variables, such as increased knee flexion,8, 52 decreased knee 

valgus,35, 52 and reduced vertical ground reaction forces.28, 31 Our results do not agree with 

the findings of these studies, but it is difficult to make comparisons because this is the 

only study to evaluate lower extremity biomechanics after an injury prevention program 

using a cutting task. Every other study has used a sagittal plane landing task, such as a 

stop jump, drop jump, or vertical jump. This is a major limitation of the current literature 

because a majority of ACL injuries occur during a cutting task and is a common aspect of 

sports such as soccer and basketball.57 Therefore, it is critical to understand whether 

injury prevention programs can modify movements during these types of tasks as well as 

landings.  

The principle of exercise specificity, or specific adaptations to imposed demands, 

is widely accepted with regard to exercise training.9, 61 This principle may provide some 

explanations for why more substantial changes in lower extremity biomechanics during 

the cutting tasks were not observed. During both programs, time was spent focusing on 

correcting and encouraging proper movement technique during relatively slow and 

anticipated exercises, such as squats, lunges, and jumps. The traditional program 

consisted of primarily sagittal plane movements, which may have led to improvements in 

sagittal plane assessments, such as a drop landing task. Even though the traditional 

program performed sidestep cutting maneuvers for nine weeks, the cutting was slow and 

controlled in contrast to the dynamic cutting task used during the testing sessions. The 

pediatric program included exercises in multiple planes, but the program was progressive 

and only involved a demanding cutting task during the final three weeks. If more time 
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had been spent on cutting during the programs, it is possible we would have observed 

greater changes. Since injuries do occur during dynamic activities, such as cutting, more 

training with this task should be included in future injury prevention programs.  

 Another possible explanation for failing to see improvements in lower extremity 

sagittal and frontal plane kinematics and kinetics is the population. To our knowledge, 

there are only two other studies that have aimed to change lower extremity biomechanics 

in a population under 13 years old. DiStefano et al.10 observed improvements in landing 

technique after an injury prevention program using a clinical motion analysis tool, but 

reported that the high school aged sample in the study improved to a greater extent than 

the pre-high school age group (ages 10-13 years). Grandstrand et al.21 hypothesized that 

the reason they did not see improvements in knee separation distances with children 

between the ages of 9-11 years after an injury prevention program was because some of 

the exercises seemed too difficult for the children, such as the Russian Hamstring 

exercise.  

 The conclusions from the three previous studies that have implemented an injury 

prevention program in young children combined with the findings of literature related to 

youth resistance training and motor learning led to the development of the pediatric ACL 

injury prevention program. Kilding et al.33 recommended more variety with the exercises 

to prevent boredom and improve compliance, Grandstrand et al.21 believed exercise 

difficulty may have prevented improvements from being attained, and DiStefano et al.10 

suggested the need for a specialized program. The youth resistance training literature 

encourages high repetitions with low weight and decreased frequency to improve strength 

in preadolescent children. All of the exercises in both programs required only 10-15 
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minutes and utilized only bodyweight as resistance. The pediatric program also involved 

higher repetitions of strengthening exercises with a gradual increase in training sessions 

per week and progressed into demanding plyometric exercises after a foundation of 

strength training had been achieved. This is in contrast to several other injury prevention 

programs that have required 30-90 minutes of training several days per week, several 

plyometric exercises, and included exercises with heavy weights and low resistance.27, 35, 

53 

 The motor learning literature suggests the ideal environment for children to acquire 

new motor skills consists of continuous feedback and instruction, tasks that match their 

cognitive ability, and are progressive. The pediatric program was designed to teach 

proper movement patterns by providing constant feedback and cues with an internal focus 

of attention, such as “bend your knees” and “keep your toes straight ahead”. The first 

phase included basic exercises, such as a double limb squat and forward lunge, to begin 

education the participants about proper technique. The second and third phases built on 

the simplicity of the first phase by incorporating multiplanar movements (“Sideways” 

and “Transverse Lunge”) and progressed simple skills into more difficult movements 

(“Single Limb Squat”). We believe the pediatric program’s design enabled the 

participants to improve the quality of their movement. 

 While the traditional program did not use heavy weights or extensive time to 

complete the program, there were no progressions or variety. The traditional program did 

receive technique instruction and feedback but the verbal cues were for an external focus 

of attention (“Jump like a spring”, “Land light as a feather”, “Don’t make a sound”). 

Even though we did not observe any significant improvements with the traditional 
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program, we did observe less hip internal rotation with a moderate effect size similar to 

the pediatric program. Therefore, it appears some amount of training does result in lower 

extremity movement improvements. However, anecdotally, the participants in the 

traditional program complained frequently of boredom. Compliance has been a problem 

with previous ACL injury prevention programs.60, 67 Therefore, it is vital that injury 

prevention programs include variety in order for participants to continue to perform the 

program over the course of a season or several seasons. 

Limitations 

 We used a cluster-randomized design for this study in order to improve external 

validity. Injury prevention programs should be designed so that they can be easily 

adopted by large numbers of people in order for widespread impact. Therefore, we 

believed the best way to implement and study an injury prevention program was to have 

an entire team perform the program. A limitation of this study was that we were not able 

to account for the cluster randomization in the analyses because most methods available 

would be weak with only 7 units of randomization. Previous research indicates that an 

individual’s baseline technique may influence whether or not an individual responds to a 

program.11, 50 Individuals with greater capacity for improvement sustain the greatest 

changes. The control group’s values at pre-test for several variables appeared slightly 

different than the other two groups, but similar to the traditional and pediatric programs’ 

values at post-test. Therefore, the capacity to improve may have influenced our ability to 

detect significant changes between programs. We believe the use of change scores 

eliminated the possible effect of these pre-existing group differences, but recognize these 
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differences may still be influential. We recommend further research analyzing prevention 

program effects from baseline assessments.  

 Anticipated and unanticipated cutting tasks were used to assess changes in lower 

extremity biomechanics because cutting is a frequent component of soccer and basketball 

and also associated with ACL injury mechanisms.57 Previous studies have demonstrated 

differences between the two types of tasks, however, our findings were consistent across 

the two tasks. While we did not analyze the anticipated and unanticipated cutting tasks, 

the means do not appear very different. The majority of participants required several 

additional trials of both cutting tasks and we believe the difficulty of the tasks for this age 

group may have precluded extensive differences between the anticipatory conditions. 

Future research should compare lower extremity biomechanics in several dynamic tasks, 

such as double-limb and single-limb landings and anticipated and unanticipated cutting 

tasks, with this population.  

Conclusion 

 The pediatric ACL injury prevention program caused children between the ages of 9-

11 years old to reduce tibial external rotation, hip internal rotation, and anterior tibial 

shear force during anticipated and unanticipated sidestep cutting tasks. However, the 

traditional program did not result in any significant changes supporting the idea that 

injury prevention programs for children need to be progressive and include more variety, 

feedback, and time for instruction. These results indicate it may be possible to intervene 

with children before they reach ages associated with highest ACL injury risk, which may 

result in improved long-term outcomes.  
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Table 1. Subject Demographics 
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Table 2. Comparison of injury prevention programs 
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Table 3. Kinematic Variables at Initial ground contact During Anticipated Cutting  

Task 
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Table 4. Peak Kinematic Variables During First 40% of Stance Phase of Anticipated 
Cutting Task 
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Table 5. Peak Kinetic Variables During First 40% of Stance Phase of Anticipated 

Cutting Task 
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Table 6. Kinematic Variables at Initial ground contact During Unanticipated 

Cutting Task 
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Table 7. Peak Kinematic Variables During First 40% of Stance Phase of 

Unanticipated Cutting Task 
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Table 8. Peak Kinetic Variables During First 40% of Stance Phase of Unanticipated 

Cutting Task 
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Figure 1. Starting position for all cutting tasks 
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Figure 2. Sidestep cutting task 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Figure 3. Tibial rotation at initial ground contact during anticipated cutting task 
(*p<0.05) 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Figure 4. Peak tibial internal rotation during anticipated cutting task (*p<0.05) 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Figure 5. Tibial rotation at initial ground contact during unanticipated cutting task 
(*p<0.05) 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Figure 6. Peak tibial internal rotation during first 40% of stance phase during 
unanticipated cutting task (*p<0.05) 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Figure 7. Peak tibial external rotation during first 40% of stance phase during 
unanticipated cutting task (*p<0.05) 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Manuscript II 

Integrated Injury Prevention Program Improves Balance and Vertical Jump Height 
in Children 

(Journal of Athletic Training) 
 

ABSTRACT 
Context: Implementing an injury prevention program to youth athletes may lead to 

reduced injury rates. However, there is limited knowledge regarding whether this 

population will be able to modify dynamic balance ability and vertical jump measures.  

Objective: To compare the effects of a pediatric and a traditional injury prevention 

program to no program at all in the ability to change balance and performance measures 

in athletes under twelve years of age. 

Design: Cluster-randomized controlled trial 

Setting: Research laboratory and soccer field 

Patients or Other Participants: 65 youth soccer athletes (Males: n=38, 

mass=34.16±5.36 kg, height=143.07±6.27 cm, age=10±1 years; Females: n=27, 

mass=33.82±5.37 kg, height=141.02±6.59 cm) volunteered to participate. Teams were 

cluster-randomized to either a pediatric or traditional injury prevention program, or a 

control group.  

Main Outcome Measure(s): Change scores for anterior-posterior and medial-lateral 

time-to-stabilization measures and maximum vertical jump height and power were 

calculated from the pre-test and post-test sessions. 

Results: Anterior-posterior time-to-stabilization decreased after the traditional program 

(Change Mean±SD=-0.92±0.49) compared to the control group (-0.49±0.59) (F(2,60)=6.34, 

p=0.003). The traditional program (1.70±2.80) increased vertical jump height compared 

to the control group (0.20±0.20)(F(2,61)=3.45, p=0.04) 
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Conclusions: Youth athletes under the age of 12 can improve dynamic balance ability 

and vertical jump height after completing a traditional injury prevention program, but no 

improvements were seen after the completion of the age-specific injury prevention 

program. 

Key Words: balance, performance, injury prevention 
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INTRODUCTION 
 

Injuries to the anterior cruciate ligament (ACL) are associated with early 

development of osteoarthritis18 and are most common among individuals between the 

ages of 16-18 years.43 However, the frequency of ACL injury increases steadily around 

ages 11and 12 years old.43 Sex differences in ACL injury rates and neuromuscular risk 

factors for injury also appear to emerge after children encounter puberty.38, 50 Therefore, 

there is reason to believe intervening with children at a young age may result in better 

long-term outcomes for ACL injury prevention. While it appears intervening with 

children at a young age may be critical, it is unclear on whether this age group will 

respond to an ACL injury prevention program.  

Only two previous studies have evaluated the potential to change neuromuscular 

risk factors with an ACL injury prevention program in athletes under 12 years old with 

mixed results.11, 16 Both Grandstrand et al.11 and Kilding et al.16 had children perform an 

injury prevention program that had been shown previously to be effective with older 

populations. Grandstrand et al. failed to see changes in knee separation distances (knee 

valgus) and vertical jump height, and hypothesized that these results occurred because the 

children were unable to perform some of the exercises. Kilding et al. observed 

improvements in several performance variables including vertical jump height. Despite 

these positive changes, Kilding et al. recommended more variety to be added to the injury 

prevention program to decrease boredom and improve compliance in the young 

population.  

The findings of Grandstrand et al. and Kilding et al. suggest children may require 

age-specific injury prevention programs designed for their age group. While children can 
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achieve strength gains, the mechanism for these changes appears to be due primarily to 

neural adaptations compared to muscle hypertrophy in adults.12, 33 Skeletally immature 

children are also prone to overuse injuries.9, 20 Therefore, children do not need intense 

strengthening programs and any type of training program needs to be gradual and include 

time for recovery. Unfortunately, several ACL injury prevention programs that have been 

implemented require longer than 30 minutes of training and/or involve heavy 

resistance.13, 17, 30 Young children also have been shown to require more feedback when 

learning a task,47 and utilize attention differently than adults.6 While feedback and 

instruction are frequently components of ACL injury prevention programs, it appears 

young pre-pubertal children may benefit from this type of intervention more than their 

older peers. Based on these findings, injury prevention programs for children should be 

implemented with lower frequency, basic progressions, more instruction, and feedback 

opportunities. Addressing these differences between children and adults may improve the 

ability to change neuromuscular risk factors for injury in a young population. 

There is moderate evidence that supports the use of neuromuscular ACL injury 

prevention programs to reduce ACL injury rates,3, 14, 19, 31, 32, 35, 49 but it is also necessary 

to understand how these programs affect potential neuromuscular risk factors for injury. 

An inability to maintain proper balance or postural control has been proposed as a 

neuromuscular risk factor for several lower extremity injuries.2, 21, 22, 41 Isolated balance 

training improves balance measures in healthy adult individuals.1, 7, 15, 24, 42 However, 

knowledge regarding the effectiveness of balance training during an integrated ACL 

injury prevention program is scarce despite the fact that balance exercises are a frequent 
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component of these programs. In addition, no one has investigated the effects of any type 

of training on balance ability in children under 14 years old.  

 A common limitation of research investigating ACL injury prevention programs 

is poor compliance.37, 46 Therefore, future research should determine how to improve 

athlete, coach, and parent support for these programs, which hopefully will result in 

improved compliance. While the primary purpose of ACL injury prevention programs is 

to change possible neuromuscular risk factors for injury, it is reasonable to assume 

positive changes in performance variables, such as vertical jump height, will accompany 

improvements in strength, balance, and movement. Athletes and coaches may improve 

their compliance with these programs if provided with evidence the programs improve 

athletic performance as well as reduce injury rates. Unfortunately, this information is 

lacking in much of the previous literature on ACL injury prevention programs.   

The purpose of this study was to evaluate the effects of integrated (many types of 

exercises) ACL injury prevention programs on balance and vertical jump ability in young 

children. A second purpose was to determine whether or not a program designed 

specifically for a pediatric population would result in greater balance and vertical jump 

improvements. We hypothesized an integrated ACL injury prevention program consisting 

of basic progressions, more instruction and feedback, lower frequency, and higher 

repetitions would result in greater balance ability and improvements in vertical jump 

height and power compared to a program that was not age-specific. 

METHODS 

Research Design 



 192 

A cluster-randomized controlled trial was used to evaluate changes in balance 

ability, and vertical jump height and power before and after an intervention period. Six 

teams from the Under-10 (9 years old) and Under-11 (10 years old) age levels were 

recruited from a local soccer association that agreed to participate in this study. 

Following an initial testing session (pre-test), the six teams were stratified by sex and 

cluster randomized into one of three injury prevention programs: pediatric (PED), 

traditional (TRAD), or control (CON). As a result, one boys’ and one girls’ team were 

assigned to each program. A seventh team, which was a boys’ team, was added due to a 

small roster size with the boys’ control team, and was consequently assigned to the 

control program to ensure sufficient sample size. All players on these teams performed 

their respective injury prevention program as part of their normal warm-up, but only 

players who volunteered to participate in the study completed the two testing sessions 

(pre-test and post-test).  

Participants 
 

Sixty-five youth soccer players (Males: n=38, age= 10 ± 1 years, mass= 34.16 ± 5.36 

kg, height= 143.07 ± 6.27 cm; females: n=27, age= 10 ± 1 years, mass= 33.82 ± 5.37 kg, 

height= 141.02 ± 6.59 cm) from seven teams volunteered to participate in this study 

(Table 1). All participants were free from any injury or illness that prohibited soccer 

activity at the time of initial testing. Prior to the first testing session, all parents and 

players read and completed informed consent and assent forms, respectively, which were 

approved by the university’s Institutional Review Board.  

Instrumentation 
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 Ground reaction force data were collected from a non-conductive force plate (Model 

#4060-NC Bertec Corporation, Columbus, OH). Time-to-stabilization test data were 

collected with a sampling frequency of 180 Hz.39 Data were collected during the time-to-

stabilization test for ten seconds following initial ground contact, which occurred when 

the vertical ground reaction force exceeded 10 N. Data during a maximum vertical jump 

were sampled at 1,000 Hz and used to calculate power and vertical jump height. All 

ground reaction force data were collected through Motion Monitor software (Innovative 

Sports Training Inc, Chicago, IL). 

Procedures 

All participants attended two identical testing sessions that lasted approximately 

one hour in a sports medicine research laboratory. The second session (post-test) 

occurred within one week after completion of the intervention period. All participants 

wore their own running shoes. The same shoes were worn for both testing sessions. 

Participants’ height and weight were measured and recorded upon arrival to the 

laboratory.  Participants performed a maximal vertical jump test and a dynamic balance 

assessment in a randomized order. All testing occurred on participants’ dominant limbs, 

which were the legs preferred to kick a ball for maximal distance. 

Maximal Vertical Jump Test  

Participants completed three trials of a double leg countermovement maximal vertical 

jump test so that power and jump height could be assessed. This task has been shown to 

demonstrate good intersession reliability.26 The participants began with their feet 

shoulder width apart while standing with their dominant foot on a force plate (Bertec 

Corporation, Columbus, OH). An overhead goal was used to encourage maximal 
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performance.8 The participants were instructed to jump for maximal vertical height and 

try to touch the overhead goal. They performed two practice trials and the overhead goal 

was placed slightly above the participant’s highest practice jump. Thirty seconds of rest 

were allowed between each trial. 

Time-to-Stabilization Test  

 Participants performed a dynamic balance assessment using time-to-stabilization 

measures (TTS), which have been used before to evaluate training effects.40 Participants 

stood on a 30 cm high box placed a distance equal to half of their body height away from 

a force plate with their hands on their hips. Participants jumped forward from the box 

with their non-dominant foot and landed with their dominant foot in the center of the 

force plate while keeping their hands on their hips and their non-dominant foot off of the 

ground. Participants were instructed to balance as quickly as possible without putting 

their non-dominant foot down. Participants practiced the task until they indicated they 

felt comfortable with the task and performed it correctly. Three trials were performed, but 

were repeated if the participant was unable to maintain this single-limb landing position 

with their hands on their hips or if a subsequent hop occurred after landing. Participants 

repeated 4 trials during the pre-test and 1 trial during the post-test on average. The 

number of repeated trials did not differ between groups (p=0.94). 

Implementation of Injury Prevention Programs 

The four intervention teams performed their respective program as part of their 

normal practice warm-up during the nine-week intervention period while teams assigned 

to the control programs completed a warm-up designated by their coaches. The principal 

investigator or a research assistant taught the teams the program within one week of 
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completing the pre-test session, supervised the program implementation at every practice 

to provide feedback and technique instruction, and monitored compliance. Proper 

technique was continually stressed to all of the participants while they performd the 

exercises. The teams assigned to the control program were supervised once every other 

week to ensure contamination of the programs did not occur. 

Traditional ACL Injury Prevention Program  

The traditional program was modified from previous ACL injury prevention 

programs that have been shown to be effective with participants in high school or 

college.13, 19, 29 This program consisted of static flexibility, balance, strengthening, agility, 

and plyometric exercises on both limbs. Participants ran forward a distance of 10 m after 

completing each exercise to make it a dynamic warm-up. The speed of this run gradually 

increased as the participants progressed through the warm-up. All exercises were 

performed on both legs and the program required approximately 10-15 minutes to 

complete. Table 1 provides a detailed description of the traditional ACL injury 

prevention program.  

The static flexibility exercises involved stretching of the gastrocnemius, adductor, hip 

flexor, and quadriceps muscles. Participants also performed three balance exercises. The 

first balance exercise was a double limb jump with a 180 degree twist in the air followed 

by a double limb landing and stabilized hold for one second (“180° Jump”). The second 

balance exercise required participants to maintain a single limb stance with their knee 

slightly flexed as they threw a soccer ball back and forth with a teammate (“Single Limb 

Ball Toss”). The third balance exercise involved a hop forward from one limb to a single 

limb landing and balance (“Forward Hop to Balance”). 
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Strengthening, agility, and plyometric exercises composed the remainder of the 

traditional ACL injury prevention program. One strengthening exercise targeted the core 

musculature (“Hip Bridge”), while the remaining two strengthening exercises focused on 

the muscles of the lower extremity, specifically the quadriceps and hamstrings (“Walking 

Lunges”, “Single Leg Squat”). The agility exercises required lateral movement 

(“Sideways Shuffle), dynamic direction changes (“Z-cuts”), and forward propulsion 

(“Bounding”). Finally, four plyometric exercises were incorporated into the traditional 

program. Two plyometric exercises required primarily either horizontal or vertical 

motion, coordination, and strength (“Broad Jump”, “Squat Jumps”) while the remaining 

two plyometric exercises focused on changing either sagittal or frontal plane directions 

while hopping back and forth over a line (“Forward Line Hops”, “Sideways Line Hops”).  

Pediatric ACL Injury Prevention Program  

The pediatric program consisted of three phases. The first phase was performed twice 

per week and the final two phases were performed three times per week. The three 

progressive phases in the pediatric program were further delineated. The first week of 

each phase was an introductory phase with time spent emphasizing proper form, verbal 

and visual feedback, and scaled down repetitions of each exercise. The remaining weeks 

of each phase included the addition of one or two exercises and added movement 

between all exercises. Table 2 provides a list of the pediatric ACL injury prevention 

program. All three phases required 10-15 minutes to complete. 

Similar to the traditional program, the pediatric program incorporated several of the 

exercises into a dynamic warm-up protocol. The two programs were very similar during 

the first phase by requiring participants to run at progressively increasing speeds 
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following the exercise movement (Figure 1a). However, participants completing the 

pediatric program performed a “timing” run after the exercise movements instead of the 

speed forward run during the second phase. The “timing” run involved two participants 

finishing the exercise movements at the same time, running at a diagonal, and crossing in 

front of or behind the opposite player. This movement required the participants to control 

their body and use visual information about another moving player to direct their motion 

to avoid a collision (Figure 1b). During the third phase, a sidestep cut was performed at 

the end of the diagonal run (Figure 1c).  

Instead of static flexibility exercises, the pediatric program consisted of dynamic 

flexibility exercises. The dynamic flexibility exercises targeted the gastrocnemius 

(“Walking Calf”, “Hand Walk”), hamstrings (“Straight Limb March/Skip”, “Walking 

Hamstring”, “Hand Walk”), quadriceps (“Walk/run Butt Kicks”, “Walking Quadriceps”), 

hip flexor (“Hip Flexor Walk”, “Twisting Hip Flexor Walk”), and gluteal (“Knee to 

Chest”, “Leg Cradle”) muscles. The pediatric program consisted of some of the same 

balance exercises as the traditional program, such as the “Single Limb Ball Toss”, the 

“180 Degree Jump to Balance”, and the “Forward Hop to Balance”. However, the “Single 

Limb Ball Toss” and the “180 Degree Jump to Balance” were each only completed 

during one three-week phase. The “Forward Hop to Balance” exercise progressed during 

the second and third phases to include movement in the frontal and transverse plane 

(“Sideways Hop to Balance”, “Twisting Hop too Balance”). Finally, the pediatric 

program also performed a single limb balance exercise while a partner pushed the other 

partner in different directions (“Single Limb Balance with Perturbations”) during the last 

phase. 



 198 

The pediatric program began with primarily strengthening exercises and minimal 

plyometric exercises and transitioned by gradually changing these proportions. As a 

result, the final phase included only one strengthening exercise and several plyometric 

exercises. Strengthening exercises for the pediatric program included lunges in three 

planes (“Forward/ Sideways/Transverse Lunge”), a squat progression (“Double Limb 

Squat”, “Single Limb Squat”), progressive core exercises (“Hip Bridge”, “Human 

Arrow”, “Side Plank”), and lower leg strengthening exercises (“Toe Walk”, 

“Double/Single Heel Raises”). The plyometric exercises emphasized rapid changes of 

direction with double to single leg progressions (“Forward/sideways Line Hops”), 

vertical jumps (“Squat Jumps”, “Tuck Jumps”), and consecutive jumps for distance 

(“Broad Jumps”). Finally, the pediatric program incorporated several agility exercises 

(“Side Shuffle”, “Z-cuts”, “High Knee Run”, “Skipping”, “Quick Cuts”).  

Data Reduction 

 Data from the vertical jump test and the time-to-stabilization test were exported into a 

customized software program (MatLab version 7; MathWorks, Natick, MA) for 

reduction. The time spent in the air, which was determined as the time between toe-off 

(VGRF<10N) and initial contact (VGRF>10N), was used to calculate vertical height with 

the following formula (g represents constant acceleration due to gravity): 

Height = 0.5(g(t/2)2)16 

Power was computed using the following equation:  

Power (W) = 61.9 x jump height (cm) + 36.0 x mass(kg) -1822.25 

The three trials were averaged for all analyses. 
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 The time-to-stabilization data were reduced using a method described by Ross et al.41 

The absolute ground reaction force ranges for both the anterior-posterior (A/P) and 

medial-lateral (M/L) between the eighth and ninth seconds of single limb stance were 

divided by the participants’ body weight. These values were used to determine a mean 

range-of-variation value for each component and across all 3 trials.  Standard deviations 

(SDs) were also calculated for each component and three SDs were added to each mean 

range of variation. The A/P and M/L components of the ground reaction force were 

analyzed separately for each participant. The components were rectified and a decay 

curve was determined by fitting the data with an unbounded third-order polynomial. A 

horizontal line was inserted over the top of the data for each component, which was equal 

to the component’s mean range of variation plus three SDs. The time-to-stabilization for 

each component and each participant’s trial was the point the unbounded third-order 

polynomial transected the mean range of variation value. The average time-to-

stabilization value from the three trials for each component were used for analyses. 

3.7 Statistical Analyses 

 Seven possible covariates were evaluated for a significant relationship with the 

treatment effects for all dependent variables. These covariates included variables 

regarding anthropometrics (Pre-test BMI, Change in BMI between testing sessions, % 

Predicted Adult Height), demographic information (sex, age in months), memory and 

learning ability (Learning and Total scores from BVMT), and the initial value of each 

dependent variable. Change scores were calculated for all dependent variables by 

subtracting the pre-test value from the post-test value.  
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 Separate analyses of covariance were conducted for each dependent variable and 

covariates were included in the model if they had a statistically significant effect on the 

change score.  Significant group effects were evaluated with a Bonferroni post hoc 

correction. All data analyses were performed using SPSS version 16.0 (SPSS, Inc., 

Chicago, IL) with an a priori alpha level of 0.05.  

Results 

All subjects in the intervention groups (Traditional and Pediatric programs) 

completed at least 80% of all training sessions and both testing sessions and no one 

sustained any injuries requiring lost time from activity during the intervention period.  

One control subject did not complete the post-test session due to scheduling conflicts. 

The time to stabilization data from one testing session was not usable for 2 intervention 

subjects. No statistically significant differences between groups existed for height 

(F(2,63)=2.24, P=0.12) or weight (F(2,63)=0.66, P=0.52) at the time of the pre-test. 

Complete means and measures of variability are provided in Table 4. 

Our findings indicate that the subjects’ pre-test score and sex significantly 

influenced the ability to improve time-to-stabilization in the anterior-posterior direction. 

The adjusted group change scores (Sex=1.43, Pre-test A/P score=2.71s) revealed a 

significant group main effect (F(2,60)=6.34, P=0.003, Effect size=0.17). Post-hoc testing 

demonstrated that the traditional group improved their anterior-posterior time-to-

stabilization greater than the control group (P<0.001, Effect size=0.82)(Figure 1).  

However, the pediatric program was not significantly different from the control program 

(P>0.016). We did not observe any difference between the three groups (F(2,61)=0.59, 

P=0.56, Effect size=0.02) for medial-lateral time-to-stabilization. 
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We observed a similar effect of pre-test score on the ability to improve vertical 

jump height. After accounting for this finding (Pre-test vertical jump height=25 cm), we 

found significant differences in vertical jump height between the three groups 

(F(2,61)=3.45, P=0.04, Effect size=0.10).  The traditional program resulted in greater 

improvements in vertical jump height ability compared with the control program 

(P=0.15, Effect size=0.71)(Figure 2). We did not detect any significant difference 

between groups in power (F(2,61)=2.79, P=0.07, Effect size=0.08). In summary, the 

traditional program improved anterior-posterior time-to-stabilization and vertical jump 

height greater than the control program, but the pediatric program did not change.   

Discussion 

 Contrary to our original hypotheses, the traditional program resulted in positive 

changes while the pediatric program, which was designed specifically for the young 

participants, did not cause any improvements. These findings were surprising because we 

believed the pediatric program would be more effective because it accounted for 

differences between children and adults in motor learning, strength development, and 

cognitive level. However, the results of this study demonstrate that children as young as 

nine or ten years old do not need age-specific training to effectively improve their 

balance ability and performance on a maximal vertical jump after completing a traditional 

injury prevention program. The program was brief requiring only ten to fifteen minutes of 

time, three days per week for nine weeks and easily substituted a team warm-up activity.  

 Poor balance ability has been associated with an increased risk of falls and 

sustaining several lower extremity injuries or conditions.2, 10, 21, 22, 41, 49 In addition, 

improving balance through training exercises has reduced the rate of ankle sprains,23, 49 
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and overall lower extremity injury rates.32 Padua and DiStefano34 recently demonstrated 

that the addition of balance training exercises to either plyometric or resistance exercises 

in an ACL injury prevention program influences the ability to change lower extremity 

biomechanics. Therefore, it is reasonable to believe that improving balance ability may 

reduce the risk of lower extremity injury in children.  

 Several studies have demonstrated enhanced balance ability after isolated balance 

training exercise programs.1, 7, 15, 24, 42 Despite this evidence and the frequent 

incorporation of balance exercises within integrated injury prevention programs, only a 

few studies have actually assessed balance ability after integrated programs.27, 36 In 

agreement with our findings, both Myer et al.27 and Paterno et al.36 reported positive 

improvements in balance ability after high school females completed an integrated ACL 

injury prevention program. Myer et al. observed improved medial-lateral stability in 

center of pressure excursions without concurrent changes in anterior-posterior stability. 

Similar to our results, Paterno et al. demonstrated anterior-posterior stability 

improvements but no improvements in the medial-lateral direction. The reason medial-

lateral stability did not change along with anterior-posterior stability is not completely 

understood. We hypothesize our results occurred because the balance test demanded 

sagittal plane stability but may not have been difficult in the frontal plane, as evidenced 

by faster stabilization times during the pre-test. Therefore, there was more room for 

improvement in the anterior-posterior direction.  

Our results agree with these previous studies and further demonstrate that balance 

exercises as part of an integrated injury prevention program can successfully improve 

dynamic balance ability. Our findings also reveal that an intense balance training 
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program is not necessary to observe improvements, as balance exercises were only a 

small component of the injury prevention programs. Despite similar findings, our 

investigation is the only one that compared the results to a control group, required 

significantly less time than either of the two previous studies, used a different population 

and did not include balance exercises on an unstable surface. Therefore, the results of our 

study should support the use of simple balance exercises to improve balance ability in a 

youth population.  

To our knowledge, no one has evaluated balance training in a young population 

consisting of nine and ten year old athletes. Grandstrand et al.11 investigated the effects of 

an integrated injury prevention program in children between 9-11 years old on landing 

technique and reported no improvements. DiStefano et al.5 compared responses to an 

injury prevention program between two age groups and found that the older population, 

which included high school aged children, improved their landing technique to a greater 

extent than the younger population of pre-high school aged athletes. Both of these studies 

hypothesized that children under 12 years old may require specialized training and basic 

exercises in order to improve movement. Although Kilding et al.16 observed positive 

improvements in performance measures with this population, the authors recommended 

that programs be modified and varied for this young population.  

Therefore, we developed and studied the effects of a pediatric program that 

incorporated additional exercise progressions, more continuous feedback, more variety, 

and reduced initial frequency. In contrast to our hypotheses that this program would 

result in greater changes compared to the traditional program, the traditional program was 

the only program to cause balance improvements compared to the control group. 
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However, the pediatric program does appear to cause improvements that may be 

clinically significant as suggested by the within-group strong effect size and the medium 

effect size when the results are compared to the control program.  

We believe these results occurred because the programs differed with regards to 

the type of balance training exercises. The traditional program required thirty seconds of 

continuous single limb balance three times per week for nine weeks and performed the 

forward hop to balance task for the entire duration of the program. In contrast, the 

pediatric program consisted of thirty continuous seconds of static single limb balance for 

only three weeks and completed progressive versions of the forward hop to balance 

exercise by incorporating the frontal and transverse plane. The combination of more time 

spent in a static single limb balance position (Traditional program=1800 s, Pediatric 

program= 270 s) and performing the assessment task appears to lead to greater balance 

improvements.  

The forward hop to balance assessment appears to be unintentionally designed to 

illustrate improvements from the traditional program. The principle of exercise 

specificity states that human bodies will respond to the demands placed upon it, which 

means that training a task should result in improvements with that specific task. The 

traditional program practiced the forward hop to balance exercise repetitively for nine 

weeks and improved in their ability to stabilize during that task. While this finding is not 

surprising, it is important to show that young children can respond to training. However, 

our ability to conclude the pediatric program did not cause clinically significant changes 

in balance ability that may lead to reduced injury risk is limited. Future research should 
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assess a different type of dynamic balance ability to see if improvements transfer to 

additional tasks. 

Over the past several years, while there have been several studies that have been 

successful with changing injury rates and possible injury risk factors, there have also 

been a couple of studies that have not found any significant changes.37, 46 Both of these 

studies reported poor compliance with the injury prevention programs. In order to see 

improvements with research studies and with widespread dissemination, athletes, parents, 

and coaches must support the use of these programs. There is reason to believe support 

may be enhanced if these integrated programs can improve athletic performance 

measures in addition to risk factors associated with injury.  

Villarreal et al.48 demonstrated in a recent meta-analysis that plyometric training 

results in strong effects on vertical jump height (Effect size=0.84) with greater than 7% 

improvements. Our results agree with the findings of this meta-analysis as we observed 

similar effect sizes with the traditional program and slightly lower effect sizes for the 

pediatric program. The traditional program improved their vertical jump height by 7% 

while the pediatric program sustained 5% improvements. While the studies included in 

the meta-analysis discussed previously mainly included studies that used isolated 

plyometric training, a few studies have evaluated vertical jump changes after an 

integrated training program with mixed results. Our results agree with Myer et al.27 who 

observed improvements in vertical jump height ability after high school female athletes 

completed an integrated injury prevention program. Similarly, Kilding et al. also reported 

increases in power during a vertical jump test in males between the ages of 9-11 years old 

after completing an integrated injury prevention program.   
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In contrast to the two previous studies, Steffen et al.45 did not observe similar 

changes with adolescent females and hypothesized the intensity of their 15 minute 

program may not have been sufficient to result in performance changes. Villarreal et al.48 

supported this hypothesis by concluding that the training protocol intensity influences the 

ability to change vertical jump ability. We hypothesize this intensity factor may have 

contributed to our findings that the traditional program was the only program to sustain 

significant improvements in vertical jump height compared to the control program. The 

traditional program included nine weeks of plyometric exercises while the pediatric 

program slowly progressed the strengthening exercises to include plyometric exercises. 

The rationale for the pediatric program’s gradual incorporation of plyometrics was that 

young or physically immature individuals are at a greater risk for overuse injury 

compared to older individuals.9, 44 Therefore, we designed the pediatric program to 

gradually build strength and proper technique before the children began strenuous 

jumping activities. While the traditional program achieved greater improvements in 

vertical jump height, it is possible the pediatric program moved with better technique. 

Future research should simultaneously evaluate jump height or other performance 

measures with lower extremity biomechanics. Similar to the balance data, the principle of 

exercise specificity provides explanation for these findings because the traditional 

program practiced maximum vertical jumps for nine weeks and gained improvements in 

vertical jump height. 

Villarreal et al.48 also found that men have a greater ability to sustain 

improvements than women. This sex effect may explain the contrasting findings of the 

studies that used integrated injury prevntion programs as Kilding et al.16 studied only 
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males while Steffen et al.45 included only females in their study. Unfortunately, a 

limitation of the current study is insufficient power to examine a program and sex 

interaction to evaluate whether sex affected our results. Future research should further 

evaluate the ability of young females compared to males to improve performance 

measures following an integrated injury prevention program.  

The baseline values of the balance and vertical jump data influenced whether or 

not a positive change occurred. Our results showed that individuals with greater capacity 

for improvement sustained the greatest changes, which agrees with Myer et al.28 and 

DiStefano et al.4 Both of these studies observed that baseline values of lower extremity 

biomechanics affected the ability to modify these variables. These findings suggest injury 

prevention programs may be the most beneficial for individuals who have the most room 

for improvement and future research may benefit from targeting these individuals. In 

addition, future research should account for this factor in analyses to prevent significant 

findings from being obscured by individuals who do not have room for improvement. By 

using change scores and including the pre-test value as a covariate, the influence of the 

pre-test value may be able to be accounted for in analyses. 

Limitations 

 A limitation of this study is the cluster-randomized nature of the study design. In 

order to protect external validity, we used this type of design versus a pure randomized 

controlled design. The injury prevention programs were designed to be included as a 

team warm-up activity, which would be difficult to implement if athletes on the same 

team performed a different set of exercises or none at all. Due to the small number of 

clusters, we were unable to directly account for the cluster-randomization effect in the 
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statistical analyses but believe the use of change scores and covariates address the 

possible influence of pre-test group differences. 

Conclusion 

 The results of this study demonstrate that a young population of athletes can 

improve their dynamic balance ability and maximum vertical jump height by performing 

a traditional injury prevention program. The findings suggest children will improve the 

task that they practice over time. Although improvements were only observed with the 

traditional program, it is possible the pediatric program caused improvements in different 

types of tasks. Progressive and variable exercises may enhance participants’ enjoyment of 

the injury prevention program and lead to improved compliance. Therefore, future 

research should explore slight modifications of the pediatric program.    
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Table 3. Means and Measures of Variability 
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Figure 1. Anterior-posterior time-to-stabilization across time between groups 
(*p<0.05) 
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Figure 2. Vertical jump height across time between groups (*p<0.05) 
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